aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi
diff options
context:
space:
mode:
authorJeff Garzik <jgarzik@pobox.com>2005-10-04 10:16:31 -0400
committerJeff Garzik <jgarzik@pobox.com>2005-10-04 10:16:31 -0400
commit2ee73cc2d507df7b28050fba5d08bd33dd34848c (patch)
treeaf5f33b265318e0f4b61f788691fe4f780ec402c /drivers/scsi
parentc1d9728ecc5b560465df3c0c0d3b3825c2710b40 (diff)
parented39f731ab2e77e58122232f6e27333331d7793d (diff)
Merge /spare/repo/linux-2.6/
Diffstat (limited to 'drivers/scsi')
-rw-r--r--drivers/scsi/3w-9xxx.c55
-rw-r--r--drivers/scsi/3w-9xxx.h17
-rw-r--r--drivers/scsi/Makefile1
-rw-r--r--drivers/scsi/aacraid/aachba.c283
-rw-r--r--drivers/scsi/aacraid/aacraid.h17
-rw-r--r--drivers/scsi/aacraid/comminit.c17
-rw-r--r--drivers/scsi/aacraid/commsup.c581
-rw-r--r--drivers/scsi/aacraid/linit.c12
-rw-r--r--drivers/scsi/aic7xxx/aic7770_osm.c3
-rw-r--r--drivers/scsi/aic7xxx/aic79xx_osm.c8
-rw-r--r--drivers/scsi/aic7xxx/aic79xx_osm_pci.c3
-rw-r--r--drivers/scsi/aic7xxx/aic7xxx_osm.c8
-rw-r--r--drivers/scsi/aic7xxx/aic7xxx_osm_pci.c3
-rw-r--r--drivers/scsi/hosts.c2
-rw-r--r--drivers/scsi/lpfc/lpfc_attr.c8
-rw-r--r--drivers/scsi/lpfc/lpfc_hbadisc.c4
-rw-r--r--drivers/scsi/lpfc/lpfc_hw.h4
-rw-r--r--drivers/scsi/lpfc/lpfc_init.c6
-rw-r--r--drivers/scsi/megaraid.c70
-rw-r--r--drivers/scsi/megaraid/Kconfig.megaraid9
-rw-r--r--drivers/scsi/megaraid/Makefile1
-rw-r--r--drivers/scsi/megaraid/megaraid_sas.c2805
-rw-r--r--drivers/scsi/megaraid/megaraid_sas.h1142
-rw-r--r--drivers/scsi/qla2xxx/qla_rscn.c2
-rw-r--r--drivers/scsi/scsi_scan.c96
-rw-r--r--drivers/scsi/scsi_transport_sas.c9
-rw-r--r--drivers/scsi/sg.c3
27 files changed, 4857 insertions, 312 deletions
diff --git a/drivers/scsi/3w-9xxx.c b/drivers/scsi/3w-9xxx.c
index a6ac61611f35..a748fbfb6692 100644
--- a/drivers/scsi/3w-9xxx.c
+++ b/drivers/scsi/3w-9xxx.c
@@ -60,6 +60,7 @@
60 Remove un-needed eh_abort handler. 60 Remove un-needed eh_abort handler.
61 Add support for embedded firmware error strings. 61 Add support for embedded firmware error strings.
62 2.26.02.003 - Correctly handle single sgl's with use_sg=1. 62 2.26.02.003 - Correctly handle single sgl's with use_sg=1.
63 2.26.02.004 - Add support for 9550SX controllers.
63*/ 64*/
64 65
65#include <linux/module.h> 66#include <linux/module.h>
@@ -82,7 +83,7 @@
82#include "3w-9xxx.h" 83#include "3w-9xxx.h"
83 84
84/* Globals */ 85/* Globals */
85#define TW_DRIVER_VERSION "2.26.02.003" 86#define TW_DRIVER_VERSION "2.26.02.004"
86static TW_Device_Extension *twa_device_extension_list[TW_MAX_SLOT]; 87static TW_Device_Extension *twa_device_extension_list[TW_MAX_SLOT];
87static unsigned int twa_device_extension_count; 88static unsigned int twa_device_extension_count;
88static int twa_major = -1; 89static int twa_major = -1;
@@ -892,11 +893,6 @@ static int twa_decode_bits(TW_Device_Extension *tw_dev, u32 status_reg_value)
892 writel(TW_CONTROL_CLEAR_QUEUE_ERROR, TW_CONTROL_REG_ADDR(tw_dev)); 893 writel(TW_CONTROL_CLEAR_QUEUE_ERROR, TW_CONTROL_REG_ADDR(tw_dev));
893 } 894 }
894 895
895 if (status_reg_value & TW_STATUS_SBUF_WRITE_ERROR) {
896 TW_PRINTK(tw_dev->host, TW_DRIVER, 0xf, "SBUF Write Error: clearing");
897 writel(TW_CONTROL_CLEAR_SBUF_WRITE_ERROR, TW_CONTROL_REG_ADDR(tw_dev));
898 }
899
900 if (status_reg_value & TW_STATUS_MICROCONTROLLER_ERROR) { 896 if (status_reg_value & TW_STATUS_MICROCONTROLLER_ERROR) {
901 if (tw_dev->reset_print == 0) { 897 if (tw_dev->reset_print == 0) {
902 TW_PRINTK(tw_dev->host, TW_DRIVER, 0x10, "Microcontroller Error: clearing"); 898 TW_PRINTK(tw_dev->host, TW_DRIVER, 0x10, "Microcontroller Error: clearing");
@@ -930,6 +926,36 @@ out:
930 return retval; 926 return retval;
931} /* End twa_empty_response_queue() */ 927} /* End twa_empty_response_queue() */
932 928
929/* This function will clear the pchip/response queue on 9550SX */
930static int twa_empty_response_queue_large(TW_Device_Extension *tw_dev)
931{
932 u32 status_reg_value, response_que_value;
933 int count = 0, retval = 1;
934
935 if (tw_dev->tw_pci_dev->device == PCI_DEVICE_ID_3WARE_9550SX) {
936 status_reg_value = readl(TW_STATUS_REG_ADDR(tw_dev));
937
938 while (((status_reg_value & TW_STATUS_RESPONSE_QUEUE_EMPTY) == 0) && (count < TW_MAX_RESPONSE_DRAIN)) {
939 response_que_value = readl(TW_RESPONSE_QUEUE_REG_ADDR_LARGE(tw_dev));
940 if ((response_que_value & TW_9550SX_DRAIN_COMPLETED) == TW_9550SX_DRAIN_COMPLETED) {
941 /* P-chip settle time */
942 msleep(500);
943 retval = 0;
944 goto out;
945 }
946 status_reg_value = readl(TW_STATUS_REG_ADDR(tw_dev));
947 count++;
948 }
949 if (count == TW_MAX_RESPONSE_DRAIN)
950 goto out;
951
952 retval = 0;
953 } else
954 retval = 0;
955out:
956 return retval;
957} /* End twa_empty_response_queue_large() */
958
933/* This function passes sense keys from firmware to scsi layer */ 959/* This function passes sense keys from firmware to scsi layer */
934static int twa_fill_sense(TW_Device_Extension *tw_dev, int request_id, int copy_sense, int print_host) 960static int twa_fill_sense(TW_Device_Extension *tw_dev, int request_id, int copy_sense, int print_host)
935{ 961{
@@ -1613,8 +1639,16 @@ static int twa_reset_sequence(TW_Device_Extension *tw_dev, int soft_reset)
1613 int tries = 0, retval = 1, flashed = 0, do_soft_reset = soft_reset; 1639 int tries = 0, retval = 1, flashed = 0, do_soft_reset = soft_reset;
1614 1640
1615 while (tries < TW_MAX_RESET_TRIES) { 1641 while (tries < TW_MAX_RESET_TRIES) {
1616 if (do_soft_reset) 1642 if (do_soft_reset) {
1617 TW_SOFT_RESET(tw_dev); 1643 TW_SOFT_RESET(tw_dev);
1644 /* Clear pchip/response queue on 9550SX */
1645 if (twa_empty_response_queue_large(tw_dev)) {
1646 TW_PRINTK(tw_dev->host, TW_DRIVER, 0x36, "Response queue (large) empty failed during reset sequence");
1647 do_soft_reset = 1;
1648 tries++;
1649 continue;
1650 }
1651 }
1618 1652
1619 /* Make sure controller is in a good state */ 1653 /* Make sure controller is in a good state */
1620 if (twa_poll_status(tw_dev, TW_STATUS_MICROCONTROLLER_READY | (do_soft_reset == 1 ? TW_STATUS_ATTENTION_INTERRUPT : 0), 60)) { 1654 if (twa_poll_status(tw_dev, TW_STATUS_MICROCONTROLLER_READY | (do_soft_reset == 1 ? TW_STATUS_ATTENTION_INTERRUPT : 0), 60)) {
@@ -2034,7 +2068,10 @@ static int __devinit twa_probe(struct pci_dev *pdev, const struct pci_device_id
2034 goto out_free_device_extension; 2068 goto out_free_device_extension;
2035 } 2069 }
2036 2070
2037 mem_addr = pci_resource_start(pdev, 1); 2071 if (pdev->device == PCI_DEVICE_ID_3WARE_9000)
2072 mem_addr = pci_resource_start(pdev, 1);
2073 else
2074 mem_addr = pci_resource_start(pdev, 2);
2038 2075
2039 /* Save base address */ 2076 /* Save base address */
2040 tw_dev->base_addr = ioremap(mem_addr, PAGE_SIZE); 2077 tw_dev->base_addr = ioremap(mem_addr, PAGE_SIZE);
@@ -2148,6 +2185,8 @@ static void twa_remove(struct pci_dev *pdev)
2148static struct pci_device_id twa_pci_tbl[] __devinitdata = { 2185static struct pci_device_id twa_pci_tbl[] __devinitdata = {
2149 { PCI_VENDOR_ID_3WARE, PCI_DEVICE_ID_3WARE_9000, 2186 { PCI_VENDOR_ID_3WARE, PCI_DEVICE_ID_3WARE_9000,
2150 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0}, 2187 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2188 { PCI_VENDOR_ID_3WARE, PCI_DEVICE_ID_3WARE_9550SX,
2189 PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0},
2151 { } 2190 { }
2152}; 2191};
2153MODULE_DEVICE_TABLE(pci, twa_pci_tbl); 2192MODULE_DEVICE_TABLE(pci, twa_pci_tbl);
diff --git a/drivers/scsi/3w-9xxx.h b/drivers/scsi/3w-9xxx.h
index 8c8ecbed3b58..46f22cdc8298 100644
--- a/drivers/scsi/3w-9xxx.h
+++ b/drivers/scsi/3w-9xxx.h
@@ -267,7 +267,6 @@ static twa_message_type twa_error_table[] = {
267#define TW_CONTROL_CLEAR_PARITY_ERROR 0x00800000 267#define TW_CONTROL_CLEAR_PARITY_ERROR 0x00800000
268#define TW_CONTROL_CLEAR_QUEUE_ERROR 0x00400000 268#define TW_CONTROL_CLEAR_QUEUE_ERROR 0x00400000
269#define TW_CONTROL_CLEAR_PCI_ABORT 0x00100000 269#define TW_CONTROL_CLEAR_PCI_ABORT 0x00100000
270#define TW_CONTROL_CLEAR_SBUF_WRITE_ERROR 0x00000008
271 270
272/* Status register bit definitions */ 271/* Status register bit definitions */
273#define TW_STATUS_MAJOR_VERSION_MASK 0xF0000000 272#define TW_STATUS_MAJOR_VERSION_MASK 0xF0000000
@@ -285,9 +284,8 @@ static twa_message_type twa_error_table[] = {
285#define TW_STATUS_MICROCONTROLLER_READY 0x00002000 284#define TW_STATUS_MICROCONTROLLER_READY 0x00002000
286#define TW_STATUS_COMMAND_QUEUE_EMPTY 0x00001000 285#define TW_STATUS_COMMAND_QUEUE_EMPTY 0x00001000
287#define TW_STATUS_EXPECTED_BITS 0x00002000 286#define TW_STATUS_EXPECTED_BITS 0x00002000
288#define TW_STATUS_UNEXPECTED_BITS 0x00F00008 287#define TW_STATUS_UNEXPECTED_BITS 0x00F00000
289#define TW_STATUS_SBUF_WRITE_ERROR 0x00000008 288#define TW_STATUS_VALID_INTERRUPT 0x00DF0000
290#define TW_STATUS_VALID_INTERRUPT 0x00DF0008
291 289
292/* RESPONSE QUEUE BIT DEFINITIONS */ 290/* RESPONSE QUEUE BIT DEFINITIONS */
293#define TW_RESPONSE_ID_MASK 0x00000FF0 291#define TW_RESPONSE_ID_MASK 0x00000FF0
@@ -324,9 +322,9 @@ static twa_message_type twa_error_table[] = {
324 322
325/* Compatibility defines */ 323/* Compatibility defines */
326#define TW_9000_ARCH_ID 0x5 324#define TW_9000_ARCH_ID 0x5
327#define TW_CURRENT_DRIVER_SRL 28 325#define TW_CURRENT_DRIVER_SRL 30
328#define TW_CURRENT_DRIVER_BUILD 9 326#define TW_CURRENT_DRIVER_BUILD 80
329#define TW_CURRENT_DRIVER_BRANCH 4 327#define TW_CURRENT_DRIVER_BRANCH 0
330 328
331/* Phase defines */ 329/* Phase defines */
332#define TW_PHASE_INITIAL 0 330#define TW_PHASE_INITIAL 0
@@ -334,6 +332,7 @@ static twa_message_type twa_error_table[] = {
334#define TW_PHASE_SGLIST 2 332#define TW_PHASE_SGLIST 2
335 333
336/* Misc defines */ 334/* Misc defines */
335#define TW_9550SX_DRAIN_COMPLETED 0xFFFF
337#define TW_SECTOR_SIZE 512 336#define TW_SECTOR_SIZE 512
338#define TW_ALIGNMENT_9000 4 /* 4 bytes */ 337#define TW_ALIGNMENT_9000 4 /* 4 bytes */
339#define TW_ALIGNMENT_9000_SGL 0x3 338#define TW_ALIGNMENT_9000_SGL 0x3
@@ -417,6 +416,9 @@ static twa_message_type twa_error_table[] = {
417#ifndef PCI_DEVICE_ID_3WARE_9000 416#ifndef PCI_DEVICE_ID_3WARE_9000
418#define PCI_DEVICE_ID_3WARE_9000 0x1002 417#define PCI_DEVICE_ID_3WARE_9000 0x1002
419#endif 418#endif
419#ifndef PCI_DEVICE_ID_3WARE_9550SX
420#define PCI_DEVICE_ID_3WARE_9550SX 0x1003
421#endif
420 422
421/* Bitmask macros to eliminate bitfields */ 423/* Bitmask macros to eliminate bitfields */
422 424
@@ -443,6 +445,7 @@ static twa_message_type twa_error_table[] = {
443#define TW_STATUS_REG_ADDR(x) ((unsigned char __iomem *)x->base_addr + 0x4) 445#define TW_STATUS_REG_ADDR(x) ((unsigned char __iomem *)x->base_addr + 0x4)
444#define TW_COMMAND_QUEUE_REG_ADDR(x) (sizeof(dma_addr_t) > 4 ? ((unsigned char __iomem *)x->base_addr + 0x20) : ((unsigned char __iomem *)x->base_addr + 0x8)) 446#define TW_COMMAND_QUEUE_REG_ADDR(x) (sizeof(dma_addr_t) > 4 ? ((unsigned char __iomem *)x->base_addr + 0x20) : ((unsigned char __iomem *)x->base_addr + 0x8))
445#define TW_RESPONSE_QUEUE_REG_ADDR(x) ((unsigned char __iomem *)x->base_addr + 0xC) 447#define TW_RESPONSE_QUEUE_REG_ADDR(x) ((unsigned char __iomem *)x->base_addr + 0xC)
448#define TW_RESPONSE_QUEUE_REG_ADDR_LARGE(x) ((unsigned char __iomem *)x->base_addr + 0x30)
446#define TW_CLEAR_ALL_INTERRUPTS(x) (writel(TW_STATUS_VALID_INTERRUPT, TW_CONTROL_REG_ADDR(x))) 449#define TW_CLEAR_ALL_INTERRUPTS(x) (writel(TW_STATUS_VALID_INTERRUPT, TW_CONTROL_REG_ADDR(x)))
447#define TW_CLEAR_ATTENTION_INTERRUPT(x) (writel(TW_CONTROL_CLEAR_ATTENTION_INTERRUPT, TW_CONTROL_REG_ADDR(x))) 450#define TW_CLEAR_ATTENTION_INTERRUPT(x) (writel(TW_CONTROL_CLEAR_ATTENTION_INTERRUPT, TW_CONTROL_REG_ADDR(x)))
448#define TW_CLEAR_HOST_INTERRUPT(x) (writel(TW_CONTROL_CLEAR_HOST_INTERRUPT, TW_CONTROL_REG_ADDR(x))) 451#define TW_CLEAR_HOST_INTERRUPT(x) (writel(TW_CONTROL_CLEAR_HOST_INTERRUPT, TW_CONTROL_REG_ADDR(x)))
diff --git a/drivers/scsi/Makefile b/drivers/scsi/Makefile
index 1e4edbdf2730..48529d180ca8 100644
--- a/drivers/scsi/Makefile
+++ b/drivers/scsi/Makefile
@@ -99,6 +99,7 @@ obj-$(CONFIG_SCSI_DC395x) += dc395x.o
99obj-$(CONFIG_SCSI_DC390T) += tmscsim.o 99obj-$(CONFIG_SCSI_DC390T) += tmscsim.o
100obj-$(CONFIG_MEGARAID_LEGACY) += megaraid.o 100obj-$(CONFIG_MEGARAID_LEGACY) += megaraid.o
101obj-$(CONFIG_MEGARAID_NEWGEN) += megaraid/ 101obj-$(CONFIG_MEGARAID_NEWGEN) += megaraid/
102obj-$(CONFIG_MEGARAID_SAS) += megaraid/
102obj-$(CONFIG_SCSI_ACARD) += atp870u.o 103obj-$(CONFIG_SCSI_ACARD) += atp870u.o
103obj-$(CONFIG_SCSI_SUNESP) += esp.o 104obj-$(CONFIG_SCSI_SUNESP) += esp.o
104obj-$(CONFIG_SCSI_GDTH) += gdth.o 105obj-$(CONFIG_SCSI_GDTH) += gdth.o
diff --git a/drivers/scsi/aacraid/aachba.c b/drivers/scsi/aacraid/aachba.c
index a8e3dfcd0dc7..93416f760e5a 100644
--- a/drivers/scsi/aacraid/aachba.c
+++ b/drivers/scsi/aacraid/aachba.c
@@ -313,18 +313,37 @@ int aac_get_containers(struct aac_dev *dev)
313 } 313 }
314 dresp = (struct aac_mount *)fib_data(fibptr); 314 dresp = (struct aac_mount *)fib_data(fibptr);
315 315
316 if ((le32_to_cpu(dresp->status) == ST_OK) &&
317 (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
318 dinfo->command = cpu_to_le32(VM_NameServe64);
319 dinfo->count = cpu_to_le32(index);
320 dinfo->type = cpu_to_le32(FT_FILESYS);
321
322 if (fib_send(ContainerCommand,
323 fibptr,
324 sizeof(struct aac_query_mount),
325 FsaNormal,
326 1, 1,
327 NULL, NULL) < 0)
328 continue;
329 } else
330 dresp->mnt[0].capacityhigh = 0;
331
316 dprintk ((KERN_DEBUG 332 dprintk ((KERN_DEBUG
317 "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%u\n", 333 "VM_NameServe cid=%d status=%d vol=%d state=%d cap=%llu\n",
318 (int)index, (int)le32_to_cpu(dresp->status), 334 (int)index, (int)le32_to_cpu(dresp->status),
319 (int)le32_to_cpu(dresp->mnt[0].vol), 335 (int)le32_to_cpu(dresp->mnt[0].vol),
320 (int)le32_to_cpu(dresp->mnt[0].state), 336 (int)le32_to_cpu(dresp->mnt[0].state),
321 (unsigned)le32_to_cpu(dresp->mnt[0].capacity))); 337 ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
338 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32)));
322 if ((le32_to_cpu(dresp->status) == ST_OK) && 339 if ((le32_to_cpu(dresp->status) == ST_OK) &&
323 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 340 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
324 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 341 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
325 fsa_dev_ptr[index].valid = 1; 342 fsa_dev_ptr[index].valid = 1;
326 fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol); 343 fsa_dev_ptr[index].type = le32_to_cpu(dresp->mnt[0].vol);
327 fsa_dev_ptr[index].size = le32_to_cpu(dresp->mnt[0].capacity); 344 fsa_dev_ptr[index].size
345 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
346 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
328 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) 347 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
329 fsa_dev_ptr[index].ro = 1; 348 fsa_dev_ptr[index].ro = 1;
330 } 349 }
@@ -460,7 +479,7 @@ static int aac_get_container_name(struct scsi_cmnd * scsicmd, int cid)
460 * is updated in the struct fsa_dev_info structure rather than returned. 479 * is updated in the struct fsa_dev_info structure rather than returned.
461 */ 480 */
462 481
463static int probe_container(struct aac_dev *dev, int cid) 482int probe_container(struct aac_dev *dev, int cid)
464{ 483{
465 struct fsa_dev_info *fsa_dev_ptr; 484 struct fsa_dev_info *fsa_dev_ptr;
466 int status; 485 int status;
@@ -497,11 +516,29 @@ static int probe_container(struct aac_dev *dev, int cid)
497 dresp = (struct aac_mount *) fib_data(fibptr); 516 dresp = (struct aac_mount *) fib_data(fibptr);
498 517
499 if ((le32_to_cpu(dresp->status) == ST_OK) && 518 if ((le32_to_cpu(dresp->status) == ST_OK) &&
519 (le32_to_cpu(dresp->mnt[0].vol) == CT_NONE)) {
520 dinfo->command = cpu_to_le32(VM_NameServe64);
521 dinfo->count = cpu_to_le32(cid);
522 dinfo->type = cpu_to_le32(FT_FILESYS);
523
524 if (fib_send(ContainerCommand,
525 fibptr,
526 sizeof(struct aac_query_mount),
527 FsaNormal,
528 1, 1,
529 NULL, NULL) < 0)
530 goto error;
531 } else
532 dresp->mnt[0].capacityhigh = 0;
533
534 if ((le32_to_cpu(dresp->status) == ST_OK) &&
500 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) && 535 (le32_to_cpu(dresp->mnt[0].vol) != CT_NONE) &&
501 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) { 536 (le32_to_cpu(dresp->mnt[0].state) != FSCS_HIDDEN)) {
502 fsa_dev_ptr[cid].valid = 1; 537 fsa_dev_ptr[cid].valid = 1;
503 fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol); 538 fsa_dev_ptr[cid].type = le32_to_cpu(dresp->mnt[0].vol);
504 fsa_dev_ptr[cid].size = le32_to_cpu(dresp->mnt[0].capacity); 539 fsa_dev_ptr[cid].size
540 = ((u64)le32_to_cpu(dresp->mnt[0].capacity)) +
541 (((u64)le32_to_cpu(dresp->mnt[0].capacityhigh)) << 32);
505 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY) 542 if (le32_to_cpu(dresp->mnt[0].state) & FSCS_READONLY)
506 fsa_dev_ptr[cid].ro = 1; 543 fsa_dev_ptr[cid].ro = 1;
507 } 544 }
@@ -655,7 +692,7 @@ int aac_get_adapter_info(struct aac_dev* dev)
655 fibptr, 692 fibptr,
656 sizeof(*info), 693 sizeof(*info),
657 FsaNormal, 694 FsaNormal,
658 1, 1, 695 -1, 1, /* First `interrupt' command uses special wait */
659 NULL, 696 NULL,
660 NULL); 697 NULL);
661 698
@@ -806,8 +843,8 @@ int aac_get_adapter_info(struct aac_dev* dev)
806 if (!(dev->raw_io_interface)) { 843 if (!(dev->raw_io_interface)) {
807 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size - 844 dev->scsi_host_ptr->sg_tablesize = (dev->max_fib_size -
808 sizeof(struct aac_fibhdr) - 845 sizeof(struct aac_fibhdr) -
809 sizeof(struct aac_write) + sizeof(struct sgmap)) / 846 sizeof(struct aac_write) + sizeof(struct sgentry)) /
810 sizeof(struct sgmap); 847 sizeof(struct sgentry);
811 if (dev->dac_support) { 848 if (dev->dac_support) {
812 /* 849 /*
813 * 38 scatter gather elements 850 * 38 scatter gather elements
@@ -816,8 +853,8 @@ int aac_get_adapter_info(struct aac_dev* dev)
816 (dev->max_fib_size - 853 (dev->max_fib_size -
817 sizeof(struct aac_fibhdr) - 854 sizeof(struct aac_fibhdr) -
818 sizeof(struct aac_write64) + 855 sizeof(struct aac_write64) +
819 sizeof(struct sgmap64)) / 856 sizeof(struct sgentry64)) /
820 sizeof(struct sgmap64); 857 sizeof(struct sgentry64);
821 } 858 }
822 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT; 859 dev->scsi_host_ptr->max_sectors = AAC_MAX_32BIT_SGBCOUNT;
823 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) { 860 if(!(dev->adapter_info.options & AAC_OPT_NEW_COMM)) {
@@ -854,7 +891,40 @@ static void io_callback(void *context, struct fib * fibptr)
854 dev = (struct aac_dev *)scsicmd->device->host->hostdata; 891 dev = (struct aac_dev *)scsicmd->device->host->hostdata;
855 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun); 892 cid = ID_LUN_TO_CONTAINER(scsicmd->device->id, scsicmd->device->lun);
856 893
857 dprintk((KERN_DEBUG "io_callback[cpu %d]: lba = %u, t = %ld.\n", smp_processor_id(), ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3], jiffies)); 894 if (nblank(dprintk(x))) {
895 u64 lba;
896 switch (scsicmd->cmnd[0]) {
897 case WRITE_6:
898 case READ_6:
899 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
900 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
901 break;
902 case WRITE_16:
903 case READ_16:
904 lba = ((u64)scsicmd->cmnd[2] << 56) |
905 ((u64)scsicmd->cmnd[3] << 48) |
906 ((u64)scsicmd->cmnd[4] << 40) |
907 ((u64)scsicmd->cmnd[5] << 32) |
908 ((u64)scsicmd->cmnd[6] << 24) |
909 (scsicmd->cmnd[7] << 16) |
910 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
911 break;
912 case WRITE_12:
913 case READ_12:
914 lba = ((u64)scsicmd->cmnd[2] << 24) |
915 (scsicmd->cmnd[3] << 16) |
916 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
917 break;
918 default:
919 lba = ((u64)scsicmd->cmnd[2] << 24) |
920 (scsicmd->cmnd[3] << 16) |
921 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
922 break;
923 }
924 printk(KERN_DEBUG
925 "io_callback[cpu %d]: lba = %llu, t = %ld.\n",
926 smp_processor_id(), (unsigned long long)lba, jiffies);
927 }
858 928
859 if (fibptr == NULL) 929 if (fibptr == NULL)
860 BUG(); 930 BUG();
@@ -895,7 +965,7 @@ static void io_callback(void *context, struct fib * fibptr)
895 965
896static int aac_read(struct scsi_cmnd * scsicmd, int cid) 966static int aac_read(struct scsi_cmnd * scsicmd, int cid)
897{ 967{
898 u32 lba; 968 u64 lba;
899 u32 count; 969 u32 count;
900 int status; 970 int status;
901 971
@@ -907,23 +977,69 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
907 /* 977 /*
908 * Get block address and transfer length 978 * Get block address and transfer length
909 */ 979 */
910 if (scsicmd->cmnd[0] == READ_6) /* 6 byte command */ 980 switch (scsicmd->cmnd[0]) {
911 { 981 case READ_6:
912 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid)); 982 dprintk((KERN_DEBUG "aachba: received a read(6) command on id %d.\n", cid));
913 983
914 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) | (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3]; 984 lba = ((scsicmd->cmnd[1] & 0x1F) << 16) |
985 (scsicmd->cmnd[2] << 8) | scsicmd->cmnd[3];
915 count = scsicmd->cmnd[4]; 986 count = scsicmd->cmnd[4];
916 987
917 if (count == 0) 988 if (count == 0)
918 count = 256; 989 count = 256;
919 } else { 990 break;
991 case READ_16:
992 dprintk((KERN_DEBUG "aachba: received a read(16) command on id %d.\n", cid));
993
994 lba = ((u64)scsicmd->cmnd[2] << 56) |
995 ((u64)scsicmd->cmnd[3] << 48) |
996 ((u64)scsicmd->cmnd[4] << 40) |
997 ((u64)scsicmd->cmnd[5] << 32) |
998 ((u64)scsicmd->cmnd[6] << 24) |
999 (scsicmd->cmnd[7] << 16) |
1000 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1001 count = (scsicmd->cmnd[10] << 24) |
1002 (scsicmd->cmnd[11] << 16) |
1003 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1004 break;
1005 case READ_12:
1006 dprintk((KERN_DEBUG "aachba: received a read(12) command on id %d.\n", cid));
1007
1008 lba = ((u64)scsicmd->cmnd[2] << 24) |
1009 (scsicmd->cmnd[3] << 16) |
1010 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1011 count = (scsicmd->cmnd[6] << 24) |
1012 (scsicmd->cmnd[7] << 16) |
1013 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1014 break;
1015 default:
920 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid)); 1016 dprintk((KERN_DEBUG "aachba: received a read(10) command on id %d.\n", cid));
921 1017
922 lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1018 lba = ((u64)scsicmd->cmnd[2] << 24) |
1019 (scsicmd->cmnd[3] << 16) |
1020 (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
923 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 1021 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1022 break;
924 } 1023 }
925 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %u, t = %ld.\n", 1024 dprintk((KERN_DEBUG "aac_read[cpu %d]: lba = %llu, t = %ld.\n",
926 smp_processor_id(), (unsigned long long)lba, jiffies)); 1025 smp_processor_id(), (unsigned long long)lba, jiffies));
1026 if ((!(dev->raw_io_interface) || !(dev->raw_io_64)) &&
1027 (lba & 0xffffffff00000000LL)) {
1028 dprintk((KERN_DEBUG "aac_read: Illegal lba\n"));
1029 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 |
1030 SAM_STAT_CHECK_CONDITION;
1031 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1032 HARDWARE_ERROR,
1033 SENCODE_INTERNAL_TARGET_FAILURE,
1034 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1035 0, 0);
1036 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1037 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1038 ? sizeof(scsicmd->sense_buffer)
1039 : sizeof(dev->fsa_dev[cid].sense_data));
1040 scsicmd->scsi_done(scsicmd);
1041 return 0;
1042 }
927 /* 1043 /*
928 * Alocate and initialize a Fib 1044 * Alocate and initialize a Fib
929 */ 1045 */
@@ -936,8 +1052,8 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
936 if (dev->raw_io_interface) { 1052 if (dev->raw_io_interface) {
937 struct aac_raw_io *readcmd; 1053 struct aac_raw_io *readcmd;
938 readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext); 1054 readcmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
939 readcmd->block[0] = cpu_to_le32(lba); 1055 readcmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
940 readcmd->block[1] = 0; 1056 readcmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
941 readcmd->count = cpu_to_le32(count<<9); 1057 readcmd->count = cpu_to_le32(count<<9);
942 readcmd->cid = cpu_to_le16(cid); 1058 readcmd->cid = cpu_to_le16(cid);
943 readcmd->flags = cpu_to_le16(1); 1059 readcmd->flags = cpu_to_le16(1);
@@ -964,7 +1080,7 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
964 readcmd->command = cpu_to_le32(VM_CtHostRead64); 1080 readcmd->command = cpu_to_le32(VM_CtHostRead64);
965 readcmd->cid = cpu_to_le16(cid); 1081 readcmd->cid = cpu_to_le16(cid);
966 readcmd->sector_count = cpu_to_le16(count); 1082 readcmd->sector_count = cpu_to_le16(count);
967 readcmd->block = cpu_to_le32(lba); 1083 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
968 readcmd->pad = 0; 1084 readcmd->pad = 0;
969 readcmd->flags = 0; 1085 readcmd->flags = 0;
970 1086
@@ -989,7 +1105,7 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
989 readcmd = (struct aac_read *) fib_data(cmd_fibcontext); 1105 readcmd = (struct aac_read *) fib_data(cmd_fibcontext);
990 readcmd->command = cpu_to_le32(VM_CtBlockRead); 1106 readcmd->command = cpu_to_le32(VM_CtBlockRead);
991 readcmd->cid = cpu_to_le32(cid); 1107 readcmd->cid = cpu_to_le32(cid);
992 readcmd->block = cpu_to_le32(lba); 1108 readcmd->block = cpu_to_le32((u32)(lba&0xffffffff));
993 readcmd->count = cpu_to_le32(count * 512); 1109 readcmd->count = cpu_to_le32(count * 512);
994 1110
995 aac_build_sg(scsicmd, &readcmd->sg); 1111 aac_build_sg(scsicmd, &readcmd->sg);
@@ -1031,7 +1147,7 @@ static int aac_read(struct scsi_cmnd * scsicmd, int cid)
1031 1147
1032static int aac_write(struct scsi_cmnd * scsicmd, int cid) 1148static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1033{ 1149{
1034 u32 lba; 1150 u64 lba;
1035 u32 count; 1151 u32 count;
1036 int status; 1152 int status;
1037 u16 fibsize; 1153 u16 fibsize;
@@ -1048,13 +1164,48 @@ static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1048 count = scsicmd->cmnd[4]; 1164 count = scsicmd->cmnd[4];
1049 if (count == 0) 1165 if (count == 0)
1050 count = 256; 1166 count = 256;
1167 } else if (scsicmd->cmnd[0] == WRITE_16) { /* 16 byte command */
1168 dprintk((KERN_DEBUG "aachba: received a write(16) command on id %d.\n", cid));
1169
1170 lba = ((u64)scsicmd->cmnd[2] << 56) |
1171 ((u64)scsicmd->cmnd[3] << 48) |
1172 ((u64)scsicmd->cmnd[4] << 40) |
1173 ((u64)scsicmd->cmnd[5] << 32) |
1174 ((u64)scsicmd->cmnd[6] << 24) |
1175 (scsicmd->cmnd[7] << 16) |
1176 (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1177 count = (scsicmd->cmnd[10] << 24) | (scsicmd->cmnd[11] << 16) |
1178 (scsicmd->cmnd[12] << 8) | scsicmd->cmnd[13];
1179 } else if (scsicmd->cmnd[0] == WRITE_12) { /* 12 byte command */
1180 dprintk((KERN_DEBUG "aachba: received a write(12) command on id %d.\n", cid));
1181
1182 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16)
1183 | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1184 count = (scsicmd->cmnd[6] << 24) | (scsicmd->cmnd[7] << 16)
1185 | (scsicmd->cmnd[8] << 8) | scsicmd->cmnd[9];
1051 } else { 1186 } else {
1052 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid)); 1187 dprintk((KERN_DEBUG "aachba: received a write(10) command on id %d.\n", cid));
1053 lba = (scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5]; 1188 lba = ((u64)scsicmd->cmnd[2] << 24) | (scsicmd->cmnd[3] << 16) | (scsicmd->cmnd[4] << 8) | scsicmd->cmnd[5];
1054 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8]; 1189 count = (scsicmd->cmnd[7] << 8) | scsicmd->cmnd[8];
1055 } 1190 }
1056 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %u, t = %ld.\n", 1191 dprintk((KERN_DEBUG "aac_write[cpu %d]: lba = %llu, t = %ld.\n",
1057 smp_processor_id(), (unsigned long long)lba, jiffies)); 1192 smp_processor_id(), (unsigned long long)lba, jiffies));
1193 if ((!(dev->raw_io_interface) || !(dev->raw_io_64))
1194 && (lba & 0xffffffff00000000LL)) {
1195 dprintk((KERN_DEBUG "aac_write: Illegal lba\n"));
1196 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_CHECK_CONDITION;
1197 set_sense((u8 *) &dev->fsa_dev[cid].sense_data,
1198 HARDWARE_ERROR,
1199 SENCODE_INTERNAL_TARGET_FAILURE,
1200 ASENCODE_INTERNAL_TARGET_FAILURE, 0, 0,
1201 0, 0);
1202 memcpy(scsicmd->sense_buffer, &dev->fsa_dev[cid].sense_data,
1203 (sizeof(dev->fsa_dev[cid].sense_data) > sizeof(scsicmd->sense_buffer))
1204 ? sizeof(scsicmd->sense_buffer)
1205 : sizeof(dev->fsa_dev[cid].sense_data));
1206 scsicmd->scsi_done(scsicmd);
1207 return 0;
1208 }
1058 /* 1209 /*
1059 * Allocate and initialize a Fib then setup a BlockWrite command 1210 * Allocate and initialize a Fib then setup a BlockWrite command
1060 */ 1211 */
@@ -1068,8 +1219,8 @@ static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1068 if (dev->raw_io_interface) { 1219 if (dev->raw_io_interface) {
1069 struct aac_raw_io *writecmd; 1220 struct aac_raw_io *writecmd;
1070 writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext); 1221 writecmd = (struct aac_raw_io *) fib_data(cmd_fibcontext);
1071 writecmd->block[0] = cpu_to_le32(lba); 1222 writecmd->block[0] = cpu_to_le32((u32)(lba&0xffffffff));
1072 writecmd->block[1] = 0; 1223 writecmd->block[1] = cpu_to_le32((u32)((lba&0xffffffff00000000LL)>>32));
1073 writecmd->count = cpu_to_le32(count<<9); 1224 writecmd->count = cpu_to_le32(count<<9);
1074 writecmd->cid = cpu_to_le16(cid); 1225 writecmd->cid = cpu_to_le16(cid);
1075 writecmd->flags = 0; 1226 writecmd->flags = 0;
@@ -1096,7 +1247,7 @@ static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1096 writecmd->command = cpu_to_le32(VM_CtHostWrite64); 1247 writecmd->command = cpu_to_le32(VM_CtHostWrite64);
1097 writecmd->cid = cpu_to_le16(cid); 1248 writecmd->cid = cpu_to_le16(cid);
1098 writecmd->sector_count = cpu_to_le16(count); 1249 writecmd->sector_count = cpu_to_le16(count);
1099 writecmd->block = cpu_to_le32(lba); 1250 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1100 writecmd->pad = 0; 1251 writecmd->pad = 0;
1101 writecmd->flags = 0; 1252 writecmd->flags = 0;
1102 1253
@@ -1121,7 +1272,7 @@ static int aac_write(struct scsi_cmnd * scsicmd, int cid)
1121 writecmd = (struct aac_write *) fib_data(cmd_fibcontext); 1272 writecmd = (struct aac_write *) fib_data(cmd_fibcontext);
1122 writecmd->command = cpu_to_le32(VM_CtBlockWrite); 1273 writecmd->command = cpu_to_le32(VM_CtBlockWrite);
1123 writecmd->cid = cpu_to_le32(cid); 1274 writecmd->cid = cpu_to_le32(cid);
1124 writecmd->block = cpu_to_le32(lba); 1275 writecmd->block = cpu_to_le32((u32)(lba&0xffffffff));
1125 writecmd->count = cpu_to_le32(count * 512); 1276 writecmd->count = cpu_to_le32(count * 512);
1126 writecmd->sg.count = cpu_to_le32(1); 1277 writecmd->sg.count = cpu_to_le32(1);
1127 /* ->stable is not used - it did mean which type of write */ 1278 /* ->stable is not used - it did mean which type of write */
@@ -1310,11 +1461,18 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1310 */ 1461 */
1311 if ((fsa_dev_ptr[cid].valid & 1) == 0) { 1462 if ((fsa_dev_ptr[cid].valid & 1) == 0) {
1312 switch (scsicmd->cmnd[0]) { 1463 switch (scsicmd->cmnd[0]) {
1464 case SERVICE_ACTION_IN:
1465 if (!(dev->raw_io_interface) ||
1466 !(dev->raw_io_64) ||
1467 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1468 break;
1313 case INQUIRY: 1469 case INQUIRY:
1314 case READ_CAPACITY: 1470 case READ_CAPACITY:
1315 case TEST_UNIT_READY: 1471 case TEST_UNIT_READY:
1316 spin_unlock_irq(host->host_lock); 1472 spin_unlock_irq(host->host_lock);
1317 probe_container(dev, cid); 1473 probe_container(dev, cid);
1474 if ((fsa_dev_ptr[cid].valid & 1) == 0)
1475 fsa_dev_ptr[cid].valid = 0;
1318 spin_lock_irq(host->host_lock); 1476 spin_lock_irq(host->host_lock);
1319 if (fsa_dev_ptr[cid].valid == 0) { 1477 if (fsa_dev_ptr[cid].valid == 0) {
1320 scsicmd->result = DID_NO_CONNECT << 16; 1478 scsicmd->result = DID_NO_CONNECT << 16;
@@ -1375,7 +1533,6 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1375 memset(&inq_data, 0, sizeof (struct inquiry_data)); 1533 memset(&inq_data, 0, sizeof (struct inquiry_data));
1376 1534
1377 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */ 1535 inq_data.inqd_ver = 2; /* claim compliance to SCSI-2 */
1378 inq_data.inqd_dtq = 0x80; /* set RMB bit to one indicating that the medium is removable */
1379 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */ 1536 inq_data.inqd_rdf = 2; /* A response data format value of two indicates that the data shall be in the format specified in SCSI-2 */
1380 inq_data.inqd_len = 31; 1537 inq_data.inqd_len = 31;
1381 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */ 1538 /*Format for "pad2" is RelAdr | WBus32 | WBus16 | Sync | Linked |Reserved| CmdQue | SftRe */
@@ -1397,13 +1554,55 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1397 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data)); 1554 aac_internal_transfer(scsicmd, &inq_data, 0, sizeof(inq_data));
1398 return aac_get_container_name(scsicmd, cid); 1555 return aac_get_container_name(scsicmd, cid);
1399 } 1556 }
1557 case SERVICE_ACTION_IN:
1558 if (!(dev->raw_io_interface) ||
1559 !(dev->raw_io_64) ||
1560 ((scsicmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
1561 break;
1562 {
1563 u64 capacity;
1564 char cp[12];
1565 unsigned int offset = 0;
1566
1567 dprintk((KERN_DEBUG "READ CAPACITY_16 command.\n"));
1568 capacity = fsa_dev_ptr[cid].size - 1;
1569 if (scsicmd->cmnd[13] > 12) {
1570 offset = scsicmd->cmnd[13] - 12;
1571 if (offset > sizeof(cp))
1572 break;
1573 memset(cp, 0, offset);
1574 aac_internal_transfer(scsicmd, cp, 0, offset);
1575 }
1576 cp[0] = (capacity >> 56) & 0xff;
1577 cp[1] = (capacity >> 48) & 0xff;
1578 cp[2] = (capacity >> 40) & 0xff;
1579 cp[3] = (capacity >> 32) & 0xff;
1580 cp[4] = (capacity >> 24) & 0xff;
1581 cp[5] = (capacity >> 16) & 0xff;
1582 cp[6] = (capacity >> 8) & 0xff;
1583 cp[7] = (capacity >> 0) & 0xff;
1584 cp[8] = 0;
1585 cp[9] = 0;
1586 cp[10] = 2;
1587 cp[11] = 0;
1588 aac_internal_transfer(scsicmd, cp, offset, sizeof(cp));
1589
1590 /* Do not cache partition table for arrays */
1591 scsicmd->device->removable = 1;
1592
1593 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1594 scsicmd->scsi_done(scsicmd);
1595
1596 return 0;
1597 }
1598
1400 case READ_CAPACITY: 1599 case READ_CAPACITY:
1401 { 1600 {
1402 u32 capacity; 1601 u32 capacity;
1403 char cp[8]; 1602 char cp[8];
1404 1603
1405 dprintk((KERN_DEBUG "READ CAPACITY command.\n")); 1604 dprintk((KERN_DEBUG "READ CAPACITY command.\n"));
1406 if (fsa_dev_ptr[cid].size <= 0x100000000LL) 1605 if (fsa_dev_ptr[cid].size <= 0x100000000ULL)
1407 capacity = fsa_dev_ptr[cid].size - 1; 1606 capacity = fsa_dev_ptr[cid].size - 1;
1408 else 1607 else
1409 capacity = (u32)-1; 1608 capacity = (u32)-1;
@@ -1417,6 +1616,8 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1417 cp[6] = 2; 1616 cp[6] = 2;
1418 cp[7] = 0; 1617 cp[7] = 0;
1419 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp)); 1618 aac_internal_transfer(scsicmd, cp, 0, sizeof(cp));
1619 /* Do not cache partition table for arrays */
1620 scsicmd->device->removable = 1;
1420 1621
1421 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD; 1622 scsicmd->result = DID_OK << 16 | COMMAND_COMPLETE << 8 | SAM_STAT_GOOD;
1422 scsicmd->scsi_done(scsicmd); 1623 scsicmd->scsi_done(scsicmd);
@@ -1497,6 +1698,8 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1497 { 1698 {
1498 case READ_6: 1699 case READ_6:
1499 case READ_10: 1700 case READ_10:
1701 case READ_12:
1702 case READ_16:
1500 /* 1703 /*
1501 * Hack to keep track of ordinal number of the device that 1704 * Hack to keep track of ordinal number of the device that
1502 * corresponds to a container. Needed to convert 1705 * corresponds to a container. Needed to convert
@@ -1504,17 +1707,19 @@ int aac_scsi_cmd(struct scsi_cmnd * scsicmd)
1504 */ 1707 */
1505 1708
1506 spin_unlock_irq(host->host_lock); 1709 spin_unlock_irq(host->host_lock);
1507 if (scsicmd->request->rq_disk) 1710 if (scsicmd->request->rq_disk)
1508 memcpy(fsa_dev_ptr[cid].devname, 1711 strlcpy(fsa_dev_ptr[cid].devname,
1509 scsicmd->request->rq_disk->disk_name, 1712 scsicmd->request->rq_disk->disk_name,
1510 8); 1713 min(sizeof(fsa_dev_ptr[cid].devname),
1511 1714 sizeof(scsicmd->request->rq_disk->disk_name) + 1));
1512 ret = aac_read(scsicmd, cid); 1715 ret = aac_read(scsicmd, cid);
1513 spin_lock_irq(host->host_lock); 1716 spin_lock_irq(host->host_lock);
1514 return ret; 1717 return ret;
1515 1718
1516 case WRITE_6: 1719 case WRITE_6:
1517 case WRITE_10: 1720 case WRITE_10:
1721 case WRITE_12:
1722 case WRITE_16:
1518 spin_unlock_irq(host->host_lock); 1723 spin_unlock_irq(host->host_lock);
1519 ret = aac_write(scsicmd, cid); 1724 ret = aac_write(scsicmd, cid);
1520 spin_lock_irq(host->host_lock); 1725 spin_lock_irq(host->host_lock);
@@ -1745,6 +1950,8 @@ static void aac_srb_callback(void *context, struct fib * fibptr)
1745 case WRITE_10: 1950 case WRITE_10:
1746 case READ_12: 1951 case READ_12:
1747 case WRITE_12: 1952 case WRITE_12:
1953 case READ_16:
1954 case WRITE_16:
1748 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) { 1955 if(le32_to_cpu(srbreply->data_xfer_length) < scsicmd->underflow ) {
1749 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n"); 1956 printk(KERN_WARNING"aacraid: SCSI CMD underflow\n");
1750 } else { 1957 } else {
@@ -1850,8 +2057,8 @@ static void aac_srb_callback(void *context, struct fib * fibptr)
1850 sizeof(scsicmd->sense_buffer) : 2057 sizeof(scsicmd->sense_buffer) :
1851 le32_to_cpu(srbreply->sense_data_size); 2058 le32_to_cpu(srbreply->sense_data_size);
1852#ifdef AAC_DETAILED_STATUS_INFO 2059#ifdef AAC_DETAILED_STATUS_INFO
1853 dprintk((KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n", 2060 printk(KERN_WARNING "aac_srb_callback: check condition, status = %d len=%d\n",
1854 le32_to_cpu(srbreply->status), len)); 2061 le32_to_cpu(srbreply->status), len);
1855#endif 2062#endif
1856 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len); 2063 memcpy(scsicmd->sense_buffer, srbreply->sense_data, len);
1857 2064
diff --git a/drivers/scsi/aacraid/aacraid.h b/drivers/scsi/aacraid/aacraid.h
index e40528185d48..4a99d2f000f4 100644
--- a/drivers/scsi/aacraid/aacraid.h
+++ b/drivers/scsi/aacraid/aacraid.h
@@ -1,6 +1,10 @@
1#if (!defined(dprintk)) 1#if (!defined(dprintk))
2# define dprintk(x) 2# define dprintk(x)
3#endif 3#endif
4/* eg: if (nblank(dprintk(x))) */
5#define _nblank(x) #x
6#define nblank(x) _nblank(x)[0]
7
4 8
5/*------------------------------------------------------------------------------ 9/*------------------------------------------------------------------------------
6 * D E F I N E S 10 * D E F I N E S
@@ -302,7 +306,6 @@ enum aac_queue_types {
302 */ 306 */
303 307
304#define FsaNormal 1 308#define FsaNormal 1
305#define FsaHigh 2
306 309
307/* 310/*
308 * Define the FIB. The FIB is the where all the requested data and 311 * Define the FIB. The FIB is the where all the requested data and
@@ -546,8 +549,6 @@ struct aac_queue {
546 /* This is only valid for adapter to host command queues. */ 549 /* This is only valid for adapter to host command queues. */
547 spinlock_t *lock; /* Spinlock for this queue must take this lock before accessing the lock */ 550 spinlock_t *lock; /* Spinlock for this queue must take this lock before accessing the lock */
548 spinlock_t lockdata; /* Actual lock (used only on one side of the lock) */ 551 spinlock_t lockdata; /* Actual lock (used only on one side of the lock) */
549 unsigned long SavedIrql; /* Previous IRQL when the spin lock is taken */
550 u32 padding; /* Padding - FIXME - can remove I believe */
551 struct list_head cmdq; /* A queue of FIBs which need to be prcessed by the FS thread. This is */ 552 struct list_head cmdq; /* A queue of FIBs which need to be prcessed by the FS thread. This is */
552 /* only valid for command queues which receive entries from the adapter. */ 553 /* only valid for command queues which receive entries from the adapter. */
553 struct list_head pendingq; /* A queue of outstanding fib's to the adapter. */ 554 struct list_head pendingq; /* A queue of outstanding fib's to the adapter. */
@@ -776,7 +777,9 @@ struct fsa_dev_info {
776 u64 last; 777 u64 last;
777 u64 size; 778 u64 size;
778 u32 type; 779 u32 type;
780 u32 config_waiting_on;
779 u16 queue_depth; 781 u16 queue_depth;
782 u8 config_needed;
780 u8 valid; 783 u8 valid;
781 u8 ro; 784 u8 ro;
782 u8 locked; 785 u8 locked;
@@ -1012,6 +1015,7 @@ struct aac_dev
1012 /* macro side-effects BEWARE */ 1015 /* macro side-effects BEWARE */
1013# define raw_io_interface \ 1016# define raw_io_interface \
1014 init->InitStructRevision==cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4) 1017 init->InitStructRevision==cpu_to_le32(ADAPTER_INIT_STRUCT_REVISION_4)
1018 u8 raw_io_64;
1015 u8 printf_enabled; 1019 u8 printf_enabled;
1016}; 1020};
1017 1021
@@ -1362,8 +1366,10 @@ struct aac_srb_reply
1362#define VM_CtBlockVerify64 18 1366#define VM_CtBlockVerify64 18
1363#define VM_CtHostRead64 19 1367#define VM_CtHostRead64 19
1364#define VM_CtHostWrite64 20 1368#define VM_CtHostWrite64 20
1369#define VM_DrvErrTblLog 21
1370#define VM_NameServe64 22
1365 1371
1366#define MAX_VMCOMMAND_NUM 21 /* used for sizing stats array - leave last */ 1372#define MAX_VMCOMMAND_NUM 23 /* used for sizing stats array - leave last */
1367 1373
1368/* 1374/*
1369 * Descriptive information (eg, vital stats) 1375 * Descriptive information (eg, vital stats)
@@ -1472,6 +1478,7 @@ struct aac_mntent {
1472 manager (eg, filesystem) */ 1478 manager (eg, filesystem) */
1473 __le32 altoid; /* != oid <==> snapshot or 1479 __le32 altoid; /* != oid <==> snapshot or
1474 broken mirror exists */ 1480 broken mirror exists */
1481 __le32 capacityhigh;
1475}; 1482};
1476 1483
1477#define FSCS_NOTCLEAN 0x0001 /* fsck is neccessary before mounting */ 1484#define FSCS_NOTCLEAN 0x0001 /* fsck is neccessary before mounting */
@@ -1707,6 +1714,7 @@ extern struct aac_common aac_config;
1707#define AifCmdJobProgress 2 /* Progress report */ 1714#define AifCmdJobProgress 2 /* Progress report */
1708#define AifJobCtrZero 101 /* Array Zero progress */ 1715#define AifJobCtrZero 101 /* Array Zero progress */
1709#define AifJobStsSuccess 1 /* Job completes */ 1716#define AifJobStsSuccess 1 /* Job completes */
1717#define AifJobStsRunning 102 /* Job running */
1710#define AifCmdAPIReport 3 /* Report from other user of API */ 1718#define AifCmdAPIReport 3 /* Report from other user of API */
1711#define AifCmdDriverNotify 4 /* Notify host driver of event */ 1719#define AifCmdDriverNotify 4 /* Notify host driver of event */
1712#define AifDenMorphComplete 200 /* A morph operation completed */ 1720#define AifDenMorphComplete 200 /* A morph operation completed */
@@ -1777,6 +1785,7 @@ int fib_adapter_complete(struct fib * fibptr, unsigned short size);
1777struct aac_driver_ident* aac_get_driver_ident(int devtype); 1785struct aac_driver_ident* aac_get_driver_ident(int devtype);
1778int aac_get_adapter_info(struct aac_dev* dev); 1786int aac_get_adapter_info(struct aac_dev* dev);
1779int aac_send_shutdown(struct aac_dev *dev); 1787int aac_send_shutdown(struct aac_dev *dev);
1788int probe_container(struct aac_dev *dev, int cid);
1780extern int numacb; 1789extern int numacb;
1781extern int acbsize; 1790extern int acbsize;
1782extern char aac_driver_version[]; 1791extern char aac_driver_version[];
diff --git a/drivers/scsi/aacraid/comminit.c b/drivers/scsi/aacraid/comminit.c
index 75abd0453289..59a341b2aedc 100644
--- a/drivers/scsi/aacraid/comminit.c
+++ b/drivers/scsi/aacraid/comminit.c
@@ -195,7 +195,7 @@ int aac_send_shutdown(struct aac_dev * dev)
195 fibctx, 195 fibctx,
196 sizeof(struct aac_close), 196 sizeof(struct aac_close),
197 FsaNormal, 197 FsaNormal,
198 1, 1, 198 -2 /* Timeout silently */, 1,
199 NULL, NULL); 199 NULL, NULL);
200 200
201 if (status == 0) 201 if (status == 0)
@@ -313,8 +313,15 @@ struct aac_dev *aac_init_adapter(struct aac_dev *dev)
313 dev->max_fib_size = sizeof(struct hw_fib); 313 dev->max_fib_size = sizeof(struct hw_fib);
314 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size 314 dev->sg_tablesize = host->sg_tablesize = (dev->max_fib_size
315 - sizeof(struct aac_fibhdr) 315 - sizeof(struct aac_fibhdr)
316 - sizeof(struct aac_write) + sizeof(struct sgmap)) 316 - sizeof(struct aac_write) + sizeof(struct sgentry))
317 / sizeof(struct sgmap); 317 / sizeof(struct sgentry);
318 dev->raw_io_64 = 0;
319 if ((!aac_adapter_sync_cmd(dev, GET_ADAPTER_PROPERTIES,
320 0, 0, 0, 0, 0, 0, status+0, status+1, status+2, NULL, NULL)) &&
321 (status[0] == 0x00000001)) {
322 if (status[1] & AAC_OPT_NEW_COMM_64)
323 dev->raw_io_64 = 1;
324 }
318 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS, 325 if ((!aac_adapter_sync_cmd(dev, GET_COMM_PREFERRED_SETTINGS,
319 0, 0, 0, 0, 0, 0, 326 0, 0, 0, 0, 0, 0,
320 status+0, status+1, status+2, status+3, status+4)) 327 status+0, status+1, status+2, status+3, status+4))
@@ -342,8 +349,8 @@ struct aac_dev *aac_init_adapter(struct aac_dev *dev)
342 dev->max_fib_size = 512; 349 dev->max_fib_size = 512;
343 dev->sg_tablesize = host->sg_tablesize 350 dev->sg_tablesize = host->sg_tablesize
344 = (512 - sizeof(struct aac_fibhdr) 351 = (512 - sizeof(struct aac_fibhdr)
345 - sizeof(struct aac_write) + sizeof(struct sgmap)) 352 - sizeof(struct aac_write) + sizeof(struct sgentry))
346 / sizeof(struct sgmap); 353 / sizeof(struct sgentry);
347 host->can_queue = AAC_NUM_IO_FIB; 354 host->can_queue = AAC_NUM_IO_FIB;
348 } else if (acbsize == 2048) { 355 } else if (acbsize == 2048) {
349 host->max_sectors = 512; 356 host->max_sectors = 512;
diff --git a/drivers/scsi/aacraid/commsup.c b/drivers/scsi/aacraid/commsup.c
index a1d303f03480..e4d543a474ae 100644
--- a/drivers/scsi/aacraid/commsup.c
+++ b/drivers/scsi/aacraid/commsup.c
@@ -39,7 +39,9 @@
39#include <linux/completion.h> 39#include <linux/completion.h>
40#include <linux/blkdev.h> 40#include <linux/blkdev.h>
41#include <scsi/scsi_host.h> 41#include <scsi/scsi_host.h>
42#include <scsi/scsi_device.h>
42#include <asm/semaphore.h> 43#include <asm/semaphore.h>
44#include <asm/delay.h>
43 45
44#include "aacraid.h" 46#include "aacraid.h"
45 47
@@ -269,40 +271,22 @@ static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entr
269 /* Interrupt Moderation, only interrupt for first two entries */ 271 /* Interrupt Moderation, only interrupt for first two entries */
270 if (idx != le32_to_cpu(*(q->headers.consumer))) { 272 if (idx != le32_to_cpu(*(q->headers.consumer))) {
271 if (--idx == 0) { 273 if (--idx == 0) {
272 if (qid == AdapHighCmdQueue) 274 if (qid == AdapNormCmdQueue)
273 idx = ADAP_HIGH_CMD_ENTRIES;
274 else if (qid == AdapNormCmdQueue)
275 idx = ADAP_NORM_CMD_ENTRIES; 275 idx = ADAP_NORM_CMD_ENTRIES;
276 else if (qid == AdapHighRespQueue) 276 else
277 idx = ADAP_HIGH_RESP_ENTRIES;
278 else if (qid == AdapNormRespQueue)
279 idx = ADAP_NORM_RESP_ENTRIES; 277 idx = ADAP_NORM_RESP_ENTRIES;
280 } 278 }
281 if (idx != le32_to_cpu(*(q->headers.consumer))) 279 if (idx != le32_to_cpu(*(q->headers.consumer)))
282 *nonotify = 1; 280 *nonotify = 1;
283 } 281 }
284 282
285 if (qid == AdapHighCmdQueue) { 283 if (qid == AdapNormCmdQueue) {
286 if (*index >= ADAP_HIGH_CMD_ENTRIES)
287 *index = 0;
288 } else if (qid == AdapNormCmdQueue) {
289 if (*index >= ADAP_NORM_CMD_ENTRIES) 284 if (*index >= ADAP_NORM_CMD_ENTRIES)
290 *index = 0; /* Wrap to front of the Producer Queue. */ 285 *index = 0; /* Wrap to front of the Producer Queue. */
291 } 286 } else {
292 else if (qid == AdapHighRespQueue)
293 {
294 if (*index >= ADAP_HIGH_RESP_ENTRIES)
295 *index = 0;
296 }
297 else if (qid == AdapNormRespQueue)
298 {
299 if (*index >= ADAP_NORM_RESP_ENTRIES) 287 if (*index >= ADAP_NORM_RESP_ENTRIES)
300 *index = 0; /* Wrap to front of the Producer Queue. */ 288 *index = 0; /* Wrap to front of the Producer Queue. */
301 } 289 }
302 else {
303 printk("aacraid: invalid qid\n");
304 BUG();
305 }
306 290
307 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */ 291 if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
308 printk(KERN_WARNING "Queue %d full, %u outstanding.\n", 292 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
@@ -334,12 +318,8 @@ static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_f
334{ 318{
335 struct aac_entry * entry = NULL; 319 struct aac_entry * entry = NULL;
336 int map = 0; 320 int map = 0;
337 struct aac_queue * q = &dev->queues->queue[qid];
338
339 spin_lock_irqsave(q->lock, q->SavedIrql);
340 321
341 if (qid == AdapHighCmdQueue || qid == AdapNormCmdQueue) 322 if (qid == AdapNormCmdQueue) {
342 {
343 /* if no entries wait for some if caller wants to */ 323 /* if no entries wait for some if caller wants to */
344 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 324 while (!aac_get_entry(dev, qid, &entry, index, nonotify))
345 { 325 {
@@ -350,9 +330,7 @@ static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_f
350 */ 330 */
351 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size)); 331 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
352 map = 1; 332 map = 1;
353 } 333 } else {
354 else if (qid == AdapHighRespQueue || qid == AdapNormRespQueue)
355 {
356 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 334 while(!aac_get_entry(dev, qid, &entry, index, nonotify))
357 { 335 {
358 /* if no entries wait for some if caller wants to */ 336 /* if no entries wait for some if caller wants to */
@@ -375,42 +353,6 @@ static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_f
375 return 0; 353 return 0;
376} 354}
377 355
378
379/**
380 * aac_insert_entry - insert a queue entry
381 * @dev: Adapter
382 * @index: Index of entry to insert
383 * @qid: Queue number
384 * @nonotify: Suppress adapter notification
385 *
386 * Gets the next free QE off the requested priorty adapter command
387 * queue and associates the Fib with the QE. The QE represented by
388 * index is ready to insert on the queue when this routine returns
389 * success.
390 */
391
392static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned long nonotify)
393{
394 struct aac_queue * q = &dev->queues->queue[qid];
395
396 if(q == NULL)
397 BUG();
398 *(q->headers.producer) = cpu_to_le32(index + 1);
399 spin_unlock_irqrestore(q->lock, q->SavedIrql);
400
401 if (qid == AdapHighCmdQueue ||
402 qid == AdapNormCmdQueue ||
403 qid == AdapHighRespQueue ||
404 qid == AdapNormRespQueue)
405 {
406 if (!nonotify)
407 aac_adapter_notify(dev, qid);
408 }
409 else
410 printk("Suprise insert!\n");
411 return 0;
412}
413
414/* 356/*
415 * Define the highest level of host to adapter communication routines. 357 * Define the highest level of host to adapter communication routines.
416 * These routines will support host to adapter FS commuication. These 358 * These routines will support host to adapter FS commuication. These
@@ -439,12 +381,13 @@ static int aac_insert_entry(struct aac_dev * dev, u32 index, u32 qid, unsigned l
439int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data) 381int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority, int wait, int reply, fib_callback callback, void * callback_data)
440{ 382{
441 u32 index; 383 u32 index;
442 u32 qid;
443 struct aac_dev * dev = fibptr->dev; 384 struct aac_dev * dev = fibptr->dev;
444 unsigned long nointr = 0; 385 unsigned long nointr = 0;
445 struct hw_fib * hw_fib = fibptr->hw_fib; 386 struct hw_fib * hw_fib = fibptr->hw_fib;
446 struct aac_queue * q; 387 struct aac_queue * q;
447 unsigned long flags = 0; 388 unsigned long flags = 0;
389 unsigned long qflags;
390
448 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned))) 391 if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
449 return -EBUSY; 392 return -EBUSY;
450 /* 393 /*
@@ -497,26 +440,8 @@ int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority
497 * Get a queue entry connect the FIB to it and send an notify 440 * Get a queue entry connect the FIB to it and send an notify
498 * the adapter a command is ready. 441 * the adapter a command is ready.
499 */ 442 */
500 if (priority == FsaHigh) { 443 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
501 hw_fib->header.XferState |= cpu_to_le32(HighPriority);
502 qid = AdapHighCmdQueue;
503 } else {
504 hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
505 qid = AdapNormCmdQueue;
506 }
507 q = &dev->queues->queue[qid];
508 444
509 if(wait)
510 spin_lock_irqsave(&fibptr->event_lock, flags);
511 if(aac_queue_get( dev, &index, qid, hw_fib, 1, fibptr, &nointr)<0)
512 return -EWOULDBLOCK;
513 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
514 dprintk((KERN_DEBUG "Fib contents:.\n"));
515 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
516 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
517 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
518 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
519 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
520 /* 445 /*
521 * Fill in the Callback and CallbackContext if we are not 446 * Fill in the Callback and CallbackContext if we are not
522 * going to wait. 447 * going to wait.
@@ -525,22 +450,67 @@ int fib_send(u16 command, struct fib * fibptr, unsigned long size, int priority
525 fibptr->callback = callback; 450 fibptr->callback = callback;
526 fibptr->callback_data = callback_data; 451 fibptr->callback_data = callback_data;
527 } 452 }
528 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
529 list_add_tail(&fibptr->queue, &q->pendingq);
530 q->numpending++;
531 453
532 fibptr->done = 0; 454 fibptr->done = 0;
533 fibptr->flags = 0; 455 fibptr->flags = 0;
534 456
535 if(aac_insert_entry(dev, index, qid, (nointr & aac_config.irq_mod)) < 0) 457 FIB_COUNTER_INCREMENT(aac_config.FibsSent);
536 return -EWOULDBLOCK; 458
459 dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
460 dprintk((KERN_DEBUG "Fib contents:.\n"));
461 dprintk((KERN_DEBUG " Command = %d.\n", hw_fib->header.Command));
462 dprintk((KERN_DEBUG " XferState = %x.\n", hw_fib->header.XferState));
463 dprintk((KERN_DEBUG " hw_fib va being sent=%p\n",fibptr->hw_fib));
464 dprintk((KERN_DEBUG " hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465 dprintk((KERN_DEBUG " fib being sent=%p\n",fibptr));
466
467 q = &dev->queues->queue[AdapNormCmdQueue];
468
469 if(wait)
470 spin_lock_irqsave(&fibptr->event_lock, flags);
471 spin_lock_irqsave(q->lock, qflags);
472 aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
473
474 list_add_tail(&fibptr->queue, &q->pendingq);
475 q->numpending++;
476 *(q->headers.producer) = cpu_to_le32(index + 1);
477 spin_unlock_irqrestore(q->lock, qflags);
478 if (!(nointr & aac_config.irq_mod))
479 aac_adapter_notify(dev, AdapNormCmdQueue);
537 /* 480 /*
538 * If the caller wanted us to wait for response wait now. 481 * If the caller wanted us to wait for response wait now.
539 */ 482 */
540 483
541 if (wait) { 484 if (wait) {
542 spin_unlock_irqrestore(&fibptr->event_lock, flags); 485 spin_unlock_irqrestore(&fibptr->event_lock, flags);
543 down(&fibptr->event_wait); 486 /* Only set for first known interruptable command */
487 if (wait < 0) {
488 /*
489 * *VERY* Dangerous to time out a command, the
490 * assumption is made that we have no hope of
491 * functioning because an interrupt routing or other
492 * hardware failure has occurred.
493 */
494 unsigned long count = 36000000L; /* 3 minutes */
495 unsigned long qflags;
496 while (down_trylock(&fibptr->event_wait)) {
497 if (--count == 0) {
498 spin_lock_irqsave(q->lock, qflags);
499 q->numpending--;
500 list_del(&fibptr->queue);
501 spin_unlock_irqrestore(q->lock, qflags);
502 if (wait == -1) {
503 printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
504 "Usually a result of a PCI interrupt routing problem;\n"
505 "update mother board BIOS or consider utilizing one of\n"
506 "the SAFE mode kernel options (acpi, apic etc)\n");
507 }
508 return -ETIMEDOUT;
509 }
510 udelay(5);
511 }
512 } else
513 down(&fibptr->event_wait);
544 if(fibptr->done == 0) 514 if(fibptr->done == 0)
545 BUG(); 515 BUG();
546 516
@@ -622,15 +592,9 @@ void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
622 case HostNormCmdQueue: 592 case HostNormCmdQueue:
623 notify = HostNormCmdNotFull; 593 notify = HostNormCmdNotFull;
624 break; 594 break;
625 case HostHighCmdQueue:
626 notify = HostHighCmdNotFull;
627 break;
628 case HostNormRespQueue: 595 case HostNormRespQueue:
629 notify = HostNormRespNotFull; 596 notify = HostNormRespNotFull;
630 break; 597 break;
631 case HostHighRespQueue:
632 notify = HostHighRespNotFull;
633 break;
634 default: 598 default:
635 BUG(); 599 BUG();
636 return; 600 return;
@@ -652,9 +616,13 @@ int fib_adapter_complete(struct fib * fibptr, unsigned short size)
652{ 616{
653 struct hw_fib * hw_fib = fibptr->hw_fib; 617 struct hw_fib * hw_fib = fibptr->hw_fib;
654 struct aac_dev * dev = fibptr->dev; 618 struct aac_dev * dev = fibptr->dev;
619 struct aac_queue * q;
655 unsigned long nointr = 0; 620 unsigned long nointr = 0;
656 if (hw_fib->header.XferState == 0) 621 unsigned long qflags;
622
623 if (hw_fib->header.XferState == 0) {
657 return 0; 624 return 0;
625 }
658 /* 626 /*
659 * If we plan to do anything check the structure type first. 627 * If we plan to do anything check the structure type first.
660 */ 628 */
@@ -669,37 +637,21 @@ int fib_adapter_complete(struct fib * fibptr, unsigned short size)
669 * send the completed cdb to the adapter. 637 * send the completed cdb to the adapter.
670 */ 638 */
671 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) { 639 if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
640 u32 index;
672 hw_fib->header.XferState |= cpu_to_le32(HostProcessed); 641 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
673 if (hw_fib->header.XferState & cpu_to_le32(HighPriority)) { 642 if (size) {
674 u32 index; 643 size += sizeof(struct aac_fibhdr);
675 if (size) 644 if (size > le16_to_cpu(hw_fib->header.SenderSize))
676 { 645 return -EMSGSIZE;
677 size += sizeof(struct aac_fibhdr); 646 hw_fib->header.Size = cpu_to_le16(size);
678 if (size > le16_to_cpu(hw_fib->header.SenderSize))
679 return -EMSGSIZE;
680 hw_fib->header.Size = cpu_to_le16(size);
681 }
682 if(aac_queue_get(dev, &index, AdapHighRespQueue, hw_fib, 1, NULL, &nointr) < 0) {
683 return -EWOULDBLOCK;
684 }
685 if (aac_insert_entry(dev, index, AdapHighRespQueue, (nointr & (int)aac_config.irq_mod)) != 0) {
686 }
687 } else if (hw_fib->header.XferState &
688 cpu_to_le32(NormalPriority)) {
689 u32 index;
690
691 if (size) {
692 size += sizeof(struct aac_fibhdr);
693 if (size > le16_to_cpu(hw_fib->header.SenderSize))
694 return -EMSGSIZE;
695 hw_fib->header.Size = cpu_to_le16(size);
696 }
697 if (aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr) < 0)
698 return -EWOULDBLOCK;
699 if (aac_insert_entry(dev, index, AdapNormRespQueue, (nointr & (int)aac_config.irq_mod)) != 0)
700 {
701 }
702 } 647 }
648 q = &dev->queues->queue[AdapNormRespQueue];
649 spin_lock_irqsave(q->lock, qflags);
650 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
651 *(q->headers.producer) = cpu_to_le32(index + 1);
652 spin_unlock_irqrestore(q->lock, qflags);
653 if (!(nointr & (int)aac_config.irq_mod))
654 aac_adapter_notify(dev, AdapNormRespQueue);
703 } 655 }
704 else 656 else
705 { 657 {
@@ -791,6 +743,268 @@ void aac_printf(struct aac_dev *dev, u32 val)
791 memset(cp, 0, 256); 743 memset(cp, 0, 256);
792} 744}
793 745
746
747/**
748 * aac_handle_aif - Handle a message from the firmware
749 * @dev: Which adapter this fib is from
750 * @fibptr: Pointer to fibptr from adapter
751 *
752 * This routine handles a driver notify fib from the adapter and
753 * dispatches it to the appropriate routine for handling.
754 */
755
756static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
757{
758 struct hw_fib * hw_fib = fibptr->hw_fib;
759 struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
760 int busy;
761 u32 container;
762 struct scsi_device *device;
763 enum {
764 NOTHING,
765 DELETE,
766 ADD,
767 CHANGE
768 } device_config_needed;
769
770 /* Sniff for container changes */
771
772 if (!dev)
773 return;
774 container = (u32)-1;
775
776 /*
777 * We have set this up to try and minimize the number of
778 * re-configures that take place. As a result of this when
779 * certain AIF's come in we will set a flag waiting for another
780 * type of AIF before setting the re-config flag.
781 */
782 switch (le32_to_cpu(aifcmd->command)) {
783 case AifCmdDriverNotify:
784 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
785 /*
786 * Morph or Expand complete
787 */
788 case AifDenMorphComplete:
789 case AifDenVolumeExtendComplete:
790 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
791 if (container >= dev->maximum_num_containers)
792 break;
793
794 /*
795 * Find the Scsi_Device associated with the SCSI
796 * address. Make sure we have the right array, and if
797 * so set the flag to initiate a new re-config once we
798 * see an AifEnConfigChange AIF come through.
799 */
800
801 if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
802 device = scsi_device_lookup(dev->scsi_host_ptr,
803 CONTAINER_TO_CHANNEL(container),
804 CONTAINER_TO_ID(container),
805 CONTAINER_TO_LUN(container));
806 if (device) {
807 dev->fsa_dev[container].config_needed = CHANGE;
808 dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
809 scsi_device_put(device);
810 }
811 }
812 }
813
814 /*
815 * If we are waiting on something and this happens to be
816 * that thing then set the re-configure flag.
817 */
818 if (container != (u32)-1) {
819 if (container >= dev->maximum_num_containers)
820 break;
821 if (dev->fsa_dev[container].config_waiting_on ==
822 le32_to_cpu(*(u32 *)aifcmd->data))
823 dev->fsa_dev[container].config_waiting_on = 0;
824 } else for (container = 0;
825 container < dev->maximum_num_containers; ++container) {
826 if (dev->fsa_dev[container].config_waiting_on ==
827 le32_to_cpu(*(u32 *)aifcmd->data))
828 dev->fsa_dev[container].config_waiting_on = 0;
829 }
830 break;
831
832 case AifCmdEventNotify:
833 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
834 /*
835 * Add an Array.
836 */
837 case AifEnAddContainer:
838 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
839 if (container >= dev->maximum_num_containers)
840 break;
841 dev->fsa_dev[container].config_needed = ADD;
842 dev->fsa_dev[container].config_waiting_on =
843 AifEnConfigChange;
844 break;
845
846 /*
847 * Delete an Array.
848 */
849 case AifEnDeleteContainer:
850 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
851 if (container >= dev->maximum_num_containers)
852 break;
853 dev->fsa_dev[container].config_needed = DELETE;
854 dev->fsa_dev[container].config_waiting_on =
855 AifEnConfigChange;
856 break;
857
858 /*
859 * Container change detected. If we currently are not
860 * waiting on something else, setup to wait on a Config Change.
861 */
862 case AifEnContainerChange:
863 container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
864 if (container >= dev->maximum_num_containers)
865 break;
866 if (dev->fsa_dev[container].config_waiting_on)
867 break;
868 dev->fsa_dev[container].config_needed = CHANGE;
869 dev->fsa_dev[container].config_waiting_on =
870 AifEnConfigChange;
871 break;
872
873 case AifEnConfigChange:
874 break;
875
876 }
877
878 /*
879 * If we are waiting on something and this happens to be
880 * that thing then set the re-configure flag.
881 */
882 if (container != (u32)-1) {
883 if (container >= dev->maximum_num_containers)
884 break;
885 if (dev->fsa_dev[container].config_waiting_on ==
886 le32_to_cpu(*(u32 *)aifcmd->data))
887 dev->fsa_dev[container].config_waiting_on = 0;
888 } else for (container = 0;
889 container < dev->maximum_num_containers; ++container) {
890 if (dev->fsa_dev[container].config_waiting_on ==
891 le32_to_cpu(*(u32 *)aifcmd->data))
892 dev->fsa_dev[container].config_waiting_on = 0;
893 }
894 break;
895
896 case AifCmdJobProgress:
897 /*
898 * These are job progress AIF's. When a Clear is being
899 * done on a container it is initially created then hidden from
900 * the OS. When the clear completes we don't get a config
901 * change so we monitor the job status complete on a clear then
902 * wait for a container change.
903 */
904
905 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
906 && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
907 || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
908 for (container = 0;
909 container < dev->maximum_num_containers;
910 ++container) {
911 /*
912 * Stomp on all config sequencing for all
913 * containers?
914 */
915 dev->fsa_dev[container].config_waiting_on =
916 AifEnContainerChange;
917 dev->fsa_dev[container].config_needed = ADD;
918 }
919 }
920 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
921 && (((u32 *)aifcmd->data)[6] == 0)
922 && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
923 for (container = 0;
924 container < dev->maximum_num_containers;
925 ++container) {
926 /*
927 * Stomp on all config sequencing for all
928 * containers?
929 */
930 dev->fsa_dev[container].config_waiting_on =
931 AifEnContainerChange;
932 dev->fsa_dev[container].config_needed = DELETE;
933 }
934 }
935 break;
936 }
937
938 device_config_needed = NOTHING;
939 for (container = 0; container < dev->maximum_num_containers;
940 ++container) {
941 if ((dev->fsa_dev[container].config_waiting_on == 0)
942 && (dev->fsa_dev[container].config_needed != NOTHING)) {
943 device_config_needed =
944 dev->fsa_dev[container].config_needed;
945 dev->fsa_dev[container].config_needed = NOTHING;
946 break;
947 }
948 }
949 if (device_config_needed == NOTHING)
950 return;
951
952 /*
953 * If we decided that a re-configuration needs to be done,
954 * schedule it here on the way out the door, please close the door
955 * behind you.
956 */
957
958 busy = 0;
959
960
961 /*
962 * Find the Scsi_Device associated with the SCSI address,
963 * and mark it as changed, invalidating the cache. This deals
964 * with changes to existing device IDs.
965 */
966
967 if (!dev || !dev->scsi_host_ptr)
968 return;
969 /*
970 * force reload of disk info via probe_container
971 */
972 if ((device_config_needed == CHANGE)
973 && (dev->fsa_dev[container].valid == 1))
974 dev->fsa_dev[container].valid = 2;
975 if ((device_config_needed == CHANGE) ||
976 (device_config_needed == ADD))
977 probe_container(dev, container);
978 device = scsi_device_lookup(dev->scsi_host_ptr,
979 CONTAINER_TO_CHANNEL(container),
980 CONTAINER_TO_ID(container),
981 CONTAINER_TO_LUN(container));
982 if (device) {
983 switch (device_config_needed) {
984 case DELETE:
985 scsi_remove_device(device);
986 break;
987 case CHANGE:
988 if (!dev->fsa_dev[container].valid) {
989 scsi_remove_device(device);
990 break;
991 }
992 scsi_rescan_device(&device->sdev_gendev);
993
994 default:
995 break;
996 }
997 scsi_device_put(device);
998 }
999 if (device_config_needed == ADD) {
1000 scsi_add_device(dev->scsi_host_ptr,
1001 CONTAINER_TO_CHANNEL(container),
1002 CONTAINER_TO_ID(container),
1003 CONTAINER_TO_LUN(container));
1004 }
1005
1006}
1007
794/** 1008/**
795 * aac_command_thread - command processing thread 1009 * aac_command_thread - command processing thread
796 * @dev: Adapter to monitor 1010 * @dev: Adapter to monitor
@@ -805,7 +1019,6 @@ int aac_command_thread(struct aac_dev * dev)
805{ 1019{
806 struct hw_fib *hw_fib, *hw_newfib; 1020 struct hw_fib *hw_fib, *hw_newfib;
807 struct fib *fib, *newfib; 1021 struct fib *fib, *newfib;
808 struct aac_queue_block *queues = dev->queues;
809 struct aac_fib_context *fibctx; 1022 struct aac_fib_context *fibctx;
810 unsigned long flags; 1023 unsigned long flags;
811 DECLARE_WAITQUEUE(wait, current); 1024 DECLARE_WAITQUEUE(wait, current);
@@ -825,21 +1038,22 @@ int aac_command_thread(struct aac_dev * dev)
825 * Let the DPC know it has a place to send the AIF's to. 1038 * Let the DPC know it has a place to send the AIF's to.
826 */ 1039 */
827 dev->aif_thread = 1; 1040 dev->aif_thread = 1;
828 add_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait); 1041 add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
829 set_current_state(TASK_INTERRUPTIBLE); 1042 set_current_state(TASK_INTERRUPTIBLE);
1043 dprintk ((KERN_INFO "aac_command_thread start\n"));
830 while(1) 1044 while(1)
831 { 1045 {
832 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags); 1046 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
833 while(!list_empty(&(queues->queue[HostNormCmdQueue].cmdq))) { 1047 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
834 struct list_head *entry; 1048 struct list_head *entry;
835 struct aac_aifcmd * aifcmd; 1049 struct aac_aifcmd * aifcmd;
836 1050
837 set_current_state(TASK_RUNNING); 1051 set_current_state(TASK_RUNNING);
838 1052
839 entry = queues->queue[HostNormCmdQueue].cmdq.next; 1053 entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
840 list_del(entry); 1054 list_del(entry);
841 1055
842 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags); 1056 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
843 fib = list_entry(entry, struct fib, fiblink); 1057 fib = list_entry(entry, struct fib, fiblink);
844 /* 1058 /*
845 * We will process the FIB here or pass it to a 1059 * We will process the FIB here or pass it to a
@@ -860,6 +1074,7 @@ int aac_command_thread(struct aac_dev * dev)
860 aifcmd = (struct aac_aifcmd *) hw_fib->data; 1074 aifcmd = (struct aac_aifcmd *) hw_fib->data;
861 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) { 1075 if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
862 /* Handle Driver Notify Events */ 1076 /* Handle Driver Notify Events */
1077 aac_handle_aif(dev, fib);
863 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1078 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
864 fib_adapter_complete(fib, (u16)sizeof(u32)); 1079 fib_adapter_complete(fib, (u16)sizeof(u32));
865 } else { 1080 } else {
@@ -869,9 +1084,62 @@ int aac_command_thread(struct aac_dev * dev)
869 1084
870 u32 time_now, time_last; 1085 u32 time_now, time_last;
871 unsigned long flagv; 1086 unsigned long flagv;
872 1087 unsigned num;
1088 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1089 struct fib ** fib_pool, ** fib_p;
1090
1091 /* Sniff events */
1092 if ((aifcmd->command ==
1093 cpu_to_le32(AifCmdEventNotify)) ||
1094 (aifcmd->command ==
1095 cpu_to_le32(AifCmdJobProgress))) {
1096 aac_handle_aif(dev, fib);
1097 }
1098
873 time_now = jiffies/HZ; 1099 time_now = jiffies/HZ;
874 1100
1101 /*
1102 * Warning: no sleep allowed while
1103 * holding spinlock. We take the estimate
1104 * and pre-allocate a set of fibs outside the
1105 * lock.
1106 */
1107 num = le32_to_cpu(dev->init->AdapterFibsSize)
1108 / sizeof(struct hw_fib); /* some extra */
1109 spin_lock_irqsave(&dev->fib_lock, flagv);
1110 entry = dev->fib_list.next;
1111 while (entry != &dev->fib_list) {
1112 entry = entry->next;
1113 ++num;
1114 }
1115 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1116 hw_fib_pool = NULL;
1117 fib_pool = NULL;
1118 if (num
1119 && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1120 && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1121 hw_fib_p = hw_fib_pool;
1122 fib_p = fib_pool;
1123 while (hw_fib_p < &hw_fib_pool[num]) {
1124 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1125 --hw_fib_p;
1126 break;
1127 }
1128 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1129 kfree(*(--hw_fib_p));
1130 break;
1131 }
1132 }
1133 if ((num = hw_fib_p - hw_fib_pool) == 0) {
1134 kfree(fib_pool);
1135 fib_pool = NULL;
1136 kfree(hw_fib_pool);
1137 hw_fib_pool = NULL;
1138 }
1139 } else if (hw_fib_pool) {
1140 kfree(hw_fib_pool);
1141 hw_fib_pool = NULL;
1142 }
875 spin_lock_irqsave(&dev->fib_lock, flagv); 1143 spin_lock_irqsave(&dev->fib_lock, flagv);
876 entry = dev->fib_list.next; 1144 entry = dev->fib_list.next;
877 /* 1145 /*
@@ -880,6 +1148,8 @@ int aac_command_thread(struct aac_dev * dev)
880 * fib, and then set the event to wake up the 1148 * fib, and then set the event to wake up the
881 * thread that is waiting for it. 1149 * thread that is waiting for it.
882 */ 1150 */
1151 hw_fib_p = hw_fib_pool;
1152 fib_p = fib_pool;
883 while (entry != &dev->fib_list) { 1153 while (entry != &dev->fib_list) {
884 /* 1154 /*
885 * Extract the fibctx 1155 * Extract the fibctx
@@ -912,9 +1182,11 @@ int aac_command_thread(struct aac_dev * dev)
912 * Warning: no sleep allowed while 1182 * Warning: no sleep allowed while
913 * holding spinlock 1183 * holding spinlock
914 */ 1184 */
915 hw_newfib = kmalloc(sizeof(struct hw_fib), GFP_ATOMIC); 1185 if (hw_fib_p < &hw_fib_pool[num]) {
916 newfib = kmalloc(sizeof(struct fib), GFP_ATOMIC); 1186 hw_newfib = *hw_fib_p;
917 if (newfib && hw_newfib) { 1187 *(hw_fib_p++) = NULL;
1188 newfib = *fib_p;
1189 *(fib_p++) = NULL;
918 /* 1190 /*
919 * Make the copy of the FIB 1191 * Make the copy of the FIB
920 */ 1192 */
@@ -929,15 +1201,11 @@ int aac_command_thread(struct aac_dev * dev)
929 fibctx->count++; 1201 fibctx->count++;
930 /* 1202 /*
931 * Set the event to wake up the 1203 * Set the event to wake up the
932 * thread that will waiting. 1204 * thread that is waiting.
933 */ 1205 */
934 up(&fibctx->wait_sem); 1206 up(&fibctx->wait_sem);
935 } else { 1207 } else {
936 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n"); 1208 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
937 if(newfib)
938 kfree(newfib);
939 if(hw_newfib)
940 kfree(hw_newfib);
941 } 1209 }
942 entry = entry->next; 1210 entry = entry->next;
943 } 1211 }
@@ -947,21 +1215,38 @@ int aac_command_thread(struct aac_dev * dev)
947 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK); 1215 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
948 fib_adapter_complete(fib, sizeof(u32)); 1216 fib_adapter_complete(fib, sizeof(u32));
949 spin_unlock_irqrestore(&dev->fib_lock, flagv); 1217 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1218 /* Free up the remaining resources */
1219 hw_fib_p = hw_fib_pool;
1220 fib_p = fib_pool;
1221 while (hw_fib_p < &hw_fib_pool[num]) {
1222 if (*hw_fib_p)
1223 kfree(*hw_fib_p);
1224 if (*fib_p)
1225 kfree(*fib_p);
1226 ++fib_p;
1227 ++hw_fib_p;
1228 }
1229 if (hw_fib_pool)
1230 kfree(hw_fib_pool);
1231 if (fib_pool)
1232 kfree(fib_pool);
950 } 1233 }
951 spin_lock_irqsave(queues->queue[HostNormCmdQueue].lock, flags);
952 kfree(fib); 1234 kfree(fib);
1235 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
953 } 1236 }
954 /* 1237 /*
955 * There are no more AIF's 1238 * There are no more AIF's
956 */ 1239 */
957 spin_unlock_irqrestore(queues->queue[HostNormCmdQueue].lock, flags); 1240 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
958 schedule(); 1241 schedule();
959 1242
960 if(signal_pending(current)) 1243 if(signal_pending(current))
961 break; 1244 break;
962 set_current_state(TASK_INTERRUPTIBLE); 1245 set_current_state(TASK_INTERRUPTIBLE);
963 } 1246 }
964 remove_wait_queue(&queues->queue[HostNormCmdQueue].cmdready, &wait); 1247 if (dev->queues)
1248 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
965 dev->aif_thread = 0; 1249 dev->aif_thread = 0;
966 complete_and_exit(&dev->aif_completion, 0); 1250 complete_and_exit(&dev->aif_completion, 0);
1251 return 0;
967} 1252}
diff --git a/drivers/scsi/aacraid/linit.c b/drivers/scsi/aacraid/linit.c
index 4ff29d7f5825..de8490a92831 100644
--- a/drivers/scsi/aacraid/linit.c
+++ b/drivers/scsi/aacraid/linit.c
@@ -748,7 +748,8 @@ static int __devinit aac_probe_one(struct pci_dev *pdev,
748 unique_id++; 748 unique_id++;
749 } 749 }
750 750
751 if (pci_enable_device(pdev)) 751 error = pci_enable_device(pdev);
752 if (error)
752 goto out; 753 goto out;
753 754
754 if (pci_set_dma_mask(pdev, 0xFFFFFFFFULL) || 755 if (pci_set_dma_mask(pdev, 0xFFFFFFFFULL) ||
@@ -772,6 +773,7 @@ static int __devinit aac_probe_one(struct pci_dev *pdev,
772 shost->irq = pdev->irq; 773 shost->irq = pdev->irq;
773 shost->base = pci_resource_start(pdev, 0); 774 shost->base = pci_resource_start(pdev, 0);
774 shost->unique_id = unique_id; 775 shost->unique_id = unique_id;
776 shost->max_cmd_len = 16;
775 777
776 aac = (struct aac_dev *)shost->hostdata; 778 aac = (struct aac_dev *)shost->hostdata;
777 aac->scsi_host_ptr = shost; 779 aac->scsi_host_ptr = shost;
@@ -799,7 +801,9 @@ static int __devinit aac_probe_one(struct pci_dev *pdev,
799 goto out_free_fibs; 801 goto out_free_fibs;
800 802
801 aac->maximum_num_channels = aac_drivers[index].channels; 803 aac->maximum_num_channels = aac_drivers[index].channels;
802 aac_get_adapter_info(aac); 804 error = aac_get_adapter_info(aac);
805 if (error < 0)
806 goto out_deinit;
803 807
804 /* 808 /*
805 * Lets override negotiations and drop the maximum SG limit to 34 809 * Lets override negotiations and drop the maximum SG limit to 34
@@ -927,8 +931,8 @@ static int __init aac_init(void)
927 printk(KERN_INFO "Adaptec %s driver (%s)\n", 931 printk(KERN_INFO "Adaptec %s driver (%s)\n",
928 AAC_DRIVERNAME, aac_driver_version); 932 AAC_DRIVERNAME, aac_driver_version);
929 933
930 error = pci_module_init(&aac_pci_driver); 934 error = pci_register_driver(&aac_pci_driver);
931 if (error) 935 if (error < 0)
932 return error; 936 return error;
933 937
934 aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops); 938 aac_cfg_major = register_chrdev( 0, "aac", &aac_cfg_fops);
diff --git a/drivers/scsi/aic7xxx/aic7770_osm.c b/drivers/scsi/aic7xxx/aic7770_osm.c
index 70c5fb59c9ea..d754b3267863 100644
--- a/drivers/scsi/aic7xxx/aic7770_osm.c
+++ b/drivers/scsi/aic7xxx/aic7770_osm.c
@@ -112,6 +112,9 @@ aic7770_remove(struct device *dev)
112 struct ahc_softc *ahc = dev_get_drvdata(dev); 112 struct ahc_softc *ahc = dev_get_drvdata(dev);
113 u_long s; 113 u_long s;
114 114
115 if (ahc->platform_data && ahc->platform_data->host)
116 scsi_remove_host(ahc->platform_data->host);
117
115 ahc_lock(ahc, &s); 118 ahc_lock(ahc, &s);
116 ahc_intr_enable(ahc, FALSE); 119 ahc_intr_enable(ahc, FALSE);
117 ahc_unlock(ahc, &s); 120 ahc_unlock(ahc, &s);
diff --git a/drivers/scsi/aic7xxx/aic79xx_osm.c b/drivers/scsi/aic7xxx/aic79xx_osm.c
index 6b6d4e287793..95c285cc83e4 100644
--- a/drivers/scsi/aic7xxx/aic79xx_osm.c
+++ b/drivers/scsi/aic7xxx/aic79xx_osm.c
@@ -1192,11 +1192,6 @@ ahd_platform_free(struct ahd_softc *ahd)
1192 int i, j; 1192 int i, j;
1193 1193
1194 if (ahd->platform_data != NULL) { 1194 if (ahd->platform_data != NULL) {
1195 if (ahd->platform_data->host != NULL) {
1196 scsi_remove_host(ahd->platform_data->host);
1197 scsi_host_put(ahd->platform_data->host);
1198 }
1199
1200 /* destroy all of the device and target objects */ 1195 /* destroy all of the device and target objects */
1201 for (i = 0; i < AHD_NUM_TARGETS; i++) { 1196 for (i = 0; i < AHD_NUM_TARGETS; i++) {
1202 starget = ahd->platform_data->starget[i]; 1197 starget = ahd->platform_data->starget[i];
@@ -1226,6 +1221,9 @@ ahd_platform_free(struct ahd_softc *ahd)
1226 release_mem_region(ahd->platform_data->mem_busaddr, 1221 release_mem_region(ahd->platform_data->mem_busaddr,
1227 0x1000); 1222 0x1000);
1228 } 1223 }
1224 if (ahd->platform_data->host)
1225 scsi_host_put(ahd->platform_data->host);
1226
1229 free(ahd->platform_data, M_DEVBUF); 1227 free(ahd->platform_data, M_DEVBUF);
1230 } 1228 }
1231} 1229}
diff --git a/drivers/scsi/aic7xxx/aic79xx_osm_pci.c b/drivers/scsi/aic7xxx/aic79xx_osm_pci.c
index 390b53852d4b..bf360ae021ab 100644
--- a/drivers/scsi/aic7xxx/aic79xx_osm_pci.c
+++ b/drivers/scsi/aic7xxx/aic79xx_osm_pci.c
@@ -95,6 +95,9 @@ ahd_linux_pci_dev_remove(struct pci_dev *pdev)
95 struct ahd_softc *ahd = pci_get_drvdata(pdev); 95 struct ahd_softc *ahd = pci_get_drvdata(pdev);
96 u_long s; 96 u_long s;
97 97
98 if (ahd->platform_data && ahd->platform_data->host)
99 scsi_remove_host(ahd->platform_data->host);
100
98 ahd_lock(ahd, &s); 101 ahd_lock(ahd, &s);
99 ahd_intr_enable(ahd, FALSE); 102 ahd_intr_enable(ahd, FALSE);
100 ahd_unlock(ahd, &s); 103 ahd_unlock(ahd, &s);
diff --git a/drivers/scsi/aic7xxx/aic7xxx_osm.c b/drivers/scsi/aic7xxx/aic7xxx_osm.c
index 876d1de8480d..6ee1435d37fa 100644
--- a/drivers/scsi/aic7xxx/aic7xxx_osm.c
+++ b/drivers/scsi/aic7xxx/aic7xxx_osm.c
@@ -1209,11 +1209,6 @@ ahc_platform_free(struct ahc_softc *ahc)
1209 int i, j; 1209 int i, j;
1210 1210
1211 if (ahc->platform_data != NULL) { 1211 if (ahc->platform_data != NULL) {
1212 if (ahc->platform_data->host != NULL) {
1213 scsi_remove_host(ahc->platform_data->host);
1214 scsi_host_put(ahc->platform_data->host);
1215 }
1216
1217 /* destroy all of the device and target objects */ 1212 /* destroy all of the device and target objects */
1218 for (i = 0; i < AHC_NUM_TARGETS; i++) { 1213 for (i = 0; i < AHC_NUM_TARGETS; i++) {
1219 starget = ahc->platform_data->starget[i]; 1214 starget = ahc->platform_data->starget[i];
@@ -1242,6 +1237,9 @@ ahc_platform_free(struct ahc_softc *ahc)
1242 0x1000); 1237 0x1000);
1243 } 1238 }
1244 1239
1240 if (ahc->platform_data->host)
1241 scsi_host_put(ahc->platform_data->host);
1242
1245 free(ahc->platform_data, M_DEVBUF); 1243 free(ahc->platform_data, M_DEVBUF);
1246 } 1244 }
1247} 1245}
diff --git a/drivers/scsi/aic7xxx/aic7xxx_osm_pci.c b/drivers/scsi/aic7xxx/aic7xxx_osm_pci.c
index 3ce77ddc889e..cb30d9c1153d 100644
--- a/drivers/scsi/aic7xxx/aic7xxx_osm_pci.c
+++ b/drivers/scsi/aic7xxx/aic7xxx_osm_pci.c
@@ -143,6 +143,9 @@ ahc_linux_pci_dev_remove(struct pci_dev *pdev)
143 struct ahc_softc *ahc = pci_get_drvdata(pdev); 143 struct ahc_softc *ahc = pci_get_drvdata(pdev);
144 u_long s; 144 u_long s;
145 145
146 if (ahc->platform_data && ahc->platform_data->host)
147 scsi_remove_host(ahc->platform_data->host);
148
146 ahc_lock(ahc, &s); 149 ahc_lock(ahc, &s);
147 ahc_intr_enable(ahc, FALSE); 150 ahc_intr_enable(ahc, FALSE);
148 ahc_unlock(ahc, &s); 151 ahc_unlock(ahc, &s);
diff --git a/drivers/scsi/hosts.c b/drivers/scsi/hosts.c
index f2a72d33132c..02fe371b0ab8 100644
--- a/drivers/scsi/hosts.c
+++ b/drivers/scsi/hosts.c
@@ -176,6 +176,7 @@ void scsi_remove_host(struct Scsi_Host *shost)
176 transport_unregister_device(&shost->shost_gendev); 176 transport_unregister_device(&shost->shost_gendev);
177 class_device_unregister(&shost->shost_classdev); 177 class_device_unregister(&shost->shost_classdev);
178 device_del(&shost->shost_gendev); 178 device_del(&shost->shost_gendev);
179 scsi_proc_hostdir_rm(shost->hostt);
179} 180}
180EXPORT_SYMBOL(scsi_remove_host); 181EXPORT_SYMBOL(scsi_remove_host);
181 182
@@ -262,7 +263,6 @@ static void scsi_host_dev_release(struct device *dev)
262 if (shost->work_q) 263 if (shost->work_q)
263 destroy_workqueue(shost->work_q); 264 destroy_workqueue(shost->work_q);
264 265
265 scsi_proc_hostdir_rm(shost->hostt);
266 scsi_destroy_command_freelist(shost); 266 scsi_destroy_command_freelist(shost);
267 kfree(shost->shost_data); 267 kfree(shost->shost_data);
268 268
diff --git a/drivers/scsi/lpfc/lpfc_attr.c b/drivers/scsi/lpfc/lpfc_attr.c
index 86eaf6d408d5..acae7c48ef7d 100644
--- a/drivers/scsi/lpfc/lpfc_attr.c
+++ b/drivers/scsi/lpfc/lpfc_attr.c
@@ -973,10 +973,10 @@ lpfc_get_host_fabric_name (struct Scsi_Host *shost)
973 if ((phba->fc_flag & FC_FABRIC) || 973 if ((phba->fc_flag & FC_FABRIC) ||
974 ((phba->fc_topology == TOPOLOGY_LOOP) && 974 ((phba->fc_topology == TOPOLOGY_LOOP) &&
975 (phba->fc_flag & FC_PUBLIC_LOOP))) 975 (phba->fc_flag & FC_PUBLIC_LOOP)))
976 node_name = wwn_to_u64(phba->fc_fabparam.nodeName.wwn); 976 node_name = wwn_to_u64(phba->fc_fabparam.nodeName.u.wwn);
977 else 977 else
978 /* fabric is local port if there is no F/FL_Port */ 978 /* fabric is local port if there is no F/FL_Port */
979 node_name = wwn_to_u64(phba->fc_nodename.wwn); 979 node_name = wwn_to_u64(phba->fc_nodename.u.wwn);
980 980
981 spin_unlock_irq(shost->host_lock); 981 spin_unlock_irq(shost->host_lock);
982 982
@@ -1110,7 +1110,7 @@ lpfc_get_starget_node_name(struct scsi_target *starget)
1110 /* Search the mapped list for this target ID */ 1110 /* Search the mapped list for this target ID */
1111 list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) { 1111 list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) {
1112 if (starget->id == ndlp->nlp_sid) { 1112 if (starget->id == ndlp->nlp_sid) {
1113 node_name = wwn_to_u64(ndlp->nlp_nodename.wwn); 1113 node_name = wwn_to_u64(ndlp->nlp_nodename.u.wwn);
1114 break; 1114 break;
1115 } 1115 }
1116 } 1116 }
@@ -1131,7 +1131,7 @@ lpfc_get_starget_port_name(struct scsi_target *starget)
1131 /* Search the mapped list for this target ID */ 1131 /* Search the mapped list for this target ID */
1132 list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) { 1132 list_for_each_entry(ndlp, &phba->fc_nlpmap_list, nlp_listp) {
1133 if (starget->id == ndlp->nlp_sid) { 1133 if (starget->id == ndlp->nlp_sid) {
1134 port_name = wwn_to_u64(ndlp->nlp_portname.wwn); 1134 port_name = wwn_to_u64(ndlp->nlp_portname.u.wwn);
1135 break; 1135 break;
1136 } 1136 }
1137 } 1137 }
diff --git a/drivers/scsi/lpfc/lpfc_hbadisc.c b/drivers/scsi/lpfc/lpfc_hbadisc.c
index 4fb8eb0c84cf..56052f4510c3 100644
--- a/drivers/scsi/lpfc/lpfc_hbadisc.c
+++ b/drivers/scsi/lpfc/lpfc_hbadisc.c
@@ -1019,8 +1019,8 @@ lpfc_register_remote_port(struct lpfc_hba * phba,
1019 struct fc_rport_identifiers rport_ids; 1019 struct fc_rport_identifiers rport_ids;
1020 1020
1021 /* Remote port has reappeared. Re-register w/ FC transport */ 1021 /* Remote port has reappeared. Re-register w/ FC transport */
1022 rport_ids.node_name = wwn_to_u64(ndlp->nlp_nodename.wwn); 1022 rport_ids.node_name = wwn_to_u64(ndlp->nlp_nodename.u.wwn);
1023 rport_ids.port_name = wwn_to_u64(ndlp->nlp_portname.wwn); 1023 rport_ids.port_name = wwn_to_u64(ndlp->nlp_portname.u.wwn);
1024 rport_ids.port_id = ndlp->nlp_DID; 1024 rport_ids.port_id = ndlp->nlp_DID;
1025 rport_ids.roles = FC_RPORT_ROLE_UNKNOWN; 1025 rport_ids.roles = FC_RPORT_ROLE_UNKNOWN;
1026 if (ndlp->nlp_type & NLP_FCP_TARGET) 1026 if (ndlp->nlp_type & NLP_FCP_TARGET)
diff --git a/drivers/scsi/lpfc/lpfc_hw.h b/drivers/scsi/lpfc/lpfc_hw.h
index 047a87c26cc0..86c41981188b 100644
--- a/drivers/scsi/lpfc/lpfc_hw.h
+++ b/drivers/scsi/lpfc/lpfc_hw.h
@@ -280,9 +280,9 @@ struct lpfc_name {
280#define NAME_CCITT_GR_TYPE 0xE 280#define NAME_CCITT_GR_TYPE 0xE
281 uint8_t IEEEextLsb; /* FC Word 0, bit 16:23, IEEE extended Lsb */ 281 uint8_t IEEEextLsb; /* FC Word 0, bit 16:23, IEEE extended Lsb */
282 uint8_t IEEE[6]; /* FC IEEE address */ 282 uint8_t IEEE[6]; /* FC IEEE address */
283 }; 283 } s;
284 uint8_t wwn[8]; 284 uint8_t wwn[8];
285 }; 285 } u;
286}; 286};
287 287
288struct csp { 288struct csp {
diff --git a/drivers/scsi/lpfc/lpfc_init.c b/drivers/scsi/lpfc/lpfc_init.c
index 454058f655db..0856ff7d3b33 100644
--- a/drivers/scsi/lpfc/lpfc_init.c
+++ b/drivers/scsi/lpfc/lpfc_init.c
@@ -285,7 +285,7 @@ lpfc_config_port_post(struct lpfc_hba * phba)
285 if (phba->SerialNumber[0] == 0) { 285 if (phba->SerialNumber[0] == 0) {
286 uint8_t *outptr; 286 uint8_t *outptr;
287 287
288 outptr = (uint8_t *) & phba->fc_nodename.IEEE[0]; 288 outptr = &phba->fc_nodename.u.s.IEEE[0];
289 for (i = 0; i < 12; i++) { 289 for (i = 0; i < 12; i++) {
290 status = *outptr++; 290 status = *outptr++;
291 j = ((status & 0xf0) >> 4); 291 j = ((status & 0xf0) >> 4);
@@ -1523,8 +1523,8 @@ lpfc_pci_probe_one(struct pci_dev *pdev, const struct pci_device_id *pid)
1523 * Must done after lpfc_sli_hba_setup() 1523 * Must done after lpfc_sli_hba_setup()
1524 */ 1524 */
1525 1525
1526 fc_host_node_name(host) = wwn_to_u64(phba->fc_nodename.wwn); 1526 fc_host_node_name(host) = wwn_to_u64(phba->fc_nodename.u.wwn);
1527 fc_host_port_name(host) = wwn_to_u64(phba->fc_portname.wwn); 1527 fc_host_port_name(host) = wwn_to_u64(phba->fc_portname.u.wwn);
1528 fc_host_supported_classes(host) = FC_COS_CLASS3; 1528 fc_host_supported_classes(host) = FC_COS_CLASS3;
1529 1529
1530 memset(fc_host_supported_fc4s(host), 0, 1530 memset(fc_host_supported_fc4s(host), 0,
diff --git a/drivers/scsi/megaraid.c b/drivers/scsi/megaraid.c
index 6f308ebe3e79..61a6fd810bb4 100644
--- a/drivers/scsi/megaraid.c
+++ b/drivers/scsi/megaraid.c
@@ -621,8 +621,6 @@ mega_build_cmd(adapter_t *adapter, Scsi_Cmnd *cmd, int *busy)
621 if(islogical) { 621 if(islogical) {
622 switch (cmd->cmnd[0]) { 622 switch (cmd->cmnd[0]) {
623 case TEST_UNIT_READY: 623 case TEST_UNIT_READY:
624 memset(cmd->request_buffer, 0, cmd->request_bufflen);
625
626#if MEGA_HAVE_CLUSTERING 624#if MEGA_HAVE_CLUSTERING
627 /* 625 /*
628 * Do we support clustering and is the support enabled 626 * Do we support clustering and is the support enabled
@@ -652,11 +650,28 @@ mega_build_cmd(adapter_t *adapter, Scsi_Cmnd *cmd, int *busy)
652 return NULL; 650 return NULL;
653#endif 651#endif
654 652
655 case MODE_SENSE: 653 case MODE_SENSE: {
654 char *buf;
655
656 if (cmd->use_sg) {
657 struct scatterlist *sg;
658
659 sg = (struct scatterlist *)cmd->request_buffer;
660 buf = kmap_atomic(sg->page, KM_IRQ0) +
661 sg->offset;
662 } else
663 buf = cmd->request_buffer;
656 memset(cmd->request_buffer, 0, cmd->cmnd[4]); 664 memset(cmd->request_buffer, 0, cmd->cmnd[4]);
665 if (cmd->use_sg) {
666 struct scatterlist *sg;
667
668 sg = (struct scatterlist *)cmd->request_buffer;
669 kunmap_atomic(buf - sg->offset, KM_IRQ0);
670 }
657 cmd->result = (DID_OK << 16); 671 cmd->result = (DID_OK << 16);
658 cmd->scsi_done(cmd); 672 cmd->scsi_done(cmd);
659 return NULL; 673 return NULL;
674 }
660 675
661 case READ_CAPACITY: 676 case READ_CAPACITY:
662 case INQUIRY: 677 case INQUIRY:
@@ -1685,14 +1700,23 @@ mega_rundoneq (adapter_t *adapter)
1685static void 1700static void
1686mega_free_scb(adapter_t *adapter, scb_t *scb) 1701mega_free_scb(adapter_t *adapter, scb_t *scb)
1687{ 1702{
1703 unsigned long length;
1704
1688 switch( scb->dma_type ) { 1705 switch( scb->dma_type ) {
1689 1706
1690 case MEGA_DMA_TYPE_NONE: 1707 case MEGA_DMA_TYPE_NONE:
1691 break; 1708 break;
1692 1709
1693 case MEGA_BULK_DATA: 1710 case MEGA_BULK_DATA:
1711 if (scb->cmd->use_sg == 0)
1712 length = scb->cmd->request_bufflen;
1713 else {
1714 struct scatterlist *sgl =
1715 (struct scatterlist *)scb->cmd->request_buffer;
1716 length = sgl->length;
1717 }
1694 pci_unmap_page(adapter->dev, scb->dma_h_bulkdata, 1718 pci_unmap_page(adapter->dev, scb->dma_h_bulkdata,
1695 scb->cmd->request_bufflen, scb->dma_direction); 1719 length, scb->dma_direction);
1696 break; 1720 break;
1697 1721
1698 case MEGA_SGLIST: 1722 case MEGA_SGLIST:
@@ -1741,6 +1765,7 @@ mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
1741 struct scatterlist *sgl; 1765 struct scatterlist *sgl;
1742 struct page *page; 1766 struct page *page;
1743 unsigned long offset; 1767 unsigned long offset;
1768 unsigned int length;
1744 Scsi_Cmnd *cmd; 1769 Scsi_Cmnd *cmd;
1745 int sgcnt; 1770 int sgcnt;
1746 int idx; 1771 int idx;
@@ -1748,14 +1773,23 @@ mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
1748 cmd = scb->cmd; 1773 cmd = scb->cmd;
1749 1774
1750 /* Scatter-gather not used */ 1775 /* Scatter-gather not used */
1751 if( !cmd->use_sg ) { 1776 if( cmd->use_sg == 0 || (cmd->use_sg == 1 &&
1752 1777 !adapter->has_64bit_addr)) {
1753 page = virt_to_page(cmd->request_buffer); 1778
1754 offset = offset_in_page(cmd->request_buffer); 1779 if (cmd->use_sg == 0) {
1780 page = virt_to_page(cmd->request_buffer);
1781 offset = offset_in_page(cmd->request_buffer);
1782 length = cmd->request_bufflen;
1783 } else {
1784 sgl = (struct scatterlist *)cmd->request_buffer;
1785 page = sgl->page;
1786 offset = sgl->offset;
1787 length = sgl->length;
1788 }
1755 1789
1756 scb->dma_h_bulkdata = pci_map_page(adapter->dev, 1790 scb->dma_h_bulkdata = pci_map_page(adapter->dev,
1757 page, offset, 1791 page, offset,
1758 cmd->request_bufflen, 1792 length,
1759 scb->dma_direction); 1793 scb->dma_direction);
1760 scb->dma_type = MEGA_BULK_DATA; 1794 scb->dma_type = MEGA_BULK_DATA;
1761 1795
@@ -1765,14 +1799,14 @@ mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
1765 */ 1799 */
1766 if( adapter->has_64bit_addr ) { 1800 if( adapter->has_64bit_addr ) {
1767 scb->sgl64[0].address = scb->dma_h_bulkdata; 1801 scb->sgl64[0].address = scb->dma_h_bulkdata;
1768 scb->sgl64[0].length = cmd->request_bufflen; 1802 scb->sgl64[0].length = length;
1769 *buf = (u32)scb->sgl_dma_addr; 1803 *buf = (u32)scb->sgl_dma_addr;
1770 *len = (u32)cmd->request_bufflen; 1804 *len = (u32)length;
1771 return 1; 1805 return 1;
1772 } 1806 }
1773 else { 1807 else {
1774 *buf = (u32)scb->dma_h_bulkdata; 1808 *buf = (u32)scb->dma_h_bulkdata;
1775 *len = (u32)cmd->request_bufflen; 1809 *len = (u32)length;
1776 } 1810 }
1777 return 0; 1811 return 0;
1778 } 1812 }
@@ -1791,27 +1825,23 @@ mega_build_sglist(adapter_t *adapter, scb_t *scb, u32 *buf, u32 *len)
1791 1825
1792 if( sgcnt > adapter->sglen ) BUG(); 1826 if( sgcnt > adapter->sglen ) BUG();
1793 1827
1828 *len = 0;
1829
1794 for( idx = 0; idx < sgcnt; idx++, sgl++ ) { 1830 for( idx = 0; idx < sgcnt; idx++, sgl++ ) {
1795 1831
1796 if( adapter->has_64bit_addr ) { 1832 if( adapter->has_64bit_addr ) {
1797 scb->sgl64[idx].address = sg_dma_address(sgl); 1833 scb->sgl64[idx].address = sg_dma_address(sgl);
1798 scb->sgl64[idx].length = sg_dma_len(sgl); 1834 *len += scb->sgl64[idx].length = sg_dma_len(sgl);
1799 } 1835 }
1800 else { 1836 else {
1801 scb->sgl[idx].address = sg_dma_address(sgl); 1837 scb->sgl[idx].address = sg_dma_address(sgl);
1802 scb->sgl[idx].length = sg_dma_len(sgl); 1838 *len += scb->sgl[idx].length = sg_dma_len(sgl);
1803 } 1839 }
1804 } 1840 }
1805 1841
1806 /* Reset pointer and length fields */ 1842 /* Reset pointer and length fields */
1807 *buf = scb->sgl_dma_addr; 1843 *buf = scb->sgl_dma_addr;
1808 1844
1809 /*
1810 * For passthru command, dataxferlen must be set, even for commands
1811 * with a sg list
1812 */
1813 *len = (u32)cmd->request_bufflen;
1814
1815 /* Return count of SG requests */ 1845 /* Return count of SG requests */
1816 return sgcnt; 1846 return sgcnt;
1817} 1847}
diff --git a/drivers/scsi/megaraid/Kconfig.megaraid b/drivers/scsi/megaraid/Kconfig.megaraid
index 917d591d90b2..7363e12663ac 100644
--- a/drivers/scsi/megaraid/Kconfig.megaraid
+++ b/drivers/scsi/megaraid/Kconfig.megaraid
@@ -76,3 +76,12 @@ config MEGARAID_LEGACY
76 To compile this driver as a module, choose M here: the 76 To compile this driver as a module, choose M here: the
77 module will be called megaraid 77 module will be called megaraid
78endif 78endif
79
80config MEGARAID_SAS
81 tristate "LSI Logic MegaRAID SAS RAID Module"
82 depends on PCI && SCSI
83 help
84 Module for LSI Logic's SAS based RAID controllers.
85 To compile this driver as a module, choose 'm' here.
86 Module will be called megaraid_sas
87
diff --git a/drivers/scsi/megaraid/Makefile b/drivers/scsi/megaraid/Makefile
index 6dd99f275722..f469915b97c3 100644
--- a/drivers/scsi/megaraid/Makefile
+++ b/drivers/scsi/megaraid/Makefile
@@ -1,2 +1,3 @@
1obj-$(CONFIG_MEGARAID_MM) += megaraid_mm.o 1obj-$(CONFIG_MEGARAID_MM) += megaraid_mm.o
2obj-$(CONFIG_MEGARAID_MAILBOX) += megaraid_mbox.o 2obj-$(CONFIG_MEGARAID_MAILBOX) += megaraid_mbox.o
3obj-$(CONFIG_MEGARAID_SAS) += megaraid_sas.o
diff --git a/drivers/scsi/megaraid/megaraid_sas.c b/drivers/scsi/megaraid/megaraid_sas.c
new file mode 100644
index 000000000000..1b3148e842af
--- /dev/null
+++ b/drivers/scsi/megaraid/megaraid_sas.c
@@ -0,0 +1,2805 @@
1/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.c
13 * Version : v00.00.02.00-rc4
14 *
15 * Authors:
16 * Sreenivas Bagalkote <Sreenivas.Bagalkote@lsil.com>
17 * Sumant Patro <Sumant.Patro@lsil.com>
18 *
19 * List of supported controllers
20 *
21 * OEM Product Name VID DID SSVID SSID
22 * --- ------------ --- --- ---- ----
23 */
24
25#include <linux/kernel.h>
26#include <linux/types.h>
27#include <linux/pci.h>
28#include <linux/list.h>
29#include <linux/version.h>
30#include <linux/moduleparam.h>
31#include <linux/module.h>
32#include <linux/spinlock.h>
33#include <linux/interrupt.h>
34#include <linux/delay.h>
35#include <linux/uio.h>
36#include <asm/uaccess.h>
37#include <linux/compat.h>
38
39#include <scsi/scsi.h>
40#include <scsi/scsi_cmnd.h>
41#include <scsi/scsi_device.h>
42#include <scsi/scsi_host.h>
43#include "megaraid_sas.h"
44
45MODULE_LICENSE("GPL");
46MODULE_VERSION(MEGASAS_VERSION);
47MODULE_AUTHOR("sreenivas.bagalkote@lsil.com");
48MODULE_DESCRIPTION("LSI Logic MegaRAID SAS Driver");
49
50/*
51 * PCI ID table for all supported controllers
52 */
53static struct pci_device_id megasas_pci_table[] = {
54
55 {
56 PCI_VENDOR_ID_LSI_LOGIC,
57 PCI_DEVICE_ID_LSI_SAS1064R,
58 PCI_ANY_ID,
59 PCI_ANY_ID,
60 },
61 {
62 PCI_VENDOR_ID_DELL,
63 PCI_DEVICE_ID_DELL_PERC5,
64 PCI_ANY_ID,
65 PCI_ANY_ID,
66 },
67 {0} /* Terminating entry */
68};
69
70MODULE_DEVICE_TABLE(pci, megasas_pci_table);
71
72static int megasas_mgmt_majorno;
73static struct megasas_mgmt_info megasas_mgmt_info;
74static struct fasync_struct *megasas_async_queue;
75static DECLARE_MUTEX(megasas_async_queue_mutex);
76
77/**
78 * megasas_get_cmd - Get a command from the free pool
79 * @instance: Adapter soft state
80 *
81 * Returns a free command from the pool
82 */
83static inline struct megasas_cmd *megasas_get_cmd(struct megasas_instance
84 *instance)
85{
86 unsigned long flags;
87 struct megasas_cmd *cmd = NULL;
88
89 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
90
91 if (!list_empty(&instance->cmd_pool)) {
92 cmd = list_entry((&instance->cmd_pool)->next,
93 struct megasas_cmd, list);
94 list_del_init(&cmd->list);
95 } else {
96 printk(KERN_ERR "megasas: Command pool empty!\n");
97 }
98
99 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
100 return cmd;
101}
102
103/**
104 * megasas_return_cmd - Return a cmd to free command pool
105 * @instance: Adapter soft state
106 * @cmd: Command packet to be returned to free command pool
107 */
108static inline void
109megasas_return_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd)
110{
111 unsigned long flags;
112
113 spin_lock_irqsave(&instance->cmd_pool_lock, flags);
114
115 cmd->scmd = NULL;
116 list_add_tail(&cmd->list, &instance->cmd_pool);
117
118 spin_unlock_irqrestore(&instance->cmd_pool_lock, flags);
119}
120
121/**
122 * megasas_enable_intr - Enables interrupts
123 * @regs: MFI register set
124 */
125static inline void
126megasas_enable_intr(struct megasas_register_set __iomem * regs)
127{
128 writel(1, &(regs)->outbound_intr_mask);
129
130 /* Dummy readl to force pci flush */
131 readl(&regs->outbound_intr_mask);
132}
133
134/**
135 * megasas_disable_intr - Disables interrupts
136 * @regs: MFI register set
137 */
138static inline void
139megasas_disable_intr(struct megasas_register_set __iomem * regs)
140{
141 u32 mask = readl(&regs->outbound_intr_mask) & (~0x00000001);
142 writel(mask, &regs->outbound_intr_mask);
143
144 /* Dummy readl to force pci flush */
145 readl(&regs->outbound_intr_mask);
146}
147
148/**
149 * megasas_issue_polled - Issues a polling command
150 * @instance: Adapter soft state
151 * @cmd: Command packet to be issued
152 *
153 * For polling, MFI requires the cmd_status to be set to 0xFF before posting.
154 */
155static int
156megasas_issue_polled(struct megasas_instance *instance, struct megasas_cmd *cmd)
157{
158 int i;
159 u32 msecs = MFI_POLL_TIMEOUT_SECS * 1000;
160
161 struct megasas_header *frame_hdr = &cmd->frame->hdr;
162
163 frame_hdr->cmd_status = 0xFF;
164 frame_hdr->flags |= MFI_FRAME_DONT_POST_IN_REPLY_QUEUE;
165
166 /*
167 * Issue the frame using inbound queue port
168 */
169 writel(cmd->frame_phys_addr >> 3,
170 &instance->reg_set->inbound_queue_port);
171
172 /*
173 * Wait for cmd_status to change
174 */
175 for (i = 0; (i < msecs) && (frame_hdr->cmd_status == 0xff); i++) {
176 rmb();
177 msleep(1);
178 }
179
180 if (frame_hdr->cmd_status == 0xff)
181 return -ETIME;
182
183 return 0;
184}
185
186/**
187 * megasas_issue_blocked_cmd - Synchronous wrapper around regular FW cmds
188 * @instance: Adapter soft state
189 * @cmd: Command to be issued
190 *
191 * This function waits on an event for the command to be returned from ISR.
192 * Used to issue ioctl commands.
193 */
194static int
195megasas_issue_blocked_cmd(struct megasas_instance *instance,
196 struct megasas_cmd *cmd)
197{
198 cmd->cmd_status = ENODATA;
199
200 writel(cmd->frame_phys_addr >> 3,
201 &instance->reg_set->inbound_queue_port);
202
203 wait_event(instance->int_cmd_wait_q, (cmd->cmd_status != ENODATA));
204
205 return 0;
206}
207
208/**
209 * megasas_issue_blocked_abort_cmd - Aborts previously issued cmd
210 * @instance: Adapter soft state
211 * @cmd_to_abort: Previously issued cmd to be aborted
212 *
213 * MFI firmware can abort previously issued AEN comamnd (automatic event
214 * notification). The megasas_issue_blocked_abort_cmd() issues such abort
215 * cmd and blocks till it is completed.
216 */
217static int
218megasas_issue_blocked_abort_cmd(struct megasas_instance *instance,
219 struct megasas_cmd *cmd_to_abort)
220{
221 struct megasas_cmd *cmd;
222 struct megasas_abort_frame *abort_fr;
223
224 cmd = megasas_get_cmd(instance);
225
226 if (!cmd)
227 return -1;
228
229 abort_fr = &cmd->frame->abort;
230
231 /*
232 * Prepare and issue the abort frame
233 */
234 abort_fr->cmd = MFI_CMD_ABORT;
235 abort_fr->cmd_status = 0xFF;
236 abort_fr->flags = 0;
237 abort_fr->abort_context = cmd_to_abort->index;
238 abort_fr->abort_mfi_phys_addr_lo = cmd_to_abort->frame_phys_addr;
239 abort_fr->abort_mfi_phys_addr_hi = 0;
240
241 cmd->sync_cmd = 1;
242 cmd->cmd_status = 0xFF;
243
244 writel(cmd->frame_phys_addr >> 3,
245 &instance->reg_set->inbound_queue_port);
246
247 /*
248 * Wait for this cmd to complete
249 */
250 wait_event(instance->abort_cmd_wait_q, (cmd->cmd_status != 0xFF));
251
252 megasas_return_cmd(instance, cmd);
253 return 0;
254}
255
256/**
257 * megasas_make_sgl32 - Prepares 32-bit SGL
258 * @instance: Adapter soft state
259 * @scp: SCSI command from the mid-layer
260 * @mfi_sgl: SGL to be filled in
261 *
262 * If successful, this function returns the number of SG elements. Otherwise,
263 * it returnes -1.
264 */
265static inline int
266megasas_make_sgl32(struct megasas_instance *instance, struct scsi_cmnd *scp,
267 union megasas_sgl *mfi_sgl)
268{
269 int i;
270 int sge_count;
271 struct scatterlist *os_sgl;
272
273 /*
274 * Return 0 if there is no data transfer
275 */
276 if (!scp->request_buffer || !scp->request_bufflen)
277 return 0;
278
279 if (!scp->use_sg) {
280 mfi_sgl->sge32[0].phys_addr = pci_map_single(instance->pdev,
281 scp->
282 request_buffer,
283 scp->
284 request_bufflen,
285 scp->
286 sc_data_direction);
287 mfi_sgl->sge32[0].length = scp->request_bufflen;
288
289 return 1;
290 }
291
292 os_sgl = (struct scatterlist *)scp->request_buffer;
293 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
294 scp->sc_data_direction);
295
296 for (i = 0; i < sge_count; i++, os_sgl++) {
297 mfi_sgl->sge32[i].length = sg_dma_len(os_sgl);
298 mfi_sgl->sge32[i].phys_addr = sg_dma_address(os_sgl);
299 }
300
301 return sge_count;
302}
303
304/**
305 * megasas_make_sgl64 - Prepares 64-bit SGL
306 * @instance: Adapter soft state
307 * @scp: SCSI command from the mid-layer
308 * @mfi_sgl: SGL to be filled in
309 *
310 * If successful, this function returns the number of SG elements. Otherwise,
311 * it returnes -1.
312 */
313static inline int
314megasas_make_sgl64(struct megasas_instance *instance, struct scsi_cmnd *scp,
315 union megasas_sgl *mfi_sgl)
316{
317 int i;
318 int sge_count;
319 struct scatterlist *os_sgl;
320
321 /*
322 * Return 0 if there is no data transfer
323 */
324 if (!scp->request_buffer || !scp->request_bufflen)
325 return 0;
326
327 if (!scp->use_sg) {
328 mfi_sgl->sge64[0].phys_addr = pci_map_single(instance->pdev,
329 scp->
330 request_buffer,
331 scp->
332 request_bufflen,
333 scp->
334 sc_data_direction);
335
336 mfi_sgl->sge64[0].length = scp->request_bufflen;
337
338 return 1;
339 }
340
341 os_sgl = (struct scatterlist *)scp->request_buffer;
342 sge_count = pci_map_sg(instance->pdev, os_sgl, scp->use_sg,
343 scp->sc_data_direction);
344
345 for (i = 0; i < sge_count; i++, os_sgl++) {
346 mfi_sgl->sge64[i].length = sg_dma_len(os_sgl);
347 mfi_sgl->sge64[i].phys_addr = sg_dma_address(os_sgl);
348 }
349
350 return sge_count;
351}
352
353/**
354 * megasas_build_dcdb - Prepares a direct cdb (DCDB) command
355 * @instance: Adapter soft state
356 * @scp: SCSI command
357 * @cmd: Command to be prepared in
358 *
359 * This function prepares CDB commands. These are typcially pass-through
360 * commands to the devices.
361 */
362static inline int
363megasas_build_dcdb(struct megasas_instance *instance, struct scsi_cmnd *scp,
364 struct megasas_cmd *cmd)
365{
366 u32 sge_sz;
367 int sge_bytes;
368 u32 is_logical;
369 u32 device_id;
370 u16 flags = 0;
371 struct megasas_pthru_frame *pthru;
372
373 is_logical = MEGASAS_IS_LOGICAL(scp);
374 device_id = MEGASAS_DEV_INDEX(instance, scp);
375 pthru = (struct megasas_pthru_frame *)cmd->frame;
376
377 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
378 flags = MFI_FRAME_DIR_WRITE;
379 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
380 flags = MFI_FRAME_DIR_READ;
381 else if (scp->sc_data_direction == PCI_DMA_NONE)
382 flags = MFI_FRAME_DIR_NONE;
383
384 /*
385 * Prepare the DCDB frame
386 */
387 pthru->cmd = (is_logical) ? MFI_CMD_LD_SCSI_IO : MFI_CMD_PD_SCSI_IO;
388 pthru->cmd_status = 0x0;
389 pthru->scsi_status = 0x0;
390 pthru->target_id = device_id;
391 pthru->lun = scp->device->lun;
392 pthru->cdb_len = scp->cmd_len;
393 pthru->timeout = 0;
394 pthru->flags = flags;
395 pthru->data_xfer_len = scp->request_bufflen;
396
397 memcpy(pthru->cdb, scp->cmnd, scp->cmd_len);
398
399 /*
400 * Construct SGL
401 */
402 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
403 sizeof(struct megasas_sge32);
404
405 if (IS_DMA64) {
406 pthru->flags |= MFI_FRAME_SGL64;
407 pthru->sge_count = megasas_make_sgl64(instance, scp,
408 &pthru->sgl);
409 } else
410 pthru->sge_count = megasas_make_sgl32(instance, scp,
411 &pthru->sgl);
412
413 /*
414 * Sense info specific
415 */
416 pthru->sense_len = SCSI_SENSE_BUFFERSIZE;
417 pthru->sense_buf_phys_addr_hi = 0;
418 pthru->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
419
420 sge_bytes = sge_sz * pthru->sge_count;
421
422 /*
423 * Compute the total number of frames this command consumes. FW uses
424 * this number to pull sufficient number of frames from host memory.
425 */
426 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
427 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
428
429 if (cmd->frame_count > 7)
430 cmd->frame_count = 8;
431
432 return cmd->frame_count;
433}
434
435/**
436 * megasas_build_ldio - Prepares IOs to logical devices
437 * @instance: Adapter soft state
438 * @scp: SCSI command
439 * @cmd: Command to to be prepared
440 *
441 * Frames (and accompanying SGLs) for regular SCSI IOs use this function.
442 */
443static inline int
444megasas_build_ldio(struct megasas_instance *instance, struct scsi_cmnd *scp,
445 struct megasas_cmd *cmd)
446{
447 u32 sge_sz;
448 int sge_bytes;
449 u32 device_id;
450 u8 sc = scp->cmnd[0];
451 u16 flags = 0;
452 struct megasas_io_frame *ldio;
453
454 device_id = MEGASAS_DEV_INDEX(instance, scp);
455 ldio = (struct megasas_io_frame *)cmd->frame;
456
457 if (scp->sc_data_direction == PCI_DMA_TODEVICE)
458 flags = MFI_FRAME_DIR_WRITE;
459 else if (scp->sc_data_direction == PCI_DMA_FROMDEVICE)
460 flags = MFI_FRAME_DIR_READ;
461
462 /*
463 * Preare the Logical IO frame: 2nd bit is zero for all read cmds
464 */
465 ldio->cmd = (sc & 0x02) ? MFI_CMD_LD_WRITE : MFI_CMD_LD_READ;
466 ldio->cmd_status = 0x0;
467 ldio->scsi_status = 0x0;
468 ldio->target_id = device_id;
469 ldio->timeout = 0;
470 ldio->reserved_0 = 0;
471 ldio->pad_0 = 0;
472 ldio->flags = flags;
473 ldio->start_lba_hi = 0;
474 ldio->access_byte = (scp->cmd_len != 6) ? scp->cmnd[1] : 0;
475
476 /*
477 * 6-byte READ(0x08) or WRITE(0x0A) cdb
478 */
479 if (scp->cmd_len == 6) {
480 ldio->lba_count = (u32) scp->cmnd[4];
481 ldio->start_lba_lo = ((u32) scp->cmnd[1] << 16) |
482 ((u32) scp->cmnd[2] << 8) | (u32) scp->cmnd[3];
483
484 ldio->start_lba_lo &= 0x1FFFFF;
485 }
486
487 /*
488 * 10-byte READ(0x28) or WRITE(0x2A) cdb
489 */
490 else if (scp->cmd_len == 10) {
491 ldio->lba_count = (u32) scp->cmnd[8] |
492 ((u32) scp->cmnd[7] << 8);
493 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
494 ((u32) scp->cmnd[3] << 16) |
495 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
496 }
497
498 /*
499 * 12-byte READ(0xA8) or WRITE(0xAA) cdb
500 */
501 else if (scp->cmd_len == 12) {
502 ldio->lba_count = ((u32) scp->cmnd[6] << 24) |
503 ((u32) scp->cmnd[7] << 16) |
504 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
505
506 ldio->start_lba_lo = ((u32) scp->cmnd[2] << 24) |
507 ((u32) scp->cmnd[3] << 16) |
508 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
509 }
510
511 /*
512 * 16-byte READ(0x88) or WRITE(0x8A) cdb
513 */
514 else if (scp->cmd_len == 16) {
515 ldio->lba_count = ((u32) scp->cmnd[10] << 24) |
516 ((u32) scp->cmnd[11] << 16) |
517 ((u32) scp->cmnd[12] << 8) | (u32) scp->cmnd[13];
518
519 ldio->start_lba_lo = ((u32) scp->cmnd[6] << 24) |
520 ((u32) scp->cmnd[7] << 16) |
521 ((u32) scp->cmnd[8] << 8) | (u32) scp->cmnd[9];
522
523 ldio->start_lba_hi = ((u32) scp->cmnd[2] << 24) |
524 ((u32) scp->cmnd[3] << 16) |
525 ((u32) scp->cmnd[4] << 8) | (u32) scp->cmnd[5];
526
527 }
528
529 /*
530 * Construct SGL
531 */
532 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
533 sizeof(struct megasas_sge32);
534
535 if (IS_DMA64) {
536 ldio->flags |= MFI_FRAME_SGL64;
537 ldio->sge_count = megasas_make_sgl64(instance, scp, &ldio->sgl);
538 } else
539 ldio->sge_count = megasas_make_sgl32(instance, scp, &ldio->sgl);
540
541 /*
542 * Sense info specific
543 */
544 ldio->sense_len = SCSI_SENSE_BUFFERSIZE;
545 ldio->sense_buf_phys_addr_hi = 0;
546 ldio->sense_buf_phys_addr_lo = cmd->sense_phys_addr;
547
548 sge_bytes = sge_sz * ldio->sge_count;
549
550 cmd->frame_count = (sge_bytes / MEGAMFI_FRAME_SIZE) +
551 ((sge_bytes % MEGAMFI_FRAME_SIZE) ? 1 : 0) + 1;
552
553 if (cmd->frame_count > 7)
554 cmd->frame_count = 8;
555
556 return cmd->frame_count;
557}
558
559/**
560 * megasas_build_cmd - Prepares a command packet
561 * @instance: Adapter soft state
562 * @scp: SCSI command
563 * @frame_count: [OUT] Number of frames used to prepare this command
564 */
565static inline struct megasas_cmd *megasas_build_cmd(struct megasas_instance
566 *instance,
567 struct scsi_cmnd *scp,
568 int *frame_count)
569{
570 u32 logical_cmd;
571 struct megasas_cmd *cmd;
572
573 /*
574 * Find out if this is logical or physical drive command.
575 */
576 logical_cmd = MEGASAS_IS_LOGICAL(scp);
577
578 /*
579 * Logical drive command
580 */
581 if (logical_cmd) {
582
583 if (scp->device->id >= MEGASAS_MAX_LD) {
584 scp->result = DID_BAD_TARGET << 16;
585 return NULL;
586 }
587
588 switch (scp->cmnd[0]) {
589
590 case READ_10:
591 case WRITE_10:
592 case READ_12:
593 case WRITE_12:
594 case READ_6:
595 case WRITE_6:
596 case READ_16:
597 case WRITE_16:
598 /*
599 * Fail for LUN > 0
600 */
601 if (scp->device->lun) {
602 scp->result = DID_BAD_TARGET << 16;
603 return NULL;
604 }
605
606 cmd = megasas_get_cmd(instance);
607
608 if (!cmd) {
609 scp->result = DID_IMM_RETRY << 16;
610 return NULL;
611 }
612
613 *frame_count = megasas_build_ldio(instance, scp, cmd);
614
615 if (!(*frame_count)) {
616 megasas_return_cmd(instance, cmd);
617 return NULL;
618 }
619
620 return cmd;
621
622 default:
623 /*
624 * Fail for LUN > 0
625 */
626 if (scp->device->lun) {
627 scp->result = DID_BAD_TARGET << 16;
628 return NULL;
629 }
630
631 cmd = megasas_get_cmd(instance);
632
633 if (!cmd) {
634 scp->result = DID_IMM_RETRY << 16;
635 return NULL;
636 }
637
638 *frame_count = megasas_build_dcdb(instance, scp, cmd);
639
640 if (!(*frame_count)) {
641 megasas_return_cmd(instance, cmd);
642 return NULL;
643 }
644
645 return cmd;
646 }
647 } else {
648 cmd = megasas_get_cmd(instance);
649
650 if (!cmd) {
651 scp->result = DID_IMM_RETRY << 16;
652 return NULL;
653 }
654
655 *frame_count = megasas_build_dcdb(instance, scp, cmd);
656
657 if (!(*frame_count)) {
658 megasas_return_cmd(instance, cmd);
659 return NULL;
660 }
661
662 return cmd;
663 }
664
665 return NULL;
666}
667
668/**
669 * megasas_queue_command - Queue entry point
670 * @scmd: SCSI command to be queued
671 * @done: Callback entry point
672 */
673static int
674megasas_queue_command(struct scsi_cmnd *scmd, void (*done) (struct scsi_cmnd *))
675{
676 u32 frame_count;
677 unsigned long flags;
678 struct megasas_cmd *cmd;
679 struct megasas_instance *instance;
680
681 instance = (struct megasas_instance *)
682 scmd->device->host->hostdata;
683 scmd->scsi_done = done;
684 scmd->result = 0;
685
686 cmd = megasas_build_cmd(instance, scmd, &frame_count);
687
688 if (!cmd) {
689 done(scmd);
690 return 0;
691 }
692
693 cmd->scmd = scmd;
694 scmd->SCp.ptr = (char *)cmd;
695 scmd->SCp.sent_command = jiffies;
696
697 /*
698 * Issue the command to the FW
699 */
700 spin_lock_irqsave(&instance->instance_lock, flags);
701 instance->fw_outstanding++;
702 spin_unlock_irqrestore(&instance->instance_lock, flags);
703
704 writel(((cmd->frame_phys_addr >> 3) | (cmd->frame_count - 1)),
705 &instance->reg_set->inbound_queue_port);
706
707 return 0;
708}
709
710/**
711 * megasas_wait_for_outstanding - Wait for all outstanding cmds
712 * @instance: Adapter soft state
713 *
714 * This function waits for upto MEGASAS_RESET_WAIT_TIME seconds for FW to
715 * complete all its outstanding commands. Returns error if one or more IOs
716 * are pending after this time period. It also marks the controller dead.
717 */
718static int megasas_wait_for_outstanding(struct megasas_instance *instance)
719{
720 int i;
721 u32 wait_time = MEGASAS_RESET_WAIT_TIME;
722
723 for (i = 0; i < wait_time; i++) {
724
725 if (!instance->fw_outstanding)
726 break;
727
728 if (!(i % MEGASAS_RESET_NOTICE_INTERVAL)) {
729 printk(KERN_NOTICE "megasas: [%2d]waiting for %d "
730 "commands to complete\n", i,
731 instance->fw_outstanding);
732 }
733
734 msleep(1000);
735 }
736
737 if (instance->fw_outstanding) {
738 instance->hw_crit_error = 1;
739 return FAILED;
740 }
741
742 return SUCCESS;
743}
744
745/**
746 * megasas_generic_reset - Generic reset routine
747 * @scmd: Mid-layer SCSI command
748 *
749 * This routine implements a generic reset handler for device, bus and host
750 * reset requests. Device, bus and host specific reset handlers can use this
751 * function after they do their specific tasks.
752 */
753static int megasas_generic_reset(struct scsi_cmnd *scmd)
754{
755 int ret_val;
756 struct megasas_instance *instance;
757
758 instance = (struct megasas_instance *)scmd->device->host->hostdata;
759
760 printk(KERN_NOTICE "megasas: RESET -%ld cmd=%x <c=%d t=%d l=%d>\n",
761 scmd->serial_number, scmd->cmnd[0], scmd->device->channel,
762 scmd->device->id, scmd->device->lun);
763
764 if (instance->hw_crit_error) {
765 printk(KERN_ERR "megasas: cannot recover from previous reset "
766 "failures\n");
767 return FAILED;
768 }
769
770 spin_unlock(scmd->device->host->host_lock);
771
772 ret_val = megasas_wait_for_outstanding(instance);
773
774 if (ret_val == SUCCESS)
775 printk(KERN_NOTICE "megasas: reset successful \n");
776 else
777 printk(KERN_ERR "megasas: failed to do reset\n");
778
779 spin_lock(scmd->device->host->host_lock);
780
781 return ret_val;
782}
783
784static enum scsi_eh_timer_return megasas_reset_timer(struct scsi_cmnd *scmd)
785{
786 unsigned long seconds;
787
788 if (scmd->SCp.ptr) {
789 seconds = (jiffies - scmd->SCp.sent_command) / HZ;
790
791 if (seconds < 90) {
792 return EH_RESET_TIMER;
793 } else {
794 return EH_NOT_HANDLED;
795 }
796 }
797
798 return EH_HANDLED;
799}
800
801/**
802 * megasas_reset_device - Device reset handler entry point
803 */
804static int megasas_reset_device(struct scsi_cmnd *scmd)
805{
806 int ret;
807
808 /*
809 * First wait for all commands to complete
810 */
811 ret = megasas_generic_reset(scmd);
812
813 return ret;
814}
815
816/**
817 * megasas_reset_bus_host - Bus & host reset handler entry point
818 */
819static int megasas_reset_bus_host(struct scsi_cmnd *scmd)
820{
821 int ret;
822
823 /*
824 * Frist wait for all commands to complete
825 */
826 ret = megasas_generic_reset(scmd);
827
828 return ret;
829}
830
831/**
832 * megasas_service_aen - Processes an event notification
833 * @instance: Adapter soft state
834 * @cmd: AEN command completed by the ISR
835 *
836 * For AEN, driver sends a command down to FW that is held by the FW till an
837 * event occurs. When an event of interest occurs, FW completes the command
838 * that it was previously holding.
839 *
840 * This routines sends SIGIO signal to processes that have registered with the
841 * driver for AEN.
842 */
843static void
844megasas_service_aen(struct megasas_instance *instance, struct megasas_cmd *cmd)
845{
846 /*
847 * Don't signal app if it is just an aborted previously registered aen
848 */
849 if (!cmd->abort_aen)
850 kill_fasync(&megasas_async_queue, SIGIO, POLL_IN);
851 else
852 cmd->abort_aen = 0;
853
854 instance->aen_cmd = NULL;
855 megasas_return_cmd(instance, cmd);
856}
857
858/*
859 * Scsi host template for megaraid_sas driver
860 */
861static struct scsi_host_template megasas_template = {
862
863 .module = THIS_MODULE,
864 .name = "LSI Logic SAS based MegaRAID driver",
865 .proc_name = "megaraid_sas",
866 .queuecommand = megasas_queue_command,
867 .eh_device_reset_handler = megasas_reset_device,
868 .eh_bus_reset_handler = megasas_reset_bus_host,
869 .eh_host_reset_handler = megasas_reset_bus_host,
870 .eh_timed_out = megasas_reset_timer,
871 .use_clustering = ENABLE_CLUSTERING,
872};
873
874/**
875 * megasas_complete_int_cmd - Completes an internal command
876 * @instance: Adapter soft state
877 * @cmd: Command to be completed
878 *
879 * The megasas_issue_blocked_cmd() function waits for a command to complete
880 * after it issues a command. This function wakes up that waiting routine by
881 * calling wake_up() on the wait queue.
882 */
883static void
884megasas_complete_int_cmd(struct megasas_instance *instance,
885 struct megasas_cmd *cmd)
886{
887 cmd->cmd_status = cmd->frame->io.cmd_status;
888
889 if (cmd->cmd_status == ENODATA) {
890 cmd->cmd_status = 0;
891 }
892 wake_up(&instance->int_cmd_wait_q);
893}
894
895/**
896 * megasas_complete_abort - Completes aborting a command
897 * @instance: Adapter soft state
898 * @cmd: Cmd that was issued to abort another cmd
899 *
900 * The megasas_issue_blocked_abort_cmd() function waits on abort_cmd_wait_q
901 * after it issues an abort on a previously issued command. This function
902 * wakes up all functions waiting on the same wait queue.
903 */
904static void
905megasas_complete_abort(struct megasas_instance *instance,
906 struct megasas_cmd *cmd)
907{
908 if (cmd->sync_cmd) {
909 cmd->sync_cmd = 0;
910 cmd->cmd_status = 0;
911 wake_up(&instance->abort_cmd_wait_q);
912 }
913
914 return;
915}
916
917/**
918 * megasas_unmap_sgbuf - Unmap SG buffers
919 * @instance: Adapter soft state
920 * @cmd: Completed command
921 */
922static inline void
923megasas_unmap_sgbuf(struct megasas_instance *instance, struct megasas_cmd *cmd)
924{
925 dma_addr_t buf_h;
926 u8 opcode;
927
928 if (cmd->scmd->use_sg) {
929 pci_unmap_sg(instance->pdev, cmd->scmd->request_buffer,
930 cmd->scmd->use_sg, cmd->scmd->sc_data_direction);
931 return;
932 }
933
934 if (!cmd->scmd->request_bufflen)
935 return;
936
937 opcode = cmd->frame->hdr.cmd;
938
939 if ((opcode == MFI_CMD_LD_READ) || (opcode == MFI_CMD_LD_WRITE)) {
940 if (IS_DMA64)
941 buf_h = cmd->frame->io.sgl.sge64[0].phys_addr;
942 else
943 buf_h = cmd->frame->io.sgl.sge32[0].phys_addr;
944 } else {
945 if (IS_DMA64)
946 buf_h = cmd->frame->pthru.sgl.sge64[0].phys_addr;
947 else
948 buf_h = cmd->frame->pthru.sgl.sge32[0].phys_addr;
949 }
950
951 pci_unmap_single(instance->pdev, buf_h, cmd->scmd->request_bufflen,
952 cmd->scmd->sc_data_direction);
953 return;
954}
955
956/**
957 * megasas_complete_cmd - Completes a command
958 * @instance: Adapter soft state
959 * @cmd: Command to be completed
960 * @alt_status: If non-zero, use this value as status to
961 * SCSI mid-layer instead of the value returned
962 * by the FW. This should be used if caller wants
963 * an alternate status (as in the case of aborted
964 * commands)
965 */
966static inline void
967megasas_complete_cmd(struct megasas_instance *instance, struct megasas_cmd *cmd,
968 u8 alt_status)
969{
970 int exception = 0;
971 struct megasas_header *hdr = &cmd->frame->hdr;
972 unsigned long flags;
973
974 if (cmd->scmd) {
975 cmd->scmd->SCp.ptr = (char *)0;
976 }
977
978 switch (hdr->cmd) {
979
980 case MFI_CMD_PD_SCSI_IO:
981 case MFI_CMD_LD_SCSI_IO:
982
983 /*
984 * MFI_CMD_PD_SCSI_IO and MFI_CMD_LD_SCSI_IO could have been
985 * issued either through an IO path or an IOCTL path. If it
986 * was via IOCTL, we will send it to internal completion.
987 */
988 if (cmd->sync_cmd) {
989 cmd->sync_cmd = 0;
990 megasas_complete_int_cmd(instance, cmd);
991 break;
992 }
993
994 /*
995 * Don't export physical disk devices to mid-layer.
996 */
997 if (!MEGASAS_IS_LOGICAL(cmd->scmd) &&
998 (hdr->cmd_status == MFI_STAT_OK) &&
999 (cmd->scmd->cmnd[0] == INQUIRY)) {
1000
1001 if (((*(u8 *) cmd->scmd->request_buffer) & 0x1F) ==
1002 TYPE_DISK) {
1003 cmd->scmd->result = DID_BAD_TARGET << 16;
1004 exception = 1;
1005 }
1006 }
1007
1008 case MFI_CMD_LD_READ:
1009 case MFI_CMD_LD_WRITE:
1010
1011 if (alt_status) {
1012 cmd->scmd->result = alt_status << 16;
1013 exception = 1;
1014 }
1015
1016 if (exception) {
1017
1018 spin_lock_irqsave(&instance->instance_lock, flags);
1019 instance->fw_outstanding--;
1020 spin_unlock_irqrestore(&instance->instance_lock, flags);
1021
1022 megasas_unmap_sgbuf(instance, cmd);
1023 cmd->scmd->scsi_done(cmd->scmd);
1024 megasas_return_cmd(instance, cmd);
1025
1026 break;
1027 }
1028
1029 switch (hdr->cmd_status) {
1030
1031 case MFI_STAT_OK:
1032 cmd->scmd->result = DID_OK << 16;
1033 break;
1034
1035 case MFI_STAT_SCSI_IO_FAILED:
1036 case MFI_STAT_LD_INIT_IN_PROGRESS:
1037 cmd->scmd->result =
1038 (DID_ERROR << 16) | hdr->scsi_status;
1039 break;
1040
1041 case MFI_STAT_SCSI_DONE_WITH_ERROR:
1042
1043 cmd->scmd->result = (DID_OK << 16) | hdr->scsi_status;
1044
1045 if (hdr->scsi_status == SAM_STAT_CHECK_CONDITION) {
1046 memset(cmd->scmd->sense_buffer, 0,
1047 SCSI_SENSE_BUFFERSIZE);
1048 memcpy(cmd->scmd->sense_buffer, cmd->sense,
1049 hdr->sense_len);
1050
1051 cmd->scmd->result |= DRIVER_SENSE << 24;
1052 }
1053
1054 break;
1055
1056 case MFI_STAT_LD_OFFLINE:
1057 case MFI_STAT_DEVICE_NOT_FOUND:
1058 cmd->scmd->result = DID_BAD_TARGET << 16;
1059 break;
1060
1061 default:
1062 printk(KERN_DEBUG "megasas: MFI FW status %#x\n",
1063 hdr->cmd_status);
1064 cmd->scmd->result = DID_ERROR << 16;
1065 break;
1066 }
1067
1068 spin_lock_irqsave(&instance->instance_lock, flags);
1069 instance->fw_outstanding--;
1070 spin_unlock_irqrestore(&instance->instance_lock, flags);
1071
1072 megasas_unmap_sgbuf(instance, cmd);
1073 cmd->scmd->scsi_done(cmd->scmd);
1074 megasas_return_cmd(instance, cmd);
1075
1076 break;
1077
1078 case MFI_CMD_SMP:
1079 case MFI_CMD_STP:
1080 case MFI_CMD_DCMD:
1081
1082 /*
1083 * See if got an event notification
1084 */
1085 if (cmd->frame->dcmd.opcode == MR_DCMD_CTRL_EVENT_WAIT)
1086 megasas_service_aen(instance, cmd);
1087 else
1088 megasas_complete_int_cmd(instance, cmd);
1089
1090 break;
1091
1092 case MFI_CMD_ABORT:
1093 /*
1094 * Cmd issued to abort another cmd returned
1095 */
1096 megasas_complete_abort(instance, cmd);
1097 break;
1098
1099 default:
1100 printk("megasas: Unknown command completed! [0x%X]\n",
1101 hdr->cmd);
1102 break;
1103 }
1104}
1105
1106/**
1107 * megasas_deplete_reply_queue - Processes all completed commands
1108 * @instance: Adapter soft state
1109 * @alt_status: Alternate status to be returned to
1110 * SCSI mid-layer instead of the status
1111 * returned by the FW
1112 */
1113static inline int
1114megasas_deplete_reply_queue(struct megasas_instance *instance, u8 alt_status)
1115{
1116 u32 status;
1117 u32 producer;
1118 u32 consumer;
1119 u32 context;
1120 struct megasas_cmd *cmd;
1121
1122 /*
1123 * Check if it is our interrupt
1124 */
1125 status = readl(&instance->reg_set->outbound_intr_status);
1126
1127 if (!(status & MFI_OB_INTR_STATUS_MASK)) {
1128 return IRQ_NONE;
1129 }
1130
1131 /*
1132 * Clear the interrupt by writing back the same value
1133 */
1134 writel(status, &instance->reg_set->outbound_intr_status);
1135
1136 producer = *instance->producer;
1137 consumer = *instance->consumer;
1138
1139 while (consumer != producer) {
1140 context = instance->reply_queue[consumer];
1141
1142 cmd = instance->cmd_list[context];
1143
1144 megasas_complete_cmd(instance, cmd, alt_status);
1145
1146 consumer++;
1147 if (consumer == (instance->max_fw_cmds + 1)) {
1148 consumer = 0;
1149 }
1150 }
1151
1152 *instance->consumer = producer;
1153
1154 return IRQ_HANDLED;
1155}
1156
1157/**
1158 * megasas_isr - isr entry point
1159 */
1160static irqreturn_t megasas_isr(int irq, void *devp, struct pt_regs *regs)
1161{
1162 return megasas_deplete_reply_queue((struct megasas_instance *)devp,
1163 DID_OK);
1164}
1165
1166/**
1167 * megasas_transition_to_ready - Move the FW to READY state
1168 * @reg_set: MFI register set
1169 *
1170 * During the initialization, FW passes can potentially be in any one of
1171 * several possible states. If the FW in operational, waiting-for-handshake
1172 * states, driver must take steps to bring it to ready state. Otherwise, it
1173 * has to wait for the ready state.
1174 */
1175static int
1176megasas_transition_to_ready(struct megasas_register_set __iomem * reg_set)
1177{
1178 int i;
1179 u8 max_wait;
1180 u32 fw_state;
1181 u32 cur_state;
1182
1183 fw_state = readl(&reg_set->outbound_msg_0) & MFI_STATE_MASK;
1184
1185 while (fw_state != MFI_STATE_READY) {
1186
1187 printk(KERN_INFO "megasas: Waiting for FW to come to ready"
1188 " state\n");
1189 switch (fw_state) {
1190
1191 case MFI_STATE_FAULT:
1192
1193 printk(KERN_DEBUG "megasas: FW in FAULT state!!\n");
1194 return -ENODEV;
1195
1196 case MFI_STATE_WAIT_HANDSHAKE:
1197 /*
1198 * Set the CLR bit in inbound doorbell
1199 */
1200 writel(MFI_INIT_CLEAR_HANDSHAKE,
1201 &reg_set->inbound_doorbell);
1202
1203 max_wait = 2;
1204 cur_state = MFI_STATE_WAIT_HANDSHAKE;
1205 break;
1206
1207 case MFI_STATE_OPERATIONAL:
1208 /*
1209 * Bring it to READY state; assuming max wait 2 secs
1210 */
1211 megasas_disable_intr(reg_set);
1212 writel(MFI_INIT_READY, &reg_set->inbound_doorbell);
1213
1214 max_wait = 10;
1215 cur_state = MFI_STATE_OPERATIONAL;
1216 break;
1217
1218 case MFI_STATE_UNDEFINED:
1219 /*
1220 * This state should not last for more than 2 seconds
1221 */
1222 max_wait = 2;
1223 cur_state = MFI_STATE_UNDEFINED;
1224 break;
1225
1226 case MFI_STATE_BB_INIT:
1227 max_wait = 2;
1228 cur_state = MFI_STATE_BB_INIT;
1229 break;
1230
1231 case MFI_STATE_FW_INIT:
1232 max_wait = 20;
1233 cur_state = MFI_STATE_FW_INIT;
1234 break;
1235
1236 case MFI_STATE_FW_INIT_2:
1237 max_wait = 20;
1238 cur_state = MFI_STATE_FW_INIT_2;
1239 break;
1240
1241 case MFI_STATE_DEVICE_SCAN:
1242 max_wait = 20;
1243 cur_state = MFI_STATE_DEVICE_SCAN;
1244 break;
1245
1246 case MFI_STATE_FLUSH_CACHE:
1247 max_wait = 20;
1248 cur_state = MFI_STATE_FLUSH_CACHE;
1249 break;
1250
1251 default:
1252 printk(KERN_DEBUG "megasas: Unknown state 0x%x\n",
1253 fw_state);
1254 return -ENODEV;
1255 }
1256
1257 /*
1258 * The cur_state should not last for more than max_wait secs
1259 */
1260 for (i = 0; i < (max_wait * 1000); i++) {
1261 fw_state = MFI_STATE_MASK &
1262 readl(&reg_set->outbound_msg_0);
1263
1264 if (fw_state == cur_state) {
1265 msleep(1);
1266 } else
1267 break;
1268 }
1269
1270 /*
1271 * Return error if fw_state hasn't changed after max_wait
1272 */
1273 if (fw_state == cur_state) {
1274 printk(KERN_DEBUG "FW state [%d] hasn't changed "
1275 "in %d secs\n", fw_state, max_wait);
1276 return -ENODEV;
1277 }
1278 };
1279
1280 return 0;
1281}
1282
1283/**
1284 * megasas_teardown_frame_pool - Destroy the cmd frame DMA pool
1285 * @instance: Adapter soft state
1286 */
1287static void megasas_teardown_frame_pool(struct megasas_instance *instance)
1288{
1289 int i;
1290 u32 max_cmd = instance->max_fw_cmds;
1291 struct megasas_cmd *cmd;
1292
1293 if (!instance->frame_dma_pool)
1294 return;
1295
1296 /*
1297 * Return all frames to pool
1298 */
1299 for (i = 0; i < max_cmd; i++) {
1300
1301 cmd = instance->cmd_list[i];
1302
1303 if (cmd->frame)
1304 pci_pool_free(instance->frame_dma_pool, cmd->frame,
1305 cmd->frame_phys_addr);
1306
1307 if (cmd->sense)
1308 pci_pool_free(instance->sense_dma_pool, cmd->frame,
1309 cmd->sense_phys_addr);
1310 }
1311
1312 /*
1313 * Now destroy the pool itself
1314 */
1315 pci_pool_destroy(instance->frame_dma_pool);
1316 pci_pool_destroy(instance->sense_dma_pool);
1317
1318 instance->frame_dma_pool = NULL;
1319 instance->sense_dma_pool = NULL;
1320}
1321
1322/**
1323 * megasas_create_frame_pool - Creates DMA pool for cmd frames
1324 * @instance: Adapter soft state
1325 *
1326 * Each command packet has an embedded DMA memory buffer that is used for
1327 * filling MFI frame and the SG list that immediately follows the frame. This
1328 * function creates those DMA memory buffers for each command packet by using
1329 * PCI pool facility.
1330 */
1331static int megasas_create_frame_pool(struct megasas_instance *instance)
1332{
1333 int i;
1334 u32 max_cmd;
1335 u32 sge_sz;
1336 u32 sgl_sz;
1337 u32 total_sz;
1338 u32 frame_count;
1339 struct megasas_cmd *cmd;
1340
1341 max_cmd = instance->max_fw_cmds;
1342
1343 /*
1344 * Size of our frame is 64 bytes for MFI frame, followed by max SG
1345 * elements and finally SCSI_SENSE_BUFFERSIZE bytes for sense buffer
1346 */
1347 sge_sz = (IS_DMA64) ? sizeof(struct megasas_sge64) :
1348 sizeof(struct megasas_sge32);
1349
1350 /*
1351 * Calculated the number of 64byte frames required for SGL
1352 */
1353 sgl_sz = sge_sz * instance->max_num_sge;
1354 frame_count = (sgl_sz + MEGAMFI_FRAME_SIZE - 1) / MEGAMFI_FRAME_SIZE;
1355
1356 /*
1357 * We need one extra frame for the MFI command
1358 */
1359 frame_count++;
1360
1361 total_sz = MEGAMFI_FRAME_SIZE * frame_count;
1362 /*
1363 * Use DMA pool facility provided by PCI layer
1364 */
1365 instance->frame_dma_pool = pci_pool_create("megasas frame pool",
1366 instance->pdev, total_sz, 64,
1367 0);
1368
1369 if (!instance->frame_dma_pool) {
1370 printk(KERN_DEBUG "megasas: failed to setup frame pool\n");
1371 return -ENOMEM;
1372 }
1373
1374 instance->sense_dma_pool = pci_pool_create("megasas sense pool",
1375 instance->pdev, 128, 4, 0);
1376
1377 if (!instance->sense_dma_pool) {
1378 printk(KERN_DEBUG "megasas: failed to setup sense pool\n");
1379
1380 pci_pool_destroy(instance->frame_dma_pool);
1381 instance->frame_dma_pool = NULL;
1382
1383 return -ENOMEM;
1384 }
1385
1386 /*
1387 * Allocate and attach a frame to each of the commands in cmd_list.
1388 * By making cmd->index as the context instead of the &cmd, we can
1389 * always use 32bit context regardless of the architecture
1390 */
1391 for (i = 0; i < max_cmd; i++) {
1392
1393 cmd = instance->cmd_list[i];
1394
1395 cmd->frame = pci_pool_alloc(instance->frame_dma_pool,
1396 GFP_KERNEL, &cmd->frame_phys_addr);
1397
1398 cmd->sense = pci_pool_alloc(instance->sense_dma_pool,
1399 GFP_KERNEL, &cmd->sense_phys_addr);
1400
1401 /*
1402 * megasas_teardown_frame_pool() takes care of freeing
1403 * whatever has been allocated
1404 */
1405 if (!cmd->frame || !cmd->sense) {
1406 printk(KERN_DEBUG "megasas: pci_pool_alloc failed \n");
1407 megasas_teardown_frame_pool(instance);
1408 return -ENOMEM;
1409 }
1410
1411 cmd->frame->io.context = cmd->index;
1412 }
1413
1414 return 0;
1415}
1416
1417/**
1418 * megasas_free_cmds - Free all the cmds in the free cmd pool
1419 * @instance: Adapter soft state
1420 */
1421static void megasas_free_cmds(struct megasas_instance *instance)
1422{
1423 int i;
1424 /* First free the MFI frame pool */
1425 megasas_teardown_frame_pool(instance);
1426
1427 /* Free all the commands in the cmd_list */
1428 for (i = 0; i < instance->max_fw_cmds; i++)
1429 kfree(instance->cmd_list[i]);
1430
1431 /* Free the cmd_list buffer itself */
1432 kfree(instance->cmd_list);
1433 instance->cmd_list = NULL;
1434
1435 INIT_LIST_HEAD(&instance->cmd_pool);
1436}
1437
1438/**
1439 * megasas_alloc_cmds - Allocates the command packets
1440 * @instance: Adapter soft state
1441 *
1442 * Each command that is issued to the FW, whether IO commands from the OS or
1443 * internal commands like IOCTLs, are wrapped in local data structure called
1444 * megasas_cmd. The frame embedded in this megasas_cmd is actually issued to
1445 * the FW.
1446 *
1447 * Each frame has a 32-bit field called context (tag). This context is used
1448 * to get back the megasas_cmd from the frame when a frame gets completed in
1449 * the ISR. Typically the address of the megasas_cmd itself would be used as
1450 * the context. But we wanted to keep the differences between 32 and 64 bit
1451 * systems to the mininum. We always use 32 bit integers for the context. In
1452 * this driver, the 32 bit values are the indices into an array cmd_list.
1453 * This array is used only to look up the megasas_cmd given the context. The
1454 * free commands themselves are maintained in a linked list called cmd_pool.
1455 */
1456static int megasas_alloc_cmds(struct megasas_instance *instance)
1457{
1458 int i;
1459 int j;
1460 u32 max_cmd;
1461 struct megasas_cmd *cmd;
1462
1463 max_cmd = instance->max_fw_cmds;
1464
1465 /*
1466 * instance->cmd_list is an array of struct megasas_cmd pointers.
1467 * Allocate the dynamic array first and then allocate individual
1468 * commands.
1469 */
1470 instance->cmd_list = kmalloc(sizeof(struct megasas_cmd *) * max_cmd,
1471 GFP_KERNEL);
1472
1473 if (!instance->cmd_list) {
1474 printk(KERN_DEBUG "megasas: out of memory\n");
1475 return -ENOMEM;
1476 }
1477
1478 memset(instance->cmd_list, 0, sizeof(struct megasas_cmd *) * max_cmd);
1479
1480 for (i = 0; i < max_cmd; i++) {
1481 instance->cmd_list[i] = kmalloc(sizeof(struct megasas_cmd),
1482 GFP_KERNEL);
1483
1484 if (!instance->cmd_list[i]) {
1485
1486 for (j = 0; j < i; j++)
1487 kfree(instance->cmd_list[j]);
1488
1489 kfree(instance->cmd_list);
1490 instance->cmd_list = NULL;
1491
1492 return -ENOMEM;
1493 }
1494 }
1495
1496 /*
1497 * Add all the commands to command pool (instance->cmd_pool)
1498 */
1499 for (i = 0; i < max_cmd; i++) {
1500 cmd = instance->cmd_list[i];
1501 memset(cmd, 0, sizeof(struct megasas_cmd));
1502 cmd->index = i;
1503 cmd->instance = instance;
1504
1505 list_add_tail(&cmd->list, &instance->cmd_pool);
1506 }
1507
1508 /*
1509 * Create a frame pool and assign one frame to each cmd
1510 */
1511 if (megasas_create_frame_pool(instance)) {
1512 printk(KERN_DEBUG "megasas: Error creating frame DMA pool\n");
1513 megasas_free_cmds(instance);
1514 }
1515
1516 return 0;
1517}
1518
1519/**
1520 * megasas_get_controller_info - Returns FW's controller structure
1521 * @instance: Adapter soft state
1522 * @ctrl_info: Controller information structure
1523 *
1524 * Issues an internal command (DCMD) to get the FW's controller structure.
1525 * This information is mainly used to find out the maximum IO transfer per
1526 * command supported by the FW.
1527 */
1528static int
1529megasas_get_ctrl_info(struct megasas_instance *instance,
1530 struct megasas_ctrl_info *ctrl_info)
1531{
1532 int ret = 0;
1533 struct megasas_cmd *cmd;
1534 struct megasas_dcmd_frame *dcmd;
1535 struct megasas_ctrl_info *ci;
1536 dma_addr_t ci_h = 0;
1537
1538 cmd = megasas_get_cmd(instance);
1539
1540 if (!cmd) {
1541 printk(KERN_DEBUG "megasas: Failed to get a free cmd\n");
1542 return -ENOMEM;
1543 }
1544
1545 dcmd = &cmd->frame->dcmd;
1546
1547 ci = pci_alloc_consistent(instance->pdev,
1548 sizeof(struct megasas_ctrl_info), &ci_h);
1549
1550 if (!ci) {
1551 printk(KERN_DEBUG "Failed to alloc mem for ctrl info\n");
1552 megasas_return_cmd(instance, cmd);
1553 return -ENOMEM;
1554 }
1555
1556 memset(ci, 0, sizeof(*ci));
1557 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1558
1559 dcmd->cmd = MFI_CMD_DCMD;
1560 dcmd->cmd_status = 0xFF;
1561 dcmd->sge_count = 1;
1562 dcmd->flags = MFI_FRAME_DIR_READ;
1563 dcmd->timeout = 0;
1564 dcmd->data_xfer_len = sizeof(struct megasas_ctrl_info);
1565 dcmd->opcode = MR_DCMD_CTRL_GET_INFO;
1566 dcmd->sgl.sge32[0].phys_addr = ci_h;
1567 dcmd->sgl.sge32[0].length = sizeof(struct megasas_ctrl_info);
1568
1569 if (!megasas_issue_polled(instance, cmd)) {
1570 ret = 0;
1571 memcpy(ctrl_info, ci, sizeof(struct megasas_ctrl_info));
1572 } else {
1573 ret = -1;
1574 }
1575
1576 pci_free_consistent(instance->pdev, sizeof(struct megasas_ctrl_info),
1577 ci, ci_h);
1578
1579 megasas_return_cmd(instance, cmd);
1580 return ret;
1581}
1582
1583/**
1584 * megasas_init_mfi - Initializes the FW
1585 * @instance: Adapter soft state
1586 *
1587 * This is the main function for initializing MFI firmware.
1588 */
1589static int megasas_init_mfi(struct megasas_instance *instance)
1590{
1591 u32 context_sz;
1592 u32 reply_q_sz;
1593 u32 max_sectors_1;
1594 u32 max_sectors_2;
1595 struct megasas_register_set __iomem *reg_set;
1596
1597 struct megasas_cmd *cmd;
1598 struct megasas_ctrl_info *ctrl_info;
1599
1600 struct megasas_init_frame *init_frame;
1601 struct megasas_init_queue_info *initq_info;
1602 dma_addr_t init_frame_h;
1603 dma_addr_t initq_info_h;
1604
1605 /*
1606 * Map the message registers
1607 */
1608 instance->base_addr = pci_resource_start(instance->pdev, 0);
1609
1610 if (pci_request_regions(instance->pdev, "megasas: LSI Logic")) {
1611 printk(KERN_DEBUG "megasas: IO memory region busy!\n");
1612 return -EBUSY;
1613 }
1614
1615 instance->reg_set = ioremap_nocache(instance->base_addr, 8192);
1616
1617 if (!instance->reg_set) {
1618 printk(KERN_DEBUG "megasas: Failed to map IO mem\n");
1619 goto fail_ioremap;
1620 }
1621
1622 reg_set = instance->reg_set;
1623
1624 /*
1625 * We expect the FW state to be READY
1626 */
1627 if (megasas_transition_to_ready(instance->reg_set))
1628 goto fail_ready_state;
1629
1630 /*
1631 * Get various operational parameters from status register
1632 */
1633 instance->max_fw_cmds = readl(&reg_set->outbound_msg_0) & 0x00FFFF;
1634 instance->max_num_sge = (readl(&reg_set->outbound_msg_0) & 0xFF0000) >>
1635 0x10;
1636 /*
1637 * Create a pool of commands
1638 */
1639 if (megasas_alloc_cmds(instance))
1640 goto fail_alloc_cmds;
1641
1642 /*
1643 * Allocate memory for reply queue. Length of reply queue should
1644 * be _one_ more than the maximum commands handled by the firmware.
1645 *
1646 * Note: When FW completes commands, it places corresponding contex
1647 * values in this circular reply queue. This circular queue is a fairly
1648 * typical producer-consumer queue. FW is the producer (of completed
1649 * commands) and the driver is the consumer.
1650 */
1651 context_sz = sizeof(u32);
1652 reply_q_sz = context_sz * (instance->max_fw_cmds + 1);
1653
1654 instance->reply_queue = pci_alloc_consistent(instance->pdev,
1655 reply_q_sz,
1656 &instance->reply_queue_h);
1657
1658 if (!instance->reply_queue) {
1659 printk(KERN_DEBUG "megasas: Out of DMA mem for reply queue\n");
1660 goto fail_reply_queue;
1661 }
1662
1663 /*
1664 * Prepare a init frame. Note the init frame points to queue info
1665 * structure. Each frame has SGL allocated after first 64 bytes. For
1666 * this frame - since we don't need any SGL - we use SGL's space as
1667 * queue info structure
1668 *
1669 * We will not get a NULL command below. We just created the pool.
1670 */
1671 cmd = megasas_get_cmd(instance);
1672
1673 init_frame = (struct megasas_init_frame *)cmd->frame;
1674 initq_info = (struct megasas_init_queue_info *)
1675 ((unsigned long)init_frame + 64);
1676
1677 init_frame_h = cmd->frame_phys_addr;
1678 initq_info_h = init_frame_h + 64;
1679
1680 memset(init_frame, 0, MEGAMFI_FRAME_SIZE);
1681 memset(initq_info, 0, sizeof(struct megasas_init_queue_info));
1682
1683 initq_info->reply_queue_entries = instance->max_fw_cmds + 1;
1684 initq_info->reply_queue_start_phys_addr_lo = instance->reply_queue_h;
1685
1686 initq_info->producer_index_phys_addr_lo = instance->producer_h;
1687 initq_info->consumer_index_phys_addr_lo = instance->consumer_h;
1688
1689 init_frame->cmd = MFI_CMD_INIT;
1690 init_frame->cmd_status = 0xFF;
1691 init_frame->queue_info_new_phys_addr_lo = initq_info_h;
1692
1693 init_frame->data_xfer_len = sizeof(struct megasas_init_queue_info);
1694
1695 /*
1696 * Issue the init frame in polled mode
1697 */
1698 if (megasas_issue_polled(instance, cmd)) {
1699 printk(KERN_DEBUG "megasas: Failed to init firmware\n");
1700 goto fail_fw_init;
1701 }
1702
1703 megasas_return_cmd(instance, cmd);
1704
1705 ctrl_info = kmalloc(sizeof(struct megasas_ctrl_info), GFP_KERNEL);
1706
1707 /*
1708 * Compute the max allowed sectors per IO: The controller info has two
1709 * limits on max sectors. Driver should use the minimum of these two.
1710 *
1711 * 1 << stripe_sz_ops.min = max sectors per strip
1712 *
1713 * Note that older firmwares ( < FW ver 30) didn't report information
1714 * to calculate max_sectors_1. So the number ended up as zero always.
1715 */
1716 if (ctrl_info && !megasas_get_ctrl_info(instance, ctrl_info)) {
1717
1718 max_sectors_1 = (1 << ctrl_info->stripe_sz_ops.min) *
1719 ctrl_info->max_strips_per_io;
1720 max_sectors_2 = ctrl_info->max_request_size;
1721
1722 instance->max_sectors_per_req = (max_sectors_1 < max_sectors_2)
1723 ? max_sectors_1 : max_sectors_2;
1724 } else
1725 instance->max_sectors_per_req = instance->max_num_sge *
1726 PAGE_SIZE / 512;
1727
1728 kfree(ctrl_info);
1729
1730 return 0;
1731
1732 fail_fw_init:
1733 megasas_return_cmd(instance, cmd);
1734
1735 pci_free_consistent(instance->pdev, reply_q_sz,
1736 instance->reply_queue, instance->reply_queue_h);
1737 fail_reply_queue:
1738 megasas_free_cmds(instance);
1739
1740 fail_alloc_cmds:
1741 fail_ready_state:
1742 iounmap(instance->reg_set);
1743
1744 fail_ioremap:
1745 pci_release_regions(instance->pdev);
1746
1747 return -EINVAL;
1748}
1749
1750/**
1751 * megasas_release_mfi - Reverses the FW initialization
1752 * @intance: Adapter soft state
1753 */
1754static void megasas_release_mfi(struct megasas_instance *instance)
1755{
1756 u32 reply_q_sz = sizeof(u32) * (instance->max_fw_cmds + 1);
1757
1758 pci_free_consistent(instance->pdev, reply_q_sz,
1759 instance->reply_queue, instance->reply_queue_h);
1760
1761 megasas_free_cmds(instance);
1762
1763 iounmap(instance->reg_set);
1764
1765 pci_release_regions(instance->pdev);
1766}
1767
1768/**
1769 * megasas_get_seq_num - Gets latest event sequence numbers
1770 * @instance: Adapter soft state
1771 * @eli: FW event log sequence numbers information
1772 *
1773 * FW maintains a log of all events in a non-volatile area. Upper layers would
1774 * usually find out the latest sequence number of the events, the seq number at
1775 * the boot etc. They would "read" all the events below the latest seq number
1776 * by issuing a direct fw cmd (DCMD). For the future events (beyond latest seq
1777 * number), they would subsribe to AEN (asynchronous event notification) and
1778 * wait for the events to happen.
1779 */
1780static int
1781megasas_get_seq_num(struct megasas_instance *instance,
1782 struct megasas_evt_log_info *eli)
1783{
1784 struct megasas_cmd *cmd;
1785 struct megasas_dcmd_frame *dcmd;
1786 struct megasas_evt_log_info *el_info;
1787 dma_addr_t el_info_h = 0;
1788
1789 cmd = megasas_get_cmd(instance);
1790
1791 if (!cmd) {
1792 return -ENOMEM;
1793 }
1794
1795 dcmd = &cmd->frame->dcmd;
1796 el_info = pci_alloc_consistent(instance->pdev,
1797 sizeof(struct megasas_evt_log_info),
1798 &el_info_h);
1799
1800 if (!el_info) {
1801 megasas_return_cmd(instance, cmd);
1802 return -ENOMEM;
1803 }
1804
1805 memset(el_info, 0, sizeof(*el_info));
1806 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1807
1808 dcmd->cmd = MFI_CMD_DCMD;
1809 dcmd->cmd_status = 0x0;
1810 dcmd->sge_count = 1;
1811 dcmd->flags = MFI_FRAME_DIR_READ;
1812 dcmd->timeout = 0;
1813 dcmd->data_xfer_len = sizeof(struct megasas_evt_log_info);
1814 dcmd->opcode = MR_DCMD_CTRL_EVENT_GET_INFO;
1815 dcmd->sgl.sge32[0].phys_addr = el_info_h;
1816 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_log_info);
1817
1818 megasas_issue_blocked_cmd(instance, cmd);
1819
1820 /*
1821 * Copy the data back into callers buffer
1822 */
1823 memcpy(eli, el_info, sizeof(struct megasas_evt_log_info));
1824
1825 pci_free_consistent(instance->pdev, sizeof(struct megasas_evt_log_info),
1826 el_info, el_info_h);
1827
1828 megasas_return_cmd(instance, cmd);
1829
1830 return 0;
1831}
1832
1833/**
1834 * megasas_register_aen - Registers for asynchronous event notification
1835 * @instance: Adapter soft state
1836 * @seq_num: The starting sequence number
1837 * @class_locale: Class of the event
1838 *
1839 * This function subscribes for AEN for events beyond the @seq_num. It requests
1840 * to be notified if and only if the event is of type @class_locale
1841 */
1842static int
1843megasas_register_aen(struct megasas_instance *instance, u32 seq_num,
1844 u32 class_locale_word)
1845{
1846 int ret_val;
1847 struct megasas_cmd *cmd;
1848 struct megasas_dcmd_frame *dcmd;
1849 union megasas_evt_class_locale curr_aen;
1850 union megasas_evt_class_locale prev_aen;
1851
1852 /*
1853 * If there an AEN pending already (aen_cmd), check if the
1854 * class_locale of that pending AEN is inclusive of the new
1855 * AEN request we currently have. If it is, then we don't have
1856 * to do anything. In other words, whichever events the current
1857 * AEN request is subscribing to, have already been subscribed
1858 * to.
1859 *
1860 * If the old_cmd is _not_ inclusive, then we have to abort
1861 * that command, form a class_locale that is superset of both
1862 * old and current and re-issue to the FW
1863 */
1864
1865 curr_aen.word = class_locale_word;
1866
1867 if (instance->aen_cmd) {
1868
1869 prev_aen.word = instance->aen_cmd->frame->dcmd.mbox.w[1];
1870
1871 /*
1872 * A class whose enum value is smaller is inclusive of all
1873 * higher values. If a PROGRESS (= -1) was previously
1874 * registered, then a new registration requests for higher
1875 * classes need not be sent to FW. They are automatically
1876 * included.
1877 *
1878 * Locale numbers don't have such hierarchy. They are bitmap
1879 * values
1880 */
1881 if ((prev_aen.members.class <= curr_aen.members.class) &&
1882 !((prev_aen.members.locale & curr_aen.members.locale) ^
1883 curr_aen.members.locale)) {
1884 /*
1885 * Previously issued event registration includes
1886 * current request. Nothing to do.
1887 */
1888 return 0;
1889 } else {
1890 curr_aen.members.locale |= prev_aen.members.locale;
1891
1892 if (prev_aen.members.class < curr_aen.members.class)
1893 curr_aen.members.class = prev_aen.members.class;
1894
1895 instance->aen_cmd->abort_aen = 1;
1896 ret_val = megasas_issue_blocked_abort_cmd(instance,
1897 instance->
1898 aen_cmd);
1899
1900 if (ret_val) {
1901 printk(KERN_DEBUG "megasas: Failed to abort "
1902 "previous AEN command\n");
1903 return ret_val;
1904 }
1905 }
1906 }
1907
1908 cmd = megasas_get_cmd(instance);
1909
1910 if (!cmd)
1911 return -ENOMEM;
1912
1913 dcmd = &cmd->frame->dcmd;
1914
1915 memset(instance->evt_detail, 0, sizeof(struct megasas_evt_detail));
1916
1917 /*
1918 * Prepare DCMD for aen registration
1919 */
1920 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
1921
1922 dcmd->cmd = MFI_CMD_DCMD;
1923 dcmd->cmd_status = 0x0;
1924 dcmd->sge_count = 1;
1925 dcmd->flags = MFI_FRAME_DIR_READ;
1926 dcmd->timeout = 0;
1927 dcmd->data_xfer_len = sizeof(struct megasas_evt_detail);
1928 dcmd->opcode = MR_DCMD_CTRL_EVENT_WAIT;
1929 dcmd->mbox.w[0] = seq_num;
1930 dcmd->mbox.w[1] = curr_aen.word;
1931 dcmd->sgl.sge32[0].phys_addr = (u32) instance->evt_detail_h;
1932 dcmd->sgl.sge32[0].length = sizeof(struct megasas_evt_detail);
1933
1934 /*
1935 * Store reference to the cmd used to register for AEN. When an
1936 * application wants us to register for AEN, we have to abort this
1937 * cmd and re-register with a new EVENT LOCALE supplied by that app
1938 */
1939 instance->aen_cmd = cmd;
1940
1941 /*
1942 * Issue the aen registration frame
1943 */
1944 writel(cmd->frame_phys_addr >> 3,
1945 &instance->reg_set->inbound_queue_port);
1946
1947 return 0;
1948}
1949
1950/**
1951 * megasas_start_aen - Subscribes to AEN during driver load time
1952 * @instance: Adapter soft state
1953 */
1954static int megasas_start_aen(struct megasas_instance *instance)
1955{
1956 struct megasas_evt_log_info eli;
1957 union megasas_evt_class_locale class_locale;
1958
1959 /*
1960 * Get the latest sequence number from FW
1961 */
1962 memset(&eli, 0, sizeof(eli));
1963
1964 if (megasas_get_seq_num(instance, &eli))
1965 return -1;
1966
1967 /*
1968 * Register AEN with FW for latest sequence number plus 1
1969 */
1970 class_locale.members.reserved = 0;
1971 class_locale.members.locale = MR_EVT_LOCALE_ALL;
1972 class_locale.members.class = MR_EVT_CLASS_DEBUG;
1973
1974 return megasas_register_aen(instance, eli.newest_seq_num + 1,
1975 class_locale.word);
1976}
1977
1978/**
1979 * megasas_io_attach - Attaches this driver to SCSI mid-layer
1980 * @instance: Adapter soft state
1981 */
1982static int megasas_io_attach(struct megasas_instance *instance)
1983{
1984 struct Scsi_Host *host = instance->host;
1985
1986 /*
1987 * Export parameters required by SCSI mid-layer
1988 */
1989 host->irq = instance->pdev->irq;
1990 host->unique_id = instance->unique_id;
1991 host->can_queue = instance->max_fw_cmds - MEGASAS_INT_CMDS;
1992 host->this_id = instance->init_id;
1993 host->sg_tablesize = instance->max_num_sge;
1994 host->max_sectors = instance->max_sectors_per_req;
1995 host->cmd_per_lun = 128;
1996 host->max_channel = MEGASAS_MAX_CHANNELS - 1;
1997 host->max_id = MEGASAS_MAX_DEV_PER_CHANNEL;
1998 host->max_lun = MEGASAS_MAX_LUN;
1999
2000 /*
2001 * Notify the mid-layer about the new controller
2002 */
2003 if (scsi_add_host(host, &instance->pdev->dev)) {
2004 printk(KERN_DEBUG "megasas: scsi_add_host failed\n");
2005 return -ENODEV;
2006 }
2007
2008 /*
2009 * Trigger SCSI to scan our drives
2010 */
2011 scsi_scan_host(host);
2012 return 0;
2013}
2014
2015/**
2016 * megasas_probe_one - PCI hotplug entry point
2017 * @pdev: PCI device structure
2018 * @id: PCI ids of supported hotplugged adapter
2019 */
2020static int __devinit
2021megasas_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
2022{
2023 int rval;
2024 struct Scsi_Host *host;
2025 struct megasas_instance *instance;
2026
2027 /*
2028 * Announce PCI information
2029 */
2030 printk(KERN_INFO "megasas: %#4.04x:%#4.04x:%#4.04x:%#4.04x: ",
2031 pdev->vendor, pdev->device, pdev->subsystem_vendor,
2032 pdev->subsystem_device);
2033
2034 printk("bus %d:slot %d:func %d\n",
2035 pdev->bus->number, PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
2036
2037 /*
2038 * PCI prepping: enable device set bus mastering and dma mask
2039 */
2040 rval = pci_enable_device(pdev);
2041
2042 if (rval) {
2043 return rval;
2044 }
2045
2046 pci_set_master(pdev);
2047
2048 /*
2049 * All our contollers are capable of performing 64-bit DMA
2050 */
2051 if (IS_DMA64) {
2052 if (pci_set_dma_mask(pdev, DMA_64BIT_MASK) != 0) {
2053
2054 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2055 goto fail_set_dma_mask;
2056 }
2057 } else {
2058 if (pci_set_dma_mask(pdev, DMA_32BIT_MASK) != 0)
2059 goto fail_set_dma_mask;
2060 }
2061
2062 host = scsi_host_alloc(&megasas_template,
2063 sizeof(struct megasas_instance));
2064
2065 if (!host) {
2066 printk(KERN_DEBUG "megasas: scsi_host_alloc failed\n");
2067 goto fail_alloc_instance;
2068 }
2069
2070 instance = (struct megasas_instance *)host->hostdata;
2071 memset(instance, 0, sizeof(*instance));
2072
2073 instance->producer = pci_alloc_consistent(pdev, sizeof(u32),
2074 &instance->producer_h);
2075 instance->consumer = pci_alloc_consistent(pdev, sizeof(u32),
2076 &instance->consumer_h);
2077
2078 if (!instance->producer || !instance->consumer) {
2079 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2080 "producer, consumer\n");
2081 goto fail_alloc_dma_buf;
2082 }
2083
2084 *instance->producer = 0;
2085 *instance->consumer = 0;
2086
2087 instance->evt_detail = pci_alloc_consistent(pdev,
2088 sizeof(struct
2089 megasas_evt_detail),
2090 &instance->evt_detail_h);
2091
2092 if (!instance->evt_detail) {
2093 printk(KERN_DEBUG "megasas: Failed to allocate memory for "
2094 "event detail structure\n");
2095 goto fail_alloc_dma_buf;
2096 }
2097
2098 /*
2099 * Initialize locks and queues
2100 */
2101 INIT_LIST_HEAD(&instance->cmd_pool);
2102
2103 init_waitqueue_head(&instance->int_cmd_wait_q);
2104 init_waitqueue_head(&instance->abort_cmd_wait_q);
2105
2106 spin_lock_init(&instance->cmd_pool_lock);
2107 spin_lock_init(&instance->instance_lock);
2108
2109 sema_init(&instance->aen_mutex, 1);
2110 sema_init(&instance->ioctl_sem, MEGASAS_INT_CMDS);
2111
2112 /*
2113 * Initialize PCI related and misc parameters
2114 */
2115 instance->pdev = pdev;
2116 instance->host = host;
2117 instance->unique_id = pdev->bus->number << 8 | pdev->devfn;
2118 instance->init_id = MEGASAS_DEFAULT_INIT_ID;
2119
2120 /*
2121 * Initialize MFI Firmware
2122 */
2123 if (megasas_init_mfi(instance))
2124 goto fail_init_mfi;
2125
2126 /*
2127 * Register IRQ
2128 */
2129 if (request_irq(pdev->irq, megasas_isr, SA_SHIRQ, "megasas", instance)) {
2130 printk(KERN_DEBUG "megasas: Failed to register IRQ\n");
2131 goto fail_irq;
2132 }
2133
2134 megasas_enable_intr(instance->reg_set);
2135
2136 /*
2137 * Store instance in PCI softstate
2138 */
2139 pci_set_drvdata(pdev, instance);
2140
2141 /*
2142 * Add this controller to megasas_mgmt_info structure so that it
2143 * can be exported to management applications
2144 */
2145 megasas_mgmt_info.count++;
2146 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = instance;
2147 megasas_mgmt_info.max_index++;
2148
2149 /*
2150 * Initiate AEN (Asynchronous Event Notification)
2151 */
2152 if (megasas_start_aen(instance)) {
2153 printk(KERN_DEBUG "megasas: start aen failed\n");
2154 goto fail_start_aen;
2155 }
2156
2157 /*
2158 * Register with SCSI mid-layer
2159 */
2160 if (megasas_io_attach(instance))
2161 goto fail_io_attach;
2162
2163 return 0;
2164
2165 fail_start_aen:
2166 fail_io_attach:
2167 megasas_mgmt_info.count--;
2168 megasas_mgmt_info.instance[megasas_mgmt_info.max_index] = NULL;
2169 megasas_mgmt_info.max_index--;
2170
2171 pci_set_drvdata(pdev, NULL);
2172 megasas_disable_intr(instance->reg_set);
2173 free_irq(instance->pdev->irq, instance);
2174
2175 megasas_release_mfi(instance);
2176
2177 fail_irq:
2178 fail_init_mfi:
2179 fail_alloc_dma_buf:
2180 if (instance->evt_detail)
2181 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2182 instance->evt_detail,
2183 instance->evt_detail_h);
2184
2185 if (instance->producer)
2186 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2187 instance->producer_h);
2188 if (instance->consumer)
2189 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2190 instance->consumer_h);
2191 scsi_host_put(host);
2192
2193 fail_alloc_instance:
2194 fail_set_dma_mask:
2195 pci_disable_device(pdev);
2196
2197 return -ENODEV;
2198}
2199
2200/**
2201 * megasas_flush_cache - Requests FW to flush all its caches
2202 * @instance: Adapter soft state
2203 */
2204static void megasas_flush_cache(struct megasas_instance *instance)
2205{
2206 struct megasas_cmd *cmd;
2207 struct megasas_dcmd_frame *dcmd;
2208
2209 cmd = megasas_get_cmd(instance);
2210
2211 if (!cmd)
2212 return;
2213
2214 dcmd = &cmd->frame->dcmd;
2215
2216 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2217
2218 dcmd->cmd = MFI_CMD_DCMD;
2219 dcmd->cmd_status = 0x0;
2220 dcmd->sge_count = 0;
2221 dcmd->flags = MFI_FRAME_DIR_NONE;
2222 dcmd->timeout = 0;
2223 dcmd->data_xfer_len = 0;
2224 dcmd->opcode = MR_DCMD_CTRL_CACHE_FLUSH;
2225 dcmd->mbox.b[0] = MR_FLUSH_CTRL_CACHE | MR_FLUSH_DISK_CACHE;
2226
2227 megasas_issue_blocked_cmd(instance, cmd);
2228
2229 megasas_return_cmd(instance, cmd);
2230
2231 return;
2232}
2233
2234/**
2235 * megasas_shutdown_controller - Instructs FW to shutdown the controller
2236 * @instance: Adapter soft state
2237 */
2238static void megasas_shutdown_controller(struct megasas_instance *instance)
2239{
2240 struct megasas_cmd *cmd;
2241 struct megasas_dcmd_frame *dcmd;
2242
2243 cmd = megasas_get_cmd(instance);
2244
2245 if (!cmd)
2246 return;
2247
2248 if (instance->aen_cmd)
2249 megasas_issue_blocked_abort_cmd(instance, instance->aen_cmd);
2250
2251 dcmd = &cmd->frame->dcmd;
2252
2253 memset(dcmd->mbox.b, 0, MFI_MBOX_SIZE);
2254
2255 dcmd->cmd = MFI_CMD_DCMD;
2256 dcmd->cmd_status = 0x0;
2257 dcmd->sge_count = 0;
2258 dcmd->flags = MFI_FRAME_DIR_NONE;
2259 dcmd->timeout = 0;
2260 dcmd->data_xfer_len = 0;
2261 dcmd->opcode = MR_DCMD_CTRL_SHUTDOWN;
2262
2263 megasas_issue_blocked_cmd(instance, cmd);
2264
2265 megasas_return_cmd(instance, cmd);
2266
2267 return;
2268}
2269
2270/**
2271 * megasas_detach_one - PCI hot"un"plug entry point
2272 * @pdev: PCI device structure
2273 */
2274static void megasas_detach_one(struct pci_dev *pdev)
2275{
2276 int i;
2277 struct Scsi_Host *host;
2278 struct megasas_instance *instance;
2279
2280 instance = pci_get_drvdata(pdev);
2281 host = instance->host;
2282
2283 scsi_remove_host(instance->host);
2284 megasas_flush_cache(instance);
2285 megasas_shutdown_controller(instance);
2286
2287 /*
2288 * Take the instance off the instance array. Note that we will not
2289 * decrement the max_index. We let this array be sparse array
2290 */
2291 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2292 if (megasas_mgmt_info.instance[i] == instance) {
2293 megasas_mgmt_info.count--;
2294 megasas_mgmt_info.instance[i] = NULL;
2295
2296 break;
2297 }
2298 }
2299
2300 pci_set_drvdata(instance->pdev, NULL);
2301
2302 megasas_disable_intr(instance->reg_set);
2303
2304 free_irq(instance->pdev->irq, instance);
2305
2306 megasas_release_mfi(instance);
2307
2308 pci_free_consistent(pdev, sizeof(struct megasas_evt_detail),
2309 instance->evt_detail, instance->evt_detail_h);
2310
2311 pci_free_consistent(pdev, sizeof(u32), instance->producer,
2312 instance->producer_h);
2313
2314 pci_free_consistent(pdev, sizeof(u32), instance->consumer,
2315 instance->consumer_h);
2316
2317 scsi_host_put(host);
2318
2319 pci_set_drvdata(pdev, NULL);
2320
2321 pci_disable_device(pdev);
2322
2323 return;
2324}
2325
2326/**
2327 * megasas_shutdown - Shutdown entry point
2328 * @device: Generic device structure
2329 */
2330static void megasas_shutdown(struct pci_dev *pdev)
2331{
2332 struct megasas_instance *instance = pci_get_drvdata(pdev);
2333 megasas_flush_cache(instance);
2334}
2335
2336/**
2337 * megasas_mgmt_open - char node "open" entry point
2338 */
2339static int megasas_mgmt_open(struct inode *inode, struct file *filep)
2340{
2341 /*
2342 * Allow only those users with admin rights
2343 */
2344 if (!capable(CAP_SYS_ADMIN))
2345 return -EACCES;
2346
2347 return 0;
2348}
2349
2350/**
2351 * megasas_mgmt_release - char node "release" entry point
2352 */
2353static int megasas_mgmt_release(struct inode *inode, struct file *filep)
2354{
2355 filep->private_data = NULL;
2356 fasync_helper(-1, filep, 0, &megasas_async_queue);
2357
2358 return 0;
2359}
2360
2361/**
2362 * megasas_mgmt_fasync - Async notifier registration from applications
2363 *
2364 * This function adds the calling process to a driver global queue. When an
2365 * event occurs, SIGIO will be sent to all processes in this queue.
2366 */
2367static int megasas_mgmt_fasync(int fd, struct file *filep, int mode)
2368{
2369 int rc;
2370
2371 down(&megasas_async_queue_mutex);
2372
2373 rc = fasync_helper(fd, filep, mode, &megasas_async_queue);
2374
2375 up(&megasas_async_queue_mutex);
2376
2377 if (rc >= 0) {
2378 /* For sanity check when we get ioctl */
2379 filep->private_data = filep;
2380 return 0;
2381 }
2382
2383 printk(KERN_DEBUG "megasas: fasync_helper failed [%d]\n", rc);
2384
2385 return rc;
2386}
2387
2388/**
2389 * megasas_mgmt_fw_ioctl - Issues management ioctls to FW
2390 * @instance: Adapter soft state
2391 * @argp: User's ioctl packet
2392 */
2393static int
2394megasas_mgmt_fw_ioctl(struct megasas_instance *instance,
2395 struct megasas_iocpacket __user * user_ioc,
2396 struct megasas_iocpacket *ioc)
2397{
2398 struct megasas_sge32 *kern_sge32;
2399 struct megasas_cmd *cmd;
2400 void *kbuff_arr[MAX_IOCTL_SGE];
2401 dma_addr_t buf_handle = 0;
2402 int error = 0, i;
2403 void *sense = NULL;
2404 dma_addr_t sense_handle;
2405 u32 *sense_ptr;
2406
2407 memset(kbuff_arr, 0, sizeof(kbuff_arr));
2408
2409 if (ioc->sge_count > MAX_IOCTL_SGE) {
2410 printk(KERN_DEBUG "megasas: SGE count [%d] > max limit [%d]\n",
2411 ioc->sge_count, MAX_IOCTL_SGE);
2412 return -EINVAL;
2413 }
2414
2415 cmd = megasas_get_cmd(instance);
2416 if (!cmd) {
2417 printk(KERN_DEBUG "megasas: Failed to get a cmd packet\n");
2418 return -ENOMEM;
2419 }
2420
2421 /*
2422 * User's IOCTL packet has 2 frames (maximum). Copy those two
2423 * frames into our cmd's frames. cmd->frame's context will get
2424 * overwritten when we copy from user's frames. So set that value
2425 * alone separately
2426 */
2427 memcpy(cmd->frame, ioc->frame.raw, 2 * MEGAMFI_FRAME_SIZE);
2428 cmd->frame->hdr.context = cmd->index;
2429
2430 /*
2431 * The management interface between applications and the fw uses
2432 * MFI frames. E.g, RAID configuration changes, LD property changes
2433 * etc are accomplishes through different kinds of MFI frames. The
2434 * driver needs to care only about substituting user buffers with
2435 * kernel buffers in SGLs. The location of SGL is embedded in the
2436 * struct iocpacket itself.
2437 */
2438 kern_sge32 = (struct megasas_sge32 *)
2439 ((unsigned long)cmd->frame + ioc->sgl_off);
2440
2441 /*
2442 * For each user buffer, create a mirror buffer and copy in
2443 */
2444 for (i = 0; i < ioc->sge_count; i++) {
2445 kbuff_arr[i] = pci_alloc_consistent(instance->pdev,
2446 ioc->sgl[i].iov_len,
2447 &buf_handle);
2448 if (!kbuff_arr[i]) {
2449 printk(KERN_DEBUG "megasas: Failed to alloc "
2450 "kernel SGL buffer for IOCTL \n");
2451 error = -ENOMEM;
2452 goto out;
2453 }
2454
2455 /*
2456 * We don't change the dma_coherent_mask, so
2457 * pci_alloc_consistent only returns 32bit addresses
2458 */
2459 kern_sge32[i].phys_addr = (u32) buf_handle;
2460 kern_sge32[i].length = ioc->sgl[i].iov_len;
2461
2462 /*
2463 * We created a kernel buffer corresponding to the
2464 * user buffer. Now copy in from the user buffer
2465 */
2466 if (copy_from_user(kbuff_arr[i], ioc->sgl[i].iov_base,
2467 (u32) (ioc->sgl[i].iov_len))) {
2468 error = -EFAULT;
2469 goto out;
2470 }
2471 }
2472
2473 if (ioc->sense_len) {
2474 sense = pci_alloc_consistent(instance->pdev, ioc->sense_len,
2475 &sense_handle);
2476 if (!sense) {
2477 error = -ENOMEM;
2478 goto out;
2479 }
2480
2481 sense_ptr =
2482 (u32 *) ((unsigned long)cmd->frame + ioc->sense_off);
2483 *sense_ptr = sense_handle;
2484 }
2485
2486 /*
2487 * Set the sync_cmd flag so that the ISR knows not to complete this
2488 * cmd to the SCSI mid-layer
2489 */
2490 cmd->sync_cmd = 1;
2491 megasas_issue_blocked_cmd(instance, cmd);
2492 cmd->sync_cmd = 0;
2493
2494 /*
2495 * copy out the kernel buffers to user buffers
2496 */
2497 for (i = 0; i < ioc->sge_count; i++) {
2498 if (copy_to_user(ioc->sgl[i].iov_base, kbuff_arr[i],
2499 ioc->sgl[i].iov_len)) {
2500 error = -EFAULT;
2501 goto out;
2502 }
2503 }
2504
2505 /*
2506 * copy out the sense
2507 */
2508 if (ioc->sense_len) {
2509 /*
2510 * sense_ptr points to the location that has the user
2511 * sense buffer address
2512 */
2513 sense_ptr = (u32 *) ((unsigned long)ioc->frame.raw +
2514 ioc->sense_off);
2515
2516 if (copy_to_user((void __user *)((unsigned long)(*sense_ptr)),
2517 sense, ioc->sense_len)) {
2518 error = -EFAULT;
2519 goto out;
2520 }
2521 }
2522
2523 /*
2524 * copy the status codes returned by the fw
2525 */
2526 if (copy_to_user(&user_ioc->frame.hdr.cmd_status,
2527 &cmd->frame->hdr.cmd_status, sizeof(u8))) {
2528 printk(KERN_DEBUG "megasas: Error copying out cmd_status\n");
2529 error = -EFAULT;
2530 }
2531
2532 out:
2533 if (sense) {
2534 pci_free_consistent(instance->pdev, ioc->sense_len,
2535 sense, sense_handle);
2536 }
2537
2538 for (i = 0; i < ioc->sge_count && kbuff_arr[i]; i++) {
2539 pci_free_consistent(instance->pdev,
2540 kern_sge32[i].length,
2541 kbuff_arr[i], kern_sge32[i].phys_addr);
2542 }
2543
2544 megasas_return_cmd(instance, cmd);
2545 return error;
2546}
2547
2548static struct megasas_instance *megasas_lookup_instance(u16 host_no)
2549{
2550 int i;
2551
2552 for (i = 0; i < megasas_mgmt_info.max_index; i++) {
2553
2554 if ((megasas_mgmt_info.instance[i]) &&
2555 (megasas_mgmt_info.instance[i]->host->host_no == host_no))
2556 return megasas_mgmt_info.instance[i];
2557 }
2558
2559 return NULL;
2560}
2561
2562static int megasas_mgmt_ioctl_fw(struct file *file, unsigned long arg)
2563{
2564 struct megasas_iocpacket __user *user_ioc =
2565 (struct megasas_iocpacket __user *)arg;
2566 struct megasas_iocpacket *ioc;
2567 struct megasas_instance *instance;
2568 int error;
2569
2570 ioc = kmalloc(sizeof(*ioc), GFP_KERNEL);
2571 if (!ioc)
2572 return -ENOMEM;
2573
2574 if (copy_from_user(ioc, user_ioc, sizeof(*ioc))) {
2575 error = -EFAULT;
2576 goto out_kfree_ioc;
2577 }
2578
2579 instance = megasas_lookup_instance(ioc->host_no);
2580 if (!instance) {
2581 error = -ENODEV;
2582 goto out_kfree_ioc;
2583 }
2584
2585 /*
2586 * We will allow only MEGASAS_INT_CMDS number of parallel ioctl cmds
2587 */
2588 if (down_interruptible(&instance->ioctl_sem)) {
2589 error = -ERESTARTSYS;
2590 goto out_kfree_ioc;
2591 }
2592 error = megasas_mgmt_fw_ioctl(instance, user_ioc, ioc);
2593 up(&instance->ioctl_sem);
2594
2595 out_kfree_ioc:
2596 kfree(ioc);
2597 return error;
2598}
2599
2600static int megasas_mgmt_ioctl_aen(struct file *file, unsigned long arg)
2601{
2602 struct megasas_instance *instance;
2603 struct megasas_aen aen;
2604 int error;
2605
2606 if (file->private_data != file) {
2607 printk(KERN_DEBUG "megasas: fasync_helper was not "
2608 "called first\n");
2609 return -EINVAL;
2610 }
2611
2612 if (copy_from_user(&aen, (void __user *)arg, sizeof(aen)))
2613 return -EFAULT;
2614
2615 instance = megasas_lookup_instance(aen.host_no);
2616
2617 if (!instance)
2618 return -ENODEV;
2619
2620 down(&instance->aen_mutex);
2621 error = megasas_register_aen(instance, aen.seq_num,
2622 aen.class_locale_word);
2623 up(&instance->aen_mutex);
2624 return error;
2625}
2626
2627/**
2628 * megasas_mgmt_ioctl - char node ioctl entry point
2629 */
2630static long
2631megasas_mgmt_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2632{
2633 switch (cmd) {
2634 case MEGASAS_IOC_FIRMWARE:
2635 return megasas_mgmt_ioctl_fw(file, arg);
2636
2637 case MEGASAS_IOC_GET_AEN:
2638 return megasas_mgmt_ioctl_aen(file, arg);
2639 }
2640
2641 return -ENOTTY;
2642}
2643
2644#ifdef CONFIG_COMPAT
2645static int megasas_mgmt_compat_ioctl_fw(struct file *file, unsigned long arg)
2646{
2647 struct compat_megasas_iocpacket __user *cioc =
2648 (struct compat_megasas_iocpacket __user *)arg;
2649 struct megasas_iocpacket __user *ioc =
2650 compat_alloc_user_space(sizeof(struct megasas_iocpacket));
2651 int i;
2652 int error = 0;
2653
2654 clear_user(ioc, sizeof(*ioc));
2655
2656 if (copy_in_user(&ioc->host_no, &cioc->host_no, sizeof(u16)) ||
2657 copy_in_user(&ioc->sgl_off, &cioc->sgl_off, sizeof(u32)) ||
2658 copy_in_user(&ioc->sense_off, &cioc->sense_off, sizeof(u32)) ||
2659 copy_in_user(&ioc->sense_len, &cioc->sense_len, sizeof(u32)) ||
2660 copy_in_user(ioc->frame.raw, cioc->frame.raw, 128) ||
2661 copy_in_user(&ioc->sge_count, &cioc->sge_count, sizeof(u32)))
2662 return -EFAULT;
2663
2664 for (i = 0; i < MAX_IOCTL_SGE; i++) {
2665 compat_uptr_t ptr;
2666
2667 if (get_user(ptr, &cioc->sgl[i].iov_base) ||
2668 put_user(compat_ptr(ptr), &ioc->sgl[i].iov_base) ||
2669 copy_in_user(&ioc->sgl[i].iov_len,
2670 &cioc->sgl[i].iov_len, sizeof(compat_size_t)))
2671 return -EFAULT;
2672 }
2673
2674 error = megasas_mgmt_ioctl_fw(file, (unsigned long)ioc);
2675
2676 if (copy_in_user(&cioc->frame.hdr.cmd_status,
2677 &ioc->frame.hdr.cmd_status, sizeof(u8))) {
2678 printk(KERN_DEBUG "megasas: error copy_in_user cmd_status\n");
2679 return -EFAULT;
2680 }
2681 return error;
2682}
2683
2684static long
2685megasas_mgmt_compat_ioctl(struct file *file, unsigned int cmd,
2686 unsigned long arg)
2687{
2688 switch (cmd) {
2689 case MEGASAS_IOC_FIRMWARE:{
2690 return megasas_mgmt_compat_ioctl_fw(file, arg);
2691 }
2692 case MEGASAS_IOC_GET_AEN:
2693 return megasas_mgmt_ioctl_aen(file, arg);
2694 }
2695
2696 return -ENOTTY;
2697}
2698#endif
2699
2700/*
2701 * File operations structure for management interface
2702 */
2703static struct file_operations megasas_mgmt_fops = {
2704 .owner = THIS_MODULE,
2705 .open = megasas_mgmt_open,
2706 .release = megasas_mgmt_release,
2707 .fasync = megasas_mgmt_fasync,
2708 .unlocked_ioctl = megasas_mgmt_ioctl,
2709#ifdef CONFIG_COMPAT
2710 .compat_ioctl = megasas_mgmt_compat_ioctl,
2711#endif
2712};
2713
2714/*
2715 * PCI hotplug support registration structure
2716 */
2717static struct pci_driver megasas_pci_driver = {
2718
2719 .name = "megaraid_sas",
2720 .id_table = megasas_pci_table,
2721 .probe = megasas_probe_one,
2722 .remove = __devexit_p(megasas_detach_one),
2723 .shutdown = megasas_shutdown,
2724};
2725
2726/*
2727 * Sysfs driver attributes
2728 */
2729static ssize_t megasas_sysfs_show_version(struct device_driver *dd, char *buf)
2730{
2731 return snprintf(buf, strlen(MEGASAS_VERSION) + 2, "%s\n",
2732 MEGASAS_VERSION);
2733}
2734
2735static DRIVER_ATTR(version, S_IRUGO, megasas_sysfs_show_version, NULL);
2736
2737static ssize_t
2738megasas_sysfs_show_release_date(struct device_driver *dd, char *buf)
2739{
2740 return snprintf(buf, strlen(MEGASAS_RELDATE) + 2, "%s\n",
2741 MEGASAS_RELDATE);
2742}
2743
2744static DRIVER_ATTR(release_date, S_IRUGO, megasas_sysfs_show_release_date,
2745 NULL);
2746
2747/**
2748 * megasas_init - Driver load entry point
2749 */
2750static int __init megasas_init(void)
2751{
2752 int rval;
2753
2754 /*
2755 * Announce driver version and other information
2756 */
2757 printk(KERN_INFO "megasas: %s %s\n", MEGASAS_VERSION,
2758 MEGASAS_EXT_VERSION);
2759
2760 memset(&megasas_mgmt_info, 0, sizeof(megasas_mgmt_info));
2761
2762 /*
2763 * Register character device node
2764 */
2765 rval = register_chrdev(0, "megaraid_sas_ioctl", &megasas_mgmt_fops);
2766
2767 if (rval < 0) {
2768 printk(KERN_DEBUG "megasas: failed to open device node\n");
2769 return rval;
2770 }
2771
2772 megasas_mgmt_majorno = rval;
2773
2774 /*
2775 * Register ourselves as PCI hotplug module
2776 */
2777 rval = pci_module_init(&megasas_pci_driver);
2778
2779 if (rval) {
2780 printk(KERN_DEBUG "megasas: PCI hotplug regisration failed \n");
2781 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2782 }
2783
2784 driver_create_file(&megasas_pci_driver.driver, &driver_attr_version);
2785 driver_create_file(&megasas_pci_driver.driver,
2786 &driver_attr_release_date);
2787
2788 return rval;
2789}
2790
2791/**
2792 * megasas_exit - Driver unload entry point
2793 */
2794static void __exit megasas_exit(void)
2795{
2796 driver_remove_file(&megasas_pci_driver.driver, &driver_attr_version);
2797 driver_remove_file(&megasas_pci_driver.driver,
2798 &driver_attr_release_date);
2799
2800 pci_unregister_driver(&megasas_pci_driver);
2801 unregister_chrdev(megasas_mgmt_majorno, "megaraid_sas_ioctl");
2802}
2803
2804module_init(megasas_init);
2805module_exit(megasas_exit);
diff --git a/drivers/scsi/megaraid/megaraid_sas.h b/drivers/scsi/megaraid/megaraid_sas.h
new file mode 100644
index 000000000000..eaec9d531424
--- /dev/null
+++ b/drivers/scsi/megaraid/megaraid_sas.h
@@ -0,0 +1,1142 @@
1/*
2 *
3 * Linux MegaRAID driver for SAS based RAID controllers
4 *
5 * Copyright (c) 2003-2005 LSI Logic Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 *
12 * FILE : megaraid_sas.h
13 */
14
15#ifndef LSI_MEGARAID_SAS_H
16#define LSI_MEGARAID_SAS_H
17
18/**
19 * MegaRAID SAS Driver meta data
20 */
21#define MEGASAS_VERSION "00.00.02.00-rc4"
22#define MEGASAS_RELDATE "Sep 16, 2005"
23#define MEGASAS_EXT_VERSION "Fri Sep 16 12:37:08 EDT 2005"
24
25/*
26 * =====================================
27 * MegaRAID SAS MFI firmware definitions
28 * =====================================
29 */
30
31/*
32 * MFI stands for MegaRAID SAS FW Interface. This is just a moniker for
33 * protocol between the software and firmware. Commands are issued using
34 * "message frames"
35 */
36
37/**
38 * FW posts its state in upper 4 bits of outbound_msg_0 register
39 */
40#define MFI_STATE_MASK 0xF0000000
41#define MFI_STATE_UNDEFINED 0x00000000
42#define MFI_STATE_BB_INIT 0x10000000
43#define MFI_STATE_FW_INIT 0x40000000
44#define MFI_STATE_WAIT_HANDSHAKE 0x60000000
45#define MFI_STATE_FW_INIT_2 0x70000000
46#define MFI_STATE_DEVICE_SCAN 0x80000000
47#define MFI_STATE_FLUSH_CACHE 0xA0000000
48#define MFI_STATE_READY 0xB0000000
49#define MFI_STATE_OPERATIONAL 0xC0000000
50#define MFI_STATE_FAULT 0xF0000000
51
52#define MEGAMFI_FRAME_SIZE 64
53
54/**
55 * During FW init, clear pending cmds & reset state using inbound_msg_0
56 *
57 * ABORT : Abort all pending cmds
58 * READY : Move from OPERATIONAL to READY state; discard queue info
59 * MFIMODE : Discard (possible) low MFA posted in 64-bit mode (??)
60 * CLR_HANDSHAKE: FW is waiting for HANDSHAKE from BIOS or Driver
61 */
62#define MFI_INIT_ABORT 0x00000000
63#define MFI_INIT_READY 0x00000002
64#define MFI_INIT_MFIMODE 0x00000004
65#define MFI_INIT_CLEAR_HANDSHAKE 0x00000008
66#define MFI_RESET_FLAGS MFI_INIT_READY|MFI_INIT_MFIMODE
67
68/**
69 * MFI frame flags
70 */
71#define MFI_FRAME_POST_IN_REPLY_QUEUE 0x0000
72#define MFI_FRAME_DONT_POST_IN_REPLY_QUEUE 0x0001
73#define MFI_FRAME_SGL32 0x0000
74#define MFI_FRAME_SGL64 0x0002
75#define MFI_FRAME_SENSE32 0x0000
76#define MFI_FRAME_SENSE64 0x0004
77#define MFI_FRAME_DIR_NONE 0x0000
78#define MFI_FRAME_DIR_WRITE 0x0008
79#define MFI_FRAME_DIR_READ 0x0010
80#define MFI_FRAME_DIR_BOTH 0x0018
81
82/**
83 * Definition for cmd_status
84 */
85#define MFI_CMD_STATUS_POLL_MODE 0xFF
86
87/**
88 * MFI command opcodes
89 */
90#define MFI_CMD_INIT 0x00
91#define MFI_CMD_LD_READ 0x01
92#define MFI_CMD_LD_WRITE 0x02
93#define MFI_CMD_LD_SCSI_IO 0x03
94#define MFI_CMD_PD_SCSI_IO 0x04
95#define MFI_CMD_DCMD 0x05
96#define MFI_CMD_ABORT 0x06
97#define MFI_CMD_SMP 0x07
98#define MFI_CMD_STP 0x08
99
100#define MR_DCMD_CTRL_GET_INFO 0x01010000
101
102#define MR_DCMD_CTRL_CACHE_FLUSH 0x01101000
103#define MR_FLUSH_CTRL_CACHE 0x01
104#define MR_FLUSH_DISK_CACHE 0x02
105
106#define MR_DCMD_CTRL_SHUTDOWN 0x01050000
107#define MR_ENABLE_DRIVE_SPINDOWN 0x01
108
109#define MR_DCMD_CTRL_EVENT_GET_INFO 0x01040100
110#define MR_DCMD_CTRL_EVENT_GET 0x01040300
111#define MR_DCMD_CTRL_EVENT_WAIT 0x01040500
112#define MR_DCMD_LD_GET_PROPERTIES 0x03030000
113
114#define MR_DCMD_CLUSTER 0x08000000
115#define MR_DCMD_CLUSTER_RESET_ALL 0x08010100
116#define MR_DCMD_CLUSTER_RESET_LD 0x08010200
117
118/**
119 * MFI command completion codes
120 */
121enum MFI_STAT {
122 MFI_STAT_OK = 0x00,
123 MFI_STAT_INVALID_CMD = 0x01,
124 MFI_STAT_INVALID_DCMD = 0x02,
125 MFI_STAT_INVALID_PARAMETER = 0x03,
126 MFI_STAT_INVALID_SEQUENCE_NUMBER = 0x04,
127 MFI_STAT_ABORT_NOT_POSSIBLE = 0x05,
128 MFI_STAT_APP_HOST_CODE_NOT_FOUND = 0x06,
129 MFI_STAT_APP_IN_USE = 0x07,
130 MFI_STAT_APP_NOT_INITIALIZED = 0x08,
131 MFI_STAT_ARRAY_INDEX_INVALID = 0x09,
132 MFI_STAT_ARRAY_ROW_NOT_EMPTY = 0x0a,
133 MFI_STAT_CONFIG_RESOURCE_CONFLICT = 0x0b,
134 MFI_STAT_DEVICE_NOT_FOUND = 0x0c,
135 MFI_STAT_DRIVE_TOO_SMALL = 0x0d,
136 MFI_STAT_FLASH_ALLOC_FAIL = 0x0e,
137 MFI_STAT_FLASH_BUSY = 0x0f,
138 MFI_STAT_FLASH_ERROR = 0x10,
139 MFI_STAT_FLASH_IMAGE_BAD = 0x11,
140 MFI_STAT_FLASH_IMAGE_INCOMPLETE = 0x12,
141 MFI_STAT_FLASH_NOT_OPEN = 0x13,
142 MFI_STAT_FLASH_NOT_STARTED = 0x14,
143 MFI_STAT_FLUSH_FAILED = 0x15,
144 MFI_STAT_HOST_CODE_NOT_FOUNT = 0x16,
145 MFI_STAT_LD_CC_IN_PROGRESS = 0x17,
146 MFI_STAT_LD_INIT_IN_PROGRESS = 0x18,
147 MFI_STAT_LD_LBA_OUT_OF_RANGE = 0x19,
148 MFI_STAT_LD_MAX_CONFIGURED = 0x1a,
149 MFI_STAT_LD_NOT_OPTIMAL = 0x1b,
150 MFI_STAT_LD_RBLD_IN_PROGRESS = 0x1c,
151 MFI_STAT_LD_RECON_IN_PROGRESS = 0x1d,
152 MFI_STAT_LD_WRONG_RAID_LEVEL = 0x1e,
153 MFI_STAT_MAX_SPARES_EXCEEDED = 0x1f,
154 MFI_STAT_MEMORY_NOT_AVAILABLE = 0x20,
155 MFI_STAT_MFC_HW_ERROR = 0x21,
156 MFI_STAT_NO_HW_PRESENT = 0x22,
157 MFI_STAT_NOT_FOUND = 0x23,
158 MFI_STAT_NOT_IN_ENCL = 0x24,
159 MFI_STAT_PD_CLEAR_IN_PROGRESS = 0x25,
160 MFI_STAT_PD_TYPE_WRONG = 0x26,
161 MFI_STAT_PR_DISABLED = 0x27,
162 MFI_STAT_ROW_INDEX_INVALID = 0x28,
163 MFI_STAT_SAS_CONFIG_INVALID_ACTION = 0x29,
164 MFI_STAT_SAS_CONFIG_INVALID_DATA = 0x2a,
165 MFI_STAT_SAS_CONFIG_INVALID_PAGE = 0x2b,
166 MFI_STAT_SAS_CONFIG_INVALID_TYPE = 0x2c,
167 MFI_STAT_SCSI_DONE_WITH_ERROR = 0x2d,
168 MFI_STAT_SCSI_IO_FAILED = 0x2e,
169 MFI_STAT_SCSI_RESERVATION_CONFLICT = 0x2f,
170 MFI_STAT_SHUTDOWN_FAILED = 0x30,
171 MFI_STAT_TIME_NOT_SET = 0x31,
172 MFI_STAT_WRONG_STATE = 0x32,
173 MFI_STAT_LD_OFFLINE = 0x33,
174 MFI_STAT_PEER_NOTIFICATION_REJECTED = 0x34,
175 MFI_STAT_PEER_NOTIFICATION_FAILED = 0x35,
176 MFI_STAT_RESERVATION_IN_PROGRESS = 0x36,
177 MFI_STAT_I2C_ERRORS_DETECTED = 0x37,
178 MFI_STAT_PCI_ERRORS_DETECTED = 0x38,
179
180 MFI_STAT_INVALID_STATUS = 0xFF
181};
182
183/*
184 * Number of mailbox bytes in DCMD message frame
185 */
186#define MFI_MBOX_SIZE 12
187
188enum MR_EVT_CLASS {
189
190 MR_EVT_CLASS_DEBUG = -2,
191 MR_EVT_CLASS_PROGRESS = -1,
192 MR_EVT_CLASS_INFO = 0,
193 MR_EVT_CLASS_WARNING = 1,
194 MR_EVT_CLASS_CRITICAL = 2,
195 MR_EVT_CLASS_FATAL = 3,
196 MR_EVT_CLASS_DEAD = 4,
197
198};
199
200enum MR_EVT_LOCALE {
201
202 MR_EVT_LOCALE_LD = 0x0001,
203 MR_EVT_LOCALE_PD = 0x0002,
204 MR_EVT_LOCALE_ENCL = 0x0004,
205 MR_EVT_LOCALE_BBU = 0x0008,
206 MR_EVT_LOCALE_SAS = 0x0010,
207 MR_EVT_LOCALE_CTRL = 0x0020,
208 MR_EVT_LOCALE_CONFIG = 0x0040,
209 MR_EVT_LOCALE_CLUSTER = 0x0080,
210 MR_EVT_LOCALE_ALL = 0xffff,
211
212};
213
214enum MR_EVT_ARGS {
215
216 MR_EVT_ARGS_NONE,
217 MR_EVT_ARGS_CDB_SENSE,
218 MR_EVT_ARGS_LD,
219 MR_EVT_ARGS_LD_COUNT,
220 MR_EVT_ARGS_LD_LBA,
221 MR_EVT_ARGS_LD_OWNER,
222 MR_EVT_ARGS_LD_LBA_PD_LBA,
223 MR_EVT_ARGS_LD_PROG,
224 MR_EVT_ARGS_LD_STATE,
225 MR_EVT_ARGS_LD_STRIP,
226 MR_EVT_ARGS_PD,
227 MR_EVT_ARGS_PD_ERR,
228 MR_EVT_ARGS_PD_LBA,
229 MR_EVT_ARGS_PD_LBA_LD,
230 MR_EVT_ARGS_PD_PROG,
231 MR_EVT_ARGS_PD_STATE,
232 MR_EVT_ARGS_PCI,
233 MR_EVT_ARGS_RATE,
234 MR_EVT_ARGS_STR,
235 MR_EVT_ARGS_TIME,
236 MR_EVT_ARGS_ECC,
237
238};
239
240/*
241 * SAS controller properties
242 */
243struct megasas_ctrl_prop {
244
245 u16 seq_num;
246 u16 pred_fail_poll_interval;
247 u16 intr_throttle_count;
248 u16 intr_throttle_timeouts;
249 u8 rebuild_rate;
250 u8 patrol_read_rate;
251 u8 bgi_rate;
252 u8 cc_rate;
253 u8 recon_rate;
254 u8 cache_flush_interval;
255 u8 spinup_drv_count;
256 u8 spinup_delay;
257 u8 cluster_enable;
258 u8 coercion_mode;
259 u8 alarm_enable;
260 u8 disable_auto_rebuild;
261 u8 disable_battery_warn;
262 u8 ecc_bucket_size;
263 u16 ecc_bucket_leak_rate;
264 u8 restore_hotspare_on_insertion;
265 u8 expose_encl_devices;
266 u8 reserved[38];
267
268} __attribute__ ((packed));
269
270/*
271 * SAS controller information
272 */
273struct megasas_ctrl_info {
274
275 /*
276 * PCI device information
277 */
278 struct {
279
280 u16 vendor_id;
281 u16 device_id;
282 u16 sub_vendor_id;
283 u16 sub_device_id;
284 u8 reserved[24];
285
286 } __attribute__ ((packed)) pci;
287
288 /*
289 * Host interface information
290 */
291 struct {
292
293 u8 PCIX:1;
294 u8 PCIE:1;
295 u8 iSCSI:1;
296 u8 SAS_3G:1;
297 u8 reserved_0:4;
298 u8 reserved_1[6];
299 u8 port_count;
300 u64 port_addr[8];
301
302 } __attribute__ ((packed)) host_interface;
303
304 /*
305 * Device (backend) interface information
306 */
307 struct {
308
309 u8 SPI:1;
310 u8 SAS_3G:1;
311 u8 SATA_1_5G:1;
312 u8 SATA_3G:1;
313 u8 reserved_0:4;
314 u8 reserved_1[6];
315 u8 port_count;
316 u64 port_addr[8];
317
318 } __attribute__ ((packed)) device_interface;
319
320 /*
321 * List of components residing in flash. All str are null terminated
322 */
323 u32 image_check_word;
324 u32 image_component_count;
325
326 struct {
327
328 char name[8];
329 char version[32];
330 char build_date[16];
331 char built_time[16];
332
333 } __attribute__ ((packed)) image_component[8];
334
335 /*
336 * List of flash components that have been flashed on the card, but
337 * are not in use, pending reset of the adapter. This list will be
338 * empty if a flash operation has not occurred. All stings are null
339 * terminated
340 */
341 u32 pending_image_component_count;
342
343 struct {
344
345 char name[8];
346 char version[32];
347 char build_date[16];
348 char build_time[16];
349
350 } __attribute__ ((packed)) pending_image_component[8];
351
352 u8 max_arms;
353 u8 max_spans;
354 u8 max_arrays;
355 u8 max_lds;
356
357 char product_name[80];
358 char serial_no[32];
359
360 /*
361 * Other physical/controller/operation information. Indicates the
362 * presence of the hardware
363 */
364 struct {
365
366 u32 bbu:1;
367 u32 alarm:1;
368 u32 nvram:1;
369 u32 uart:1;
370 u32 reserved:28;
371
372 } __attribute__ ((packed)) hw_present;
373
374 u32 current_fw_time;
375
376 /*
377 * Maximum data transfer sizes
378 */
379 u16 max_concurrent_cmds;
380 u16 max_sge_count;
381 u32 max_request_size;
382
383 /*
384 * Logical and physical device counts
385 */
386 u16 ld_present_count;
387 u16 ld_degraded_count;
388 u16 ld_offline_count;
389
390 u16 pd_present_count;
391 u16 pd_disk_present_count;
392 u16 pd_disk_pred_failure_count;
393 u16 pd_disk_failed_count;
394
395 /*
396 * Memory size information
397 */
398 u16 nvram_size;
399 u16 memory_size;
400 u16 flash_size;
401
402 /*
403 * Error counters
404 */
405 u16 mem_correctable_error_count;
406 u16 mem_uncorrectable_error_count;
407
408 /*
409 * Cluster information
410 */
411 u8 cluster_permitted;
412 u8 cluster_active;
413
414 /*
415 * Additional max data transfer sizes
416 */
417 u16 max_strips_per_io;
418
419 /*
420 * Controller capabilities structures
421 */
422 struct {
423
424 u32 raid_level_0:1;
425 u32 raid_level_1:1;
426 u32 raid_level_5:1;
427 u32 raid_level_1E:1;
428 u32 raid_level_6:1;
429 u32 reserved:27;
430
431 } __attribute__ ((packed)) raid_levels;
432
433 struct {
434
435 u32 rbld_rate:1;
436 u32 cc_rate:1;
437 u32 bgi_rate:1;
438 u32 recon_rate:1;
439 u32 patrol_rate:1;
440 u32 alarm_control:1;
441 u32 cluster_supported:1;
442 u32 bbu:1;
443 u32 spanning_allowed:1;
444 u32 dedicated_hotspares:1;
445 u32 revertible_hotspares:1;
446 u32 foreign_config_import:1;
447 u32 self_diagnostic:1;
448 u32 mixed_redundancy_arr:1;
449 u32 global_hot_spares:1;
450 u32 reserved:17;
451
452 } __attribute__ ((packed)) adapter_operations;
453
454 struct {
455
456 u32 read_policy:1;
457 u32 write_policy:1;
458 u32 io_policy:1;
459 u32 access_policy:1;
460 u32 disk_cache_policy:1;
461 u32 reserved:27;
462
463 } __attribute__ ((packed)) ld_operations;
464
465 struct {
466
467 u8 min;
468 u8 max;
469 u8 reserved[2];
470
471 } __attribute__ ((packed)) stripe_sz_ops;
472
473 struct {
474
475 u32 force_online:1;
476 u32 force_offline:1;
477 u32 force_rebuild:1;
478 u32 reserved:29;
479
480 } __attribute__ ((packed)) pd_operations;
481
482 struct {
483
484 u32 ctrl_supports_sas:1;
485 u32 ctrl_supports_sata:1;
486 u32 allow_mix_in_encl:1;
487 u32 allow_mix_in_ld:1;
488 u32 allow_sata_in_cluster:1;
489 u32 reserved:27;
490
491 } __attribute__ ((packed)) pd_mix_support;
492
493 /*
494 * Define ECC single-bit-error bucket information
495 */
496 u8 ecc_bucket_count;
497 u8 reserved_2[11];
498
499 /*
500 * Include the controller properties (changeable items)
501 */
502 struct megasas_ctrl_prop properties;
503
504 /*
505 * Define FW pkg version (set in envt v'bles on OEM basis)
506 */
507 char package_version[0x60];
508
509 u8 pad[0x800 - 0x6a0];
510
511} __attribute__ ((packed));
512
513/*
514 * ===============================
515 * MegaRAID SAS driver definitions
516 * ===============================
517 */
518#define MEGASAS_MAX_PD_CHANNELS 2
519#define MEGASAS_MAX_LD_CHANNELS 2
520#define MEGASAS_MAX_CHANNELS (MEGASAS_MAX_PD_CHANNELS + \
521 MEGASAS_MAX_LD_CHANNELS)
522#define MEGASAS_MAX_DEV_PER_CHANNEL 128
523#define MEGASAS_DEFAULT_INIT_ID -1
524#define MEGASAS_MAX_LUN 8
525#define MEGASAS_MAX_LD 64
526
527/*
528 * When SCSI mid-layer calls driver's reset routine, driver waits for
529 * MEGASAS_RESET_WAIT_TIME seconds for all outstanding IO to complete. Note
530 * that the driver cannot _actually_ abort or reset pending commands. While
531 * it is waiting for the commands to complete, it prints a diagnostic message
532 * every MEGASAS_RESET_NOTICE_INTERVAL seconds
533 */
534#define MEGASAS_RESET_WAIT_TIME 180
535#define MEGASAS_RESET_NOTICE_INTERVAL 5
536
537#define MEGASAS_IOCTL_CMD 0
538
539/*
540 * FW reports the maximum of number of commands that it can accept (maximum
541 * commands that can be outstanding) at any time. The driver must report a
542 * lower number to the mid layer because it can issue a few internal commands
543 * itself (E.g, AEN, abort cmd, IOCTLs etc). The number of commands it needs
544 * is shown below
545 */
546#define MEGASAS_INT_CMDS 32
547
548/*
549 * FW can accept both 32 and 64 bit SGLs. We want to allocate 32/64 bit
550 * SGLs based on the size of dma_addr_t
551 */
552#define IS_DMA64 (sizeof(dma_addr_t) == 8)
553
554#define MFI_OB_INTR_STATUS_MASK 0x00000002
555#define MFI_POLL_TIMEOUT_SECS 10
556
557struct megasas_register_set {
558
559 u32 reserved_0[4]; /*0000h */
560
561 u32 inbound_msg_0; /*0010h */
562 u32 inbound_msg_1; /*0014h */
563 u32 outbound_msg_0; /*0018h */
564 u32 outbound_msg_1; /*001Ch */
565
566 u32 inbound_doorbell; /*0020h */
567 u32 inbound_intr_status; /*0024h */
568 u32 inbound_intr_mask; /*0028h */
569
570 u32 outbound_doorbell; /*002Ch */
571 u32 outbound_intr_status; /*0030h */
572 u32 outbound_intr_mask; /*0034h */
573
574 u32 reserved_1[2]; /*0038h */
575
576 u32 inbound_queue_port; /*0040h */
577 u32 outbound_queue_port; /*0044h */
578
579 u32 reserved_2; /*004Ch */
580
581 u32 index_registers[1004]; /*0050h */
582
583} __attribute__ ((packed));
584
585struct megasas_sge32 {
586
587 u32 phys_addr;
588 u32 length;
589
590} __attribute__ ((packed));
591
592struct megasas_sge64 {
593
594 u64 phys_addr;
595 u32 length;
596
597} __attribute__ ((packed));
598
599union megasas_sgl {
600
601 struct megasas_sge32 sge32[1];
602 struct megasas_sge64 sge64[1];
603
604} __attribute__ ((packed));
605
606struct megasas_header {
607
608 u8 cmd; /*00h */
609 u8 sense_len; /*01h */
610 u8 cmd_status; /*02h */
611 u8 scsi_status; /*03h */
612
613 u8 target_id; /*04h */
614 u8 lun; /*05h */
615 u8 cdb_len; /*06h */
616 u8 sge_count; /*07h */
617
618 u32 context; /*08h */
619 u32 pad_0; /*0Ch */
620
621 u16 flags; /*10h */
622 u16 timeout; /*12h */
623 u32 data_xferlen; /*14h */
624
625} __attribute__ ((packed));
626
627union megasas_sgl_frame {
628
629 struct megasas_sge32 sge32[8];
630 struct megasas_sge64 sge64[5];
631
632} __attribute__ ((packed));
633
634struct megasas_init_frame {
635
636 u8 cmd; /*00h */
637 u8 reserved_0; /*01h */
638 u8 cmd_status; /*02h */
639
640 u8 reserved_1; /*03h */
641 u32 reserved_2; /*04h */
642
643 u32 context; /*08h */
644 u32 pad_0; /*0Ch */
645
646 u16 flags; /*10h */
647 u16 reserved_3; /*12h */
648 u32 data_xfer_len; /*14h */
649
650 u32 queue_info_new_phys_addr_lo; /*18h */
651 u32 queue_info_new_phys_addr_hi; /*1Ch */
652 u32 queue_info_old_phys_addr_lo; /*20h */
653 u32 queue_info_old_phys_addr_hi; /*24h */
654
655 u32 reserved_4[6]; /*28h */
656
657} __attribute__ ((packed));
658
659struct megasas_init_queue_info {
660
661 u32 init_flags; /*00h */
662 u32 reply_queue_entries; /*04h */
663
664 u32 reply_queue_start_phys_addr_lo; /*08h */
665 u32 reply_queue_start_phys_addr_hi; /*0Ch */
666 u32 producer_index_phys_addr_lo; /*10h */
667 u32 producer_index_phys_addr_hi; /*14h */
668 u32 consumer_index_phys_addr_lo; /*18h */
669 u32 consumer_index_phys_addr_hi; /*1Ch */
670
671} __attribute__ ((packed));
672
673struct megasas_io_frame {
674
675 u8 cmd; /*00h */
676 u8 sense_len; /*01h */
677 u8 cmd_status; /*02h */
678 u8 scsi_status; /*03h */
679
680 u8 target_id; /*04h */
681 u8 access_byte; /*05h */
682 u8 reserved_0; /*06h */
683 u8 sge_count; /*07h */
684
685 u32 context; /*08h */
686 u32 pad_0; /*0Ch */
687
688 u16 flags; /*10h */
689 u16 timeout; /*12h */
690 u32 lba_count; /*14h */
691
692 u32 sense_buf_phys_addr_lo; /*18h */
693 u32 sense_buf_phys_addr_hi; /*1Ch */
694
695 u32 start_lba_lo; /*20h */
696 u32 start_lba_hi; /*24h */
697
698 union megasas_sgl sgl; /*28h */
699
700} __attribute__ ((packed));
701
702struct megasas_pthru_frame {
703
704 u8 cmd; /*00h */
705 u8 sense_len; /*01h */
706 u8 cmd_status; /*02h */
707 u8 scsi_status; /*03h */
708
709 u8 target_id; /*04h */
710 u8 lun; /*05h */
711 u8 cdb_len; /*06h */
712 u8 sge_count; /*07h */
713
714 u32 context; /*08h */
715 u32 pad_0; /*0Ch */
716
717 u16 flags; /*10h */
718 u16 timeout; /*12h */
719 u32 data_xfer_len; /*14h */
720
721 u32 sense_buf_phys_addr_lo; /*18h */
722 u32 sense_buf_phys_addr_hi; /*1Ch */
723
724 u8 cdb[16]; /*20h */
725 union megasas_sgl sgl; /*30h */
726
727} __attribute__ ((packed));
728
729struct megasas_dcmd_frame {
730
731 u8 cmd; /*00h */
732 u8 reserved_0; /*01h */
733 u8 cmd_status; /*02h */
734 u8 reserved_1[4]; /*03h */
735 u8 sge_count; /*07h */
736
737 u32 context; /*08h */
738 u32 pad_0; /*0Ch */
739
740 u16 flags; /*10h */
741 u16 timeout; /*12h */
742
743 u32 data_xfer_len; /*14h */
744 u32 opcode; /*18h */
745
746 union { /*1Ch */
747 u8 b[12];
748 u16 s[6];
749 u32 w[3];
750 } mbox;
751
752 union megasas_sgl sgl; /*28h */
753
754} __attribute__ ((packed));
755
756struct megasas_abort_frame {
757
758 u8 cmd; /*00h */
759 u8 reserved_0; /*01h */
760 u8 cmd_status; /*02h */
761
762 u8 reserved_1; /*03h */
763 u32 reserved_2; /*04h */
764
765 u32 context; /*08h */
766 u32 pad_0; /*0Ch */
767
768 u16 flags; /*10h */
769 u16 reserved_3; /*12h */
770 u32 reserved_4; /*14h */
771
772 u32 abort_context; /*18h */
773 u32 pad_1; /*1Ch */
774
775 u32 abort_mfi_phys_addr_lo; /*20h */
776 u32 abort_mfi_phys_addr_hi; /*24h */
777
778 u32 reserved_5[6]; /*28h */
779
780} __attribute__ ((packed));
781
782struct megasas_smp_frame {
783
784 u8 cmd; /*00h */
785 u8 reserved_1; /*01h */
786 u8 cmd_status; /*02h */
787 u8 connection_status; /*03h */
788
789 u8 reserved_2[3]; /*04h */
790 u8 sge_count; /*07h */
791
792 u32 context; /*08h */
793 u32 pad_0; /*0Ch */
794
795 u16 flags; /*10h */
796 u16 timeout; /*12h */
797
798 u32 data_xfer_len; /*14h */
799 u64 sas_addr; /*18h */
800
801 union {
802 struct megasas_sge32 sge32[2]; /* [0]: resp [1]: req */
803 struct megasas_sge64 sge64[2]; /* [0]: resp [1]: req */
804 } sgl;
805
806} __attribute__ ((packed));
807
808struct megasas_stp_frame {
809
810 u8 cmd; /*00h */
811 u8 reserved_1; /*01h */
812 u8 cmd_status; /*02h */
813 u8 reserved_2; /*03h */
814
815 u8 target_id; /*04h */
816 u8 reserved_3[2]; /*05h */
817 u8 sge_count; /*07h */
818
819 u32 context; /*08h */
820 u32 pad_0; /*0Ch */
821
822 u16 flags; /*10h */
823 u16 timeout; /*12h */
824
825 u32 data_xfer_len; /*14h */
826
827 u16 fis[10]; /*18h */
828 u32 stp_flags;
829
830 union {
831 struct megasas_sge32 sge32[2]; /* [0]: resp [1]: data */
832 struct megasas_sge64 sge64[2]; /* [0]: resp [1]: data */
833 } sgl;
834
835} __attribute__ ((packed));
836
837union megasas_frame {
838
839 struct megasas_header hdr;
840 struct megasas_init_frame init;
841 struct megasas_io_frame io;
842 struct megasas_pthru_frame pthru;
843 struct megasas_dcmd_frame dcmd;
844 struct megasas_abort_frame abort;
845 struct megasas_smp_frame smp;
846 struct megasas_stp_frame stp;
847
848 u8 raw_bytes[64];
849};
850
851struct megasas_cmd;
852
853union megasas_evt_class_locale {
854
855 struct {
856 u16 locale;
857 u8 reserved;
858 s8 class;
859 } __attribute__ ((packed)) members;
860
861 u32 word;
862
863} __attribute__ ((packed));
864
865struct megasas_evt_log_info {
866 u32 newest_seq_num;
867 u32 oldest_seq_num;
868 u32 clear_seq_num;
869 u32 shutdown_seq_num;
870 u32 boot_seq_num;
871
872} __attribute__ ((packed));
873
874struct megasas_progress {
875
876 u16 progress;
877 u16 elapsed_seconds;
878
879} __attribute__ ((packed));
880
881struct megasas_evtarg_ld {
882
883 u16 target_id;
884 u8 ld_index;
885 u8 reserved;
886
887} __attribute__ ((packed));
888
889struct megasas_evtarg_pd {
890 u16 device_id;
891 u8 encl_index;
892 u8 slot_number;
893
894} __attribute__ ((packed));
895
896struct megasas_evt_detail {
897
898 u32 seq_num;
899 u32 time_stamp;
900 u32 code;
901 union megasas_evt_class_locale cl;
902 u8 arg_type;
903 u8 reserved1[15];
904
905 union {
906 struct {
907 struct megasas_evtarg_pd pd;
908 u8 cdb_length;
909 u8 sense_length;
910 u8 reserved[2];
911 u8 cdb[16];
912 u8 sense[64];
913 } __attribute__ ((packed)) cdbSense;
914
915 struct megasas_evtarg_ld ld;
916
917 struct {
918 struct megasas_evtarg_ld ld;
919 u64 count;
920 } __attribute__ ((packed)) ld_count;
921
922 struct {
923 u64 lba;
924 struct megasas_evtarg_ld ld;
925 } __attribute__ ((packed)) ld_lba;
926
927 struct {
928 struct megasas_evtarg_ld ld;
929 u32 prevOwner;
930 u32 newOwner;
931 } __attribute__ ((packed)) ld_owner;
932
933 struct {
934 u64 ld_lba;
935 u64 pd_lba;
936 struct megasas_evtarg_ld ld;
937 struct megasas_evtarg_pd pd;
938 } __attribute__ ((packed)) ld_lba_pd_lba;
939
940 struct {
941 struct megasas_evtarg_ld ld;
942 struct megasas_progress prog;
943 } __attribute__ ((packed)) ld_prog;
944
945 struct {
946 struct megasas_evtarg_ld ld;
947 u32 prev_state;
948 u32 new_state;
949 } __attribute__ ((packed)) ld_state;
950
951 struct {
952 u64 strip;
953 struct megasas_evtarg_ld ld;
954 } __attribute__ ((packed)) ld_strip;
955
956 struct megasas_evtarg_pd pd;
957
958 struct {
959 struct megasas_evtarg_pd pd;
960 u32 err;
961 } __attribute__ ((packed)) pd_err;
962
963 struct {
964 u64 lba;
965 struct megasas_evtarg_pd pd;
966 } __attribute__ ((packed)) pd_lba;
967
968 struct {
969 u64 lba;
970 struct megasas_evtarg_pd pd;
971 struct megasas_evtarg_ld ld;
972 } __attribute__ ((packed)) pd_lba_ld;
973
974 struct {
975 struct megasas_evtarg_pd pd;
976 struct megasas_progress prog;
977 } __attribute__ ((packed)) pd_prog;
978
979 struct {
980 struct megasas_evtarg_pd pd;
981 u32 prevState;
982 u32 newState;
983 } __attribute__ ((packed)) pd_state;
984
985 struct {
986 u16 vendorId;
987 u16 deviceId;
988 u16 subVendorId;
989 u16 subDeviceId;
990 } __attribute__ ((packed)) pci;
991
992 u32 rate;
993 char str[96];
994
995 struct {
996 u32 rtc;
997 u32 elapsedSeconds;
998 } __attribute__ ((packed)) time;
999
1000 struct {
1001 u32 ecar;
1002 u32 elog;
1003 char str[64];
1004 } __attribute__ ((packed)) ecc;
1005
1006 u8 b[96];
1007 u16 s[48];
1008 u32 w[24];
1009 u64 d[12];
1010 } args;
1011
1012 char description[128];
1013
1014} __attribute__ ((packed));
1015
1016struct megasas_instance {
1017
1018 u32 *producer;
1019 dma_addr_t producer_h;
1020 u32 *consumer;
1021 dma_addr_t consumer_h;
1022
1023 u32 *reply_queue;
1024 dma_addr_t reply_queue_h;
1025
1026 unsigned long base_addr;
1027 struct megasas_register_set __iomem *reg_set;
1028
1029 s8 init_id;
1030 u8 reserved[3];
1031
1032 u16 max_num_sge;
1033 u16 max_fw_cmds;
1034 u32 max_sectors_per_req;
1035
1036 struct megasas_cmd **cmd_list;
1037 struct list_head cmd_pool;
1038 spinlock_t cmd_pool_lock;
1039 struct dma_pool *frame_dma_pool;
1040 struct dma_pool *sense_dma_pool;
1041
1042 struct megasas_evt_detail *evt_detail;
1043 dma_addr_t evt_detail_h;
1044 struct megasas_cmd *aen_cmd;
1045 struct semaphore aen_mutex;
1046 struct semaphore ioctl_sem;
1047
1048 struct Scsi_Host *host;
1049
1050 wait_queue_head_t int_cmd_wait_q;
1051 wait_queue_head_t abort_cmd_wait_q;
1052
1053 struct pci_dev *pdev;
1054 u32 unique_id;
1055
1056 u32 fw_outstanding;
1057 u32 hw_crit_error;
1058 spinlock_t instance_lock;
1059};
1060
1061#define MEGASAS_IS_LOGICAL(scp) \
1062 (scp->device->channel < MEGASAS_MAX_PD_CHANNELS) ? 0 : 1
1063
1064#define MEGASAS_DEV_INDEX(inst, scp) \
1065 ((scp->device->channel % 2) * MEGASAS_MAX_DEV_PER_CHANNEL) + \
1066 scp->device->id
1067
1068struct megasas_cmd {
1069
1070 union megasas_frame *frame;
1071 dma_addr_t frame_phys_addr;
1072 u8 *sense;
1073 dma_addr_t sense_phys_addr;
1074
1075 u32 index;
1076 u8 sync_cmd;
1077 u8 cmd_status;
1078 u16 abort_aen;
1079
1080 struct list_head list;
1081 struct scsi_cmnd *scmd;
1082 struct megasas_instance *instance;
1083 u32 frame_count;
1084};
1085
1086#define MAX_MGMT_ADAPTERS 1024
1087#define MAX_IOCTL_SGE 16
1088
1089struct megasas_iocpacket {
1090
1091 u16 host_no;
1092 u16 __pad1;
1093 u32 sgl_off;
1094 u32 sge_count;
1095 u32 sense_off;
1096 u32 sense_len;
1097 union {
1098 u8 raw[128];
1099 struct megasas_header hdr;
1100 } frame;
1101
1102 struct iovec sgl[MAX_IOCTL_SGE];
1103
1104} __attribute__ ((packed));
1105
1106struct megasas_aen {
1107 u16 host_no;
1108 u16 __pad1;
1109 u32 seq_num;
1110 u32 class_locale_word;
1111} __attribute__ ((packed));
1112
1113#ifdef CONFIG_COMPAT
1114struct compat_megasas_iocpacket {
1115 u16 host_no;
1116 u16 __pad1;
1117 u32 sgl_off;
1118 u32 sge_count;
1119 u32 sense_off;
1120 u32 sense_len;
1121 union {
1122 u8 raw[128];
1123 struct megasas_header hdr;
1124 } frame;
1125 struct compat_iovec sgl[MAX_IOCTL_SGE];
1126} __attribute__ ((packed));
1127
1128#define MEGASAS_IOC_FIRMWARE _IOWR('M', 1, struct compat_megasas_iocpacket)
1129#else
1130#define MEGASAS_IOC_FIRMWARE _IOWR('M', 1, struct megasas_iocpacket)
1131#endif
1132
1133#define MEGASAS_IOC_GET_AEN _IOW('M', 3, struct megasas_aen)
1134
1135struct megasas_mgmt_info {
1136
1137 u16 count;
1138 struct megasas_instance *instance[MAX_MGMT_ADAPTERS];
1139 int max_index;
1140};
1141
1142#endif /*LSI_MEGARAID_SAS_H */
diff --git a/drivers/scsi/qla2xxx/qla_rscn.c b/drivers/scsi/qla2xxx/qla_rscn.c
index bdc3bc74bbe1..1eba98828636 100644
--- a/drivers/scsi/qla2xxx/qla_rscn.c
+++ b/drivers/scsi/qla2xxx/qla_rscn.c
@@ -330,6 +330,8 @@ qla2x00_update_login_fcport(scsi_qla_host_t *ha, struct mbx_entry *mbxstat,
330 fcport->flags &= ~FCF_FAILOVER_NEEDED; 330 fcport->flags &= ~FCF_FAILOVER_NEEDED;
331 fcport->iodesc_idx_sent = IODESC_INVALID_INDEX; 331 fcport->iodesc_idx_sent = IODESC_INVALID_INDEX;
332 atomic_set(&fcport->state, FCS_ONLINE); 332 atomic_set(&fcport->state, FCS_ONLINE);
333 if (fcport->rport)
334 fc_remote_port_unblock(fcport->rport);
333} 335}
334 336
335 337
diff --git a/drivers/scsi/scsi_scan.c b/drivers/scsi/scsi_scan.c
index fcf9f6cbb142..327c5d7e5bd2 100644
--- a/drivers/scsi/scsi_scan.c
+++ b/drivers/scsi/scsi_scan.c
@@ -587,6 +587,7 @@ static int scsi_probe_lun(struct scsi_device *sdev, char *inq_result,
587 if (sdev->scsi_level >= 2 || 587 if (sdev->scsi_level >= 2 ||
588 (sdev->scsi_level == 1 && (inq_result[3] & 0x0f) == 1)) 588 (sdev->scsi_level == 1 && (inq_result[3] & 0x0f) == 1))
589 sdev->scsi_level++; 589 sdev->scsi_level++;
590 sdev->sdev_target->scsi_level = sdev->scsi_level;
590 591
591 return 0; 592 return 0;
592} 593}
@@ -771,6 +772,15 @@ static int scsi_add_lun(struct scsi_device *sdev, char *inq_result, int *bflags)
771 return SCSI_SCAN_LUN_PRESENT; 772 return SCSI_SCAN_LUN_PRESENT;
772} 773}
773 774
775static inline void scsi_destroy_sdev(struct scsi_device *sdev)
776{
777 if (sdev->host->hostt->slave_destroy)
778 sdev->host->hostt->slave_destroy(sdev);
779 transport_destroy_device(&sdev->sdev_gendev);
780 put_device(&sdev->sdev_gendev);
781}
782
783
774/** 784/**
775 * scsi_probe_and_add_lun - probe a LUN, if a LUN is found add it 785 * scsi_probe_and_add_lun - probe a LUN, if a LUN is found add it
776 * @starget: pointer to target device structure 786 * @starget: pointer to target device structure
@@ -803,9 +813,9 @@ static int scsi_probe_and_add_lun(struct scsi_target *starget,
803 * The rescan flag is used as an optimization, the first scan of a 813 * The rescan flag is used as an optimization, the first scan of a
804 * host adapter calls into here with rescan == 0. 814 * host adapter calls into here with rescan == 0.
805 */ 815 */
806 if (rescan) { 816 sdev = scsi_device_lookup_by_target(starget, lun);
807 sdev = scsi_device_lookup_by_target(starget, lun); 817 if (sdev) {
808 if (sdev) { 818 if (rescan || sdev->sdev_state != SDEV_CREATED) {
809 SCSI_LOG_SCAN_BUS(3, printk(KERN_INFO 819 SCSI_LOG_SCAN_BUS(3, printk(KERN_INFO
810 "scsi scan: device exists on %s\n", 820 "scsi scan: device exists on %s\n",
811 sdev->sdev_gendev.bus_id)); 821 sdev->sdev_gendev.bus_id));
@@ -820,9 +830,9 @@ static int scsi_probe_and_add_lun(struct scsi_target *starget,
820 sdev->model); 830 sdev->model);
821 return SCSI_SCAN_LUN_PRESENT; 831 return SCSI_SCAN_LUN_PRESENT;
822 } 832 }
823 } 833 scsi_device_put(sdev);
824 834 } else
825 sdev = scsi_alloc_sdev(starget, lun, hostdata); 835 sdev = scsi_alloc_sdev(starget, lun, hostdata);
826 if (!sdev) 836 if (!sdev)
827 goto out; 837 goto out;
828 838
@@ -877,12 +887,8 @@ static int scsi_probe_and_add_lun(struct scsi_target *starget,
877 res = SCSI_SCAN_NO_RESPONSE; 887 res = SCSI_SCAN_NO_RESPONSE;
878 } 888 }
879 } 889 }
880 } else { 890 } else
881 if (sdev->host->hostt->slave_destroy) 891 scsi_destroy_sdev(sdev);
882 sdev->host->hostt->slave_destroy(sdev);
883 transport_destroy_device(&sdev->sdev_gendev);
884 put_device(&sdev->sdev_gendev);
885 }
886 out: 892 out:
887 return res; 893 return res;
888} 894}
@@ -1054,7 +1060,7 @@ EXPORT_SYMBOL(int_to_scsilun);
1054 * 0: scan completed (or no memory, so further scanning is futile) 1060 * 0: scan completed (or no memory, so further scanning is futile)
1055 * 1: no report lun scan, or not configured 1061 * 1: no report lun scan, or not configured
1056 **/ 1062 **/
1057static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags, 1063static int scsi_report_lun_scan(struct scsi_target *starget, int bflags,
1058 int rescan) 1064 int rescan)
1059{ 1065{
1060 char devname[64]; 1066 char devname[64];
@@ -1067,7 +1073,8 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1067 struct scsi_lun *lunp, *lun_data; 1073 struct scsi_lun *lunp, *lun_data;
1068 u8 *data; 1074 u8 *data;
1069 struct scsi_sense_hdr sshdr; 1075 struct scsi_sense_hdr sshdr;
1070 struct scsi_target *starget = scsi_target(sdev); 1076 struct scsi_device *sdev;
1077 struct Scsi_Host *shost = dev_to_shost(&starget->dev);
1071 1078
1072 /* 1079 /*
1073 * Only support SCSI-3 and up devices if BLIST_NOREPORTLUN is not set. 1080 * Only support SCSI-3 and up devices if BLIST_NOREPORTLUN is not set.
@@ -1075,15 +1082,23 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1075 * support more than 8 LUNs. 1082 * support more than 8 LUNs.
1076 */ 1083 */
1077 if ((bflags & BLIST_NOREPORTLUN) || 1084 if ((bflags & BLIST_NOREPORTLUN) ||
1078 sdev->scsi_level < SCSI_2 || 1085 starget->scsi_level < SCSI_2 ||
1079 (sdev->scsi_level < SCSI_3 && 1086 (starget->scsi_level < SCSI_3 &&
1080 (!(bflags & BLIST_REPORTLUN2) || sdev->host->max_lun <= 8)) ) 1087 (!(bflags & BLIST_REPORTLUN2) || shost->max_lun <= 8)) )
1081 return 1; 1088 return 1;
1082 if (bflags & BLIST_NOLUN) 1089 if (bflags & BLIST_NOLUN)
1083 return 0; 1090 return 0;
1084 1091
1092 if (!(sdev = scsi_device_lookup_by_target(starget, 0))) {
1093 sdev = scsi_alloc_sdev(starget, 0, NULL);
1094 if (!sdev)
1095 return 0;
1096 if (scsi_device_get(sdev))
1097 return 0;
1098 }
1099
1085 sprintf(devname, "host %d channel %d id %d", 1100 sprintf(devname, "host %d channel %d id %d",
1086 sdev->host->host_no, sdev->channel, sdev->id); 1101 shost->host_no, sdev->channel, sdev->id);
1087 1102
1088 /* 1103 /*
1089 * Allocate enough to hold the header (the same size as one scsi_lun) 1104 * Allocate enough to hold the header (the same size as one scsi_lun)
@@ -1098,8 +1113,10 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1098 length = (max_scsi_report_luns + 1) * sizeof(struct scsi_lun); 1113 length = (max_scsi_report_luns + 1) * sizeof(struct scsi_lun);
1099 lun_data = kmalloc(length, GFP_ATOMIC | 1114 lun_data = kmalloc(length, GFP_ATOMIC |
1100 (sdev->host->unchecked_isa_dma ? __GFP_DMA : 0)); 1115 (sdev->host->unchecked_isa_dma ? __GFP_DMA : 0));
1101 if (!lun_data) 1116 if (!lun_data) {
1117 printk(ALLOC_FAILURE_MSG, __FUNCTION__);
1102 goto out; 1118 goto out;
1119 }
1103 1120
1104 scsi_cmd[0] = REPORT_LUNS; 1121 scsi_cmd[0] = REPORT_LUNS;
1105 1122
@@ -1201,10 +1218,6 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1201 for (i = 0; i < sizeof(struct scsi_lun); i++) 1218 for (i = 0; i < sizeof(struct scsi_lun); i++)
1202 printk("%02x", data[i]); 1219 printk("%02x", data[i]);
1203 printk(" has a LUN larger than currently supported.\n"); 1220 printk(" has a LUN larger than currently supported.\n");
1204 } else if (lun == 0) {
1205 /*
1206 * LUN 0 has already been scanned.
1207 */
1208 } else if (lun > sdev->host->max_lun) { 1221 } else if (lun > sdev->host->max_lun) {
1209 printk(KERN_WARNING "scsi: %s lun%d has a LUN larger" 1222 printk(KERN_WARNING "scsi: %s lun%d has a LUN larger"
1210 " than allowed by the host adapter\n", 1223 " than allowed by the host adapter\n",
@@ -1227,13 +1240,13 @@ static int scsi_report_lun_scan(struct scsi_device *sdev, int bflags,
1227 } 1240 }
1228 1241
1229 kfree(lun_data); 1242 kfree(lun_data);
1230 return 0;
1231
1232 out: 1243 out:
1233 /* 1244 scsi_device_put(sdev);
1234 * We are out of memory, don't try scanning any further. 1245 if (sdev->sdev_state == SDEV_CREATED)
1235 */ 1246 /*
1236 printk(ALLOC_FAILURE_MSG, __FUNCTION__); 1247 * the sdev we used didn't appear in the report luns scan
1248 */
1249 scsi_destroy_sdev(sdev);
1237 return 0; 1250 return 0;
1238} 1251}
1239 1252
@@ -1299,7 +1312,6 @@ static void __scsi_scan_target(struct device *parent, unsigned int channel,
1299 struct Scsi_Host *shost = dev_to_shost(parent); 1312 struct Scsi_Host *shost = dev_to_shost(parent);
1300 int bflags = 0; 1313 int bflags = 0;
1301 int res; 1314 int res;
1302 struct scsi_device *sdev = NULL;
1303 struct scsi_target *starget; 1315 struct scsi_target *starget;
1304 1316
1305 if (shost->this_id == id) 1317 if (shost->this_id == id)
@@ -1325,27 +1337,16 @@ static void __scsi_scan_target(struct device *parent, unsigned int channel,
1325 * Scan LUN 0, if there is some response, scan further. Ideally, we 1337 * Scan LUN 0, if there is some response, scan further. Ideally, we
1326 * would not configure LUN 0 until all LUNs are scanned. 1338 * would not configure LUN 0 until all LUNs are scanned.
1327 */ 1339 */
1328 res = scsi_probe_and_add_lun(starget, 0, &bflags, &sdev, rescan, NULL); 1340 res = scsi_probe_and_add_lun(starget, 0, &bflags, NULL, rescan, NULL);
1329 if (res == SCSI_SCAN_LUN_PRESENT) { 1341 if (res == SCSI_SCAN_LUN_PRESENT || res == SCSI_SCAN_TARGET_PRESENT) {
1330 if (scsi_report_lun_scan(sdev, bflags, rescan) != 0) 1342 if (scsi_report_lun_scan(starget, bflags, rescan) != 0)
1331 /* 1343 /*
1332 * The REPORT LUN did not scan the target, 1344 * The REPORT LUN did not scan the target,
1333 * do a sequential scan. 1345 * do a sequential scan.
1334 */ 1346 */
1335 scsi_sequential_lun_scan(starget, bflags, 1347 scsi_sequential_lun_scan(starget, bflags,
1336 res, sdev->scsi_level, rescan); 1348 res, starget->scsi_level, rescan);
1337 } else if (res == SCSI_SCAN_TARGET_PRESENT) {
1338 /*
1339 * There's a target here, but lun 0 is offline so we
1340 * can't use the report_lun scan. Fall back to a
1341 * sequential lun scan with a bflags of SPARSELUN and
1342 * a default scsi level of SCSI_2
1343 */
1344 scsi_sequential_lun_scan(starget, BLIST_SPARSELUN,
1345 SCSI_SCAN_TARGET_PRESENT, SCSI_2, rescan);
1346 } 1349 }
1347 if (sdev)
1348 scsi_device_put(sdev);
1349 1350
1350 out_reap: 1351 out_reap:
1351 /* now determine if the target has any children at all 1352 /* now determine if the target has any children at all
@@ -1542,10 +1543,7 @@ void scsi_free_host_dev(struct scsi_device *sdev)
1542{ 1543{
1543 BUG_ON(sdev->id != sdev->host->this_id); 1544 BUG_ON(sdev->id != sdev->host->this_id);
1544 1545
1545 if (sdev->host->hostt->slave_destroy) 1546 scsi_destroy_sdev(sdev);
1546 sdev->host->hostt->slave_destroy(sdev);
1547 transport_destroy_device(&sdev->sdev_gendev);
1548 put_device(&sdev->sdev_gendev);
1549} 1547}
1550EXPORT_SYMBOL(scsi_free_host_dev); 1548EXPORT_SYMBOL(scsi_free_host_dev);
1551 1549
diff --git a/drivers/scsi/scsi_transport_sas.c b/drivers/scsi/scsi_transport_sas.c
index ff724bbe6611..1d145d2f9a38 100644
--- a/drivers/scsi/scsi_transport_sas.c
+++ b/drivers/scsi/scsi_transport_sas.c
@@ -628,17 +628,16 @@ sas_rphy_delete(struct sas_rphy *rphy)
628 struct Scsi_Host *shost = dev_to_shost(parent->dev.parent); 628 struct Scsi_Host *shost = dev_to_shost(parent->dev.parent);
629 struct sas_host_attrs *sas_host = to_sas_host_attrs(shost); 629 struct sas_host_attrs *sas_host = to_sas_host_attrs(shost);
630 630
631 transport_destroy_device(&rphy->dev); 631 scsi_remove_target(dev);
632 632
633 scsi_remove_target(&rphy->dev); 633 transport_remove_device(dev);
634 device_del(dev);
635 transport_destroy_device(dev);
634 636
635 spin_lock(&sas_host->lock); 637 spin_lock(&sas_host->lock);
636 list_del(&rphy->list); 638 list_del(&rphy->list);
637 spin_unlock(&sas_host->lock); 639 spin_unlock(&sas_host->lock);
638 640
639 transport_remove_device(dev);
640 device_del(dev);
641 transport_destroy_device(dev);
642 put_device(&parent->dev); 641 put_device(&parent->dev);
643} 642}
644EXPORT_SYMBOL(sas_rphy_delete); 643EXPORT_SYMBOL(sas_rphy_delete);
diff --git a/drivers/scsi/sg.c b/drivers/scsi/sg.c
index 4d09a6e4dd2e..ad94367df430 100644
--- a/drivers/scsi/sg.c
+++ b/drivers/scsi/sg.c
@@ -2849,8 +2849,7 @@ sg_proc_init(void)
2849 struct proc_dir_entry *pdep; 2849 struct proc_dir_entry *pdep;
2850 struct sg_proc_leaf * leaf; 2850 struct sg_proc_leaf * leaf;
2851 2851
2852 sg_proc_sgp = create_proc_entry(sg_proc_sg_dirname, 2852 sg_proc_sgp = proc_mkdir(sg_proc_sg_dirname, NULL);
2853 S_IFDIR | S_IRUGO | S_IXUGO, NULL);
2854 if (!sg_proc_sgp) 2853 if (!sg_proc_sgp)
2855 return 1; 2854 return 1;
2856 for (k = 0; k < num_leaves; ++k) { 2855 for (k = 0; k < num_leaves; ++k) {