diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/scsi/blz1230.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/scsi/blz1230.c')
-rw-r--r-- | drivers/scsi/blz1230.c | 352 |
1 files changed, 352 insertions, 0 deletions
diff --git a/drivers/scsi/blz1230.c b/drivers/scsi/blz1230.c new file mode 100644 index 000000000000..4cd9fcf4dc50 --- /dev/null +++ b/drivers/scsi/blz1230.c | |||
@@ -0,0 +1,352 @@ | |||
1 | /* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller. | ||
2 | * | ||
3 | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | ||
4 | * | ||
5 | * This driver is based on the CyberStorm driver, hence the occasional | ||
6 | * reference to CyberStorm. | ||
7 | */ | ||
8 | |||
9 | /* TODO: | ||
10 | * | ||
11 | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | ||
12 | * to the caches and the Sparc MMU mapping. | ||
13 | * 2) Make as few routines required outside the generic driver. A lot of the | ||
14 | * routines in this file used to be inline! | ||
15 | */ | ||
16 | |||
17 | #include <linux/module.h> | ||
18 | |||
19 | #include <linux/init.h> | ||
20 | #include <linux/kernel.h> | ||
21 | #include <linux/delay.h> | ||
22 | #include <linux/types.h> | ||
23 | #include <linux/string.h> | ||
24 | #include <linux/slab.h> | ||
25 | #include <linux/blkdev.h> | ||
26 | #include <linux/proc_fs.h> | ||
27 | #include <linux/stat.h> | ||
28 | #include <linux/interrupt.h> | ||
29 | |||
30 | #include "scsi.h" | ||
31 | #include <scsi/scsi_host.h> | ||
32 | #include "NCR53C9x.h" | ||
33 | |||
34 | #include <linux/zorro.h> | ||
35 | #include <asm/irq.h> | ||
36 | #include <asm/amigaints.h> | ||
37 | #include <asm/amigahw.h> | ||
38 | |||
39 | #include <asm/pgtable.h> | ||
40 | |||
41 | #define MKIV 1 | ||
42 | |||
43 | /* The controller registers can be found in the Z2 config area at these | ||
44 | * offsets: | ||
45 | */ | ||
46 | #define BLZ1230_ESP_ADDR 0x8000 | ||
47 | #define BLZ1230_DMA_ADDR 0x10000 | ||
48 | #define BLZ1230II_ESP_ADDR 0x10000 | ||
49 | #define BLZ1230II_DMA_ADDR 0x10021 | ||
50 | |||
51 | |||
52 | /* The Blizzard 1230 DMA interface | ||
53 | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | ||
54 | * Only two things can be programmed in the Blizzard DMA: | ||
55 | * 1) The data direction is controlled by the status of bit 31 (1 = write) | ||
56 | * 2) The source/dest address (word aligned, shifted one right) in bits 30-0 | ||
57 | * | ||
58 | * Program DMA by first latching the highest byte of the address/direction | ||
59 | * (i.e. bits 31-24 of the long word constructed as described in steps 1+2 | ||
60 | * above). Then write each byte of the address/direction (starting with the | ||
61 | * top byte, working down) to the DMA address register. | ||
62 | * | ||
63 | * Figure out interrupt status by reading the ESP status byte. | ||
64 | */ | ||
65 | struct blz1230_dma_registers { | ||
66 | volatile unsigned char dma_addr; /* DMA address [0x0000] */ | ||
67 | unsigned char dmapad2[0x7fff]; | ||
68 | volatile unsigned char dma_latch; /* DMA latch [0x8000] */ | ||
69 | }; | ||
70 | |||
71 | struct blz1230II_dma_registers { | ||
72 | volatile unsigned char dma_addr; /* DMA address [0x0000] */ | ||
73 | unsigned char dmapad2[0xf]; | ||
74 | volatile unsigned char dma_latch; /* DMA latch [0x0010] */ | ||
75 | }; | ||
76 | |||
77 | #define BLZ1230_DMA_WRITE 0x80000000 | ||
78 | |||
79 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | ||
80 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | ||
81 | static void dma_dump_state(struct NCR_ESP *esp); | ||
82 | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | ||
83 | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | ||
84 | static void dma_ints_off(struct NCR_ESP *esp); | ||
85 | static void dma_ints_on(struct NCR_ESP *esp); | ||
86 | static int dma_irq_p(struct NCR_ESP *esp); | ||
87 | static int dma_ports_p(struct NCR_ESP *esp); | ||
88 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | ||
89 | |||
90 | static volatile unsigned char cmd_buffer[16]; | ||
91 | /* This is where all commands are put | ||
92 | * before they are transferred to the ESP chip | ||
93 | * via PIO. | ||
94 | */ | ||
95 | |||
96 | /***************************************************************** Detection */ | ||
97 | int __init blz1230_esp_detect(Scsi_Host_Template *tpnt) | ||
98 | { | ||
99 | struct NCR_ESP *esp; | ||
100 | struct zorro_dev *z = NULL; | ||
101 | unsigned long address; | ||
102 | struct ESP_regs *eregs; | ||
103 | unsigned long board; | ||
104 | |||
105 | #if MKIV | ||
106 | #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260 | ||
107 | #define REAL_BLZ1230_ESP_ADDR BLZ1230_ESP_ADDR | ||
108 | #define REAL_BLZ1230_DMA_ADDR BLZ1230_DMA_ADDR | ||
109 | #else | ||
110 | #define REAL_BLZ1230_ID ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060 | ||
111 | #define REAL_BLZ1230_ESP_ADDR BLZ1230II_ESP_ADDR | ||
112 | #define REAL_BLZ1230_DMA_ADDR BLZ1230II_DMA_ADDR | ||
113 | #endif | ||
114 | |||
115 | if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) { | ||
116 | board = z->resource.start; | ||
117 | if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR, | ||
118 | sizeof(struct ESP_regs), "NCR53C9x")) { | ||
119 | /* Do some magic to figure out if the blizzard is | ||
120 | * equipped with a SCSI controller | ||
121 | */ | ||
122 | address = ZTWO_VADDR(board); | ||
123 | eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR); | ||
124 | esp = esp_allocate(tpnt, (void *)board+REAL_BLZ1230_ESP_ADDR); | ||
125 | |||
126 | esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); | ||
127 | udelay(5); | ||
128 | if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) | ||
129 | goto err_out; | ||
130 | |||
131 | /* Do command transfer with programmed I/O */ | ||
132 | esp->do_pio_cmds = 1; | ||
133 | |||
134 | /* Required functions */ | ||
135 | esp->dma_bytes_sent = &dma_bytes_sent; | ||
136 | esp->dma_can_transfer = &dma_can_transfer; | ||
137 | esp->dma_dump_state = &dma_dump_state; | ||
138 | esp->dma_init_read = &dma_init_read; | ||
139 | esp->dma_init_write = &dma_init_write; | ||
140 | esp->dma_ints_off = &dma_ints_off; | ||
141 | esp->dma_ints_on = &dma_ints_on; | ||
142 | esp->dma_irq_p = &dma_irq_p; | ||
143 | esp->dma_ports_p = &dma_ports_p; | ||
144 | esp->dma_setup = &dma_setup; | ||
145 | |||
146 | /* Optional functions */ | ||
147 | esp->dma_barrier = 0; | ||
148 | esp->dma_drain = 0; | ||
149 | esp->dma_invalidate = 0; | ||
150 | esp->dma_irq_entry = 0; | ||
151 | esp->dma_irq_exit = 0; | ||
152 | esp->dma_led_on = 0; | ||
153 | esp->dma_led_off = 0; | ||
154 | esp->dma_poll = 0; | ||
155 | esp->dma_reset = 0; | ||
156 | |||
157 | /* SCSI chip speed */ | ||
158 | esp->cfreq = 40000000; | ||
159 | |||
160 | /* The DMA registers on the Blizzard are mapped | ||
161 | * relative to the device (i.e. in the same Zorro | ||
162 | * I/O block). | ||
163 | */ | ||
164 | esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR); | ||
165 | |||
166 | /* ESP register base */ | ||
167 | esp->eregs = eregs; | ||
168 | |||
169 | /* Set the command buffer */ | ||
170 | esp->esp_command = cmd_buffer; | ||
171 | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | ||
172 | |||
173 | esp->irq = IRQ_AMIGA_PORTS; | ||
174 | esp->slot = board+REAL_BLZ1230_ESP_ADDR; | ||
175 | if (request_irq(IRQ_AMIGA_PORTS, esp_intr, SA_SHIRQ, | ||
176 | "Blizzard 1230 SCSI IV", esp->ehost)) | ||
177 | goto err_out; | ||
178 | |||
179 | /* Figure out our scsi ID on the bus */ | ||
180 | esp->scsi_id = 7; | ||
181 | |||
182 | /* We don't have a differential SCSI-bus. */ | ||
183 | esp->diff = 0; | ||
184 | |||
185 | esp_initialize(esp); | ||
186 | |||
187 | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | ||
188 | esps_running = esps_in_use; | ||
189 | return esps_in_use; | ||
190 | } | ||
191 | } | ||
192 | return 0; | ||
193 | |||
194 | err_out: | ||
195 | scsi_unregister(esp->ehost); | ||
196 | esp_deallocate(esp); | ||
197 | release_mem_region(board+REAL_BLZ1230_ESP_ADDR, | ||
198 | sizeof(struct ESP_regs)); | ||
199 | return 0; | ||
200 | } | ||
201 | |||
202 | /************************************************************* DMA Functions */ | ||
203 | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | ||
204 | { | ||
205 | /* Since the Blizzard DMA is fully dedicated to the ESP chip, | ||
206 | * the number of bytes sent (to the ESP chip) equals the number | ||
207 | * of bytes in the FIFO - there is no buffering in the DMA controller. | ||
208 | * XXXX Do I read this right? It is from host to ESP, right? | ||
209 | */ | ||
210 | return fifo_count; | ||
211 | } | ||
212 | |||
213 | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | ||
214 | { | ||
215 | /* I don't think there's any limit on the Blizzard DMA. So we use what | ||
216 | * the ESP chip can handle (24 bit). | ||
217 | */ | ||
218 | unsigned long sz = sp->SCp.this_residual; | ||
219 | if(sz > 0x1000000) | ||
220 | sz = 0x1000000; | ||
221 | return sz; | ||
222 | } | ||
223 | |||
224 | static void dma_dump_state(struct NCR_ESP *esp) | ||
225 | { | ||
226 | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | ||
227 | custom.intreqr, custom.intenar)); | ||
228 | } | ||
229 | |||
230 | void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | ||
231 | { | ||
232 | #if MKIV | ||
233 | struct blz1230_dma_registers *dregs = | ||
234 | (struct blz1230_dma_registers *) (esp->dregs); | ||
235 | #else | ||
236 | struct blz1230II_dma_registers *dregs = | ||
237 | (struct blz1230II_dma_registers *) (esp->dregs); | ||
238 | #endif | ||
239 | |||
240 | cache_clear(addr, length); | ||
241 | |||
242 | addr >>= 1; | ||
243 | addr &= ~(BLZ1230_DMA_WRITE); | ||
244 | |||
245 | /* First set latch */ | ||
246 | dregs->dma_latch = (addr >> 24) & 0xff; | ||
247 | |||
248 | /* Then pump the address to the DMA address register */ | ||
249 | #if MKIV | ||
250 | dregs->dma_addr = (addr >> 24) & 0xff; | ||
251 | #endif | ||
252 | dregs->dma_addr = (addr >> 16) & 0xff; | ||
253 | dregs->dma_addr = (addr >> 8) & 0xff; | ||
254 | dregs->dma_addr = (addr ) & 0xff; | ||
255 | } | ||
256 | |||
257 | void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | ||
258 | { | ||
259 | #if MKIV | ||
260 | struct blz1230_dma_registers *dregs = | ||
261 | (struct blz1230_dma_registers *) (esp->dregs); | ||
262 | #else | ||
263 | struct blz1230II_dma_registers *dregs = | ||
264 | (struct blz1230II_dma_registers *) (esp->dregs); | ||
265 | #endif | ||
266 | |||
267 | cache_push(addr, length); | ||
268 | |||
269 | addr >>= 1; | ||
270 | addr |= BLZ1230_DMA_WRITE; | ||
271 | |||
272 | /* First set latch */ | ||
273 | dregs->dma_latch = (addr >> 24) & 0xff; | ||
274 | |||
275 | /* Then pump the address to the DMA address register */ | ||
276 | #if MKIV | ||
277 | dregs->dma_addr = (addr >> 24) & 0xff; | ||
278 | #endif | ||
279 | dregs->dma_addr = (addr >> 16) & 0xff; | ||
280 | dregs->dma_addr = (addr >> 8) & 0xff; | ||
281 | dregs->dma_addr = (addr ) & 0xff; | ||
282 | } | ||
283 | |||
284 | static void dma_ints_off(struct NCR_ESP *esp) | ||
285 | { | ||
286 | disable_irq(esp->irq); | ||
287 | } | ||
288 | |||
289 | static void dma_ints_on(struct NCR_ESP *esp) | ||
290 | { | ||
291 | enable_irq(esp->irq); | ||
292 | } | ||
293 | |||
294 | static int dma_irq_p(struct NCR_ESP *esp) | ||
295 | { | ||
296 | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); | ||
297 | } | ||
298 | |||
299 | static int dma_ports_p(struct NCR_ESP *esp) | ||
300 | { | ||
301 | return ((custom.intenar) & IF_PORTS); | ||
302 | } | ||
303 | |||
304 | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | ||
305 | { | ||
306 | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | ||
307 | * so when (write) is true, it actually means READ! | ||
308 | */ | ||
309 | if(write){ | ||
310 | dma_init_read(esp, addr, count); | ||
311 | } else { | ||
312 | dma_init_write(esp, addr, count); | ||
313 | } | ||
314 | } | ||
315 | |||
316 | #define HOSTS_C | ||
317 | |||
318 | int blz1230_esp_release(struct Scsi_Host *instance) | ||
319 | { | ||
320 | #ifdef MODULE | ||
321 | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | ||
322 | esp_deallocate((struct NCR_ESP *)instance->hostdata); | ||
323 | esp_release(); | ||
324 | release_mem_region(address, sizeof(struct ESP_regs)); | ||
325 | free_irq(IRQ_AMIGA_PORTS, esp_intr); | ||
326 | #endif | ||
327 | return 1; | ||
328 | } | ||
329 | |||
330 | |||
331 | static Scsi_Host_Template driver_template = { | ||
332 | .proc_name = "esp-blz1230", | ||
333 | .proc_info = esp_proc_info, | ||
334 | .name = "Blizzard1230 SCSI IV", | ||
335 | .detect = blz1230_esp_detect, | ||
336 | .slave_alloc = esp_slave_alloc, | ||
337 | .slave_destroy = esp_slave_destroy, | ||
338 | .release = blz1230_esp_release, | ||
339 | .queuecommand = esp_queue, | ||
340 | .eh_abort_handler = esp_abort, | ||
341 | .eh_bus_reset_handler = esp_reset, | ||
342 | .can_queue = 7, | ||
343 | .this_id = 7, | ||
344 | .sg_tablesize = SG_ALL, | ||
345 | .cmd_per_lun = 1, | ||
346 | .use_clustering = ENABLE_CLUSTERING | ||
347 | }; | ||
348 | |||
349 | |||
350 | #include "scsi_module.c" | ||
351 | |||
352 | MODULE_LICENSE("GPL"); | ||