diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/serial/jsm/jsm_neo.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/serial/jsm/jsm_neo.c')
-rw-r--r-- | drivers/serial/jsm/jsm_neo.c | 1427 |
1 files changed, 1427 insertions, 0 deletions
diff --git a/drivers/serial/jsm/jsm_neo.c b/drivers/serial/jsm/jsm_neo.c new file mode 100644 index 000000000000..9b79c1ff6c72 --- /dev/null +++ b/drivers/serial/jsm/jsm_neo.c | |||
@@ -0,0 +1,1427 @@ | |||
1 | /************************************************************************ | ||
2 | * Copyright 2003 Digi International (www.digi.com) | ||
3 | * | ||
4 | * Copyright (C) 2004 IBM Corporation. All rights reserved. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License as published by | ||
8 | * the Free Software Foundation; either version 2, or (at your option) | ||
9 | * any later version. | ||
10 | * | ||
11 | * This program is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the | ||
13 | * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | ||
14 | * PURPOSE. See the GNU General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU General Public License | ||
17 | * along with this program; if not, write to the Free Software | ||
18 | * Foundation, Inc., 59 * Temple Place - Suite 330, Boston, | ||
19 | * MA 02111-1307, USA. | ||
20 | * | ||
21 | * Contact Information: | ||
22 | * Scott H Kilau <Scott_Kilau@digi.com> | ||
23 | * Wendy Xiong <wendyx@us.ltcfwd.linux.ibm.com> | ||
24 | * | ||
25 | ***********************************************************************/ | ||
26 | #include <linux/delay.h> /* For udelay */ | ||
27 | #include <linux/serial_reg.h> /* For the various UART offsets */ | ||
28 | #include <linux/tty.h> | ||
29 | #include <linux/pci.h> | ||
30 | #include <asm/io.h> | ||
31 | |||
32 | #include "jsm.h" /* Driver main header file */ | ||
33 | |||
34 | static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 }; | ||
35 | |||
36 | /* | ||
37 | * This function allows calls to ensure that all outstanding | ||
38 | * PCI writes have been completed, by doing a PCI read against | ||
39 | * a non-destructive, read-only location on the Neo card. | ||
40 | * | ||
41 | * In this case, we are reading the DVID (Read-only Device Identification) | ||
42 | * value of the Neo card. | ||
43 | */ | ||
44 | static inline void neo_pci_posting_flush(struct jsm_board *bd) | ||
45 | { | ||
46 | readb(bd->re_map_membase + 0x8D); | ||
47 | } | ||
48 | |||
49 | static void neo_set_cts_flow_control(struct jsm_channel *ch) | ||
50 | { | ||
51 | u8 ier = readb(&ch->ch_neo_uart->ier); | ||
52 | u8 efr = readb(&ch->ch_neo_uart->efr); | ||
53 | |||
54 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n"); | ||
55 | |||
56 | /* Turn on auto CTS flow control */ | ||
57 | ier |= (UART_17158_IER_CTSDSR); | ||
58 | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR); | ||
59 | |||
60 | /* Turn off auto Xon flow control */ | ||
61 | efr &= ~(UART_17158_EFR_IXON); | ||
62 | |||
63 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | ||
64 | writeb(0, &ch->ch_neo_uart->efr); | ||
65 | |||
66 | /* Turn on UART enhanced bits */ | ||
67 | writeb(efr, &ch->ch_neo_uart->efr); | ||
68 | |||
69 | /* Turn on table D, with 8 char hi/low watermarks */ | ||
70 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); | ||
71 | |||
72 | /* Feed the UART our trigger levels */ | ||
73 | writeb(8, &ch->ch_neo_uart->tfifo); | ||
74 | ch->ch_t_tlevel = 8; | ||
75 | |||
76 | writeb(ier, &ch->ch_neo_uart->ier); | ||
77 | } | ||
78 | |||
79 | static void neo_set_rts_flow_control(struct jsm_channel *ch) | ||
80 | { | ||
81 | u8 ier = readb(&ch->ch_neo_uart->ier); | ||
82 | u8 efr = readb(&ch->ch_neo_uart->efr); | ||
83 | |||
84 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n"); | ||
85 | |||
86 | /* Turn on auto RTS flow control */ | ||
87 | ier |= (UART_17158_IER_RTSDTR); | ||
88 | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR); | ||
89 | |||
90 | /* Turn off auto Xoff flow control */ | ||
91 | ier &= ~(UART_17158_IER_XOFF); | ||
92 | efr &= ~(UART_17158_EFR_IXOFF); | ||
93 | |||
94 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | ||
95 | writeb(0, &ch->ch_neo_uart->efr); | ||
96 | |||
97 | /* Turn on UART enhanced bits */ | ||
98 | writeb(efr, &ch->ch_neo_uart->efr); | ||
99 | |||
100 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr); | ||
101 | ch->ch_r_watermark = 4; | ||
102 | |||
103 | writeb(56, &ch->ch_neo_uart->rfifo); | ||
104 | ch->ch_r_tlevel = 56; | ||
105 | |||
106 | writeb(ier, &ch->ch_neo_uart->ier); | ||
107 | |||
108 | /* | ||
109 | * From the Neo UART spec sheet: | ||
110 | * The auto RTS/DTR function must be started by asserting | ||
111 | * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after | ||
112 | * it is enabled. | ||
113 | */ | ||
114 | ch->ch_mostat |= (UART_MCR_RTS); | ||
115 | } | ||
116 | |||
117 | |||
118 | static void neo_set_ixon_flow_control(struct jsm_channel *ch) | ||
119 | { | ||
120 | u8 ier = readb(&ch->ch_neo_uart->ier); | ||
121 | u8 efr = readb(&ch->ch_neo_uart->efr); | ||
122 | |||
123 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n"); | ||
124 | |||
125 | /* Turn off auto CTS flow control */ | ||
126 | ier &= ~(UART_17158_IER_CTSDSR); | ||
127 | efr &= ~(UART_17158_EFR_CTSDSR); | ||
128 | |||
129 | /* Turn on auto Xon flow control */ | ||
130 | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON); | ||
131 | |||
132 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | ||
133 | writeb(0, &ch->ch_neo_uart->efr); | ||
134 | |||
135 | /* Turn on UART enhanced bits */ | ||
136 | writeb(efr, &ch->ch_neo_uart->efr); | ||
137 | |||
138 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); | ||
139 | ch->ch_r_watermark = 4; | ||
140 | |||
141 | writeb(32, &ch->ch_neo_uart->rfifo); | ||
142 | ch->ch_r_tlevel = 32; | ||
143 | |||
144 | /* Tell UART what start/stop chars it should be looking for */ | ||
145 | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); | ||
146 | writeb(0, &ch->ch_neo_uart->xonchar2); | ||
147 | |||
148 | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); | ||
149 | writeb(0, &ch->ch_neo_uart->xoffchar2); | ||
150 | |||
151 | writeb(ier, &ch->ch_neo_uart->ier); | ||
152 | } | ||
153 | |||
154 | static void neo_set_ixoff_flow_control(struct jsm_channel *ch) | ||
155 | { | ||
156 | u8 ier = readb(&ch->ch_neo_uart->ier); | ||
157 | u8 efr = readb(&ch->ch_neo_uart->efr); | ||
158 | |||
159 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n"); | ||
160 | |||
161 | /* Turn off auto RTS flow control */ | ||
162 | ier &= ~(UART_17158_IER_RTSDTR); | ||
163 | efr &= ~(UART_17158_EFR_RTSDTR); | ||
164 | |||
165 | /* Turn on auto Xoff flow control */ | ||
166 | ier |= (UART_17158_IER_XOFF); | ||
167 | efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); | ||
168 | |||
169 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | ||
170 | writeb(0, &ch->ch_neo_uart->efr); | ||
171 | |||
172 | /* Turn on UART enhanced bits */ | ||
173 | writeb(efr, &ch->ch_neo_uart->efr); | ||
174 | |||
175 | /* Turn on table D, with 8 char hi/low watermarks */ | ||
176 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); | ||
177 | |||
178 | writeb(8, &ch->ch_neo_uart->tfifo); | ||
179 | ch->ch_t_tlevel = 8; | ||
180 | |||
181 | /* Tell UART what start/stop chars it should be looking for */ | ||
182 | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); | ||
183 | writeb(0, &ch->ch_neo_uart->xonchar2); | ||
184 | |||
185 | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); | ||
186 | writeb(0, &ch->ch_neo_uart->xoffchar2); | ||
187 | |||
188 | writeb(ier, &ch->ch_neo_uart->ier); | ||
189 | } | ||
190 | |||
191 | static void neo_set_no_input_flow_control(struct jsm_channel *ch) | ||
192 | { | ||
193 | u8 ier = readb(&ch->ch_neo_uart->ier); | ||
194 | u8 efr = readb(&ch->ch_neo_uart->efr); | ||
195 | |||
196 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n"); | ||
197 | |||
198 | /* Turn off auto RTS flow control */ | ||
199 | ier &= ~(UART_17158_IER_RTSDTR); | ||
200 | efr &= ~(UART_17158_EFR_RTSDTR); | ||
201 | |||
202 | /* Turn off auto Xoff flow control */ | ||
203 | ier &= ~(UART_17158_IER_XOFF); | ||
204 | if (ch->ch_c_iflag & IXON) | ||
205 | efr &= ~(UART_17158_EFR_IXOFF); | ||
206 | else | ||
207 | efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF); | ||
208 | |||
209 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | ||
210 | writeb(0, &ch->ch_neo_uart->efr); | ||
211 | |||
212 | /* Turn on UART enhanced bits */ | ||
213 | writeb(efr, &ch->ch_neo_uart->efr); | ||
214 | |||
215 | /* Turn on table D, with 8 char hi/low watermarks */ | ||
216 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); | ||
217 | |||
218 | ch->ch_r_watermark = 0; | ||
219 | |||
220 | writeb(16, &ch->ch_neo_uart->tfifo); | ||
221 | ch->ch_t_tlevel = 16; | ||
222 | |||
223 | writeb(16, &ch->ch_neo_uart->rfifo); | ||
224 | ch->ch_r_tlevel = 16; | ||
225 | |||
226 | writeb(ier, &ch->ch_neo_uart->ier); | ||
227 | } | ||
228 | |||
229 | static void neo_set_no_output_flow_control(struct jsm_channel *ch) | ||
230 | { | ||
231 | u8 ier = readb(&ch->ch_neo_uart->ier); | ||
232 | u8 efr = readb(&ch->ch_neo_uart->efr); | ||
233 | |||
234 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n"); | ||
235 | |||
236 | /* Turn off auto CTS flow control */ | ||
237 | ier &= ~(UART_17158_IER_CTSDSR); | ||
238 | efr &= ~(UART_17158_EFR_CTSDSR); | ||
239 | |||
240 | /* Turn off auto Xon flow control */ | ||
241 | if (ch->ch_c_iflag & IXOFF) | ||
242 | efr &= ~(UART_17158_EFR_IXON); | ||
243 | else | ||
244 | efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON); | ||
245 | |||
246 | /* Why? Becuz Exar's spec says we have to zero it out before setting it */ | ||
247 | writeb(0, &ch->ch_neo_uart->efr); | ||
248 | |||
249 | /* Turn on UART enhanced bits */ | ||
250 | writeb(efr, &ch->ch_neo_uart->efr); | ||
251 | |||
252 | /* Turn on table D, with 8 char hi/low watermarks */ | ||
253 | writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr); | ||
254 | |||
255 | ch->ch_r_watermark = 0; | ||
256 | |||
257 | writeb(16, &ch->ch_neo_uart->tfifo); | ||
258 | ch->ch_t_tlevel = 16; | ||
259 | |||
260 | writeb(16, &ch->ch_neo_uart->rfifo); | ||
261 | ch->ch_r_tlevel = 16; | ||
262 | |||
263 | writeb(ier, &ch->ch_neo_uart->ier); | ||
264 | } | ||
265 | |||
266 | static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch) | ||
267 | { | ||
268 | |||
269 | /* if hardware flow control is set, then skip this whole thing */ | ||
270 | if (ch->ch_c_cflag & CRTSCTS) | ||
271 | return; | ||
272 | |||
273 | jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n"); | ||
274 | |||
275 | /* Tell UART what start/stop chars it should be looking for */ | ||
276 | writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1); | ||
277 | writeb(0, &ch->ch_neo_uart->xonchar2); | ||
278 | |||
279 | writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1); | ||
280 | writeb(0, &ch->ch_neo_uart->xoffchar2); | ||
281 | } | ||
282 | |||
283 | static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch) | ||
284 | { | ||
285 | int qleft = 0; | ||
286 | u8 linestatus = 0; | ||
287 | u8 error_mask = 0; | ||
288 | int n = 0; | ||
289 | int total = 0; | ||
290 | u16 head; | ||
291 | u16 tail; | ||
292 | |||
293 | if (!ch) | ||
294 | return; | ||
295 | |||
296 | /* cache head and tail of queue */ | ||
297 | head = ch->ch_r_head & RQUEUEMASK; | ||
298 | tail = ch->ch_r_tail & RQUEUEMASK; | ||
299 | |||
300 | /* Get our cached LSR */ | ||
301 | linestatus = ch->ch_cached_lsr; | ||
302 | ch->ch_cached_lsr = 0; | ||
303 | |||
304 | /* Store how much space we have left in the queue */ | ||
305 | if ((qleft = tail - head - 1) < 0) | ||
306 | qleft += RQUEUEMASK + 1; | ||
307 | |||
308 | /* | ||
309 | * If the UART is not in FIFO mode, force the FIFO copy to | ||
310 | * NOT be run, by setting total to 0. | ||
311 | * | ||
312 | * On the other hand, if the UART IS in FIFO mode, then ask | ||
313 | * the UART to give us an approximation of data it has RX'ed. | ||
314 | */ | ||
315 | if (!(ch->ch_flags & CH_FIFO_ENABLED)) | ||
316 | total = 0; | ||
317 | else { | ||
318 | total = readb(&ch->ch_neo_uart->rfifo); | ||
319 | |||
320 | /* | ||
321 | * EXAR chip bug - RX FIFO COUNT - Fudge factor. | ||
322 | * | ||
323 | * This resolves a problem/bug with the Exar chip that sometimes | ||
324 | * returns a bogus value in the rfifo register. | ||
325 | * The count can be any where from 0-3 bytes "off". | ||
326 | * Bizarre, but true. | ||
327 | */ | ||
328 | total -= 3; | ||
329 | } | ||
330 | |||
331 | /* | ||
332 | * Finally, bound the copy to make sure we don't overflow | ||
333 | * our own queue... | ||
334 | * The byte by byte copy loop below this loop this will | ||
335 | * deal with the queue overflow possibility. | ||
336 | */ | ||
337 | total = min(total, qleft); | ||
338 | |||
339 | while (total > 0) { | ||
340 | /* | ||
341 | * Grab the linestatus register, we need to check | ||
342 | * to see if there are any errors in the FIFO. | ||
343 | */ | ||
344 | linestatus = readb(&ch->ch_neo_uart->lsr); | ||
345 | |||
346 | /* | ||
347 | * Break out if there is a FIFO error somewhere. | ||
348 | * This will allow us to go byte by byte down below, | ||
349 | * finding the exact location of the error. | ||
350 | */ | ||
351 | if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) | ||
352 | break; | ||
353 | |||
354 | /* Make sure we don't go over the end of our queue */ | ||
355 | n = min(((u32) total), (RQUEUESIZE - (u32) head)); | ||
356 | |||
357 | /* | ||
358 | * Cut down n even further if needed, this is to fix | ||
359 | * a problem with memcpy_fromio() with the Neo on the | ||
360 | * IBM pSeries platform. | ||
361 | * 15 bytes max appears to be the magic number. | ||
362 | */ | ||
363 | n = min((u32) n, (u32) 12); | ||
364 | |||
365 | /* | ||
366 | * Since we are grabbing the linestatus register, which | ||
367 | * will reset some bits after our read, we need to ensure | ||
368 | * we don't miss our TX FIFO emptys. | ||
369 | */ | ||
370 | if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) | ||
371 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | ||
372 | |||
373 | linestatus = 0; | ||
374 | |||
375 | /* Copy data from uart to the queue */ | ||
376 | memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n); | ||
377 | /* | ||
378 | * Since RX_FIFO_DATA_ERROR was 0, we are guarenteed | ||
379 | * that all the data currently in the FIFO is free of | ||
380 | * breaks and parity/frame/orun errors. | ||
381 | */ | ||
382 | memset(ch->ch_equeue + head, 0, n); | ||
383 | |||
384 | /* Add to and flip head if needed */ | ||
385 | head = (head + n) & RQUEUEMASK; | ||
386 | total -= n; | ||
387 | qleft -= n; | ||
388 | ch->ch_rxcount += n; | ||
389 | } | ||
390 | |||
391 | /* | ||
392 | * Create a mask to determine whether we should | ||
393 | * insert the character (if any) into our queue. | ||
394 | */ | ||
395 | if (ch->ch_c_iflag & IGNBRK) | ||
396 | error_mask |= UART_LSR_BI; | ||
397 | |||
398 | /* | ||
399 | * Now cleanup any leftover bytes still in the UART. | ||
400 | * Also deal with any possible queue overflow here as well. | ||
401 | */ | ||
402 | while (1) { | ||
403 | |||
404 | /* | ||
405 | * Its possible we have a linestatus from the loop above | ||
406 | * this, so we "OR" on any extra bits. | ||
407 | */ | ||
408 | linestatus |= readb(&ch->ch_neo_uart->lsr); | ||
409 | |||
410 | /* | ||
411 | * If the chip tells us there is no more data pending to | ||
412 | * be read, we can then leave. | ||
413 | * But before we do, cache the linestatus, just in case. | ||
414 | */ | ||
415 | if (!(linestatus & UART_LSR_DR)) { | ||
416 | ch->ch_cached_lsr = linestatus; | ||
417 | break; | ||
418 | } | ||
419 | |||
420 | /* No need to store this bit */ | ||
421 | linestatus &= ~UART_LSR_DR; | ||
422 | |||
423 | /* | ||
424 | * Since we are grabbing the linestatus register, which | ||
425 | * will reset some bits after our read, we need to ensure | ||
426 | * we don't miss our TX FIFO emptys. | ||
427 | */ | ||
428 | if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) { | ||
429 | linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR); | ||
430 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | ||
431 | } | ||
432 | |||
433 | /* | ||
434 | * Discard character if we are ignoring the error mask. | ||
435 | */ | ||
436 | if (linestatus & error_mask) { | ||
437 | u8 discard; | ||
438 | linestatus = 0; | ||
439 | memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1); | ||
440 | continue; | ||
441 | } | ||
442 | |||
443 | /* | ||
444 | * If our queue is full, we have no choice but to drop some data. | ||
445 | * The assumption is that HWFLOW or SWFLOW should have stopped | ||
446 | * things way way before we got to this point. | ||
447 | * | ||
448 | * I decided that I wanted to ditch the oldest data first, | ||
449 | * I hope thats okay with everyone? Yes? Good. | ||
450 | */ | ||
451 | while (qleft < 1) { | ||
452 | jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, | ||
453 | "Queue full, dropping DATA:%x LSR:%x\n", | ||
454 | ch->ch_rqueue[tail], ch->ch_equeue[tail]); | ||
455 | |||
456 | ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK; | ||
457 | ch->ch_err_overrun++; | ||
458 | qleft++; | ||
459 | } | ||
460 | |||
461 | memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1); | ||
462 | ch->ch_equeue[head] = (u8) linestatus; | ||
463 | |||
464 | jsm_printk(READ, INFO, &ch->ch_bd->pci_dev, | ||
465 | "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]); | ||
466 | |||
467 | /* Ditch any remaining linestatus value. */ | ||
468 | linestatus = 0; | ||
469 | |||
470 | /* Add to and flip head if needed */ | ||
471 | head = (head + 1) & RQUEUEMASK; | ||
472 | |||
473 | qleft--; | ||
474 | ch->ch_rxcount++; | ||
475 | } | ||
476 | |||
477 | /* | ||
478 | * Write new final heads to channel structure. | ||
479 | */ | ||
480 | ch->ch_r_head = head & RQUEUEMASK; | ||
481 | ch->ch_e_head = head & EQUEUEMASK; | ||
482 | jsm_input(ch); | ||
483 | } | ||
484 | |||
485 | static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch) | ||
486 | { | ||
487 | u16 head; | ||
488 | u16 tail; | ||
489 | int n; | ||
490 | int s; | ||
491 | int qlen; | ||
492 | u32 len_written = 0; | ||
493 | |||
494 | if (!ch) | ||
495 | return; | ||
496 | |||
497 | /* No data to write to the UART */ | ||
498 | if (ch->ch_w_tail == ch->ch_w_head) | ||
499 | return; | ||
500 | |||
501 | /* If port is "stopped", don't send any data to the UART */ | ||
502 | if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING)) | ||
503 | return; | ||
504 | /* | ||
505 | * If FIFOs are disabled. Send data directly to txrx register | ||
506 | */ | ||
507 | if (!(ch->ch_flags & CH_FIFO_ENABLED)) { | ||
508 | u8 lsrbits = readb(&ch->ch_neo_uart->lsr); | ||
509 | |||
510 | ch->ch_cached_lsr |= lsrbits; | ||
511 | if (ch->ch_cached_lsr & UART_LSR_THRE) { | ||
512 | ch->ch_cached_lsr &= ~(UART_LSR_THRE); | ||
513 | |||
514 | writeb(ch->ch_wqueue[ch->ch_w_tail], &ch->ch_neo_uart->txrx); | ||
515 | jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev, | ||
516 | "Tx data: %x\n", ch->ch_wqueue[ch->ch_w_head]); | ||
517 | ch->ch_w_tail++; | ||
518 | ch->ch_w_tail &= WQUEUEMASK; | ||
519 | ch->ch_txcount++; | ||
520 | } | ||
521 | return; | ||
522 | } | ||
523 | |||
524 | /* | ||
525 | * We have to do it this way, because of the EXAR TXFIFO count bug. | ||
526 | */ | ||
527 | if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM))) | ||
528 | return; | ||
529 | |||
530 | len_written = 0; | ||
531 | n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel; | ||
532 | |||
533 | /* cache head and tail of queue */ | ||
534 | head = ch->ch_w_head & WQUEUEMASK; | ||
535 | tail = ch->ch_w_tail & WQUEUEMASK; | ||
536 | qlen = (head - tail) & WQUEUEMASK; | ||
537 | |||
538 | /* Find minimum of the FIFO space, versus queue length */ | ||
539 | n = min(n, qlen); | ||
540 | |||
541 | while (n > 0) { | ||
542 | |||
543 | s = ((head >= tail) ? head : WQUEUESIZE) - tail; | ||
544 | s = min(s, n); | ||
545 | |||
546 | if (s <= 0) | ||
547 | break; | ||
548 | |||
549 | memcpy_toio(&ch->ch_neo_uart->txrxburst, ch->ch_wqueue + tail, s); | ||
550 | /* Add and flip queue if needed */ | ||
551 | tail = (tail + s) & WQUEUEMASK; | ||
552 | n -= s; | ||
553 | ch->ch_txcount += s; | ||
554 | len_written += s; | ||
555 | } | ||
556 | |||
557 | /* Update the final tail */ | ||
558 | ch->ch_w_tail = tail & WQUEUEMASK; | ||
559 | |||
560 | if (len_written >= ch->ch_t_tlevel) | ||
561 | ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | ||
562 | |||
563 | if (!jsm_tty_write(&ch->uart_port)) | ||
564 | uart_write_wakeup(&ch->uart_port); | ||
565 | } | ||
566 | |||
567 | static void neo_parse_modem(struct jsm_channel *ch, u8 signals) | ||
568 | { | ||
569 | u8 msignals = signals; | ||
570 | |||
571 | jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev, | ||
572 | "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals); | ||
573 | |||
574 | if (!ch) | ||
575 | return; | ||
576 | |||
577 | /* Scrub off lower bits. They signify delta's, which I don't care about */ | ||
578 | msignals &= 0xf0; | ||
579 | |||
580 | if (msignals & UART_MSR_DCD) | ||
581 | ch->ch_mistat |= UART_MSR_DCD; | ||
582 | else | ||
583 | ch->ch_mistat &= ~UART_MSR_DCD; | ||
584 | |||
585 | if (msignals & UART_MSR_DSR) | ||
586 | ch->ch_mistat |= UART_MSR_DSR; | ||
587 | else | ||
588 | ch->ch_mistat &= ~UART_MSR_DSR; | ||
589 | |||
590 | if (msignals & UART_MSR_RI) | ||
591 | ch->ch_mistat |= UART_MSR_RI; | ||
592 | else | ||
593 | ch->ch_mistat &= ~UART_MSR_RI; | ||
594 | |||
595 | if (msignals & UART_MSR_CTS) | ||
596 | ch->ch_mistat |= UART_MSR_CTS; | ||
597 | else | ||
598 | ch->ch_mistat &= ~UART_MSR_CTS; | ||
599 | |||
600 | jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev, | ||
601 | "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n", | ||
602 | ch->ch_portnum, | ||
603 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR), | ||
604 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS), | ||
605 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS), | ||
606 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR), | ||
607 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI), | ||
608 | !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD)); | ||
609 | } | ||
610 | |||
611 | /* Make the UART raise any of the output signals we want up */ | ||
612 | static void neo_assert_modem_signals(struct jsm_channel *ch) | ||
613 | { | ||
614 | u8 out; | ||
615 | |||
616 | if (!ch) | ||
617 | return; | ||
618 | |||
619 | out = ch->ch_mostat; | ||
620 | |||
621 | writeb(out, &ch->ch_neo_uart->mcr); | ||
622 | |||
623 | /* flush write operation */ | ||
624 | neo_pci_posting_flush(ch->ch_bd); | ||
625 | } | ||
626 | |||
627 | /* | ||
628 | * Flush the WRITE FIFO on the Neo. | ||
629 | * | ||
630 | * NOTE: Channel lock MUST be held before calling this function! | ||
631 | */ | ||
632 | static void neo_flush_uart_write(struct jsm_channel *ch) | ||
633 | { | ||
634 | u8 tmp = 0; | ||
635 | int i = 0; | ||
636 | |||
637 | if (!ch) | ||
638 | return; | ||
639 | |||
640 | writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); | ||
641 | |||
642 | for (i = 0; i < 10; i++) { | ||
643 | |||
644 | /* Check to see if the UART feels it completely flushed the FIFO. */ | ||
645 | tmp = readb(&ch->ch_neo_uart->isr_fcr); | ||
646 | if (tmp & 4) { | ||
647 | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, | ||
648 | "Still flushing TX UART... i: %d\n", i); | ||
649 | udelay(10); | ||
650 | } | ||
651 | else | ||
652 | break; | ||
653 | } | ||
654 | |||
655 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | ||
656 | } | ||
657 | |||
658 | |||
659 | /* | ||
660 | * Flush the READ FIFO on the Neo. | ||
661 | * | ||
662 | * NOTE: Channel lock MUST be held before calling this function! | ||
663 | */ | ||
664 | static void neo_flush_uart_read(struct jsm_channel *ch) | ||
665 | { | ||
666 | u8 tmp = 0; | ||
667 | int i = 0; | ||
668 | |||
669 | if (!ch) | ||
670 | return; | ||
671 | |||
672 | writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr); | ||
673 | |||
674 | for (i = 0; i < 10; i++) { | ||
675 | |||
676 | /* Check to see if the UART feels it completely flushed the FIFO. */ | ||
677 | tmp = readb(&ch->ch_neo_uart->isr_fcr); | ||
678 | if (tmp & 2) { | ||
679 | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, | ||
680 | "Still flushing RX UART... i: %d\n", i); | ||
681 | udelay(10); | ||
682 | } | ||
683 | else | ||
684 | break; | ||
685 | } | ||
686 | } | ||
687 | |||
688 | /* | ||
689 | * No locks are assumed to be held when calling this function. | ||
690 | */ | ||
691 | void neo_clear_break(struct jsm_channel *ch, int force) | ||
692 | { | ||
693 | unsigned long lock_flags; | ||
694 | |||
695 | spin_lock_irqsave(&ch->ch_lock, lock_flags); | ||
696 | |||
697 | /* Turn break off, and unset some variables */ | ||
698 | if (ch->ch_flags & CH_BREAK_SENDING) { | ||
699 | u8 temp = readb(&ch->ch_neo_uart->lcr); | ||
700 | writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr); | ||
701 | |||
702 | ch->ch_flags &= ~(CH_BREAK_SENDING); | ||
703 | jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev, | ||
704 | "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies); | ||
705 | |||
706 | /* flush write operation */ | ||
707 | neo_pci_posting_flush(ch->ch_bd); | ||
708 | } | ||
709 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | ||
710 | } | ||
711 | |||
712 | /* | ||
713 | * Parse the ISR register. | ||
714 | */ | ||
715 | static inline void neo_parse_isr(struct jsm_board *brd, u32 port) | ||
716 | { | ||
717 | struct jsm_channel *ch; | ||
718 | u8 isr; | ||
719 | u8 cause; | ||
720 | unsigned long lock_flags; | ||
721 | |||
722 | if (!brd) | ||
723 | return; | ||
724 | |||
725 | if (port > brd->maxports) | ||
726 | return; | ||
727 | |||
728 | ch = brd->channels[port]; | ||
729 | if (!ch) | ||
730 | return; | ||
731 | |||
732 | /* Here we try to figure out what caused the interrupt to happen */ | ||
733 | while (1) { | ||
734 | |||
735 | isr = readb(&ch->ch_neo_uart->isr_fcr); | ||
736 | |||
737 | /* Bail if no pending interrupt */ | ||
738 | if (isr & UART_IIR_NO_INT) | ||
739 | break; | ||
740 | |||
741 | /* | ||
742 | * Yank off the upper 2 bits, which just show that the FIFO's are enabled. | ||
743 | */ | ||
744 | isr &= ~(UART_17158_IIR_FIFO_ENABLED); | ||
745 | |||
746 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | ||
747 | "%s:%d isr: %x\n", __FILE__, __LINE__, isr); | ||
748 | |||
749 | if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) { | ||
750 | /* Read data from uart -> queue */ | ||
751 | neo_copy_data_from_uart_to_queue(ch); | ||
752 | |||
753 | /* Call our tty layer to enforce queue flow control if needed. */ | ||
754 | spin_lock_irqsave(&ch->ch_lock, lock_flags); | ||
755 | jsm_check_queue_flow_control(ch); | ||
756 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | ||
757 | } | ||
758 | |||
759 | if (isr & UART_IIR_THRI) { | ||
760 | /* Transfer data (if any) from Write Queue -> UART. */ | ||
761 | spin_lock_irqsave(&ch->ch_lock, lock_flags); | ||
762 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | ||
763 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | ||
764 | neo_copy_data_from_queue_to_uart(ch); | ||
765 | } | ||
766 | |||
767 | if (isr & UART_17158_IIR_XONXOFF) { | ||
768 | cause = readb(&ch->ch_neo_uart->xoffchar1); | ||
769 | |||
770 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | ||
771 | "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause); | ||
772 | |||
773 | /* | ||
774 | * Since the UART detected either an XON or | ||
775 | * XOFF match, we need to figure out which | ||
776 | * one it was, so we can suspend or resume data flow. | ||
777 | */ | ||
778 | spin_lock_irqsave(&ch->ch_lock, lock_flags); | ||
779 | if (cause == UART_17158_XON_DETECT) { | ||
780 | /* Is output stopped right now, if so, resume it */ | ||
781 | if (brd->channels[port]->ch_flags & CH_STOP) { | ||
782 | ch->ch_flags &= ~(CH_STOP); | ||
783 | } | ||
784 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | ||
785 | "Port %d. XON detected in incoming data\n", port); | ||
786 | } | ||
787 | else if (cause == UART_17158_XOFF_DETECT) { | ||
788 | if (!(brd->channels[port]->ch_flags & CH_STOP)) { | ||
789 | ch->ch_flags |= CH_STOP; | ||
790 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | ||
791 | "Setting CH_STOP\n"); | ||
792 | } | ||
793 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | ||
794 | "Port: %d. XOFF detected in incoming data\n", port); | ||
795 | } | ||
796 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | ||
797 | } | ||
798 | |||
799 | if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) { | ||
800 | /* | ||
801 | * If we get here, this means the hardware is doing auto flow control. | ||
802 | * Check to see whether RTS/DTR or CTS/DSR caused this interrupt. | ||
803 | */ | ||
804 | cause = readb(&ch->ch_neo_uart->mcr); | ||
805 | |||
806 | /* Which pin is doing auto flow? RTS or DTR? */ | ||
807 | spin_lock_irqsave(&ch->ch_lock, lock_flags); | ||
808 | if ((cause & 0x4) == 0) { | ||
809 | if (cause & UART_MCR_RTS) | ||
810 | ch->ch_mostat |= UART_MCR_RTS; | ||
811 | else | ||
812 | ch->ch_mostat &= ~(UART_MCR_RTS); | ||
813 | } else { | ||
814 | if (cause & UART_MCR_DTR) | ||
815 | ch->ch_mostat |= UART_MCR_DTR; | ||
816 | else | ||
817 | ch->ch_mostat &= ~(UART_MCR_DTR); | ||
818 | } | ||
819 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | ||
820 | } | ||
821 | |||
822 | /* Parse any modem signal changes */ | ||
823 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | ||
824 | "MOD_STAT: sending to parse_modem_sigs\n"); | ||
825 | neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); | ||
826 | } | ||
827 | } | ||
828 | |||
829 | static inline void neo_parse_lsr(struct jsm_board *brd, u32 port) | ||
830 | { | ||
831 | struct jsm_channel *ch; | ||
832 | int linestatus; | ||
833 | unsigned long lock_flags; | ||
834 | |||
835 | if (!brd) | ||
836 | return; | ||
837 | |||
838 | if (port > brd->maxports) | ||
839 | return; | ||
840 | |||
841 | ch = brd->channels[port]; | ||
842 | if (!ch) | ||
843 | return; | ||
844 | |||
845 | linestatus = readb(&ch->ch_neo_uart->lsr); | ||
846 | |||
847 | jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev, | ||
848 | "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus); | ||
849 | |||
850 | ch->ch_cached_lsr |= linestatus; | ||
851 | |||
852 | if (ch->ch_cached_lsr & UART_LSR_DR) { | ||
853 | /* Read data from uart -> queue */ | ||
854 | neo_copy_data_from_uart_to_queue(ch); | ||
855 | spin_lock_irqsave(&ch->ch_lock, lock_flags); | ||
856 | jsm_check_queue_flow_control(ch); | ||
857 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | ||
858 | } | ||
859 | |||
860 | /* | ||
861 | * This is a special flag. It indicates that at least 1 | ||
862 | * RX error (parity, framing, or break) has happened. | ||
863 | * Mark this in our struct, which will tell me that I have | ||
864 | *to do the special RX+LSR read for this FIFO load. | ||
865 | */ | ||
866 | if (linestatus & UART_17158_RX_FIFO_DATA_ERROR) | ||
867 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | ||
868 | "%s:%d Port: %d Got an RX error, need to parse LSR\n", | ||
869 | __FILE__, __LINE__, port); | ||
870 | |||
871 | /* | ||
872 | * The next 3 tests should *NOT* happen, as the above test | ||
873 | * should encapsulate all 3... At least, thats what Exar says. | ||
874 | */ | ||
875 | |||
876 | if (linestatus & UART_LSR_PE) { | ||
877 | ch->ch_err_parity++; | ||
878 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | ||
879 | "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port); | ||
880 | } | ||
881 | |||
882 | if (linestatus & UART_LSR_FE) { | ||
883 | ch->ch_err_frame++; | ||
884 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | ||
885 | "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port); | ||
886 | } | ||
887 | |||
888 | if (linestatus & UART_LSR_BI) { | ||
889 | ch->ch_err_break++; | ||
890 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | ||
891 | "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port); | ||
892 | } | ||
893 | |||
894 | if (linestatus & UART_LSR_OE) { | ||
895 | /* | ||
896 | * Rx Oruns. Exar says that an orun will NOT corrupt | ||
897 | * the FIFO. It will just replace the holding register | ||
898 | * with this new data byte. So basically just ignore this. | ||
899 | * Probably we should eventually have an orun stat in our driver... | ||
900 | */ | ||
901 | ch->ch_err_overrun++; | ||
902 | jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev, | ||
903 | "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port); | ||
904 | } | ||
905 | |||
906 | if (linestatus & UART_LSR_THRE) { | ||
907 | spin_lock_irqsave(&ch->ch_lock, lock_flags); | ||
908 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | ||
909 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | ||
910 | |||
911 | /* Transfer data (if any) from Write Queue -> UART. */ | ||
912 | neo_copy_data_from_queue_to_uart(ch); | ||
913 | } | ||
914 | else if (linestatus & UART_17158_TX_AND_FIFO_CLR) { | ||
915 | spin_lock_irqsave(&ch->ch_lock, lock_flags); | ||
916 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | ||
917 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags); | ||
918 | |||
919 | /* Transfer data (if any) from Write Queue -> UART. */ | ||
920 | neo_copy_data_from_queue_to_uart(ch); | ||
921 | } | ||
922 | } | ||
923 | |||
924 | /* | ||
925 | * neo_param() | ||
926 | * Send any/all changes to the line to the UART. | ||
927 | */ | ||
928 | static void neo_param(struct jsm_channel *ch) | ||
929 | { | ||
930 | u8 lcr = 0; | ||
931 | u8 uart_lcr = 0; | ||
932 | u8 ier = 0; | ||
933 | u32 baud = 9600; | ||
934 | int quot = 0; | ||
935 | struct jsm_board *bd; | ||
936 | |||
937 | bd = ch->ch_bd; | ||
938 | if (!bd) | ||
939 | return; | ||
940 | |||
941 | /* | ||
942 | * If baud rate is zero, flush queues, and set mval to drop DTR. | ||
943 | */ | ||
944 | if ((ch->ch_c_cflag & (CBAUD)) == 0) { | ||
945 | ch->ch_r_head = ch->ch_r_tail = 0; | ||
946 | ch->ch_e_head = ch->ch_e_tail = 0; | ||
947 | ch->ch_w_head = ch->ch_w_tail = 0; | ||
948 | |||
949 | neo_flush_uart_write(ch); | ||
950 | neo_flush_uart_read(ch); | ||
951 | |||
952 | ch->ch_flags |= (CH_BAUD0); | ||
953 | ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR); | ||
954 | neo_assert_modem_signals(ch); | ||
955 | ch->ch_old_baud = 0; | ||
956 | return; | ||
957 | |||
958 | } else if (ch->ch_custom_speed) { | ||
959 | baud = ch->ch_custom_speed; | ||
960 | if (ch->ch_flags & CH_BAUD0) | ||
961 | ch->ch_flags &= ~(CH_BAUD0); | ||
962 | } else { | ||
963 | int iindex = 0; | ||
964 | int jindex = 0; | ||
965 | |||
966 | const u64 bauds[4][16] = { | ||
967 | { | ||
968 | 0, 50, 75, 110, | ||
969 | 134, 150, 200, 300, | ||
970 | 600, 1200, 1800, 2400, | ||
971 | 4800, 9600, 19200, 38400 }, | ||
972 | { | ||
973 | 0, 57600, 115200, 230400, | ||
974 | 460800, 150, 200, 921600, | ||
975 | 600, 1200, 1800, 2400, | ||
976 | 4800, 9600, 19200, 38400 }, | ||
977 | { | ||
978 | 0, 57600, 76800, 115200, | ||
979 | 131657, 153600, 230400, 460800, | ||
980 | 921600, 1200, 1800, 2400, | ||
981 | 4800, 9600, 19200, 38400 }, | ||
982 | { | ||
983 | 0, 57600, 115200, 230400, | ||
984 | 460800, 150, 200, 921600, | ||
985 | 600, 1200, 1800, 2400, | ||
986 | 4800, 9600, 19200, 38400 } | ||
987 | }; | ||
988 | |||
989 | baud = C_BAUD(ch->uart_port.info->tty) & 0xff; | ||
990 | |||
991 | if (ch->ch_c_cflag & CBAUDEX) | ||
992 | iindex = 1; | ||
993 | |||
994 | jindex = baud; | ||
995 | |||
996 | if ((iindex >= 0) && (iindex < 4) && (jindex >= 0) && (jindex < 16)) | ||
997 | baud = bauds[iindex][jindex]; | ||
998 | else { | ||
999 | jsm_printk(IOCTL, DEBUG, &ch->ch_bd->pci_dev, | ||
1000 | "baud indices were out of range (%d)(%d)", | ||
1001 | iindex, jindex); | ||
1002 | baud = 0; | ||
1003 | } | ||
1004 | |||
1005 | if (baud == 0) | ||
1006 | baud = 9600; | ||
1007 | |||
1008 | if (ch->ch_flags & CH_BAUD0) | ||
1009 | ch->ch_flags &= ~(CH_BAUD0); | ||
1010 | } | ||
1011 | |||
1012 | if (ch->ch_c_cflag & PARENB) | ||
1013 | lcr |= UART_LCR_PARITY; | ||
1014 | |||
1015 | if (!(ch->ch_c_cflag & PARODD)) | ||
1016 | lcr |= UART_LCR_EPAR; | ||
1017 | |||
1018 | /* | ||
1019 | * Not all platforms support mark/space parity, | ||
1020 | * so this will hide behind an ifdef. | ||
1021 | */ | ||
1022 | #ifdef CMSPAR | ||
1023 | if (ch->ch_c_cflag & CMSPAR) | ||
1024 | lcr |= UART_LCR_SPAR; | ||
1025 | #endif | ||
1026 | |||
1027 | if (ch->ch_c_cflag & CSTOPB) | ||
1028 | lcr |= UART_LCR_STOP; | ||
1029 | |||
1030 | switch (ch->ch_c_cflag & CSIZE) { | ||
1031 | case CS5: | ||
1032 | lcr |= UART_LCR_WLEN5; | ||
1033 | break; | ||
1034 | case CS6: | ||
1035 | lcr |= UART_LCR_WLEN6; | ||
1036 | break; | ||
1037 | case CS7: | ||
1038 | lcr |= UART_LCR_WLEN7; | ||
1039 | break; | ||
1040 | case CS8: | ||
1041 | default: | ||
1042 | lcr |= UART_LCR_WLEN8; | ||
1043 | break; | ||
1044 | } | ||
1045 | |||
1046 | ier = readb(&ch->ch_neo_uart->ier); | ||
1047 | uart_lcr = readb(&ch->ch_neo_uart->lcr); | ||
1048 | |||
1049 | if (baud == 0) | ||
1050 | baud = 9600; | ||
1051 | |||
1052 | quot = ch->ch_bd->bd_dividend / baud; | ||
1053 | |||
1054 | if (quot != 0) { | ||
1055 | ch->ch_old_baud = baud; | ||
1056 | writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr); | ||
1057 | writeb((quot & 0xff), &ch->ch_neo_uart->txrx); | ||
1058 | writeb((quot >> 8), &ch->ch_neo_uart->ier); | ||
1059 | writeb(lcr, &ch->ch_neo_uart->lcr); | ||
1060 | } | ||
1061 | |||
1062 | if (uart_lcr != lcr) | ||
1063 | writeb(lcr, &ch->ch_neo_uart->lcr); | ||
1064 | |||
1065 | if (ch->ch_c_cflag & CREAD) | ||
1066 | ier |= (UART_IER_RDI | UART_IER_RLSI); | ||
1067 | |||
1068 | ier |= (UART_IER_THRI | UART_IER_MSI); | ||
1069 | |||
1070 | writeb(ier, &ch->ch_neo_uart->ier); | ||
1071 | |||
1072 | /* Set new start/stop chars */ | ||
1073 | neo_set_new_start_stop_chars(ch); | ||
1074 | |||
1075 | if (ch->ch_c_cflag & CRTSCTS) | ||
1076 | neo_set_cts_flow_control(ch); | ||
1077 | else if (ch->ch_c_iflag & IXON) { | ||
1078 | /* If start/stop is set to disable, then we should disable flow control */ | ||
1079 | if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) | ||
1080 | neo_set_no_output_flow_control(ch); | ||
1081 | else | ||
1082 | neo_set_ixon_flow_control(ch); | ||
1083 | } | ||
1084 | else | ||
1085 | neo_set_no_output_flow_control(ch); | ||
1086 | |||
1087 | if (ch->ch_c_cflag & CRTSCTS) | ||
1088 | neo_set_rts_flow_control(ch); | ||
1089 | else if (ch->ch_c_iflag & IXOFF) { | ||
1090 | /* If start/stop is set to disable, then we should disable flow control */ | ||
1091 | if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR)) | ||
1092 | neo_set_no_input_flow_control(ch); | ||
1093 | else | ||
1094 | neo_set_ixoff_flow_control(ch); | ||
1095 | } | ||
1096 | else | ||
1097 | neo_set_no_input_flow_control(ch); | ||
1098 | /* | ||
1099 | * Adjust the RX FIFO Trigger level if baud is less than 9600. | ||
1100 | * Not exactly elegant, but this is needed because of the Exar chip's | ||
1101 | * delay on firing off the RX FIFO interrupt on slower baud rates. | ||
1102 | */ | ||
1103 | if (baud < 9600) { | ||
1104 | writeb(1, &ch->ch_neo_uart->rfifo); | ||
1105 | ch->ch_r_tlevel = 1; | ||
1106 | } | ||
1107 | |||
1108 | neo_assert_modem_signals(ch); | ||
1109 | |||
1110 | /* Get current status of the modem signals now */ | ||
1111 | neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr)); | ||
1112 | return; | ||
1113 | } | ||
1114 | |||
1115 | /* | ||
1116 | * jsm_neo_intr() | ||
1117 | * | ||
1118 | * Neo specific interrupt handler. | ||
1119 | */ | ||
1120 | static irqreturn_t neo_intr(int irq, void *voidbrd, struct pt_regs *regs) | ||
1121 | { | ||
1122 | struct jsm_board *brd = (struct jsm_board *) voidbrd; | ||
1123 | struct jsm_channel *ch; | ||
1124 | int port = 0; | ||
1125 | int type = 0; | ||
1126 | int current_port; | ||
1127 | u32 tmp; | ||
1128 | u32 uart_poll; | ||
1129 | unsigned long lock_flags; | ||
1130 | unsigned long lock_flags2; | ||
1131 | int outofloop_count = 0; | ||
1132 | |||
1133 | brd->intr_count++; | ||
1134 | |||
1135 | /* Lock out the slow poller from running on this board. */ | ||
1136 | spin_lock_irqsave(&brd->bd_intr_lock, lock_flags); | ||
1137 | |||
1138 | /* | ||
1139 | * Read in "extended" IRQ information from the 32bit Neo register. | ||
1140 | * Bits 0-7: What port triggered the interrupt. | ||
1141 | * Bits 8-31: Each 3bits indicate what type of interrupt occurred. | ||
1142 | */ | ||
1143 | uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET); | ||
1144 | |||
1145 | jsm_printk(INTR, INFO, &brd->pci_dev, | ||
1146 | "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll); | ||
1147 | |||
1148 | if (!uart_poll) { | ||
1149 | jsm_printk(INTR, INFO, &brd->pci_dev, | ||
1150 | "Kernel interrupted to me, but no pending interrupts...\n"); | ||
1151 | spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); | ||
1152 | return IRQ_NONE; | ||
1153 | } | ||
1154 | |||
1155 | /* At this point, we have at least SOMETHING to service, dig further... */ | ||
1156 | |||
1157 | current_port = 0; | ||
1158 | |||
1159 | /* Loop on each port */ | ||
1160 | while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){ | ||
1161 | |||
1162 | tmp = uart_poll; | ||
1163 | outofloop_count++; | ||
1164 | |||
1165 | /* Check current port to see if it has interrupt pending */ | ||
1166 | if ((tmp & jsm_offset_table[current_port]) != 0) { | ||
1167 | port = current_port; | ||
1168 | type = tmp >> (8 + (port * 3)); | ||
1169 | type &= 0x7; | ||
1170 | } else { | ||
1171 | current_port++; | ||
1172 | continue; | ||
1173 | } | ||
1174 | |||
1175 | jsm_printk(INTR, INFO, &brd->pci_dev, | ||
1176 | "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type); | ||
1177 | |||
1178 | /* Remove this port + type from uart_poll */ | ||
1179 | uart_poll &= ~(jsm_offset_table[port]); | ||
1180 | |||
1181 | if (!type) { | ||
1182 | /* If no type, just ignore it, and move onto next port */ | ||
1183 | jsm_printk(INTR, ERR, &brd->pci_dev, | ||
1184 | "Interrupt with no type! port: %d\n", port); | ||
1185 | continue; | ||
1186 | } | ||
1187 | |||
1188 | /* Switch on type of interrupt we have */ | ||
1189 | switch (type) { | ||
1190 | |||
1191 | case UART_17158_RXRDY_TIMEOUT: | ||
1192 | /* | ||
1193 | * RXRDY Time-out is cleared by reading data in the | ||
1194 | * RX FIFO until it falls below the trigger level. | ||
1195 | */ | ||
1196 | |||
1197 | /* Verify the port is in range. */ | ||
1198 | if (port > brd->nasync) | ||
1199 | continue; | ||
1200 | |||
1201 | ch = brd->channels[port]; | ||
1202 | neo_copy_data_from_uart_to_queue(ch); | ||
1203 | |||
1204 | /* Call our tty layer to enforce queue flow control if needed. */ | ||
1205 | spin_lock_irqsave(&ch->ch_lock, lock_flags2); | ||
1206 | jsm_check_queue_flow_control(ch); | ||
1207 | spin_unlock_irqrestore(&ch->ch_lock, lock_flags2); | ||
1208 | |||
1209 | continue; | ||
1210 | |||
1211 | case UART_17158_RX_LINE_STATUS: | ||
1212 | /* | ||
1213 | * RXRDY and RX LINE Status (logic OR of LSR[4:1]) | ||
1214 | */ | ||
1215 | neo_parse_lsr(brd, port); | ||
1216 | continue; | ||
1217 | |||
1218 | case UART_17158_TXRDY: | ||
1219 | /* | ||
1220 | * TXRDY interrupt clears after reading ISR register for the UART channel. | ||
1221 | */ | ||
1222 | |||
1223 | /* | ||
1224 | * Yes, this is odd... | ||
1225 | * Why would I check EVERY possibility of type of | ||
1226 | * interrupt, when we know its TXRDY??? | ||
1227 | * Becuz for some reason, even tho we got triggered for TXRDY, | ||
1228 | * it seems to be occassionally wrong. Instead of TX, which | ||
1229 | * it should be, I was getting things like RXDY too. Weird. | ||
1230 | */ | ||
1231 | neo_parse_isr(brd, port); | ||
1232 | continue; | ||
1233 | |||
1234 | case UART_17158_MSR: | ||
1235 | /* | ||
1236 | * MSR or flow control was seen. | ||
1237 | */ | ||
1238 | neo_parse_isr(brd, port); | ||
1239 | continue; | ||
1240 | |||
1241 | default: | ||
1242 | /* | ||
1243 | * The UART triggered us with a bogus interrupt type. | ||
1244 | * It appears the Exar chip, when REALLY bogged down, will throw | ||
1245 | * these once and awhile. | ||
1246 | * Its harmless, just ignore it and move on. | ||
1247 | */ | ||
1248 | jsm_printk(INTR, ERR, &brd->pci_dev, | ||
1249 | "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type); | ||
1250 | continue; | ||
1251 | } | ||
1252 | } | ||
1253 | |||
1254 | spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags); | ||
1255 | |||
1256 | jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n"); | ||
1257 | return IRQ_HANDLED; | ||
1258 | } | ||
1259 | |||
1260 | /* | ||
1261 | * Neo specific way of turning off the receiver. | ||
1262 | * Used as a way to enforce queue flow control when in | ||
1263 | * hardware flow control mode. | ||
1264 | */ | ||
1265 | static void neo_disable_receiver(struct jsm_channel *ch) | ||
1266 | { | ||
1267 | u8 tmp = readb(&ch->ch_neo_uart->ier); | ||
1268 | tmp &= ~(UART_IER_RDI); | ||
1269 | writeb(tmp, &ch->ch_neo_uart->ier); | ||
1270 | |||
1271 | /* flush write operation */ | ||
1272 | neo_pci_posting_flush(ch->ch_bd); | ||
1273 | } | ||
1274 | |||
1275 | |||
1276 | /* | ||
1277 | * Neo specific way of turning on the receiver. | ||
1278 | * Used as a way to un-enforce queue flow control when in | ||
1279 | * hardware flow control mode. | ||
1280 | */ | ||
1281 | static void neo_enable_receiver(struct jsm_channel *ch) | ||
1282 | { | ||
1283 | u8 tmp = readb(&ch->ch_neo_uart->ier); | ||
1284 | tmp |= (UART_IER_RDI); | ||
1285 | writeb(tmp, &ch->ch_neo_uart->ier); | ||
1286 | |||
1287 | /* flush write operation */ | ||
1288 | neo_pci_posting_flush(ch->ch_bd); | ||
1289 | } | ||
1290 | |||
1291 | static void neo_send_start_character(struct jsm_channel *ch) | ||
1292 | { | ||
1293 | if (!ch) | ||
1294 | return; | ||
1295 | |||
1296 | if (ch->ch_startc != __DISABLED_CHAR) { | ||
1297 | ch->ch_xon_sends++; | ||
1298 | writeb(ch->ch_startc, &ch->ch_neo_uart->txrx); | ||
1299 | |||
1300 | /* flush write operation */ | ||
1301 | neo_pci_posting_flush(ch->ch_bd); | ||
1302 | } | ||
1303 | } | ||
1304 | |||
1305 | static void neo_send_stop_character(struct jsm_channel *ch) | ||
1306 | { | ||
1307 | if (!ch) | ||
1308 | return; | ||
1309 | |||
1310 | if (ch->ch_stopc != __DISABLED_CHAR) { | ||
1311 | ch->ch_xoff_sends++; | ||
1312 | writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx); | ||
1313 | |||
1314 | /* flush write operation */ | ||
1315 | neo_pci_posting_flush(ch->ch_bd); | ||
1316 | } | ||
1317 | } | ||
1318 | |||
1319 | /* | ||
1320 | * neo_uart_init | ||
1321 | */ | ||
1322 | static void neo_uart_init(struct jsm_channel *ch) | ||
1323 | { | ||
1324 | writeb(0, &ch->ch_neo_uart->ier); | ||
1325 | writeb(0, &ch->ch_neo_uart->efr); | ||
1326 | writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr); | ||
1327 | |||
1328 | /* Clear out UART and FIFO */ | ||
1329 | readb(&ch->ch_neo_uart->txrx); | ||
1330 | writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr); | ||
1331 | readb(&ch->ch_neo_uart->lsr); | ||
1332 | readb(&ch->ch_neo_uart->msr); | ||
1333 | |||
1334 | ch->ch_flags |= CH_FIFO_ENABLED; | ||
1335 | |||
1336 | /* Assert any signals we want up */ | ||
1337 | writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr); | ||
1338 | } | ||
1339 | |||
1340 | /* | ||
1341 | * Make the UART completely turn off. | ||
1342 | */ | ||
1343 | static void neo_uart_off(struct jsm_channel *ch) | ||
1344 | { | ||
1345 | /* Turn off UART enhanced bits */ | ||
1346 | writeb(0, &ch->ch_neo_uart->efr); | ||
1347 | |||
1348 | /* Stop all interrupts from occurring. */ | ||
1349 | writeb(0, &ch->ch_neo_uart->ier); | ||
1350 | } | ||
1351 | |||
1352 | static u32 neo_get_uart_bytes_left(struct jsm_channel *ch) | ||
1353 | { | ||
1354 | u8 left = 0; | ||
1355 | u8 lsr = readb(&ch->ch_neo_uart->lsr); | ||
1356 | |||
1357 | /* We must cache the LSR as some of the bits get reset once read... */ | ||
1358 | ch->ch_cached_lsr |= lsr; | ||
1359 | |||
1360 | /* Determine whether the Transmitter is empty or not */ | ||
1361 | if (!(lsr & UART_LSR_TEMT)) | ||
1362 | left = 1; | ||
1363 | else { | ||
1364 | ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM); | ||
1365 | left = 0; | ||
1366 | } | ||
1367 | |||
1368 | return left; | ||
1369 | } | ||
1370 | |||
1371 | /* Channel lock MUST be held by the calling function! */ | ||
1372 | static void neo_send_break(struct jsm_channel *ch) | ||
1373 | { | ||
1374 | /* | ||
1375 | * Set the time we should stop sending the break. | ||
1376 | * If we are already sending a break, toss away the existing | ||
1377 | * time to stop, and use this new value instead. | ||
1378 | */ | ||
1379 | |||
1380 | /* Tell the UART to start sending the break */ | ||
1381 | if (!(ch->ch_flags & CH_BREAK_SENDING)) { | ||
1382 | u8 temp = readb(&ch->ch_neo_uart->lcr); | ||
1383 | writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr); | ||
1384 | ch->ch_flags |= (CH_BREAK_SENDING); | ||
1385 | |||
1386 | /* flush write operation */ | ||
1387 | neo_pci_posting_flush(ch->ch_bd); | ||
1388 | } | ||
1389 | } | ||
1390 | |||
1391 | /* | ||
1392 | * neo_send_immediate_char. | ||
1393 | * | ||
1394 | * Sends a specific character as soon as possible to the UART, | ||
1395 | * jumping over any bytes that might be in the write queue. | ||
1396 | * | ||
1397 | * The channel lock MUST be held by the calling function. | ||
1398 | */ | ||
1399 | static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c) | ||
1400 | { | ||
1401 | if (!ch) | ||
1402 | return; | ||
1403 | |||
1404 | writeb(c, &ch->ch_neo_uart->txrx); | ||
1405 | |||
1406 | /* flush write operation */ | ||
1407 | neo_pci_posting_flush(ch->ch_bd); | ||
1408 | } | ||
1409 | |||
1410 | struct board_ops jsm_neo_ops = { | ||
1411 | .intr = neo_intr, | ||
1412 | .uart_init = neo_uart_init, | ||
1413 | .uart_off = neo_uart_off, | ||
1414 | .param = neo_param, | ||
1415 | .assert_modem_signals = neo_assert_modem_signals, | ||
1416 | .flush_uart_write = neo_flush_uart_write, | ||
1417 | .flush_uart_read = neo_flush_uart_read, | ||
1418 | .disable_receiver = neo_disable_receiver, | ||
1419 | .enable_receiver = neo_enable_receiver, | ||
1420 | .send_break = neo_send_break, | ||
1421 | .clear_break = neo_clear_break, | ||
1422 | .send_start_character = neo_send_start_character, | ||
1423 | .send_stop_character = neo_send_stop_character, | ||
1424 | .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart, | ||
1425 | .get_uart_bytes_left = neo_get_uart_bytes_left, | ||
1426 | .send_immediate_char = neo_send_immediate_char | ||
1427 | }; | ||