aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/sata_mv.c
diff options
context:
space:
mode:
authorJeff Garzik <jeff@garzik.org>2006-08-10 07:31:37 -0400
committerJeff Garzik <jeff@garzik.org>2006-08-10 07:31:37 -0400
commitc6fd280766a050b13360d7c2d59a3d6bd3a27d9a (patch)
treefdbeab639bc3dec29267bbf4b32cff7c8dd03593 /drivers/scsi/sata_mv.c
parent79ed35a9f139ad2b2653dfdd5f45a8f1453e2cbb (diff)
Move libata to drivers/ata.
Diffstat (limited to 'drivers/scsi/sata_mv.c')
-rw-r--r--drivers/scsi/sata_mv.c2468
1 files changed, 0 insertions, 2468 deletions
diff --git a/drivers/scsi/sata_mv.c b/drivers/scsi/sata_mv.c
deleted file mode 100644
index a2915a56accd..000000000000
--- a/drivers/scsi/sata_mv.c
+++ /dev/null
@@ -1,2468 +0,0 @@
1/*
2 * sata_mv.c - Marvell SATA support
3 *
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
6 *
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 *
22 */
23
24#include <linux/kernel.h>
25#include <linux/module.h>
26#include <linux/pci.h>
27#include <linux/init.h>
28#include <linux/blkdev.h>
29#include <linux/delay.h>
30#include <linux/interrupt.h>
31#include <linux/sched.h>
32#include <linux/dma-mapping.h>
33#include <linux/device.h>
34#include <scsi/scsi_host.h>
35#include <scsi/scsi_cmnd.h>
36#include <linux/libata.h>
37#include <asm/io.h>
38
39#define DRV_NAME "sata_mv"
40#define DRV_VERSION "0.7"
41
42enum {
43 /* BAR's are enumerated in terms of pci_resource_start() terms */
44 MV_PRIMARY_BAR = 0, /* offset 0x10: memory space */
45 MV_IO_BAR = 2, /* offset 0x18: IO space */
46 MV_MISC_BAR = 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
47
48 MV_MAJOR_REG_AREA_SZ = 0x10000, /* 64KB */
49 MV_MINOR_REG_AREA_SZ = 0x2000, /* 8KB */
50
51 MV_PCI_REG_BASE = 0,
52 MV_IRQ_COAL_REG_BASE = 0x18000, /* 6xxx part only */
53 MV_IRQ_COAL_CAUSE = (MV_IRQ_COAL_REG_BASE + 0x08),
54 MV_IRQ_COAL_CAUSE_LO = (MV_IRQ_COAL_REG_BASE + 0x88),
55 MV_IRQ_COAL_CAUSE_HI = (MV_IRQ_COAL_REG_BASE + 0x8c),
56 MV_IRQ_COAL_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xcc),
57 MV_IRQ_COAL_TIME_THRESHOLD = (MV_IRQ_COAL_REG_BASE + 0xd0),
58
59 MV_SATAHC0_REG_BASE = 0x20000,
60 MV_FLASH_CTL = 0x1046c,
61 MV_GPIO_PORT_CTL = 0x104f0,
62 MV_RESET_CFG = 0x180d8,
63
64 MV_PCI_REG_SZ = MV_MAJOR_REG_AREA_SZ,
65 MV_SATAHC_REG_SZ = MV_MAJOR_REG_AREA_SZ,
66 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
67 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
68
69 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
70
71 MV_MAX_Q_DEPTH = 32,
72 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
73
74 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
75 * CRPB needs alignment on a 256B boundary. Size == 256B
76 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
77 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
78 */
79 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
80 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
81 MV_MAX_SG_CT = 176,
82 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
83 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
84
85 MV_PORTS_PER_HC = 4,
86 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
87 MV_PORT_HC_SHIFT = 2,
88 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
89 MV_PORT_MASK = 3,
90
91 /* Host Flags */
92 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
93 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
94 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
95 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
96 ATA_FLAG_NO_ATAPI | ATA_FLAG_PIO_POLLING),
97 MV_6XXX_FLAGS = MV_FLAG_IRQ_COALESCE,
98
99 CRQB_FLAG_READ = (1 << 0),
100 CRQB_TAG_SHIFT = 1,
101 CRQB_CMD_ADDR_SHIFT = 8,
102 CRQB_CMD_CS = (0x2 << 11),
103 CRQB_CMD_LAST = (1 << 15),
104
105 CRPB_FLAG_STATUS_SHIFT = 8,
106
107 EPRD_FLAG_END_OF_TBL = (1 << 31),
108
109 /* PCI interface registers */
110
111 PCI_COMMAND_OFS = 0xc00,
112
113 PCI_MAIN_CMD_STS_OFS = 0xd30,
114 STOP_PCI_MASTER = (1 << 2),
115 PCI_MASTER_EMPTY = (1 << 3),
116 GLOB_SFT_RST = (1 << 4),
117
118 MV_PCI_MODE = 0xd00,
119 MV_PCI_EXP_ROM_BAR_CTL = 0xd2c,
120 MV_PCI_DISC_TIMER = 0xd04,
121 MV_PCI_MSI_TRIGGER = 0xc38,
122 MV_PCI_SERR_MASK = 0xc28,
123 MV_PCI_XBAR_TMOUT = 0x1d04,
124 MV_PCI_ERR_LOW_ADDRESS = 0x1d40,
125 MV_PCI_ERR_HIGH_ADDRESS = 0x1d44,
126 MV_PCI_ERR_ATTRIBUTE = 0x1d48,
127 MV_PCI_ERR_COMMAND = 0x1d50,
128
129 PCI_IRQ_CAUSE_OFS = 0x1d58,
130 PCI_IRQ_MASK_OFS = 0x1d5c,
131 PCI_UNMASK_ALL_IRQS = 0x7fffff, /* bits 22-0 */
132
133 HC_MAIN_IRQ_CAUSE_OFS = 0x1d60,
134 HC_MAIN_IRQ_MASK_OFS = 0x1d64,
135 PORT0_ERR = (1 << 0), /* shift by port # */
136 PORT0_DONE = (1 << 1), /* shift by port # */
137 HC0_IRQ_PEND = 0x1ff, /* bits 0-8 = HC0's ports */
138 HC_SHIFT = 9, /* bits 9-17 = HC1's ports */
139 PCI_ERR = (1 << 18),
140 TRAN_LO_DONE = (1 << 19), /* 6xxx: IRQ coalescing */
141 TRAN_HI_DONE = (1 << 20), /* 6xxx: IRQ coalescing */
142 PORTS_0_7_COAL_DONE = (1 << 21), /* 6xxx: IRQ coalescing */
143 GPIO_INT = (1 << 22),
144 SELF_INT = (1 << 23),
145 TWSI_INT = (1 << 24),
146 HC_MAIN_RSVD = (0x7f << 25), /* bits 31-25 */
147 HC_MAIN_MASKED_IRQS = (TRAN_LO_DONE | TRAN_HI_DONE |
148 PORTS_0_7_COAL_DONE | GPIO_INT | TWSI_INT |
149 HC_MAIN_RSVD),
150
151 /* SATAHC registers */
152 HC_CFG_OFS = 0,
153
154 HC_IRQ_CAUSE_OFS = 0x14,
155 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
156 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
157 DEV_IRQ = (1 << 8), /* shift by port # */
158
159 /* Shadow block registers */
160 SHD_BLK_OFS = 0x100,
161 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
162
163 /* SATA registers */
164 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
165 SATA_ACTIVE_OFS = 0x350,
166 PHY_MODE3 = 0x310,
167 PHY_MODE4 = 0x314,
168 PHY_MODE2 = 0x330,
169 MV5_PHY_MODE = 0x74,
170 MV5_LT_MODE = 0x30,
171 MV5_PHY_CTL = 0x0C,
172 SATA_INTERFACE_CTL = 0x050,
173
174 MV_M2_PREAMP_MASK = 0x7e0,
175
176 /* Port registers */
177 EDMA_CFG_OFS = 0,
178 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
179 EDMA_CFG_NCQ = (1 << 5),
180 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
181 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
182 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
183
184 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
185 EDMA_ERR_IRQ_MASK_OFS = 0xc,
186 EDMA_ERR_D_PAR = (1 << 0),
187 EDMA_ERR_PRD_PAR = (1 << 1),
188 EDMA_ERR_DEV = (1 << 2),
189 EDMA_ERR_DEV_DCON = (1 << 3),
190 EDMA_ERR_DEV_CON = (1 << 4),
191 EDMA_ERR_SERR = (1 << 5),
192 EDMA_ERR_SELF_DIS = (1 << 7),
193 EDMA_ERR_BIST_ASYNC = (1 << 8),
194 EDMA_ERR_CRBQ_PAR = (1 << 9),
195 EDMA_ERR_CRPB_PAR = (1 << 10),
196 EDMA_ERR_INTRL_PAR = (1 << 11),
197 EDMA_ERR_IORDY = (1 << 12),
198 EDMA_ERR_LNK_CTRL_RX = (0xf << 13),
199 EDMA_ERR_LNK_CTRL_RX_2 = (1 << 15),
200 EDMA_ERR_LNK_DATA_RX = (0xf << 17),
201 EDMA_ERR_LNK_CTRL_TX = (0x1f << 21),
202 EDMA_ERR_LNK_DATA_TX = (0x1f << 26),
203 EDMA_ERR_TRANS_PROTO = (1 << 31),
204 EDMA_ERR_FATAL = (EDMA_ERR_D_PAR | EDMA_ERR_PRD_PAR |
205 EDMA_ERR_DEV_DCON | EDMA_ERR_CRBQ_PAR |
206 EDMA_ERR_CRPB_PAR | EDMA_ERR_INTRL_PAR |
207 EDMA_ERR_IORDY | EDMA_ERR_LNK_CTRL_RX_2 |
208 EDMA_ERR_LNK_DATA_RX |
209 EDMA_ERR_LNK_DATA_TX |
210 EDMA_ERR_TRANS_PROTO),
211
212 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
213 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
214
215 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
216 EDMA_REQ_Q_PTR_SHIFT = 5,
217
218 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
219 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
220 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
221 EDMA_RSP_Q_PTR_SHIFT = 3,
222
223 EDMA_CMD_OFS = 0x28,
224 EDMA_EN = (1 << 0),
225 EDMA_DS = (1 << 1),
226 ATA_RST = (1 << 2),
227
228 EDMA_IORDY_TMOUT = 0x34,
229 EDMA_ARB_CFG = 0x38,
230
231 /* Host private flags (hp_flags) */
232 MV_HP_FLAG_MSI = (1 << 0),
233 MV_HP_ERRATA_50XXB0 = (1 << 1),
234 MV_HP_ERRATA_50XXB2 = (1 << 2),
235 MV_HP_ERRATA_60X1B2 = (1 << 3),
236 MV_HP_ERRATA_60X1C0 = (1 << 4),
237 MV_HP_ERRATA_XX42A0 = (1 << 5),
238 MV_HP_50XX = (1 << 6),
239 MV_HP_GEN_IIE = (1 << 7),
240
241 /* Port private flags (pp_flags) */
242 MV_PP_FLAG_EDMA_EN = (1 << 0),
243 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
244};
245
246#define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
247#define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
248#define IS_GEN_I(hpriv) IS_50XX(hpriv)
249#define IS_GEN_II(hpriv) IS_60XX(hpriv)
250#define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
251
252enum {
253 /* Our DMA boundary is determined by an ePRD being unable to handle
254 * anything larger than 64KB
255 */
256 MV_DMA_BOUNDARY = 0xffffU,
257
258 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
259
260 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
261};
262
263enum chip_type {
264 chip_504x,
265 chip_508x,
266 chip_5080,
267 chip_604x,
268 chip_608x,
269 chip_6042,
270 chip_7042,
271};
272
273/* Command ReQuest Block: 32B */
274struct mv_crqb {
275 __le32 sg_addr;
276 __le32 sg_addr_hi;
277 __le16 ctrl_flags;
278 __le16 ata_cmd[11];
279};
280
281struct mv_crqb_iie {
282 __le32 addr;
283 __le32 addr_hi;
284 __le32 flags;
285 __le32 len;
286 __le32 ata_cmd[4];
287};
288
289/* Command ResPonse Block: 8B */
290struct mv_crpb {
291 __le16 id;
292 __le16 flags;
293 __le32 tmstmp;
294};
295
296/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
297struct mv_sg {
298 __le32 addr;
299 __le32 flags_size;
300 __le32 addr_hi;
301 __le32 reserved;
302};
303
304struct mv_port_priv {
305 struct mv_crqb *crqb;
306 dma_addr_t crqb_dma;
307 struct mv_crpb *crpb;
308 dma_addr_t crpb_dma;
309 struct mv_sg *sg_tbl;
310 dma_addr_t sg_tbl_dma;
311 u32 pp_flags;
312};
313
314struct mv_port_signal {
315 u32 amps;
316 u32 pre;
317};
318
319struct mv_host_priv;
320struct mv_hw_ops {
321 void (*phy_errata)(struct mv_host_priv *hpriv, void __iomem *mmio,
322 unsigned int port);
323 void (*enable_leds)(struct mv_host_priv *hpriv, void __iomem *mmio);
324 void (*read_preamp)(struct mv_host_priv *hpriv, int idx,
325 void __iomem *mmio);
326 int (*reset_hc)(struct mv_host_priv *hpriv, void __iomem *mmio,
327 unsigned int n_hc);
328 void (*reset_flash)(struct mv_host_priv *hpriv, void __iomem *mmio);
329 void (*reset_bus)(struct pci_dev *pdev, void __iomem *mmio);
330};
331
332struct mv_host_priv {
333 u32 hp_flags;
334 struct mv_port_signal signal[8];
335 const struct mv_hw_ops *ops;
336};
337
338static void mv_irq_clear(struct ata_port *ap);
339static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
340static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
341static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
342static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
343static void mv_phy_reset(struct ata_port *ap);
344static void __mv_phy_reset(struct ata_port *ap, int can_sleep);
345static void mv_host_stop(struct ata_host_set *host_set);
346static int mv_port_start(struct ata_port *ap);
347static void mv_port_stop(struct ata_port *ap);
348static void mv_qc_prep(struct ata_queued_cmd *qc);
349static void mv_qc_prep_iie(struct ata_queued_cmd *qc);
350static unsigned int mv_qc_issue(struct ata_queued_cmd *qc);
351static irqreturn_t mv_interrupt(int irq, void *dev_instance,
352 struct pt_regs *regs);
353static void mv_eng_timeout(struct ata_port *ap);
354static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
355
356static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
357 unsigned int port);
358static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
359static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
360 void __iomem *mmio);
361static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
362 unsigned int n_hc);
363static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
364static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio);
365
366static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
367 unsigned int port);
368static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio);
369static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
370 void __iomem *mmio);
371static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
372 unsigned int n_hc);
373static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio);
374static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio);
375static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
376 unsigned int port_no);
377static void mv_stop_and_reset(struct ata_port *ap);
378
379static struct scsi_host_template mv_sht = {
380 .module = THIS_MODULE,
381 .name = DRV_NAME,
382 .ioctl = ata_scsi_ioctl,
383 .queuecommand = ata_scsi_queuecmd,
384 .can_queue = MV_USE_Q_DEPTH,
385 .this_id = ATA_SHT_THIS_ID,
386 .sg_tablesize = MV_MAX_SG_CT / 2,
387 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
388 .emulated = ATA_SHT_EMULATED,
389 .use_clustering = ATA_SHT_USE_CLUSTERING,
390 .proc_name = DRV_NAME,
391 .dma_boundary = MV_DMA_BOUNDARY,
392 .slave_configure = ata_scsi_slave_config,
393 .slave_destroy = ata_scsi_slave_destroy,
394 .bios_param = ata_std_bios_param,
395};
396
397static const struct ata_port_operations mv5_ops = {
398 .port_disable = ata_port_disable,
399
400 .tf_load = ata_tf_load,
401 .tf_read = ata_tf_read,
402 .check_status = ata_check_status,
403 .exec_command = ata_exec_command,
404 .dev_select = ata_std_dev_select,
405
406 .phy_reset = mv_phy_reset,
407
408 .qc_prep = mv_qc_prep,
409 .qc_issue = mv_qc_issue,
410 .data_xfer = ata_mmio_data_xfer,
411
412 .eng_timeout = mv_eng_timeout,
413
414 .irq_handler = mv_interrupt,
415 .irq_clear = mv_irq_clear,
416
417 .scr_read = mv5_scr_read,
418 .scr_write = mv5_scr_write,
419
420 .port_start = mv_port_start,
421 .port_stop = mv_port_stop,
422 .host_stop = mv_host_stop,
423};
424
425static const struct ata_port_operations mv6_ops = {
426 .port_disable = ata_port_disable,
427
428 .tf_load = ata_tf_load,
429 .tf_read = ata_tf_read,
430 .check_status = ata_check_status,
431 .exec_command = ata_exec_command,
432 .dev_select = ata_std_dev_select,
433
434 .phy_reset = mv_phy_reset,
435
436 .qc_prep = mv_qc_prep,
437 .qc_issue = mv_qc_issue,
438 .data_xfer = ata_mmio_data_xfer,
439
440 .eng_timeout = mv_eng_timeout,
441
442 .irq_handler = mv_interrupt,
443 .irq_clear = mv_irq_clear,
444
445 .scr_read = mv_scr_read,
446 .scr_write = mv_scr_write,
447
448 .port_start = mv_port_start,
449 .port_stop = mv_port_stop,
450 .host_stop = mv_host_stop,
451};
452
453static const struct ata_port_operations mv_iie_ops = {
454 .port_disable = ata_port_disable,
455
456 .tf_load = ata_tf_load,
457 .tf_read = ata_tf_read,
458 .check_status = ata_check_status,
459 .exec_command = ata_exec_command,
460 .dev_select = ata_std_dev_select,
461
462 .phy_reset = mv_phy_reset,
463
464 .qc_prep = mv_qc_prep_iie,
465 .qc_issue = mv_qc_issue,
466
467 .eng_timeout = mv_eng_timeout,
468
469 .irq_handler = mv_interrupt,
470 .irq_clear = mv_irq_clear,
471
472 .scr_read = mv_scr_read,
473 .scr_write = mv_scr_write,
474
475 .port_start = mv_port_start,
476 .port_stop = mv_port_stop,
477 .host_stop = mv_host_stop,
478};
479
480static const struct ata_port_info mv_port_info[] = {
481 { /* chip_504x */
482 .sht = &mv_sht,
483 .host_flags = MV_COMMON_FLAGS,
484 .pio_mask = 0x1f, /* pio0-4 */
485 .udma_mask = 0x7f, /* udma0-6 */
486 .port_ops = &mv5_ops,
487 },
488 { /* chip_508x */
489 .sht = &mv_sht,
490 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
491 .pio_mask = 0x1f, /* pio0-4 */
492 .udma_mask = 0x7f, /* udma0-6 */
493 .port_ops = &mv5_ops,
494 },
495 { /* chip_5080 */
496 .sht = &mv_sht,
497 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
498 .pio_mask = 0x1f, /* pio0-4 */
499 .udma_mask = 0x7f, /* udma0-6 */
500 .port_ops = &mv5_ops,
501 },
502 { /* chip_604x */
503 .sht = &mv_sht,
504 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
505 .pio_mask = 0x1f, /* pio0-4 */
506 .udma_mask = 0x7f, /* udma0-6 */
507 .port_ops = &mv6_ops,
508 },
509 { /* chip_608x */
510 .sht = &mv_sht,
511 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
512 MV_FLAG_DUAL_HC),
513 .pio_mask = 0x1f, /* pio0-4 */
514 .udma_mask = 0x7f, /* udma0-6 */
515 .port_ops = &mv6_ops,
516 },
517 { /* chip_6042 */
518 .sht = &mv_sht,
519 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
520 .pio_mask = 0x1f, /* pio0-4 */
521 .udma_mask = 0x7f, /* udma0-6 */
522 .port_ops = &mv_iie_ops,
523 },
524 { /* chip_7042 */
525 .sht = &mv_sht,
526 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
527 MV_FLAG_DUAL_HC),
528 .pio_mask = 0x1f, /* pio0-4 */
529 .udma_mask = 0x7f, /* udma0-6 */
530 .port_ops = &mv_iie_ops,
531 },
532};
533
534static const struct pci_device_id mv_pci_tbl[] = {
535 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5040), 0, 0, chip_504x},
536 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5041), 0, 0, chip_504x},
537 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5080), 0, 0, chip_5080},
538 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5081), 0, 0, chip_508x},
539
540 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6040), 0, 0, chip_604x},
541 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6041), 0, 0, chip_604x},
542 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6042), 0, 0, chip_6042},
543 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6080), 0, 0, chip_608x},
544 {PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x6081), 0, 0, chip_608x},
545
546 {PCI_DEVICE(PCI_VENDOR_ID_ADAPTEC2, 0x0241), 0, 0, chip_604x},
547 {} /* terminate list */
548};
549
550static struct pci_driver mv_pci_driver = {
551 .name = DRV_NAME,
552 .id_table = mv_pci_tbl,
553 .probe = mv_init_one,
554 .remove = ata_pci_remove_one,
555};
556
557static const struct mv_hw_ops mv5xxx_ops = {
558 .phy_errata = mv5_phy_errata,
559 .enable_leds = mv5_enable_leds,
560 .read_preamp = mv5_read_preamp,
561 .reset_hc = mv5_reset_hc,
562 .reset_flash = mv5_reset_flash,
563 .reset_bus = mv5_reset_bus,
564};
565
566static const struct mv_hw_ops mv6xxx_ops = {
567 .phy_errata = mv6_phy_errata,
568 .enable_leds = mv6_enable_leds,
569 .read_preamp = mv6_read_preamp,
570 .reset_hc = mv6_reset_hc,
571 .reset_flash = mv6_reset_flash,
572 .reset_bus = mv_reset_pci_bus,
573};
574
575/*
576 * module options
577 */
578static int msi; /* Use PCI msi; either zero (off, default) or non-zero */
579
580
581/*
582 * Functions
583 */
584
585static inline void writelfl(unsigned long data, void __iomem *addr)
586{
587 writel(data, addr);
588 (void) readl(addr); /* flush to avoid PCI posted write */
589}
590
591static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
592{
593 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
594}
595
596static inline unsigned int mv_hc_from_port(unsigned int port)
597{
598 return port >> MV_PORT_HC_SHIFT;
599}
600
601static inline unsigned int mv_hardport_from_port(unsigned int port)
602{
603 return port & MV_PORT_MASK;
604}
605
606static inline void __iomem *mv_hc_base_from_port(void __iomem *base,
607 unsigned int port)
608{
609 return mv_hc_base(base, mv_hc_from_port(port));
610}
611
612static inline void __iomem *mv_port_base(void __iomem *base, unsigned int port)
613{
614 return mv_hc_base_from_port(base, port) +
615 MV_SATAHC_ARBTR_REG_SZ +
616 (mv_hardport_from_port(port) * MV_PORT_REG_SZ);
617}
618
619static inline void __iomem *mv_ap_base(struct ata_port *ap)
620{
621 return mv_port_base(ap->host_set->mmio_base, ap->port_no);
622}
623
624static inline int mv_get_hc_count(unsigned long host_flags)
625{
626 return ((host_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
627}
628
629static void mv_irq_clear(struct ata_port *ap)
630{
631}
632
633/**
634 * mv_start_dma - Enable eDMA engine
635 * @base: port base address
636 * @pp: port private data
637 *
638 * Verify the local cache of the eDMA state is accurate with a
639 * WARN_ON.
640 *
641 * LOCKING:
642 * Inherited from caller.
643 */
644static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
645{
646 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
647 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
648 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
649 }
650 WARN_ON(!(EDMA_EN & readl(base + EDMA_CMD_OFS)));
651}
652
653/**
654 * mv_stop_dma - Disable eDMA engine
655 * @ap: ATA channel to manipulate
656 *
657 * Verify the local cache of the eDMA state is accurate with a
658 * WARN_ON.
659 *
660 * LOCKING:
661 * Inherited from caller.
662 */
663static void mv_stop_dma(struct ata_port *ap)
664{
665 void __iomem *port_mmio = mv_ap_base(ap);
666 struct mv_port_priv *pp = ap->private_data;
667 u32 reg;
668 int i;
669
670 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
671 /* Disable EDMA if active. The disable bit auto clears.
672 */
673 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
674 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
675 } else {
676 WARN_ON(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS));
677 }
678
679 /* now properly wait for the eDMA to stop */
680 for (i = 1000; i > 0; i--) {
681 reg = readl(port_mmio + EDMA_CMD_OFS);
682 if (!(EDMA_EN & reg)) {
683 break;
684 }
685 udelay(100);
686 }
687
688 if (EDMA_EN & reg) {
689 ata_port_printk(ap, KERN_ERR, "Unable to stop eDMA\n");
690 /* FIXME: Consider doing a reset here to recover */
691 }
692}
693
694#ifdef ATA_DEBUG
695static void mv_dump_mem(void __iomem *start, unsigned bytes)
696{
697 int b, w;
698 for (b = 0; b < bytes; ) {
699 DPRINTK("%p: ", start + b);
700 for (w = 0; b < bytes && w < 4; w++) {
701 printk("%08x ",readl(start + b));
702 b += sizeof(u32);
703 }
704 printk("\n");
705 }
706}
707#endif
708
709static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
710{
711#ifdef ATA_DEBUG
712 int b, w;
713 u32 dw;
714 for (b = 0; b < bytes; ) {
715 DPRINTK("%02x: ", b);
716 for (w = 0; b < bytes && w < 4; w++) {
717 (void) pci_read_config_dword(pdev,b,&dw);
718 printk("%08x ",dw);
719 b += sizeof(u32);
720 }
721 printk("\n");
722 }
723#endif
724}
725static void mv_dump_all_regs(void __iomem *mmio_base, int port,
726 struct pci_dev *pdev)
727{
728#ifdef ATA_DEBUG
729 void __iomem *hc_base = mv_hc_base(mmio_base,
730 port >> MV_PORT_HC_SHIFT);
731 void __iomem *port_base;
732 int start_port, num_ports, p, start_hc, num_hcs, hc;
733
734 if (0 > port) {
735 start_hc = start_port = 0;
736 num_ports = 8; /* shld be benign for 4 port devs */
737 num_hcs = 2;
738 } else {
739 start_hc = port >> MV_PORT_HC_SHIFT;
740 start_port = port;
741 num_ports = num_hcs = 1;
742 }
743 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
744 num_ports > 1 ? num_ports - 1 : start_port);
745
746 if (NULL != pdev) {
747 DPRINTK("PCI config space regs:\n");
748 mv_dump_pci_cfg(pdev, 0x68);
749 }
750 DPRINTK("PCI regs:\n");
751 mv_dump_mem(mmio_base+0xc00, 0x3c);
752 mv_dump_mem(mmio_base+0xd00, 0x34);
753 mv_dump_mem(mmio_base+0xf00, 0x4);
754 mv_dump_mem(mmio_base+0x1d00, 0x6c);
755 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
756 hc_base = mv_hc_base(mmio_base, hc);
757 DPRINTK("HC regs (HC %i):\n", hc);
758 mv_dump_mem(hc_base, 0x1c);
759 }
760 for (p = start_port; p < start_port + num_ports; p++) {
761 port_base = mv_port_base(mmio_base, p);
762 DPRINTK("EDMA regs (port %i):\n",p);
763 mv_dump_mem(port_base, 0x54);
764 DPRINTK("SATA regs (port %i):\n",p);
765 mv_dump_mem(port_base+0x300, 0x60);
766 }
767#endif
768}
769
770static unsigned int mv_scr_offset(unsigned int sc_reg_in)
771{
772 unsigned int ofs;
773
774 switch (sc_reg_in) {
775 case SCR_STATUS:
776 case SCR_CONTROL:
777 case SCR_ERROR:
778 ofs = SATA_STATUS_OFS + (sc_reg_in * sizeof(u32));
779 break;
780 case SCR_ACTIVE:
781 ofs = SATA_ACTIVE_OFS; /* active is not with the others */
782 break;
783 default:
784 ofs = 0xffffffffU;
785 break;
786 }
787 return ofs;
788}
789
790static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
791{
792 unsigned int ofs = mv_scr_offset(sc_reg_in);
793
794 if (0xffffffffU != ofs) {
795 return readl(mv_ap_base(ap) + ofs);
796 } else {
797 return (u32) ofs;
798 }
799}
800
801static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
802{
803 unsigned int ofs = mv_scr_offset(sc_reg_in);
804
805 if (0xffffffffU != ofs) {
806 writelfl(val, mv_ap_base(ap) + ofs);
807 }
808}
809
810/**
811 * mv_host_stop - Host specific cleanup/stop routine.
812 * @host_set: host data structure
813 *
814 * Disable ints, cleanup host memory, call general purpose
815 * host_stop.
816 *
817 * LOCKING:
818 * Inherited from caller.
819 */
820static void mv_host_stop(struct ata_host_set *host_set)
821{
822 struct mv_host_priv *hpriv = host_set->private_data;
823 struct pci_dev *pdev = to_pci_dev(host_set->dev);
824
825 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
826 pci_disable_msi(pdev);
827 } else {
828 pci_intx(pdev, 0);
829 }
830 kfree(hpriv);
831 ata_host_stop(host_set);
832}
833
834static inline void mv_priv_free(struct mv_port_priv *pp, struct device *dev)
835{
836 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
837}
838
839static void mv_edma_cfg(struct mv_host_priv *hpriv, void __iomem *port_mmio)
840{
841 u32 cfg = readl(port_mmio + EDMA_CFG_OFS);
842
843 /* set up non-NCQ EDMA configuration */
844 cfg &= ~0x1f; /* clear queue depth */
845 cfg &= ~EDMA_CFG_NCQ; /* clear NCQ mode */
846 cfg &= ~(1 << 9); /* disable equeue */
847
848 if (IS_GEN_I(hpriv))
849 cfg |= (1 << 8); /* enab config burst size mask */
850
851 else if (IS_GEN_II(hpriv))
852 cfg |= EDMA_CFG_RD_BRST_EXT | EDMA_CFG_WR_BUFF_LEN;
853
854 else if (IS_GEN_IIE(hpriv)) {
855 cfg |= (1 << 23); /* dis RX PM port mask */
856 cfg &= ~(1 << 16); /* dis FIS-based switching (for now) */
857 cfg &= ~(1 << 19); /* dis 128-entry queue (for now?) */
858 cfg |= (1 << 18); /* enab early completion */
859 cfg |= (1 << 17); /* enab host q cache */
860 cfg |= (1 << 22); /* enab cutthrough */
861 }
862
863 writelfl(cfg, port_mmio + EDMA_CFG_OFS);
864}
865
866/**
867 * mv_port_start - Port specific init/start routine.
868 * @ap: ATA channel to manipulate
869 *
870 * Allocate and point to DMA memory, init port private memory,
871 * zero indices.
872 *
873 * LOCKING:
874 * Inherited from caller.
875 */
876static int mv_port_start(struct ata_port *ap)
877{
878 struct device *dev = ap->host_set->dev;
879 struct mv_host_priv *hpriv = ap->host_set->private_data;
880 struct mv_port_priv *pp;
881 void __iomem *port_mmio = mv_ap_base(ap);
882 void *mem;
883 dma_addr_t mem_dma;
884 int rc = -ENOMEM;
885
886 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
887 if (!pp)
888 goto err_out;
889 memset(pp, 0, sizeof(*pp));
890
891 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
892 GFP_KERNEL);
893 if (!mem)
894 goto err_out_pp;
895 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
896
897 rc = ata_pad_alloc(ap, dev);
898 if (rc)
899 goto err_out_priv;
900
901 /* First item in chunk of DMA memory:
902 * 32-slot command request table (CRQB), 32 bytes each in size
903 */
904 pp->crqb = mem;
905 pp->crqb_dma = mem_dma;
906 mem += MV_CRQB_Q_SZ;
907 mem_dma += MV_CRQB_Q_SZ;
908
909 /* Second item:
910 * 32-slot command response table (CRPB), 8 bytes each in size
911 */
912 pp->crpb = mem;
913 pp->crpb_dma = mem_dma;
914 mem += MV_CRPB_Q_SZ;
915 mem_dma += MV_CRPB_Q_SZ;
916
917 /* Third item:
918 * Table of scatter-gather descriptors (ePRD), 16 bytes each
919 */
920 pp->sg_tbl = mem;
921 pp->sg_tbl_dma = mem_dma;
922
923 mv_edma_cfg(hpriv, port_mmio);
924
925 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
926 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
927 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
928
929 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
930 writelfl(pp->crqb_dma & 0xffffffff,
931 port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
932 else
933 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
934
935 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
936
937 if (hpriv->hp_flags & MV_HP_ERRATA_XX42A0)
938 writelfl(pp->crpb_dma & 0xffffffff,
939 port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
940 else
941 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
942
943 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
944 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
945
946 /* Don't turn on EDMA here...do it before DMA commands only. Else
947 * we'll be unable to send non-data, PIO, etc due to restricted access
948 * to shadow regs.
949 */
950 ap->private_data = pp;
951 return 0;
952
953err_out_priv:
954 mv_priv_free(pp, dev);
955err_out_pp:
956 kfree(pp);
957err_out:
958 return rc;
959}
960
961/**
962 * mv_port_stop - Port specific cleanup/stop routine.
963 * @ap: ATA channel to manipulate
964 *
965 * Stop DMA, cleanup port memory.
966 *
967 * LOCKING:
968 * This routine uses the host_set lock to protect the DMA stop.
969 */
970static void mv_port_stop(struct ata_port *ap)
971{
972 struct device *dev = ap->host_set->dev;
973 struct mv_port_priv *pp = ap->private_data;
974 unsigned long flags;
975
976 spin_lock_irqsave(&ap->host_set->lock, flags);
977 mv_stop_dma(ap);
978 spin_unlock_irqrestore(&ap->host_set->lock, flags);
979
980 ap->private_data = NULL;
981 ata_pad_free(ap, dev);
982 mv_priv_free(pp, dev);
983 kfree(pp);
984}
985
986/**
987 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
988 * @qc: queued command whose SG list to source from
989 *
990 * Populate the SG list and mark the last entry.
991 *
992 * LOCKING:
993 * Inherited from caller.
994 */
995static void mv_fill_sg(struct ata_queued_cmd *qc)
996{
997 struct mv_port_priv *pp = qc->ap->private_data;
998 unsigned int i = 0;
999 struct scatterlist *sg;
1000
1001 ata_for_each_sg(sg, qc) {
1002 dma_addr_t addr;
1003 u32 sg_len, len, offset;
1004
1005 addr = sg_dma_address(sg);
1006 sg_len = sg_dma_len(sg);
1007
1008 while (sg_len) {
1009 offset = addr & MV_DMA_BOUNDARY;
1010 len = sg_len;
1011 if ((offset + sg_len) > 0x10000)
1012 len = 0x10000 - offset;
1013
1014 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
1015 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
1016 pp->sg_tbl[i].flags_size = cpu_to_le32(len & 0xffff);
1017
1018 sg_len -= len;
1019 addr += len;
1020
1021 if (!sg_len && ata_sg_is_last(sg, qc))
1022 pp->sg_tbl[i].flags_size |= cpu_to_le32(EPRD_FLAG_END_OF_TBL);
1023
1024 i++;
1025 }
1026 }
1027}
1028
1029static inline unsigned mv_inc_q_index(unsigned index)
1030{
1031 return (index + 1) & MV_MAX_Q_DEPTH_MASK;
1032}
1033
1034static inline void mv_crqb_pack_cmd(__le16 *cmdw, u8 data, u8 addr, unsigned last)
1035{
1036 u16 tmp = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
1037 (last ? CRQB_CMD_LAST : 0);
1038 *cmdw = cpu_to_le16(tmp);
1039}
1040
1041/**
1042 * mv_qc_prep - Host specific command preparation.
1043 * @qc: queued command to prepare
1044 *
1045 * This routine simply redirects to the general purpose routine
1046 * if command is not DMA. Else, it handles prep of the CRQB
1047 * (command request block), does some sanity checking, and calls
1048 * the SG load routine.
1049 *
1050 * LOCKING:
1051 * Inherited from caller.
1052 */
1053static void mv_qc_prep(struct ata_queued_cmd *qc)
1054{
1055 struct ata_port *ap = qc->ap;
1056 struct mv_port_priv *pp = ap->private_data;
1057 __le16 *cw;
1058 struct ata_taskfile *tf;
1059 u16 flags = 0;
1060 unsigned in_index;
1061
1062 if (ATA_PROT_DMA != qc->tf.protocol)
1063 return;
1064
1065 /* Fill in command request block
1066 */
1067 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1068 flags |= CRQB_FLAG_READ;
1069 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1070 flags |= qc->tag << CRQB_TAG_SHIFT;
1071
1072 /* get current queue index from hardware */
1073 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1074 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1075
1076 pp->crqb[in_index].sg_addr =
1077 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1078 pp->crqb[in_index].sg_addr_hi =
1079 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1080 pp->crqb[in_index].ctrl_flags = cpu_to_le16(flags);
1081
1082 cw = &pp->crqb[in_index].ata_cmd[0];
1083 tf = &qc->tf;
1084
1085 /* Sadly, the CRQB cannot accomodate all registers--there are
1086 * only 11 bytes...so we must pick and choose required
1087 * registers based on the command. So, we drop feature and
1088 * hob_feature for [RW] DMA commands, but they are needed for
1089 * NCQ. NCQ will drop hob_nsect.
1090 */
1091 switch (tf->command) {
1092 case ATA_CMD_READ:
1093 case ATA_CMD_READ_EXT:
1094 case ATA_CMD_WRITE:
1095 case ATA_CMD_WRITE_EXT:
1096 case ATA_CMD_WRITE_FUA_EXT:
1097 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
1098 break;
1099#ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1100 case ATA_CMD_FPDMA_READ:
1101 case ATA_CMD_FPDMA_WRITE:
1102 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
1103 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
1104 break;
1105#endif /* FIXME: remove this line when NCQ added */
1106 default:
1107 /* The only other commands EDMA supports in non-queued and
1108 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1109 * of which are defined/used by Linux. If we get here, this
1110 * driver needs work.
1111 *
1112 * FIXME: modify libata to give qc_prep a return value and
1113 * return error here.
1114 */
1115 BUG_ON(tf->command);
1116 break;
1117 }
1118 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
1119 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
1120 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
1121 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
1122 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
1123 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
1124 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
1125 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
1126 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
1127
1128 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1129 return;
1130 mv_fill_sg(qc);
1131}
1132
1133/**
1134 * mv_qc_prep_iie - Host specific command preparation.
1135 * @qc: queued command to prepare
1136 *
1137 * This routine simply redirects to the general purpose routine
1138 * if command is not DMA. Else, it handles prep of the CRQB
1139 * (command request block), does some sanity checking, and calls
1140 * the SG load routine.
1141 *
1142 * LOCKING:
1143 * Inherited from caller.
1144 */
1145static void mv_qc_prep_iie(struct ata_queued_cmd *qc)
1146{
1147 struct ata_port *ap = qc->ap;
1148 struct mv_port_priv *pp = ap->private_data;
1149 struct mv_crqb_iie *crqb;
1150 struct ata_taskfile *tf;
1151 unsigned in_index;
1152 u32 flags = 0;
1153
1154 if (ATA_PROT_DMA != qc->tf.protocol)
1155 return;
1156
1157 /* Fill in Gen IIE command request block
1158 */
1159 if (!(qc->tf.flags & ATA_TFLAG_WRITE))
1160 flags |= CRQB_FLAG_READ;
1161
1162 WARN_ON(MV_MAX_Q_DEPTH <= qc->tag);
1163 flags |= qc->tag << CRQB_TAG_SHIFT;
1164
1165 /* get current queue index from hardware */
1166 in_index = (readl(mv_ap_base(ap) + EDMA_REQ_Q_IN_PTR_OFS)
1167 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1168
1169 crqb = (struct mv_crqb_iie *) &pp->crqb[in_index];
1170 crqb->addr = cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
1171 crqb->addr_hi = cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
1172 crqb->flags = cpu_to_le32(flags);
1173
1174 tf = &qc->tf;
1175 crqb->ata_cmd[0] = cpu_to_le32(
1176 (tf->command << 16) |
1177 (tf->feature << 24)
1178 );
1179 crqb->ata_cmd[1] = cpu_to_le32(
1180 (tf->lbal << 0) |
1181 (tf->lbam << 8) |
1182 (tf->lbah << 16) |
1183 (tf->device << 24)
1184 );
1185 crqb->ata_cmd[2] = cpu_to_le32(
1186 (tf->hob_lbal << 0) |
1187 (tf->hob_lbam << 8) |
1188 (tf->hob_lbah << 16) |
1189 (tf->hob_feature << 24)
1190 );
1191 crqb->ata_cmd[3] = cpu_to_le32(
1192 (tf->nsect << 0) |
1193 (tf->hob_nsect << 8)
1194 );
1195
1196 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
1197 return;
1198 mv_fill_sg(qc);
1199}
1200
1201/**
1202 * mv_qc_issue - Initiate a command to the host
1203 * @qc: queued command to start
1204 *
1205 * This routine simply redirects to the general purpose routine
1206 * if command is not DMA. Else, it sanity checks our local
1207 * caches of the request producer/consumer indices then enables
1208 * DMA and bumps the request producer index.
1209 *
1210 * LOCKING:
1211 * Inherited from caller.
1212 */
1213static unsigned int mv_qc_issue(struct ata_queued_cmd *qc)
1214{
1215 void __iomem *port_mmio = mv_ap_base(qc->ap);
1216 struct mv_port_priv *pp = qc->ap->private_data;
1217 unsigned in_index;
1218 u32 in_ptr;
1219
1220 if (ATA_PROT_DMA != qc->tf.protocol) {
1221 /* We're about to send a non-EDMA capable command to the
1222 * port. Turn off EDMA so there won't be problems accessing
1223 * shadow block, etc registers.
1224 */
1225 mv_stop_dma(qc->ap);
1226 return ata_qc_issue_prot(qc);
1227 }
1228
1229 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1230 in_index = (in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1231
1232 /* until we do queuing, the queue should be empty at this point */
1233 WARN_ON(in_index != ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS)
1234 >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1235
1236 in_index = mv_inc_q_index(in_index); /* now incr producer index */
1237
1238 mv_start_dma(port_mmio, pp);
1239
1240 /* and write the request in pointer to kick the EDMA to life */
1241 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
1242 in_ptr |= in_index << EDMA_REQ_Q_PTR_SHIFT;
1243 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
1244
1245 return 0;
1246}
1247
1248/**
1249 * mv_get_crpb_status - get status from most recently completed cmd
1250 * @ap: ATA channel to manipulate
1251 *
1252 * This routine is for use when the port is in DMA mode, when it
1253 * will be using the CRPB (command response block) method of
1254 * returning command completion information. We check indices
1255 * are good, grab status, and bump the response consumer index to
1256 * prove that we're up to date.
1257 *
1258 * LOCKING:
1259 * Inherited from caller.
1260 */
1261static u8 mv_get_crpb_status(struct ata_port *ap)
1262{
1263 void __iomem *port_mmio = mv_ap_base(ap);
1264 struct mv_port_priv *pp = ap->private_data;
1265 unsigned out_index;
1266 u32 out_ptr;
1267 u8 ata_status;
1268
1269 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1270 out_index = (out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK;
1271
1272 ata_status = le16_to_cpu(pp->crpb[out_index].flags)
1273 >> CRPB_FLAG_STATUS_SHIFT;
1274
1275 /* increment our consumer index... */
1276 out_index = mv_inc_q_index(out_index);
1277
1278 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1279 WARN_ON(out_index != ((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS)
1280 >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
1281
1282 /* write out our inc'd consumer index so EDMA knows we're caught up */
1283 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
1284 out_ptr |= out_index << EDMA_RSP_Q_PTR_SHIFT;
1285 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1286
1287 /* Return ATA status register for completed CRPB */
1288 return ata_status;
1289}
1290
1291/**
1292 * mv_err_intr - Handle error interrupts on the port
1293 * @ap: ATA channel to manipulate
1294 * @reset_allowed: bool: 0 == don't trigger from reset here
1295 *
1296 * In most cases, just clear the interrupt and move on. However,
1297 * some cases require an eDMA reset, which is done right before
1298 * the COMRESET in mv_phy_reset(). The SERR case requires a
1299 * clear of pending errors in the SATA SERROR register. Finally,
1300 * if the port disabled DMA, update our cached copy to match.
1301 *
1302 * LOCKING:
1303 * Inherited from caller.
1304 */
1305static void mv_err_intr(struct ata_port *ap, int reset_allowed)
1306{
1307 void __iomem *port_mmio = mv_ap_base(ap);
1308 u32 edma_err_cause, serr = 0;
1309
1310 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1311
1312 if (EDMA_ERR_SERR & edma_err_cause) {
1313 sata_scr_read(ap, SCR_ERROR, &serr);
1314 sata_scr_write_flush(ap, SCR_ERROR, serr);
1315 }
1316 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
1317 struct mv_port_priv *pp = ap->private_data;
1318 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1319 }
1320 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1321 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
1322
1323 /* Clear EDMA now that SERR cleanup done */
1324 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1325
1326 /* check for fatal here and recover if needed */
1327 if (reset_allowed && (EDMA_ERR_FATAL & edma_err_cause))
1328 mv_stop_and_reset(ap);
1329}
1330
1331/**
1332 * mv_host_intr - Handle all interrupts on the given host controller
1333 * @host_set: host specific structure
1334 * @relevant: port error bits relevant to this host controller
1335 * @hc: which host controller we're to look at
1336 *
1337 * Read then write clear the HC interrupt status then walk each
1338 * port connected to the HC and see if it needs servicing. Port
1339 * success ints are reported in the HC interrupt status reg, the
1340 * port error ints are reported in the higher level main
1341 * interrupt status register and thus are passed in via the
1342 * 'relevant' argument.
1343 *
1344 * LOCKING:
1345 * Inherited from caller.
1346 */
1347static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
1348 unsigned int hc)
1349{
1350 void __iomem *mmio = host_set->mmio_base;
1351 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1352 struct ata_queued_cmd *qc;
1353 u32 hc_irq_cause;
1354 int shift, port, port0, hard_port, handled;
1355 unsigned int err_mask;
1356
1357 if (hc == 0) {
1358 port0 = 0;
1359 } else {
1360 port0 = MV_PORTS_PER_HC;
1361 }
1362
1363 /* we'll need the HC success int register in most cases */
1364 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
1365 if (hc_irq_cause) {
1366 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
1367 }
1368
1369 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1370 hc,relevant,hc_irq_cause);
1371
1372 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
1373 u8 ata_status = 0;
1374 struct ata_port *ap = host_set->ports[port];
1375 struct mv_port_priv *pp = ap->private_data;
1376
1377 hard_port = mv_hardport_from_port(port); /* range 0..3 */
1378 handled = 0; /* ensure ata_status is set if handled++ */
1379
1380 /* Note that DEV_IRQ might happen spuriously during EDMA,
1381 * and should be ignored in such cases.
1382 * The cause of this is still under investigation.
1383 */
1384 if (pp->pp_flags & MV_PP_FLAG_EDMA_EN) {
1385 /* EDMA: check for response queue interrupt */
1386 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
1387 ata_status = mv_get_crpb_status(ap);
1388 handled = 1;
1389 }
1390 } else {
1391 /* PIO: check for device (drive) interrupt */
1392 if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1393 ata_status = readb((void __iomem *)
1394 ap->ioaddr.status_addr);
1395 handled = 1;
1396 /* ignore spurious intr if drive still BUSY */
1397 if (ata_status & ATA_BUSY) {
1398 ata_status = 0;
1399 handled = 0;
1400 }
1401 }
1402 }
1403
1404 if (ap && (ap->flags & ATA_FLAG_DISABLED))
1405 continue;
1406
1407 err_mask = ac_err_mask(ata_status);
1408
1409 shift = port << 1; /* (port * 2) */
1410 if (port >= MV_PORTS_PER_HC) {
1411 shift++; /* skip bit 8 in the HC Main IRQ reg */
1412 }
1413 if ((PORT0_ERR << shift) & relevant) {
1414 mv_err_intr(ap, 1);
1415 err_mask |= AC_ERR_OTHER;
1416 handled = 1;
1417 }
1418
1419 if (handled) {
1420 qc = ata_qc_from_tag(ap, ap->active_tag);
1421 if (qc && (qc->flags & ATA_QCFLAG_ACTIVE)) {
1422 VPRINTK("port %u IRQ found for qc, "
1423 "ata_status 0x%x\n", port,ata_status);
1424 /* mark qc status appropriately */
1425 if (!(qc->tf.flags & ATA_TFLAG_POLLING)) {
1426 qc->err_mask |= err_mask;
1427 ata_qc_complete(qc);
1428 }
1429 }
1430 }
1431 }
1432 VPRINTK("EXIT\n");
1433}
1434
1435/**
1436 * mv_interrupt -
1437 * @irq: unused
1438 * @dev_instance: private data; in this case the host structure
1439 * @regs: unused
1440 *
1441 * Read the read only register to determine if any host
1442 * controllers have pending interrupts. If so, call lower level
1443 * routine to handle. Also check for PCI errors which are only
1444 * reported here.
1445 *
1446 * LOCKING:
1447 * This routine holds the host_set lock while processing pending
1448 * interrupts.
1449 */
1450static irqreturn_t mv_interrupt(int irq, void *dev_instance,
1451 struct pt_regs *regs)
1452{
1453 struct ata_host_set *host_set = dev_instance;
1454 unsigned int hc, handled = 0, n_hcs;
1455 void __iomem *mmio = host_set->mmio_base;
1456 struct mv_host_priv *hpriv;
1457 u32 irq_stat;
1458
1459 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
1460
1461 /* check the cases where we either have nothing pending or have read
1462 * a bogus register value which can indicate HW removal or PCI fault
1463 */
1464 if (!irq_stat || (0xffffffffU == irq_stat)) {
1465 return IRQ_NONE;
1466 }
1467
1468 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
1469 spin_lock(&host_set->lock);
1470
1471 for (hc = 0; hc < n_hcs; hc++) {
1472 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
1473 if (relevant) {
1474 mv_host_intr(host_set, relevant, hc);
1475 handled++;
1476 }
1477 }
1478
1479 hpriv = host_set->private_data;
1480 if (IS_60XX(hpriv)) {
1481 /* deal with the interrupt coalescing bits */
1482 if (irq_stat & (TRAN_LO_DONE | TRAN_HI_DONE | PORTS_0_7_COAL_DONE)) {
1483 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_LO);
1484 writelfl(0, mmio + MV_IRQ_COAL_CAUSE_HI);
1485 writelfl(0, mmio + MV_IRQ_COAL_CAUSE);
1486 }
1487 }
1488
1489 if (PCI_ERR & irq_stat) {
1490 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
1491 readl(mmio + PCI_IRQ_CAUSE_OFS));
1492
1493 DPRINTK("All regs @ PCI error\n");
1494 mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1495
1496 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1497 handled++;
1498 }
1499 spin_unlock(&host_set->lock);
1500
1501 return IRQ_RETVAL(handled);
1502}
1503
1504static void __iomem *mv5_phy_base(void __iomem *mmio, unsigned int port)
1505{
1506 void __iomem *hc_mmio = mv_hc_base_from_port(mmio, port);
1507 unsigned long ofs = (mv_hardport_from_port(port) + 1) * 0x100UL;
1508
1509 return hc_mmio + ofs;
1510}
1511
1512static unsigned int mv5_scr_offset(unsigned int sc_reg_in)
1513{
1514 unsigned int ofs;
1515
1516 switch (sc_reg_in) {
1517 case SCR_STATUS:
1518 case SCR_ERROR:
1519 case SCR_CONTROL:
1520 ofs = sc_reg_in * sizeof(u32);
1521 break;
1522 default:
1523 ofs = 0xffffffffU;
1524 break;
1525 }
1526 return ofs;
1527}
1528
1529static u32 mv5_scr_read(struct ata_port *ap, unsigned int sc_reg_in)
1530{
1531 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1532 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1533
1534 if (ofs != 0xffffffffU)
1535 return readl(mmio + ofs);
1536 else
1537 return (u32) ofs;
1538}
1539
1540static void mv5_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
1541{
1542 void __iomem *mmio = mv5_phy_base(ap->host_set->mmio_base, ap->port_no);
1543 unsigned int ofs = mv5_scr_offset(sc_reg_in);
1544
1545 if (ofs != 0xffffffffU)
1546 writelfl(val, mmio + ofs);
1547}
1548
1549static void mv5_reset_bus(struct pci_dev *pdev, void __iomem *mmio)
1550{
1551 u8 rev_id;
1552 int early_5080;
1553
1554 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1555
1556 early_5080 = (pdev->device == 0x5080) && (rev_id == 0);
1557
1558 if (!early_5080) {
1559 u32 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1560 tmp |= (1 << 0);
1561 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1562 }
1563
1564 mv_reset_pci_bus(pdev, mmio);
1565}
1566
1567static void mv5_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1568{
1569 writel(0x0fcfffff, mmio + MV_FLASH_CTL);
1570}
1571
1572static void mv5_read_preamp(struct mv_host_priv *hpriv, int idx,
1573 void __iomem *mmio)
1574{
1575 void __iomem *phy_mmio = mv5_phy_base(mmio, idx);
1576 u32 tmp;
1577
1578 tmp = readl(phy_mmio + MV5_PHY_MODE);
1579
1580 hpriv->signal[idx].pre = tmp & 0x1800; /* bits 12:11 */
1581 hpriv->signal[idx].amps = tmp & 0xe0; /* bits 7:5 */
1582}
1583
1584static void mv5_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1585{
1586 u32 tmp;
1587
1588 writel(0, mmio + MV_GPIO_PORT_CTL);
1589
1590 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1591
1592 tmp = readl(mmio + MV_PCI_EXP_ROM_BAR_CTL);
1593 tmp |= ~(1 << 0);
1594 writel(tmp, mmio + MV_PCI_EXP_ROM_BAR_CTL);
1595}
1596
1597static void mv5_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1598 unsigned int port)
1599{
1600 void __iomem *phy_mmio = mv5_phy_base(mmio, port);
1601 const u32 mask = (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1602 u32 tmp;
1603 int fix_apm_sq = (hpriv->hp_flags & MV_HP_ERRATA_50XXB0);
1604
1605 if (fix_apm_sq) {
1606 tmp = readl(phy_mmio + MV5_LT_MODE);
1607 tmp |= (1 << 19);
1608 writel(tmp, phy_mmio + MV5_LT_MODE);
1609
1610 tmp = readl(phy_mmio + MV5_PHY_CTL);
1611 tmp &= ~0x3;
1612 tmp |= 0x1;
1613 writel(tmp, phy_mmio + MV5_PHY_CTL);
1614 }
1615
1616 tmp = readl(phy_mmio + MV5_PHY_MODE);
1617 tmp &= ~mask;
1618 tmp |= hpriv->signal[port].pre;
1619 tmp |= hpriv->signal[port].amps;
1620 writel(tmp, phy_mmio + MV5_PHY_MODE);
1621}
1622
1623
1624#undef ZERO
1625#define ZERO(reg) writel(0, port_mmio + (reg))
1626static void mv5_reset_hc_port(struct mv_host_priv *hpriv, void __iomem *mmio,
1627 unsigned int port)
1628{
1629 void __iomem *port_mmio = mv_port_base(mmio, port);
1630
1631 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
1632
1633 mv_channel_reset(hpriv, mmio, port);
1634
1635 ZERO(0x028); /* command */
1636 writel(0x11f, port_mmio + EDMA_CFG_OFS);
1637 ZERO(0x004); /* timer */
1638 ZERO(0x008); /* irq err cause */
1639 ZERO(0x00c); /* irq err mask */
1640 ZERO(0x010); /* rq bah */
1641 ZERO(0x014); /* rq inp */
1642 ZERO(0x018); /* rq outp */
1643 ZERO(0x01c); /* respq bah */
1644 ZERO(0x024); /* respq outp */
1645 ZERO(0x020); /* respq inp */
1646 ZERO(0x02c); /* test control */
1647 writel(0xbc, port_mmio + EDMA_IORDY_TMOUT);
1648}
1649#undef ZERO
1650
1651#define ZERO(reg) writel(0, hc_mmio + (reg))
1652static void mv5_reset_one_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1653 unsigned int hc)
1654{
1655 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
1656 u32 tmp;
1657
1658 ZERO(0x00c);
1659 ZERO(0x010);
1660 ZERO(0x014);
1661 ZERO(0x018);
1662
1663 tmp = readl(hc_mmio + 0x20);
1664 tmp &= 0x1c1c1c1c;
1665 tmp |= 0x03030303;
1666 writel(tmp, hc_mmio + 0x20);
1667}
1668#undef ZERO
1669
1670static int mv5_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1671 unsigned int n_hc)
1672{
1673 unsigned int hc, port;
1674
1675 for (hc = 0; hc < n_hc; hc++) {
1676 for (port = 0; port < MV_PORTS_PER_HC; port++)
1677 mv5_reset_hc_port(hpriv, mmio,
1678 (hc * MV_PORTS_PER_HC) + port);
1679
1680 mv5_reset_one_hc(hpriv, mmio, hc);
1681 }
1682
1683 return 0;
1684}
1685
1686#undef ZERO
1687#define ZERO(reg) writel(0, mmio + (reg))
1688static void mv_reset_pci_bus(struct pci_dev *pdev, void __iomem *mmio)
1689{
1690 u32 tmp;
1691
1692 tmp = readl(mmio + MV_PCI_MODE);
1693 tmp &= 0xff00ffff;
1694 writel(tmp, mmio + MV_PCI_MODE);
1695
1696 ZERO(MV_PCI_DISC_TIMER);
1697 ZERO(MV_PCI_MSI_TRIGGER);
1698 writel(0x000100ff, mmio + MV_PCI_XBAR_TMOUT);
1699 ZERO(HC_MAIN_IRQ_MASK_OFS);
1700 ZERO(MV_PCI_SERR_MASK);
1701 ZERO(PCI_IRQ_CAUSE_OFS);
1702 ZERO(PCI_IRQ_MASK_OFS);
1703 ZERO(MV_PCI_ERR_LOW_ADDRESS);
1704 ZERO(MV_PCI_ERR_HIGH_ADDRESS);
1705 ZERO(MV_PCI_ERR_ATTRIBUTE);
1706 ZERO(MV_PCI_ERR_COMMAND);
1707}
1708#undef ZERO
1709
1710static void mv6_reset_flash(struct mv_host_priv *hpriv, void __iomem *mmio)
1711{
1712 u32 tmp;
1713
1714 mv5_reset_flash(hpriv, mmio);
1715
1716 tmp = readl(mmio + MV_GPIO_PORT_CTL);
1717 tmp &= 0x3;
1718 tmp |= (1 << 5) | (1 << 6);
1719 writel(tmp, mmio + MV_GPIO_PORT_CTL);
1720}
1721
1722/**
1723 * mv6_reset_hc - Perform the 6xxx global soft reset
1724 * @mmio: base address of the HBA
1725 *
1726 * This routine only applies to 6xxx parts.
1727 *
1728 * LOCKING:
1729 * Inherited from caller.
1730 */
1731static int mv6_reset_hc(struct mv_host_priv *hpriv, void __iomem *mmio,
1732 unsigned int n_hc)
1733{
1734 void __iomem *reg = mmio + PCI_MAIN_CMD_STS_OFS;
1735 int i, rc = 0;
1736 u32 t;
1737
1738 /* Following procedure defined in PCI "main command and status
1739 * register" table.
1740 */
1741 t = readl(reg);
1742 writel(t | STOP_PCI_MASTER, reg);
1743
1744 for (i = 0; i < 1000; i++) {
1745 udelay(1);
1746 t = readl(reg);
1747 if (PCI_MASTER_EMPTY & t) {
1748 break;
1749 }
1750 }
1751 if (!(PCI_MASTER_EMPTY & t)) {
1752 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
1753 rc = 1;
1754 goto done;
1755 }
1756
1757 /* set reset */
1758 i = 5;
1759 do {
1760 writel(t | GLOB_SFT_RST, reg);
1761 t = readl(reg);
1762 udelay(1);
1763 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
1764
1765 if (!(GLOB_SFT_RST & t)) {
1766 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
1767 rc = 1;
1768 goto done;
1769 }
1770
1771 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1772 i = 5;
1773 do {
1774 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
1775 t = readl(reg);
1776 udelay(1);
1777 } while ((GLOB_SFT_RST & t) && (i-- > 0));
1778
1779 if (GLOB_SFT_RST & t) {
1780 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
1781 rc = 1;
1782 }
1783done:
1784 return rc;
1785}
1786
1787static void mv6_read_preamp(struct mv_host_priv *hpriv, int idx,
1788 void __iomem *mmio)
1789{
1790 void __iomem *port_mmio;
1791 u32 tmp;
1792
1793 tmp = readl(mmio + MV_RESET_CFG);
1794 if ((tmp & (1 << 0)) == 0) {
1795 hpriv->signal[idx].amps = 0x7 << 8;
1796 hpriv->signal[idx].pre = 0x1 << 5;
1797 return;
1798 }
1799
1800 port_mmio = mv_port_base(mmio, idx);
1801 tmp = readl(port_mmio + PHY_MODE2);
1802
1803 hpriv->signal[idx].amps = tmp & 0x700; /* bits 10:8 */
1804 hpriv->signal[idx].pre = tmp & 0xe0; /* bits 7:5 */
1805}
1806
1807static void mv6_enable_leds(struct mv_host_priv *hpriv, void __iomem *mmio)
1808{
1809 writel(0x00000060, mmio + MV_GPIO_PORT_CTL);
1810}
1811
1812static void mv6_phy_errata(struct mv_host_priv *hpriv, void __iomem *mmio,
1813 unsigned int port)
1814{
1815 void __iomem *port_mmio = mv_port_base(mmio, port);
1816
1817 u32 hp_flags = hpriv->hp_flags;
1818 int fix_phy_mode2 =
1819 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1820 int fix_phy_mode4 =
1821 hp_flags & (MV_HP_ERRATA_60X1B2 | MV_HP_ERRATA_60X1C0);
1822 u32 m2, tmp;
1823
1824 if (fix_phy_mode2) {
1825 m2 = readl(port_mmio + PHY_MODE2);
1826 m2 &= ~(1 << 16);
1827 m2 |= (1 << 31);
1828 writel(m2, port_mmio + PHY_MODE2);
1829
1830 udelay(200);
1831
1832 m2 = readl(port_mmio + PHY_MODE2);
1833 m2 &= ~((1 << 16) | (1 << 31));
1834 writel(m2, port_mmio + PHY_MODE2);
1835
1836 udelay(200);
1837 }
1838
1839 /* who knows what this magic does */
1840 tmp = readl(port_mmio + PHY_MODE3);
1841 tmp &= ~0x7F800000;
1842 tmp |= 0x2A800000;
1843 writel(tmp, port_mmio + PHY_MODE3);
1844
1845 if (fix_phy_mode4) {
1846 u32 m4;
1847
1848 m4 = readl(port_mmio + PHY_MODE4);
1849
1850 if (hp_flags & MV_HP_ERRATA_60X1B2)
1851 tmp = readl(port_mmio + 0x310);
1852
1853 m4 = (m4 & ~(1 << 1)) | (1 << 0);
1854
1855 writel(m4, port_mmio + PHY_MODE4);
1856
1857 if (hp_flags & MV_HP_ERRATA_60X1B2)
1858 writel(tmp, port_mmio + 0x310);
1859 }
1860
1861 /* Revert values of pre-emphasis and signal amps to the saved ones */
1862 m2 = readl(port_mmio + PHY_MODE2);
1863
1864 m2 &= ~MV_M2_PREAMP_MASK;
1865 m2 |= hpriv->signal[port].amps;
1866 m2 |= hpriv->signal[port].pre;
1867 m2 &= ~(1 << 16);
1868
1869 /* according to mvSata 3.6.1, some IIE values are fixed */
1870 if (IS_GEN_IIE(hpriv)) {
1871 m2 &= ~0xC30FF01F;
1872 m2 |= 0x0000900F;
1873 }
1874
1875 writel(m2, port_mmio + PHY_MODE2);
1876}
1877
1878static void mv_channel_reset(struct mv_host_priv *hpriv, void __iomem *mmio,
1879 unsigned int port_no)
1880{
1881 void __iomem *port_mmio = mv_port_base(mmio, port_no);
1882
1883 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
1884
1885 if (IS_60XX(hpriv)) {
1886 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
1887 ifctl |= (1 << 7); /* enable gen2i speed */
1888 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
1889 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
1890 }
1891
1892 udelay(25); /* allow reset propagation */
1893
1894 /* Spec never mentions clearing the bit. Marvell's driver does
1895 * clear the bit, however.
1896 */
1897 writelfl(0, port_mmio + EDMA_CMD_OFS);
1898
1899 hpriv->ops->phy_errata(hpriv, mmio, port_no);
1900
1901 if (IS_50XX(hpriv))
1902 mdelay(1);
1903}
1904
1905static void mv_stop_and_reset(struct ata_port *ap)
1906{
1907 struct mv_host_priv *hpriv = ap->host_set->private_data;
1908 void __iomem *mmio = ap->host_set->mmio_base;
1909
1910 mv_stop_dma(ap);
1911
1912 mv_channel_reset(hpriv, mmio, ap->port_no);
1913
1914 __mv_phy_reset(ap, 0);
1915}
1916
1917static inline void __msleep(unsigned int msec, int can_sleep)
1918{
1919 if (can_sleep)
1920 msleep(msec);
1921 else
1922 mdelay(msec);
1923}
1924
1925/**
1926 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1927 * @ap: ATA channel to manipulate
1928 *
1929 * Part of this is taken from __sata_phy_reset and modified to
1930 * not sleep since this routine gets called from interrupt level.
1931 *
1932 * LOCKING:
1933 * Inherited from caller. This is coded to safe to call at
1934 * interrupt level, i.e. it does not sleep.
1935 */
1936static void __mv_phy_reset(struct ata_port *ap, int can_sleep)
1937{
1938 struct mv_port_priv *pp = ap->private_data;
1939 struct mv_host_priv *hpriv = ap->host_set->private_data;
1940 void __iomem *port_mmio = mv_ap_base(ap);
1941 struct ata_taskfile tf;
1942 struct ata_device *dev = &ap->device[0];
1943 unsigned long timeout;
1944 int retry = 5;
1945 u32 sstatus;
1946
1947 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
1948
1949 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1950 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1951 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1952
1953 /* Issue COMRESET via SControl */
1954comreset_retry:
1955 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
1956 __msleep(1, can_sleep);
1957
1958 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1959 __msleep(20, can_sleep);
1960
1961 timeout = jiffies + msecs_to_jiffies(200);
1962 do {
1963 sata_scr_read(ap, SCR_STATUS, &sstatus);
1964 sstatus &= 0x3;
1965 if ((sstatus == 3) || (sstatus == 0))
1966 break;
1967
1968 __msleep(1, can_sleep);
1969 } while (time_before(jiffies, timeout));
1970
1971 /* work around errata */
1972 if (IS_60XX(hpriv) &&
1973 (sstatus != 0x0) && (sstatus != 0x113) && (sstatus != 0x123) &&
1974 (retry-- > 0))
1975 goto comreset_retry;
1976
1977 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1978 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1979 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1980
1981 if (ata_port_online(ap)) {
1982 ata_port_probe(ap);
1983 } else {
1984 sata_scr_read(ap, SCR_STATUS, &sstatus);
1985 ata_port_printk(ap, KERN_INFO,
1986 "no device found (phy stat %08x)\n", sstatus);
1987 ata_port_disable(ap);
1988 return;
1989 }
1990 ap->cbl = ATA_CBL_SATA;
1991
1992 /* even after SStatus reflects that device is ready,
1993 * it seems to take a while for link to be fully
1994 * established (and thus Status no longer 0x80/0x7F),
1995 * so we poll a bit for that, here.
1996 */
1997 retry = 20;
1998 while (1) {
1999 u8 drv_stat = ata_check_status(ap);
2000 if ((drv_stat != 0x80) && (drv_stat != 0x7f))
2001 break;
2002 __msleep(500, can_sleep);
2003 if (retry-- <= 0)
2004 break;
2005 }
2006
2007 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
2008 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
2009 tf.lbal = readb((void __iomem *) ap->ioaddr.lbal_addr);
2010 tf.nsect = readb((void __iomem *) ap->ioaddr.nsect_addr);
2011
2012 dev->class = ata_dev_classify(&tf);
2013 if (!ata_dev_enabled(dev)) {
2014 VPRINTK("Port disabled post-sig: No device present.\n");
2015 ata_port_disable(ap);
2016 }
2017
2018 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2019
2020 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
2021
2022 VPRINTK("EXIT\n");
2023}
2024
2025static void mv_phy_reset(struct ata_port *ap)
2026{
2027 __mv_phy_reset(ap, 1);
2028}
2029
2030/**
2031 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
2032 * @ap: ATA channel to manipulate
2033 *
2034 * Intent is to clear all pending error conditions, reset the
2035 * chip/bus, fail the command, and move on.
2036 *
2037 * LOCKING:
2038 * This routine holds the host_set lock while failing the command.
2039 */
2040static void mv_eng_timeout(struct ata_port *ap)
2041{
2042 struct ata_queued_cmd *qc;
2043 unsigned long flags;
2044
2045 ata_port_printk(ap, KERN_ERR, "Entering mv_eng_timeout\n");
2046 DPRINTK("All regs @ start of eng_timeout\n");
2047 mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
2048 to_pci_dev(ap->host_set->dev));
2049
2050 qc = ata_qc_from_tag(ap, ap->active_tag);
2051 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2052 ap->host_set->mmio_base, ap, qc, qc->scsicmd,
2053 &qc->scsicmd->cmnd);
2054
2055 spin_lock_irqsave(&ap->host_set->lock, flags);
2056 mv_err_intr(ap, 0);
2057 mv_stop_and_reset(ap);
2058 spin_unlock_irqrestore(&ap->host_set->lock, flags);
2059
2060 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
2061 if (qc->flags & ATA_QCFLAG_ACTIVE) {
2062 qc->err_mask |= AC_ERR_TIMEOUT;
2063 ata_eh_qc_complete(qc);
2064 }
2065}
2066
2067/**
2068 * mv_port_init - Perform some early initialization on a single port.
2069 * @port: libata data structure storing shadow register addresses
2070 * @port_mmio: base address of the port
2071 *
2072 * Initialize shadow register mmio addresses, clear outstanding
2073 * interrupts on the port, and unmask interrupts for the future
2074 * start of the port.
2075 *
2076 * LOCKING:
2077 * Inherited from caller.
2078 */
2079static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
2080{
2081 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
2082 unsigned serr_ofs;
2083
2084 /* PIO related setup
2085 */
2086 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
2087 port->error_addr =
2088 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
2089 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
2090 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
2091 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
2092 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
2093 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
2094 port->status_addr =
2095 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
2096 /* special case: control/altstatus doesn't have ATA_REG_ address */
2097 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
2098
2099 /* unused: */
2100 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
2101
2102 /* Clear any currently outstanding port interrupt conditions */
2103 serr_ofs = mv_scr_offset(SCR_ERROR);
2104 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
2105 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
2106
2107 /* unmask all EDMA error interrupts */
2108 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
2109
2110 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2111 readl(port_mmio + EDMA_CFG_OFS),
2112 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
2113 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
2114}
2115
2116static int mv_chip_id(struct pci_dev *pdev, struct mv_host_priv *hpriv,
2117 unsigned int board_idx)
2118{
2119 u8 rev_id;
2120 u32 hp_flags = hpriv->hp_flags;
2121
2122 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2123
2124 switch(board_idx) {
2125 case chip_5080:
2126 hpriv->ops = &mv5xxx_ops;
2127 hp_flags |= MV_HP_50XX;
2128
2129 switch (rev_id) {
2130 case 0x1:
2131 hp_flags |= MV_HP_ERRATA_50XXB0;
2132 break;
2133 case 0x3:
2134 hp_flags |= MV_HP_ERRATA_50XXB2;
2135 break;
2136 default:
2137 dev_printk(KERN_WARNING, &pdev->dev,
2138 "Applying 50XXB2 workarounds to unknown rev\n");
2139 hp_flags |= MV_HP_ERRATA_50XXB2;
2140 break;
2141 }
2142 break;
2143
2144 case chip_504x:
2145 case chip_508x:
2146 hpriv->ops = &mv5xxx_ops;
2147 hp_flags |= MV_HP_50XX;
2148
2149 switch (rev_id) {
2150 case 0x0:
2151 hp_flags |= MV_HP_ERRATA_50XXB0;
2152 break;
2153 case 0x3:
2154 hp_flags |= MV_HP_ERRATA_50XXB2;
2155 break;
2156 default:
2157 dev_printk(KERN_WARNING, &pdev->dev,
2158 "Applying B2 workarounds to unknown rev\n");
2159 hp_flags |= MV_HP_ERRATA_50XXB2;
2160 break;
2161 }
2162 break;
2163
2164 case chip_604x:
2165 case chip_608x:
2166 hpriv->ops = &mv6xxx_ops;
2167
2168 switch (rev_id) {
2169 case 0x7:
2170 hp_flags |= MV_HP_ERRATA_60X1B2;
2171 break;
2172 case 0x9:
2173 hp_flags |= MV_HP_ERRATA_60X1C0;
2174 break;
2175 default:
2176 dev_printk(KERN_WARNING, &pdev->dev,
2177 "Applying B2 workarounds to unknown rev\n");
2178 hp_flags |= MV_HP_ERRATA_60X1B2;
2179 break;
2180 }
2181 break;
2182
2183 case chip_7042:
2184 case chip_6042:
2185 hpriv->ops = &mv6xxx_ops;
2186
2187 hp_flags |= MV_HP_GEN_IIE;
2188
2189 switch (rev_id) {
2190 case 0x0:
2191 hp_flags |= MV_HP_ERRATA_XX42A0;
2192 break;
2193 case 0x1:
2194 hp_flags |= MV_HP_ERRATA_60X1C0;
2195 break;
2196 default:
2197 dev_printk(KERN_WARNING, &pdev->dev,
2198 "Applying 60X1C0 workarounds to unknown rev\n");
2199 hp_flags |= MV_HP_ERRATA_60X1C0;
2200 break;
2201 }
2202 break;
2203
2204 default:
2205 printk(KERN_ERR DRV_NAME ": BUG: invalid board index %u\n", board_idx);
2206 return 1;
2207 }
2208
2209 hpriv->hp_flags = hp_flags;
2210
2211 return 0;
2212}
2213
2214/**
2215 * mv_init_host - Perform some early initialization of the host.
2216 * @pdev: host PCI device
2217 * @probe_ent: early data struct representing the host
2218 *
2219 * If possible, do an early global reset of the host. Then do
2220 * our port init and clear/unmask all/relevant host interrupts.
2221 *
2222 * LOCKING:
2223 * Inherited from caller.
2224 */
2225static int mv_init_host(struct pci_dev *pdev, struct ata_probe_ent *probe_ent,
2226 unsigned int board_idx)
2227{
2228 int rc = 0, n_hc, port, hc;
2229 void __iomem *mmio = probe_ent->mmio_base;
2230 struct mv_host_priv *hpriv = probe_ent->private_data;
2231
2232 /* global interrupt mask */
2233 writel(0, mmio + HC_MAIN_IRQ_MASK_OFS);
2234
2235 rc = mv_chip_id(pdev, hpriv, board_idx);
2236 if (rc)
2237 goto done;
2238
2239 n_hc = mv_get_hc_count(probe_ent->host_flags);
2240 probe_ent->n_ports = MV_PORTS_PER_HC * n_hc;
2241
2242 for (port = 0; port < probe_ent->n_ports; port++)
2243 hpriv->ops->read_preamp(hpriv, port, mmio);
2244
2245 rc = hpriv->ops->reset_hc(hpriv, mmio, n_hc);
2246 if (rc)
2247 goto done;
2248
2249 hpriv->ops->reset_flash(hpriv, mmio);
2250 hpriv->ops->reset_bus(pdev, mmio);
2251 hpriv->ops->enable_leds(hpriv, mmio);
2252
2253 for (port = 0; port < probe_ent->n_ports; port++) {
2254 if (IS_60XX(hpriv)) {
2255 void __iomem *port_mmio = mv_port_base(mmio, port);
2256
2257 u32 ifctl = readl(port_mmio + SATA_INTERFACE_CTL);
2258 ifctl |= (1 << 7); /* enable gen2i speed */
2259 ifctl = (ifctl & 0xfff) | 0x9b1000; /* from chip spec */
2260 writelfl(ifctl, port_mmio + SATA_INTERFACE_CTL);
2261 }
2262
2263 hpriv->ops->phy_errata(hpriv, mmio, port);
2264 }
2265
2266 for (port = 0; port < probe_ent->n_ports; port++) {
2267 void __iomem *port_mmio = mv_port_base(mmio, port);
2268 mv_port_init(&probe_ent->port[port], port_mmio);
2269 }
2270
2271 for (hc = 0; hc < n_hc; hc++) {
2272 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
2273
2274 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2275 "(before clear)=0x%08x\n", hc,
2276 readl(hc_mmio + HC_CFG_OFS),
2277 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
2278
2279 /* Clear any currently outstanding hc interrupt conditions */
2280 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
2281 }
2282
2283 /* Clear any currently outstanding host interrupt conditions */
2284 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
2285
2286 /* and unmask interrupt generation for host regs */
2287 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
2288 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
2289
2290 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2291 "PCI int cause/mask=0x%08x/0x%08x\n",
2292 readl(mmio + HC_MAIN_IRQ_CAUSE_OFS),
2293 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
2294 readl(mmio + PCI_IRQ_CAUSE_OFS),
2295 readl(mmio + PCI_IRQ_MASK_OFS));
2296
2297done:
2298 return rc;
2299}
2300
2301/**
2302 * mv_print_info - Dump key info to kernel log for perusal.
2303 * @probe_ent: early data struct representing the host
2304 *
2305 * FIXME: complete this.
2306 *
2307 * LOCKING:
2308 * Inherited from caller.
2309 */
2310static void mv_print_info(struct ata_probe_ent *probe_ent)
2311{
2312 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
2313 struct mv_host_priv *hpriv = probe_ent->private_data;
2314 u8 rev_id, scc;
2315 const char *scc_s;
2316
2317 /* Use this to determine the HW stepping of the chip so we know
2318 * what errata to workaround
2319 */
2320 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
2321
2322 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
2323 if (scc == 0)
2324 scc_s = "SCSI";
2325 else if (scc == 0x01)
2326 scc_s = "RAID";
2327 else
2328 scc_s = "unknown";
2329
2330 dev_printk(KERN_INFO, &pdev->dev,
2331 "%u slots %u ports %s mode IRQ via %s\n",
2332 (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
2333 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
2334}
2335
2336/**
2337 * mv_init_one - handle a positive probe of a Marvell host
2338 * @pdev: PCI device found
2339 * @ent: PCI device ID entry for the matched host
2340 *
2341 * LOCKING:
2342 * Inherited from caller.
2343 */
2344static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
2345{
2346 static int printed_version = 0;
2347 struct ata_probe_ent *probe_ent = NULL;
2348 struct mv_host_priv *hpriv;
2349 unsigned int board_idx = (unsigned int)ent->driver_data;
2350 void __iomem *mmio_base;
2351 int pci_dev_busy = 0, rc;
2352
2353 if (!printed_version++)
2354 dev_printk(KERN_INFO, &pdev->dev, "version " DRV_VERSION "\n");
2355
2356 rc = pci_enable_device(pdev);
2357 if (rc) {
2358 return rc;
2359 }
2360 pci_set_master(pdev);
2361
2362 rc = pci_request_regions(pdev, DRV_NAME);
2363 if (rc) {
2364 pci_dev_busy = 1;
2365 goto err_out;
2366 }
2367
2368 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
2369 if (probe_ent == NULL) {
2370 rc = -ENOMEM;
2371 goto err_out_regions;
2372 }
2373
2374 memset(probe_ent, 0, sizeof(*probe_ent));
2375 probe_ent->dev = pci_dev_to_dev(pdev);
2376 INIT_LIST_HEAD(&probe_ent->node);
2377
2378 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
2379 if (mmio_base == NULL) {
2380 rc = -ENOMEM;
2381 goto err_out_free_ent;
2382 }
2383
2384 hpriv = kmalloc(sizeof(*hpriv), GFP_KERNEL);
2385 if (!hpriv) {
2386 rc = -ENOMEM;
2387 goto err_out_iounmap;
2388 }
2389 memset(hpriv, 0, sizeof(*hpriv));
2390
2391 probe_ent->sht = mv_port_info[board_idx].sht;
2392 probe_ent->host_flags = mv_port_info[board_idx].host_flags;
2393 probe_ent->pio_mask = mv_port_info[board_idx].pio_mask;
2394 probe_ent->udma_mask = mv_port_info[board_idx].udma_mask;
2395 probe_ent->port_ops = mv_port_info[board_idx].port_ops;
2396
2397 probe_ent->irq = pdev->irq;
2398 probe_ent->irq_flags = IRQF_SHARED;
2399 probe_ent->mmio_base = mmio_base;
2400 probe_ent->private_data = hpriv;
2401
2402 /* initialize adapter */
2403 rc = mv_init_host(pdev, probe_ent, board_idx);
2404 if (rc) {
2405 goto err_out_hpriv;
2406 }
2407
2408 /* Enable interrupts */
2409 if (msi && pci_enable_msi(pdev) == 0) {
2410 hpriv->hp_flags |= MV_HP_FLAG_MSI;
2411 } else {
2412 pci_intx(pdev, 1);
2413 }
2414
2415 mv_dump_pci_cfg(pdev, 0x68);
2416 mv_print_info(probe_ent);
2417
2418 if (ata_device_add(probe_ent) == 0) {
2419 rc = -ENODEV; /* No devices discovered */
2420 goto err_out_dev_add;
2421 }
2422
2423 kfree(probe_ent);
2424 return 0;
2425
2426err_out_dev_add:
2427 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
2428 pci_disable_msi(pdev);
2429 } else {
2430 pci_intx(pdev, 0);
2431 }
2432err_out_hpriv:
2433 kfree(hpriv);
2434err_out_iounmap:
2435 pci_iounmap(pdev, mmio_base);
2436err_out_free_ent:
2437 kfree(probe_ent);
2438err_out_regions:
2439 pci_release_regions(pdev);
2440err_out:
2441 if (!pci_dev_busy) {
2442 pci_disable_device(pdev);
2443 }
2444
2445 return rc;
2446}
2447
2448static int __init mv_init(void)
2449{
2450 return pci_register_driver(&mv_pci_driver);
2451}
2452
2453static void __exit mv_exit(void)
2454{
2455 pci_unregister_driver(&mv_pci_driver);
2456}
2457
2458MODULE_AUTHOR("Brett Russ");
2459MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2460MODULE_LICENSE("GPL");
2461MODULE_DEVICE_TABLE(pci, mv_pci_tbl);
2462MODULE_VERSION(DRV_VERSION);
2463
2464module_param(msi, int, 0444);
2465MODULE_PARM_DESC(msi, "Enable use of PCI MSI (0=off, 1=on)");
2466
2467module_init(mv_init);
2468module_exit(mv_exit);