aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/oprofile/buffer_sync.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/oprofile/buffer_sync.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/oprofile/buffer_sync.c')
-rw-r--r--drivers/oprofile/buffer_sync.c547
1 files changed, 547 insertions, 0 deletions
diff --git a/drivers/oprofile/buffer_sync.c b/drivers/oprofile/buffer_sync.c
new file mode 100644
index 000000000000..55720dc6ec43
--- /dev/null
+++ b/drivers/oprofile/buffer_sync.c
@@ -0,0 +1,547 @@
1/**
2 * @file buffer_sync.c
3 *
4 * @remark Copyright 2002 OProfile authors
5 * @remark Read the file COPYING
6 *
7 * @author John Levon <levon@movementarian.org>
8 *
9 * This is the core of the buffer management. Each
10 * CPU buffer is processed and entered into the
11 * global event buffer. Such processing is necessary
12 * in several circumstances, mentioned below.
13 *
14 * The processing does the job of converting the
15 * transitory EIP value into a persistent dentry/offset
16 * value that the profiler can record at its leisure.
17 *
18 * See fs/dcookies.c for a description of the dentry/offset
19 * objects.
20 */
21
22#include <linux/mm.h>
23#include <linux/workqueue.h>
24#include <linux/notifier.h>
25#include <linux/dcookies.h>
26#include <linux/profile.h>
27#include <linux/module.h>
28#include <linux/fs.h>
29
30#include "oprofile_stats.h"
31#include "event_buffer.h"
32#include "cpu_buffer.h"
33#include "buffer_sync.h"
34
35static LIST_HEAD(dying_tasks);
36static LIST_HEAD(dead_tasks);
37static cpumask_t marked_cpus = CPU_MASK_NONE;
38static DEFINE_SPINLOCK(task_mortuary);
39static void process_task_mortuary(void);
40
41
42/* Take ownership of the task struct and place it on the
43 * list for processing. Only after two full buffer syncs
44 * does the task eventually get freed, because by then
45 * we are sure we will not reference it again.
46 */
47static int task_free_notify(struct notifier_block * self, unsigned long val, void * data)
48{
49 struct task_struct * task = data;
50 spin_lock(&task_mortuary);
51 list_add(&task->tasks, &dying_tasks);
52 spin_unlock(&task_mortuary);
53 return NOTIFY_OK;
54}
55
56
57/* The task is on its way out. A sync of the buffer means we can catch
58 * any remaining samples for this task.
59 */
60static int task_exit_notify(struct notifier_block * self, unsigned long val, void * data)
61{
62 /* To avoid latency problems, we only process the current CPU,
63 * hoping that most samples for the task are on this CPU
64 */
65 sync_buffer(_smp_processor_id());
66 return 0;
67}
68
69
70/* The task is about to try a do_munmap(). We peek at what it's going to
71 * do, and if it's an executable region, process the samples first, so
72 * we don't lose any. This does not have to be exact, it's a QoI issue
73 * only.
74 */
75static int munmap_notify(struct notifier_block * self, unsigned long val, void * data)
76{
77 unsigned long addr = (unsigned long)data;
78 struct mm_struct * mm = current->mm;
79 struct vm_area_struct * mpnt;
80
81 down_read(&mm->mmap_sem);
82
83 mpnt = find_vma(mm, addr);
84 if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
85 up_read(&mm->mmap_sem);
86 /* To avoid latency problems, we only process the current CPU,
87 * hoping that most samples for the task are on this CPU
88 */
89 sync_buffer(_smp_processor_id());
90 return 0;
91 }
92
93 up_read(&mm->mmap_sem);
94 return 0;
95}
96
97
98/* We need to be told about new modules so we don't attribute to a previously
99 * loaded module, or drop the samples on the floor.
100 */
101static int module_load_notify(struct notifier_block * self, unsigned long val, void * data)
102{
103#ifdef CONFIG_MODULES
104 if (val != MODULE_STATE_COMING)
105 return 0;
106
107 /* FIXME: should we process all CPU buffers ? */
108 down(&buffer_sem);
109 add_event_entry(ESCAPE_CODE);
110 add_event_entry(MODULE_LOADED_CODE);
111 up(&buffer_sem);
112#endif
113 return 0;
114}
115
116
117static struct notifier_block task_free_nb = {
118 .notifier_call = task_free_notify,
119};
120
121static struct notifier_block task_exit_nb = {
122 .notifier_call = task_exit_notify,
123};
124
125static struct notifier_block munmap_nb = {
126 .notifier_call = munmap_notify,
127};
128
129static struct notifier_block module_load_nb = {
130 .notifier_call = module_load_notify,
131};
132
133
134static void end_sync(void)
135{
136 end_cpu_work();
137 /* make sure we don't leak task structs */
138 process_task_mortuary();
139 process_task_mortuary();
140}
141
142
143int sync_start(void)
144{
145 int err;
146
147 start_cpu_work();
148
149 err = task_handoff_register(&task_free_nb);
150 if (err)
151 goto out1;
152 err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
153 if (err)
154 goto out2;
155 err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
156 if (err)
157 goto out3;
158 err = register_module_notifier(&module_load_nb);
159 if (err)
160 goto out4;
161
162out:
163 return err;
164out4:
165 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
166out3:
167 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
168out2:
169 task_handoff_unregister(&task_free_nb);
170out1:
171 end_sync();
172 goto out;
173}
174
175
176void sync_stop(void)
177{
178 unregister_module_notifier(&module_load_nb);
179 profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
180 profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
181 task_handoff_unregister(&task_free_nb);
182 end_sync();
183}
184
185
186/* Optimisation. We can manage without taking the dcookie sem
187 * because we cannot reach this code without at least one
188 * dcookie user still being registered (namely, the reader
189 * of the event buffer). */
190static inline unsigned long fast_get_dcookie(struct dentry * dentry,
191 struct vfsmount * vfsmnt)
192{
193 unsigned long cookie;
194
195 if (dentry->d_cookie)
196 return (unsigned long)dentry;
197 get_dcookie(dentry, vfsmnt, &cookie);
198 return cookie;
199}
200
201
202/* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
203 * which corresponds loosely to "application name". This is
204 * not strictly necessary but allows oprofile to associate
205 * shared-library samples with particular applications
206 */
207static unsigned long get_exec_dcookie(struct mm_struct * mm)
208{
209 unsigned long cookie = 0;
210 struct vm_area_struct * vma;
211
212 if (!mm)
213 goto out;
214
215 for (vma = mm->mmap; vma; vma = vma->vm_next) {
216 if (!vma->vm_file)
217 continue;
218 if (!(vma->vm_flags & VM_EXECUTABLE))
219 continue;
220 cookie = fast_get_dcookie(vma->vm_file->f_dentry,
221 vma->vm_file->f_vfsmnt);
222 break;
223 }
224
225out:
226 return cookie;
227}
228
229
230/* Convert the EIP value of a sample into a persistent dentry/offset
231 * pair that can then be added to the global event buffer. We make
232 * sure to do this lookup before a mm->mmap modification happens so
233 * we don't lose track.
234 */
235static unsigned long lookup_dcookie(struct mm_struct * mm, unsigned long addr, off_t * offset)
236{
237 unsigned long cookie = 0;
238 struct vm_area_struct * vma;
239
240 for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
241
242 if (!vma->vm_file)
243 continue;
244
245 if (addr < vma->vm_start || addr >= vma->vm_end)
246 continue;
247
248 cookie = fast_get_dcookie(vma->vm_file->f_dentry,
249 vma->vm_file->f_vfsmnt);
250 *offset = (vma->vm_pgoff << PAGE_SHIFT) + addr - vma->vm_start;
251 break;
252 }
253
254 return cookie;
255}
256
257
258static unsigned long last_cookie = ~0UL;
259
260static void add_cpu_switch(int i)
261{
262 add_event_entry(ESCAPE_CODE);
263 add_event_entry(CPU_SWITCH_CODE);
264 add_event_entry(i);
265 last_cookie = ~0UL;
266}
267
268static void add_kernel_ctx_switch(unsigned int in_kernel)
269{
270 add_event_entry(ESCAPE_CODE);
271 if (in_kernel)
272 add_event_entry(KERNEL_ENTER_SWITCH_CODE);
273 else
274 add_event_entry(KERNEL_EXIT_SWITCH_CODE);
275}
276
277static void
278add_user_ctx_switch(struct task_struct const * task, unsigned long cookie)
279{
280 add_event_entry(ESCAPE_CODE);
281 add_event_entry(CTX_SWITCH_CODE);
282 add_event_entry(task->pid);
283 add_event_entry(cookie);
284 /* Another code for daemon back-compat */
285 add_event_entry(ESCAPE_CODE);
286 add_event_entry(CTX_TGID_CODE);
287 add_event_entry(task->tgid);
288}
289
290
291static void add_cookie_switch(unsigned long cookie)
292{
293 add_event_entry(ESCAPE_CODE);
294 add_event_entry(COOKIE_SWITCH_CODE);
295 add_event_entry(cookie);
296}
297
298
299static void add_trace_begin(void)
300{
301 add_event_entry(ESCAPE_CODE);
302 add_event_entry(TRACE_BEGIN_CODE);
303}
304
305
306static void add_sample_entry(unsigned long offset, unsigned long event)
307{
308 add_event_entry(offset);
309 add_event_entry(event);
310}
311
312
313static int add_us_sample(struct mm_struct * mm, struct op_sample * s)
314{
315 unsigned long cookie;
316 off_t offset;
317
318 cookie = lookup_dcookie(mm, s->eip, &offset);
319
320 if (!cookie) {
321 atomic_inc(&oprofile_stats.sample_lost_no_mapping);
322 return 0;
323 }
324
325 if (cookie != last_cookie) {
326 add_cookie_switch(cookie);
327 last_cookie = cookie;
328 }
329
330 add_sample_entry(offset, s->event);
331
332 return 1;
333}
334
335
336/* Add a sample to the global event buffer. If possible the
337 * sample is converted into a persistent dentry/offset pair
338 * for later lookup from userspace.
339 */
340static int
341add_sample(struct mm_struct * mm, struct op_sample * s, int in_kernel)
342{
343 if (in_kernel) {
344 add_sample_entry(s->eip, s->event);
345 return 1;
346 } else if (mm) {
347 return add_us_sample(mm, s);
348 } else {
349 atomic_inc(&oprofile_stats.sample_lost_no_mm);
350 }
351 return 0;
352}
353
354
355static void release_mm(struct mm_struct * mm)
356{
357 if (!mm)
358 return;
359 up_read(&mm->mmap_sem);
360 mmput(mm);
361}
362
363
364static struct mm_struct * take_tasks_mm(struct task_struct * task)
365{
366 struct mm_struct * mm = get_task_mm(task);
367 if (mm)
368 down_read(&mm->mmap_sem);
369 return mm;
370}
371
372
373static inline int is_code(unsigned long val)
374{
375 return val == ESCAPE_CODE;
376}
377
378
379/* "acquire" as many cpu buffer slots as we can */
380static unsigned long get_slots(struct oprofile_cpu_buffer * b)
381{
382 unsigned long head = b->head_pos;
383 unsigned long tail = b->tail_pos;
384
385 /*
386 * Subtle. This resets the persistent last_task
387 * and in_kernel values used for switching notes.
388 * BUT, there is a small window between reading
389 * head_pos, and this call, that means samples
390 * can appear at the new head position, but not
391 * be prefixed with the notes for switching
392 * kernel mode or a task switch. This small hole
393 * can lead to mis-attribution or samples where
394 * we don't know if it's in the kernel or not,
395 * at the start of an event buffer.
396 */
397 cpu_buffer_reset(b);
398
399 if (head >= tail)
400 return head - tail;
401
402 return head + (b->buffer_size - tail);
403}
404
405
406static void increment_tail(struct oprofile_cpu_buffer * b)
407{
408 unsigned long new_tail = b->tail_pos + 1;
409
410 rmb();
411
412 if (new_tail < b->buffer_size)
413 b->tail_pos = new_tail;
414 else
415 b->tail_pos = 0;
416}
417
418
419/* Move tasks along towards death. Any tasks on dead_tasks
420 * will definitely have no remaining references in any
421 * CPU buffers at this point, because we use two lists,
422 * and to have reached the list, it must have gone through
423 * one full sync already.
424 */
425static void process_task_mortuary(void)
426{
427 struct list_head * pos;
428 struct list_head * pos2;
429 struct task_struct * task;
430
431 spin_lock(&task_mortuary);
432
433 list_for_each_safe(pos, pos2, &dead_tasks) {
434 task = list_entry(pos, struct task_struct, tasks);
435 list_del(&task->tasks);
436 free_task(task);
437 }
438
439 list_for_each_safe(pos, pos2, &dying_tasks) {
440 task = list_entry(pos, struct task_struct, tasks);
441 list_del(&task->tasks);
442 list_add_tail(&task->tasks, &dead_tasks);
443 }
444
445 spin_unlock(&task_mortuary);
446}
447
448
449static void mark_done(int cpu)
450{
451 int i;
452
453 cpu_set(cpu, marked_cpus);
454
455 for_each_online_cpu(i) {
456 if (!cpu_isset(i, marked_cpus))
457 return;
458 }
459
460 /* All CPUs have been processed at least once,
461 * we can process the mortuary once
462 */
463 process_task_mortuary();
464
465 cpus_clear(marked_cpus);
466}
467
468
469/* FIXME: this is not sufficient if we implement syscall barrier backtrace
470 * traversal, the code switch to sb_sample_start at first kernel enter/exit
471 * switch so we need a fifth state and some special handling in sync_buffer()
472 */
473typedef enum {
474 sb_bt_ignore = -2,
475 sb_buffer_start,
476 sb_bt_start,
477 sb_sample_start,
478} sync_buffer_state;
479
480/* Sync one of the CPU's buffers into the global event buffer.
481 * Here we need to go through each batch of samples punctuated
482 * by context switch notes, taking the task's mmap_sem and doing
483 * lookup in task->mm->mmap to convert EIP into dcookie/offset
484 * value.
485 */
486void sync_buffer(int cpu)
487{
488 struct oprofile_cpu_buffer * cpu_buf = &cpu_buffer[cpu];
489 struct mm_struct *mm = NULL;
490 struct task_struct * new;
491 unsigned long cookie = 0;
492 int in_kernel = 1;
493 unsigned int i;
494 sync_buffer_state state = sb_buffer_start;
495 unsigned long available;
496
497 down(&buffer_sem);
498
499 add_cpu_switch(cpu);
500
501 /* Remember, only we can modify tail_pos */
502
503 available = get_slots(cpu_buf);
504
505 for (i = 0; i < available; ++i) {
506 struct op_sample * s = &cpu_buf->buffer[cpu_buf->tail_pos];
507
508 if (is_code(s->eip)) {
509 if (s->event <= CPU_IS_KERNEL) {
510 /* kernel/userspace switch */
511 in_kernel = s->event;
512 if (state == sb_buffer_start)
513 state = sb_sample_start;
514 add_kernel_ctx_switch(s->event);
515 } else if (s->event == CPU_TRACE_BEGIN) {
516 state = sb_bt_start;
517 add_trace_begin();
518 } else {
519 struct mm_struct * oldmm = mm;
520
521 /* userspace context switch */
522 new = (struct task_struct *)s->event;
523
524 release_mm(oldmm);
525 mm = take_tasks_mm(new);
526 if (mm != oldmm)
527 cookie = get_exec_dcookie(mm);
528 add_user_ctx_switch(new, cookie);
529 }
530 } else {
531 if (state >= sb_bt_start &&
532 !add_sample(mm, s, in_kernel)) {
533 if (state == sb_bt_start) {
534 state = sb_bt_ignore;
535 atomic_inc(&oprofile_stats.bt_lost_no_mapping);
536 }
537 }
538 }
539
540 increment_tail(cpu_buf);
541 }
542 release_mm(mm);
543
544 mark_done(cpu);
545
546 up(&buffer_sem);
547}