aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/scsi/sata_mv.c
diff options
context:
space:
mode:
authorJeff Garzik <jgarzik@pobox.com>2005-10-09 09:44:07 -0400
committerJeff Garzik <jgarzik@pobox.com>2005-10-09 09:44:07 -0400
commitf58f8be7f65312f602f7970e7da47a6413e692b0 (patch)
treef60cc040deebceea1b44082dc713e95687d8527f /drivers/scsi/sata_mv.c
parentc71c18576d0d8aa4db876c737c3c597c724cf02f (diff)
parente710245bb0f980adfb1dfe850e43761a8117c6be (diff)
Merge branch 'upstream'
Diffstat (limited to 'drivers/scsi/sata_mv.c')
-rw-r--r--drivers/scsi/sata_mv.c1146
1 files changed, 954 insertions, 192 deletions
diff --git a/drivers/scsi/sata_mv.c b/drivers/scsi/sata_mv.c
index b8f1f6963179..e72140342d05 100644
--- a/drivers/scsi/sata_mv.c
+++ b/drivers/scsi/sata_mv.c
@@ -35,7 +35,7 @@
35#include <asm/io.h> 35#include <asm/io.h>
36 36
37#define DRV_NAME "sata_mv" 37#define DRV_NAME "sata_mv"
38#define DRV_VERSION "0.12" 38#define DRV_VERSION "0.24"
39 39
40enum { 40enum {
41 /* BAR's are enumerated in terms of pci_resource_start() terms */ 41 /* BAR's are enumerated in terms of pci_resource_start() terms */
@@ -55,31 +55,62 @@ enum {
55 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */ 55 MV_SATAHC_ARBTR_REG_SZ = MV_MINOR_REG_AREA_SZ, /* arbiter */
56 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ, 56 MV_PORT_REG_SZ = MV_MINOR_REG_AREA_SZ,
57 57
58 MV_Q_CT = 32, 58 MV_USE_Q_DEPTH = ATA_DEF_QUEUE,
59 MV_CRQB_SZ = 32,
60 MV_CRPB_SZ = 8,
61 59
62 MV_DMA_BOUNDARY = 0xffffffffU, 60 MV_MAX_Q_DEPTH = 32,
63 SATAHC_MASK = (~(MV_SATAHC_REG_SZ - 1)), 61 MV_MAX_Q_DEPTH_MASK = MV_MAX_Q_DEPTH - 1,
62
63 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
64 * CRPB needs alignment on a 256B boundary. Size == 256B
65 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
66 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
67 */
68 MV_CRQB_Q_SZ = (32 * MV_MAX_Q_DEPTH),
69 MV_CRPB_Q_SZ = (8 * MV_MAX_Q_DEPTH),
70 MV_MAX_SG_CT = 176,
71 MV_SG_TBL_SZ = (16 * MV_MAX_SG_CT),
72 MV_PORT_PRIV_DMA_SZ = (MV_CRQB_Q_SZ + MV_CRPB_Q_SZ + MV_SG_TBL_SZ),
73
74 /* Our DMA boundary is determined by an ePRD being unable to handle
75 * anything larger than 64KB
76 */
77 MV_DMA_BOUNDARY = 0xffffU,
64 78
65 MV_PORTS_PER_HC = 4, 79 MV_PORTS_PER_HC = 4,
66 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */ 80 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
67 MV_PORT_HC_SHIFT = 2, 81 MV_PORT_HC_SHIFT = 2,
68 /* == (port % MV_PORTS_PER_HC) to determine port from 0-7 port */ 82 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
69 MV_PORT_MASK = 3, 83 MV_PORT_MASK = 3,
70 84
71 /* Host Flags */ 85 /* Host Flags */
72 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */ 86 MV_FLAG_DUAL_HC = (1 << 30), /* two SATA Host Controllers */
73 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */ 87 MV_FLAG_IRQ_COALESCE = (1 << 29), /* IRQ coalescing capability */
74 MV_FLAG_BDMA = (1 << 28), /* Basic DMA */ 88 MV_FLAG_GLBL_SFT_RST = (1 << 28), /* Global Soft Reset support */
89 MV_COMMON_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY |
90 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO |
91 ATA_FLAG_PIO_POLLING),
92 MV_6XXX_FLAGS = (MV_FLAG_IRQ_COALESCE |
93 MV_FLAG_GLBL_SFT_RST),
75 94
76 chip_504x = 0, 95 chip_504x = 0,
77 chip_508x = 1, 96 chip_508x = 1,
78 chip_604x = 2, 97 chip_604x = 2,
79 chip_608x = 3, 98 chip_608x = 3,
80 99
100 CRQB_FLAG_READ = (1 << 0),
101 CRQB_TAG_SHIFT = 1,
102 CRQB_CMD_ADDR_SHIFT = 8,
103 CRQB_CMD_CS = (0x2 << 11),
104 CRQB_CMD_LAST = (1 << 15),
105
106 CRPB_FLAG_STATUS_SHIFT = 8,
107
108 EPRD_FLAG_END_OF_TBL = (1 << 31),
109
81 /* PCI interface registers */ 110 /* PCI interface registers */
82 111
112 PCI_COMMAND_OFS = 0xc00,
113
83 PCI_MAIN_CMD_STS_OFS = 0xd30, 114 PCI_MAIN_CMD_STS_OFS = 0xd30,
84 STOP_PCI_MASTER = (1 << 2), 115 STOP_PCI_MASTER = (1 << 2),
85 PCI_MASTER_EMPTY = (1 << 3), 116 PCI_MASTER_EMPTY = (1 << 3),
@@ -111,20 +142,13 @@ enum {
111 HC_CFG_OFS = 0, 142 HC_CFG_OFS = 0,
112 143
113 HC_IRQ_CAUSE_OFS = 0x14, 144 HC_IRQ_CAUSE_OFS = 0x14,
114 CRBP_DMA_DONE = (1 << 0), /* shift by port # */ 145 CRPB_DMA_DONE = (1 << 0), /* shift by port # */
115 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */ 146 HC_IRQ_COAL = (1 << 4), /* IRQ coalescing */
116 DEV_IRQ = (1 << 8), /* shift by port # */ 147 DEV_IRQ = (1 << 8), /* shift by port # */
117 148
118 /* Shadow block registers */ 149 /* Shadow block registers */
119 SHD_PIO_DATA_OFS = 0x100, 150 SHD_BLK_OFS = 0x100,
120 SHD_FEA_ERR_OFS = 0x104, 151 SHD_CTL_AST_OFS = 0x20, /* ofs from SHD_BLK_OFS */
121 SHD_SECT_CNT_OFS = 0x108,
122 SHD_LBA_L_OFS = 0x10C,
123 SHD_LBA_M_OFS = 0x110,
124 SHD_LBA_H_OFS = 0x114,
125 SHD_DEV_HD_OFS = 0x118,
126 SHD_CMD_STA_OFS = 0x11C,
127 SHD_CTL_AST_OFS = 0x120,
128 152
129 /* SATA registers */ 153 /* SATA registers */
130 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */ 154 SATA_STATUS_OFS = 0x300, /* ctrl, err regs follow status */
@@ -132,6 +156,11 @@ enum {
132 156
133 /* Port registers */ 157 /* Port registers */
134 EDMA_CFG_OFS = 0, 158 EDMA_CFG_OFS = 0,
159 EDMA_CFG_Q_DEPTH = 0, /* queueing disabled */
160 EDMA_CFG_NCQ = (1 << 5),
161 EDMA_CFG_NCQ_GO_ON_ERR = (1 << 14), /* continue on error */
162 EDMA_CFG_RD_BRST_EXT = (1 << 11), /* read burst 512B */
163 EDMA_CFG_WR_BUFF_LEN = (1 << 13), /* write buffer 512B */
135 164
136 EDMA_ERR_IRQ_CAUSE_OFS = 0x8, 165 EDMA_ERR_IRQ_CAUSE_OFS = 0x8,
137 EDMA_ERR_IRQ_MASK_OFS = 0xc, 166 EDMA_ERR_IRQ_MASK_OFS = 0xc,
@@ -161,33 +190,85 @@ enum {
161 EDMA_ERR_LNK_DATA_TX | 190 EDMA_ERR_LNK_DATA_TX |
162 EDMA_ERR_TRANS_PROTO), 191 EDMA_ERR_TRANS_PROTO),
163 192
193 EDMA_REQ_Q_BASE_HI_OFS = 0x10,
194 EDMA_REQ_Q_IN_PTR_OFS = 0x14, /* also contains BASE_LO */
195 EDMA_REQ_Q_BASE_LO_MASK = 0xfffffc00U,
196
197 EDMA_REQ_Q_OUT_PTR_OFS = 0x18,
198 EDMA_REQ_Q_PTR_SHIFT = 5,
199
200 EDMA_RSP_Q_BASE_HI_OFS = 0x1c,
201 EDMA_RSP_Q_IN_PTR_OFS = 0x20,
202 EDMA_RSP_Q_OUT_PTR_OFS = 0x24, /* also contains BASE_LO */
203 EDMA_RSP_Q_BASE_LO_MASK = 0xffffff00U,
204 EDMA_RSP_Q_PTR_SHIFT = 3,
205
164 EDMA_CMD_OFS = 0x28, 206 EDMA_CMD_OFS = 0x28,
165 EDMA_EN = (1 << 0), 207 EDMA_EN = (1 << 0),
166 EDMA_DS = (1 << 1), 208 EDMA_DS = (1 << 1),
167 ATA_RST = (1 << 2), 209 ATA_RST = (1 << 2),
168 210
169 /* BDMA is 6xxx part only */ 211 /* Host private flags (hp_flags) */
170 BDMA_CMD_OFS = 0x224, 212 MV_HP_FLAG_MSI = (1 << 0),
171 BDMA_START = (1 << 0),
172 213
173 MV_UNDEF = 0, 214 /* Port private flags (pp_flags) */
215 MV_PP_FLAG_EDMA_EN = (1 << 0),
216 MV_PP_FLAG_EDMA_DS_ACT = (1 << 1),
174}; 217};
175 218
176struct mv_port_priv { 219/* Command ReQuest Block: 32B */
220struct mv_crqb {
221 u32 sg_addr;
222 u32 sg_addr_hi;
223 u16 ctrl_flags;
224 u16 ata_cmd[11];
225};
177 226
227/* Command ResPonse Block: 8B */
228struct mv_crpb {
229 u16 id;
230 u16 flags;
231 u32 tmstmp;
178}; 232};
179 233
180struct mv_host_priv { 234/* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
235struct mv_sg {
236 u32 addr;
237 u32 flags_size;
238 u32 addr_hi;
239 u32 reserved;
240};
181 241
242struct mv_port_priv {
243 struct mv_crqb *crqb;
244 dma_addr_t crqb_dma;
245 struct mv_crpb *crpb;
246 dma_addr_t crpb_dma;
247 struct mv_sg *sg_tbl;
248 dma_addr_t sg_tbl_dma;
249
250 unsigned req_producer; /* cp of req_in_ptr */
251 unsigned rsp_consumer; /* cp of rsp_out_ptr */
252 u32 pp_flags;
253};
254
255struct mv_host_priv {
256 u32 hp_flags;
182}; 257};
183 258
184static void mv_irq_clear(struct ata_port *ap); 259static void mv_irq_clear(struct ata_port *ap);
185static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in); 260static u32 mv_scr_read(struct ata_port *ap, unsigned int sc_reg_in);
186static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val); 261static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val);
262static u8 mv_check_err(struct ata_port *ap);
187static void mv_phy_reset(struct ata_port *ap); 263static void mv_phy_reset(struct ata_port *ap);
188static int mv_master_reset(void __iomem *mmio_base); 264static void mv_host_stop(struct ata_host_set *host_set);
265static int mv_port_start(struct ata_port *ap);
266static void mv_port_stop(struct ata_port *ap);
267static void mv_qc_prep(struct ata_queued_cmd *qc);
268static int mv_qc_issue(struct ata_queued_cmd *qc);
189static irqreturn_t mv_interrupt(int irq, void *dev_instance, 269static irqreturn_t mv_interrupt(int irq, void *dev_instance,
190 struct pt_regs *regs); 270 struct pt_regs *regs);
271static void mv_eng_timeout(struct ata_port *ap);
191static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent); 272static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent);
192 273
193static Scsi_Host_Template mv_sht = { 274static Scsi_Host_Template mv_sht = {
@@ -196,13 +277,13 @@ static Scsi_Host_Template mv_sht = {
196 .ioctl = ata_scsi_ioctl, 277 .ioctl = ata_scsi_ioctl,
197 .queuecommand = ata_scsi_queuecmd, 278 .queuecommand = ata_scsi_queuecmd,
198 .eh_strategy_handler = ata_scsi_error, 279 .eh_strategy_handler = ata_scsi_error,
199 .can_queue = ATA_DEF_QUEUE, 280 .can_queue = MV_USE_Q_DEPTH,
200 .this_id = ATA_SHT_THIS_ID, 281 .this_id = ATA_SHT_THIS_ID,
201 .sg_tablesize = MV_UNDEF, 282 .sg_tablesize = MV_MAX_SG_CT,
202 .max_sectors = ATA_MAX_SECTORS, 283 .max_sectors = ATA_MAX_SECTORS,
203 .cmd_per_lun = ATA_SHT_CMD_PER_LUN, 284 .cmd_per_lun = ATA_SHT_CMD_PER_LUN,
204 .emulated = ATA_SHT_EMULATED, 285 .emulated = ATA_SHT_EMULATED,
205 .use_clustering = MV_UNDEF, 286 .use_clustering = ATA_SHT_USE_CLUSTERING,
206 .proc_name = DRV_NAME, 287 .proc_name = DRV_NAME,
207 .dma_boundary = MV_DMA_BOUNDARY, 288 .dma_boundary = MV_DMA_BOUNDARY,
208 .slave_configure = ata_scsi_slave_config, 289 .slave_configure = ata_scsi_slave_config,
@@ -216,15 +297,16 @@ static struct ata_port_operations mv_ops = {
216 .tf_load = ata_tf_load, 297 .tf_load = ata_tf_load,
217 .tf_read = ata_tf_read, 298 .tf_read = ata_tf_read,
218 .check_status = ata_check_status, 299 .check_status = ata_check_status,
300 .check_err = mv_check_err,
219 .exec_command = ata_exec_command, 301 .exec_command = ata_exec_command,
220 .dev_select = ata_std_dev_select, 302 .dev_select = ata_std_dev_select,
221 303
222 .phy_reset = mv_phy_reset, 304 .phy_reset = mv_phy_reset,
223 305
224 .qc_prep = ata_qc_prep, 306 .qc_prep = mv_qc_prep,
225 .qc_issue = ata_qc_issue_prot, 307 .qc_issue = mv_qc_issue,
226 308
227 .eng_timeout = ata_eng_timeout, 309 .eng_timeout = mv_eng_timeout,
228 310
229 .irq_handler = mv_interrupt, 311 .irq_handler = mv_interrupt,
230 .irq_clear = mv_irq_clear, 312 .irq_clear = mv_irq_clear,
@@ -232,49 +314,39 @@ static struct ata_port_operations mv_ops = {
232 .scr_read = mv_scr_read, 314 .scr_read = mv_scr_read,
233 .scr_write = mv_scr_write, 315 .scr_write = mv_scr_write,
234 316
235 .port_start = ata_port_start, 317 .port_start = mv_port_start,
236 .port_stop = ata_port_stop, 318 .port_stop = mv_port_stop,
237 .host_stop = ata_host_stop, 319 .host_stop = mv_host_stop,
238}; 320};
239 321
240static struct ata_port_info mv_port_info[] = { 322static struct ata_port_info mv_port_info[] = {
241 { /* chip_504x */ 323 { /* chip_504x */
242 .sht = &mv_sht, 324 .sht = &mv_sht,
243 .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 325 .host_flags = MV_COMMON_FLAGS,
244 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | 326 .pio_mask = 0x1f, /* pio0-4 */
245 ATA_FLAG_PIO_POLLING), 327 .udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */
246 .pio_mask = 0x1f, /* pio4-0 */
247 .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */
248 .port_ops = &mv_ops, 328 .port_ops = &mv_ops,
249 }, 329 },
250 { /* chip_508x */ 330 { /* chip_508x */
251 .sht = &mv_sht, 331 .sht = &mv_sht,
252 .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 332 .host_flags = (MV_COMMON_FLAGS | MV_FLAG_DUAL_HC),
253 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | 333 .pio_mask = 0x1f, /* pio0-4 */
254 ATA_FLAG_PIO_POLLING | MV_FLAG_DUAL_HC), 334 .udma_mask = 0, /* 0x7f (udma0-6 disabled for now) */
255 .pio_mask = 0x1f, /* pio4-0 */
256 .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */
257 .port_ops = &mv_ops, 335 .port_ops = &mv_ops,
258 }, 336 },
259 { /* chip_604x */ 337 { /* chip_604x */
260 .sht = &mv_sht, 338 .sht = &mv_sht,
261 .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 339 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS),
262 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | 340 .pio_mask = 0x1f, /* pio0-4 */
263 ATA_FLAG_PIO_POLLING | 341 .udma_mask = 0x7f, /* udma0-6 */
264 MV_FLAG_IRQ_COALESCE | MV_FLAG_BDMA),
265 .pio_mask = 0x1f, /* pio4-0 */
266 .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */
267 .port_ops = &mv_ops, 342 .port_ops = &mv_ops,
268 }, 343 },
269 { /* chip_608x */ 344 { /* chip_608x */
270 .sht = &mv_sht, 345 .sht = &mv_sht,
271 .host_flags = (ATA_FLAG_SATA | ATA_FLAG_NO_LEGACY | 346 .host_flags = (MV_COMMON_FLAGS | MV_6XXX_FLAGS |
272 ATA_FLAG_SATA_RESET | ATA_FLAG_MMIO | 347 MV_FLAG_DUAL_HC),
273 ATA_FLAG_PIO_POLLING | 348 .pio_mask = 0x1f, /* pio0-4 */
274 MV_FLAG_IRQ_COALESCE | MV_FLAG_DUAL_HC | 349 .udma_mask = 0x7f, /* udma0-6 */
275 MV_FLAG_BDMA),
276 .pio_mask = 0x1f, /* pio4-0 */
277 .udma_mask = 0, /* 0x7f (udma6-0 disabled for now) */
278 .port_ops = &mv_ops, 350 .port_ops = &mv_ops,
279 }, 351 },
280}; 352};
@@ -309,12 +381,6 @@ static inline void writelfl(unsigned long data, void __iomem *addr)
309 (void) readl(addr); /* flush to avoid PCI posted write */ 381 (void) readl(addr); /* flush to avoid PCI posted write */
310} 382}
311 383
312static inline void __iomem *mv_port_addr_to_hc_base(void __iomem *port_mmio)
313{
314 return ((void __iomem *)((unsigned long)port_mmio &
315 (unsigned long)SATAHC_MASK));
316}
317
318static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc) 384static inline void __iomem *mv_hc_base(void __iomem *base, unsigned int hc)
319{ 385{
320 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ)); 386 return (base + MV_SATAHC0_REG_BASE + (hc * MV_SATAHC_REG_SZ));
@@ -332,24 +398,150 @@ static inline void __iomem *mv_ap_base(struct ata_port *ap)
332 return mv_port_base(ap->host_set->mmio_base, ap->port_no); 398 return mv_port_base(ap->host_set->mmio_base, ap->port_no);
333} 399}
334 400
335static inline int mv_get_hc_count(unsigned long flags) 401static inline int mv_get_hc_count(unsigned long hp_flags)
402{
403 return ((hp_flags & MV_FLAG_DUAL_HC) ? 2 : 1);
404}
405
406static void mv_irq_clear(struct ata_port *ap)
407{
408}
409
410/**
411 * mv_start_dma - Enable eDMA engine
412 * @base: port base address
413 * @pp: port private data
414 *
415 * Verify the local cache of the eDMA state is accurate with an
416 * assert.
417 *
418 * LOCKING:
419 * Inherited from caller.
420 */
421static void mv_start_dma(void __iomem *base, struct mv_port_priv *pp)
336{ 422{
337 return ((flags & MV_FLAG_DUAL_HC) ? 2 : 1); 423 if (!(MV_PP_FLAG_EDMA_EN & pp->pp_flags)) {
424 writelfl(EDMA_EN, base + EDMA_CMD_OFS);
425 pp->pp_flags |= MV_PP_FLAG_EDMA_EN;
426 }
427 assert(EDMA_EN & readl(base + EDMA_CMD_OFS));
338} 428}
339 429
340static inline int mv_is_edma_active(struct ata_port *ap) 430/**
431 * mv_stop_dma - Disable eDMA engine
432 * @ap: ATA channel to manipulate
433 *
434 * Verify the local cache of the eDMA state is accurate with an
435 * assert.
436 *
437 * LOCKING:
438 * Inherited from caller.
439 */
440static void mv_stop_dma(struct ata_port *ap)
341{ 441{
342 void __iomem *port_mmio = mv_ap_base(ap); 442 void __iomem *port_mmio = mv_ap_base(ap);
343 return (EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)); 443 struct mv_port_priv *pp = ap->private_data;
444 u32 reg;
445 int i;
446
447 if (MV_PP_FLAG_EDMA_EN & pp->pp_flags) {
448 /* Disable EDMA if active. The disable bit auto clears.
449 */
450 writelfl(EDMA_DS, port_mmio + EDMA_CMD_OFS);
451 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
452 } else {
453 assert(!(EDMA_EN & readl(port_mmio + EDMA_CMD_OFS)));
454 }
455
456 /* now properly wait for the eDMA to stop */
457 for (i = 1000; i > 0; i--) {
458 reg = readl(port_mmio + EDMA_CMD_OFS);
459 if (!(EDMA_EN & reg)) {
460 break;
461 }
462 udelay(100);
463 }
464
465 if (EDMA_EN & reg) {
466 printk(KERN_ERR "ata%u: Unable to stop eDMA\n", ap->id);
467 /* FIXME: Consider doing a reset here to recover */
468 }
344} 469}
345 470
346static inline int mv_port_bdma_capable(struct ata_port *ap) 471#ifdef ATA_DEBUG
472static void mv_dump_mem(void __iomem *start, unsigned bytes)
347{ 473{
348 return (ap->flags & MV_FLAG_BDMA); 474 int b, w;
475 for (b = 0; b < bytes; ) {
476 DPRINTK("%p: ", start + b);
477 for (w = 0; b < bytes && w < 4; w++) {
478 printk("%08x ",readl(start + b));
479 b += sizeof(u32);
480 }
481 printk("\n");
482 }
349} 483}
484#endif
350 485
351static void mv_irq_clear(struct ata_port *ap) 486static void mv_dump_pci_cfg(struct pci_dev *pdev, unsigned bytes)
487{
488#ifdef ATA_DEBUG
489 int b, w;
490 u32 dw;
491 for (b = 0; b < bytes; ) {
492 DPRINTK("%02x: ", b);
493 for (w = 0; b < bytes && w < 4; w++) {
494 (void) pci_read_config_dword(pdev,b,&dw);
495 printk("%08x ",dw);
496 b += sizeof(u32);
497 }
498 printk("\n");
499 }
500#endif
501}
502static void mv_dump_all_regs(void __iomem *mmio_base, int port,
503 struct pci_dev *pdev)
352{ 504{
505#ifdef ATA_DEBUG
506 void __iomem *hc_base = mv_hc_base(mmio_base,
507 port >> MV_PORT_HC_SHIFT);
508 void __iomem *port_base;
509 int start_port, num_ports, p, start_hc, num_hcs, hc;
510
511 if (0 > port) {
512 start_hc = start_port = 0;
513 num_ports = 8; /* shld be benign for 4 port devs */
514 num_hcs = 2;
515 } else {
516 start_hc = port >> MV_PORT_HC_SHIFT;
517 start_port = port;
518 num_ports = num_hcs = 1;
519 }
520 DPRINTK("All registers for port(s) %u-%u:\n", start_port,
521 num_ports > 1 ? num_ports - 1 : start_port);
522
523 if (NULL != pdev) {
524 DPRINTK("PCI config space regs:\n");
525 mv_dump_pci_cfg(pdev, 0x68);
526 }
527 DPRINTK("PCI regs:\n");
528 mv_dump_mem(mmio_base+0xc00, 0x3c);
529 mv_dump_mem(mmio_base+0xd00, 0x34);
530 mv_dump_mem(mmio_base+0xf00, 0x4);
531 mv_dump_mem(mmio_base+0x1d00, 0x6c);
532 for (hc = start_hc; hc < start_hc + num_hcs; hc++) {
533 hc_base = mv_hc_base(mmio_base, port >> MV_PORT_HC_SHIFT);
534 DPRINTK("HC regs (HC %i):\n", hc);
535 mv_dump_mem(hc_base, 0x1c);
536 }
537 for (p = start_port; p < start_port + num_ports; p++) {
538 port_base = mv_port_base(mmio_base, p);
539 DPRINTK("EDMA regs (port %i):\n",p);
540 mv_dump_mem(port_base, 0x54);
541 DPRINTK("SATA regs (port %i):\n",p);
542 mv_dump_mem(port_base+0x300, 0x60);
543 }
544#endif
353} 545}
354 546
355static unsigned int mv_scr_offset(unsigned int sc_reg_in) 547static unsigned int mv_scr_offset(unsigned int sc_reg_in)
@@ -392,30 +584,37 @@ static void mv_scr_write(struct ata_port *ap, unsigned int sc_reg_in, u32 val)
392 } 584 }
393} 585}
394 586
395static int mv_master_reset(void __iomem *mmio_base) 587/**
588 * mv_global_soft_reset - Perform the 6xxx global soft reset
589 * @mmio_base: base address of the HBA
590 *
591 * This routine only applies to 6xxx parts.
592 *
593 * LOCKING:
594 * Inherited from caller.
595 */
596static int mv_global_soft_reset(void __iomem *mmio_base)
396{ 597{
397 void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS; 598 void __iomem *reg = mmio_base + PCI_MAIN_CMD_STS_OFS;
398 int i, rc = 0; 599 int i, rc = 0;
399 u32 t; 600 u32 t;
400 601
401 VPRINTK("ENTER\n");
402
403 /* Following procedure defined in PCI "main command and status 602 /* Following procedure defined in PCI "main command and status
404 * register" table. 603 * register" table.
405 */ 604 */
406 t = readl(reg); 605 t = readl(reg);
407 writel(t | STOP_PCI_MASTER, reg); 606 writel(t | STOP_PCI_MASTER, reg);
408 607
409 for (i = 0; i < 100; i++) { 608 for (i = 0; i < 1000; i++) {
410 msleep(10); 609 udelay(1);
411 t = readl(reg); 610 t = readl(reg);
412 if (PCI_MASTER_EMPTY & t) { 611 if (PCI_MASTER_EMPTY & t) {
413 break; 612 break;
414 } 613 }
415 } 614 }
416 if (!(PCI_MASTER_EMPTY & t)) { 615 if (!(PCI_MASTER_EMPTY & t)) {
417 printk(KERN_ERR DRV_NAME "PCI master won't flush\n"); 616 printk(KERN_ERR DRV_NAME ": PCI master won't flush\n");
418 rc = 1; /* broken HW? */ 617 rc = 1;
419 goto done; 618 goto done;
420 } 619 }
421 620
@@ -428,39 +627,398 @@ static int mv_master_reset(void __iomem *mmio_base)
428 } while (!(GLOB_SFT_RST & t) && (i-- > 0)); 627 } while (!(GLOB_SFT_RST & t) && (i-- > 0));
429 628
430 if (!(GLOB_SFT_RST & t)) { 629 if (!(GLOB_SFT_RST & t)) {
431 printk(KERN_ERR DRV_NAME "can't set global reset\n"); 630 printk(KERN_ERR DRV_NAME ": can't set global reset\n");
432 rc = 1; /* broken HW? */ 631 rc = 1;
433 goto done; 632 goto done;
434 } 633 }
435 634
436 /* clear reset */ 635 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
437 i = 5; 636 i = 5;
438 do { 637 do {
439 writel(t & ~GLOB_SFT_RST, reg); 638 writel(t & ~(GLOB_SFT_RST | STOP_PCI_MASTER), reg);
440 t = readl(reg); 639 t = readl(reg);
441 udelay(1); 640 udelay(1);
442 } while ((GLOB_SFT_RST & t) && (i-- > 0)); 641 } while ((GLOB_SFT_RST & t) && (i-- > 0));
443 642
444 if (GLOB_SFT_RST & t) { 643 if (GLOB_SFT_RST & t) {
445 printk(KERN_ERR DRV_NAME "can't clear global reset\n"); 644 printk(KERN_ERR DRV_NAME ": can't clear global reset\n");
446 rc = 1; /* broken HW? */ 645 rc = 1;
447 } 646 }
448 647done:
449 done:
450 VPRINTK("EXIT, rc = %i\n", rc);
451 return rc; 648 return rc;
452} 649}
453 650
454static void mv_err_intr(struct ata_port *ap) 651/**
652 * mv_host_stop - Host specific cleanup/stop routine.
653 * @host_set: host data structure
654 *
655 * Disable ints, cleanup host memory, call general purpose
656 * host_stop.
657 *
658 * LOCKING:
659 * Inherited from caller.
660 */
661static void mv_host_stop(struct ata_host_set *host_set)
455{ 662{
456 void __iomem *port_mmio; 663 struct mv_host_priv *hpriv = host_set->private_data;
457 u32 edma_err_cause, serr = 0; 664 struct pci_dev *pdev = to_pci_dev(host_set->dev);
665
666 if (hpriv->hp_flags & MV_HP_FLAG_MSI) {
667 pci_disable_msi(pdev);
668 } else {
669 pci_intx(pdev, 0);
670 }
671 kfree(hpriv);
672 ata_host_stop(host_set);
673}
458 674
459 /* bug here b/c we got an err int on a port we don't know about, 675/**
460 * so there's no way to clear it 676 * mv_port_start - Port specific init/start routine.
677 * @ap: ATA channel to manipulate
678 *
679 * Allocate and point to DMA memory, init port private memory,
680 * zero indices.
681 *
682 * LOCKING:
683 * Inherited from caller.
684 */
685static int mv_port_start(struct ata_port *ap)
686{
687 struct device *dev = ap->host_set->dev;
688 struct mv_port_priv *pp;
689 void __iomem *port_mmio = mv_ap_base(ap);
690 void *mem;
691 dma_addr_t mem_dma;
692
693 pp = kmalloc(sizeof(*pp), GFP_KERNEL);
694 if (!pp) {
695 return -ENOMEM;
696 }
697 memset(pp, 0, sizeof(*pp));
698
699 mem = dma_alloc_coherent(dev, MV_PORT_PRIV_DMA_SZ, &mem_dma,
700 GFP_KERNEL);
701 if (!mem) {
702 kfree(pp);
703 return -ENOMEM;
704 }
705 memset(mem, 0, MV_PORT_PRIV_DMA_SZ);
706
707 /* First item in chunk of DMA memory:
708 * 32-slot command request table (CRQB), 32 bytes each in size
461 */ 709 */
462 BUG_ON(NULL == ap); 710 pp->crqb = mem;
463 port_mmio = mv_ap_base(ap); 711 pp->crqb_dma = mem_dma;
712 mem += MV_CRQB_Q_SZ;
713 mem_dma += MV_CRQB_Q_SZ;
714
715 /* Second item:
716 * 32-slot command response table (CRPB), 8 bytes each in size
717 */
718 pp->crpb = mem;
719 pp->crpb_dma = mem_dma;
720 mem += MV_CRPB_Q_SZ;
721 mem_dma += MV_CRPB_Q_SZ;
722
723 /* Third item:
724 * Table of scatter-gather descriptors (ePRD), 16 bytes each
725 */
726 pp->sg_tbl = mem;
727 pp->sg_tbl_dma = mem_dma;
728
729 writelfl(EDMA_CFG_Q_DEPTH | EDMA_CFG_RD_BRST_EXT |
730 EDMA_CFG_WR_BUFF_LEN, port_mmio + EDMA_CFG_OFS);
731
732 writel((pp->crqb_dma >> 16) >> 16, port_mmio + EDMA_REQ_Q_BASE_HI_OFS);
733 writelfl(pp->crqb_dma & EDMA_REQ_Q_BASE_LO_MASK,
734 port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
735
736 writelfl(0, port_mmio + EDMA_REQ_Q_OUT_PTR_OFS);
737 writelfl(0, port_mmio + EDMA_RSP_Q_IN_PTR_OFS);
738
739 writel((pp->crpb_dma >> 16) >> 16, port_mmio + EDMA_RSP_Q_BASE_HI_OFS);
740 writelfl(pp->crpb_dma & EDMA_RSP_Q_BASE_LO_MASK,
741 port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
742
743 pp->req_producer = pp->rsp_consumer = 0;
744
745 /* Don't turn on EDMA here...do it before DMA commands only. Else
746 * we'll be unable to send non-data, PIO, etc due to restricted access
747 * to shadow regs.
748 */
749 ap->private_data = pp;
750 return 0;
751}
752
753/**
754 * mv_port_stop - Port specific cleanup/stop routine.
755 * @ap: ATA channel to manipulate
756 *
757 * Stop DMA, cleanup port memory.
758 *
759 * LOCKING:
760 * This routine uses the host_set lock to protect the DMA stop.
761 */
762static void mv_port_stop(struct ata_port *ap)
763{
764 struct device *dev = ap->host_set->dev;
765 struct mv_port_priv *pp = ap->private_data;
766 unsigned long flags;
767
768 spin_lock_irqsave(&ap->host_set->lock, flags);
769 mv_stop_dma(ap);
770 spin_unlock_irqrestore(&ap->host_set->lock, flags);
771
772 ap->private_data = NULL;
773 dma_free_coherent(dev, MV_PORT_PRIV_DMA_SZ, pp->crpb, pp->crpb_dma);
774 kfree(pp);
775}
776
777/**
778 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
779 * @qc: queued command whose SG list to source from
780 *
781 * Populate the SG list and mark the last entry.
782 *
783 * LOCKING:
784 * Inherited from caller.
785 */
786static void mv_fill_sg(struct ata_queued_cmd *qc)
787{
788 struct mv_port_priv *pp = qc->ap->private_data;
789 unsigned int i;
790
791 for (i = 0; i < qc->n_elem; i++) {
792 u32 sg_len;
793 dma_addr_t addr;
794
795 addr = sg_dma_address(&qc->sg[i]);
796 sg_len = sg_dma_len(&qc->sg[i]);
797
798 pp->sg_tbl[i].addr = cpu_to_le32(addr & 0xffffffff);
799 pp->sg_tbl[i].addr_hi = cpu_to_le32((addr >> 16) >> 16);
800 assert(0 == (sg_len & ~MV_DMA_BOUNDARY));
801 pp->sg_tbl[i].flags_size = cpu_to_le32(sg_len);
802 }
803 if (0 < qc->n_elem) {
804 pp->sg_tbl[qc->n_elem - 1].flags_size |= EPRD_FLAG_END_OF_TBL;
805 }
806}
807
808static inline unsigned mv_inc_q_index(unsigned *index)
809{
810 *index = (*index + 1) & MV_MAX_Q_DEPTH_MASK;
811 return *index;
812}
813
814static inline void mv_crqb_pack_cmd(u16 *cmdw, u8 data, u8 addr, unsigned last)
815{
816 *cmdw = data | (addr << CRQB_CMD_ADDR_SHIFT) | CRQB_CMD_CS |
817 (last ? CRQB_CMD_LAST : 0);
818}
819
820/**
821 * mv_qc_prep - Host specific command preparation.
822 * @qc: queued command to prepare
823 *
824 * This routine simply redirects to the general purpose routine
825 * if command is not DMA. Else, it handles prep of the CRQB
826 * (command request block), does some sanity checking, and calls
827 * the SG load routine.
828 *
829 * LOCKING:
830 * Inherited from caller.
831 */
832static void mv_qc_prep(struct ata_queued_cmd *qc)
833{
834 struct ata_port *ap = qc->ap;
835 struct mv_port_priv *pp = ap->private_data;
836 u16 *cw;
837 struct ata_taskfile *tf;
838 u16 flags = 0;
839
840 if (ATA_PROT_DMA != qc->tf.protocol) {
841 return;
842 }
843
844 /* the req producer index should be the same as we remember it */
845 assert(((readl(mv_ap_base(qc->ap) + EDMA_REQ_Q_IN_PTR_OFS) >>
846 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
847 pp->req_producer);
848
849 /* Fill in command request block
850 */
851 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
852 flags |= CRQB_FLAG_READ;
853 }
854 assert(MV_MAX_Q_DEPTH > qc->tag);
855 flags |= qc->tag << CRQB_TAG_SHIFT;
856
857 pp->crqb[pp->req_producer].sg_addr =
858 cpu_to_le32(pp->sg_tbl_dma & 0xffffffff);
859 pp->crqb[pp->req_producer].sg_addr_hi =
860 cpu_to_le32((pp->sg_tbl_dma >> 16) >> 16);
861 pp->crqb[pp->req_producer].ctrl_flags = cpu_to_le16(flags);
862
863 cw = &pp->crqb[pp->req_producer].ata_cmd[0];
864 tf = &qc->tf;
865
866 /* Sadly, the CRQB cannot accomodate all registers--there are
867 * only 11 bytes...so we must pick and choose required
868 * registers based on the command. So, we drop feature and
869 * hob_feature for [RW] DMA commands, but they are needed for
870 * NCQ. NCQ will drop hob_nsect.
871 */
872 switch (tf->command) {
873 case ATA_CMD_READ:
874 case ATA_CMD_READ_EXT:
875 case ATA_CMD_WRITE:
876 case ATA_CMD_WRITE_EXT:
877 mv_crqb_pack_cmd(cw++, tf->hob_nsect, ATA_REG_NSECT, 0);
878 break;
879#ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
880 case ATA_CMD_FPDMA_READ:
881 case ATA_CMD_FPDMA_WRITE:
882 mv_crqb_pack_cmd(cw++, tf->hob_feature, ATA_REG_FEATURE, 0);
883 mv_crqb_pack_cmd(cw++, tf->feature, ATA_REG_FEATURE, 0);
884 break;
885#endif /* FIXME: remove this line when NCQ added */
886 default:
887 /* The only other commands EDMA supports in non-queued and
888 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
889 * of which are defined/used by Linux. If we get here, this
890 * driver needs work.
891 *
892 * FIXME: modify libata to give qc_prep a return value and
893 * return error here.
894 */
895 BUG_ON(tf->command);
896 break;
897 }
898 mv_crqb_pack_cmd(cw++, tf->nsect, ATA_REG_NSECT, 0);
899 mv_crqb_pack_cmd(cw++, tf->hob_lbal, ATA_REG_LBAL, 0);
900 mv_crqb_pack_cmd(cw++, tf->lbal, ATA_REG_LBAL, 0);
901 mv_crqb_pack_cmd(cw++, tf->hob_lbam, ATA_REG_LBAM, 0);
902 mv_crqb_pack_cmd(cw++, tf->lbam, ATA_REG_LBAM, 0);
903 mv_crqb_pack_cmd(cw++, tf->hob_lbah, ATA_REG_LBAH, 0);
904 mv_crqb_pack_cmd(cw++, tf->lbah, ATA_REG_LBAH, 0);
905 mv_crqb_pack_cmd(cw++, tf->device, ATA_REG_DEVICE, 0);
906 mv_crqb_pack_cmd(cw++, tf->command, ATA_REG_CMD, 1); /* last */
907
908 if (!(qc->flags & ATA_QCFLAG_DMAMAP)) {
909 return;
910 }
911 mv_fill_sg(qc);
912}
913
914/**
915 * mv_qc_issue - Initiate a command to the host
916 * @qc: queued command to start
917 *
918 * This routine simply redirects to the general purpose routine
919 * if command is not DMA. Else, it sanity checks our local
920 * caches of the request producer/consumer indices then enables
921 * DMA and bumps the request producer index.
922 *
923 * LOCKING:
924 * Inherited from caller.
925 */
926static int mv_qc_issue(struct ata_queued_cmd *qc)
927{
928 void __iomem *port_mmio = mv_ap_base(qc->ap);
929 struct mv_port_priv *pp = qc->ap->private_data;
930 u32 in_ptr;
931
932 if (ATA_PROT_DMA != qc->tf.protocol) {
933 /* We're about to send a non-EDMA capable command to the
934 * port. Turn off EDMA so there won't be problems accessing
935 * shadow block, etc registers.
936 */
937 mv_stop_dma(qc->ap);
938 return ata_qc_issue_prot(qc);
939 }
940
941 in_ptr = readl(port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
942
943 /* the req producer index should be the same as we remember it */
944 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
945 pp->req_producer);
946 /* until we do queuing, the queue should be empty at this point */
947 assert(((in_ptr >> EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
948 ((readl(port_mmio + EDMA_REQ_Q_OUT_PTR_OFS) >>
949 EDMA_REQ_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK));
950
951 mv_inc_q_index(&pp->req_producer); /* now incr producer index */
952
953 mv_start_dma(port_mmio, pp);
954
955 /* and write the request in pointer to kick the EDMA to life */
956 in_ptr &= EDMA_REQ_Q_BASE_LO_MASK;
957 in_ptr |= pp->req_producer << EDMA_REQ_Q_PTR_SHIFT;
958 writelfl(in_ptr, port_mmio + EDMA_REQ_Q_IN_PTR_OFS);
959
960 return 0;
961}
962
963/**
964 * mv_get_crpb_status - get status from most recently completed cmd
965 * @ap: ATA channel to manipulate
966 *
967 * This routine is for use when the port is in DMA mode, when it
968 * will be using the CRPB (command response block) method of
969 * returning command completion information. We assert indices
970 * are good, grab status, and bump the response consumer index to
971 * prove that we're up to date.
972 *
973 * LOCKING:
974 * Inherited from caller.
975 */
976static u8 mv_get_crpb_status(struct ata_port *ap)
977{
978 void __iomem *port_mmio = mv_ap_base(ap);
979 struct mv_port_priv *pp = ap->private_data;
980 u32 out_ptr;
981
982 out_ptr = readl(port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
983
984 /* the response consumer index should be the same as we remember it */
985 assert(((out_ptr >> EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
986 pp->rsp_consumer);
987
988 /* increment our consumer index... */
989 pp->rsp_consumer = mv_inc_q_index(&pp->rsp_consumer);
990
991 /* and, until we do NCQ, there should only be 1 CRPB waiting */
992 assert(((readl(port_mmio + EDMA_RSP_Q_IN_PTR_OFS) >>
993 EDMA_RSP_Q_PTR_SHIFT) & MV_MAX_Q_DEPTH_MASK) ==
994 pp->rsp_consumer);
995
996 /* write out our inc'd consumer index so EDMA knows we're caught up */
997 out_ptr &= EDMA_RSP_Q_BASE_LO_MASK;
998 out_ptr |= pp->rsp_consumer << EDMA_RSP_Q_PTR_SHIFT;
999 writelfl(out_ptr, port_mmio + EDMA_RSP_Q_OUT_PTR_OFS);
1000
1001 /* Return ATA status register for completed CRPB */
1002 return (pp->crpb[pp->rsp_consumer].flags >> CRPB_FLAG_STATUS_SHIFT);
1003}
1004
1005/**
1006 * mv_err_intr - Handle error interrupts on the port
1007 * @ap: ATA channel to manipulate
1008 *
1009 * In most cases, just clear the interrupt and move on. However,
1010 * some cases require an eDMA reset, which is done right before
1011 * the COMRESET in mv_phy_reset(). The SERR case requires a
1012 * clear of pending errors in the SATA SERROR register. Finally,
1013 * if the port disabled DMA, update our cached copy to match.
1014 *
1015 * LOCKING:
1016 * Inherited from caller.
1017 */
1018static void mv_err_intr(struct ata_port *ap)
1019{
1020 void __iomem *port_mmio = mv_ap_base(ap);
1021 u32 edma_err_cause, serr = 0;
464 1022
465 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); 1023 edma_err_cause = readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
466 1024
@@ -468,8 +1026,12 @@ static void mv_err_intr(struct ata_port *ap)
468 serr = scr_read(ap, SCR_ERROR); 1026 serr = scr_read(ap, SCR_ERROR);
469 scr_write_flush(ap, SCR_ERROR, serr); 1027 scr_write_flush(ap, SCR_ERROR, serr);
470 } 1028 }
471 DPRINTK("port %u error; EDMA err cause: 0x%08x SERR: 0x%08x\n", 1029 if (EDMA_ERR_SELF_DIS & edma_err_cause) {
472 ap->port_no, edma_err_cause, serr); 1030 struct mv_port_priv *pp = ap->private_data;
1031 pp->pp_flags &= ~MV_PP_FLAG_EDMA_EN;
1032 }
1033 DPRINTK(KERN_ERR "ata%u: port error; EDMA err cause: 0x%08x "
1034 "SERR: 0x%08x\n", ap->id, edma_err_cause, serr);
473 1035
474 /* Clear EDMA now that SERR cleanup done */ 1036 /* Clear EDMA now that SERR cleanup done */
475 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS); 1037 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
@@ -480,7 +1042,21 @@ static void mv_err_intr(struct ata_port *ap)
480 } 1042 }
481} 1043}
482 1044
483/* Handle any outstanding interrupts in a single SATAHC 1045/**
1046 * mv_host_intr - Handle all interrupts on the given host controller
1047 * @host_set: host specific structure
1048 * @relevant: port error bits relevant to this host controller
1049 * @hc: which host controller we're to look at
1050 *
1051 * Read then write clear the HC interrupt status then walk each
1052 * port connected to the HC and see if it needs servicing. Port
1053 * success ints are reported in the HC interrupt status reg, the
1054 * port error ints are reported in the higher level main
1055 * interrupt status register and thus are passed in via the
1056 * 'relevant' argument.
1057 *
1058 * LOCKING:
1059 * Inherited from caller.
484 */ 1060 */
485static void mv_host_intr(struct ata_host_set *host_set, u32 relevant, 1061static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
486 unsigned int hc) 1062 unsigned int hc)
@@ -490,8 +1066,8 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
490 struct ata_port *ap; 1066 struct ata_port *ap;
491 struct ata_queued_cmd *qc; 1067 struct ata_queued_cmd *qc;
492 u32 hc_irq_cause; 1068 u32 hc_irq_cause;
493 int shift, port, port0, hard_port; 1069 int shift, port, port0, hard_port, handled;
494 u8 ata_status; 1070 u8 ata_status = 0;
495 1071
496 if (hc == 0) { 1072 if (hc == 0) {
497 port0 = 0; 1073 port0 = 0;
@@ -502,7 +1078,7 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
502 /* we'll need the HC success int register in most cases */ 1078 /* we'll need the HC success int register in most cases */
503 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS); 1079 hc_irq_cause = readl(hc_mmio + HC_IRQ_CAUSE_OFS);
504 if (hc_irq_cause) { 1080 if (hc_irq_cause) {
505 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS); 1081 writelfl(~hc_irq_cause, hc_mmio + HC_IRQ_CAUSE_OFS);
506 } 1082 }
507 1083
508 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n", 1084 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
@@ -511,35 +1087,38 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
511 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) { 1087 for (port = port0; port < port0 + MV_PORTS_PER_HC; port++) {
512 ap = host_set->ports[port]; 1088 ap = host_set->ports[port];
513 hard_port = port & MV_PORT_MASK; /* range 0-3 */ 1089 hard_port = port & MV_PORT_MASK; /* range 0-3 */
514 ata_status = 0xffU; 1090 handled = 0; /* ensure ata_status is set if handled++ */
515 1091
516 if (((CRBP_DMA_DONE | DEV_IRQ) << hard_port) & hc_irq_cause) { 1092 if ((CRPB_DMA_DONE << hard_port) & hc_irq_cause) {
517 BUG_ON(NULL == ap); 1093 /* new CRPB on the queue; just one at a time until NCQ
518 /* rcv'd new resp, basic DMA complete, or ATA IRQ */ 1094 */
519 /* This is needed to clear the ATA INTRQ. 1095 ata_status = mv_get_crpb_status(ap);
520 * FIXME: don't read the status reg in EDMA mode! 1096 handled++;
1097 } else if ((DEV_IRQ << hard_port) & hc_irq_cause) {
1098 /* received ATA IRQ; read the status reg to clear INTRQ
521 */ 1099 */
522 ata_status = readb((void __iomem *) 1100 ata_status = readb((void __iomem *)
523 ap->ioaddr.status_addr); 1101 ap->ioaddr.status_addr);
1102 handled++;
524 } 1103 }
525 1104
526 shift = port * 2; 1105 shift = port << 1; /* (port * 2) */
527 if (port >= MV_PORTS_PER_HC) { 1106 if (port >= MV_PORTS_PER_HC) {
528 shift++; /* skip bit 8 in the HC Main IRQ reg */ 1107 shift++; /* skip bit 8 in the HC Main IRQ reg */
529 } 1108 }
530 if ((PORT0_ERR << shift) & relevant) { 1109 if ((PORT0_ERR << shift) & relevant) {
531 mv_err_intr(ap); 1110 mv_err_intr(ap);
532 /* FIXME: smart to OR in ATA_ERR? */ 1111 /* OR in ATA_ERR to ensure libata knows we took one */
533 ata_status = readb((void __iomem *) 1112 ata_status = readb((void __iomem *)
534 ap->ioaddr.status_addr) | ATA_ERR; 1113 ap->ioaddr.status_addr) | ATA_ERR;
1114 handled++;
535 } 1115 }
536 1116
537 if (ap) { 1117 if (handled && ap) {
538 qc = ata_qc_from_tag(ap, ap->active_tag); 1118 qc = ata_qc_from_tag(ap, ap->active_tag);
539 if (NULL != qc) { 1119 if (NULL != qc) {
540 VPRINTK("port %u IRQ found for qc, " 1120 VPRINTK("port %u IRQ found for qc, "
541 "ata_status 0x%x\n", port,ata_status); 1121 "ata_status 0x%x\n", port,ata_status);
542 BUG_ON(0xffU == ata_status);
543 /* mark qc status appropriately */ 1122 /* mark qc status appropriately */
544 ata_qc_complete(qc, ata_status); 1123 ata_qc_complete(qc, ata_status);
545 } 1124 }
@@ -548,17 +1127,30 @@ static void mv_host_intr(struct ata_host_set *host_set, u32 relevant,
548 VPRINTK("EXIT\n"); 1127 VPRINTK("EXIT\n");
549} 1128}
550 1129
1130/**
1131 * mv_interrupt -
1132 * @irq: unused
1133 * @dev_instance: private data; in this case the host structure
1134 * @regs: unused
1135 *
1136 * Read the read only register to determine if any host
1137 * controllers have pending interrupts. If so, call lower level
1138 * routine to handle. Also check for PCI errors which are only
1139 * reported here.
1140 *
1141 * LOCKING:
1142 * This routine holds the host_set lock while processing pending
1143 * interrupts.
1144 */
551static irqreturn_t mv_interrupt(int irq, void *dev_instance, 1145static irqreturn_t mv_interrupt(int irq, void *dev_instance,
552 struct pt_regs *regs) 1146 struct pt_regs *regs)
553{ 1147{
554 struct ata_host_set *host_set = dev_instance; 1148 struct ata_host_set *host_set = dev_instance;
555 unsigned int hc, handled = 0, n_hcs; 1149 unsigned int hc, handled = 0, n_hcs;
556 void __iomem *mmio; 1150 void __iomem *mmio = host_set->mmio_base;
557 u32 irq_stat; 1151 u32 irq_stat;
558 1152
559 mmio = host_set->mmio_base;
560 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS); 1153 irq_stat = readl(mmio + HC_MAIN_IRQ_CAUSE_OFS);
561 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
562 1154
563 /* check the cases where we either have nothing pending or have read 1155 /* check the cases where we either have nothing pending or have read
564 * a bogus register value which can indicate HW removal or PCI fault 1156 * a bogus register value which can indicate HW removal or PCI fault
@@ -567,64 +1159,105 @@ static irqreturn_t mv_interrupt(int irq, void *dev_instance,
567 return IRQ_NONE; 1159 return IRQ_NONE;
568 } 1160 }
569 1161
1162 n_hcs = mv_get_hc_count(host_set->ports[0]->flags);
570 spin_lock(&host_set->lock); 1163 spin_lock(&host_set->lock);
571 1164
572 for (hc = 0; hc < n_hcs; hc++) { 1165 for (hc = 0; hc < n_hcs; hc++) {
573 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT)); 1166 u32 relevant = irq_stat & (HC0_IRQ_PEND << (hc * HC_SHIFT));
574 if (relevant) { 1167 if (relevant) {
575 mv_host_intr(host_set, relevant, hc); 1168 mv_host_intr(host_set, relevant, hc);
576 handled = 1; 1169 handled++;
577 } 1170 }
578 } 1171 }
579 if (PCI_ERR & irq_stat) { 1172 if (PCI_ERR & irq_stat) {
580 /* FIXME: these are all masked by default, but still need 1173 printk(KERN_ERR DRV_NAME ": PCI ERROR; PCI IRQ cause=0x%08x\n",
581 * to recover from them properly. 1174 readl(mmio + PCI_IRQ_CAUSE_OFS));
582 */
583 }
584 1175
1176 DPRINTK("All regs @ PCI error\n");
1177 mv_dump_all_regs(mmio, -1, to_pci_dev(host_set->dev));
1178
1179 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1180 handled++;
1181 }
585 spin_unlock(&host_set->lock); 1182 spin_unlock(&host_set->lock);
586 1183
587 return IRQ_RETVAL(handled); 1184 return IRQ_RETVAL(handled);
588} 1185}
589 1186
1187/**
1188 * mv_check_err - Return the error shadow register to caller.
1189 * @ap: ATA channel to manipulate
1190 *
1191 * Marvell requires DMA to be stopped before accessing shadow
1192 * registers. So we do that, then return the needed register.
1193 *
1194 * LOCKING:
1195 * Inherited from caller. FIXME: protect mv_stop_dma with lock?
1196 */
1197static u8 mv_check_err(struct ata_port *ap)
1198{
1199 mv_stop_dma(ap); /* can't read shadow regs if DMA on */
1200 return readb((void __iomem *) ap->ioaddr.error_addr);
1201}
1202
1203/**
1204 * mv_phy_reset - Perform eDMA reset followed by COMRESET
1205 * @ap: ATA channel to manipulate
1206 *
1207 * Part of this is taken from __sata_phy_reset and modified to
1208 * not sleep since this routine gets called from interrupt level.
1209 *
1210 * LOCKING:
1211 * Inherited from caller. This is coded to safe to call at
1212 * interrupt level, i.e. it does not sleep.
1213 */
590static void mv_phy_reset(struct ata_port *ap) 1214static void mv_phy_reset(struct ata_port *ap)
591{ 1215{
592 void __iomem *port_mmio = mv_ap_base(ap); 1216 void __iomem *port_mmio = mv_ap_base(ap);
593 struct ata_taskfile tf; 1217 struct ata_taskfile tf;
594 struct ata_device *dev = &ap->device[0]; 1218 struct ata_device *dev = &ap->device[0];
595 u32 edma = 0, bdma; 1219 unsigned long timeout;
596 1220
597 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio); 1221 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap->port_no, port_mmio);
598 1222
599 edma = readl(port_mmio + EDMA_CMD_OFS); 1223 mv_stop_dma(ap);
600 if (EDMA_EN & edma) {
601 /* disable EDMA if active */
602 edma &= ~EDMA_EN;
603 writelfl(edma | EDMA_DS, port_mmio + EDMA_CMD_OFS);
604 udelay(1);
605 } else if (mv_port_bdma_capable(ap) &&
606 (bdma = readl(port_mmio + BDMA_CMD_OFS)) & BDMA_START) {
607 /* disable BDMA if active */
608 writelfl(bdma & ~BDMA_START, port_mmio + BDMA_CMD_OFS);
609 }
610 1224
611 writelfl(edma | ATA_RST, port_mmio + EDMA_CMD_OFS); 1225 writelfl(ATA_RST, port_mmio + EDMA_CMD_OFS);
612 udelay(25); /* allow reset propagation */ 1226 udelay(25); /* allow reset propagation */
613 1227
614 /* Spec never mentions clearing the bit. Marvell's driver does 1228 /* Spec never mentions clearing the bit. Marvell's driver does
615 * clear the bit, however. 1229 * clear the bit, however.
616 */ 1230 */
617 writelfl(edma & ~ATA_RST, port_mmio + EDMA_CMD_OFS); 1231 writelfl(0, port_mmio + EDMA_CMD_OFS);
618 1232
619 VPRINTK("Done. Now calling __sata_phy_reset()\n"); 1233 VPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1234 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1235 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
620 1236
621 /* proceed to init communications via the scr_control reg */ 1237 /* proceed to init communications via the scr_control reg */
622 __sata_phy_reset(ap); 1238 scr_write_flush(ap, SCR_CONTROL, 0x301);
1239 mdelay(1);
1240 scr_write_flush(ap, SCR_CONTROL, 0x300);
1241 timeout = jiffies + (HZ * 1);
1242 do {
1243 mdelay(10);
1244 if ((scr_read(ap, SCR_STATUS) & 0xf) != 1)
1245 break;
1246 } while (time_before(jiffies, timeout));
623 1247
624 if (ap->flags & ATA_FLAG_PORT_DISABLED) { 1248 VPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
625 VPRINTK("Port disabled pre-sig. Exiting.\n"); 1249 "SCtrl 0x%08x\n", mv_scr_read(ap, SCR_STATUS),
1250 mv_scr_read(ap, SCR_ERROR), mv_scr_read(ap, SCR_CONTROL));
1251
1252 if (sata_dev_present(ap)) {
1253 ata_port_probe(ap);
1254 } else {
1255 printk(KERN_INFO "ata%u: no device found (phy stat %08x)\n",
1256 ap->id, scr_read(ap, SCR_STATUS));
1257 ata_port_disable(ap);
626 return; 1258 return;
627 } 1259 }
1260 ap->cbl = ATA_CBL_SATA;
628 1261
629 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr); 1262 tf.lbah = readb((void __iomem *) ap->ioaddr.lbah_addr);
630 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr); 1263 tf.lbam = readb((void __iomem *) ap->ioaddr.lbam_addr);
@@ -639,37 +1272,118 @@ static void mv_phy_reset(struct ata_port *ap)
639 VPRINTK("EXIT\n"); 1272 VPRINTK("EXIT\n");
640} 1273}
641 1274
642static void mv_port_init(struct ata_ioports *port, unsigned long base) 1275/**
1276 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1277 * @ap: ATA channel to manipulate
1278 *
1279 * Intent is to clear all pending error conditions, reset the
1280 * chip/bus, fail the command, and move on.
1281 *
1282 * LOCKING:
1283 * This routine holds the host_set lock while failing the command.
1284 */
1285static void mv_eng_timeout(struct ata_port *ap)
1286{
1287 struct ata_queued_cmd *qc;
1288 unsigned long flags;
1289
1290 printk(KERN_ERR "ata%u: Entering mv_eng_timeout\n",ap->id);
1291 DPRINTK("All regs @ start of eng_timeout\n");
1292 mv_dump_all_regs(ap->host_set->mmio_base, ap->port_no,
1293 to_pci_dev(ap->host_set->dev));
1294
1295 qc = ata_qc_from_tag(ap, ap->active_tag);
1296 printk(KERN_ERR "mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
1297 ap->host_set->mmio_base, ap, qc, qc->scsicmd,
1298 &qc->scsicmd->cmnd);
1299
1300 mv_err_intr(ap);
1301 mv_phy_reset(ap);
1302
1303 if (!qc) {
1304 printk(KERN_ERR "ata%u: BUG: timeout without command\n",
1305 ap->id);
1306 } else {
1307 /* hack alert! We cannot use the supplied completion
1308 * function from inside the ->eh_strategy_handler() thread.
1309 * libata is the only user of ->eh_strategy_handler() in
1310 * any kernel, so the default scsi_done() assumes it is
1311 * not being called from the SCSI EH.
1312 */
1313 spin_lock_irqsave(&ap->host_set->lock, flags);
1314 qc->scsidone = scsi_finish_command;
1315 ata_qc_complete(qc, ATA_ERR);
1316 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1317 }
1318}
1319
1320/**
1321 * mv_port_init - Perform some early initialization on a single port.
1322 * @port: libata data structure storing shadow register addresses
1323 * @port_mmio: base address of the port
1324 *
1325 * Initialize shadow register mmio addresses, clear outstanding
1326 * interrupts on the port, and unmask interrupts for the future
1327 * start of the port.
1328 *
1329 * LOCKING:
1330 * Inherited from caller.
1331 */
1332static void mv_port_init(struct ata_ioports *port, void __iomem *port_mmio)
643{ 1333{
644 /* PIO related setup */ 1334 unsigned long shd_base = (unsigned long) port_mmio + SHD_BLK_OFS;
645 port->data_addr = base + SHD_PIO_DATA_OFS; 1335 unsigned serr_ofs;
646 port->error_addr = port->feature_addr = base + SHD_FEA_ERR_OFS; 1336
647 port->nsect_addr = base + SHD_SECT_CNT_OFS; 1337 /* PIO related setup
648 port->lbal_addr = base + SHD_LBA_L_OFS; 1338 */
649 port->lbam_addr = base + SHD_LBA_M_OFS; 1339 port->data_addr = shd_base + (sizeof(u32) * ATA_REG_DATA);
650 port->lbah_addr = base + SHD_LBA_H_OFS; 1340 port->error_addr =
651 port->device_addr = base + SHD_DEV_HD_OFS; 1341 port->feature_addr = shd_base + (sizeof(u32) * ATA_REG_ERR);
652 port->status_addr = port->command_addr = base + SHD_CMD_STA_OFS; 1342 port->nsect_addr = shd_base + (sizeof(u32) * ATA_REG_NSECT);
653 port->altstatus_addr = port->ctl_addr = base + SHD_CTL_AST_OFS; 1343 port->lbal_addr = shd_base + (sizeof(u32) * ATA_REG_LBAL);
654 /* unused */ 1344 port->lbam_addr = shd_base + (sizeof(u32) * ATA_REG_LBAM);
1345 port->lbah_addr = shd_base + (sizeof(u32) * ATA_REG_LBAH);
1346 port->device_addr = shd_base + (sizeof(u32) * ATA_REG_DEVICE);
1347 port->status_addr =
1348 port->command_addr = shd_base + (sizeof(u32) * ATA_REG_STATUS);
1349 /* special case: control/altstatus doesn't have ATA_REG_ address */
1350 port->altstatus_addr = port->ctl_addr = shd_base + SHD_CTL_AST_OFS;
1351
1352 /* unused: */
655 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0; 1353 port->cmd_addr = port->bmdma_addr = port->scr_addr = 0;
656 1354
1355 /* Clear any currently outstanding port interrupt conditions */
1356 serr_ofs = mv_scr_offset(SCR_ERROR);
1357 writelfl(readl(port_mmio + serr_ofs), port_mmio + serr_ofs);
1358 writelfl(0, port_mmio + EDMA_ERR_IRQ_CAUSE_OFS);
1359
657 /* unmask all EDMA error interrupts */ 1360 /* unmask all EDMA error interrupts */
658 writel(~0, (void __iomem *)base + EDMA_ERR_IRQ_MASK_OFS); 1361 writelfl(~0, port_mmio + EDMA_ERR_IRQ_MASK_OFS);
659 1362
660 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n", 1363 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
661 readl((void __iomem *)base + EDMA_CFG_OFS), 1364 readl(port_mmio + EDMA_CFG_OFS),
662 readl((void __iomem *)base + EDMA_ERR_IRQ_CAUSE_OFS), 1365 readl(port_mmio + EDMA_ERR_IRQ_CAUSE_OFS),
663 readl((void __iomem *)base + EDMA_ERR_IRQ_MASK_OFS)); 1366 readl(port_mmio + EDMA_ERR_IRQ_MASK_OFS));
664} 1367}
665 1368
1369/**
1370 * mv_host_init - Perform some early initialization of the host.
1371 * @probe_ent: early data struct representing the host
1372 *
1373 * If possible, do an early global reset of the host. Then do
1374 * our port init and clear/unmask all/relevant host interrupts.
1375 *
1376 * LOCKING:
1377 * Inherited from caller.
1378 */
666static int mv_host_init(struct ata_probe_ent *probe_ent) 1379static int mv_host_init(struct ata_probe_ent *probe_ent)
667{ 1380{
668 int rc = 0, n_hc, port, hc; 1381 int rc = 0, n_hc, port, hc;
669 void __iomem *mmio = probe_ent->mmio_base; 1382 void __iomem *mmio = probe_ent->mmio_base;
670 void __iomem *port_mmio; 1383 void __iomem *port_mmio;
671 1384
672 if (mv_master_reset(probe_ent->mmio_base)) { 1385 if ((MV_FLAG_GLBL_SFT_RST & probe_ent->host_flags) &&
1386 mv_global_soft_reset(probe_ent->mmio_base)) {
673 rc = 1; 1387 rc = 1;
674 goto done; 1388 goto done;
675 } 1389 }
@@ -679,17 +1393,27 @@ static int mv_host_init(struct ata_probe_ent *probe_ent)
679 1393
680 for (port = 0; port < probe_ent->n_ports; port++) { 1394 for (port = 0; port < probe_ent->n_ports; port++) {
681 port_mmio = mv_port_base(mmio, port); 1395 port_mmio = mv_port_base(mmio, port);
682 mv_port_init(&probe_ent->port[port], (unsigned long)port_mmio); 1396 mv_port_init(&probe_ent->port[port], port_mmio);
683 } 1397 }
684 1398
685 for (hc = 0; hc < n_hc; hc++) { 1399 for (hc = 0; hc < n_hc; hc++) {
686 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause=0x%08x\n", hc, 1400 void __iomem *hc_mmio = mv_hc_base(mmio, hc);
687 readl(mv_hc_base(mmio, hc) + HC_CFG_OFS), 1401
688 readl(mv_hc_base(mmio, hc) + HC_IRQ_CAUSE_OFS)); 1402 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
1403 "(before clear)=0x%08x\n", hc,
1404 readl(hc_mmio + HC_CFG_OFS),
1405 readl(hc_mmio + HC_IRQ_CAUSE_OFS));
1406
1407 /* Clear any currently outstanding hc interrupt conditions */
1408 writelfl(0, hc_mmio + HC_IRQ_CAUSE_OFS);
689 } 1409 }
690 1410
691 writel(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS); 1411 /* Clear any currently outstanding host interrupt conditions */
692 writel(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS); 1412 writelfl(0, mmio + PCI_IRQ_CAUSE_OFS);
1413
1414 /* and unmask interrupt generation for host regs */
1415 writelfl(PCI_UNMASK_ALL_IRQS, mmio + PCI_IRQ_MASK_OFS);
1416 writelfl(~HC_MAIN_MASKED_IRQS, mmio + HC_MAIN_IRQ_MASK_OFS);
693 1417
694 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x " 1418 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
695 "PCI int cause/mask=0x%08x/0x%08x\n", 1419 "PCI int cause/mask=0x%08x/0x%08x\n",
@@ -697,11 +1421,53 @@ static int mv_host_init(struct ata_probe_ent *probe_ent)
697 readl(mmio + HC_MAIN_IRQ_MASK_OFS), 1421 readl(mmio + HC_MAIN_IRQ_MASK_OFS),
698 readl(mmio + PCI_IRQ_CAUSE_OFS), 1422 readl(mmio + PCI_IRQ_CAUSE_OFS),
699 readl(mmio + PCI_IRQ_MASK_OFS)); 1423 readl(mmio + PCI_IRQ_MASK_OFS));
700 1424done:
701 done:
702 return rc; 1425 return rc;
703} 1426}
704 1427
1428/**
1429 * mv_print_info - Dump key info to kernel log for perusal.
1430 * @probe_ent: early data struct representing the host
1431 *
1432 * FIXME: complete this.
1433 *
1434 * LOCKING:
1435 * Inherited from caller.
1436 */
1437static void mv_print_info(struct ata_probe_ent *probe_ent)
1438{
1439 struct pci_dev *pdev = to_pci_dev(probe_ent->dev);
1440 struct mv_host_priv *hpriv = probe_ent->private_data;
1441 u8 rev_id, scc;
1442 const char *scc_s;
1443
1444 /* Use this to determine the HW stepping of the chip so we know
1445 * what errata to workaround
1446 */
1447 pci_read_config_byte(pdev, PCI_REVISION_ID, &rev_id);
1448
1449 pci_read_config_byte(pdev, PCI_CLASS_DEVICE, &scc);
1450 if (scc == 0)
1451 scc_s = "SCSI";
1452 else if (scc == 0x01)
1453 scc_s = "RAID";
1454 else
1455 scc_s = "unknown";
1456
1457 printk(KERN_INFO DRV_NAME
1458 "(%s) %u slots %u ports %s mode IRQ via %s\n",
1459 pci_name(pdev), (unsigned)MV_MAX_Q_DEPTH, probe_ent->n_ports,
1460 scc_s, (MV_HP_FLAG_MSI & hpriv->hp_flags) ? "MSI" : "INTx");
1461}
1462
1463/**
1464 * mv_init_one - handle a positive probe of a Marvell host
1465 * @pdev: PCI device found
1466 * @ent: PCI device ID entry for the matched host
1467 *
1468 * LOCKING:
1469 * Inherited from caller.
1470 */
705static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) 1471static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
706{ 1472{
707 static int printed_version = 0; 1473 static int printed_version = 0;
@@ -709,16 +1475,12 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
709 struct mv_host_priv *hpriv; 1475 struct mv_host_priv *hpriv;
710 unsigned int board_idx = (unsigned int)ent->driver_data; 1476 unsigned int board_idx = (unsigned int)ent->driver_data;
711 void __iomem *mmio_base; 1477 void __iomem *mmio_base;
712 int pci_dev_busy = 0; 1478 int pci_dev_busy = 0, rc;
713 int rc;
714 1479
715 if (!printed_version++) { 1480 if (!printed_version++) {
716 printk(KERN_DEBUG DRV_NAME " version " DRV_VERSION "\n"); 1481 printk(KERN_INFO DRV_NAME " version " DRV_VERSION "\n");
717 } 1482 }
718 1483
719 VPRINTK("ENTER for PCI Bus:Slot.Func=%u:%u.%u\n", pdev->bus->number,
720 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn));
721
722 rc = pci_enable_device(pdev); 1484 rc = pci_enable_device(pdev);
723 if (rc) { 1485 if (rc) {
724 return rc; 1486 return rc;
@@ -730,8 +1492,6 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
730 goto err_out; 1492 goto err_out;
731 } 1493 }
732 1494
733 pci_intx(pdev, 1);
734
735 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL); 1495 probe_ent = kmalloc(sizeof(*probe_ent), GFP_KERNEL);
736 if (probe_ent == NULL) { 1496 if (probe_ent == NULL) {
737 rc = -ENOMEM; 1497 rc = -ENOMEM;
@@ -742,8 +1502,7 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
742 probe_ent->dev = pci_dev_to_dev(pdev); 1502 probe_ent->dev = pci_dev_to_dev(pdev);
743 INIT_LIST_HEAD(&probe_ent->node); 1503 INIT_LIST_HEAD(&probe_ent->node);
744 1504
745 mmio_base = ioremap_nocache(pci_resource_start(pdev, MV_PRIMARY_BAR), 1505 mmio_base = pci_iomap(pdev, MV_PRIMARY_BAR, 0);
746 pci_resource_len(pdev, MV_PRIMARY_BAR));
747 if (mmio_base == NULL) { 1506 if (mmio_base == NULL) {
748 rc = -ENOMEM; 1507 rc = -ENOMEM;
749 goto err_out_free_ent; 1508 goto err_out_free_ent;
@@ -772,37 +1531,40 @@ static int mv_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
772 if (rc) { 1531 if (rc) {
773 goto err_out_hpriv; 1532 goto err_out_hpriv;
774 } 1533 }
775/* mv_print_info(probe_ent); */
776 1534
777 { 1535 /* Enable interrupts */
778 int b, w; 1536 if (pci_enable_msi(pdev) == 0) {
779 u32 dw[4]; /* hold a line of 16b */ 1537 hpriv->hp_flags |= MV_HP_FLAG_MSI;
780 VPRINTK("PCI config space:\n"); 1538 } else {
781 for (b = 0; b < 0x40; ) { 1539 pci_intx(pdev, 1);
782 for (w = 0; w < 4; w++) {
783 (void) pci_read_config_dword(pdev,b,&dw[w]);
784 b += sizeof(*dw);
785 }
786 VPRINTK("%08x %08x %08x %08x\n",
787 dw[0],dw[1],dw[2],dw[3]);
788 }
789 } 1540 }
790 1541
791 /* FIXME: check ata_device_add return value */ 1542 mv_dump_pci_cfg(pdev, 0x68);
792 ata_device_add(probe_ent); 1543 mv_print_info(probe_ent);
793 kfree(probe_ent); 1544
1545 if (ata_device_add(probe_ent) == 0) {
1546 rc = -ENODEV; /* No devices discovered */
1547 goto err_out_dev_add;
1548 }
794 1549
1550 kfree(probe_ent);
795 return 0; 1551 return 0;
796 1552
797 err_out_hpriv: 1553err_out_dev_add:
1554 if (MV_HP_FLAG_MSI & hpriv->hp_flags) {
1555 pci_disable_msi(pdev);
1556 } else {
1557 pci_intx(pdev, 0);
1558 }
1559err_out_hpriv:
798 kfree(hpriv); 1560 kfree(hpriv);
799 err_out_iounmap: 1561err_out_iounmap:
800 iounmap(mmio_base); 1562 pci_iounmap(pdev, mmio_base);
801 err_out_free_ent: 1563err_out_free_ent:
802 kfree(probe_ent); 1564 kfree(probe_ent);
803 err_out_regions: 1565err_out_regions:
804 pci_release_regions(pdev); 1566 pci_release_regions(pdev);
805 err_out: 1567err_out:
806 if (!pci_dev_busy) { 1568 if (!pci_dev_busy) {
807 pci_disable_device(pdev); 1569 pci_disable_device(pdev);
808 } 1570 }