diff options
author | Malli Chilakala <mallikarjuna.chilakala@intel.com> | 2005-04-28 22:43:52 -0400 |
---|---|---|
committer | Jeff Garzik <jgarzik@pobox.com> | 2005-05-12 20:48:54 -0400 |
commit | 2d7edb923a823660b081bd4c660300ee19adca8d (patch) | |
tree | 3442b72425638e8530d31490339567d42706534a /drivers/net | |
parent | f0d11ed0b0650d2f93f56f65167c10a577c16c88 (diff) |
[PATCH] e1000:82573 specific code & packet split code
82573 specific code & packet split code
Signed-off-by: Mallikarjuna R Chilakala <mallikarjuna.chilakala@intel.com>
Signed-off-by: Ganesh Venkatesan <ganesh.venkatesan@intel.com>
Signed-off-by: John Ronciak <john.ronciak@intel.com>
diff -up net-drivers-2.6/drivers/net/e1000/e1000.h net-drivers-2.6/drivers/net/e1000.new/e1000.h
Diffstat (limited to 'drivers/net')
-rw-r--r-- | drivers/net/e1000/e1000.h | 26 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 1984 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_hw.h | 568 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_main.c | 804 | ||||
-rw-r--r-- | drivers/net/e1000/e1000_osdep.h | 23 |
5 files changed, 2882 insertions, 523 deletions
diff --git a/drivers/net/e1000/e1000.h b/drivers/net/e1000/e1000.h index da055520daa0..19858c267532 100644 --- a/drivers/net/e1000/e1000.h +++ b/drivers/net/e1000/e1000.h | |||
@@ -112,6 +112,8 @@ struct e1000_adapter; | |||
112 | #define E1000_MAX_82544_RXD 4096 | 112 | #define E1000_MAX_82544_RXD 4096 |
113 | 113 | ||
114 | /* Supported Rx Buffer Sizes */ | 114 | /* Supported Rx Buffer Sizes */ |
115 | #define E1000_RXBUFFER_128 128 /* Used for packet split */ | ||
116 | #define E1000_RXBUFFER_256 256 /* Used for packet split */ | ||
115 | #define E1000_RXBUFFER_2048 2048 | 117 | #define E1000_RXBUFFER_2048 2048 |
116 | #define E1000_RXBUFFER_4096 4096 | 118 | #define E1000_RXBUFFER_4096 4096 |
117 | #define E1000_RXBUFFER_8192 8192 | 119 | #define E1000_RXBUFFER_8192 8192 |
@@ -146,6 +148,10 @@ struct e1000_adapter; | |||
146 | #define E1000_MASTER_SLAVE e1000_ms_hw_default | 148 | #define E1000_MASTER_SLAVE e1000_ms_hw_default |
147 | #endif | 149 | #endif |
148 | 150 | ||
151 | #define E1000_MNG_VLAN_NONE -1 | ||
152 | /* Number of packet split data buffers (not including the header buffer) */ | ||
153 | #define PS_PAGE_BUFFERS MAX_PS_BUFFERS-1 | ||
154 | |||
149 | /* only works for sizes that are powers of 2 */ | 155 | /* only works for sizes that are powers of 2 */ |
150 | #define E1000_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1))) | 156 | #define E1000_ROUNDUP(i, size) ((i) = (((i) + (size) - 1) & ~((size) - 1))) |
151 | 157 | ||
@@ -159,6 +165,9 @@ struct e1000_buffer { | |||
159 | uint16_t next_to_watch; | 165 | uint16_t next_to_watch; |
160 | }; | 166 | }; |
161 | 167 | ||
168 | struct e1000_ps_page { struct page *ps_page[MAX_PS_BUFFERS]; }; | ||
169 | struct e1000_ps_page_dma { uint64_t ps_page_dma[MAX_PS_BUFFERS]; }; | ||
170 | |||
162 | struct e1000_desc_ring { | 171 | struct e1000_desc_ring { |
163 | /* pointer to the descriptor ring memory */ | 172 | /* pointer to the descriptor ring memory */ |
164 | void *desc; | 173 | void *desc; |
@@ -174,12 +183,19 @@ struct e1000_desc_ring { | |||
174 | unsigned int next_to_clean; | 183 | unsigned int next_to_clean; |
175 | /* array of buffer information structs */ | 184 | /* array of buffer information structs */ |
176 | struct e1000_buffer *buffer_info; | 185 | struct e1000_buffer *buffer_info; |
186 | /* arrays of page information for packet split */ | ||
187 | struct e1000_ps_page *ps_page; | ||
188 | struct e1000_ps_page_dma *ps_page_dma; | ||
177 | }; | 189 | }; |
178 | 190 | ||
179 | #define E1000_DESC_UNUSED(R) \ | 191 | #define E1000_DESC_UNUSED(R) \ |
180 | ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ | 192 | ((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ |
181 | (R)->next_to_clean - (R)->next_to_use - 1) | 193 | (R)->next_to_clean - (R)->next_to_use - 1) |
182 | 194 | ||
195 | #define E1000_RX_DESC_PS(R, i) \ | ||
196 | (&(((union e1000_rx_desc_packet_split *)((R).desc))[i])) | ||
197 | #define E1000_RX_DESC_EXT(R, i) \ | ||
198 | (&(((union e1000_rx_desc_extended *)((R).desc))[i])) | ||
183 | #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) | 199 | #define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i])) |
184 | #define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) | 200 | #define E1000_RX_DESC(R, i) E1000_GET_DESC(R, i, e1000_rx_desc) |
185 | #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) | 201 | #define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc) |
@@ -192,6 +208,7 @@ struct e1000_adapter { | |||
192 | struct timer_list watchdog_timer; | 208 | struct timer_list watchdog_timer; |
193 | struct timer_list phy_info_timer; | 209 | struct timer_list phy_info_timer; |
194 | struct vlan_group *vlgrp; | 210 | struct vlan_group *vlgrp; |
211 | uint16_t mng_vlan_id; | ||
195 | uint32_t bd_number; | 212 | uint32_t bd_number; |
196 | uint32_t rx_buffer_len; | 213 | uint32_t rx_buffer_len; |
197 | uint32_t part_num; | 214 | uint32_t part_num; |
@@ -228,14 +245,23 @@ struct e1000_adapter { | |||
228 | boolean_t detect_tx_hung; | 245 | boolean_t detect_tx_hung; |
229 | 246 | ||
230 | /* RX */ | 247 | /* RX */ |
248 | #ifdef CONFIG_E1000_NAPI | ||
249 | boolean_t (*clean_rx) (struct e1000_adapter *adapter, int *work_done, | ||
250 | int work_to_do); | ||
251 | #else | ||
252 | boolean_t (*clean_rx) (struct e1000_adapter *adapter); | ||
253 | #endif | ||
254 | void (*alloc_rx_buf) (struct e1000_adapter *adapter); | ||
231 | struct e1000_desc_ring rx_ring; | 255 | struct e1000_desc_ring rx_ring; |
232 | uint64_t hw_csum_err; | 256 | uint64_t hw_csum_err; |
233 | uint64_t hw_csum_good; | 257 | uint64_t hw_csum_good; |
234 | uint32_t rx_int_delay; | 258 | uint32_t rx_int_delay; |
235 | uint32_t rx_abs_int_delay; | 259 | uint32_t rx_abs_int_delay; |
236 | boolean_t rx_csum; | 260 | boolean_t rx_csum; |
261 | boolean_t rx_ps; | ||
237 | uint32_t gorcl; | 262 | uint32_t gorcl; |
238 | uint64_t gorcl_old; | 263 | uint64_t gorcl_old; |
264 | uint16_t rx_ps_bsize0; | ||
239 | 265 | ||
240 | /* Interrupt Throttle Rate */ | 266 | /* Interrupt Throttle Rate */ |
241 | uint32_t itr; | 267 | uint32_t itr; |
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c index 786a9b935659..b7a7ceb67f47 100644 --- a/drivers/net/e1000/e1000_hw.c +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -63,10 +63,11 @@ static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); | |||
63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); | 63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); |
64 | static void e1000_release_eeprom(struct e1000_hw *hw); | 64 | static void e1000_release_eeprom(struct e1000_hw *hw); |
65 | static void e1000_standby_eeprom(struct e1000_hw *hw); | 65 | static void e1000_standby_eeprom(struct e1000_hw *hw); |
66 | static int32_t e1000_id_led_init(struct e1000_hw * hw); | ||
67 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); | 66 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); |
68 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 67 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); |
69 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); | 68 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); |
69 | static int32_t e1000_host_if_read_cookie(struct e1000_hw *hw, uint8_t *buffer); | ||
70 | static uint8_t e1000_calculate_mng_checksum(char *buffer, uint32_t length); | ||
70 | 71 | ||
71 | /* IGP cable length table */ | 72 | /* IGP cable length table */ |
72 | static const | 73 | static const |
@@ -80,6 +81,17 @@ uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | |||
80 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 81 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, |
81 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 82 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; |
82 | 83 | ||
84 | static const | ||
85 | uint16_t e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = | ||
86 | { 8, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, | ||
87 | 22, 24, 27, 30, 32, 35, 37, 40, 42, 44, 47, 49, 51, 54, 56, 58, | ||
88 | 32, 35, 38, 41, 44, 47, 50, 53, 55, 58, 61, 63, 66, 69, 71, 74, | ||
89 | 43, 47, 51, 54, 58, 61, 64, 67, 71, 74, 77, 80, 82, 85, 88, 90, | ||
90 | 57, 62, 66, 70, 74, 77, 81, 85, 88, 91, 94, 97, 100, 103, 106, 108, | ||
91 | 73, 78, 82, 87, 91, 95, 98, 102, 105, 109, 112, 114, 117, 119, 122, 124, | ||
92 | 91, 96, 101, 105, 109, 113, 116, 119, 122, 125, 127, 128, 128, 128, 128, 128, | ||
93 | 108, 113, 117, 121, 124, 127, 128, 128, 128, 128, 128, 128, 128, 128, 128, 128}; | ||
94 | |||
83 | 95 | ||
84 | /****************************************************************************** | 96 | /****************************************************************************** |
85 | * Set the phy type member in the hw struct. | 97 | * Set the phy type member in the hw struct. |
@@ -91,10 +103,14 @@ e1000_set_phy_type(struct e1000_hw *hw) | |||
91 | { | 103 | { |
92 | DEBUGFUNC("e1000_set_phy_type"); | 104 | DEBUGFUNC("e1000_set_phy_type"); |
93 | 105 | ||
106 | if(hw->mac_type == e1000_undefined) | ||
107 | return -E1000_ERR_PHY_TYPE; | ||
108 | |||
94 | switch(hw->phy_id) { | 109 | switch(hw->phy_id) { |
95 | case M88E1000_E_PHY_ID: | 110 | case M88E1000_E_PHY_ID: |
96 | case M88E1000_I_PHY_ID: | 111 | case M88E1000_I_PHY_ID: |
97 | case M88E1011_I_PHY_ID: | 112 | case M88E1011_I_PHY_ID: |
113 | case M88E1111_I_PHY_ID: | ||
98 | hw->phy_type = e1000_phy_m88; | 114 | hw->phy_type = e1000_phy_m88; |
99 | break; | 115 | break; |
100 | case IGP01E1000_I_PHY_ID: | 116 | case IGP01E1000_I_PHY_ID: |
@@ -271,6 +287,7 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
271 | case E1000_DEV_ID_82546GB_FIBER: | 287 | case E1000_DEV_ID_82546GB_FIBER: |
272 | case E1000_DEV_ID_82546GB_SERDES: | 288 | case E1000_DEV_ID_82546GB_SERDES: |
273 | case E1000_DEV_ID_82546GB_PCIE: | 289 | case E1000_DEV_ID_82546GB_PCIE: |
290 | case E1000_DEV_ID_82546GB_QUAD_COPPER: | ||
274 | hw->mac_type = e1000_82546_rev_3; | 291 | hw->mac_type = e1000_82546_rev_3; |
275 | break; | 292 | break; |
276 | case E1000_DEV_ID_82541EI: | 293 | case E1000_DEV_ID_82541EI: |
@@ -289,12 +306,19 @@ e1000_set_mac_type(struct e1000_hw *hw) | |||
289 | case E1000_DEV_ID_82547GI: | 306 | case E1000_DEV_ID_82547GI: |
290 | hw->mac_type = e1000_82547_rev_2; | 307 | hw->mac_type = e1000_82547_rev_2; |
291 | break; | 308 | break; |
309 | case E1000_DEV_ID_82573E: | ||
310 | case E1000_DEV_ID_82573E_IAMT: | ||
311 | hw->mac_type = e1000_82573; | ||
312 | break; | ||
292 | default: | 313 | default: |
293 | /* Should never have loaded on this device */ | 314 | /* Should never have loaded on this device */ |
294 | return -E1000_ERR_MAC_TYPE; | 315 | return -E1000_ERR_MAC_TYPE; |
295 | } | 316 | } |
296 | 317 | ||
297 | switch(hw->mac_type) { | 318 | switch(hw->mac_type) { |
319 | case e1000_82573: | ||
320 | hw->eeprom_semaphore_present = TRUE; | ||
321 | /* fall through */ | ||
298 | case e1000_82541: | 322 | case e1000_82541: |
299 | case e1000_82547: | 323 | case e1000_82547: |
300 | case e1000_82541_rev_2: | 324 | case e1000_82541_rev_2: |
@@ -360,6 +384,9 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
360 | uint32_t icr; | 384 | uint32_t icr; |
361 | uint32_t manc; | 385 | uint32_t manc; |
362 | uint32_t led_ctrl; | 386 | uint32_t led_ctrl; |
387 | uint32_t timeout; | ||
388 | uint32_t extcnf_ctrl; | ||
389 | int32_t ret_val; | ||
363 | 390 | ||
364 | DEBUGFUNC("e1000_reset_hw"); | 391 | DEBUGFUNC("e1000_reset_hw"); |
365 | 392 | ||
@@ -369,6 +396,15 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
369 | e1000_pci_clear_mwi(hw); | 396 | e1000_pci_clear_mwi(hw); |
370 | } | 397 | } |
371 | 398 | ||
399 | if(hw->bus_type == e1000_bus_type_pci_express) { | ||
400 | /* Prevent the PCI-E bus from sticking if there is no TLP connection | ||
401 | * on the last TLP read/write transaction when MAC is reset. | ||
402 | */ | ||
403 | if(e1000_disable_pciex_master(hw) != E1000_SUCCESS) { | ||
404 | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | ||
405 | } | ||
406 | } | ||
407 | |||
372 | /* Clear interrupt mask to stop board from generating interrupts */ | 408 | /* Clear interrupt mask to stop board from generating interrupts */ |
373 | DEBUGOUT("Masking off all interrupts\n"); | 409 | DEBUGOUT("Masking off all interrupts\n"); |
374 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | 410 | E1000_WRITE_REG(hw, IMC, 0xffffffff); |
@@ -393,10 +429,32 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
393 | 429 | ||
394 | /* Must reset the PHY before resetting the MAC */ | 430 | /* Must reset the PHY before resetting the MAC */ |
395 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 431 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
396 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 432 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); |
397 | msec_delay(5); | 433 | msec_delay(5); |
398 | } | 434 | } |
399 | 435 | ||
436 | /* Must acquire the MDIO ownership before MAC reset. | ||
437 | * Ownership defaults to firmware after a reset. */ | ||
438 | if(hw->mac_type == e1000_82573) { | ||
439 | timeout = 10; | ||
440 | |||
441 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
442 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
443 | |||
444 | do { | ||
445 | E1000_WRITE_REG(hw, EXTCNF_CTRL, extcnf_ctrl); | ||
446 | extcnf_ctrl = E1000_READ_REG(hw, EXTCNF_CTRL); | ||
447 | |||
448 | if(extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | ||
449 | break; | ||
450 | else | ||
451 | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | ||
452 | |||
453 | msec_delay(2); | ||
454 | timeout--; | ||
455 | } while(timeout); | ||
456 | } | ||
457 | |||
400 | /* Issue a global reset to the MAC. This will reset the chip's | 458 | /* Issue a global reset to the MAC. This will reset the chip's |
401 | * transmit, receive, DMA, and link units. It will not effect | 459 | * transmit, receive, DMA, and link units. It will not effect |
402 | * the current PCI configuration. The global reset bit is self- | 460 | * the current PCI configuration. The global reset bit is self- |
@@ -450,6 +508,18 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
450 | /* Wait for EEPROM reload */ | 508 | /* Wait for EEPROM reload */ |
451 | msec_delay(20); | 509 | msec_delay(20); |
452 | break; | 510 | break; |
511 | case e1000_82573: | ||
512 | udelay(10); | ||
513 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
514 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
515 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
516 | E1000_WRITE_FLUSH(hw); | ||
517 | /* fall through */ | ||
518 | ret_val = e1000_get_auto_rd_done(hw); | ||
519 | if(ret_val) | ||
520 | /* We don't want to continue accessing MAC registers. */ | ||
521 | return ret_val; | ||
522 | break; | ||
453 | default: | 523 | default: |
454 | /* Wait for EEPROM reload (it happens automatically) */ | 524 | /* Wait for EEPROM reload (it happens automatically) */ |
455 | msec_delay(5); | 525 | msec_delay(5); |
@@ -457,7 +527,7 @@ e1000_reset_hw(struct e1000_hw *hw) | |||
457 | } | 527 | } |
458 | 528 | ||
459 | /* Disable HW ARPs on ASF enabled adapters */ | 529 | /* Disable HW ARPs on ASF enabled adapters */ |
460 | if(hw->mac_type >= e1000_82540) { | 530 | if(hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { |
461 | manc = E1000_READ_REG(hw, MANC); | 531 | manc = E1000_READ_REG(hw, MANC); |
462 | manc &= ~(E1000_MANC_ARP_EN); | 532 | manc &= ~(E1000_MANC_ARP_EN); |
463 | E1000_WRITE_REG(hw, MANC, manc); | 533 | E1000_WRITE_REG(hw, MANC, manc); |
@@ -510,6 +580,8 @@ e1000_init_hw(struct e1000_hw *hw) | |||
510 | uint16_t pcix_stat_hi_word; | 580 | uint16_t pcix_stat_hi_word; |
511 | uint16_t cmd_mmrbc; | 581 | uint16_t cmd_mmrbc; |
512 | uint16_t stat_mmrbc; | 582 | uint16_t stat_mmrbc; |
583 | uint32_t mta_size; | ||
584 | |||
513 | DEBUGFUNC("e1000_init_hw"); | 585 | DEBUGFUNC("e1000_init_hw"); |
514 | 586 | ||
515 | /* Initialize Identification LED */ | 587 | /* Initialize Identification LED */ |
@@ -524,8 +596,8 @@ e1000_init_hw(struct e1000_hw *hw) | |||
524 | 596 | ||
525 | /* Disabling VLAN filtering. */ | 597 | /* Disabling VLAN filtering. */ |
526 | DEBUGOUT("Initializing the IEEE VLAN\n"); | 598 | DEBUGOUT("Initializing the IEEE VLAN\n"); |
527 | E1000_WRITE_REG(hw, VET, 0); | 599 | if (hw->mac_type < e1000_82545_rev_3) |
528 | 600 | E1000_WRITE_REG(hw, VET, 0); | |
529 | e1000_clear_vfta(hw); | 601 | e1000_clear_vfta(hw); |
530 | 602 | ||
531 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 603 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ |
@@ -553,14 +625,16 @@ e1000_init_hw(struct e1000_hw *hw) | |||
553 | 625 | ||
554 | /* Zero out the Multicast HASH table */ | 626 | /* Zero out the Multicast HASH table */ |
555 | DEBUGOUT("Zeroing the MTA\n"); | 627 | DEBUGOUT("Zeroing the MTA\n"); |
556 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) | 628 | mta_size = E1000_MC_TBL_SIZE; |
629 | for(i = 0; i < mta_size; i++) | ||
557 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 630 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
558 | 631 | ||
559 | /* Set the PCI priority bit correctly in the CTRL register. This | 632 | /* Set the PCI priority bit correctly in the CTRL register. This |
560 | * determines if the adapter gives priority to receives, or if it | 633 | * determines if the adapter gives priority to receives, or if it |
561 | * gives equal priority to transmits and receives. | 634 | * gives equal priority to transmits and receives. Valid only on |
635 | * 82542 and 82543 silicon. | ||
562 | */ | 636 | */ |
563 | if(hw->dma_fairness) { | 637 | if(hw->dma_fairness && hw->mac_type <= e1000_82543) { |
564 | ctrl = E1000_READ_REG(hw, CTRL); | 638 | ctrl = E1000_READ_REG(hw, CTRL); |
565 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); | 639 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); |
566 | } | 640 | } |
@@ -598,9 +672,21 @@ e1000_init_hw(struct e1000_hw *hw) | |||
598 | if(hw->mac_type > e1000_82544) { | 672 | if(hw->mac_type > e1000_82544) { |
599 | ctrl = E1000_READ_REG(hw, TXDCTL); | 673 | ctrl = E1000_READ_REG(hw, TXDCTL); |
600 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 674 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; |
675 | switch (hw->mac_type) { | ||
676 | default: | ||
677 | break; | ||
678 | case e1000_82573: | ||
679 | ctrl |= E1000_TXDCTL_COUNT_DESC; | ||
680 | break; | ||
681 | } | ||
601 | E1000_WRITE_REG(hw, TXDCTL, ctrl); | 682 | E1000_WRITE_REG(hw, TXDCTL, ctrl); |
602 | } | 683 | } |
603 | 684 | ||
685 | if (hw->mac_type == e1000_82573) { | ||
686 | e1000_enable_tx_pkt_filtering(hw); | ||
687 | } | ||
688 | |||
689 | |||
604 | /* Clear all of the statistics registers (clear on read). It is | 690 | /* Clear all of the statistics registers (clear on read). It is |
605 | * important that we do this after we have tried to establish link | 691 | * important that we do this after we have tried to establish link |
606 | * because the symbol error count will increment wildly if there | 692 | * because the symbol error count will increment wildly if there |
@@ -679,7 +765,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
679 | * control setting, then the variable hw->fc will | 765 | * control setting, then the variable hw->fc will |
680 | * be initialized based on a value in the EEPROM. | 766 | * be initialized based on a value in the EEPROM. |
681 | */ | 767 | */ |
682 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { | 768 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data)) { |
683 | DEBUGOUT("EEPROM Read Error\n"); | 769 | DEBUGOUT("EEPROM Read Error\n"); |
684 | return -E1000_ERR_EEPROM; | 770 | return -E1000_ERR_EEPROM; |
685 | } | 771 | } |
@@ -736,6 +822,7 @@ e1000_setup_link(struct e1000_hw *hw) | |||
736 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 822 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); |
737 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 823 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); |
738 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 824 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); |
825 | |||
739 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 826 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); |
740 | 827 | ||
741 | /* Set the flow control receive threshold registers. Normally, | 828 | /* Set the flow control receive threshold registers. Normally, |
@@ -906,20 +993,18 @@ e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | |||
906 | } | 993 | } |
907 | 994 | ||
908 | /****************************************************************************** | 995 | /****************************************************************************** |
909 | * Detects which PHY is present and the speed and duplex | 996 | * Make sure we have a valid PHY and change PHY mode before link setup. |
910 | * | 997 | * |
911 | * hw - Struct containing variables accessed by shared code | 998 | * hw - Struct containing variables accessed by shared code |
912 | ******************************************************************************/ | 999 | ******************************************************************************/ |
913 | static int32_t | 1000 | static int32_t |
914 | e1000_setup_copper_link(struct e1000_hw *hw) | 1001 | e1000_copper_link_preconfig(struct e1000_hw *hw) |
915 | { | 1002 | { |
916 | uint32_t ctrl; | 1003 | uint32_t ctrl; |
917 | uint32_t led_ctrl; | ||
918 | int32_t ret_val; | 1004 | int32_t ret_val; |
919 | uint16_t i; | ||
920 | uint16_t phy_data; | 1005 | uint16_t phy_data; |
921 | 1006 | ||
922 | DEBUGFUNC("e1000_setup_copper_link"); | 1007 | DEBUGFUNC("e1000_copper_link_preconfig"); |
923 | 1008 | ||
924 | ctrl = E1000_READ_REG(hw, CTRL); | 1009 | ctrl = E1000_READ_REG(hw, CTRL); |
925 | /* With 82543, we need to force speed and duplex on the MAC equal to what | 1010 | /* With 82543, we need to force speed and duplex on the MAC equal to what |
@@ -933,7 +1018,9 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
933 | } else { | 1018 | } else { |
934 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 1019 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); |
935 | E1000_WRITE_REG(hw, CTRL, ctrl); | 1020 | E1000_WRITE_REG(hw, CTRL, ctrl); |
936 | e1000_phy_hw_reset(hw); | 1021 | ret_val = e1000_phy_hw_reset(hw); |
1022 | if(ret_val) | ||
1023 | return ret_val; | ||
937 | } | 1024 | } |
938 | 1025 | ||
939 | /* Make sure we have a valid PHY */ | 1026 | /* Make sure we have a valid PHY */ |
@@ -961,274 +1048,398 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
961 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | 1048 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) |
962 | hw->phy_reset_disable = FALSE; | 1049 | hw->phy_reset_disable = FALSE; |
963 | 1050 | ||
964 | if(!hw->phy_reset_disable) { | 1051 | return E1000_SUCCESS; |
965 | if (hw->phy_type == e1000_phy_igp) { | 1052 | } |
966 | 1053 | ||
967 | ret_val = e1000_phy_reset(hw); | ||
968 | if(ret_val) { | ||
969 | DEBUGOUT("Error Resetting the PHY\n"); | ||
970 | return ret_val; | ||
971 | } | ||
972 | 1054 | ||
973 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | 1055 | /******************************************************************** |
974 | msec_delay(15); | 1056 | * Copper link setup for e1000_phy_igp series. |
1057 | * | ||
1058 | * hw - Struct containing variables accessed by shared code | ||
1059 | *********************************************************************/ | ||
1060 | static int32_t | ||
1061 | e1000_copper_link_igp_setup(struct e1000_hw *hw) | ||
1062 | { | ||
1063 | uint32_t led_ctrl; | ||
1064 | int32_t ret_val; | ||
1065 | uint16_t phy_data; | ||
975 | 1066 | ||
976 | /* Configure activity LED after PHY reset */ | 1067 | DEBUGFUNC("e1000_copper_link_igp_setup"); |
977 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
978 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
979 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
980 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
981 | 1068 | ||
982 | /* disable lplu d3 during driver init */ | 1069 | if (hw->phy_reset_disable) |
983 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | 1070 | return E1000_SUCCESS; |
984 | if(ret_val) { | 1071 | |
985 | DEBUGOUT("Error Disabling LPLU D3\n"); | 1072 | ret_val = e1000_phy_reset(hw); |
986 | return ret_val; | 1073 | if (ret_val) { |
987 | } | 1074 | DEBUGOUT("Error Resetting the PHY\n"); |
1075 | return ret_val; | ||
1076 | } | ||
988 | 1077 | ||
989 | /* Configure mdi-mdix settings */ | 1078 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ |
990 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | 1079 | msec_delay(15); |
991 | &phy_data); | ||
992 | if(ret_val) | ||
993 | return ret_val; | ||
994 | 1080 | ||
995 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 1081 | /* Configure activity LED after PHY reset */ |
996 | hw->dsp_config_state = e1000_dsp_config_disabled; | 1082 | led_ctrl = E1000_READ_REG(hw, LEDCTL); |
997 | /* Force MDI for earlier revs of the IGP PHY */ | 1083 | led_ctrl &= IGP_ACTIVITY_LED_MASK; |
998 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | | 1084 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
999 | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 1085 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
1000 | hw->mdix = 1; | ||
1001 | 1086 | ||
1002 | } else { | 1087 | /* disable lplu d3 during driver init */ |
1003 | hw->dsp_config_state = e1000_dsp_config_enabled; | 1088 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); |
1004 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 1089 | if (ret_val) { |
1005 | 1090 | DEBUGOUT("Error Disabling LPLU D3\n"); | |
1006 | switch (hw->mdix) { | 1091 | return ret_val; |
1007 | case 1: | 1092 | } |
1008 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1009 | break; | ||
1010 | case 2: | ||
1011 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1012 | break; | ||
1013 | case 0: | ||
1014 | default: | ||
1015 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
1016 | break; | ||
1017 | } | ||
1018 | } | ||
1019 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
1020 | phy_data); | ||
1021 | if(ret_val) | ||
1022 | return ret_val; | ||
1023 | 1093 | ||
1024 | /* set auto-master slave resolution settings */ | 1094 | /* disable lplu d0 during driver init */ |
1025 | if(hw->autoneg) { | 1095 | ret_val = e1000_set_d0_lplu_state(hw, FALSE); |
1026 | e1000_ms_type phy_ms_setting = hw->master_slave; | 1096 | if (ret_val) { |
1097 | DEBUGOUT("Error Disabling LPLU D0\n"); | ||
1098 | return ret_val; | ||
1099 | } | ||
1100 | /* Configure mdi-mdix settings */ | ||
1101 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1102 | if (ret_val) | ||
1103 | return ret_val; | ||
1027 | 1104 | ||
1028 | if(hw->ffe_config_state == e1000_ffe_config_active) | 1105 | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { |
1029 | hw->ffe_config_state = e1000_ffe_config_enabled; | 1106 | hw->dsp_config_state = e1000_dsp_config_disabled; |
1107 | /* Force MDI for earlier revs of the IGP PHY */ | ||
1108 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); | ||
1109 | hw->mdix = 1; | ||
1030 | 1110 | ||
1031 | if(hw->dsp_config_state == e1000_dsp_config_activated) | 1111 | } else { |
1032 | hw->dsp_config_state = e1000_dsp_config_enabled; | 1112 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1113 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1033 | 1114 | ||
1034 | /* when autonegotiation advertisment is only 1000Mbps then we | 1115 | switch (hw->mdix) { |
1035 | * should disable SmartSpeed and enable Auto MasterSlave | 1116 | case 1: |
1036 | * resolution as hardware default. */ | 1117 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1037 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 1118 | break; |
1038 | /* Disable SmartSpeed */ | 1119 | case 2: |
1039 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 1120 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; |
1040 | &phy_data); | 1121 | break; |
1041 | if(ret_val) | 1122 | case 0: |
1042 | return ret_val; | 1123 | default: |
1043 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 1124 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; |
1044 | ret_val = e1000_write_phy_reg(hw, | 1125 | break; |
1045 | IGP01E1000_PHY_PORT_CONFIG, | 1126 | } |
1046 | phy_data); | 1127 | } |
1047 | if(ret_val) | 1128 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); |
1048 | return ret_val; | 1129 | if(ret_val) |
1049 | /* Set auto Master/Slave resolution process */ | 1130 | return ret_val; |
1050 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1051 | if(ret_val) | ||
1052 | return ret_val; | ||
1053 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1054 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1055 | if(ret_val) | ||
1056 | return ret_val; | ||
1057 | } | ||
1058 | 1131 | ||
1059 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 1132 | /* set auto-master slave resolution settings */ |
1060 | if(ret_val) | 1133 | if(hw->autoneg) { |
1061 | return ret_val; | 1134 | e1000_ms_type phy_ms_setting = hw->master_slave; |
1062 | 1135 | ||
1063 | /* load defaults for future use */ | 1136 | if(hw->ffe_config_state == e1000_ffe_config_active) |
1064 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 1137 | hw->ffe_config_state = e1000_ffe_config_enabled; |
1065 | ((phy_data & CR_1000T_MS_VALUE) ? | 1138 | |
1066 | e1000_ms_force_master : | 1139 | if(hw->dsp_config_state == e1000_dsp_config_activated) |
1067 | e1000_ms_force_slave) : | 1140 | hw->dsp_config_state = e1000_dsp_config_enabled; |
1068 | e1000_ms_auto; | 1141 | |
1069 | 1142 | /* when autonegotiation advertisment is only 1000Mbps then we | |
1070 | switch (phy_ms_setting) { | 1143 | * should disable SmartSpeed and enable Auto MasterSlave |
1071 | case e1000_ms_force_master: | 1144 | * resolution as hardware default. */ |
1072 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 1145 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { |
1073 | break; | 1146 | /* Disable SmartSpeed */ |
1074 | case e1000_ms_force_slave: | 1147 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
1075 | phy_data |= CR_1000T_MS_ENABLE; | ||
1076 | phy_data &= ~(CR_1000T_MS_VALUE); | ||
1077 | break; | ||
1078 | case e1000_ms_auto: | ||
1079 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1080 | default: | ||
1081 | break; | ||
1082 | } | ||
1083 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1084 | if(ret_val) | ||
1085 | return ret_val; | ||
1086 | } | ||
1087 | } else { | ||
1088 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
1089 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1090 | &phy_data); | ||
1091 | if(ret_val) | 1148 | if(ret_val) |
1092 | return ret_val; | 1149 | return ret_val; |
1150 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1151 | ret_val = e1000_write_phy_reg(hw, | ||
1152 | IGP01E1000_PHY_PORT_CONFIG, | ||
1153 | phy_data); | ||
1154 | if(ret_val) | ||
1155 | return ret_val; | ||
1156 | /* Set auto Master/Slave resolution process */ | ||
1157 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1158 | if(ret_val) | ||
1159 | return ret_val; | ||
1160 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1161 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1162 | if(ret_val) | ||
1163 | return ret_val; | ||
1164 | } | ||
1093 | 1165 | ||
1094 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 1166 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); |
1167 | if(ret_val) | ||
1168 | return ret_val; | ||
1095 | 1169 | ||
1096 | /* Options: | 1170 | /* load defaults for future use */ |
1097 | * MDI/MDI-X = 0 (default) | 1171 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? |
1098 | * 0 - Auto for all speeds | 1172 | ((phy_data & CR_1000T_MS_VALUE) ? |
1099 | * 1 - MDI mode | 1173 | e1000_ms_force_master : |
1100 | * 2 - MDI-X mode | 1174 | e1000_ms_force_slave) : |
1101 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 1175 | e1000_ms_auto; |
1102 | */ | ||
1103 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1104 | 1176 | ||
1105 | switch (hw->mdix) { | 1177 | switch (phy_ms_setting) { |
1106 | case 1: | 1178 | case e1000_ms_force_master: |
1107 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 1179 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); |
1108 | break; | 1180 | break; |
1109 | case 2: | 1181 | case e1000_ms_force_slave: |
1110 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 1182 | phy_data |= CR_1000T_MS_ENABLE; |
1111 | break; | 1183 | phy_data &= ~(CR_1000T_MS_VALUE); |
1112 | case 3: | 1184 | break; |
1113 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 1185 | case e1000_ms_auto: |
1114 | break; | 1186 | phy_data &= ~CR_1000T_MS_ENABLE; |
1115 | case 0: | ||
1116 | default: | 1187 | default: |
1117 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 1188 | break; |
1118 | break; | 1189 | } |
1119 | } | 1190 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); |
1191 | if(ret_val) | ||
1192 | return ret_val; | ||
1193 | } | ||
1120 | 1194 | ||
1121 | /* Options: | 1195 | return E1000_SUCCESS; |
1122 | * disable_polarity_correction = 0 (default) | 1196 | } |
1123 | * Automatic Correction for Reversed Cable Polarity | ||
1124 | * 0 - Disabled | ||
1125 | * 1 - Enabled | ||
1126 | */ | ||
1127 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1128 | if(hw->disable_polarity_correction == 1) | ||
1129 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1130 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1131 | phy_data); | ||
1132 | if(ret_val) | ||
1133 | return ret_val; | ||
1134 | 1197 | ||
1135 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1136 | * to 25MHz clock. | ||
1137 | */ | ||
1138 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1139 | &phy_data); | ||
1140 | if(ret_val) | ||
1141 | return ret_val; | ||
1142 | 1198 | ||
1143 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 1199 | /******************************************************************** |
1200 | * Copper link setup for e1000_phy_m88 series. | ||
1201 | * | ||
1202 | * hw - Struct containing variables accessed by shared code | ||
1203 | *********************************************************************/ | ||
1204 | static int32_t | ||
1205 | e1000_copper_link_mgp_setup(struct e1000_hw *hw) | ||
1206 | { | ||
1207 | int32_t ret_val; | ||
1208 | uint16_t phy_data; | ||
1209 | |||
1210 | DEBUGFUNC("e1000_copper_link_mgp_setup"); | ||
1211 | |||
1212 | if(hw->phy_reset_disable) | ||
1213 | return E1000_SUCCESS; | ||
1214 | |||
1215 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
1216 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1217 | if(ret_val) | ||
1218 | return ret_val; | ||
1219 | |||
1220 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1221 | |||
1222 | /* Options: | ||
1223 | * MDI/MDI-X = 0 (default) | ||
1224 | * 0 - Auto for all speeds | ||
1225 | * 1 - MDI mode | ||
1226 | * 2 - MDI-X mode | ||
1227 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
1228 | */ | ||
1229 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1230 | |||
1231 | switch (hw->mdix) { | ||
1232 | case 1: | ||
1233 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
1234 | break; | ||
1235 | case 2: | ||
1236 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
1237 | break; | ||
1238 | case 3: | ||
1239 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
1240 | break; | ||
1241 | case 0: | ||
1242 | default: | ||
1243 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
1244 | break; | ||
1245 | } | ||
1144 | 1246 | ||
1145 | if (hw->phy_revision < M88E1011_I_REV_4) { | 1247 | /* Options: |
1146 | /* Configure Master and Slave downshift values */ | 1248 | * disable_polarity_correction = 0 (default) |
1147 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 1249 | * Automatic Correction for Reversed Cable Polarity |
1250 | * 0 - Disabled | ||
1251 | * 1 - Enabled | ||
1252 | */ | ||
1253 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1254 | if(hw->disable_polarity_correction == 1) | ||
1255 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1256 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1257 | if(ret_val) | ||
1258 | return ret_val; | ||
1259 | |||
1260 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1261 | * to 25MHz clock. | ||
1262 | */ | ||
1263 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1264 | if(ret_val) | ||
1265 | return ret_val; | ||
1266 | |||
1267 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1268 | |||
1269 | if (hw->phy_revision < M88E1011_I_REV_4) { | ||
1270 | /* Configure Master and Slave downshift values */ | ||
1271 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
1148 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 1272 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); |
1149 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 1273 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | |
1150 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 1274 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); |
1151 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | 1275 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); |
1152 | phy_data); | 1276 | if(ret_val) |
1153 | if(ret_val) | 1277 | return ret_val; |
1154 | return ret_val; | 1278 | } |
1155 | } | ||
1156 | 1279 | ||
1157 | /* SW Reset the PHY so all changes take effect */ | 1280 | /* SW Reset the PHY so all changes take effect */ |
1158 | ret_val = e1000_phy_reset(hw); | 1281 | ret_val = e1000_phy_reset(hw); |
1159 | if(ret_val) { | 1282 | if(ret_val) { |
1160 | DEBUGOUT("Error Resetting the PHY\n"); | 1283 | DEBUGOUT("Error Resetting the PHY\n"); |
1161 | return ret_val; | 1284 | return ret_val; |
1162 | } | 1285 | } |
1286 | |||
1287 | return E1000_SUCCESS; | ||
1288 | } | ||
1289 | |||
1290 | /******************************************************************** | ||
1291 | * Setup auto-negotiation and flow control advertisements, | ||
1292 | * and then perform auto-negotiation. | ||
1293 | * | ||
1294 | * hw - Struct containing variables accessed by shared code | ||
1295 | *********************************************************************/ | ||
1296 | static int32_t | ||
1297 | e1000_copper_link_autoneg(struct e1000_hw *hw) | ||
1298 | { | ||
1299 | int32_t ret_val; | ||
1300 | uint16_t phy_data; | ||
1301 | |||
1302 | DEBUGFUNC("e1000_copper_link_autoneg"); | ||
1303 | |||
1304 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1305 | * parameter. If this variable is zero, then set it to the default. | ||
1306 | */ | ||
1307 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1308 | |||
1309 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1310 | * by the calling code so we set to advertise full capability. | ||
1311 | */ | ||
1312 | if(hw->autoneg_advertised == 0) | ||
1313 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1314 | |||
1315 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | ||
1316 | ret_val = e1000_phy_setup_autoneg(hw); | ||
1317 | if(ret_val) { | ||
1318 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | ||
1319 | return ret_val; | ||
1320 | } | ||
1321 | DEBUGOUT("Restarting Auto-Neg\n"); | ||
1322 | |||
1323 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
1324 | * the Auto Neg Restart bit in the PHY control register. | ||
1325 | */ | ||
1326 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
1327 | if(ret_val) | ||
1328 | return ret_val; | ||
1329 | |||
1330 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
1331 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
1332 | if(ret_val) | ||
1333 | return ret_val; | ||
1334 | |||
1335 | /* Does the user want to wait for Auto-Neg to complete here, or | ||
1336 | * check at a later time (for example, callback routine). | ||
1337 | */ | ||
1338 | if(hw->wait_autoneg_complete) { | ||
1339 | ret_val = e1000_wait_autoneg(hw); | ||
1340 | if(ret_val) { | ||
1341 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | ||
1342 | return ret_val; | ||
1163 | } | 1343 | } |
1344 | } | ||
1164 | 1345 | ||
1165 | /* Options: | 1346 | hw->get_link_status = TRUE; |
1166 | * autoneg = 1 (default) | ||
1167 | * PHY will advertise value(s) parsed from | ||
1168 | * autoneg_advertised and fc | ||
1169 | * autoneg = 0 | ||
1170 | * PHY will be set to 10H, 10F, 100H, or 100F | ||
1171 | * depending on value parsed from forced_speed_duplex. | ||
1172 | */ | ||
1173 | 1347 | ||
1174 | /* Is autoneg enabled? This is enabled by default or by software | 1348 | return E1000_SUCCESS; |
1175 | * override. If so, call e1000_phy_setup_autoneg routine to parse the | 1349 | } |
1176 | * autoneg_advertised and fc options. If autoneg is NOT enabled, then | ||
1177 | * the user should have provided a speed/duplex override. If so, then | ||
1178 | * call e1000_phy_force_speed_duplex to parse and set this up. | ||
1179 | */ | ||
1180 | if(hw->autoneg) { | ||
1181 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1182 | * parameter. If this variable is zero, then set it to the default. | ||
1183 | */ | ||
1184 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1185 | 1350 | ||
1186 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1187 | * by the calling code so we set to advertise full capability. | ||
1188 | */ | ||
1189 | if(hw->autoneg_advertised == 0) | ||
1190 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1191 | 1351 | ||
1192 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 1352 | /****************************************************************************** |
1193 | ret_val = e1000_phy_setup_autoneg(hw); | 1353 | * Config the MAC and the PHY after link is up. |
1194 | if(ret_val) { | 1354 | * 1) Set up the MAC to the current PHY speed/duplex |
1195 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 1355 | * if we are on 82543. If we |
1196 | return ret_val; | 1356 | * are on newer silicon, we only need to configure |
1197 | } | 1357 | * collision distance in the Transmit Control Register. |
1198 | DEBUGOUT("Restarting Auto-Neg\n"); | 1358 | * 2) Set up flow control on the MAC to that established with |
1359 | * the link partner. | ||
1360 | * 3) Config DSP to improve Gigabit link quality for some PHY revisions. | ||
1361 | * | ||
1362 | * hw - Struct containing variables accessed by shared code | ||
1363 | ******************************************************************************/ | ||
1364 | static int32_t | ||
1365 | e1000_copper_link_postconfig(struct e1000_hw *hw) | ||
1366 | { | ||
1367 | int32_t ret_val; | ||
1368 | DEBUGFUNC("e1000_copper_link_postconfig"); | ||
1369 | |||
1370 | if(hw->mac_type >= e1000_82544) { | ||
1371 | e1000_config_collision_dist(hw); | ||
1372 | } else { | ||
1373 | ret_val = e1000_config_mac_to_phy(hw); | ||
1374 | if(ret_val) { | ||
1375 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
1376 | return ret_val; | ||
1377 | } | ||
1378 | } | ||
1379 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1380 | if(ret_val) { | ||
1381 | DEBUGOUT("Error Configuring Flow Control\n"); | ||
1382 | return ret_val; | ||
1383 | } | ||
1199 | 1384 | ||
1200 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 1385 | /* Config DSP to improve Giga link quality */ |
1201 | * the Auto Neg Restart bit in the PHY control register. | 1386 | if(hw->phy_type == e1000_phy_igp) { |
1202 | */ | 1387 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); |
1203 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 1388 | if(ret_val) { |
1204 | if(ret_val) | 1389 | DEBUGOUT("Error Configuring DSP after link up\n"); |
1205 | return ret_val; | 1390 | return ret_val; |
1391 | } | ||
1392 | } | ||
1393 | |||
1394 | return E1000_SUCCESS; | ||
1395 | } | ||
1206 | 1396 | ||
1207 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 1397 | /****************************************************************************** |
1208 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 1398 | * Detects which PHY is present and setup the speed and duplex |
1209 | if(ret_val) | 1399 | * |
1210 | return ret_val; | 1400 | * hw - Struct containing variables accessed by shared code |
1401 | ******************************************************************************/ | ||
1402 | static int32_t | ||
1403 | e1000_setup_copper_link(struct e1000_hw *hw) | ||
1404 | { | ||
1405 | int32_t ret_val; | ||
1406 | uint16_t i; | ||
1407 | uint16_t phy_data; | ||
1211 | 1408 | ||
1212 | /* Does the user want to wait for Auto-Neg to complete here, or | 1409 | DEBUGFUNC("e1000_setup_copper_link"); |
1213 | * check at a later time (for example, callback routine). | 1410 | |
1214 | */ | 1411 | /* Check if it is a valid PHY and set PHY mode if necessary. */ |
1215 | if(hw->wait_autoneg_complete) { | 1412 | ret_val = e1000_copper_link_preconfig(hw); |
1216 | ret_val = e1000_wait_autoneg(hw); | 1413 | if(ret_val) |
1217 | if(ret_val) { | 1414 | return ret_val; |
1218 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | 1415 | |
1219 | return ret_val; | 1416 | if (hw->phy_type == e1000_phy_igp || |
1220 | } | 1417 | hw->phy_type == e1000_phy_igp_2) { |
1221 | } | 1418 | ret_val = e1000_copper_link_igp_setup(hw); |
1222 | hw->get_link_status = TRUE; | 1419 | if(ret_val) |
1223 | } else { | 1420 | return ret_val; |
1224 | DEBUGOUT("Forcing speed and duplex\n"); | 1421 | } else if (hw->phy_type == e1000_phy_m88) { |
1225 | ret_val = e1000_phy_force_speed_duplex(hw); | 1422 | ret_val = e1000_copper_link_mgp_setup(hw); |
1226 | if(ret_val) { | 1423 | if(ret_val) |
1227 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | 1424 | return ret_val; |
1228 | return ret_val; | 1425 | } |
1229 | } | 1426 | |
1427 | if(hw->autoneg) { | ||
1428 | /* Setup autoneg and flow control advertisement | ||
1429 | * and perform autonegotiation */ | ||
1430 | ret_val = e1000_copper_link_autoneg(hw); | ||
1431 | if(ret_val) | ||
1432 | return ret_val; | ||
1433 | } else { | ||
1434 | /* PHY will be set to 10H, 10F, 100H,or 100F | ||
1435 | * depending on value from forced_speed_duplex. */ | ||
1436 | DEBUGOUT("Forcing speed and duplex\n"); | ||
1437 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
1438 | if(ret_val) { | ||
1439 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | ||
1440 | return ret_val; | ||
1230 | } | 1441 | } |
1231 | } /* !hw->phy_reset_disable */ | 1442 | } |
1232 | 1443 | ||
1233 | /* Check link status. Wait up to 100 microseconds for link to become | 1444 | /* Check link status. Wait up to 100 microseconds for link to become |
1234 | * valid. | 1445 | * valid. |
@@ -1242,37 +1453,11 @@ e1000_setup_copper_link(struct e1000_hw *hw) | |||
1242 | return ret_val; | 1453 | return ret_val; |
1243 | 1454 | ||
1244 | if(phy_data & MII_SR_LINK_STATUS) { | 1455 | if(phy_data & MII_SR_LINK_STATUS) { |
1245 | /* We have link, so we need to finish the config process: | 1456 | /* Config the MAC and PHY after link is up */ |
1246 | * 1) Set up the MAC to the current PHY speed/duplex | 1457 | ret_val = e1000_copper_link_postconfig(hw); |
1247 | * if we are on 82543. If we | 1458 | if(ret_val) |
1248 | * are on newer silicon, we only need to configure | ||
1249 | * collision distance in the Transmit Control Register. | ||
1250 | * 2) Set up flow control on the MAC to that established with | ||
1251 | * the link partner. | ||
1252 | */ | ||
1253 | if(hw->mac_type >= e1000_82544) { | ||
1254 | e1000_config_collision_dist(hw); | ||
1255 | } else { | ||
1256 | ret_val = e1000_config_mac_to_phy(hw); | ||
1257 | if(ret_val) { | ||
1258 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
1259 | return ret_val; | ||
1260 | } | ||
1261 | } | ||
1262 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1263 | if(ret_val) { | ||
1264 | DEBUGOUT("Error Configuring Flow Control\n"); | ||
1265 | return ret_val; | 1459 | return ret_val; |
1266 | } | 1460 | |
1267 | DEBUGOUT("Valid link established!!!\n"); | ||
1268 | |||
1269 | if(hw->phy_type == e1000_phy_igp) { | ||
1270 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); | ||
1271 | if(ret_val) { | ||
1272 | DEBUGOUT("Error Configuring DSP after link up\n"); | ||
1273 | return ret_val; | ||
1274 | } | ||
1275 | } | ||
1276 | DEBUGOUT("Valid link established!!!\n"); | 1461 | DEBUGOUT("Valid link established!!!\n"); |
1277 | return E1000_SUCCESS; | 1462 | return E1000_SUCCESS; |
1278 | } | 1463 | } |
@@ -1302,10 +1487,10 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1302 | if(ret_val) | 1487 | if(ret_val) |
1303 | return ret_val; | 1488 | return ret_val; |
1304 | 1489 | ||
1305 | /* Read the MII 1000Base-T Control Register (Address 9). */ | 1490 | /* Read the MII 1000Base-T Control Register (Address 9). */ |
1306 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 1491 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); |
1307 | if(ret_val) | 1492 | if(ret_val) |
1308 | return ret_val; | 1493 | return ret_val; |
1309 | 1494 | ||
1310 | /* Need to parse both autoneg_advertised and fc and set up | 1495 | /* Need to parse both autoneg_advertised and fc and set up |
1311 | * the appropriate PHY registers. First we will parse for | 1496 | * the appropriate PHY registers. First we will parse for |
@@ -1417,7 +1602,7 @@ e1000_phy_setup_autoneg(struct e1000_hw *hw) | |||
1417 | 1602 | ||
1418 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 1603 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); |
1419 | 1604 | ||
1420 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 1605 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); |
1421 | if(ret_val) | 1606 | if(ret_val) |
1422 | return ret_val; | 1607 | return ret_val; |
1423 | 1608 | ||
@@ -1678,6 +1863,11 @@ e1000_config_mac_to_phy(struct e1000_hw *hw) | |||
1678 | 1863 | ||
1679 | DEBUGFUNC("e1000_config_mac_to_phy"); | 1864 | DEBUGFUNC("e1000_config_mac_to_phy"); |
1680 | 1865 | ||
1866 | /* 82544 or newer MAC, Auto Speed Detection takes care of | ||
1867 | * MAC speed/duplex configuration.*/ | ||
1868 | if (hw->mac_type >= e1000_82544) | ||
1869 | return E1000_SUCCESS; | ||
1870 | |||
1681 | /* Read the Device Control Register and set the bits to Force Speed | 1871 | /* Read the Device Control Register and set the bits to Force Speed |
1682 | * and Duplex. | 1872 | * and Duplex. |
1683 | */ | 1873 | */ |
@@ -1688,45 +1878,25 @@ e1000_config_mac_to_phy(struct e1000_hw *hw) | |||
1688 | /* Set up duplex in the Device Control and Transmit Control | 1878 | /* Set up duplex in the Device Control and Transmit Control |
1689 | * registers depending on negotiated values. | 1879 | * registers depending on negotiated values. |
1690 | */ | 1880 | */ |
1691 | if (hw->phy_type == e1000_phy_igp) { | 1881 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); |
1692 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 1882 | if(ret_val) |
1693 | &phy_data); | 1883 | return ret_val; |
1694 | if(ret_val) | ||
1695 | return ret_val; | ||
1696 | |||
1697 | if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD; | ||
1698 | else ctrl &= ~E1000_CTRL_FD; | ||
1699 | |||
1700 | e1000_config_collision_dist(hw); | ||
1701 | 1884 | ||
1702 | /* Set up speed in the Device Control register depending on | 1885 | if(phy_data & M88E1000_PSSR_DPLX) |
1703 | * negotiated values. | 1886 | ctrl |= E1000_CTRL_FD; |
1704 | */ | 1887 | else |
1705 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 1888 | ctrl &= ~E1000_CTRL_FD; |
1706 | IGP01E1000_PSSR_SPEED_1000MBPS) | ||
1707 | ctrl |= E1000_CTRL_SPD_1000; | ||
1708 | else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1709 | IGP01E1000_PSSR_SPEED_100MBPS) | ||
1710 | ctrl |= E1000_CTRL_SPD_100; | ||
1711 | } else { | ||
1712 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1713 | &phy_data); | ||
1714 | if(ret_val) | ||
1715 | return ret_val; | ||
1716 | 1889 | ||
1717 | if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; | 1890 | e1000_config_collision_dist(hw); |
1718 | else ctrl &= ~E1000_CTRL_FD; | ||
1719 | 1891 | ||
1720 | e1000_config_collision_dist(hw); | 1892 | /* Set up speed in the Device Control register depending on |
1893 | * negotiated values. | ||
1894 | */ | ||
1895 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
1896 | ctrl |= E1000_CTRL_SPD_1000; | ||
1897 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | ||
1898 | ctrl |= E1000_CTRL_SPD_100; | ||
1721 | 1899 | ||
1722 | /* Set up speed in the Device Control register depending on | ||
1723 | * negotiated values. | ||
1724 | */ | ||
1725 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
1726 | ctrl |= E1000_CTRL_SPD_1000; | ||
1727 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | ||
1728 | ctrl |= E1000_CTRL_SPD_100; | ||
1729 | } | ||
1730 | /* Write the configured values back to the Device Control Reg. */ | 1900 | /* Write the configured values back to the Device Control Reg. */ |
1731 | E1000_WRITE_REG(hw, CTRL, ctrl); | 1901 | E1000_WRITE_REG(hw, CTRL, ctrl); |
1732 | return E1000_SUCCESS; | 1902 | return E1000_SUCCESS; |
@@ -2494,8 +2664,8 @@ e1000_read_phy_reg(struct e1000_hw *hw, | |||
2494 | 2664 | ||
2495 | DEBUGFUNC("e1000_read_phy_reg"); | 2665 | DEBUGFUNC("e1000_read_phy_reg"); |
2496 | 2666 | ||
2497 | 2667 | if((hw->phy_type == e1000_phy_igp || | |
2498 | if(hw->phy_type == e1000_phy_igp && | 2668 | hw->phy_type == e1000_phy_igp_2) && |
2499 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 2669 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
2500 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2670 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
2501 | (uint16_t)reg_addr); | 2671 | (uint16_t)reg_addr); |
@@ -2600,8 +2770,8 @@ e1000_write_phy_reg(struct e1000_hw *hw, | |||
2600 | 2770 | ||
2601 | DEBUGFUNC("e1000_write_phy_reg"); | 2771 | DEBUGFUNC("e1000_write_phy_reg"); |
2602 | 2772 | ||
2603 | 2773 | if((hw->phy_type == e1000_phy_igp || | |
2604 | if(hw->phy_type == e1000_phy_igp && | 2774 | hw->phy_type == e1000_phy_igp_2) && |
2605 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 2775 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { |
2606 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 2776 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, |
2607 | (uint16_t)reg_addr); | 2777 | (uint16_t)reg_addr); |
@@ -2679,19 +2849,27 @@ e1000_write_phy_reg_ex(struct e1000_hw *hw, | |||
2679 | return E1000_SUCCESS; | 2849 | return E1000_SUCCESS; |
2680 | } | 2850 | } |
2681 | 2851 | ||
2852 | |||
2682 | /****************************************************************************** | 2853 | /****************************************************************************** |
2683 | * Returns the PHY to the power-on reset state | 2854 | * Returns the PHY to the power-on reset state |
2684 | * | 2855 | * |
2685 | * hw - Struct containing variables accessed by shared code | 2856 | * hw - Struct containing variables accessed by shared code |
2686 | ******************************************************************************/ | 2857 | ******************************************************************************/ |
2687 | void | 2858 | int32_t |
2688 | e1000_phy_hw_reset(struct e1000_hw *hw) | 2859 | e1000_phy_hw_reset(struct e1000_hw *hw) |
2689 | { | 2860 | { |
2690 | uint32_t ctrl, ctrl_ext; | 2861 | uint32_t ctrl, ctrl_ext; |
2691 | uint32_t led_ctrl; | 2862 | uint32_t led_ctrl; |
2863 | int32_t ret_val; | ||
2692 | 2864 | ||
2693 | DEBUGFUNC("e1000_phy_hw_reset"); | 2865 | DEBUGFUNC("e1000_phy_hw_reset"); |
2694 | 2866 | ||
2867 | /* In the case of the phy reset being blocked, it's not an error, we | ||
2868 | * simply return success without performing the reset. */ | ||
2869 | ret_val = e1000_check_phy_reset_block(hw); | ||
2870 | if (ret_val) | ||
2871 | return E1000_SUCCESS; | ||
2872 | |||
2695 | DEBUGOUT("Resetting Phy...\n"); | 2873 | DEBUGOUT("Resetting Phy...\n"); |
2696 | 2874 | ||
2697 | if(hw->mac_type > e1000_82543) { | 2875 | if(hw->mac_type > e1000_82543) { |
@@ -2727,6 +2905,11 @@ e1000_phy_hw_reset(struct e1000_hw *hw) | |||
2727 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 2905 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); |
2728 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | 2906 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); |
2729 | } | 2907 | } |
2908 | |||
2909 | /* Wait for FW to finish PHY configuration. */ | ||
2910 | ret_val = e1000_get_phy_cfg_done(hw); | ||
2911 | |||
2912 | return ret_val; | ||
2730 | } | 2913 | } |
2731 | 2914 | ||
2732 | /****************************************************************************** | 2915 | /****************************************************************************** |
@@ -2744,7 +2927,19 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
2744 | 2927 | ||
2745 | DEBUGFUNC("e1000_phy_reset"); | 2928 | DEBUGFUNC("e1000_phy_reset"); |
2746 | 2929 | ||
2747 | if(hw->mac_type != e1000_82541_rev_2) { | 2930 | /* In the case of the phy reset being blocked, it's not an error, we |
2931 | * simply return success without performing the reset. */ | ||
2932 | ret_val = e1000_check_phy_reset_block(hw); | ||
2933 | if (ret_val) | ||
2934 | return E1000_SUCCESS; | ||
2935 | |||
2936 | switch (hw->mac_type) { | ||
2937 | case e1000_82541_rev_2: | ||
2938 | ret_val = e1000_phy_hw_reset(hw); | ||
2939 | if(ret_val) | ||
2940 | return ret_val; | ||
2941 | break; | ||
2942 | default: | ||
2748 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 2943 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); |
2749 | if(ret_val) | 2944 | if(ret_val) |
2750 | return ret_val; | 2945 | return ret_val; |
@@ -2755,9 +2950,10 @@ e1000_phy_reset(struct e1000_hw *hw) | |||
2755 | return ret_val; | 2950 | return ret_val; |
2756 | 2951 | ||
2757 | udelay(1); | 2952 | udelay(1); |
2758 | } else e1000_phy_hw_reset(hw); | 2953 | break; |
2954 | } | ||
2759 | 2955 | ||
2760 | if(hw->phy_type == e1000_phy_igp) | 2956 | if(hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) |
2761 | e1000_phy_init_script(hw); | 2957 | e1000_phy_init_script(hw); |
2762 | 2958 | ||
2763 | return E1000_SUCCESS; | 2959 | return E1000_SUCCESS; |
@@ -2811,6 +3007,9 @@ e1000_detect_gig_phy(struct e1000_hw *hw) | |||
2811 | case e1000_82547_rev_2: | 3007 | case e1000_82547_rev_2: |
2812 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; | 3008 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; |
2813 | break; | 3009 | break; |
3010 | case e1000_82573: | ||
3011 | if(hw->phy_id == M88E1111_I_PHY_ID) match = TRUE; | ||
3012 | break; | ||
2814 | default: | 3013 | default: |
2815 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 3014 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); |
2816 | return -E1000_ERR_CONFIG; | 3015 | return -E1000_ERR_CONFIG; |
@@ -2866,7 +3065,7 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
2866 | 3065 | ||
2867 | /* The downshift status is checked only once, after link is established, | 3066 | /* The downshift status is checked only once, after link is established, |
2868 | * and it stored in the hw->speed_downgraded parameter. */ | 3067 | * and it stored in the hw->speed_downgraded parameter. */ |
2869 | phy_info->downshift = hw->speed_downgraded; | 3068 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
2870 | 3069 | ||
2871 | /* IGP01E1000 does not need to support it. */ | 3070 | /* IGP01E1000 does not need to support it. */ |
2872 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 3071 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; |
@@ -2905,7 +3104,7 @@ e1000_phy_igp_get_info(struct e1000_hw *hw, | |||
2905 | if(ret_val) | 3104 | if(ret_val) |
2906 | return ret_val; | 3105 | return ret_val; |
2907 | 3106 | ||
2908 | /* transalte to old method */ | 3107 | /* Translate to old method */ |
2909 | average = (max_length + min_length) / 2; | 3108 | average = (max_length + min_length) / 2; |
2910 | 3109 | ||
2911 | if(average <= e1000_igp_cable_length_50) | 3110 | if(average <= e1000_igp_cable_length_50) |
@@ -2940,7 +3139,7 @@ e1000_phy_m88_get_info(struct e1000_hw *hw, | |||
2940 | 3139 | ||
2941 | /* The downshift status is checked only once, after link is established, | 3140 | /* The downshift status is checked only once, after link is established, |
2942 | * and it stored in the hw->speed_downgraded parameter. */ | 3141 | * and it stored in the hw->speed_downgraded parameter. */ |
2943 | phy_info->downshift = hw->speed_downgraded; | 3142 | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; |
2944 | 3143 | ||
2945 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 3144 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); |
2946 | if(ret_val) | 3145 | if(ret_val) |
@@ -3029,7 +3228,8 @@ e1000_phy_get_info(struct e1000_hw *hw, | |||
3029 | return -E1000_ERR_CONFIG; | 3228 | return -E1000_ERR_CONFIG; |
3030 | } | 3229 | } |
3031 | 3230 | ||
3032 | if(hw->phy_type == e1000_phy_igp) | 3231 | if(hw->phy_type == e1000_phy_igp || |
3232 | hw->phy_type == e1000_phy_igp_2) | ||
3033 | return e1000_phy_igp_get_info(hw, phy_info); | 3233 | return e1000_phy_igp_get_info(hw, phy_info); |
3034 | else | 3234 | else |
3035 | return e1000_phy_m88_get_info(hw, phy_info); | 3235 | return e1000_phy_m88_get_info(hw, phy_info); |
@@ -3055,11 +3255,12 @@ e1000_validate_mdi_setting(struct e1000_hw *hw) | |||
3055 | * | 3255 | * |
3056 | * hw - Struct containing variables accessed by shared code | 3256 | * hw - Struct containing variables accessed by shared code |
3057 | *****************************************************************************/ | 3257 | *****************************************************************************/ |
3058 | void | 3258 | int32_t |
3059 | e1000_init_eeprom_params(struct e1000_hw *hw) | 3259 | e1000_init_eeprom_params(struct e1000_hw *hw) |
3060 | { | 3260 | { |
3061 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3261 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3062 | uint32_t eecd = E1000_READ_REG(hw, EECD); | 3262 | uint32_t eecd = E1000_READ_REG(hw, EECD); |
3263 | int32_t ret_val = E1000_SUCCESS; | ||
3063 | uint16_t eeprom_size; | 3264 | uint16_t eeprom_size; |
3064 | 3265 | ||
3065 | DEBUGFUNC("e1000_init_eeprom_params"); | 3266 | DEBUGFUNC("e1000_init_eeprom_params"); |
@@ -3074,6 +3275,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3074 | eeprom->opcode_bits = 3; | 3275 | eeprom->opcode_bits = 3; |
3075 | eeprom->address_bits = 6; | 3276 | eeprom->address_bits = 6; |
3076 | eeprom->delay_usec = 50; | 3277 | eeprom->delay_usec = 50; |
3278 | eeprom->use_eerd = FALSE; | ||
3279 | eeprom->use_eewr = FALSE; | ||
3077 | break; | 3280 | break; |
3078 | case e1000_82540: | 3281 | case e1000_82540: |
3079 | case e1000_82545: | 3282 | case e1000_82545: |
@@ -3090,6 +3293,8 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3090 | eeprom->word_size = 64; | 3293 | eeprom->word_size = 64; |
3091 | eeprom->address_bits = 6; | 3294 | eeprom->address_bits = 6; |
3092 | } | 3295 | } |
3296 | eeprom->use_eerd = FALSE; | ||
3297 | eeprom->use_eewr = FALSE; | ||
3093 | break; | 3298 | break; |
3094 | case e1000_82541: | 3299 | case e1000_82541: |
3095 | case e1000_82541_rev_2: | 3300 | case e1000_82541_rev_2: |
@@ -3118,42 +3323,60 @@ e1000_init_eeprom_params(struct e1000_hw *hw) | |||
3118 | eeprom->address_bits = 6; | 3323 | eeprom->address_bits = 6; |
3119 | } | 3324 | } |
3120 | } | 3325 | } |
3326 | eeprom->use_eerd = FALSE; | ||
3327 | eeprom->use_eewr = FALSE; | ||
3328 | break; | ||
3329 | case e1000_82573: | ||
3330 | eeprom->type = e1000_eeprom_spi; | ||
3331 | eeprom->opcode_bits = 8; | ||
3332 | eeprom->delay_usec = 1; | ||
3333 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3334 | eeprom->page_size = 32; | ||
3335 | eeprom->address_bits = 16; | ||
3336 | } else { | ||
3337 | eeprom->page_size = 8; | ||
3338 | eeprom->address_bits = 8; | ||
3339 | } | ||
3340 | eeprom->use_eerd = TRUE; | ||
3341 | eeprom->use_eewr = TRUE; | ||
3342 | if(e1000_is_onboard_nvm_eeprom(hw) == FALSE) { | ||
3343 | eeprom->type = e1000_eeprom_flash; | ||
3344 | eeprom->word_size = 2048; | ||
3345 | |||
3346 | /* Ensure that the Autonomous FLASH update bit is cleared due to | ||
3347 | * Flash update issue on parts which use a FLASH for NVM. */ | ||
3348 | eecd &= ~E1000_EECD_AUPDEN; | ||
3349 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3350 | } | ||
3121 | break; | 3351 | break; |
3122 | default: | 3352 | default: |
3123 | break; | 3353 | break; |
3124 | } | 3354 | } |
3125 | 3355 | ||
3126 | if (eeprom->type == e1000_eeprom_spi) { | 3356 | if (eeprom->type == e1000_eeprom_spi) { |
3127 | eeprom->word_size = 64; | 3357 | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to |
3128 | if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) { | 3358 | * 32KB (incremented by powers of 2). |
3129 | eeprom_size &= EEPROM_SIZE_MASK; | 3359 | */ |
3130 | 3360 | if(hw->mac_type <= e1000_82547_rev_2) { | |
3131 | switch (eeprom_size) { | 3361 | /* Set to default value for initial eeprom read. */ |
3132 | case EEPROM_SIZE_16KB: | 3362 | eeprom->word_size = 64; |
3133 | eeprom->word_size = 8192; | 3363 | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); |
3134 | break; | 3364 | if(ret_val) |
3135 | case EEPROM_SIZE_8KB: | 3365 | return ret_val; |
3136 | eeprom->word_size = 4096; | 3366 | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; |
3137 | break; | 3367 | /* 256B eeprom size was not supported in earlier hardware, so we |
3138 | case EEPROM_SIZE_4KB: | 3368 | * bump eeprom_size up one to ensure that "1" (which maps to 256B) |
3139 | eeprom->word_size = 2048; | 3369 | * is never the result used in the shifting logic below. */ |
3140 | break; | 3370 | if(eeprom_size) |
3141 | case EEPROM_SIZE_2KB: | 3371 | eeprom_size++; |
3142 | eeprom->word_size = 1024; | 3372 | } else { |
3143 | break; | 3373 | eeprom_size = (uint16_t)((eecd & E1000_EECD_SIZE_EX_MASK) >> |
3144 | case EEPROM_SIZE_1KB: | 3374 | E1000_EECD_SIZE_EX_SHIFT); |
3145 | eeprom->word_size = 512; | ||
3146 | break; | ||
3147 | case EEPROM_SIZE_512B: | ||
3148 | eeprom->word_size = 256; | ||
3149 | break; | ||
3150 | case EEPROM_SIZE_128B: | ||
3151 | default: | ||
3152 | eeprom->word_size = 64; | ||
3153 | break; | ||
3154 | } | ||
3155 | } | 3375 | } |
3376 | |||
3377 | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | ||
3156 | } | 3378 | } |
3379 | return ret_val; | ||
3157 | } | 3380 | } |
3158 | 3381 | ||
3159 | /****************************************************************************** | 3382 | /****************************************************************************** |
@@ -3306,8 +3529,12 @@ e1000_acquire_eeprom(struct e1000_hw *hw) | |||
3306 | 3529 | ||
3307 | DEBUGFUNC("e1000_acquire_eeprom"); | 3530 | DEBUGFUNC("e1000_acquire_eeprom"); |
3308 | 3531 | ||
3532 | if(e1000_get_hw_eeprom_semaphore(hw)) | ||
3533 | return -E1000_ERR_EEPROM; | ||
3534 | |||
3309 | eecd = E1000_READ_REG(hw, EECD); | 3535 | eecd = E1000_READ_REG(hw, EECD); |
3310 | 3536 | ||
3537 | if (hw->mac_type != e1000_82573) { | ||
3311 | /* Request EEPROM Access */ | 3538 | /* Request EEPROM Access */ |
3312 | if(hw->mac_type > e1000_82544) { | 3539 | if(hw->mac_type > e1000_82544) { |
3313 | eecd |= E1000_EECD_REQ; | 3540 | eecd |= E1000_EECD_REQ; |
@@ -3326,6 +3553,7 @@ e1000_acquire_eeprom(struct e1000_hw *hw) | |||
3326 | return -E1000_ERR_EEPROM; | 3553 | return -E1000_ERR_EEPROM; |
3327 | } | 3554 | } |
3328 | } | 3555 | } |
3556 | } | ||
3329 | 3557 | ||
3330 | /* Setup EEPROM for Read/Write */ | 3558 | /* Setup EEPROM for Read/Write */ |
3331 | 3559 | ||
@@ -3443,6 +3671,8 @@ e1000_release_eeprom(struct e1000_hw *hw) | |||
3443 | eecd &= ~E1000_EECD_REQ; | 3671 | eecd &= ~E1000_EECD_REQ; |
3444 | E1000_WRITE_REG(hw, EECD, eecd); | 3672 | E1000_WRITE_REG(hw, EECD, eecd); |
3445 | } | 3673 | } |
3674 | |||
3675 | e1000_put_hw_eeprom_semaphore(hw); | ||
3446 | } | 3676 | } |
3447 | 3677 | ||
3448 | /****************************************************************************** | 3678 | /****************************************************************************** |
@@ -3504,8 +3734,10 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3504 | { | 3734 | { |
3505 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 3735 | struct e1000_eeprom_info *eeprom = &hw->eeprom; |
3506 | uint32_t i = 0; | 3736 | uint32_t i = 0; |
3737 | int32_t ret_val; | ||
3507 | 3738 | ||
3508 | DEBUGFUNC("e1000_read_eeprom"); | 3739 | DEBUGFUNC("e1000_read_eeprom"); |
3740 | |||
3509 | /* A check for invalid values: offset too large, too many words, and not | 3741 | /* A check for invalid values: offset too large, too many words, and not |
3510 | * enough words. | 3742 | * enough words. |
3511 | */ | 3743 | */ |
@@ -3515,9 +3747,23 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3515 | return -E1000_ERR_EEPROM; | 3747 | return -E1000_ERR_EEPROM; |
3516 | } | 3748 | } |
3517 | 3749 | ||
3518 | /* Prepare the EEPROM for reading */ | 3750 | /* FLASH reads without acquiring the semaphore are safe in 82573-based |
3519 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 3751 | * controllers. |
3520 | return -E1000_ERR_EEPROM; | 3752 | */ |
3753 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | ||
3754 | (hw->mac_type != e1000_82573)) { | ||
3755 | /* Prepare the EEPROM for reading */ | ||
3756 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3757 | return -E1000_ERR_EEPROM; | ||
3758 | } | ||
3759 | |||
3760 | if(eeprom->use_eerd == TRUE) { | ||
3761 | ret_val = e1000_read_eeprom_eerd(hw, offset, words, data); | ||
3762 | if ((e1000_is_onboard_nvm_eeprom(hw) == TRUE) || | ||
3763 | (hw->mac_type != e1000_82573)) | ||
3764 | e1000_release_eeprom(hw); | ||
3765 | return ret_val; | ||
3766 | } | ||
3521 | 3767 | ||
3522 | if(eeprom->type == e1000_eeprom_spi) { | 3768 | if(eeprom->type == e1000_eeprom_spi) { |
3523 | uint16_t word_in; | 3769 | uint16_t word_in; |
@@ -3569,6 +3815,132 @@ e1000_read_eeprom(struct e1000_hw *hw, | |||
3569 | } | 3815 | } |
3570 | 3816 | ||
3571 | /****************************************************************************** | 3817 | /****************************************************************************** |
3818 | * Reads a 16 bit word from the EEPROM using the EERD register. | ||
3819 | * | ||
3820 | * hw - Struct containing variables accessed by shared code | ||
3821 | * offset - offset of word in the EEPROM to read | ||
3822 | * data - word read from the EEPROM | ||
3823 | * words - number of words to read | ||
3824 | *****************************************************************************/ | ||
3825 | int32_t | ||
3826 | e1000_read_eeprom_eerd(struct e1000_hw *hw, | ||
3827 | uint16_t offset, | ||
3828 | uint16_t words, | ||
3829 | uint16_t *data) | ||
3830 | { | ||
3831 | uint32_t i, eerd = 0; | ||
3832 | int32_t error = 0; | ||
3833 | |||
3834 | for (i = 0; i < words; i++) { | ||
3835 | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | ||
3836 | E1000_EEPROM_RW_REG_START; | ||
3837 | |||
3838 | E1000_WRITE_REG(hw, EERD, eerd); | ||
3839 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); | ||
3840 | |||
3841 | if(error) { | ||
3842 | break; | ||
3843 | } | ||
3844 | data[i] = (E1000_READ_REG(hw, EERD) >> E1000_EEPROM_RW_REG_DATA); | ||
3845 | |||
3846 | } | ||
3847 | |||
3848 | return error; | ||
3849 | } | ||
3850 | |||
3851 | /****************************************************************************** | ||
3852 | * Writes a 16 bit word from the EEPROM using the EEWR register. | ||
3853 | * | ||
3854 | * hw - Struct containing variables accessed by shared code | ||
3855 | * offset - offset of word in the EEPROM to read | ||
3856 | * data - word read from the EEPROM | ||
3857 | * words - number of words to read | ||
3858 | *****************************************************************************/ | ||
3859 | int32_t | ||
3860 | e1000_write_eeprom_eewr(struct e1000_hw *hw, | ||
3861 | uint16_t offset, | ||
3862 | uint16_t words, | ||
3863 | uint16_t *data) | ||
3864 | { | ||
3865 | uint32_t register_value = 0; | ||
3866 | uint32_t i = 0; | ||
3867 | int32_t error = 0; | ||
3868 | |||
3869 | for (i = 0; i < words; i++) { | ||
3870 | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | | ||
3871 | ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | | ||
3872 | E1000_EEPROM_RW_REG_START; | ||
3873 | |||
3874 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
3875 | if(error) { | ||
3876 | break; | ||
3877 | } | ||
3878 | |||
3879 | E1000_WRITE_REG(hw, EEWR, register_value); | ||
3880 | |||
3881 | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | ||
3882 | |||
3883 | if(error) { | ||
3884 | break; | ||
3885 | } | ||
3886 | } | ||
3887 | |||
3888 | return error; | ||
3889 | } | ||
3890 | |||
3891 | /****************************************************************************** | ||
3892 | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | ||
3893 | * | ||
3894 | * hw - Struct containing variables accessed by shared code | ||
3895 | *****************************************************************************/ | ||
3896 | int32_t | ||
3897 | e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | ||
3898 | { | ||
3899 | uint32_t attempts = 100000; | ||
3900 | uint32_t i, reg = 0; | ||
3901 | int32_t done = E1000_ERR_EEPROM; | ||
3902 | |||
3903 | for(i = 0; i < attempts; i++) { | ||
3904 | if(eerd == E1000_EEPROM_POLL_READ) | ||
3905 | reg = E1000_READ_REG(hw, EERD); | ||
3906 | else | ||
3907 | reg = E1000_READ_REG(hw, EEWR); | ||
3908 | |||
3909 | if(reg & E1000_EEPROM_RW_REG_DONE) { | ||
3910 | done = E1000_SUCCESS; | ||
3911 | break; | ||
3912 | } | ||
3913 | udelay(5); | ||
3914 | } | ||
3915 | |||
3916 | return done; | ||
3917 | } | ||
3918 | |||
3919 | /*************************************************************************** | ||
3920 | * Description: Determines if the onboard NVM is FLASH or EEPROM. | ||
3921 | * | ||
3922 | * hw - Struct containing variables accessed by shared code | ||
3923 | ****************************************************************************/ | ||
3924 | boolean_t | ||
3925 | e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | ||
3926 | { | ||
3927 | uint32_t eecd = 0; | ||
3928 | |||
3929 | if(hw->mac_type == e1000_82573) { | ||
3930 | eecd = E1000_READ_REG(hw, EECD); | ||
3931 | |||
3932 | /* Isolate bits 15 & 16 */ | ||
3933 | eecd = ((eecd >> 15) & 0x03); | ||
3934 | |||
3935 | /* If both bits are set, device is Flash type */ | ||
3936 | if(eecd == 0x03) { | ||
3937 | return FALSE; | ||
3938 | } | ||
3939 | } | ||
3940 | return TRUE; | ||
3941 | } | ||
3942 | |||
3943 | /****************************************************************************** | ||
3572 | * Verifies that the EEPROM has a valid checksum | 3944 | * Verifies that the EEPROM has a valid checksum |
3573 | * | 3945 | * |
3574 | * hw - Struct containing variables accessed by shared code | 3946 | * hw - Struct containing variables accessed by shared code |
@@ -3585,6 +3957,25 @@ e1000_validate_eeprom_checksum(struct e1000_hw *hw) | |||
3585 | 3957 | ||
3586 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 3958 | DEBUGFUNC("e1000_validate_eeprom_checksum"); |
3587 | 3959 | ||
3960 | if ((hw->mac_type == e1000_82573) && | ||
3961 | (e1000_is_onboard_nvm_eeprom(hw) == FALSE)) { | ||
3962 | /* Check bit 4 of word 10h. If it is 0, firmware is done updating | ||
3963 | * 10h-12h. Checksum may need to be fixed. */ | ||
3964 | e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); | ||
3965 | if ((eeprom_data & 0x10) == 0) { | ||
3966 | /* Read 0x23 and check bit 15. This bit is a 1 when the checksum | ||
3967 | * has already been fixed. If the checksum is still wrong and this | ||
3968 | * bit is a 1, we need to return bad checksum. Otherwise, we need | ||
3969 | * to set this bit to a 1 and update the checksum. */ | ||
3970 | e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); | ||
3971 | if ((eeprom_data & 0x8000) == 0) { | ||
3972 | eeprom_data |= 0x8000; | ||
3973 | e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); | ||
3974 | e1000_update_eeprom_checksum(hw); | ||
3975 | } | ||
3976 | } | ||
3977 | } | ||
3978 | |||
3588 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 3979 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { |
3589 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 3980 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { |
3590 | DEBUGOUT("EEPROM Read Error\n"); | 3981 | DEBUGOUT("EEPROM Read Error\n"); |
@@ -3628,6 +4019,8 @@ e1000_update_eeprom_checksum(struct e1000_hw *hw) | |||
3628 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 4019 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { |
3629 | DEBUGOUT("EEPROM Write Error\n"); | 4020 | DEBUGOUT("EEPROM Write Error\n"); |
3630 | return -E1000_ERR_EEPROM; | 4021 | return -E1000_ERR_EEPROM; |
4022 | } else if (hw->eeprom.type == e1000_eeprom_flash) { | ||
4023 | e1000_commit_shadow_ram(hw); | ||
3631 | } | 4024 | } |
3632 | return E1000_SUCCESS; | 4025 | return E1000_SUCCESS; |
3633 | } | 4026 | } |
@@ -3663,6 +4056,10 @@ e1000_write_eeprom(struct e1000_hw *hw, | |||
3663 | return -E1000_ERR_EEPROM; | 4056 | return -E1000_ERR_EEPROM; |
3664 | } | 4057 | } |
3665 | 4058 | ||
4059 | /* 82573 reads only through eerd */ | ||
4060 | if(eeprom->use_eewr == TRUE) | ||
4061 | return e1000_write_eeprom_eewr(hw, offset, words, data); | ||
4062 | |||
3666 | /* Prepare the EEPROM for writing */ | 4063 | /* Prepare the EEPROM for writing */ |
3667 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 4064 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) |
3668 | return -E1000_ERR_EEPROM; | 4065 | return -E1000_ERR_EEPROM; |
@@ -3833,6 +4230,65 @@ e1000_write_eeprom_microwire(struct e1000_hw *hw, | |||
3833 | } | 4230 | } |
3834 | 4231 | ||
3835 | /****************************************************************************** | 4232 | /****************************************************************************** |
4233 | * Flushes the cached eeprom to NVM. This is done by saving the modified values | ||
4234 | * in the eeprom cache and the non modified values in the currently active bank | ||
4235 | * to the new bank. | ||
4236 | * | ||
4237 | * hw - Struct containing variables accessed by shared code | ||
4238 | * offset - offset of word in the EEPROM to read | ||
4239 | * data - word read from the EEPROM | ||
4240 | * words - number of words to read | ||
4241 | *****************************************************************************/ | ||
4242 | int32_t | ||
4243 | e1000_commit_shadow_ram(struct e1000_hw *hw) | ||
4244 | { | ||
4245 | uint32_t attempts = 100000; | ||
4246 | uint32_t eecd = 0; | ||
4247 | uint32_t flop = 0; | ||
4248 | uint32_t i = 0; | ||
4249 | int32_t error = E1000_SUCCESS; | ||
4250 | |||
4251 | /* The flop register will be used to determine if flash type is STM */ | ||
4252 | flop = E1000_READ_REG(hw, FLOP); | ||
4253 | |||
4254 | if (hw->mac_type == e1000_82573) { | ||
4255 | for (i=0; i < attempts; i++) { | ||
4256 | eecd = E1000_READ_REG(hw, EECD); | ||
4257 | if ((eecd & E1000_EECD_FLUPD) == 0) { | ||
4258 | break; | ||
4259 | } | ||
4260 | udelay(5); | ||
4261 | } | ||
4262 | |||
4263 | if (i == attempts) { | ||
4264 | return -E1000_ERR_EEPROM; | ||
4265 | } | ||
4266 | |||
4267 | /* If STM opcode located in bits 15:8 of flop, reset firmware */ | ||
4268 | if ((flop & 0xFF00) == E1000_STM_OPCODE) { | ||
4269 | E1000_WRITE_REG(hw, HICR, E1000_HICR_FW_RESET); | ||
4270 | } | ||
4271 | |||
4272 | /* Perform the flash update */ | ||
4273 | E1000_WRITE_REG(hw, EECD, eecd | E1000_EECD_FLUPD); | ||
4274 | |||
4275 | for (i=0; i < attempts; i++) { | ||
4276 | eecd = E1000_READ_REG(hw, EECD); | ||
4277 | if ((eecd & E1000_EECD_FLUPD) == 0) { | ||
4278 | break; | ||
4279 | } | ||
4280 | udelay(5); | ||
4281 | } | ||
4282 | |||
4283 | if (i == attempts) { | ||
4284 | return -E1000_ERR_EEPROM; | ||
4285 | } | ||
4286 | } | ||
4287 | |||
4288 | return error; | ||
4289 | } | ||
4290 | |||
4291 | /****************************************************************************** | ||
3836 | * Reads the adapter's part number from the EEPROM | 4292 | * Reads the adapter's part number from the EEPROM |
3837 | * | 4293 | * |
3838 | * hw - Struct containing variables accessed by shared code | 4294 | * hw - Struct containing variables accessed by shared code |
@@ -3911,6 +4367,7 @@ void | |||
3911 | e1000_init_rx_addrs(struct e1000_hw *hw) | 4367 | e1000_init_rx_addrs(struct e1000_hw *hw) |
3912 | { | 4368 | { |
3913 | uint32_t i; | 4369 | uint32_t i; |
4370 | uint32_t rar_num; | ||
3914 | 4371 | ||
3915 | DEBUGFUNC("e1000_init_rx_addrs"); | 4372 | DEBUGFUNC("e1000_init_rx_addrs"); |
3916 | 4373 | ||
@@ -3919,9 +4376,10 @@ e1000_init_rx_addrs(struct e1000_hw *hw) | |||
3919 | 4376 | ||
3920 | e1000_rar_set(hw, hw->mac_addr, 0); | 4377 | e1000_rar_set(hw, hw->mac_addr, 0); |
3921 | 4378 | ||
4379 | rar_num = E1000_RAR_ENTRIES; | ||
3922 | /* Zero out the other 15 receive addresses. */ | 4380 | /* Zero out the other 15 receive addresses. */ |
3923 | DEBUGOUT("Clearing RAR[1-15]\n"); | 4381 | DEBUGOUT("Clearing RAR[1-15]\n"); |
3924 | for(i = 1; i < E1000_RAR_ENTRIES; i++) { | 4382 | for(i = 1; i < rar_num; i++) { |
3925 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 4383 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
3926 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 4384 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
3927 | } | 4385 | } |
@@ -3950,7 +4408,9 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3950 | { | 4408 | { |
3951 | uint32_t hash_value; | 4409 | uint32_t hash_value; |
3952 | uint32_t i; | 4410 | uint32_t i; |
3953 | 4411 | uint32_t num_rar_entry; | |
4412 | uint32_t num_mta_entry; | ||
4413 | |||
3954 | DEBUGFUNC("e1000_mc_addr_list_update"); | 4414 | DEBUGFUNC("e1000_mc_addr_list_update"); |
3955 | 4415 | ||
3956 | /* Set the new number of MC addresses that we are being requested to use. */ | 4416 | /* Set the new number of MC addresses that we are being requested to use. */ |
@@ -3958,14 +4418,16 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3958 | 4418 | ||
3959 | /* Clear RAR[1-15] */ | 4419 | /* Clear RAR[1-15] */ |
3960 | DEBUGOUT(" Clearing RAR[1-15]\n"); | 4420 | DEBUGOUT(" Clearing RAR[1-15]\n"); |
3961 | for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) { | 4421 | num_rar_entry = E1000_RAR_ENTRIES; |
4422 | for(i = rar_used_count; i < num_rar_entry; i++) { | ||
3962 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 4423 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); |
3963 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 4424 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); |
3964 | } | 4425 | } |
3965 | 4426 | ||
3966 | /* Clear the MTA */ | 4427 | /* Clear the MTA */ |
3967 | DEBUGOUT(" Clearing MTA\n"); | 4428 | DEBUGOUT(" Clearing MTA\n"); |
3968 | for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) { | 4429 | num_mta_entry = E1000_NUM_MTA_REGISTERS; |
4430 | for(i = 0; i < num_mta_entry; i++) { | ||
3969 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 4431 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); |
3970 | } | 4432 | } |
3971 | 4433 | ||
@@ -3989,7 +4451,7 @@ e1000_mc_addr_list_update(struct e1000_hw *hw, | |||
3989 | /* Place this multicast address in the RAR if there is room, * | 4451 | /* Place this multicast address in the RAR if there is room, * |
3990 | * else put it in the MTA | 4452 | * else put it in the MTA |
3991 | */ | 4453 | */ |
3992 | if(rar_used_count < E1000_RAR_ENTRIES) { | 4454 | if (rar_used_count < num_rar_entry) { |
3993 | e1000_rar_set(hw, | 4455 | e1000_rar_set(hw, |
3994 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), | 4456 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), |
3995 | rar_used_count); | 4457 | rar_used_count); |
@@ -4040,6 +4502,7 @@ e1000_hash_mc_addr(struct e1000_hw *hw, | |||
4040 | } | 4502 | } |
4041 | 4503 | ||
4042 | hash_value &= 0xFFF; | 4504 | hash_value &= 0xFFF; |
4505 | |||
4043 | return hash_value; | 4506 | return hash_value; |
4044 | } | 4507 | } |
4045 | 4508 | ||
@@ -4144,12 +4607,33 @@ void | |||
4144 | e1000_clear_vfta(struct e1000_hw *hw) | 4607 | e1000_clear_vfta(struct e1000_hw *hw) |
4145 | { | 4608 | { |
4146 | uint32_t offset; | 4609 | uint32_t offset; |
4147 | 4610 | uint32_t vfta_value = 0; | |
4148 | for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) | 4611 | uint32_t vfta_offset = 0; |
4149 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); | 4612 | uint32_t vfta_bit_in_reg = 0; |
4613 | |||
4614 | if (hw->mac_type == e1000_82573) { | ||
4615 | if (hw->mng_cookie.vlan_id != 0) { | ||
4616 | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | ||
4617 | * ID. The following operations determine which 32b entry | ||
4618 | * (i.e. offset) into the array we want to set the VLAN ID | ||
4619 | * (i.e. bit) of the manageability unit. */ | ||
4620 | vfta_offset = (hw->mng_cookie.vlan_id >> | ||
4621 | E1000_VFTA_ENTRY_SHIFT) & | ||
4622 | E1000_VFTA_ENTRY_MASK; | ||
4623 | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | ||
4624 | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | ||
4625 | } | ||
4626 | } | ||
4627 | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | ||
4628 | /* If the offset we want to clear is the same offset of the | ||
4629 | * manageability VLAN ID, then clear all bits except that of the | ||
4630 | * manageability unit */ | ||
4631 | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | ||
4632 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | ||
4633 | } | ||
4150 | } | 4634 | } |
4151 | 4635 | ||
4152 | static int32_t | 4636 | int32_t |
4153 | e1000_id_led_init(struct e1000_hw * hw) | 4637 | e1000_id_led_init(struct e1000_hw * hw) |
4154 | { | 4638 | { |
4155 | uint32_t ledctl; | 4639 | uint32_t ledctl; |
@@ -4480,6 +4964,19 @@ e1000_clear_hw_cntrs(struct e1000_hw *hw) | |||
4480 | temp = E1000_READ_REG(hw, MGTPRC); | 4964 | temp = E1000_READ_REG(hw, MGTPRC); |
4481 | temp = E1000_READ_REG(hw, MGTPDC); | 4965 | temp = E1000_READ_REG(hw, MGTPDC); |
4482 | temp = E1000_READ_REG(hw, MGTPTC); | 4966 | temp = E1000_READ_REG(hw, MGTPTC); |
4967 | |||
4968 | if(hw->mac_type <= e1000_82547_rev_2) return; | ||
4969 | |||
4970 | temp = E1000_READ_REG(hw, IAC); | ||
4971 | temp = E1000_READ_REG(hw, ICRXOC); | ||
4972 | temp = E1000_READ_REG(hw, ICRXPTC); | ||
4973 | temp = E1000_READ_REG(hw, ICRXATC); | ||
4974 | temp = E1000_READ_REG(hw, ICTXPTC); | ||
4975 | temp = E1000_READ_REG(hw, ICTXATC); | ||
4976 | temp = E1000_READ_REG(hw, ICTXQEC); | ||
4977 | temp = E1000_READ_REG(hw, ICTXQMTC); | ||
4978 | temp = E1000_READ_REG(hw, ICRXDMTC); | ||
4979 | |||
4483 | } | 4980 | } |
4484 | 4981 | ||
4485 | /****************************************************************************** | 4982 | /****************************************************************************** |
@@ -4646,6 +5143,11 @@ e1000_get_bus_info(struct e1000_hw *hw) | |||
4646 | hw->bus_speed = e1000_bus_speed_unknown; | 5143 | hw->bus_speed = e1000_bus_speed_unknown; |
4647 | hw->bus_width = e1000_bus_width_unknown; | 5144 | hw->bus_width = e1000_bus_width_unknown; |
4648 | break; | 5145 | break; |
5146 | case e1000_82573: | ||
5147 | hw->bus_type = e1000_bus_type_pci_express; | ||
5148 | hw->bus_speed = e1000_bus_speed_2500; | ||
5149 | hw->bus_width = e1000_bus_width_pciex_4; | ||
5150 | break; | ||
4649 | default: | 5151 | default: |
4650 | status = E1000_READ_REG(hw, STATUS); | 5152 | status = E1000_READ_REG(hw, STATUS); |
4651 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 5153 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? |
@@ -4749,6 +5251,7 @@ e1000_get_cable_length(struct e1000_hw *hw, | |||
4749 | 5251 | ||
4750 | /* Use old method for Phy older than IGP */ | 5252 | /* Use old method for Phy older than IGP */ |
4751 | if(hw->phy_type == e1000_phy_m88) { | 5253 | if(hw->phy_type == e1000_phy_m88) { |
5254 | |||
4752 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 5255 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, |
4753 | &phy_data); | 5256 | &phy_data); |
4754 | if(ret_val) | 5257 | if(ret_val) |
@@ -4865,7 +5368,8 @@ e1000_check_polarity(struct e1000_hw *hw, | |||
4865 | return ret_val; | 5368 | return ret_val; |
4866 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | 5369 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> |
4867 | M88E1000_PSSR_REV_POLARITY_SHIFT; | 5370 | M88E1000_PSSR_REV_POLARITY_SHIFT; |
4868 | } else if(hw->phy_type == e1000_phy_igp) { | 5371 | } else if(hw->phy_type == e1000_phy_igp || |
5372 | hw->phy_type == e1000_phy_igp_2) { | ||
4869 | /* Read the Status register to check the speed */ | 5373 | /* Read the Status register to check the speed */ |
4870 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 5374 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, |
4871 | &phy_data); | 5375 | &phy_data); |
@@ -4917,7 +5421,8 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
4917 | 5421 | ||
4918 | DEBUGFUNC("e1000_check_downshift"); | 5422 | DEBUGFUNC("e1000_check_downshift"); |
4919 | 5423 | ||
4920 | if(hw->phy_type == e1000_phy_igp) { | 5424 | if(hw->phy_type == e1000_phy_igp || |
5425 | hw->phy_type == e1000_phy_igp_2) { | ||
4921 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 5426 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, |
4922 | &phy_data); | 5427 | &phy_data); |
4923 | if(ret_val) | 5428 | if(ret_val) |
@@ -4933,6 +5438,7 @@ e1000_check_downshift(struct e1000_hw *hw) | |||
4933 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 5438 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> |
4934 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 5439 | M88E1000_PSSR_DOWNSHIFT_SHIFT; |
4935 | } | 5440 | } |
5441 | |||
4936 | return E1000_SUCCESS; | 5442 | return E1000_SUCCESS; |
4937 | } | 5443 | } |
4938 | 5444 | ||
@@ -5047,7 +5553,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5047 | if(ret_val) | 5553 | if(ret_val) |
5048 | return ret_val; | 5554 | return ret_val; |
5049 | 5555 | ||
5050 | msec_delay(20); | 5556 | msec_delay_irq(20); |
5051 | 5557 | ||
5052 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5558 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
5053 | IGP01E1000_IEEE_FORCE_GIGA); | 5559 | IGP01E1000_IEEE_FORCE_GIGA); |
@@ -5071,7 +5577,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5071 | if(ret_val) | 5577 | if(ret_val) |
5072 | return ret_val; | 5578 | return ret_val; |
5073 | 5579 | ||
5074 | msec_delay(20); | 5580 | msec_delay_irq(20); |
5075 | 5581 | ||
5076 | /* Now enable the transmitter */ | 5582 | /* Now enable the transmitter */ |
5077 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 5583 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
@@ -5096,7 +5602,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5096 | if(ret_val) | 5602 | if(ret_val) |
5097 | return ret_val; | 5603 | return ret_val; |
5098 | 5604 | ||
5099 | msec_delay(20); | 5605 | msec_delay_irq(20); |
5100 | 5606 | ||
5101 | ret_val = e1000_write_phy_reg(hw, 0x0000, | 5607 | ret_val = e1000_write_phy_reg(hw, 0x0000, |
5102 | IGP01E1000_IEEE_FORCE_GIGA); | 5608 | IGP01E1000_IEEE_FORCE_GIGA); |
@@ -5112,7 +5618,7 @@ e1000_config_dsp_after_link_change(struct e1000_hw *hw, | |||
5112 | if(ret_val) | 5618 | if(ret_val) |
5113 | return ret_val; | 5619 | return ret_val; |
5114 | 5620 | ||
5115 | msec_delay(20); | 5621 | msec_delay_irq(20); |
5116 | 5622 | ||
5117 | /* Now enable the transmitter */ | 5623 | /* Now enable the transmitter */ |
5118 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 5624 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); |
@@ -5187,22 +5693,36 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
5187 | uint16_t phy_data; | 5693 | uint16_t phy_data; |
5188 | DEBUGFUNC("e1000_set_d3_lplu_state"); | 5694 | DEBUGFUNC("e1000_set_d3_lplu_state"); |
5189 | 5695 | ||
5190 | if(!((hw->mac_type == e1000_82541_rev_2) || | 5696 | if(hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2) |
5191 | (hw->mac_type == e1000_82547_rev_2))) | ||
5192 | return E1000_SUCCESS; | 5697 | return E1000_SUCCESS; |
5193 | 5698 | ||
5194 | /* During driver activity LPLU should not be used or it will attain link | 5699 | /* During driver activity LPLU should not be used or it will attain link |
5195 | * from the lowest speeds starting from 10Mbps. The capability is used for | 5700 | * from the lowest speeds starting from 10Mbps. The capability is used for |
5196 | * Dx transitions and states */ | 5701 | * Dx transitions and states */ |
5197 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 5702 | if(hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { |
5198 | if(ret_val) | 5703 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); |
5199 | return ret_val; | ||
5200 | |||
5201 | if(!active) { | ||
5202 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5203 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5204 | if(ret_val) | 5704 | if(ret_val) |
5205 | return ret_val; | 5705 | return ret_val; |
5706 | } else { | ||
5707 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
5708 | if(ret_val) | ||
5709 | return ret_val; | ||
5710 | } | ||
5711 | |||
5712 | if(!active) { | ||
5713 | if(hw->mac_type == e1000_82541_rev_2 || | ||
5714 | hw->mac_type == e1000_82547_rev_2) { | ||
5715 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5716 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5717 | if(ret_val) | ||
5718 | return ret_val; | ||
5719 | } else { | ||
5720 | phy_data &= ~IGP02E1000_PM_D3_LPLU; | ||
5721 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
5722 | phy_data); | ||
5723 | if (ret_val) | ||
5724 | return ret_val; | ||
5725 | } | ||
5206 | 5726 | ||
5207 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | 5727 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during |
5208 | * Dx states where the power conservation is most important. During | 5728 | * Dx states where the power conservation is most important. During |
@@ -5236,11 +5756,105 @@ e1000_set_d3_lplu_state(struct e1000_hw *hw, | |||
5236 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | 5756 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || |
5237 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 5757 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { |
5238 | 5758 | ||
5239 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 5759 | if(hw->mac_type == e1000_82541_rev_2 || |
5240 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 5760 | hw->mac_type == e1000_82547_rev_2) { |
5761 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | ||
5762 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5763 | if(ret_val) | ||
5764 | return ret_val; | ||
5765 | } else { | ||
5766 | phy_data |= IGP02E1000_PM_D3_LPLU; | ||
5767 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | ||
5768 | phy_data); | ||
5769 | if (ret_val) | ||
5770 | return ret_val; | ||
5771 | } | ||
5772 | |||
5773 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
5774 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | ||
5775 | if(ret_val) | ||
5776 | return ret_val; | ||
5777 | |||
5778 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5779 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | ||
5241 | if(ret_val) | 5780 | if(ret_val) |
5242 | return ret_val; | 5781 | return ret_val; |
5243 | 5782 | ||
5783 | } | ||
5784 | return E1000_SUCCESS; | ||
5785 | } | ||
5786 | |||
5787 | /***************************************************************************** | ||
5788 | * | ||
5789 | * This function sets the lplu d0 state according to the active flag. When | ||
5790 | * activating lplu this function also disables smart speed and vise versa. | ||
5791 | * lplu will not be activated unless the device autonegotiation advertisment | ||
5792 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
5793 | * hw: Struct containing variables accessed by shared code | ||
5794 | * active - true to enable lplu false to disable lplu. | ||
5795 | * | ||
5796 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
5797 | * E1000_SUCCESS at any other case. | ||
5798 | * | ||
5799 | ****************************************************************************/ | ||
5800 | |||
5801 | int32_t | ||
5802 | e1000_set_d0_lplu_state(struct e1000_hw *hw, | ||
5803 | boolean_t active) | ||
5804 | { | ||
5805 | int32_t ret_val; | ||
5806 | uint16_t phy_data; | ||
5807 | DEBUGFUNC("e1000_set_d0_lplu_state"); | ||
5808 | |||
5809 | if(hw->mac_type <= e1000_82547_rev_2) | ||
5810 | return E1000_SUCCESS; | ||
5811 | |||
5812 | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | ||
5813 | if(ret_val) | ||
5814 | return ret_val; | ||
5815 | |||
5816 | if (!active) { | ||
5817 | phy_data &= ~IGP02E1000_PM_D0_LPLU; | ||
5818 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
5819 | if (ret_val) | ||
5820 | return ret_val; | ||
5821 | |||
5822 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
5823 | * Dx states where the power conservation is most important. During | ||
5824 | * driver activity we should enable SmartSpeed, so performance is | ||
5825 | * maintained. */ | ||
5826 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
5827 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5828 | &phy_data); | ||
5829 | if(ret_val) | ||
5830 | return ret_val; | ||
5831 | |||
5832 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
5833 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5834 | phy_data); | ||
5835 | if(ret_val) | ||
5836 | return ret_val; | ||
5837 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
5838 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5839 | &phy_data); | ||
5840 | if (ret_val) | ||
5841 | return ret_val; | ||
5842 | |||
5843 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5844 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5845 | phy_data); | ||
5846 | if(ret_val) | ||
5847 | return ret_val; | ||
5848 | } | ||
5849 | |||
5850 | |||
5851 | } else { | ||
5852 | |||
5853 | phy_data |= IGP02E1000_PM_D0_LPLU; | ||
5854 | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | ||
5855 | if (ret_val) | ||
5856 | return ret_val; | ||
5857 | |||
5244 | /* When LPLU is enabled we should disable SmartSpeed */ | 5858 | /* When LPLU is enabled we should disable SmartSpeed */ |
5245 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 5859 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); |
5246 | if(ret_val) | 5860 | if(ret_val) |
@@ -5318,6 +5932,338 @@ e1000_set_vco_speed(struct e1000_hw *hw) | |||
5318 | return E1000_SUCCESS; | 5932 | return E1000_SUCCESS; |
5319 | } | 5933 | } |
5320 | 5934 | ||
5935 | |||
5936 | /***************************************************************************** | ||
5937 | * This function reads the cookie from ARC ram. | ||
5938 | * | ||
5939 | * returns: - E1000_SUCCESS . | ||
5940 | ****************************************************************************/ | ||
5941 | int32_t | ||
5942 | e1000_host_if_read_cookie(struct e1000_hw * hw, uint8_t *buffer) | ||
5943 | { | ||
5944 | uint8_t i; | ||
5945 | uint32_t offset = E1000_MNG_DHCP_COOKIE_OFFSET; | ||
5946 | uint8_t length = E1000_MNG_DHCP_COOKIE_LENGTH; | ||
5947 | |||
5948 | length = (length >> 2); | ||
5949 | offset = (offset >> 2); | ||
5950 | |||
5951 | for (i = 0; i < length; i++) { | ||
5952 | *((uint32_t *) buffer + i) = | ||
5953 | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); | ||
5954 | } | ||
5955 | return E1000_SUCCESS; | ||
5956 | } | ||
5957 | |||
5958 | |||
5959 | /***************************************************************************** | ||
5960 | * This function checks whether the HOST IF is enabled for command operaton | ||
5961 | * and also checks whether the previous command is completed. | ||
5962 | * It busy waits in case of previous command is not completed. | ||
5963 | * | ||
5964 | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | ||
5965 | * timeout | ||
5966 | * - E1000_SUCCESS for success. | ||
5967 | ****************************************************************************/ | ||
5968 | int32_t | ||
5969 | e1000_mng_enable_host_if(struct e1000_hw * hw) | ||
5970 | { | ||
5971 | uint32_t hicr; | ||
5972 | uint8_t i; | ||
5973 | |||
5974 | /* Check that the host interface is enabled. */ | ||
5975 | hicr = E1000_READ_REG(hw, HICR); | ||
5976 | if ((hicr & E1000_HICR_EN) == 0) { | ||
5977 | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | ||
5978 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
5979 | } | ||
5980 | /* check the previous command is completed */ | ||
5981 | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | ||
5982 | hicr = E1000_READ_REG(hw, HICR); | ||
5983 | if (!(hicr & E1000_HICR_C)) | ||
5984 | break; | ||
5985 | msec_delay_irq(1); | ||
5986 | } | ||
5987 | |||
5988 | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | ||
5989 | DEBUGOUT("Previous command timeout failed .\n"); | ||
5990 | return -E1000_ERR_HOST_INTERFACE_COMMAND; | ||
5991 | } | ||
5992 | return E1000_SUCCESS; | ||
5993 | } | ||
5994 | |||
5995 | /***************************************************************************** | ||
5996 | * This function writes the buffer content at the offset given on the host if. | ||
5997 | * It also does alignment considerations to do the writes in most efficient way. | ||
5998 | * Also fills up the sum of the buffer in *buffer parameter. | ||
5999 | * | ||
6000 | * returns - E1000_SUCCESS for success. | ||
6001 | ****************************************************************************/ | ||
6002 | int32_t | ||
6003 | e1000_mng_host_if_write(struct e1000_hw * hw, uint8_t *buffer, | ||
6004 | uint16_t length, uint16_t offset, uint8_t *sum) | ||
6005 | { | ||
6006 | uint8_t *tmp; | ||
6007 | uint8_t *bufptr = buffer; | ||
6008 | uint32_t data; | ||
6009 | uint16_t remaining, i, j, prev_bytes; | ||
6010 | |||
6011 | /* sum = only sum of the data and it is not checksum */ | ||
6012 | |||
6013 | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { | ||
6014 | return -E1000_ERR_PARAM; | ||
6015 | } | ||
6016 | |||
6017 | tmp = (uint8_t *)&data; | ||
6018 | prev_bytes = offset & 0x3; | ||
6019 | offset &= 0xFFFC; | ||
6020 | offset >>= 2; | ||
6021 | |||
6022 | if (prev_bytes) { | ||
6023 | data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); | ||
6024 | for (j = prev_bytes; j < sizeof(uint32_t); j++) { | ||
6025 | *(tmp + j) = *bufptr++; | ||
6026 | *sum += *(tmp + j); | ||
6027 | } | ||
6028 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); | ||
6029 | length -= j - prev_bytes; | ||
6030 | offset++; | ||
6031 | } | ||
6032 | |||
6033 | remaining = length & 0x3; | ||
6034 | length -= remaining; | ||
6035 | |||
6036 | /* Calculate length in DWORDs */ | ||
6037 | length >>= 2; | ||
6038 | |||
6039 | /* The device driver writes the relevant command block into the | ||
6040 | * ram area. */ | ||
6041 | for (i = 0; i < length; i++) { | ||
6042 | for (j = 0; j < sizeof(uint32_t); j++) { | ||
6043 | *(tmp + j) = *bufptr++; | ||
6044 | *sum += *(tmp + j); | ||
6045 | } | ||
6046 | |||
6047 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
6048 | } | ||
6049 | if (remaining) { | ||
6050 | for (j = 0; j < sizeof(uint32_t); j++) { | ||
6051 | if (j < remaining) | ||
6052 | *(tmp + j) = *bufptr++; | ||
6053 | else | ||
6054 | *(tmp + j) = 0; | ||
6055 | |||
6056 | *sum += *(tmp + j); | ||
6057 | } | ||
6058 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | ||
6059 | } | ||
6060 | |||
6061 | return E1000_SUCCESS; | ||
6062 | } | ||
6063 | |||
6064 | |||
6065 | /***************************************************************************** | ||
6066 | * This function writes the command header after does the checksum calculation. | ||
6067 | * | ||
6068 | * returns - E1000_SUCCESS for success. | ||
6069 | ****************************************************************************/ | ||
6070 | int32_t | ||
6071 | e1000_mng_write_cmd_header(struct e1000_hw * hw, | ||
6072 | struct e1000_host_mng_command_header * hdr) | ||
6073 | { | ||
6074 | uint16_t i; | ||
6075 | uint8_t sum; | ||
6076 | uint8_t *buffer; | ||
6077 | |||
6078 | /* Write the whole command header structure which includes sum of | ||
6079 | * the buffer */ | ||
6080 | |||
6081 | uint16_t length = sizeof(struct e1000_host_mng_command_header); | ||
6082 | |||
6083 | sum = hdr->checksum; | ||
6084 | hdr->checksum = 0; | ||
6085 | |||
6086 | buffer = (uint8_t *) hdr; | ||
6087 | i = length; | ||
6088 | while(i--) | ||
6089 | sum += buffer[i]; | ||
6090 | |||
6091 | hdr->checksum = 0 - sum; | ||
6092 | |||
6093 | length >>= 2; | ||
6094 | /* The device driver writes the relevant command block into the ram area. */ | ||
6095 | for (i = 0; i < length; i++) | ||
6096 | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((uint32_t *) hdr + i)); | ||
6097 | |||
6098 | return E1000_SUCCESS; | ||
6099 | } | ||
6100 | |||
6101 | |||
6102 | /***************************************************************************** | ||
6103 | * This function indicates to ARC that a new command is pending which completes | ||
6104 | * one write operation by the driver. | ||
6105 | * | ||
6106 | * returns - E1000_SUCCESS for success. | ||
6107 | ****************************************************************************/ | ||
6108 | int32_t | ||
6109 | e1000_mng_write_commit( | ||
6110 | struct e1000_hw * hw) | ||
6111 | { | ||
6112 | uint32_t hicr; | ||
6113 | |||
6114 | hicr = E1000_READ_REG(hw, HICR); | ||
6115 | /* Setting this bit tells the ARC that a new command is pending. */ | ||
6116 | E1000_WRITE_REG(hw, HICR, hicr | E1000_HICR_C); | ||
6117 | |||
6118 | return E1000_SUCCESS; | ||
6119 | } | ||
6120 | |||
6121 | |||
6122 | /***************************************************************************** | ||
6123 | * This function checks the mode of the firmware. | ||
6124 | * | ||
6125 | * returns - TRUE when the mode is IAMT or FALSE. | ||
6126 | ****************************************************************************/ | ||
6127 | boolean_t | ||
6128 | e1000_check_mng_mode( | ||
6129 | struct e1000_hw *hw) | ||
6130 | { | ||
6131 | uint32_t fwsm; | ||
6132 | |||
6133 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6134 | |||
6135 | if((fwsm & E1000_FWSM_MODE_MASK) == | ||
6136 | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | ||
6137 | return TRUE; | ||
6138 | |||
6139 | return FALSE; | ||
6140 | } | ||
6141 | |||
6142 | |||
6143 | /***************************************************************************** | ||
6144 | * This function writes the dhcp info . | ||
6145 | ****************************************************************************/ | ||
6146 | int32_t | ||
6147 | e1000_mng_write_dhcp_info(struct e1000_hw * hw, uint8_t *buffer, | ||
6148 | uint16_t length) | ||
6149 | { | ||
6150 | int32_t ret_val; | ||
6151 | struct e1000_host_mng_command_header hdr; | ||
6152 | |||
6153 | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | ||
6154 | hdr.command_length = length; | ||
6155 | hdr.reserved1 = 0; | ||
6156 | hdr.reserved2 = 0; | ||
6157 | hdr.checksum = 0; | ||
6158 | |||
6159 | ret_val = e1000_mng_enable_host_if(hw); | ||
6160 | if (ret_val == E1000_SUCCESS) { | ||
6161 | ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), | ||
6162 | &(hdr.checksum)); | ||
6163 | if (ret_val == E1000_SUCCESS) { | ||
6164 | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | ||
6165 | if (ret_val == E1000_SUCCESS) | ||
6166 | ret_val = e1000_mng_write_commit(hw); | ||
6167 | } | ||
6168 | } | ||
6169 | return ret_val; | ||
6170 | } | ||
6171 | |||
6172 | |||
6173 | /***************************************************************************** | ||
6174 | * This function calculates the checksum. | ||
6175 | * | ||
6176 | * returns - checksum of buffer contents. | ||
6177 | ****************************************************************************/ | ||
6178 | uint8_t | ||
6179 | e1000_calculate_mng_checksum(char *buffer, uint32_t length) | ||
6180 | { | ||
6181 | uint8_t sum = 0; | ||
6182 | uint32_t i; | ||
6183 | |||
6184 | if (!buffer) | ||
6185 | return 0; | ||
6186 | |||
6187 | for (i=0; i < length; i++) | ||
6188 | sum += buffer[i]; | ||
6189 | |||
6190 | return (uint8_t) (0 - sum); | ||
6191 | } | ||
6192 | |||
6193 | /***************************************************************************** | ||
6194 | * This function checks whether tx pkt filtering needs to be enabled or not. | ||
6195 | * | ||
6196 | * returns - TRUE for packet filtering or FALSE. | ||
6197 | ****************************************************************************/ | ||
6198 | boolean_t | ||
6199 | e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | ||
6200 | { | ||
6201 | /* called in init as well as watchdog timer functions */ | ||
6202 | |||
6203 | int32_t ret_val, checksum; | ||
6204 | boolean_t tx_filter = FALSE; | ||
6205 | struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | ||
6206 | uint8_t *buffer = (uint8_t *) &(hw->mng_cookie); | ||
6207 | |||
6208 | if (e1000_check_mng_mode(hw)) { | ||
6209 | ret_val = e1000_mng_enable_host_if(hw); | ||
6210 | if (ret_val == E1000_SUCCESS) { | ||
6211 | ret_val = e1000_host_if_read_cookie(hw, buffer); | ||
6212 | if (ret_val == E1000_SUCCESS) { | ||
6213 | checksum = hdr->checksum; | ||
6214 | hdr->checksum = 0; | ||
6215 | if ((hdr->signature == E1000_IAMT_SIGNATURE) && | ||
6216 | checksum == e1000_calculate_mng_checksum((char *)buffer, | ||
6217 | E1000_MNG_DHCP_COOKIE_LENGTH)) { | ||
6218 | if (hdr->status & | ||
6219 | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) | ||
6220 | tx_filter = TRUE; | ||
6221 | } else | ||
6222 | tx_filter = TRUE; | ||
6223 | } else | ||
6224 | tx_filter = TRUE; | ||
6225 | } | ||
6226 | } | ||
6227 | |||
6228 | hw->tx_pkt_filtering = tx_filter; | ||
6229 | return tx_filter; | ||
6230 | } | ||
6231 | |||
6232 | /****************************************************************************** | ||
6233 | * Verifies the hardware needs to allow ARPs to be processed by the host | ||
6234 | * | ||
6235 | * hw - Struct containing variables accessed by shared code | ||
6236 | * | ||
6237 | * returns: - TRUE/FALSE | ||
6238 | * | ||
6239 | *****************************************************************************/ | ||
6240 | uint32_t | ||
6241 | e1000_enable_mng_pass_thru(struct e1000_hw *hw) | ||
6242 | { | ||
6243 | uint32_t manc; | ||
6244 | uint32_t fwsm, factps; | ||
6245 | |||
6246 | if (hw->asf_firmware_present) { | ||
6247 | manc = E1000_READ_REG(hw, MANC); | ||
6248 | |||
6249 | if (!(manc & E1000_MANC_RCV_TCO_EN) || | ||
6250 | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | ||
6251 | return FALSE; | ||
6252 | if (e1000_arc_subsystem_valid(hw) == TRUE) { | ||
6253 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6254 | factps = E1000_READ_REG(hw, FACTPS); | ||
6255 | |||
6256 | if (((fwsm & E1000_FWSM_MODE_MASK) == | ||
6257 | (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT)) && | ||
6258 | (factps & E1000_FACTPS_MNGCG)) | ||
6259 | return TRUE; | ||
6260 | } else | ||
6261 | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | ||
6262 | return TRUE; | ||
6263 | } | ||
6264 | return FALSE; | ||
6265 | } | ||
6266 | |||
5321 | static int32_t | 6267 | static int32_t |
5322 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 6268 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) |
5323 | { | 6269 | { |
@@ -5403,3 +6349,265 @@ e1000_polarity_reversal_workaround(struct e1000_hw *hw) | |||
5403 | return E1000_SUCCESS; | 6349 | return E1000_SUCCESS; |
5404 | } | 6350 | } |
5405 | 6351 | ||
6352 | /*************************************************************************** | ||
6353 | * | ||
6354 | * Disables PCI-Express master access. | ||
6355 | * | ||
6356 | * hw: Struct containing variables accessed by shared code | ||
6357 | * | ||
6358 | * returns: - none. | ||
6359 | * | ||
6360 | ***************************************************************************/ | ||
6361 | void | ||
6362 | e1000_set_pci_express_master_disable(struct e1000_hw *hw) | ||
6363 | { | ||
6364 | uint32_t ctrl; | ||
6365 | |||
6366 | DEBUGFUNC("e1000_set_pci_express_master_disable"); | ||
6367 | |||
6368 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6369 | return; | ||
6370 | |||
6371 | ctrl = E1000_READ_REG(hw, CTRL); | ||
6372 | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | ||
6373 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
6374 | } | ||
6375 | |||
6376 | /*************************************************************************** | ||
6377 | * | ||
6378 | * Enables PCI-Express master access. | ||
6379 | * | ||
6380 | * hw: Struct containing variables accessed by shared code | ||
6381 | * | ||
6382 | * returns: - none. | ||
6383 | * | ||
6384 | ***************************************************************************/ | ||
6385 | void | ||
6386 | e1000_enable_pciex_master(struct e1000_hw *hw) | ||
6387 | { | ||
6388 | uint32_t ctrl; | ||
6389 | |||
6390 | DEBUGFUNC("e1000_enable_pciex_master"); | ||
6391 | |||
6392 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6393 | return; | ||
6394 | |||
6395 | ctrl = E1000_READ_REG(hw, CTRL); | ||
6396 | ctrl &= ~E1000_CTRL_GIO_MASTER_DISABLE; | ||
6397 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
6398 | } | ||
6399 | |||
6400 | /******************************************************************************* | ||
6401 | * | ||
6402 | * Disables PCI-Express master access and verifies there are no pending requests | ||
6403 | * | ||
6404 | * hw: Struct containing variables accessed by shared code | ||
6405 | * | ||
6406 | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | ||
6407 | * caused the master requests to be disabled. | ||
6408 | * E1000_SUCCESS master requests disabled. | ||
6409 | * | ||
6410 | ******************************************************************************/ | ||
6411 | int32_t | ||
6412 | e1000_disable_pciex_master(struct e1000_hw *hw) | ||
6413 | { | ||
6414 | int32_t timeout = MASTER_DISABLE_TIMEOUT; /* 80ms */ | ||
6415 | |||
6416 | DEBUGFUNC("e1000_disable_pciex_master"); | ||
6417 | |||
6418 | if (hw->bus_type != e1000_bus_type_pci_express) | ||
6419 | return E1000_SUCCESS; | ||
6420 | |||
6421 | e1000_set_pci_express_master_disable(hw); | ||
6422 | |||
6423 | while(timeout) { | ||
6424 | if(!(E1000_READ_REG(hw, STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | ||
6425 | break; | ||
6426 | else | ||
6427 | udelay(100); | ||
6428 | timeout--; | ||
6429 | } | ||
6430 | |||
6431 | if(!timeout) { | ||
6432 | DEBUGOUT("Master requests are pending.\n"); | ||
6433 | return -E1000_ERR_MASTER_REQUESTS_PENDING; | ||
6434 | } | ||
6435 | |||
6436 | return E1000_SUCCESS; | ||
6437 | } | ||
6438 | |||
6439 | /******************************************************************************* | ||
6440 | * | ||
6441 | * Check for EEPROM Auto Read bit done. | ||
6442 | * | ||
6443 | * hw: Struct containing variables accessed by shared code | ||
6444 | * | ||
6445 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||
6446 | * E1000_SUCCESS at any other case. | ||
6447 | * | ||
6448 | ******************************************************************************/ | ||
6449 | int32_t | ||
6450 | e1000_get_auto_rd_done(struct e1000_hw *hw) | ||
6451 | { | ||
6452 | int32_t timeout = AUTO_READ_DONE_TIMEOUT; | ||
6453 | |||
6454 | DEBUGFUNC("e1000_get_auto_rd_done"); | ||
6455 | |||
6456 | switch (hw->mac_type) { | ||
6457 | default: | ||
6458 | msec_delay(5); | ||
6459 | break; | ||
6460 | case e1000_82573: | ||
6461 | while(timeout) { | ||
6462 | if (E1000_READ_REG(hw, EECD) & E1000_EECD_AUTO_RD) break; | ||
6463 | else msec_delay(1); | ||
6464 | timeout--; | ||
6465 | } | ||
6466 | |||
6467 | if(!timeout) { | ||
6468 | DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); | ||
6469 | return -E1000_ERR_RESET; | ||
6470 | } | ||
6471 | break; | ||
6472 | } | ||
6473 | |||
6474 | return E1000_SUCCESS; | ||
6475 | } | ||
6476 | |||
6477 | /*************************************************************************** | ||
6478 | * Checks if the PHY configuration is done | ||
6479 | * | ||
6480 | * hw: Struct containing variables accessed by shared code | ||
6481 | * | ||
6482 | * returns: - E1000_ERR_RESET if fail to reset MAC | ||
6483 | * E1000_SUCCESS at any other case. | ||
6484 | * | ||
6485 | ***************************************************************************/ | ||
6486 | int32_t | ||
6487 | e1000_get_phy_cfg_done(struct e1000_hw *hw) | ||
6488 | { | ||
6489 | DEBUGFUNC("e1000_get_phy_cfg_done"); | ||
6490 | |||
6491 | /* Simply wait for 10ms */ | ||
6492 | msec_delay(10); | ||
6493 | |||
6494 | return E1000_SUCCESS; | ||
6495 | } | ||
6496 | |||
6497 | /*************************************************************************** | ||
6498 | * | ||
6499 | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | ||
6500 | * adapter or Eeprom access. | ||
6501 | * | ||
6502 | * hw: Struct containing variables accessed by shared code | ||
6503 | * | ||
6504 | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | ||
6505 | * E1000_SUCCESS at any other case. | ||
6506 | * | ||
6507 | ***************************************************************************/ | ||
6508 | int32_t | ||
6509 | e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | ||
6510 | { | ||
6511 | int32_t timeout; | ||
6512 | uint32_t swsm; | ||
6513 | |||
6514 | DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); | ||
6515 | |||
6516 | if(!hw->eeprom_semaphore_present) | ||
6517 | return E1000_SUCCESS; | ||
6518 | |||
6519 | |||
6520 | /* Get the FW semaphore. */ | ||
6521 | timeout = hw->eeprom.word_size + 1; | ||
6522 | while(timeout) { | ||
6523 | swsm = E1000_READ_REG(hw, SWSM); | ||
6524 | swsm |= E1000_SWSM_SWESMBI; | ||
6525 | E1000_WRITE_REG(hw, SWSM, swsm); | ||
6526 | /* if we managed to set the bit we got the semaphore. */ | ||
6527 | swsm = E1000_READ_REG(hw, SWSM); | ||
6528 | if(swsm & E1000_SWSM_SWESMBI) | ||
6529 | break; | ||
6530 | |||
6531 | udelay(50); | ||
6532 | timeout--; | ||
6533 | } | ||
6534 | |||
6535 | if(!timeout) { | ||
6536 | /* Release semaphores */ | ||
6537 | e1000_put_hw_eeprom_semaphore(hw); | ||
6538 | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); | ||
6539 | return -E1000_ERR_EEPROM; | ||
6540 | } | ||
6541 | |||
6542 | return E1000_SUCCESS; | ||
6543 | } | ||
6544 | |||
6545 | /*************************************************************************** | ||
6546 | * This function clears HW semaphore bits. | ||
6547 | * | ||
6548 | * hw: Struct containing variables accessed by shared code | ||
6549 | * | ||
6550 | * returns: - None. | ||
6551 | * | ||
6552 | ***************************************************************************/ | ||
6553 | void | ||
6554 | e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | ||
6555 | { | ||
6556 | uint32_t swsm; | ||
6557 | |||
6558 | DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); | ||
6559 | |||
6560 | if(!hw->eeprom_semaphore_present) | ||
6561 | return; | ||
6562 | |||
6563 | swsm = E1000_READ_REG(hw, SWSM); | ||
6564 | /* Release both semaphores. */ | ||
6565 | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | ||
6566 | E1000_WRITE_REG(hw, SWSM, swsm); | ||
6567 | } | ||
6568 | |||
6569 | /****************************************************************************** | ||
6570 | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | ||
6571 | * Returning E1000_BLK_PHY_RESET isn't necessarily an error. But it's up to | ||
6572 | * the caller to figure out how to deal with it. | ||
6573 | * | ||
6574 | * hw - Struct containing variables accessed by shared code | ||
6575 | * | ||
6576 | * returns: - E1000_BLK_PHY_RESET | ||
6577 | * E1000_SUCCESS | ||
6578 | * | ||
6579 | *****************************************************************************/ | ||
6580 | int32_t | ||
6581 | e1000_check_phy_reset_block(struct e1000_hw *hw) | ||
6582 | { | ||
6583 | uint32_t manc = 0; | ||
6584 | if(hw->mac_type > e1000_82547_rev_2) | ||
6585 | manc = E1000_READ_REG(hw, MANC); | ||
6586 | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | ||
6587 | E1000_BLK_PHY_RESET : E1000_SUCCESS; | ||
6588 | } | ||
6589 | |||
6590 | uint8_t | ||
6591 | e1000_arc_subsystem_valid(struct e1000_hw *hw) | ||
6592 | { | ||
6593 | uint32_t fwsm; | ||
6594 | |||
6595 | /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC | ||
6596 | * may not be provided a DMA clock when no manageability features are | ||
6597 | * enabled. We do not want to perform any reads/writes to these registers | ||
6598 | * if this is the case. We read FWSM to determine the manageability mode. | ||
6599 | */ | ||
6600 | switch (hw->mac_type) { | ||
6601 | case e1000_82573: | ||
6602 | fwsm = E1000_READ_REG(hw, FWSM); | ||
6603 | if((fwsm & E1000_FWSM_MODE_MASK) != 0) | ||
6604 | return TRUE; | ||
6605 | break; | ||
6606 | default: | ||
6607 | break; | ||
6608 | } | ||
6609 | return FALSE; | ||
6610 | } | ||
6611 | |||
6612 | |||
6613 | |||
diff --git a/drivers/net/e1000/e1000_hw.h b/drivers/net/e1000/e1000_hw.h index f397e637a3c5..1573f608fb68 100644 --- a/drivers/net/e1000/e1000_hw.h +++ b/drivers/net/e1000/e1000_hw.h | |||
@@ -57,6 +57,7 @@ typedef enum { | |||
57 | e1000_82541_rev_2, | 57 | e1000_82541_rev_2, |
58 | e1000_82547, | 58 | e1000_82547, |
59 | e1000_82547_rev_2, | 59 | e1000_82547_rev_2, |
60 | e1000_82573, | ||
60 | e1000_num_macs | 61 | e1000_num_macs |
61 | } e1000_mac_type; | 62 | } e1000_mac_type; |
62 | 63 | ||
@@ -64,6 +65,7 @@ typedef enum { | |||
64 | e1000_eeprom_uninitialized = 0, | 65 | e1000_eeprom_uninitialized = 0, |
65 | e1000_eeprom_spi, | 66 | e1000_eeprom_spi, |
66 | e1000_eeprom_microwire, | 67 | e1000_eeprom_microwire, |
68 | e1000_eeprom_flash, | ||
67 | e1000_num_eeprom_types | 69 | e1000_num_eeprom_types |
68 | } e1000_eeprom_type; | 70 | } e1000_eeprom_type; |
69 | 71 | ||
@@ -96,6 +98,7 @@ typedef enum { | |||
96 | e1000_bus_type_unknown = 0, | 98 | e1000_bus_type_unknown = 0, |
97 | e1000_bus_type_pci, | 99 | e1000_bus_type_pci, |
98 | e1000_bus_type_pcix, | 100 | e1000_bus_type_pcix, |
101 | e1000_bus_type_pci_express, | ||
99 | e1000_bus_type_reserved | 102 | e1000_bus_type_reserved |
100 | } e1000_bus_type; | 103 | } e1000_bus_type; |
101 | 104 | ||
@@ -107,6 +110,7 @@ typedef enum { | |||
107 | e1000_bus_speed_100, | 110 | e1000_bus_speed_100, |
108 | e1000_bus_speed_120, | 111 | e1000_bus_speed_120, |
109 | e1000_bus_speed_133, | 112 | e1000_bus_speed_133, |
113 | e1000_bus_speed_2500, | ||
110 | e1000_bus_speed_reserved | 114 | e1000_bus_speed_reserved |
111 | } e1000_bus_speed; | 115 | } e1000_bus_speed; |
112 | 116 | ||
@@ -115,6 +119,8 @@ typedef enum { | |||
115 | e1000_bus_width_unknown = 0, | 119 | e1000_bus_width_unknown = 0, |
116 | e1000_bus_width_32, | 120 | e1000_bus_width_32, |
117 | e1000_bus_width_64, | 121 | e1000_bus_width_64, |
122 | e1000_bus_width_pciex_1, | ||
123 | e1000_bus_width_pciex_4, | ||
118 | e1000_bus_width_reserved | 124 | e1000_bus_width_reserved |
119 | } e1000_bus_width; | 125 | } e1000_bus_width; |
120 | 126 | ||
@@ -196,6 +202,7 @@ typedef enum { | |||
196 | typedef enum { | 202 | typedef enum { |
197 | e1000_phy_m88 = 0, | 203 | e1000_phy_m88 = 0, |
198 | e1000_phy_igp, | 204 | e1000_phy_igp, |
205 | e1000_phy_igp_2, | ||
199 | e1000_phy_undefined = 0xFF | 206 | e1000_phy_undefined = 0xFF |
200 | } e1000_phy_type; | 207 | } e1000_phy_type; |
201 | 208 | ||
@@ -242,8 +249,19 @@ struct e1000_eeprom_info { | |||
242 | uint16_t address_bits; | 249 | uint16_t address_bits; |
243 | uint16_t delay_usec; | 250 | uint16_t delay_usec; |
244 | uint16_t page_size; | 251 | uint16_t page_size; |
252 | boolean_t use_eerd; | ||
253 | boolean_t use_eewr; | ||
245 | }; | 254 | }; |
246 | 255 | ||
256 | /* Flex ASF Information */ | ||
257 | #define E1000_HOST_IF_MAX_SIZE 2048 | ||
258 | |||
259 | typedef enum { | ||
260 | e1000_byte_align = 0, | ||
261 | e1000_word_align = 1, | ||
262 | e1000_dword_align = 2 | ||
263 | } e1000_align_type; | ||
264 | |||
247 | 265 | ||
248 | 266 | ||
249 | /* Error Codes */ | 267 | /* Error Codes */ |
@@ -254,11 +272,16 @@ struct e1000_eeprom_info { | |||
254 | #define E1000_ERR_PARAM 4 | 272 | #define E1000_ERR_PARAM 4 |
255 | #define E1000_ERR_MAC_TYPE 5 | 273 | #define E1000_ERR_MAC_TYPE 5 |
256 | #define E1000_ERR_PHY_TYPE 6 | 274 | #define E1000_ERR_PHY_TYPE 6 |
275 | #define E1000_ERR_RESET 9 | ||
276 | #define E1000_ERR_MASTER_REQUESTS_PENDING 10 | ||
277 | #define E1000_ERR_HOST_INTERFACE_COMMAND 11 | ||
278 | #define E1000_BLK_PHY_RESET 12 | ||
257 | 279 | ||
258 | /* Function prototypes */ | 280 | /* Function prototypes */ |
259 | /* Initialization */ | 281 | /* Initialization */ |
260 | int32_t e1000_reset_hw(struct e1000_hw *hw); | 282 | int32_t e1000_reset_hw(struct e1000_hw *hw); |
261 | int32_t e1000_init_hw(struct e1000_hw *hw); | 283 | int32_t e1000_init_hw(struct e1000_hw *hw); |
284 | int32_t e1000_id_led_init(struct e1000_hw * hw); | ||
262 | int32_t e1000_set_mac_type(struct e1000_hw *hw); | 285 | int32_t e1000_set_mac_type(struct e1000_hw *hw); |
263 | void e1000_set_media_type(struct e1000_hw *hw); | 286 | void e1000_set_media_type(struct e1000_hw *hw); |
264 | 287 | ||
@@ -275,7 +298,7 @@ int32_t e1000_force_mac_fc(struct e1000_hw *hw); | |||
275 | /* PHY */ | 298 | /* PHY */ |
276 | int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); | 299 | int32_t e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data); |
277 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); | 300 | int32_t e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t data); |
278 | void e1000_phy_hw_reset(struct e1000_hw *hw); | 301 | int32_t e1000_phy_hw_reset(struct e1000_hw *hw); |
279 | int32_t e1000_phy_reset(struct e1000_hw *hw); | 302 | int32_t e1000_phy_reset(struct e1000_hw *hw); |
280 | int32_t e1000_detect_gig_phy(struct e1000_hw *hw); | 303 | int32_t e1000_detect_gig_phy(struct e1000_hw *hw); |
281 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); | 304 | int32_t e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info); |
@@ -287,13 +310,86 @@ int32_t e1000_check_downshift(struct e1000_hw *hw); | |||
287 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); | 310 | int32_t e1000_validate_mdi_setting(struct e1000_hw *hw); |
288 | 311 | ||
289 | /* EEPROM Functions */ | 312 | /* EEPROM Functions */ |
290 | void e1000_init_eeprom_params(struct e1000_hw *hw); | 313 | int32_t e1000_init_eeprom_params(struct e1000_hw *hw); |
314 | boolean_t e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); | ||
315 | int32_t e1000_read_eeprom_eerd(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); | ||
316 | int32_t e1000_write_eeprom_eewr(struct e1000_hw *hw, uint16_t offset, uint16_t words, uint16_t *data); | ||
317 | int32_t e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); | ||
318 | |||
319 | /* MNG HOST IF functions */ | ||
320 | uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); | ||
321 | |||
322 | #define E1000_MNG_DHCP_TX_PAYLOAD_CMD 64 | ||
323 | #define E1000_HI_MAX_MNG_DATA_LENGTH 0x6F8 /* Host Interface data length */ | ||
324 | |||
325 | #define E1000_MNG_DHCP_COMMAND_TIMEOUT 10 /* Time in ms to process MNG command */ | ||
326 | #define E1000_MNG_DHCP_COOKIE_OFFSET 0x6F0 /* Cookie offset */ | ||
327 | #define E1000_MNG_DHCP_COOKIE_LENGTH 0x10 /* Cookie length */ | ||
328 | #define E1000_MNG_IAMT_MODE 0x3 | ||
329 | #define E1000_IAMT_SIGNATURE 0x544D4149 /* Intel(R) Active Management Technology signature */ | ||
330 | |||
331 | #define E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT 0x1 /* DHCP parsing enabled */ | ||
332 | #define E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT 0x2 /* DHCP parsing enabled */ | ||
333 | #define E1000_VFTA_ENTRY_SHIFT 0x5 | ||
334 | #define E1000_VFTA_ENTRY_MASK 0x7F | ||
335 | #define E1000_VFTA_ENTRY_BIT_SHIFT_MASK 0x1F | ||
336 | |||
337 | struct e1000_host_mng_command_header { | ||
338 | uint8_t command_id; | ||
339 | uint8_t checksum; | ||
340 | uint16_t reserved1; | ||
341 | uint16_t reserved2; | ||
342 | uint16_t command_length; | ||
343 | }; | ||
344 | |||
345 | struct e1000_host_mng_command_info { | ||
346 | struct e1000_host_mng_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ | ||
347 | uint8_t command_data[E1000_HI_MAX_MNG_DATA_LENGTH]; /* Command data can length 0..0x658*/ | ||
348 | }; | ||
349 | #ifdef __BIG_ENDIAN | ||
350 | struct e1000_host_mng_dhcp_cookie{ | ||
351 | uint32_t signature; | ||
352 | uint16_t vlan_id; | ||
353 | uint8_t reserved0; | ||
354 | uint8_t status; | ||
355 | uint32_t reserved1; | ||
356 | uint8_t checksum; | ||
357 | uint8_t reserved3; | ||
358 | uint16_t reserved2; | ||
359 | }; | ||
360 | #else | ||
361 | struct e1000_host_mng_dhcp_cookie{ | ||
362 | uint32_t signature; | ||
363 | uint8_t status; | ||
364 | uint8_t reserved0; | ||
365 | uint16_t vlan_id; | ||
366 | uint32_t reserved1; | ||
367 | uint16_t reserved2; | ||
368 | uint8_t reserved3; | ||
369 | uint8_t checksum; | ||
370 | }; | ||
371 | #endif | ||
372 | |||
373 | int32_t e1000_mng_write_dhcp_info(struct e1000_hw *hw, uint8_t *buffer, | ||
374 | uint16_t length); | ||
375 | boolean_t e1000_check_mng_mode(struct e1000_hw *hw); | ||
376 | boolean_t e1000_enable_tx_pkt_filtering(struct e1000_hw *hw); | ||
377 | int32_t e1000_mng_enable_host_if(struct e1000_hw *hw); | ||
378 | int32_t e1000_mng_host_if_write(struct e1000_hw *hw, uint8_t *buffer, | ||
379 | uint16_t length, uint16_t offset, uint8_t *sum); | ||
380 | int32_t e1000_mng_write_cmd_header(struct e1000_hw* hw, | ||
381 | struct e1000_host_mng_command_header* hdr); | ||
382 | |||
383 | int32_t e1000_mng_write_commit(struct e1000_hw *hw); | ||
384 | |||
291 | int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); | 385 | int32_t e1000_read_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); |
292 | int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw); | 386 | int32_t e1000_validate_eeprom_checksum(struct e1000_hw *hw); |
293 | int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw); | 387 | int32_t e1000_update_eeprom_checksum(struct e1000_hw *hw); |
294 | int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); | 388 | int32_t e1000_write_eeprom(struct e1000_hw *hw, uint16_t reg, uint16_t words, uint16_t *data); |
295 | int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); | 389 | int32_t e1000_read_part_num(struct e1000_hw *hw, uint32_t * part_num); |
296 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); | 390 | int32_t e1000_read_mac_addr(struct e1000_hw * hw); |
391 | int32_t e1000_swfw_sync_acquire(struct e1000_hw *hw, uint16_t mask); | ||
392 | void e1000_swfw_sync_release(struct e1000_hw *hw, uint16_t mask); | ||
297 | 393 | ||
298 | /* Filters (multicast, vlan, receive) */ | 394 | /* Filters (multicast, vlan, receive) */ |
299 | void e1000_init_rx_addrs(struct e1000_hw *hw); | 395 | void e1000_init_rx_addrs(struct e1000_hw *hw); |
@@ -313,7 +409,6 @@ int32_t e1000_led_off(struct e1000_hw *hw); | |||
313 | /* Adaptive IFS Functions */ | 409 | /* Adaptive IFS Functions */ |
314 | 410 | ||
315 | /* Everything else */ | 411 | /* Everything else */ |
316 | uint32_t e1000_enable_mng_pass_thru(struct e1000_hw *hw); | ||
317 | void e1000_clear_hw_cntrs(struct e1000_hw *hw); | 412 | void e1000_clear_hw_cntrs(struct e1000_hw *hw); |
318 | void e1000_reset_adaptive(struct e1000_hw *hw); | 413 | void e1000_reset_adaptive(struct e1000_hw *hw); |
319 | void e1000_update_adaptive(struct e1000_hw *hw); | 414 | void e1000_update_adaptive(struct e1000_hw *hw); |
@@ -330,6 +425,19 @@ void e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value); | |||
330 | void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value); | 425 | void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value); |
331 | int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up); | 426 | int32_t e1000_config_dsp_after_link_change(struct e1000_hw *hw, boolean_t link_up); |
332 | int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | 427 | int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); |
428 | int32_t e1000_set_d0_lplu_state(struct e1000_hw *hw, boolean_t active); | ||
429 | void e1000_set_pci_express_master_disable(struct e1000_hw *hw); | ||
430 | void e1000_enable_pciex_master(struct e1000_hw *hw); | ||
431 | int32_t e1000_disable_pciex_master(struct e1000_hw *hw); | ||
432 | int32_t e1000_get_auto_rd_done(struct e1000_hw *hw); | ||
433 | int32_t e1000_get_phy_cfg_done(struct e1000_hw *hw); | ||
434 | int32_t e1000_get_software_semaphore(struct e1000_hw *hw); | ||
435 | void e1000_release_software_semaphore(struct e1000_hw *hw); | ||
436 | int32_t e1000_check_phy_reset_block(struct e1000_hw *hw); | ||
437 | int32_t e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); | ||
438 | void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); | ||
439 | int32_t e1000_commit_shadow_ram(struct e1000_hw *hw); | ||
440 | uint8_t e1000_arc_subsystem_valid(struct e1000_hw *hw); | ||
333 | 441 | ||
334 | #define E1000_READ_REG_IO(a, reg) \ | 442 | #define E1000_READ_REG_IO(a, reg) \ |
335 | e1000_read_reg_io((a), E1000_##reg) | 443 | e1000_read_reg_io((a), E1000_##reg) |
@@ -369,6 +477,10 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | |||
369 | #define E1000_DEV_ID_82546GB_SERDES 0x107B | 477 | #define E1000_DEV_ID_82546GB_SERDES 0x107B |
370 | #define E1000_DEV_ID_82546GB_PCIE 0x108A | 478 | #define E1000_DEV_ID_82546GB_PCIE 0x108A |
371 | #define E1000_DEV_ID_82547EI 0x1019 | 479 | #define E1000_DEV_ID_82547EI 0x1019 |
480 | #define E1000_DEV_ID_82573E 0x108B | ||
481 | #define E1000_DEV_ID_82573E_IAMT 0x108C | ||
482 | |||
483 | #define E1000_DEV_ID_82546GB_QUAD_COPPER 0x1099 | ||
372 | 484 | ||
373 | #define NODE_ADDRESS_SIZE 6 | 485 | #define NODE_ADDRESS_SIZE 6 |
374 | #define ETH_LENGTH_OF_ADDRESS 6 | 486 | #define ETH_LENGTH_OF_ADDRESS 6 |
@@ -381,6 +493,7 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | |||
381 | #define E1000_REVISION_0 0 | 493 | #define E1000_REVISION_0 0 |
382 | #define E1000_REVISION_1 1 | 494 | #define E1000_REVISION_1 1 |
383 | #define E1000_REVISION_2 2 | 495 | #define E1000_REVISION_2 2 |
496 | #define E1000_REVISION_3 3 | ||
384 | 497 | ||
385 | #define SPEED_10 10 | 498 | #define SPEED_10 10 |
386 | #define SPEED_100 100 | 499 | #define SPEED_100 100 |
@@ -437,6 +550,7 @@ int32_t e1000_set_d3_lplu_state(struct e1000_hw *hw, boolean_t active); | |||
437 | E1000_IMS_RXSEQ | \ | 550 | E1000_IMS_RXSEQ | \ |
438 | E1000_IMS_LSC) | 551 | E1000_IMS_LSC) |
439 | 552 | ||
553 | |||
440 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address | 554 | /* Number of high/low register pairs in the RAR. The RAR (Receive Address |
441 | * Registers) holds the directed and multicast addresses that we monitor. We | 555 | * Registers) holds the directed and multicast addresses that we monitor. We |
442 | * reserve one of these spots for our directed address, allowing us room for | 556 | * reserve one of these spots for our directed address, allowing us room for |
@@ -457,14 +571,74 @@ struct e1000_rx_desc { | |||
457 | uint16_t special; | 571 | uint16_t special; |
458 | }; | 572 | }; |
459 | 573 | ||
574 | /* Receive Descriptor - Extended */ | ||
575 | union e1000_rx_desc_extended { | ||
576 | struct { | ||
577 | uint64_t buffer_addr; | ||
578 | uint64_t reserved; | ||
579 | } read; | ||
580 | struct { | ||
581 | struct { | ||
582 | uint32_t mrq; /* Multiple Rx Queues */ | ||
583 | union { | ||
584 | uint32_t rss; /* RSS Hash */ | ||
585 | struct { | ||
586 | uint16_t ip_id; /* IP id */ | ||
587 | uint16_t csum; /* Packet Checksum */ | ||
588 | } csum_ip; | ||
589 | } hi_dword; | ||
590 | } lower; | ||
591 | struct { | ||
592 | uint32_t status_error; /* ext status/error */ | ||
593 | uint16_t length; | ||
594 | uint16_t vlan; /* VLAN tag */ | ||
595 | } upper; | ||
596 | } wb; /* writeback */ | ||
597 | }; | ||
598 | |||
599 | #define MAX_PS_BUFFERS 4 | ||
600 | /* Receive Descriptor - Packet Split */ | ||
601 | union e1000_rx_desc_packet_split { | ||
602 | struct { | ||
603 | /* one buffer for protocol header(s), three data buffers */ | ||
604 | uint64_t buffer_addr[MAX_PS_BUFFERS]; | ||
605 | } read; | ||
606 | struct { | ||
607 | struct { | ||
608 | uint32_t mrq; /* Multiple Rx Queues */ | ||
609 | union { | ||
610 | uint32_t rss; /* RSS Hash */ | ||
611 | struct { | ||
612 | uint16_t ip_id; /* IP id */ | ||
613 | uint16_t csum; /* Packet Checksum */ | ||
614 | } csum_ip; | ||
615 | } hi_dword; | ||
616 | } lower; | ||
617 | struct { | ||
618 | uint32_t status_error; /* ext status/error */ | ||
619 | uint16_t length0; /* length of buffer 0 */ | ||
620 | uint16_t vlan; /* VLAN tag */ | ||
621 | } middle; | ||
622 | struct { | ||
623 | uint16_t header_status; | ||
624 | uint16_t length[3]; /* length of buffers 1-3 */ | ||
625 | } upper; | ||
626 | uint64_t reserved; | ||
627 | } wb; /* writeback */ | ||
628 | }; | ||
629 | |||
460 | /* Receive Decriptor bit definitions */ | 630 | /* Receive Decriptor bit definitions */ |
461 | #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ | 631 | #define E1000_RXD_STAT_DD 0x01 /* Descriptor Done */ |
462 | #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ | 632 | #define E1000_RXD_STAT_EOP 0x02 /* End of Packet */ |
463 | #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ | 633 | #define E1000_RXD_STAT_IXSM 0x04 /* Ignore checksum */ |
464 | #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ | 634 | #define E1000_RXD_STAT_VP 0x08 /* IEEE VLAN Packet */ |
635 | #define E1000_RXD_STAT_UDPCS 0x10 /* UDP xsum caculated */ | ||
465 | #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ | 636 | #define E1000_RXD_STAT_TCPCS 0x20 /* TCP xsum calculated */ |
466 | #define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ | 637 | #define E1000_RXD_STAT_IPCS 0x40 /* IP xsum calculated */ |
467 | #define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ | 638 | #define E1000_RXD_STAT_PIF 0x80 /* passed in-exact filter */ |
639 | #define E1000_RXD_STAT_IPIDV 0x200 /* IP identification valid */ | ||
640 | #define E1000_RXD_STAT_UDPV 0x400 /* Valid UDP checksum */ | ||
641 | #define E1000_RXD_STAT_ACK 0x8000 /* ACK Packet indication */ | ||
468 | #define E1000_RXD_ERR_CE 0x01 /* CRC Error */ | 642 | #define E1000_RXD_ERR_CE 0x01 /* CRC Error */ |
469 | #define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ | 643 | #define E1000_RXD_ERR_SE 0x02 /* Symbol Error */ |
470 | #define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ | 644 | #define E1000_RXD_ERR_SEQ 0x04 /* Sequence Error */ |
@@ -474,9 +648,20 @@ struct e1000_rx_desc { | |||
474 | #define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ | 648 | #define E1000_RXD_ERR_RXE 0x80 /* Rx Data Error */ |
475 | #define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ | 649 | #define E1000_RXD_SPC_VLAN_MASK 0x0FFF /* VLAN ID is in lower 12 bits */ |
476 | #define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ | 650 | #define E1000_RXD_SPC_PRI_MASK 0xE000 /* Priority is in upper 3 bits */ |
477 | #define E1000_RXD_SPC_PRI_SHIFT 0x000D /* Priority is in upper 3 of 16 */ | 651 | #define E1000_RXD_SPC_PRI_SHIFT 13 |
478 | #define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ | 652 | #define E1000_RXD_SPC_CFI_MASK 0x1000 /* CFI is bit 12 */ |
479 | #define E1000_RXD_SPC_CFI_SHIFT 0x000C /* CFI is bit 12 */ | 653 | #define E1000_RXD_SPC_CFI_SHIFT 12 |
654 | |||
655 | #define E1000_RXDEXT_STATERR_CE 0x01000000 | ||
656 | #define E1000_RXDEXT_STATERR_SE 0x02000000 | ||
657 | #define E1000_RXDEXT_STATERR_SEQ 0x04000000 | ||
658 | #define E1000_RXDEXT_STATERR_CXE 0x10000000 | ||
659 | #define E1000_RXDEXT_STATERR_TCPE 0x20000000 | ||
660 | #define E1000_RXDEXT_STATERR_IPE 0x40000000 | ||
661 | #define E1000_RXDEXT_STATERR_RXE 0x80000000 | ||
662 | |||
663 | #define E1000_RXDPS_HDRSTAT_HDRSP 0x00008000 | ||
664 | #define E1000_RXDPS_HDRSTAT_HDRLEN_MASK 0x000003FF | ||
480 | 665 | ||
481 | /* mask to determine if packets should be dropped due to frame errors */ | 666 | /* mask to determine if packets should be dropped due to frame errors */ |
482 | #define E1000_RXD_ERR_FRAME_ERR_MASK ( \ | 667 | #define E1000_RXD_ERR_FRAME_ERR_MASK ( \ |
@@ -486,6 +671,15 @@ struct e1000_rx_desc { | |||
486 | E1000_RXD_ERR_CXE | \ | 671 | E1000_RXD_ERR_CXE | \ |
487 | E1000_RXD_ERR_RXE) | 672 | E1000_RXD_ERR_RXE) |
488 | 673 | ||
674 | |||
675 | /* Same mask, but for extended and packet split descriptors */ | ||
676 | #define E1000_RXDEXT_ERR_FRAME_ERR_MASK ( \ | ||
677 | E1000_RXDEXT_STATERR_CE | \ | ||
678 | E1000_RXDEXT_STATERR_SE | \ | ||
679 | E1000_RXDEXT_STATERR_SEQ | \ | ||
680 | E1000_RXDEXT_STATERR_CXE | \ | ||
681 | E1000_RXDEXT_STATERR_RXE) | ||
682 | |||
489 | /* Transmit Descriptor */ | 683 | /* Transmit Descriptor */ |
490 | struct e1000_tx_desc { | 684 | struct e1000_tx_desc { |
491 | uint64_t buffer_addr; /* Address of the descriptor's data buffer */ | 685 | uint64_t buffer_addr; /* Address of the descriptor's data buffer */ |
@@ -667,6 +861,7 @@ struct e1000_ffvt_entry { | |||
667 | #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ | 861 | #define E1000_ICS 0x000C8 /* Interrupt Cause Set - WO */ |
668 | #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ | 862 | #define E1000_IMS 0x000D0 /* Interrupt Mask Set - RW */ |
669 | #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ | 863 | #define E1000_IMC 0x000D8 /* Interrupt Mask Clear - WO */ |
864 | #define E1000_IAM 0x000E0 /* Interrupt Acknowledge Auto Mask */ | ||
670 | #define E1000_RCTL 0x00100 /* RX Control - RW */ | 865 | #define E1000_RCTL 0x00100 /* RX Control - RW */ |
671 | #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ | 866 | #define E1000_FCTTV 0x00170 /* Flow Control Transmit Timer Value - RW */ |
672 | #define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ | 867 | #define E1000_TXCW 0x00178 /* TX Configuration Word - RW */ |
@@ -676,9 +871,23 @@ struct e1000_ffvt_entry { | |||
676 | #define E1000_TBT 0x00448 /* TX Burst Timer - RW */ | 871 | #define E1000_TBT 0x00448 /* TX Burst Timer - RW */ |
677 | #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ | 872 | #define E1000_AIT 0x00458 /* Adaptive Interframe Spacing Throttle - RW */ |
678 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ | 873 | #define E1000_LEDCTL 0x00E00 /* LED Control - RW */ |
874 | #define E1000_EXTCNF_CTRL 0x00F00 /* Extended Configuration Control */ | ||
875 | #define E1000_EXTCNF_SIZE 0x00F08 /* Extended Configuration Size */ | ||
679 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ | 876 | #define E1000_PBA 0x01000 /* Packet Buffer Allocation - RW */ |
877 | #define E1000_PBS 0x01008 /* Packet Buffer Size */ | ||
878 | #define E1000_EEMNGCTL 0x01010 /* MNG EEprom Control */ | ||
879 | #define E1000_FLASH_UPDATES 1000 | ||
880 | #define E1000_EEARBC 0x01024 /* EEPROM Auto Read Bus Control */ | ||
881 | #define E1000_FLASHT 0x01028 /* FLASH Timer Register */ | ||
882 | #define E1000_EEWR 0x0102C /* EEPROM Write Register - RW */ | ||
883 | #define E1000_FLSWCTL 0x01030 /* FLASH control register */ | ||
884 | #define E1000_FLSWDATA 0x01034 /* FLASH data register */ | ||
885 | #define E1000_FLSWCNT 0x01038 /* FLASH Access Counter */ | ||
886 | #define E1000_FLOP 0x0103C /* FLASH Opcode Register */ | ||
887 | #define E1000_ERT 0x02008 /* Early Rx Threshold - RW */ | ||
680 | #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ | 888 | #define E1000_FCRTL 0x02160 /* Flow Control Receive Threshold Low - RW */ |
681 | #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ | 889 | #define E1000_FCRTH 0x02168 /* Flow Control Receive Threshold High - RW */ |
890 | #define E1000_PSRCTL 0x02170 /* Packet Split Receive Control - RW */ | ||
682 | #define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ | 891 | #define E1000_RDBAL 0x02800 /* RX Descriptor Base Address Low - RW */ |
683 | #define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ | 892 | #define E1000_RDBAH 0x02804 /* RX Descriptor Base Address High - RW */ |
684 | #define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ | 893 | #define E1000_RDLEN 0x02808 /* RX Descriptor Length - RW */ |
@@ -688,6 +897,7 @@ struct e1000_ffvt_entry { | |||
688 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ | 897 | #define E1000_RXDCTL 0x02828 /* RX Descriptor Control - RW */ |
689 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ | 898 | #define E1000_RADV 0x0282C /* RX Interrupt Absolute Delay Timer - RW */ |
690 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ | 899 | #define E1000_RSRPD 0x02C00 /* RX Small Packet Detect - RW */ |
900 | #define E1000_RAID 0x02C08 /* Receive Ack Interrupt Delay - RW */ | ||
691 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ | 901 | #define E1000_TXDMAC 0x03000 /* TX DMA Control - RW */ |
692 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ | 902 | #define E1000_TDFH 0x03410 /* TX Data FIFO Head - RW */ |
693 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ | 903 | #define E1000_TDFT 0x03418 /* TX Data FIFO Tail - RW */ |
@@ -703,6 +913,14 @@ struct e1000_ffvt_entry { | |||
703 | #define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ | 913 | #define E1000_TXDCTL 0x03828 /* TX Descriptor Control - RW */ |
704 | #define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ | 914 | #define E1000_TADV 0x0382C /* TX Interrupt Absolute Delay Val - RW */ |
705 | #define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ | 915 | #define E1000_TSPMT 0x03830 /* TCP Segmentation PAD & Min Threshold - RW */ |
916 | #define E1000_TARC0 0x03840 /* TX Arbitration Count (0) */ | ||
917 | #define E1000_TDBAL1 0x03900 /* TX Desc Base Address Low (1) - RW */ | ||
918 | #define E1000_TDBAH1 0x03904 /* TX Desc Base Address High (1) - RW */ | ||
919 | #define E1000_TDLEN1 0x03908 /* TX Desc Length (1) - RW */ | ||
920 | #define E1000_TDH1 0x03910 /* TX Desc Head (1) - RW */ | ||
921 | #define E1000_TDT1 0x03918 /* TX Desc Tail (1) - RW */ | ||
922 | #define E1000_TXDCTL1 0x03928 /* TX Descriptor Control (1) - RW */ | ||
923 | #define E1000_TARC1 0x03940 /* TX Arbitration Count (1) */ | ||
706 | #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ | 924 | #define E1000_CRCERRS 0x04000 /* CRC Error Count - R/clr */ |
707 | #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ | 925 | #define E1000_ALGNERRC 0x04004 /* Alignment Error Count - R/clr */ |
708 | #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ | 926 | #define E1000_SYMERRS 0x04008 /* Symbol Error Count - R/clr */ |
@@ -761,7 +979,17 @@ struct e1000_ffvt_entry { | |||
761 | #define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ | 979 | #define E1000_BPTC 0x040F4 /* Broadcast Packets TX Count - R/clr */ |
762 | #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ | 980 | #define E1000_TSCTC 0x040F8 /* TCP Segmentation Context TX - R/clr */ |
763 | #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ | 981 | #define E1000_TSCTFC 0x040FC /* TCP Segmentation Context TX Fail - R/clr */ |
982 | #define E1000_IAC 0x4100 /* Interrupt Assertion Count */ | ||
983 | #define E1000_ICRXPTC 0x4104 /* Interrupt Cause Rx Packet Timer Expire Count */ | ||
984 | #define E1000_ICRXATC 0x4108 /* Interrupt Cause Rx Absolute Timer Expire Count */ | ||
985 | #define E1000_ICTXPTC 0x410C /* Interrupt Cause Tx Packet Timer Expire Count */ | ||
986 | #define E1000_ICTXATC 0x4110 /* Interrupt Cause Tx Absolute Timer Expire Count */ | ||
987 | #define E1000_ICTXQEC 0x4118 /* Interrupt Cause Tx Queue Empty Count */ | ||
988 | #define E1000_ICTXQMTC 0x411C /* Interrupt Cause Tx Queue Minimum Threshold Count */ | ||
989 | #define E1000_ICRXDMTC 0x4120 /* Interrupt Cause Rx Descriptor Minimum Threshold Count */ | ||
990 | #define E1000_ICRXOC 0x4124 /* Interrupt Cause Receiver Overrun Count */ | ||
764 | #define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ | 991 | #define E1000_RXCSUM 0x05000 /* RX Checksum Control - RW */ |
992 | #define E1000_RFCTL 0x05008 /* Receive Filter Control*/ | ||
765 | #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ | 993 | #define E1000_MTA 0x05200 /* Multicast Table Array - RW Array */ |
766 | #define E1000_RA 0x05400 /* Receive Address - RW Array */ | 994 | #define E1000_RA 0x05400 /* Receive Address - RW Array */ |
767 | #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ | 995 | #define E1000_VFTA 0x05600 /* VLAN Filter Table Array - RW Array */ |
@@ -779,6 +1007,16 @@ struct e1000_ffvt_entry { | |||
779 | #define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ | 1007 | #define E1000_FFMT 0x09000 /* Flexible Filter Mask Table - RW Array */ |
780 | #define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ | 1008 | #define E1000_FFVT 0x09800 /* Flexible Filter Value Table - RW Array */ |
781 | 1009 | ||
1010 | #define E1000_GCR 0x05B00 /* PCI-Ex Control */ | ||
1011 | #define E1000_GSCL_1 0x05B10 /* PCI-Ex Statistic Control #1 */ | ||
1012 | #define E1000_GSCL_2 0x05B14 /* PCI-Ex Statistic Control #2 */ | ||
1013 | #define E1000_GSCL_3 0x05B18 /* PCI-Ex Statistic Control #3 */ | ||
1014 | #define E1000_GSCL_4 0x05B1C /* PCI-Ex Statistic Control #4 */ | ||
1015 | #define E1000_FACTPS 0x05B30 /* Function Active and Power State to MNG */ | ||
1016 | #define E1000_SWSM 0x05B50 /* SW Semaphore */ | ||
1017 | #define E1000_FWSM 0x05B54 /* FW Semaphore */ | ||
1018 | #define E1000_FFLT_DBG 0x05F04 /* Debug Register */ | ||
1019 | #define E1000_HICR 0x08F00 /* Host Inteface Control */ | ||
782 | /* Register Set (82542) | 1020 | /* Register Set (82542) |
783 | * | 1021 | * |
784 | * Some of the 82542 registers are located at different offsets than they are | 1022 | * Some of the 82542 registers are located at different offsets than they are |
@@ -829,6 +1067,18 @@ struct e1000_ffvt_entry { | |||
829 | #define E1000_82542_VFTA 0x00600 | 1067 | #define E1000_82542_VFTA 0x00600 |
830 | #define E1000_82542_LEDCTL E1000_LEDCTL | 1068 | #define E1000_82542_LEDCTL E1000_LEDCTL |
831 | #define E1000_82542_PBA E1000_PBA | 1069 | #define E1000_82542_PBA E1000_PBA |
1070 | #define E1000_82542_PBS E1000_PBS | ||
1071 | #define E1000_82542_EEMNGCTL E1000_EEMNGCTL | ||
1072 | #define E1000_82542_EEARBC E1000_EEARBC | ||
1073 | #define E1000_82542_FLASHT E1000_FLASHT | ||
1074 | #define E1000_82542_EEWR E1000_EEWR | ||
1075 | #define E1000_82542_FLSWCTL E1000_FLSWCTL | ||
1076 | #define E1000_82542_FLSWDATA E1000_FLSWDATA | ||
1077 | #define E1000_82542_FLSWCNT E1000_FLSWCNT | ||
1078 | #define E1000_82542_FLOP E1000_FLOP | ||
1079 | #define E1000_82542_EXTCNF_CTRL E1000_EXTCNF_CTRL | ||
1080 | #define E1000_82542_EXTCNF_SIZE E1000_EXTCNF_SIZE | ||
1081 | #define E1000_82542_ERT E1000_ERT | ||
832 | #define E1000_82542_RXDCTL E1000_RXDCTL | 1082 | #define E1000_82542_RXDCTL E1000_RXDCTL |
833 | #define E1000_82542_RADV E1000_RADV | 1083 | #define E1000_82542_RADV E1000_RADV |
834 | #define E1000_82542_RSRPD E1000_RSRPD | 1084 | #define E1000_82542_RSRPD E1000_RSRPD |
@@ -913,6 +1163,38 @@ struct e1000_ffvt_entry { | |||
913 | #define E1000_82542_FFMT E1000_FFMT | 1163 | #define E1000_82542_FFMT E1000_FFMT |
914 | #define E1000_82542_FFVT E1000_FFVT | 1164 | #define E1000_82542_FFVT E1000_FFVT |
915 | #define E1000_82542_HOST_IF E1000_HOST_IF | 1165 | #define E1000_82542_HOST_IF E1000_HOST_IF |
1166 | #define E1000_82542_IAM E1000_IAM | ||
1167 | #define E1000_82542_EEMNGCTL E1000_EEMNGCTL | ||
1168 | #define E1000_82542_PSRCTL E1000_PSRCTL | ||
1169 | #define E1000_82542_RAID E1000_RAID | ||
1170 | #define E1000_82542_TARC0 E1000_TARC0 | ||
1171 | #define E1000_82542_TDBAL1 E1000_TDBAL1 | ||
1172 | #define E1000_82542_TDBAH1 E1000_TDBAH1 | ||
1173 | #define E1000_82542_TDLEN1 E1000_TDLEN1 | ||
1174 | #define E1000_82542_TDH1 E1000_TDH1 | ||
1175 | #define E1000_82542_TDT1 E1000_TDT1 | ||
1176 | #define E1000_82542_TXDCTL1 E1000_TXDCTL1 | ||
1177 | #define E1000_82542_TARC1 E1000_TARC1 | ||
1178 | #define E1000_82542_RFCTL E1000_RFCTL | ||
1179 | #define E1000_82542_GCR E1000_GCR | ||
1180 | #define E1000_82542_GSCL_1 E1000_GSCL_1 | ||
1181 | #define E1000_82542_GSCL_2 E1000_GSCL_2 | ||
1182 | #define E1000_82542_GSCL_3 E1000_GSCL_3 | ||
1183 | #define E1000_82542_GSCL_4 E1000_GSCL_4 | ||
1184 | #define E1000_82542_FACTPS E1000_FACTPS | ||
1185 | #define E1000_82542_SWSM E1000_SWSM | ||
1186 | #define E1000_82542_FWSM E1000_FWSM | ||
1187 | #define E1000_82542_FFLT_DBG E1000_FFLT_DBG | ||
1188 | #define E1000_82542_IAC E1000_IAC | ||
1189 | #define E1000_82542_ICRXPTC E1000_ICRXPTC | ||
1190 | #define E1000_82542_ICRXATC E1000_ICRXATC | ||
1191 | #define E1000_82542_ICTXPTC E1000_ICTXPTC | ||
1192 | #define E1000_82542_ICTXATC E1000_ICTXATC | ||
1193 | #define E1000_82542_ICTXQEC E1000_ICTXQEC | ||
1194 | #define E1000_82542_ICTXQMTC E1000_ICTXQMTC | ||
1195 | #define E1000_82542_ICRXDMTC E1000_ICRXDMTC | ||
1196 | #define E1000_82542_ICRXOC E1000_ICRXOC | ||
1197 | #define E1000_82542_HICR E1000_HICR | ||
916 | 1198 | ||
917 | /* Statistics counters collected by the MAC */ | 1199 | /* Statistics counters collected by the MAC */ |
918 | struct e1000_hw_stats { | 1200 | struct e1000_hw_stats { |
@@ -974,11 +1256,21 @@ struct e1000_hw_stats { | |||
974 | uint64_t bptc; | 1256 | uint64_t bptc; |
975 | uint64_t tsctc; | 1257 | uint64_t tsctc; |
976 | uint64_t tsctfc; | 1258 | uint64_t tsctfc; |
1259 | uint64_t iac; | ||
1260 | uint64_t icrxptc; | ||
1261 | uint64_t icrxatc; | ||
1262 | uint64_t ictxptc; | ||
1263 | uint64_t ictxatc; | ||
1264 | uint64_t ictxqec; | ||
1265 | uint64_t ictxqmtc; | ||
1266 | uint64_t icrxdmtc; | ||
1267 | uint64_t icrxoc; | ||
977 | }; | 1268 | }; |
978 | 1269 | ||
979 | /* Structure containing variables used by the shared code (e1000_hw.c) */ | 1270 | /* Structure containing variables used by the shared code (e1000_hw.c) */ |
980 | struct e1000_hw { | 1271 | struct e1000_hw { |
981 | uint8_t __iomem *hw_addr; | 1272 | uint8_t *hw_addr; |
1273 | uint8_t *flash_address; | ||
982 | e1000_mac_type mac_type; | 1274 | e1000_mac_type mac_type; |
983 | e1000_phy_type phy_type; | 1275 | e1000_phy_type phy_type; |
984 | uint32_t phy_init_script; | 1276 | uint32_t phy_init_script; |
@@ -993,6 +1285,7 @@ struct e1000_hw { | |||
993 | e1000_ms_type original_master_slave; | 1285 | e1000_ms_type original_master_slave; |
994 | e1000_ffe_config ffe_config_state; | 1286 | e1000_ffe_config ffe_config_state; |
995 | uint32_t asf_firmware_present; | 1287 | uint32_t asf_firmware_present; |
1288 | uint32_t eeprom_semaphore_present; | ||
996 | unsigned long io_base; | 1289 | unsigned long io_base; |
997 | uint32_t phy_id; | 1290 | uint32_t phy_id; |
998 | uint32_t phy_revision; | 1291 | uint32_t phy_revision; |
@@ -1009,6 +1302,8 @@ struct e1000_hw { | |||
1009 | uint32_t ledctl_default; | 1302 | uint32_t ledctl_default; |
1010 | uint32_t ledctl_mode1; | 1303 | uint32_t ledctl_mode1; |
1011 | uint32_t ledctl_mode2; | 1304 | uint32_t ledctl_mode2; |
1305 | boolean_t tx_pkt_filtering; | ||
1306 | struct e1000_host_mng_dhcp_cookie mng_cookie; | ||
1012 | uint16_t phy_spd_default; | 1307 | uint16_t phy_spd_default; |
1013 | uint16_t autoneg_advertised; | 1308 | uint16_t autoneg_advertised; |
1014 | uint16_t pci_cmd_word; | 1309 | uint16_t pci_cmd_word; |
@@ -1047,16 +1342,24 @@ struct e1000_hw { | |||
1047 | boolean_t adaptive_ifs; | 1342 | boolean_t adaptive_ifs; |
1048 | boolean_t ifs_params_forced; | 1343 | boolean_t ifs_params_forced; |
1049 | boolean_t in_ifs_mode; | 1344 | boolean_t in_ifs_mode; |
1345 | boolean_t mng_reg_access_disabled; | ||
1050 | }; | 1346 | }; |
1051 | 1347 | ||
1052 | 1348 | ||
1053 | #define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ | 1349 | #define E1000_EEPROM_SWDPIN0 0x0001 /* SWDPIN 0 EEPROM Value */ |
1054 | #define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ | 1350 | #define E1000_EEPROM_LED_LOGIC 0x0020 /* Led Logic Word */ |
1351 | #define E1000_EEPROM_RW_REG_DATA 16 /* Offset to data in EEPROM read/write registers */ | ||
1352 | #define E1000_EEPROM_RW_REG_DONE 2 /* Offset to READ/WRITE done bit */ | ||
1353 | #define E1000_EEPROM_RW_REG_START 1 /* First bit for telling part to start operation */ | ||
1354 | #define E1000_EEPROM_RW_ADDR_SHIFT 2 /* Shift to the address bits */ | ||
1355 | #define E1000_EEPROM_POLL_WRITE 1 /* Flag for polling for write complete */ | ||
1356 | #define E1000_EEPROM_POLL_READ 0 /* Flag for polling for read complete */ | ||
1055 | /* Register Bit Masks */ | 1357 | /* Register Bit Masks */ |
1056 | /* Device Control */ | 1358 | /* Device Control */ |
1057 | #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ | 1359 | #define E1000_CTRL_FD 0x00000001 /* Full duplex.0=half; 1=full */ |
1058 | #define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ | 1360 | #define E1000_CTRL_BEM 0x00000002 /* Endian Mode.0=little,1=big */ |
1059 | #define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ | 1361 | #define E1000_CTRL_PRIOR 0x00000004 /* Priority on PCI. 0=rx,1=fair */ |
1362 | #define E1000_CTRL_GIO_MASTER_DISABLE 0x00000004 /*Blocks new Master requests */ | ||
1060 | #define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ | 1363 | #define E1000_CTRL_LRST 0x00000008 /* Link reset. 0=normal,1=reset */ |
1061 | #define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ | 1364 | #define E1000_CTRL_TME 0x00000010 /* Test mode. 0=normal,1=test */ |
1062 | #define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ | 1365 | #define E1000_CTRL_SLE 0x00000020 /* Serial Link on 0=dis,1=en */ |
@@ -1070,6 +1373,7 @@ struct e1000_hw { | |||
1070 | #define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ | 1373 | #define E1000_CTRL_BEM32 0x00000400 /* Big Endian 32 mode */ |
1071 | #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ | 1374 | #define E1000_CTRL_FRCSPD 0x00000800 /* Force Speed */ |
1072 | #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ | 1375 | #define E1000_CTRL_FRCDPX 0x00001000 /* Force Duplex */ |
1376 | #define E1000_CTRL_D_UD_POLARITY 0x00004000 /* Defined polarity of Dock/Undock indication in SDP[0] */ | ||
1073 | #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ | 1377 | #define E1000_CTRL_SWDPIN0 0x00040000 /* SWDPIN 0 value */ |
1074 | #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ | 1378 | #define E1000_CTRL_SWDPIN1 0x00080000 /* SWDPIN 1 value */ |
1075 | #define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ | 1379 | #define E1000_CTRL_SWDPIN2 0x00100000 /* SWDPIN 2 value */ |
@@ -1089,6 +1393,7 @@ struct e1000_hw { | |||
1089 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ | 1393 | #define E1000_STATUS_FD 0x00000001 /* Full duplex.0=half,1=full */ |
1090 | #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ | 1394 | #define E1000_STATUS_LU 0x00000002 /* Link up.0=no,1=link */ |
1091 | #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ | 1395 | #define E1000_STATUS_FUNC_MASK 0x0000000C /* PCI Function Mask */ |
1396 | #define E1000_STATUS_FUNC_SHIFT 2 | ||
1092 | #define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ | 1397 | #define E1000_STATUS_FUNC_0 0x00000000 /* Function 0 */ |
1093 | #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ | 1398 | #define E1000_STATUS_FUNC_1 0x00000004 /* Function 1 */ |
1094 | #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ | 1399 | #define E1000_STATUS_TXOFF 0x00000010 /* transmission paused */ |
@@ -1098,6 +1403,8 @@ struct e1000_hw { | |||
1098 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ | 1403 | #define E1000_STATUS_SPEED_100 0x00000040 /* Speed 100Mb/s */ |
1099 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ | 1404 | #define E1000_STATUS_SPEED_1000 0x00000080 /* Speed 1000Mb/s */ |
1100 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ | 1405 | #define E1000_STATUS_ASDV 0x00000300 /* Auto speed detect value */ |
1406 | #define E1000_STATUS_DOCK_CI 0x00000800 /* Change in Dock/Undock state. Clear on write '0'. */ | ||
1407 | #define E1000_STATUS_GIO_MASTER_ENABLE 0x00080000 /* Status of Master requests. */ | ||
1101 | #define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ | 1408 | #define E1000_STATUS_MTXCKOK 0x00000400 /* MTX clock running OK */ |
1102 | #define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ | 1409 | #define E1000_STATUS_PCI66 0x00000800 /* In 66Mhz slot */ |
1103 | #define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ | 1410 | #define E1000_STATUS_BUS64 0x00001000 /* In 64 bit slot */ |
@@ -1128,6 +1435,18 @@ struct e1000_hw { | |||
1128 | #ifndef E1000_EEPROM_GRANT_ATTEMPTS | 1435 | #ifndef E1000_EEPROM_GRANT_ATTEMPTS |
1129 | #define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ | 1436 | #define E1000_EEPROM_GRANT_ATTEMPTS 1000 /* EEPROM # attempts to gain grant */ |
1130 | #endif | 1437 | #endif |
1438 | #define E1000_EECD_AUTO_RD 0x00000200 /* EEPROM Auto Read done */ | ||
1439 | #define E1000_EECD_SIZE_EX_MASK 0x00007800 /* EEprom Size */ | ||
1440 | #define E1000_EECD_SIZE_EX_SHIFT 11 | ||
1441 | #define E1000_EECD_NVADDS 0x00018000 /* NVM Address Size */ | ||
1442 | #define E1000_EECD_SELSHAD 0x00020000 /* Select Shadow RAM */ | ||
1443 | #define E1000_EECD_INITSRAM 0x00040000 /* Initialize Shadow RAM */ | ||
1444 | #define E1000_EECD_FLUPD 0x00080000 /* Update FLASH */ | ||
1445 | #define E1000_EECD_AUPDEN 0x00100000 /* Enable Autonomous FLASH update */ | ||
1446 | #define E1000_EECD_SHADV 0x00200000 /* Shadow RAM Data Valid */ | ||
1447 | #define E1000_EECD_SEC1VAL 0x00400000 /* Sector One Valid */ | ||
1448 | #define E1000_STM_OPCODE 0xDB00 | ||
1449 | #define E1000_HICR_FW_RESET 0xC0 | ||
1131 | 1450 | ||
1132 | /* EEPROM Read */ | 1451 | /* EEPROM Read */ |
1133 | #define E1000_EERD_START 0x00000001 /* Start Read */ | 1452 | #define E1000_EERD_START 0x00000001 /* Start Read */ |
@@ -1171,6 +1490,8 @@ struct e1000_hw { | |||
1171 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 | 1490 | #define E1000_CTRL_EXT_WR_WMARK_320 0x01000000 |
1172 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 | 1491 | #define E1000_CTRL_EXT_WR_WMARK_384 0x02000000 |
1173 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 | 1492 | #define E1000_CTRL_EXT_WR_WMARK_448 0x03000000 |
1493 | #define E1000_CTRL_EXT_IAME 0x08000000 /* Interrupt acknowledge Auto-mask */ | ||
1494 | #define E1000_CTRL_EXT_INT_TIMER_CLR 0x20000000 /* Clear Interrupt timers after IMS clear */ | ||
1174 | 1495 | ||
1175 | /* MDI Control */ | 1496 | /* MDI Control */ |
1176 | #define E1000_MDIC_DATA_MASK 0x0000FFFF | 1497 | #define E1000_MDIC_DATA_MASK 0x0000FFFF |
@@ -1187,14 +1508,17 @@ struct e1000_hw { | |||
1187 | /* LED Control */ | 1508 | /* LED Control */ |
1188 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F | 1509 | #define E1000_LEDCTL_LED0_MODE_MASK 0x0000000F |
1189 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 | 1510 | #define E1000_LEDCTL_LED0_MODE_SHIFT 0 |
1511 | #define E1000_LEDCTL_LED0_BLINK_RATE 0x0000020 | ||
1190 | #define E1000_LEDCTL_LED0_IVRT 0x00000040 | 1512 | #define E1000_LEDCTL_LED0_IVRT 0x00000040 |
1191 | #define E1000_LEDCTL_LED0_BLINK 0x00000080 | 1513 | #define E1000_LEDCTL_LED0_BLINK 0x00000080 |
1192 | #define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 | 1514 | #define E1000_LEDCTL_LED1_MODE_MASK 0x00000F00 |
1193 | #define E1000_LEDCTL_LED1_MODE_SHIFT 8 | 1515 | #define E1000_LEDCTL_LED1_MODE_SHIFT 8 |
1516 | #define E1000_LEDCTL_LED1_BLINK_RATE 0x0002000 | ||
1194 | #define E1000_LEDCTL_LED1_IVRT 0x00004000 | 1517 | #define E1000_LEDCTL_LED1_IVRT 0x00004000 |
1195 | #define E1000_LEDCTL_LED1_BLINK 0x00008000 | 1518 | #define E1000_LEDCTL_LED1_BLINK 0x00008000 |
1196 | #define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 | 1519 | #define E1000_LEDCTL_LED2_MODE_MASK 0x000F0000 |
1197 | #define E1000_LEDCTL_LED2_MODE_SHIFT 16 | 1520 | #define E1000_LEDCTL_LED2_MODE_SHIFT 16 |
1521 | #define E1000_LEDCTL_LED2_BLINK_RATE 0x00200000 | ||
1198 | #define E1000_LEDCTL_LED2_IVRT 0x00400000 | 1522 | #define E1000_LEDCTL_LED2_IVRT 0x00400000 |
1199 | #define E1000_LEDCTL_LED2_BLINK 0x00800000 | 1523 | #define E1000_LEDCTL_LED2_BLINK 0x00800000 |
1200 | #define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 | 1524 | #define E1000_LEDCTL_LED3_MODE_MASK 0x0F000000 |
@@ -1238,6 +1562,10 @@ struct e1000_hw { | |||
1238 | #define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ | 1562 | #define E1000_ICR_GPI_EN3 0x00004000 /* GP Int 3 */ |
1239 | #define E1000_ICR_TXD_LOW 0x00008000 | 1563 | #define E1000_ICR_TXD_LOW 0x00008000 |
1240 | #define E1000_ICR_SRPD 0x00010000 | 1564 | #define E1000_ICR_SRPD 0x00010000 |
1565 | #define E1000_ICR_ACK 0x00020000 /* Receive Ack frame */ | ||
1566 | #define E1000_ICR_MNG 0x00040000 /* Manageability event */ | ||
1567 | #define E1000_ICR_DOCK 0x00080000 /* Dock/Undock */ | ||
1568 | #define E1000_ICR_INT_ASSERTED 0x80000000 /* If this bit asserted, the driver should claim the interrupt */ | ||
1241 | 1569 | ||
1242 | /* Interrupt Cause Set */ | 1570 | /* Interrupt Cause Set */ |
1243 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1571 | #define E1000_ICS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1255,6 +1583,9 @@ struct e1000_hw { | |||
1255 | #define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | 1583 | #define E1000_ICS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ |
1256 | #define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW | 1584 | #define E1000_ICS_TXD_LOW E1000_ICR_TXD_LOW |
1257 | #define E1000_ICS_SRPD E1000_ICR_SRPD | 1585 | #define E1000_ICS_SRPD E1000_ICR_SRPD |
1586 | #define E1000_ICS_ACK E1000_ICR_ACK /* Receive Ack frame */ | ||
1587 | #define E1000_ICS_MNG E1000_ICR_MNG /* Manageability event */ | ||
1588 | #define E1000_ICS_DOCK E1000_ICR_DOCK /* Dock/Undock */ | ||
1258 | 1589 | ||
1259 | /* Interrupt Mask Set */ | 1590 | /* Interrupt Mask Set */ |
1260 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1591 | #define E1000_IMS_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1272,6 +1603,9 @@ struct e1000_hw { | |||
1272 | #define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | 1603 | #define E1000_IMS_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ |
1273 | #define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW | 1604 | #define E1000_IMS_TXD_LOW E1000_ICR_TXD_LOW |
1274 | #define E1000_IMS_SRPD E1000_ICR_SRPD | 1605 | #define E1000_IMS_SRPD E1000_ICR_SRPD |
1606 | #define E1000_IMS_ACK E1000_ICR_ACK /* Receive Ack frame */ | ||
1607 | #define E1000_IMS_MNG E1000_ICR_MNG /* Manageability event */ | ||
1608 | #define E1000_IMS_DOCK E1000_ICR_DOCK /* Dock/Undock */ | ||
1275 | 1609 | ||
1276 | /* Interrupt Mask Clear */ | 1610 | /* Interrupt Mask Clear */ |
1277 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ | 1611 | #define E1000_IMC_TXDW E1000_ICR_TXDW /* Transmit desc written back */ |
@@ -1289,6 +1623,9 @@ struct e1000_hw { | |||
1289 | #define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ | 1623 | #define E1000_IMC_GPI_EN3 E1000_ICR_GPI_EN3 /* GP Int 3 */ |
1290 | #define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW | 1624 | #define E1000_IMC_TXD_LOW E1000_ICR_TXD_LOW |
1291 | #define E1000_IMC_SRPD E1000_ICR_SRPD | 1625 | #define E1000_IMC_SRPD E1000_ICR_SRPD |
1626 | #define E1000_IMC_ACK E1000_ICR_ACK /* Receive Ack frame */ | ||
1627 | #define E1000_IMC_MNG E1000_ICR_MNG /* Manageability event */ | ||
1628 | #define E1000_IMC_DOCK E1000_ICR_DOCK /* Dock/Undock */ | ||
1292 | 1629 | ||
1293 | /* Receive Control */ | 1630 | /* Receive Control */ |
1294 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ | 1631 | #define E1000_RCTL_RST 0x00000001 /* Software reset */ |
@@ -1301,6 +1638,8 @@ struct e1000_hw { | |||
1301 | #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ | 1638 | #define E1000_RCTL_LBM_MAC 0x00000040 /* MAC loopback mode */ |
1302 | #define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ | 1639 | #define E1000_RCTL_LBM_SLP 0x00000080 /* serial link loopback mode */ |
1303 | #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ | 1640 | #define E1000_RCTL_LBM_TCVR 0x000000C0 /* tcvr loopback mode */ |
1641 | #define E1000_RCTL_DTYP_MASK 0x00000C00 /* Descriptor type mask */ | ||
1642 | #define E1000_RCTL_DTYP_PS 0x00000400 /* Packet Split descriptor */ | ||
1304 | #define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ | 1643 | #define E1000_RCTL_RDMTS_HALF 0x00000000 /* rx desc min threshold size */ |
1305 | #define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ | 1644 | #define E1000_RCTL_RDMTS_QUAT 0x00000100 /* rx desc min threshold size */ |
1306 | #define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ | 1645 | #define E1000_RCTL_RDMTS_EIGTH 0x00000200 /* rx desc min threshold size */ |
@@ -1327,6 +1666,34 @@ struct e1000_hw { | |||
1327 | #define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ | 1666 | #define E1000_RCTL_PMCF 0x00800000 /* pass MAC control frames */ |
1328 | #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ | 1667 | #define E1000_RCTL_BSEX 0x02000000 /* Buffer size extension */ |
1329 | #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ | 1668 | #define E1000_RCTL_SECRC 0x04000000 /* Strip Ethernet CRC */ |
1669 | #define E1000_RCTL_FLXBUF_MASK 0x78000000 /* Flexible buffer size */ | ||
1670 | #define E1000_RCTL_FLXBUF_SHIFT 27 /* Flexible buffer shift */ | ||
1671 | |||
1672 | /* Use byte values for the following shift parameters | ||
1673 | * Usage: | ||
1674 | * psrctl |= (((ROUNDUP(value0, 128) >> E1000_PSRCTL_BSIZE0_SHIFT) & | ||
1675 | * E1000_PSRCTL_BSIZE0_MASK) | | ||
1676 | * ((ROUNDUP(value1, 1024) >> E1000_PSRCTL_BSIZE1_SHIFT) & | ||
1677 | * E1000_PSRCTL_BSIZE1_MASK) | | ||
1678 | * ((ROUNDUP(value2, 1024) << E1000_PSRCTL_BSIZE2_SHIFT) & | ||
1679 | * E1000_PSRCTL_BSIZE2_MASK) | | ||
1680 | * ((ROUNDUP(value3, 1024) << E1000_PSRCTL_BSIZE3_SHIFT) |; | ||
1681 | * E1000_PSRCTL_BSIZE3_MASK)) | ||
1682 | * where value0 = [128..16256], default=256 | ||
1683 | * value1 = [1024..64512], default=4096 | ||
1684 | * value2 = [0..64512], default=4096 | ||
1685 | * value3 = [0..64512], default=0 | ||
1686 | */ | ||
1687 | |||
1688 | #define E1000_PSRCTL_BSIZE0_MASK 0x0000007F | ||
1689 | #define E1000_PSRCTL_BSIZE1_MASK 0x00003F00 | ||
1690 | #define E1000_PSRCTL_BSIZE2_MASK 0x003F0000 | ||
1691 | #define E1000_PSRCTL_BSIZE3_MASK 0x3F000000 | ||
1692 | |||
1693 | #define E1000_PSRCTL_BSIZE0_SHIFT 7 /* Shift _right_ 7 */ | ||
1694 | #define E1000_PSRCTL_BSIZE1_SHIFT 2 /* Shift _right_ 2 */ | ||
1695 | #define E1000_PSRCTL_BSIZE2_SHIFT 6 /* Shift _left_ 6 */ | ||
1696 | #define E1000_PSRCTL_BSIZE3_SHIFT 14 /* Shift _left_ 14 */ | ||
1330 | 1697 | ||
1331 | /* Receive Descriptor */ | 1698 | /* Receive Descriptor */ |
1332 | #define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ | 1699 | #define E1000_RDT_DELAY 0x0000ffff /* Delay timer (1=1024us) */ |
@@ -1341,6 +1708,23 @@ struct e1000_hw { | |||
1341 | #define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ | 1708 | #define E1000_FCRTL_RTL 0x0000FFF8 /* Mask Bits[15:3] for RTL */ |
1342 | #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ | 1709 | #define E1000_FCRTL_XONE 0x80000000 /* Enable XON frame transmission */ |
1343 | 1710 | ||
1711 | /* Header split receive */ | ||
1712 | #define E1000_RFCTL_ISCSI_DIS 0x00000001 | ||
1713 | #define E1000_RFCTL_ISCSI_DWC_MASK 0x0000003E | ||
1714 | #define E1000_RFCTL_ISCSI_DWC_SHIFT 1 | ||
1715 | #define E1000_RFCTL_NFSW_DIS 0x00000040 | ||
1716 | #define E1000_RFCTL_NFSR_DIS 0x00000080 | ||
1717 | #define E1000_RFCTL_NFS_VER_MASK 0x00000300 | ||
1718 | #define E1000_RFCTL_NFS_VER_SHIFT 8 | ||
1719 | #define E1000_RFCTL_IPV6_DIS 0x00000400 | ||
1720 | #define E1000_RFCTL_IPV6_XSUM_DIS 0x00000800 | ||
1721 | #define E1000_RFCTL_ACK_DIS 0x00001000 | ||
1722 | #define E1000_RFCTL_ACKD_DIS 0x00002000 | ||
1723 | #define E1000_RFCTL_IPFRSP_DIS 0x00004000 | ||
1724 | #define E1000_RFCTL_EXTEN 0x00008000 | ||
1725 | #define E1000_RFCTL_IPV6_EX_DIS 0x00010000 | ||
1726 | #define E1000_RFCTL_NEW_IPV6_EXT_DIS 0x00020000 | ||
1727 | |||
1344 | /* Receive Descriptor Control */ | 1728 | /* Receive Descriptor Control */ |
1345 | #define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ | 1729 | #define E1000_RXDCTL_PTHRESH 0x0000003F /* RXDCTL Prefetch Threshold */ |
1346 | #define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ | 1730 | #define E1000_RXDCTL_HTHRESH 0x00003F00 /* RXDCTL Host Threshold */ |
@@ -1354,6 +1738,8 @@ struct e1000_hw { | |||
1354 | #define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ | 1738 | #define E1000_TXDCTL_GRAN 0x01000000 /* TXDCTL Granularity */ |
1355 | #define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ | 1739 | #define E1000_TXDCTL_LWTHRESH 0xFE000000 /* TXDCTL Low Threshold */ |
1356 | #define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ | 1740 | #define E1000_TXDCTL_FULL_TX_DESC_WB 0x01010000 /* GRAN=1, WTHRESH=1 */ |
1741 | #define E1000_TXDCTL_COUNT_DESC 0x00400000 /* Enable the counting of desc. | ||
1742 | still to be processed. */ | ||
1357 | 1743 | ||
1358 | /* Transmit Configuration Word */ | 1744 | /* Transmit Configuration Word */ |
1359 | #define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ | 1745 | #define E1000_TXCW_FD 0x00000020 /* TXCW full duplex */ |
@@ -1387,12 +1773,16 @@ struct e1000_hw { | |||
1387 | #define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ | 1773 | #define E1000_TCTL_PBE 0x00800000 /* Packet Burst Enable */ |
1388 | #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ | 1774 | #define E1000_TCTL_RTLC 0x01000000 /* Re-transmit on late collision */ |
1389 | #define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ | 1775 | #define E1000_TCTL_NRTU 0x02000000 /* No Re-transmit on underrun */ |
1776 | #define E1000_TCTL_MULR 0x10000000 /* Multiple request support */ | ||
1390 | 1777 | ||
1391 | /* Receive Checksum Control */ | 1778 | /* Receive Checksum Control */ |
1392 | #define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ | 1779 | #define E1000_RXCSUM_PCSS_MASK 0x000000FF /* Packet Checksum Start */ |
1393 | #define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ | 1780 | #define E1000_RXCSUM_IPOFL 0x00000100 /* IPv4 checksum offload */ |
1394 | #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ | 1781 | #define E1000_RXCSUM_TUOFL 0x00000200 /* TCP / UDP checksum offload */ |
1395 | #define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ | 1782 | #define E1000_RXCSUM_IPV6OFL 0x00000400 /* IPv6 checksum offload */ |
1783 | #define E1000_RXCSUM_IPPCSE 0x00001000 /* IP payload checksum enable */ | ||
1784 | #define E1000_RXCSUM_PCSD 0x00002000 /* packet checksum disabled */ | ||
1785 | |||
1396 | 1786 | ||
1397 | /* Definitions for power management and wakeup registers */ | 1787 | /* Definitions for power management and wakeup registers */ |
1398 | /* Wake Up Control */ | 1788 | /* Wake Up Control */ |
@@ -1411,6 +1801,7 @@ struct e1000_hw { | |||
1411 | #define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ | 1801 | #define E1000_WUFC_ARP 0x00000020 /* ARP Request Packet Wakeup Enable */ |
1412 | #define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ | 1802 | #define E1000_WUFC_IPV4 0x00000040 /* Directed IPv4 Packet Wakeup Enable */ |
1413 | #define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ | 1803 | #define E1000_WUFC_IPV6 0x00000080 /* Directed IPv6 Packet Wakeup Enable */ |
1804 | #define E1000_WUFC_IGNORE_TCO 0x00008000 /* Ignore WakeOn TCO packets */ | ||
1414 | #define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ | 1805 | #define E1000_WUFC_FLX0 0x00010000 /* Flexible Filter 0 Enable */ |
1415 | #define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ | 1806 | #define E1000_WUFC_FLX1 0x00020000 /* Flexible Filter 1 Enable */ |
1416 | #define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ | 1807 | #define E1000_WUFC_FLX2 0x00040000 /* Flexible Filter 2 Enable */ |
@@ -1446,13 +1837,19 @@ struct e1000_hw { | |||
1446 | #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ | 1837 | #define E1000_MANC_ARP_EN 0x00002000 /* Enable ARP Request Filtering */ |
1447 | #define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery | 1838 | #define E1000_MANC_NEIGHBOR_EN 0x00004000 /* Enable Neighbor Discovery |
1448 | * Filtering */ | 1839 | * Filtering */ |
1840 | #define E1000_MANC_ARP_RES_EN 0x00008000 /* Enable ARP response Filtering */ | ||
1449 | #define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ | 1841 | #define E1000_MANC_TCO_RESET 0x00010000 /* TCO Reset Occurred */ |
1450 | #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ | 1842 | #define E1000_MANC_RCV_TCO_EN 0x00020000 /* Receive TCO Packets Enabled */ |
1451 | #define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ | 1843 | #define E1000_MANC_REPORT_STATUS 0x00040000 /* Status Reporting Enabled */ |
1844 | #define E1000_MANC_BLK_PHY_RST_ON_IDE 0x00040000 /* Block phy resets */ | ||
1452 | #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address | 1845 | #define E1000_MANC_EN_MAC_ADDR_FILTER 0x00100000 /* Enable MAC address |
1453 | * filtering */ | 1846 | * filtering */ |
1454 | #define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host | 1847 | #define E1000_MANC_EN_MNG2HOST 0x00200000 /* Enable MNG packets to host |
1455 | * memory */ | 1848 | * memory */ |
1849 | #define E1000_MANC_EN_IP_ADDR_FILTER 0x00400000 /* Enable IP address | ||
1850 | * filtering */ | ||
1851 | #define E1000_MANC_EN_XSUM_FILTER 0x00800000 /* Enable checksum filtering */ | ||
1852 | #define E1000_MANC_BR_EN 0x01000000 /* Enable broadcast filtering */ | ||
1456 | #define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ | 1853 | #define E1000_MANC_SMB_REQ 0x01000000 /* SMBus Request */ |
1457 | #define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ | 1854 | #define E1000_MANC_SMB_GNT 0x02000000 /* SMBus Grant */ |
1458 | #define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ | 1855 | #define E1000_MANC_SMB_CLK_IN 0x04000000 /* SMBus Clock In */ |
@@ -1463,11 +1860,97 @@ struct e1000_hw { | |||
1463 | #define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ | 1860 | #define E1000_MANC_SMB_DATA_OUT_SHIFT 28 /* SMBus Data Out Shift */ |
1464 | #define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ | 1861 | #define E1000_MANC_SMB_CLK_OUT_SHIFT 29 /* SMBus Clock Out Shift */ |
1465 | 1862 | ||
1863 | /* SW Semaphore Register */ | ||
1864 | #define E1000_SWSM_SMBI 0x00000001 /* Driver Semaphore bit */ | ||
1865 | #define E1000_SWSM_SWESMBI 0x00000002 /* FW Semaphore bit */ | ||
1866 | #define E1000_SWSM_WMNG 0x00000004 /* Wake MNG Clock */ | ||
1867 | #define E1000_SWSM_DRV_LOAD 0x00000008 /* Driver Loaded Bit */ | ||
1868 | |||
1869 | /* FW Semaphore Register */ | ||
1870 | #define E1000_FWSM_MODE_MASK 0x0000000E /* FW mode */ | ||
1871 | #define E1000_FWSM_MODE_SHIFT 1 | ||
1872 | #define E1000_FWSM_FW_VALID 0x00008000 /* FW established a valid mode */ | ||
1873 | |||
1874 | /* FFLT Debug Register */ | ||
1875 | #define E1000_FFLT_DBG_INVC 0x00100000 /* Invalid /C/ code handling */ | ||
1876 | |||
1877 | typedef enum { | ||
1878 | e1000_mng_mode_none = 0, | ||
1879 | e1000_mng_mode_asf, | ||
1880 | e1000_mng_mode_pt, | ||
1881 | e1000_mng_mode_ipmi, | ||
1882 | e1000_mng_mode_host_interface_only | ||
1883 | } e1000_mng_mode; | ||
1884 | |||
1885 | /* Host Inteface Control Register */ | ||
1886 | #define E1000_HICR_EN 0x00000001 /* Enable Bit - RO */ | ||
1887 | #define E1000_HICR_C 0x00000002 /* Driver sets this bit when done | ||
1888 | * to put command in RAM */ | ||
1889 | #define E1000_HICR_SV 0x00000004 /* Status Validity */ | ||
1890 | #define E1000_HICR_FWR 0x00000080 /* FW reset. Set by the Host */ | ||
1891 | |||
1892 | /* Host Interface Command Interface - Address range 0x8800-0x8EFF */ | ||
1893 | #define E1000_HI_MAX_DATA_LENGTH 252 /* Host Interface data length */ | ||
1894 | #define E1000_HI_MAX_BLOCK_BYTE_LENGTH 1792 /* Number of bytes in range */ | ||
1895 | #define E1000_HI_MAX_BLOCK_DWORD_LENGTH 448 /* Number of dwords in range */ | ||
1896 | #define E1000_HI_COMMAND_TIMEOUT 500 /* Time in ms to process HI command */ | ||
1897 | |||
1898 | struct e1000_host_command_header { | ||
1899 | uint8_t command_id; | ||
1900 | uint8_t command_length; | ||
1901 | uint8_t command_options; /* I/F bits for command, status for return */ | ||
1902 | uint8_t checksum; | ||
1903 | }; | ||
1904 | struct e1000_host_command_info { | ||
1905 | struct e1000_host_command_header command_header; /* Command Head/Command Result Head has 4 bytes */ | ||
1906 | uint8_t command_data[E1000_HI_MAX_DATA_LENGTH]; /* Command data can length 0..252 */ | ||
1907 | }; | ||
1908 | |||
1909 | /* Host SMB register #0 */ | ||
1910 | #define E1000_HSMC0R_CLKIN 0x00000001 /* SMB Clock in */ | ||
1911 | #define E1000_HSMC0R_DATAIN 0x00000002 /* SMB Data in */ | ||
1912 | #define E1000_HSMC0R_DATAOUT 0x00000004 /* SMB Data out */ | ||
1913 | #define E1000_HSMC0R_CLKOUT 0x00000008 /* SMB Clock out */ | ||
1914 | |||
1915 | /* Host SMB register #1 */ | ||
1916 | #define E1000_HSMC1R_CLKIN E1000_HSMC0R_CLKIN | ||
1917 | #define E1000_HSMC1R_DATAIN E1000_HSMC0R_DATAIN | ||
1918 | #define E1000_HSMC1R_DATAOUT E1000_HSMC0R_DATAOUT | ||
1919 | #define E1000_HSMC1R_CLKOUT E1000_HSMC0R_CLKOUT | ||
1920 | |||
1921 | /* FW Status Register */ | ||
1922 | #define E1000_FWSTS_FWS_MASK 0x000000FF /* FW Status */ | ||
1923 | |||
1466 | /* Wake Up Packet Length */ | 1924 | /* Wake Up Packet Length */ |
1467 | #define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ | 1925 | #define E1000_WUPL_LENGTH_MASK 0x0FFF /* Only the lower 12 bits are valid */ |
1468 | 1926 | ||
1469 | #define E1000_MDALIGN 4096 | 1927 | #define E1000_MDALIGN 4096 |
1470 | 1928 | ||
1929 | #define E1000_GCR_BEM32 0x00400000 | ||
1930 | /* Function Active and Power State to MNG */ | ||
1931 | #define E1000_FACTPS_FUNC0_POWER_STATE_MASK 0x00000003 | ||
1932 | #define E1000_FACTPS_LAN0_VALID 0x00000004 | ||
1933 | #define E1000_FACTPS_FUNC0_AUX_EN 0x00000008 | ||
1934 | #define E1000_FACTPS_FUNC1_POWER_STATE_MASK 0x000000C0 | ||
1935 | #define E1000_FACTPS_FUNC1_POWER_STATE_SHIFT 6 | ||
1936 | #define E1000_FACTPS_LAN1_VALID 0x00000100 | ||
1937 | #define E1000_FACTPS_FUNC1_AUX_EN 0x00000200 | ||
1938 | #define E1000_FACTPS_FUNC2_POWER_STATE_MASK 0x00003000 | ||
1939 | #define E1000_FACTPS_FUNC2_POWER_STATE_SHIFT 12 | ||
1940 | #define E1000_FACTPS_IDE_ENABLE 0x00004000 | ||
1941 | #define E1000_FACTPS_FUNC2_AUX_EN 0x00008000 | ||
1942 | #define E1000_FACTPS_FUNC3_POWER_STATE_MASK 0x000C0000 | ||
1943 | #define E1000_FACTPS_FUNC3_POWER_STATE_SHIFT 18 | ||
1944 | #define E1000_FACTPS_SP_ENABLE 0x00100000 | ||
1945 | #define E1000_FACTPS_FUNC3_AUX_EN 0x00200000 | ||
1946 | #define E1000_FACTPS_FUNC4_POWER_STATE_MASK 0x03000000 | ||
1947 | #define E1000_FACTPS_FUNC4_POWER_STATE_SHIFT 24 | ||
1948 | #define E1000_FACTPS_IPMI_ENABLE 0x04000000 | ||
1949 | #define E1000_FACTPS_FUNC4_AUX_EN 0x08000000 | ||
1950 | #define E1000_FACTPS_MNGCG 0x20000000 | ||
1951 | #define E1000_FACTPS_LAN_FUNC_SEL 0x40000000 | ||
1952 | #define E1000_FACTPS_PM_STATE_CHANGED 0x80000000 | ||
1953 | |||
1471 | /* EEPROM Commands - Microwire */ | 1954 | /* EEPROM Commands - Microwire */ |
1472 | #define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ | 1955 | #define EEPROM_READ_OPCODE_MICROWIRE 0x6 /* EEPROM read opcode */ |
1473 | #define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ | 1956 | #define EEPROM_WRITE_OPCODE_MICROWIRE 0x5 /* EEPROM write opcode */ |
@@ -1477,22 +1960,20 @@ struct e1000_hw { | |||
1477 | 1960 | ||
1478 | /* EEPROM Commands - SPI */ | 1961 | /* EEPROM Commands - SPI */ |
1479 | #define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ | 1962 | #define EEPROM_MAX_RETRY_SPI 5000 /* Max wait of 5ms, for RDY signal */ |
1480 | #define EEPROM_READ_OPCODE_SPI 0x3 /* EEPROM read opcode */ | 1963 | #define EEPROM_READ_OPCODE_SPI 0x03 /* EEPROM read opcode */ |
1481 | #define EEPROM_WRITE_OPCODE_SPI 0x2 /* EEPROM write opcode */ | 1964 | #define EEPROM_WRITE_OPCODE_SPI 0x02 /* EEPROM write opcode */ |
1482 | #define EEPROM_A8_OPCODE_SPI 0x8 /* opcode bit-3 = address bit-8 */ | 1965 | #define EEPROM_A8_OPCODE_SPI 0x08 /* opcode bit-3 = address bit-8 */ |
1483 | #define EEPROM_WREN_OPCODE_SPI 0x6 /* EEPROM set Write Enable latch */ | 1966 | #define EEPROM_WREN_OPCODE_SPI 0x06 /* EEPROM set Write Enable latch */ |
1484 | #define EEPROM_WRDI_OPCODE_SPI 0x4 /* EEPROM reset Write Enable latch */ | 1967 | #define EEPROM_WRDI_OPCODE_SPI 0x04 /* EEPROM reset Write Enable latch */ |
1485 | #define EEPROM_RDSR_OPCODE_SPI 0x5 /* EEPROM read Status register */ | 1968 | #define EEPROM_RDSR_OPCODE_SPI 0x05 /* EEPROM read Status register */ |
1486 | #define EEPROM_WRSR_OPCODE_SPI 0x1 /* EEPROM write Status register */ | 1969 | #define EEPROM_WRSR_OPCODE_SPI 0x01 /* EEPROM write Status register */ |
1970 | #define EEPROM_ERASE4K_OPCODE_SPI 0x20 /* EEPROM ERASE 4KB */ | ||
1971 | #define EEPROM_ERASE64K_OPCODE_SPI 0xD8 /* EEPROM ERASE 64KB */ | ||
1972 | #define EEPROM_ERASE256_OPCODE_SPI 0xDB /* EEPROM ERASE 256B */ | ||
1487 | 1973 | ||
1488 | /* EEPROM Size definitions */ | 1974 | /* EEPROM Size definitions */ |
1489 | #define EEPROM_SIZE_16KB 0x1800 | 1975 | #define EEPROM_WORD_SIZE_SHIFT 6 |
1490 | #define EEPROM_SIZE_8KB 0x1400 | 1976 | #define EEPROM_SIZE_SHIFT 10 |
1491 | #define EEPROM_SIZE_4KB 0x1000 | ||
1492 | #define EEPROM_SIZE_2KB 0x0C00 | ||
1493 | #define EEPROM_SIZE_1KB 0x0800 | ||
1494 | #define EEPROM_SIZE_512B 0x0400 | ||
1495 | #define EEPROM_SIZE_128B 0x0000 | ||
1496 | #define EEPROM_SIZE_MASK 0x1C00 | 1977 | #define EEPROM_SIZE_MASK 0x1C00 |
1497 | 1978 | ||
1498 | /* EEPROM Word Offsets */ | 1979 | /* EEPROM Word Offsets */ |
@@ -1606,7 +2087,22 @@ struct e1000_hw { | |||
1606 | #define IFS_MIN 40 | 2087 | #define IFS_MIN 40 |
1607 | #define IFS_RATIO 4 | 2088 | #define IFS_RATIO 4 |
1608 | 2089 | ||
2090 | /* Extended Configuration Control and Size */ | ||
2091 | #define E1000_EXTCNF_CTRL_PCIE_WRITE_ENABLE 0x00000001 | ||
2092 | #define E1000_EXTCNF_CTRL_PHY_WRITE_ENABLE 0x00000002 | ||
2093 | #define E1000_EXTCNF_CTRL_D_UD_ENABLE 0x00000004 | ||
2094 | #define E1000_EXTCNF_CTRL_D_UD_LATENCY 0x00000008 | ||
2095 | #define E1000_EXTCNF_CTRL_D_UD_OWNER 0x00000010 | ||
2096 | #define E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP 0x00000020 | ||
2097 | #define E1000_EXTCNF_CTRL_MDIO_HW_OWNERSHIP 0x00000040 | ||
2098 | #define E1000_EXTCNF_CTRL_EXT_CNF_POINTER 0x1FFF0000 | ||
2099 | |||
2100 | #define E1000_EXTCNF_SIZE_EXT_PHY_LENGTH 0x000000FF | ||
2101 | #define E1000_EXTCNF_SIZE_EXT_DOCK_LENGTH 0x0000FF00 | ||
2102 | #define E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH 0x00FF0000 | ||
2103 | |||
1609 | /* PBA constants */ | 2104 | /* PBA constants */ |
2105 | #define E1000_PBA_12K 0x000C /* 12KB, default Rx allocation */ | ||
1610 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ | 2106 | #define E1000_PBA_16K 0x0010 /* 16KB, default TX allocation */ |
1611 | #define E1000_PBA_22K 0x0016 | 2107 | #define E1000_PBA_22K 0x0016 |
1612 | #define E1000_PBA_24K 0x0018 | 2108 | #define E1000_PBA_24K 0x0018 |
@@ -1663,6 +2159,13 @@ struct e1000_hw { | |||
1663 | /* Number of milliseconds we wait for auto-negotiation to complete */ | 2159 | /* Number of milliseconds we wait for auto-negotiation to complete */ |
1664 | #define LINK_UP_TIMEOUT 500 | 2160 | #define LINK_UP_TIMEOUT 500 |
1665 | 2161 | ||
2162 | /* Number of 100 microseconds we wait for PCI Express master disable */ | ||
2163 | #define MASTER_DISABLE_TIMEOUT 800 | ||
2164 | /* Number of milliseconds we wait for Eeprom auto read bit done after MAC reset */ | ||
2165 | #define AUTO_READ_DONE_TIMEOUT 10 | ||
2166 | /* Number of milliseconds we wait for PHY configuration done after MAC reset */ | ||
2167 | #define PHY_CFG_TIMEOUT 40 | ||
2168 | |||
1666 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) | 2169 | #define E1000_TX_BUFFER_SIZE ((uint32_t)1514) |
1667 | 2170 | ||
1668 | /* The carrier extension symbol, as received by the NIC. */ | 2171 | /* The carrier extension symbol, as received by the NIC. */ |
@@ -1763,6 +2266,7 @@ struct e1000_hw { | |||
1763 | #define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ | 2266 | #define IGP01E1000_PHY_LINK_HEALTH 0x13 /* PHY Link Health Register */ |
1764 | #define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ | 2267 | #define IGP01E1000_GMII_FIFO 0x14 /* GMII FIFO Register */ |
1765 | #define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ | 2268 | #define IGP01E1000_PHY_CHANNEL_QUALITY 0x15 /* PHY Channel Quality Register */ |
2269 | #define IGP02E1000_PHY_POWER_MGMT 0x19 | ||
1766 | #define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ | 2270 | #define IGP01E1000_PHY_PAGE_SELECT 0x1F /* PHY Page Select Core Register */ |
1767 | 2271 | ||
1768 | /* IGP01E1000 AGC Registers - stores the cable length values*/ | 2272 | /* IGP01E1000 AGC Registers - stores the cable length values*/ |
@@ -1771,12 +2275,20 @@ struct e1000_hw { | |||
1771 | #define IGP01E1000_PHY_AGC_C 0x1472 | 2275 | #define IGP01E1000_PHY_AGC_C 0x1472 |
1772 | #define IGP01E1000_PHY_AGC_D 0x1872 | 2276 | #define IGP01E1000_PHY_AGC_D 0x1872 |
1773 | 2277 | ||
2278 | /* IGP02E1000 AGC Registers for cable length values */ | ||
2279 | #define IGP02E1000_PHY_AGC_A 0x11B1 | ||
2280 | #define IGP02E1000_PHY_AGC_B 0x12B1 | ||
2281 | #define IGP02E1000_PHY_AGC_C 0x14B1 | ||
2282 | #define IGP02E1000_PHY_AGC_D 0x18B1 | ||
2283 | |||
1774 | /* IGP01E1000 DSP Reset Register */ | 2284 | /* IGP01E1000 DSP Reset Register */ |
1775 | #define IGP01E1000_PHY_DSP_RESET 0x1F33 | 2285 | #define IGP01E1000_PHY_DSP_RESET 0x1F33 |
1776 | #define IGP01E1000_PHY_DSP_SET 0x1F71 | 2286 | #define IGP01E1000_PHY_DSP_SET 0x1F71 |
1777 | #define IGP01E1000_PHY_DSP_FFE 0x1F35 | 2287 | #define IGP01E1000_PHY_DSP_FFE 0x1F35 |
1778 | 2288 | ||
1779 | #define IGP01E1000_PHY_CHANNEL_NUM 4 | 2289 | #define IGP01E1000_PHY_CHANNEL_NUM 4 |
2290 | #define IGP02E1000_PHY_CHANNEL_NUM 4 | ||
2291 | |||
1780 | #define IGP01E1000_PHY_AGC_PARAM_A 0x1171 | 2292 | #define IGP01E1000_PHY_AGC_PARAM_A 0x1171 |
1781 | #define IGP01E1000_PHY_AGC_PARAM_B 0x1271 | 2293 | #define IGP01E1000_PHY_AGC_PARAM_B 0x1271 |
1782 | #define IGP01E1000_PHY_AGC_PARAM_C 0x1471 | 2294 | #define IGP01E1000_PHY_AGC_PARAM_C 0x1471 |
@@ -2060,20 +2572,30 @@ struct e1000_hw { | |||
2060 | #define IGP01E1000_MSE_CHANNEL_B 0x0F00 | 2572 | #define IGP01E1000_MSE_CHANNEL_B 0x0F00 |
2061 | #define IGP01E1000_MSE_CHANNEL_A 0xF000 | 2573 | #define IGP01E1000_MSE_CHANNEL_A 0xF000 |
2062 | 2574 | ||
2575 | #define IGP02E1000_PM_SPD 0x0001 /* Smart Power Down */ | ||
2576 | #define IGP02E1000_PM_D3_LPLU 0x0004 /* Enable LPLU in non-D0a modes */ | ||
2577 | #define IGP02E1000_PM_D0_LPLU 0x0002 /* Enable LPLU in D0a mode */ | ||
2578 | |||
2063 | /* IGP01E1000 DSP reset macros */ | 2579 | /* IGP01E1000 DSP reset macros */ |
2064 | #define DSP_RESET_ENABLE 0x0 | 2580 | #define DSP_RESET_ENABLE 0x0 |
2065 | #define DSP_RESET_DISABLE 0x2 | 2581 | #define DSP_RESET_DISABLE 0x2 |
2066 | #define E1000_MAX_DSP_RESETS 10 | 2582 | #define E1000_MAX_DSP_RESETS 10 |
2067 | 2583 | ||
2068 | /* IGP01E1000 AGC Registers */ | 2584 | /* IGP01E1000 & IGP02E1000 AGC Registers */ |
2069 | 2585 | ||
2070 | #define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ | 2586 | #define IGP01E1000_AGC_LENGTH_SHIFT 7 /* Coarse - 13:11, Fine - 10:7 */ |
2587 | #define IGP02E1000_AGC_LENGTH_SHIFT 9 /* Coarse - 15:13, Fine - 12:9 */ | ||
2588 | |||
2589 | /* IGP02E1000 AGC Register Length 9-bit mask */ | ||
2590 | #define IGP02E1000_AGC_LENGTH_MASK 0x7F | ||
2071 | 2591 | ||
2072 | /* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ | 2592 | /* 7 bits (3 Coarse + 4 Fine) --> 128 optional values */ |
2073 | #define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 | 2593 | #define IGP01E1000_AGC_LENGTH_TABLE_SIZE 128 |
2594 | #define IGP02E1000_AGC_LENGTH_TABLE_SIZE 128 | ||
2074 | 2595 | ||
2075 | /* The precision of the length is +/- 10 meters */ | 2596 | /* The precision error of the cable length is +/- 10 meters */ |
2076 | #define IGP01E1000_AGC_RANGE 10 | 2597 | #define IGP01E1000_AGC_RANGE 10 |
2598 | #define IGP02E1000_AGC_RANGE 10 | ||
2077 | 2599 | ||
2078 | /* IGP01E1000 PCS Initialization register */ | 2600 | /* IGP01E1000 PCS Initialization register */ |
2079 | /* bits 3:6 in the PCS registers stores the channels polarity */ | 2601 | /* bits 3:6 in the PCS registers stores the channels polarity */ |
@@ -2113,6 +2635,8 @@ struct e1000_hw { | |||
2113 | #define M88E1000_12_PHY_ID M88E1000_E_PHY_ID | 2635 | #define M88E1000_12_PHY_ID M88E1000_E_PHY_ID |
2114 | #define M88E1000_14_PHY_ID M88E1000_E_PHY_ID | 2636 | #define M88E1000_14_PHY_ID M88E1000_E_PHY_ID |
2115 | #define M88E1011_I_REV_4 0x04 | 2637 | #define M88E1011_I_REV_4 0x04 |
2638 | #define M88E1111_I_PHY_ID 0x01410CC0 | ||
2639 | #define L1LXT971A_PHY_ID 0x001378E0 | ||
2116 | 2640 | ||
2117 | /* Miscellaneous PHY bit definitions. */ | 2641 | /* Miscellaneous PHY bit definitions. */ |
2118 | #define PHY_PREAMBLE 0xFFFFFFFF | 2642 | #define PHY_PREAMBLE 0xFFFFFFFF |
diff --git a/drivers/net/e1000/e1000_main.c b/drivers/net/e1000/e1000_main.c index 4cdf371961eb..5e6e1f7fd777 100644 --- a/drivers/net/e1000/e1000_main.c +++ b/drivers/net/e1000/e1000_main.c | |||
@@ -155,10 +155,14 @@ static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter); | |||
155 | static int e1000_clean(struct net_device *netdev, int *budget); | 155 | static int e1000_clean(struct net_device *netdev, int *budget); |
156 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, | 156 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter, |
157 | int *work_done, int work_to_do); | 157 | int *work_done, int work_to_do); |
158 | static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, | ||
159 | int *work_done, int work_to_do); | ||
158 | #else | 160 | #else |
159 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter); | 161 | static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter); |
162 | static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter); | ||
160 | #endif | 163 | #endif |
161 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter); | 164 | static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter); |
165 | static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter); | ||
162 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); | 166 | static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd); |
163 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, | 167 | static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, |
164 | int cmd); | 168 | int cmd); |
@@ -286,7 +290,29 @@ e1000_irq_enable(struct e1000_adapter *adapter) | |||
286 | E1000_WRITE_FLUSH(&adapter->hw); | 290 | E1000_WRITE_FLUSH(&adapter->hw); |
287 | } | 291 | } |
288 | } | 292 | } |
289 | 293 | void | |
294 | e1000_update_mng_vlan(struct e1000_adapter *adapter) | ||
295 | { | ||
296 | struct net_device *netdev = adapter->netdev; | ||
297 | uint16_t vid = adapter->hw.mng_cookie.vlan_id; | ||
298 | uint16_t old_vid = adapter->mng_vlan_id; | ||
299 | if(adapter->vlgrp) { | ||
300 | if(!adapter->vlgrp->vlan_devices[vid]) { | ||
301 | if(adapter->hw.mng_cookie.status & | ||
302 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) { | ||
303 | e1000_vlan_rx_add_vid(netdev, vid); | ||
304 | adapter->mng_vlan_id = vid; | ||
305 | } else | ||
306 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
307 | |||
308 | if((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) && | ||
309 | (vid != old_vid) && | ||
310 | !adapter->vlgrp->vlan_devices[old_vid]) | ||
311 | e1000_vlan_rx_kill_vid(netdev, old_vid); | ||
312 | } | ||
313 | } | ||
314 | } | ||
315 | |||
290 | int | 316 | int |
291 | e1000_up(struct e1000_adapter *adapter) | 317 | e1000_up(struct e1000_adapter *adapter) |
292 | { | 318 | { |
@@ -310,7 +336,7 @@ e1000_up(struct e1000_adapter *adapter) | |||
310 | e1000_configure_tx(adapter); | 336 | e1000_configure_tx(adapter); |
311 | e1000_setup_rctl(adapter); | 337 | e1000_setup_rctl(adapter); |
312 | e1000_configure_rx(adapter); | 338 | e1000_configure_rx(adapter); |
313 | e1000_alloc_rx_buffers(adapter); | 339 | adapter->alloc_rx_buf(adapter); |
314 | 340 | ||
315 | #ifdef CONFIG_PCI_MSI | 341 | #ifdef CONFIG_PCI_MSI |
316 | if(adapter->hw.mac_type > e1000_82547_rev_2) { | 342 | if(adapter->hw.mac_type > e1000_82547_rev_2) { |
@@ -366,8 +392,12 @@ e1000_down(struct e1000_adapter *adapter) | |||
366 | e1000_clean_rx_ring(adapter); | 392 | e1000_clean_rx_ring(adapter); |
367 | 393 | ||
368 | /* If WoL is not enabled | 394 | /* If WoL is not enabled |
395 | * and management mode is not IAMT | ||
369 | * Power down the PHY so no link is implied when interface is down */ | 396 | * Power down the PHY so no link is implied when interface is down */ |
370 | if(!adapter->wol && adapter->hw.media_type == e1000_media_type_copper) { | 397 | if(!adapter->wol && adapter->hw.mac_type >= e1000_82540 && |
398 | adapter->hw.media_type == e1000_media_type_copper && | ||
399 | !e1000_check_mng_mode(&adapter->hw) && | ||
400 | !(E1000_READ_REG(&adapter->hw, MANC) & E1000_MANC_SMBUS_EN)) { | ||
371 | uint16_t mii_reg; | 401 | uint16_t mii_reg; |
372 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); | 402 | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg); |
373 | mii_reg |= MII_CR_POWER_DOWN; | 403 | mii_reg |= MII_CR_POWER_DOWN; |
@@ -379,28 +409,34 @@ e1000_down(struct e1000_adapter *adapter) | |||
379 | void | 409 | void |
380 | e1000_reset(struct e1000_adapter *adapter) | 410 | e1000_reset(struct e1000_adapter *adapter) |
381 | { | 411 | { |
382 | uint32_t pba; | 412 | uint32_t pba, manc; |
383 | 413 | ||
384 | /* Repartition Pba for greater than 9k mtu | 414 | /* Repartition Pba for greater than 9k mtu |
385 | * To take effect CTRL.RST is required. | 415 | * To take effect CTRL.RST is required. |
386 | */ | 416 | */ |
387 | 417 | ||
388 | if(adapter->hw.mac_type < e1000_82547) { | 418 | switch (adapter->hw.mac_type) { |
389 | if(adapter->rx_buffer_len > E1000_RXBUFFER_8192) | 419 | case e1000_82547: |
390 | pba = E1000_PBA_40K; | 420 | pba = E1000_PBA_30K; |
391 | else | 421 | break; |
392 | pba = E1000_PBA_48K; | 422 | case e1000_82573: |
393 | } else { | 423 | pba = E1000_PBA_12K; |
394 | if(adapter->rx_buffer_len > E1000_RXBUFFER_8192) | 424 | break; |
395 | pba = E1000_PBA_22K; | 425 | default: |
396 | else | 426 | pba = E1000_PBA_48K; |
397 | pba = E1000_PBA_30K; | 427 | break; |
428 | } | ||
429 | |||
430 | |||
431 | |||
432 | if(adapter->hw.mac_type == e1000_82547) { | ||
398 | adapter->tx_fifo_head = 0; | 433 | adapter->tx_fifo_head = 0; |
399 | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; | 434 | adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT; |
400 | adapter->tx_fifo_size = | 435 | adapter->tx_fifo_size = |
401 | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; | 436 | (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT; |
402 | atomic_set(&adapter->tx_fifo_stall, 0); | 437 | atomic_set(&adapter->tx_fifo_stall, 0); |
403 | } | 438 | } |
439 | |||
404 | E1000_WRITE_REG(&adapter->hw, PBA, pba); | 440 | E1000_WRITE_REG(&adapter->hw, PBA, pba); |
405 | 441 | ||
406 | /* flow control settings */ | 442 | /* flow control settings */ |
@@ -412,17 +448,23 @@ e1000_reset(struct e1000_adapter *adapter) | |||
412 | adapter->hw.fc_send_xon = 1; | 448 | adapter->hw.fc_send_xon = 1; |
413 | adapter->hw.fc = adapter->hw.original_fc; | 449 | adapter->hw.fc = adapter->hw.original_fc; |
414 | 450 | ||
451 | /* Allow time for pending master requests to run */ | ||
415 | e1000_reset_hw(&adapter->hw); | 452 | e1000_reset_hw(&adapter->hw); |
416 | if(adapter->hw.mac_type >= e1000_82544) | 453 | if(adapter->hw.mac_type >= e1000_82544) |
417 | E1000_WRITE_REG(&adapter->hw, WUC, 0); | 454 | E1000_WRITE_REG(&adapter->hw, WUC, 0); |
418 | if(e1000_init_hw(&adapter->hw)) | 455 | if(e1000_init_hw(&adapter->hw)) |
419 | DPRINTK(PROBE, ERR, "Hardware Error\n"); | 456 | DPRINTK(PROBE, ERR, "Hardware Error\n"); |
420 | 457 | e1000_update_mng_vlan(adapter); | |
421 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ | 458 | /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */ |
422 | E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); | 459 | E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE); |
423 | 460 | ||
424 | e1000_reset_adaptive(&adapter->hw); | 461 | e1000_reset_adaptive(&adapter->hw); |
425 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); | 462 | e1000_phy_get_info(&adapter->hw, &adapter->phy_info); |
463 | if (adapter->en_mng_pt) { | ||
464 | manc = E1000_READ_REG(&adapter->hw, MANC); | ||
465 | manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST); | ||
466 | E1000_WRITE_REG(&adapter->hw, MANC, manc); | ||
467 | } | ||
426 | } | 468 | } |
427 | 469 | ||
428 | /** | 470 | /** |
@@ -443,15 +485,13 @@ e1000_probe(struct pci_dev *pdev, | |||
443 | { | 485 | { |
444 | struct net_device *netdev; | 486 | struct net_device *netdev; |
445 | struct e1000_adapter *adapter; | 487 | struct e1000_adapter *adapter; |
488 | unsigned long mmio_start, mmio_len; | ||
489 | uint32_t swsm; | ||
490 | |||
446 | static int cards_found = 0; | 491 | static int cards_found = 0; |
447 | unsigned long mmio_start; | 492 | int i, err, pci_using_dac; |
448 | int mmio_len; | ||
449 | int pci_using_dac; | ||
450 | int i; | ||
451 | int err; | ||
452 | uint16_t eeprom_data; | 493 | uint16_t eeprom_data; |
453 | uint16_t eeprom_apme_mask = E1000_EEPROM_APME; | 494 | uint16_t eeprom_apme_mask = E1000_EEPROM_APME; |
454 | |||
455 | if((err = pci_enable_device(pdev))) | 495 | if((err = pci_enable_device(pdev))) |
456 | return err; | 496 | return err; |
457 | 497 | ||
@@ -538,6 +578,9 @@ e1000_probe(struct pci_dev *pdev, | |||
538 | if((err = e1000_sw_init(adapter))) | 578 | if((err = e1000_sw_init(adapter))) |
539 | goto err_sw_init; | 579 | goto err_sw_init; |
540 | 580 | ||
581 | if((err = e1000_check_phy_reset_block(&adapter->hw))) | ||
582 | DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n"); | ||
583 | |||
541 | if(adapter->hw.mac_type >= e1000_82543) { | 584 | if(adapter->hw.mac_type >= e1000_82543) { |
542 | netdev->features = NETIF_F_SG | | 585 | netdev->features = NETIF_F_SG | |
543 | NETIF_F_HW_CSUM | | 586 | NETIF_F_HW_CSUM | |
@@ -550,6 +593,11 @@ e1000_probe(struct pci_dev *pdev, | |||
550 | if((adapter->hw.mac_type >= e1000_82544) && | 593 | if((adapter->hw.mac_type >= e1000_82544) && |
551 | (adapter->hw.mac_type != e1000_82547)) | 594 | (adapter->hw.mac_type != e1000_82547)) |
552 | netdev->features |= NETIF_F_TSO; | 595 | netdev->features |= NETIF_F_TSO; |
596 | |||
597 | #ifdef NETIF_F_TSO_IPV6 | ||
598 | if(adapter->hw.mac_type > e1000_82547_rev_2) | ||
599 | netdev->features |= NETIF_F_TSO_IPV6; | ||
600 | #endif | ||
553 | #endif | 601 | #endif |
554 | if(pci_using_dac) | 602 | if(pci_using_dac) |
555 | netdev->features |= NETIF_F_HIGHDMA; | 603 | netdev->features |= NETIF_F_HIGHDMA; |
@@ -557,6 +605,8 @@ e1000_probe(struct pci_dev *pdev, | |||
557 | /* hard_start_xmit is safe against parallel locking */ | 605 | /* hard_start_xmit is safe against parallel locking */ |
558 | netdev->features |= NETIF_F_LLTX; | 606 | netdev->features |= NETIF_F_LLTX; |
559 | 607 | ||
608 | adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw); | ||
609 | |||
560 | /* before reading the EEPROM, reset the controller to | 610 | /* before reading the EEPROM, reset the controller to |
561 | * put the device in a known good starting state */ | 611 | * put the device in a known good starting state */ |
562 | 612 | ||
@@ -646,6 +696,17 @@ e1000_probe(struct pci_dev *pdev, | |||
646 | /* reset the hardware with the new settings */ | 696 | /* reset the hardware with the new settings */ |
647 | e1000_reset(adapter); | 697 | e1000_reset(adapter); |
648 | 698 | ||
699 | /* Let firmware know the driver has taken over */ | ||
700 | switch(adapter->hw.mac_type) { | ||
701 | case e1000_82573: | ||
702 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | ||
703 | E1000_WRITE_REG(&adapter->hw, SWSM, | ||
704 | swsm | E1000_SWSM_DRV_LOAD); | ||
705 | break; | ||
706 | default: | ||
707 | break; | ||
708 | } | ||
709 | |||
649 | strcpy(netdev->name, "eth%d"); | 710 | strcpy(netdev->name, "eth%d"); |
650 | if((err = register_netdev(netdev))) | 711 | if((err = register_netdev(netdev))) |
651 | goto err_register; | 712 | goto err_register; |
@@ -681,7 +742,7 @@ e1000_remove(struct pci_dev *pdev) | |||
681 | { | 742 | { |
682 | struct net_device *netdev = pci_get_drvdata(pdev); | 743 | struct net_device *netdev = pci_get_drvdata(pdev); |
683 | struct e1000_adapter *adapter = netdev->priv; | 744 | struct e1000_adapter *adapter = netdev->priv; |
684 | uint32_t manc; | 745 | uint32_t manc, swsm; |
685 | 746 | ||
686 | flush_scheduled_work(); | 747 | flush_scheduled_work(); |
687 | 748 | ||
@@ -694,9 +755,21 @@ e1000_remove(struct pci_dev *pdev) | |||
694 | } | 755 | } |
695 | } | 756 | } |
696 | 757 | ||
758 | switch(adapter->hw.mac_type) { | ||
759 | case e1000_82573: | ||
760 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | ||
761 | E1000_WRITE_REG(&adapter->hw, SWSM, | ||
762 | swsm & ~E1000_SWSM_DRV_LOAD); | ||
763 | break; | ||
764 | |||
765 | default: | ||
766 | break; | ||
767 | } | ||
768 | |||
697 | unregister_netdev(netdev); | 769 | unregister_netdev(netdev); |
698 | 770 | ||
699 | e1000_phy_hw_reset(&adapter->hw); | 771 | if(!e1000_check_phy_reset_block(&adapter->hw)) |
772 | e1000_phy_hw_reset(&adapter->hw); | ||
700 | 773 | ||
701 | iounmap(adapter->hw.hw_addr); | 774 | iounmap(adapter->hw.hw_addr); |
702 | pci_release_regions(pdev); | 775 | pci_release_regions(pdev); |
@@ -734,6 +807,7 @@ e1000_sw_init(struct e1000_adapter *adapter) | |||
734 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); | 807 | pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word); |
735 | 808 | ||
736 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | 809 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; |
810 | adapter->rx_ps_bsize0 = E1000_RXBUFFER_256; | ||
737 | hw->max_frame_size = netdev->mtu + | 811 | hw->max_frame_size = netdev->mtu + |
738 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 812 | ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
739 | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; | 813 | hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE; |
@@ -747,7 +821,10 @@ e1000_sw_init(struct e1000_adapter *adapter) | |||
747 | 821 | ||
748 | /* initialize eeprom parameters */ | 822 | /* initialize eeprom parameters */ |
749 | 823 | ||
750 | e1000_init_eeprom_params(hw); | 824 | if(e1000_init_eeprom_params(hw)) { |
825 | E1000_ERR("EEPROM initialization failed\n"); | ||
826 | return -EIO; | ||
827 | } | ||
751 | 828 | ||
752 | switch(hw->mac_type) { | 829 | switch(hw->mac_type) { |
753 | default: | 830 | default: |
@@ -812,6 +889,11 @@ e1000_open(struct net_device *netdev) | |||
812 | 889 | ||
813 | if((err = e1000_up(adapter))) | 890 | if((err = e1000_up(adapter))) |
814 | goto err_up; | 891 | goto err_up; |
892 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
893 | if((adapter->hw.mng_cookie.status & | ||
894 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | ||
895 | e1000_update_mng_vlan(adapter); | ||
896 | } | ||
815 | 897 | ||
816 | return E1000_SUCCESS; | 898 | return E1000_SUCCESS; |
817 | 899 | ||
@@ -847,14 +929,18 @@ e1000_close(struct net_device *netdev) | |||
847 | e1000_free_tx_resources(adapter); | 929 | e1000_free_tx_resources(adapter); |
848 | e1000_free_rx_resources(adapter); | 930 | e1000_free_rx_resources(adapter); |
849 | 931 | ||
932 | if((adapter->hw.mng_cookie.status & | ||
933 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) { | ||
934 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
935 | } | ||
850 | return 0; | 936 | return 0; |
851 | } | 937 | } |
852 | 938 | ||
853 | /** | 939 | /** |
854 | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary | 940 | * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary |
855 | * @adapter: address of board private structure | 941 | * @adapter: address of board private structure |
856 | * @begin: address of beginning of memory | 942 | * @start: address of beginning of memory |
857 | * @end: address of end of memory | 943 | * @len: length of memory |
858 | **/ | 944 | **/ |
859 | static inline boolean_t | 945 | static inline boolean_t |
860 | e1000_check_64k_bound(struct e1000_adapter *adapter, | 946 | e1000_check_64k_bound(struct e1000_adapter *adapter, |
@@ -1039,7 +1125,7 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter) | |||
1039 | { | 1125 | { |
1040 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; | 1126 | struct e1000_desc_ring *rxdr = &adapter->rx_ring; |
1041 | struct pci_dev *pdev = adapter->pdev; | 1127 | struct pci_dev *pdev = adapter->pdev; |
1042 | int size; | 1128 | int size, desc_len; |
1043 | 1129 | ||
1044 | size = sizeof(struct e1000_buffer) * rxdr->count; | 1130 | size = sizeof(struct e1000_buffer) * rxdr->count; |
1045 | rxdr->buffer_info = vmalloc(size); | 1131 | rxdr->buffer_info = vmalloc(size); |
@@ -1050,9 +1136,35 @@ e1000_setup_rx_resources(struct e1000_adapter *adapter) | |||
1050 | } | 1136 | } |
1051 | memset(rxdr->buffer_info, 0, size); | 1137 | memset(rxdr->buffer_info, 0, size); |
1052 | 1138 | ||
1139 | size = sizeof(struct e1000_ps_page) * rxdr->count; | ||
1140 | rxdr->ps_page = kmalloc(size, GFP_KERNEL); | ||
1141 | if(!rxdr->ps_page) { | ||
1142 | vfree(rxdr->buffer_info); | ||
1143 | DPRINTK(PROBE, ERR, | ||
1144 | "Unable to allocate memory for the receive descriptor ring\n"); | ||
1145 | return -ENOMEM; | ||
1146 | } | ||
1147 | memset(rxdr->ps_page, 0, size); | ||
1148 | |||
1149 | size = sizeof(struct e1000_ps_page_dma) * rxdr->count; | ||
1150 | rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL); | ||
1151 | if(!rxdr->ps_page_dma) { | ||
1152 | vfree(rxdr->buffer_info); | ||
1153 | kfree(rxdr->ps_page); | ||
1154 | DPRINTK(PROBE, ERR, | ||
1155 | "Unable to allocate memory for the receive descriptor ring\n"); | ||
1156 | return -ENOMEM; | ||
1157 | } | ||
1158 | memset(rxdr->ps_page_dma, 0, size); | ||
1159 | |||
1160 | if(adapter->hw.mac_type <= e1000_82547_rev_2) | ||
1161 | desc_len = sizeof(struct e1000_rx_desc); | ||
1162 | else | ||
1163 | desc_len = sizeof(union e1000_rx_desc_packet_split); | ||
1164 | |||
1053 | /* Round up to nearest 4K */ | 1165 | /* Round up to nearest 4K */ |
1054 | 1166 | ||
1055 | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | 1167 | rxdr->size = rxdr->count * desc_len; |
1056 | E1000_ROUNDUP(rxdr->size, 4096); | 1168 | E1000_ROUNDUP(rxdr->size, 4096); |
1057 | 1169 | ||
1058 | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); | 1170 | rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma); |
@@ -1062,6 +1174,8 @@ setup_rx_desc_die: | |||
1062 | DPRINTK(PROBE, ERR, | 1174 | DPRINTK(PROBE, ERR, |
1063 | "Unble to Allocate Memory for the Recieve descriptor ring\n"); | 1175 | "Unble to Allocate Memory for the Recieve descriptor ring\n"); |
1064 | vfree(rxdr->buffer_info); | 1176 | vfree(rxdr->buffer_info); |
1177 | kfree(rxdr->ps_page); | ||
1178 | kfree(rxdr->ps_page_dma); | ||
1065 | return -ENOMEM; | 1179 | return -ENOMEM; |
1066 | } | 1180 | } |
1067 | 1181 | ||
@@ -1089,6 +1203,8 @@ setup_rx_desc_die: | |||
1089 | "Unable to Allocate aligned Memory for the" | 1203 | "Unable to Allocate aligned Memory for the" |
1090 | " Receive descriptor ring\n"); | 1204 | " Receive descriptor ring\n"); |
1091 | vfree(rxdr->buffer_info); | 1205 | vfree(rxdr->buffer_info); |
1206 | kfree(rxdr->ps_page); | ||
1207 | kfree(rxdr->ps_page_dma); | ||
1092 | return -ENOMEM; | 1208 | return -ENOMEM; |
1093 | } else { | 1209 | } else { |
1094 | /* free old, move on with the new one since its okay */ | 1210 | /* free old, move on with the new one since its okay */ |
@@ -1111,7 +1227,8 @@ setup_rx_desc_die: | |||
1111 | static void | 1227 | static void |
1112 | e1000_setup_rctl(struct e1000_adapter *adapter) | 1228 | e1000_setup_rctl(struct e1000_adapter *adapter) |
1113 | { | 1229 | { |
1114 | uint32_t rctl; | 1230 | uint32_t rctl, rfctl; |
1231 | uint32_t psrctl = 0; | ||
1115 | 1232 | ||
1116 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 1233 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
1117 | 1234 | ||
@@ -1126,24 +1243,69 @@ e1000_setup_rctl(struct e1000_adapter *adapter) | |||
1126 | else | 1243 | else |
1127 | rctl &= ~E1000_RCTL_SBP; | 1244 | rctl &= ~E1000_RCTL_SBP; |
1128 | 1245 | ||
1246 | if (adapter->netdev->mtu <= ETH_DATA_LEN) | ||
1247 | rctl &= ~E1000_RCTL_LPE; | ||
1248 | else | ||
1249 | rctl |= E1000_RCTL_LPE; | ||
1250 | |||
1129 | /* Setup buffer sizes */ | 1251 | /* Setup buffer sizes */ |
1130 | rctl &= ~(E1000_RCTL_SZ_4096); | 1252 | if(adapter->hw.mac_type == e1000_82573) { |
1131 | rctl |= (E1000_RCTL_BSEX | E1000_RCTL_LPE); | 1253 | /* We can now specify buffers in 1K increments. |
1132 | switch (adapter->rx_buffer_len) { | 1254 | * BSIZE and BSEX are ignored in this case. */ |
1133 | case E1000_RXBUFFER_2048: | 1255 | rctl |= adapter->rx_buffer_len << 0x11; |
1134 | default: | 1256 | } else { |
1135 | rctl |= E1000_RCTL_SZ_2048; | 1257 | rctl &= ~E1000_RCTL_SZ_4096; |
1136 | rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); | 1258 | rctl |= E1000_RCTL_BSEX; |
1137 | break; | 1259 | switch (adapter->rx_buffer_len) { |
1138 | case E1000_RXBUFFER_4096: | 1260 | case E1000_RXBUFFER_2048: |
1139 | rctl |= E1000_RCTL_SZ_4096; | 1261 | default: |
1140 | break; | 1262 | rctl |= E1000_RCTL_SZ_2048; |
1141 | case E1000_RXBUFFER_8192: | 1263 | rctl &= ~E1000_RCTL_BSEX; |
1142 | rctl |= E1000_RCTL_SZ_8192; | 1264 | break; |
1143 | break; | 1265 | case E1000_RXBUFFER_4096: |
1144 | case E1000_RXBUFFER_16384: | 1266 | rctl |= E1000_RCTL_SZ_4096; |
1145 | rctl |= E1000_RCTL_SZ_16384; | 1267 | break; |
1146 | break; | 1268 | case E1000_RXBUFFER_8192: |
1269 | rctl |= E1000_RCTL_SZ_8192; | ||
1270 | break; | ||
1271 | case E1000_RXBUFFER_16384: | ||
1272 | rctl |= E1000_RCTL_SZ_16384; | ||
1273 | break; | ||
1274 | } | ||
1275 | } | ||
1276 | |||
1277 | #ifdef CONFIG_E1000_PACKET_SPLIT | ||
1278 | /* 82571 and greater support packet-split where the protocol | ||
1279 | * header is placed in skb->data and the packet data is | ||
1280 | * placed in pages hanging off of skb_shinfo(skb)->nr_frags. | ||
1281 | * In the case of a non-split, skb->data is linearly filled, | ||
1282 | * followed by the page buffers. Therefore, skb->data is | ||
1283 | * sized to hold the largest protocol header. | ||
1284 | */ | ||
1285 | adapter->rx_ps = (adapter->hw.mac_type > e1000_82547_rev_2) | ||
1286 | && (adapter->netdev->mtu | ||
1287 | < ((3 * PAGE_SIZE) + adapter->rx_ps_bsize0)); | ||
1288 | #endif | ||
1289 | if(adapter->rx_ps) { | ||
1290 | /* Configure extra packet-split registers */ | ||
1291 | rfctl = E1000_READ_REG(&adapter->hw, RFCTL); | ||
1292 | rfctl |= E1000_RFCTL_EXTEN; | ||
1293 | /* disable IPv6 packet split support */ | ||
1294 | rfctl |= E1000_RFCTL_IPV6_DIS; | ||
1295 | E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl); | ||
1296 | |||
1297 | rctl |= E1000_RCTL_DTYP_PS | E1000_RCTL_SECRC; | ||
1298 | |||
1299 | psrctl |= adapter->rx_ps_bsize0 >> | ||
1300 | E1000_PSRCTL_BSIZE0_SHIFT; | ||
1301 | psrctl |= PAGE_SIZE >> | ||
1302 | E1000_PSRCTL_BSIZE1_SHIFT; | ||
1303 | psrctl |= PAGE_SIZE << | ||
1304 | E1000_PSRCTL_BSIZE2_SHIFT; | ||
1305 | psrctl |= PAGE_SIZE << | ||
1306 | E1000_PSRCTL_BSIZE3_SHIFT; | ||
1307 | |||
1308 | E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl); | ||
1147 | } | 1309 | } |
1148 | 1310 | ||
1149 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 1311 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
@@ -1160,9 +1322,18 @@ static void | |||
1160 | e1000_configure_rx(struct e1000_adapter *adapter) | 1322 | e1000_configure_rx(struct e1000_adapter *adapter) |
1161 | { | 1323 | { |
1162 | uint64_t rdba = adapter->rx_ring.dma; | 1324 | uint64_t rdba = adapter->rx_ring.dma; |
1163 | uint32_t rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc); | 1325 | uint32_t rdlen, rctl, rxcsum; |
1164 | uint32_t rctl; | 1326 | |
1165 | uint32_t rxcsum; | 1327 | if(adapter->rx_ps) { |
1328 | rdlen = adapter->rx_ring.count * | ||
1329 | sizeof(union e1000_rx_desc_packet_split); | ||
1330 | adapter->clean_rx = e1000_clean_rx_irq_ps; | ||
1331 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps; | ||
1332 | } else { | ||
1333 | rdlen = adapter->rx_ring.count * sizeof(struct e1000_rx_desc); | ||
1334 | adapter->clean_rx = e1000_clean_rx_irq; | ||
1335 | adapter->alloc_rx_buf = e1000_alloc_rx_buffers; | ||
1336 | } | ||
1166 | 1337 | ||
1167 | /* disable receives while setting up the descriptors */ | 1338 | /* disable receives while setting up the descriptors */ |
1168 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 1339 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
@@ -1189,13 +1360,27 @@ e1000_configure_rx(struct e1000_adapter *adapter) | |||
1189 | E1000_WRITE_REG(&adapter->hw, RDT, 0); | 1360 | E1000_WRITE_REG(&adapter->hw, RDT, 0); |
1190 | 1361 | ||
1191 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ | 1362 | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ |
1192 | if((adapter->hw.mac_type >= e1000_82543) && | 1363 | if(adapter->hw.mac_type >= e1000_82543) { |
1193 | (adapter->rx_csum == TRUE)) { | ||
1194 | rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM); | 1364 | rxcsum = E1000_READ_REG(&adapter->hw, RXCSUM); |
1195 | rxcsum |= E1000_RXCSUM_TUOFL; | 1365 | if(adapter->rx_csum == TRUE) { |
1366 | rxcsum |= E1000_RXCSUM_TUOFL; | ||
1367 | |||
1368 | /* Enable 82573 IPv4 payload checksum for UDP fragments | ||
1369 | * Must be used in conjunction with packet-split. */ | ||
1370 | if((adapter->hw.mac_type > e1000_82547_rev_2) && | ||
1371 | (adapter->rx_ps)) { | ||
1372 | rxcsum |= E1000_RXCSUM_IPPCSE; | ||
1373 | } | ||
1374 | } else { | ||
1375 | rxcsum &= ~E1000_RXCSUM_TUOFL; | ||
1376 | /* don't need to clear IPPCSE as it defaults to 0 */ | ||
1377 | } | ||
1196 | E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum); | 1378 | E1000_WRITE_REG(&adapter->hw, RXCSUM, rxcsum); |
1197 | } | 1379 | } |
1198 | 1380 | ||
1381 | if (adapter->hw.mac_type == e1000_82573) | ||
1382 | E1000_WRITE_REG(&adapter->hw, ERT, 0x0100); | ||
1383 | |||
1199 | /* Enable Receives */ | 1384 | /* Enable Receives */ |
1200 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 1385 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
1201 | } | 1386 | } |
@@ -1298,6 +1483,10 @@ e1000_free_rx_resources(struct e1000_adapter *adapter) | |||
1298 | 1483 | ||
1299 | vfree(rx_ring->buffer_info); | 1484 | vfree(rx_ring->buffer_info); |
1300 | rx_ring->buffer_info = NULL; | 1485 | rx_ring->buffer_info = NULL; |
1486 | kfree(rx_ring->ps_page); | ||
1487 | rx_ring->ps_page = NULL; | ||
1488 | kfree(rx_ring->ps_page_dma); | ||
1489 | rx_ring->ps_page_dma = NULL; | ||
1301 | 1490 | ||
1302 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); | 1491 | pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma); |
1303 | 1492 | ||
@@ -1314,16 +1503,19 @@ e1000_clean_rx_ring(struct e1000_adapter *adapter) | |||
1314 | { | 1503 | { |
1315 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | 1504 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; |
1316 | struct e1000_buffer *buffer_info; | 1505 | struct e1000_buffer *buffer_info; |
1506 | struct e1000_ps_page *ps_page; | ||
1507 | struct e1000_ps_page_dma *ps_page_dma; | ||
1317 | struct pci_dev *pdev = adapter->pdev; | 1508 | struct pci_dev *pdev = adapter->pdev; |
1318 | unsigned long size; | 1509 | unsigned long size; |
1319 | unsigned int i; | 1510 | unsigned int i, j; |
1320 | 1511 | ||
1321 | /* Free all the Rx ring sk_buffs */ | 1512 | /* Free all the Rx ring sk_buffs */ |
1322 | 1513 | ||
1323 | for(i = 0; i < rx_ring->count; i++) { | 1514 | for(i = 0; i < rx_ring->count; i++) { |
1324 | buffer_info = &rx_ring->buffer_info[i]; | 1515 | buffer_info = &rx_ring->buffer_info[i]; |
1325 | if(buffer_info->skb) { | 1516 | if(buffer_info->skb) { |
1326 | 1517 | ps_page = &rx_ring->ps_page[i]; | |
1518 | ps_page_dma = &rx_ring->ps_page_dma[i]; | ||
1327 | pci_unmap_single(pdev, | 1519 | pci_unmap_single(pdev, |
1328 | buffer_info->dma, | 1520 | buffer_info->dma, |
1329 | buffer_info->length, | 1521 | buffer_info->length, |
@@ -1331,11 +1523,25 @@ e1000_clean_rx_ring(struct e1000_adapter *adapter) | |||
1331 | 1523 | ||
1332 | dev_kfree_skb(buffer_info->skb); | 1524 | dev_kfree_skb(buffer_info->skb); |
1333 | buffer_info->skb = NULL; | 1525 | buffer_info->skb = NULL; |
1526 | |||
1527 | for(j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
1528 | if(!ps_page->ps_page[j]) break; | ||
1529 | pci_unmap_single(pdev, | ||
1530 | ps_page_dma->ps_page_dma[j], | ||
1531 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
1532 | ps_page_dma->ps_page_dma[j] = 0; | ||
1533 | put_page(ps_page->ps_page[j]); | ||
1534 | ps_page->ps_page[j] = NULL; | ||
1535 | } | ||
1334 | } | 1536 | } |
1335 | } | 1537 | } |
1336 | 1538 | ||
1337 | size = sizeof(struct e1000_buffer) * rx_ring->count; | 1539 | size = sizeof(struct e1000_buffer) * rx_ring->count; |
1338 | memset(rx_ring->buffer_info, 0, size); | 1540 | memset(rx_ring->buffer_info, 0, size); |
1541 | size = sizeof(struct e1000_ps_page) * rx_ring->count; | ||
1542 | memset(rx_ring->ps_page, 0, size); | ||
1543 | size = sizeof(struct e1000_ps_page_dma) * rx_ring->count; | ||
1544 | memset(rx_ring->ps_page_dma, 0, size); | ||
1339 | 1545 | ||
1340 | /* Zero out the descriptor ring */ | 1546 | /* Zero out the descriptor ring */ |
1341 | 1547 | ||
@@ -1573,6 +1779,11 @@ e1000_watchdog_task(struct e1000_adapter *adapter) | |||
1573 | uint32_t link; | 1779 | uint32_t link; |
1574 | 1780 | ||
1575 | e1000_check_for_link(&adapter->hw); | 1781 | e1000_check_for_link(&adapter->hw); |
1782 | if (adapter->hw.mac_type == e1000_82573) { | ||
1783 | e1000_enable_tx_pkt_filtering(&adapter->hw); | ||
1784 | if(adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id) | ||
1785 | e1000_update_mng_vlan(adapter); | ||
1786 | } | ||
1576 | 1787 | ||
1577 | if((adapter->hw.media_type == e1000_media_type_internal_serdes) && | 1788 | if((adapter->hw.media_type == e1000_media_type_internal_serdes) && |
1578 | !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) | 1789 | !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE)) |
@@ -1659,6 +1870,7 @@ e1000_watchdog_task(struct e1000_adapter *adapter) | |||
1659 | #define E1000_TX_FLAGS_CSUM 0x00000001 | 1870 | #define E1000_TX_FLAGS_CSUM 0x00000001 |
1660 | #define E1000_TX_FLAGS_VLAN 0x00000002 | 1871 | #define E1000_TX_FLAGS_VLAN 0x00000002 |
1661 | #define E1000_TX_FLAGS_TSO 0x00000004 | 1872 | #define E1000_TX_FLAGS_TSO 0x00000004 |
1873 | #define E1000_TX_FLAGS_IPV4 0x00000008 | ||
1662 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 | 1874 | #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000 |
1663 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 | 1875 | #define E1000_TX_FLAGS_VLAN_SHIFT 16 |
1664 | 1876 | ||
@@ -1669,7 +1881,7 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb) | |||
1669 | struct e1000_context_desc *context_desc; | 1881 | struct e1000_context_desc *context_desc; |
1670 | unsigned int i; | 1882 | unsigned int i; |
1671 | uint32_t cmd_length = 0; | 1883 | uint32_t cmd_length = 0; |
1672 | uint16_t ipcse, tucse, mss; | 1884 | uint16_t ipcse = 0, tucse, mss; |
1673 | uint8_t ipcss, ipcso, tucss, tucso, hdr_len; | 1885 | uint8_t ipcss, ipcso, tucss, tucso, hdr_len; |
1674 | int err; | 1886 | int err; |
1675 | 1887 | ||
@@ -1682,23 +1894,37 @@ e1000_tso(struct e1000_adapter *adapter, struct sk_buff *skb) | |||
1682 | 1894 | ||
1683 | hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); | 1895 | hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2)); |
1684 | mss = skb_shinfo(skb)->tso_size; | 1896 | mss = skb_shinfo(skb)->tso_size; |
1685 | skb->nh.iph->tot_len = 0; | 1897 | if(skb->protocol == ntohs(ETH_P_IP)) { |
1686 | skb->nh.iph->check = 0; | 1898 | skb->nh.iph->tot_len = 0; |
1687 | skb->h.th->check = ~csum_tcpudp_magic(skb->nh.iph->saddr, | 1899 | skb->nh.iph->check = 0; |
1688 | skb->nh.iph->daddr, | 1900 | skb->h.th->check = |
1689 | 0, | 1901 | ~csum_tcpudp_magic(skb->nh.iph->saddr, |
1690 | IPPROTO_TCP, | 1902 | skb->nh.iph->daddr, |
1691 | 0); | 1903 | 0, |
1904 | IPPROTO_TCP, | ||
1905 | 0); | ||
1906 | cmd_length = E1000_TXD_CMD_IP; | ||
1907 | ipcse = skb->h.raw - skb->data - 1; | ||
1908 | #ifdef NETIF_F_TSO_IPV6 | ||
1909 | } else if(skb->protocol == ntohs(ETH_P_IPV6)) { | ||
1910 | skb->nh.ipv6h->payload_len = 0; | ||
1911 | skb->h.th->check = | ||
1912 | ~csum_ipv6_magic(&skb->nh.ipv6h->saddr, | ||
1913 | &skb->nh.ipv6h->daddr, | ||
1914 | 0, | ||
1915 | IPPROTO_TCP, | ||
1916 | 0); | ||
1917 | ipcse = 0; | ||
1918 | #endif | ||
1919 | } | ||
1692 | ipcss = skb->nh.raw - skb->data; | 1920 | ipcss = skb->nh.raw - skb->data; |
1693 | ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; | 1921 | ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data; |
1694 | ipcse = skb->h.raw - skb->data - 1; | ||
1695 | tucss = skb->h.raw - skb->data; | 1922 | tucss = skb->h.raw - skb->data; |
1696 | tucso = (void *)&(skb->h.th->check) - (void *)skb->data; | 1923 | tucso = (void *)&(skb->h.th->check) - (void *)skb->data; |
1697 | tucse = 0; | 1924 | tucse = 0; |
1698 | 1925 | ||
1699 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | | 1926 | cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE | |
1700 | E1000_TXD_CMD_IP | E1000_TXD_CMD_TCP | | 1927 | E1000_TXD_CMD_TCP | (skb->len - (hdr_len))); |
1701 | (skb->len - (hdr_len))); | ||
1702 | 1928 | ||
1703 | i = adapter->tx_ring.next_to_use; | 1929 | i = adapter->tx_ring.next_to_use; |
1704 | context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); | 1930 | context_desc = E1000_CONTEXT_DESC(adapter->tx_ring, i); |
@@ -1866,7 +2092,10 @@ e1000_tx_queue(struct e1000_adapter *adapter, int count, int tx_flags) | |||
1866 | if(likely(tx_flags & E1000_TX_FLAGS_TSO)) { | 2092 | if(likely(tx_flags & E1000_TX_FLAGS_TSO)) { |
1867 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | | 2093 | txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D | |
1868 | E1000_TXD_CMD_TSE; | 2094 | E1000_TXD_CMD_TSE; |
1869 | txd_upper |= (E1000_TXD_POPTS_IXSM | E1000_TXD_POPTS_TXSM) << 8; | 2095 | txd_upper |= E1000_TXD_POPTS_TXSM << 8; |
2096 | |||
2097 | if(likely(tx_flags & E1000_TX_FLAGS_IPV4)) | ||
2098 | txd_upper |= E1000_TXD_POPTS_IXSM << 8; | ||
1870 | } | 2099 | } |
1871 | 2100 | ||
1872 | if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) { | 2101 | if(likely(tx_flags & E1000_TX_FLAGS_CSUM)) { |
@@ -1941,6 +2170,53 @@ no_fifo_stall_required: | |||
1941 | return 0; | 2170 | return 0; |
1942 | } | 2171 | } |
1943 | 2172 | ||
2173 | #define MINIMUM_DHCP_PACKET_SIZE 282 | ||
2174 | static inline int | ||
2175 | e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb) | ||
2176 | { | ||
2177 | struct e1000_hw *hw = &adapter->hw; | ||
2178 | uint16_t length, offset; | ||
2179 | if(vlan_tx_tag_present(skb)) { | ||
2180 | if(!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) && | ||
2181 | ( adapter->hw.mng_cookie.status & | ||
2182 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) ) | ||
2183 | return 0; | ||
2184 | } | ||
2185 | if(htons(ETH_P_IP) == skb->protocol) { | ||
2186 | const struct iphdr *ip = skb->nh.iph; | ||
2187 | if(IPPROTO_UDP == ip->protocol) { | ||
2188 | struct udphdr *udp = (struct udphdr *)(skb->h.uh); | ||
2189 | if(ntohs(udp->dest) == 67) { | ||
2190 | offset = (uint8_t *)udp + 8 - skb->data; | ||
2191 | length = skb->len - offset; | ||
2192 | |||
2193 | return e1000_mng_write_dhcp_info(hw, | ||
2194 | (uint8_t *)udp + 8, length); | ||
2195 | } | ||
2196 | } | ||
2197 | } else if((skb->len > MINIMUM_DHCP_PACKET_SIZE) && (!skb->protocol)) { | ||
2198 | struct ethhdr *eth = (struct ethhdr *) skb->data; | ||
2199 | if((htons(ETH_P_IP) == eth->h_proto)) { | ||
2200 | const struct iphdr *ip = | ||
2201 | (struct iphdr *)((uint8_t *)skb->data+14); | ||
2202 | if(IPPROTO_UDP == ip->protocol) { | ||
2203 | struct udphdr *udp = | ||
2204 | (struct udphdr *)((uint8_t *)ip + | ||
2205 | (ip->ihl << 2)); | ||
2206 | if(ntohs(udp->dest) == 67) { | ||
2207 | offset = (uint8_t *)udp + 8 - skb->data; | ||
2208 | length = skb->len - offset; | ||
2209 | |||
2210 | return e1000_mng_write_dhcp_info(hw, | ||
2211 | (uint8_t *)udp + 8, | ||
2212 | length); | ||
2213 | } | ||
2214 | } | ||
2215 | } | ||
2216 | } | ||
2217 | return 0; | ||
2218 | } | ||
2219 | |||
1944 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) | 2220 | #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 ) |
1945 | static int | 2221 | static int |
1946 | e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | 2222 | e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) |
@@ -2008,6 +2284,9 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
2008 | local_irq_restore(flags); | 2284 | local_irq_restore(flags); |
2009 | return NETDEV_TX_LOCKED; | 2285 | return NETDEV_TX_LOCKED; |
2010 | } | 2286 | } |
2287 | if(adapter->hw.tx_pkt_filtering && (adapter->hw.mac_type == e1000_82573) ) | ||
2288 | e1000_transfer_dhcp_info(adapter, skb); | ||
2289 | |||
2011 | 2290 | ||
2012 | /* need: count + 2 desc gap to keep tail from touching | 2291 | /* need: count + 2 desc gap to keep tail from touching |
2013 | * head, otherwise try next time */ | 2292 | * head, otherwise try next time */ |
@@ -2044,6 +2323,12 @@ e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev) | |||
2044 | else if(likely(e1000_tx_csum(adapter, skb))) | 2323 | else if(likely(e1000_tx_csum(adapter, skb))) |
2045 | tx_flags |= E1000_TX_FLAGS_CSUM; | 2324 | tx_flags |= E1000_TX_FLAGS_CSUM; |
2046 | 2325 | ||
2326 | /* Old method was to assume IPv4 packet by default if TSO was enabled. | ||
2327 | * 82573 hardware supports TSO capabilities for IPv6 as well... | ||
2328 | * no longer assume, we must. */ | ||
2329 | if(likely(skb->protocol == ntohs(ETH_P_IP))) | ||
2330 | tx_flags |= E1000_TX_FLAGS_IPV4; | ||
2331 | |||
2047 | e1000_tx_queue(adapter, | 2332 | e1000_tx_queue(adapter, |
2048 | e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss), | 2333 | e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss), |
2049 | tx_flags); | 2334 | tx_flags); |
@@ -2110,7 +2395,6 @@ static int | |||
2110 | e1000_change_mtu(struct net_device *netdev, int new_mtu) | 2395 | e1000_change_mtu(struct net_device *netdev, int new_mtu) |
2111 | { | 2396 | { |
2112 | struct e1000_adapter *adapter = netdev->priv; | 2397 | struct e1000_adapter *adapter = netdev->priv; |
2113 | int old_mtu = adapter->rx_buffer_len; | ||
2114 | int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; | 2398 | int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE; |
2115 | 2399 | ||
2116 | if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || | 2400 | if((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) || |
@@ -2119,29 +2403,45 @@ e1000_change_mtu(struct net_device *netdev, int new_mtu) | |||
2119 | return -EINVAL; | 2403 | return -EINVAL; |
2120 | } | 2404 | } |
2121 | 2405 | ||
2122 | if(max_frame <= MAXIMUM_ETHERNET_FRAME_SIZE) { | 2406 | #define MAX_STD_JUMBO_FRAME_SIZE 9216 |
2123 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | 2407 | /* might want this to be bigger enum check... */ |
2124 | 2408 | if (adapter->hw.mac_type == e1000_82573 && | |
2125 | } else if(adapter->hw.mac_type < e1000_82543) { | 2409 | max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) { |
2126 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported on 82542\n"); | 2410 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported " |
2411 | "on 82573\n"); | ||
2127 | return -EINVAL; | 2412 | return -EINVAL; |
2413 | } | ||
2128 | 2414 | ||
2129 | } else if(max_frame <= E1000_RXBUFFER_4096) { | 2415 | if(adapter->hw.mac_type > e1000_82547_rev_2) { |
2130 | adapter->rx_buffer_len = E1000_RXBUFFER_4096; | 2416 | adapter->rx_buffer_len = max_frame; |
2131 | 2417 | E1000_ROUNDUP(adapter->rx_buffer_len, 1024); | |
2132 | } else if(max_frame <= E1000_RXBUFFER_8192) { | ||
2133 | adapter->rx_buffer_len = E1000_RXBUFFER_8192; | ||
2134 | |||
2135 | } else { | 2418 | } else { |
2136 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | 2419 | if(unlikely((adapter->hw.mac_type < e1000_82543) && |
2420 | (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE))) { | ||
2421 | DPRINTK(PROBE, ERR, "Jumbo Frames not supported " | ||
2422 | "on 82542\n"); | ||
2423 | return -EINVAL; | ||
2424 | |||
2425 | } else { | ||
2426 | if(max_frame <= E1000_RXBUFFER_2048) { | ||
2427 | adapter->rx_buffer_len = E1000_RXBUFFER_2048; | ||
2428 | } else if(max_frame <= E1000_RXBUFFER_4096) { | ||
2429 | adapter->rx_buffer_len = E1000_RXBUFFER_4096; | ||
2430 | } else if(max_frame <= E1000_RXBUFFER_8192) { | ||
2431 | adapter->rx_buffer_len = E1000_RXBUFFER_8192; | ||
2432 | } else if(max_frame <= E1000_RXBUFFER_16384) { | ||
2433 | adapter->rx_buffer_len = E1000_RXBUFFER_16384; | ||
2434 | } | ||
2435 | } | ||
2137 | } | 2436 | } |
2138 | 2437 | ||
2139 | if(old_mtu != adapter->rx_buffer_len && netif_running(netdev)) { | 2438 | netdev->mtu = new_mtu; |
2439 | |||
2440 | if(netif_running(netdev)) { | ||
2140 | e1000_down(adapter); | 2441 | e1000_down(adapter); |
2141 | e1000_up(adapter); | 2442 | e1000_up(adapter); |
2142 | } | 2443 | } |
2143 | 2444 | ||
2144 | netdev->mtu = new_mtu; | ||
2145 | adapter->hw.max_frame_size = max_frame; | 2445 | adapter->hw.max_frame_size = max_frame; |
2146 | 2446 | ||
2147 | return 0; | 2447 | return 0; |
@@ -2232,6 +2532,17 @@ e1000_update_stats(struct e1000_adapter *adapter) | |||
2232 | adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); | 2532 | adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC); |
2233 | adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); | 2533 | adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC); |
2234 | } | 2534 | } |
2535 | if(hw->mac_type > e1000_82547_rev_2) { | ||
2536 | adapter->stats.iac += E1000_READ_REG(hw, IAC); | ||
2537 | adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC); | ||
2538 | adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC); | ||
2539 | adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC); | ||
2540 | adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC); | ||
2541 | adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC); | ||
2542 | adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC); | ||
2543 | adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC); | ||
2544 | adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC); | ||
2545 | } | ||
2235 | 2546 | ||
2236 | /* Fill out the OS statistics structure */ | 2547 | /* Fill out the OS statistics structure */ |
2237 | 2548 | ||
@@ -2337,7 +2648,7 @@ e1000_intr(int irq, void *data, struct pt_regs *regs) | |||
2337 | } | 2648 | } |
2338 | 2649 | ||
2339 | for(i = 0; i < E1000_MAX_INTR; i++) | 2650 | for(i = 0; i < E1000_MAX_INTR; i++) |
2340 | if(unlikely(!e1000_clean_rx_irq(adapter) & | 2651 | if(unlikely(!adapter->clean_rx(adapter) & |
2341 | !e1000_clean_tx_irq(adapter))) | 2652 | !e1000_clean_tx_irq(adapter))) |
2342 | break; | 2653 | break; |
2343 | 2654 | ||
@@ -2363,7 +2674,7 @@ e1000_clean(struct net_device *netdev, int *budget) | |||
2363 | int work_done = 0; | 2674 | int work_done = 0; |
2364 | 2675 | ||
2365 | tx_cleaned = e1000_clean_tx_irq(adapter); | 2676 | tx_cleaned = e1000_clean_tx_irq(adapter); |
2366 | e1000_clean_rx_irq(adapter, &work_done, work_to_do); | 2677 | adapter->clean_rx(adapter, &work_done, work_to_do); |
2367 | 2678 | ||
2368 | *budget -= work_done; | 2679 | *budget -= work_done; |
2369 | netdev->quota -= work_done; | 2680 | netdev->quota -= work_done; |
@@ -2501,41 +2812,57 @@ e1000_clean_tx_irq(struct e1000_adapter *adapter) | |||
2501 | 2812 | ||
2502 | /** | 2813 | /** |
2503 | * e1000_rx_checksum - Receive Checksum Offload for 82543 | 2814 | * e1000_rx_checksum - Receive Checksum Offload for 82543 |
2504 | * @adapter: board private structure | 2815 | * @adapter: board private structure |
2505 | * @rx_desc: receive descriptor | 2816 | * @status_err: receive descriptor status and error fields |
2506 | * @sk_buff: socket buffer with received data | 2817 | * @csum: receive descriptor csum field |
2818 | * @sk_buff: socket buffer with received data | ||
2507 | **/ | 2819 | **/ |
2508 | 2820 | ||
2509 | static inline void | 2821 | static inline void |
2510 | e1000_rx_checksum(struct e1000_adapter *adapter, | 2822 | e1000_rx_checksum(struct e1000_adapter *adapter, |
2511 | struct e1000_rx_desc *rx_desc, | 2823 | uint32_t status_err, uint32_t csum, |
2512 | struct sk_buff *skb) | 2824 | struct sk_buff *skb) |
2513 | { | 2825 | { |
2826 | uint16_t status = (uint16_t)status_err; | ||
2827 | uint8_t errors = (uint8_t)(status_err >> 24); | ||
2828 | skb->ip_summed = CHECKSUM_NONE; | ||
2829 | |||
2514 | /* 82543 or newer only */ | 2830 | /* 82543 or newer only */ |
2515 | if(unlikely((adapter->hw.mac_type < e1000_82543) || | 2831 | if(unlikely(adapter->hw.mac_type < e1000_82543)) return; |
2516 | /* Ignore Checksum bit is set */ | 2832 | /* Ignore Checksum bit is set */ |
2517 | (rx_desc->status & E1000_RXD_STAT_IXSM) || | 2833 | if(unlikely(status & E1000_RXD_STAT_IXSM)) return; |
2518 | /* TCP Checksum has not been calculated */ | 2834 | /* TCP/UDP checksum error bit is set */ |
2519 | (!(rx_desc->status & E1000_RXD_STAT_TCPCS)))) { | 2835 | if(unlikely(errors & E1000_RXD_ERR_TCPE)) { |
2520 | skb->ip_summed = CHECKSUM_NONE; | ||
2521 | return; | ||
2522 | } | ||
2523 | |||
2524 | /* At this point we know the hardware did the TCP checksum */ | ||
2525 | /* now look at the TCP checksum error bit */ | ||
2526 | if(rx_desc->errors & E1000_RXD_ERR_TCPE) { | ||
2527 | /* let the stack verify checksum errors */ | 2836 | /* let the stack verify checksum errors */ |
2528 | skb->ip_summed = CHECKSUM_NONE; | ||
2529 | adapter->hw_csum_err++; | 2837 | adapter->hw_csum_err++; |
2838 | return; | ||
2839 | } | ||
2840 | /* TCP/UDP Checksum has not been calculated */ | ||
2841 | if(adapter->hw.mac_type <= e1000_82547_rev_2) { | ||
2842 | if(!(status & E1000_RXD_STAT_TCPCS)) | ||
2843 | return; | ||
2530 | } else { | 2844 | } else { |
2845 | if(!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))) | ||
2846 | return; | ||
2847 | } | ||
2848 | /* It must be a TCP or UDP packet with a valid checksum */ | ||
2849 | if (likely(status & E1000_RXD_STAT_TCPCS)) { | ||
2531 | /* TCP checksum is good */ | 2850 | /* TCP checksum is good */ |
2532 | skb->ip_summed = CHECKSUM_UNNECESSARY; | 2851 | skb->ip_summed = CHECKSUM_UNNECESSARY; |
2533 | adapter->hw_csum_good++; | 2852 | } else if (adapter->hw.mac_type > e1000_82547_rev_2) { |
2853 | /* IP fragment with UDP payload */ | ||
2854 | /* Hardware complements the payload checksum, so we undo it | ||
2855 | * and then put the value in host order for further stack use. | ||
2856 | */ | ||
2857 | csum = ntohl(csum ^ 0xFFFF); | ||
2858 | skb->csum = csum; | ||
2859 | skb->ip_summed = CHECKSUM_HW; | ||
2534 | } | 2860 | } |
2861 | adapter->hw_csum_good++; | ||
2535 | } | 2862 | } |
2536 | 2863 | ||
2537 | /** | 2864 | /** |
2538 | * e1000_clean_rx_irq - Send received data up the network stack | 2865 | * e1000_clean_rx_irq - Send received data up the network stack; legacy |
2539 | * @adapter: board private structure | 2866 | * @adapter: board private structure |
2540 | **/ | 2867 | **/ |
2541 | 2868 | ||
@@ -2608,15 +2935,17 @@ e1000_clean_rx_irq(struct e1000_adapter *adapter) | |||
2608 | skb_put(skb, length - ETHERNET_FCS_SIZE); | 2935 | skb_put(skb, length - ETHERNET_FCS_SIZE); |
2609 | 2936 | ||
2610 | /* Receive Checksum Offload */ | 2937 | /* Receive Checksum Offload */ |
2611 | e1000_rx_checksum(adapter, rx_desc, skb); | 2938 | e1000_rx_checksum(adapter, |
2612 | 2939 | (uint32_t)(rx_desc->status) | | |
2940 | ((uint32_t)(rx_desc->errors) << 24), | ||
2941 | rx_desc->csum, skb); | ||
2613 | skb->protocol = eth_type_trans(skb, netdev); | 2942 | skb->protocol = eth_type_trans(skb, netdev); |
2614 | #ifdef CONFIG_E1000_NAPI | 2943 | #ifdef CONFIG_E1000_NAPI |
2615 | if(unlikely(adapter->vlgrp && | 2944 | if(unlikely(adapter->vlgrp && |
2616 | (rx_desc->status & E1000_RXD_STAT_VP))) { | 2945 | (rx_desc->status & E1000_RXD_STAT_VP))) { |
2617 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | 2946 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, |
2618 | le16_to_cpu(rx_desc->special) & | 2947 | le16_to_cpu(rx_desc->special) & |
2619 | E1000_RXD_SPC_VLAN_MASK); | 2948 | E1000_RXD_SPC_VLAN_MASK); |
2620 | } else { | 2949 | } else { |
2621 | netif_receive_skb(skb); | 2950 | netif_receive_skb(skb); |
2622 | } | 2951 | } |
@@ -2639,16 +2968,142 @@ next_desc: | |||
2639 | 2968 | ||
2640 | rx_desc = E1000_RX_DESC(*rx_ring, i); | 2969 | rx_desc = E1000_RX_DESC(*rx_ring, i); |
2641 | } | 2970 | } |
2642 | |||
2643 | rx_ring->next_to_clean = i; | 2971 | rx_ring->next_to_clean = i; |
2972 | adapter->alloc_rx_buf(adapter); | ||
2973 | |||
2974 | return cleaned; | ||
2975 | } | ||
2976 | |||
2977 | /** | ||
2978 | * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split | ||
2979 | * @adapter: board private structure | ||
2980 | **/ | ||
2981 | |||
2982 | static boolean_t | ||
2983 | #ifdef CONFIG_E1000_NAPI | ||
2984 | e1000_clean_rx_irq_ps(struct e1000_adapter *adapter, int *work_done, | ||
2985 | int work_to_do) | ||
2986 | #else | ||
2987 | e1000_clean_rx_irq_ps(struct e1000_adapter *adapter) | ||
2988 | #endif | ||
2989 | { | ||
2990 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
2991 | union e1000_rx_desc_packet_split *rx_desc; | ||
2992 | struct net_device *netdev = adapter->netdev; | ||
2993 | struct pci_dev *pdev = adapter->pdev; | ||
2994 | struct e1000_buffer *buffer_info; | ||
2995 | struct e1000_ps_page *ps_page; | ||
2996 | struct e1000_ps_page_dma *ps_page_dma; | ||
2997 | struct sk_buff *skb; | ||
2998 | unsigned int i, j; | ||
2999 | uint32_t length, staterr; | ||
3000 | boolean_t cleaned = FALSE; | ||
3001 | |||
3002 | i = rx_ring->next_to_clean; | ||
3003 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
3004 | staterr = rx_desc->wb.middle.status_error; | ||
3005 | |||
3006 | while(staterr & E1000_RXD_STAT_DD) { | ||
3007 | buffer_info = &rx_ring->buffer_info[i]; | ||
3008 | ps_page = &rx_ring->ps_page[i]; | ||
3009 | ps_page_dma = &rx_ring->ps_page_dma[i]; | ||
3010 | #ifdef CONFIG_E1000_NAPI | ||
3011 | if(unlikely(*work_done >= work_to_do)) | ||
3012 | break; | ||
3013 | (*work_done)++; | ||
3014 | #endif | ||
3015 | cleaned = TRUE; | ||
3016 | pci_unmap_single(pdev, buffer_info->dma, | ||
3017 | buffer_info->length, | ||
3018 | PCI_DMA_FROMDEVICE); | ||
3019 | |||
3020 | skb = buffer_info->skb; | ||
3021 | |||
3022 | if(unlikely(!(staterr & E1000_RXD_STAT_EOP))) { | ||
3023 | E1000_DBG("%s: Packet Split buffers didn't pick up" | ||
3024 | " the full packet\n", netdev->name); | ||
3025 | dev_kfree_skb_irq(skb); | ||
3026 | goto next_desc; | ||
3027 | } | ||
2644 | 3028 | ||
2645 | e1000_alloc_rx_buffers(adapter); | 3029 | if(unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) { |
3030 | dev_kfree_skb_irq(skb); | ||
3031 | goto next_desc; | ||
3032 | } | ||
3033 | |||
3034 | length = le16_to_cpu(rx_desc->wb.middle.length0); | ||
3035 | |||
3036 | if(unlikely(!length)) { | ||
3037 | E1000_DBG("%s: Last part of the packet spanning" | ||
3038 | " multiple descriptors\n", netdev->name); | ||
3039 | dev_kfree_skb_irq(skb); | ||
3040 | goto next_desc; | ||
3041 | } | ||
3042 | |||
3043 | /* Good Receive */ | ||
3044 | skb_put(skb, length); | ||
3045 | |||
3046 | for(j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
3047 | if(!(length = le16_to_cpu(rx_desc->wb.upper.length[j]))) | ||
3048 | break; | ||
3049 | |||
3050 | pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j], | ||
3051 | PAGE_SIZE, PCI_DMA_FROMDEVICE); | ||
3052 | ps_page_dma->ps_page_dma[j] = 0; | ||
3053 | skb_shinfo(skb)->frags[j].page = | ||
3054 | ps_page->ps_page[j]; | ||
3055 | ps_page->ps_page[j] = NULL; | ||
3056 | skb_shinfo(skb)->frags[j].page_offset = 0; | ||
3057 | skb_shinfo(skb)->frags[j].size = length; | ||
3058 | skb_shinfo(skb)->nr_frags++; | ||
3059 | skb->len += length; | ||
3060 | skb->data_len += length; | ||
3061 | } | ||
3062 | |||
3063 | e1000_rx_checksum(adapter, staterr, | ||
3064 | rx_desc->wb.lower.hi_dword.csum_ip.csum, skb); | ||
3065 | skb->protocol = eth_type_trans(skb, netdev); | ||
3066 | |||
3067 | #ifdef HAVE_RX_ZERO_COPY | ||
3068 | if(likely(rx_desc->wb.upper.header_status & | ||
3069 | E1000_RXDPS_HDRSTAT_HDRSP)) | ||
3070 | skb_shinfo(skb)->zero_copy = TRUE; | ||
3071 | #endif | ||
3072 | #ifdef CONFIG_E1000_NAPI | ||
3073 | if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { | ||
3074 | vlan_hwaccel_receive_skb(skb, adapter->vlgrp, | ||
3075 | le16_to_cpu(rx_desc->wb.middle.vlan & | ||
3076 | E1000_RXD_SPC_VLAN_MASK)); | ||
3077 | } else { | ||
3078 | netif_receive_skb(skb); | ||
3079 | } | ||
3080 | #else /* CONFIG_E1000_NAPI */ | ||
3081 | if(unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) { | ||
3082 | vlan_hwaccel_rx(skb, adapter->vlgrp, | ||
3083 | le16_to_cpu(rx_desc->wb.middle.vlan & | ||
3084 | E1000_RXD_SPC_VLAN_MASK)); | ||
3085 | } else { | ||
3086 | netif_rx(skb); | ||
3087 | } | ||
3088 | #endif /* CONFIG_E1000_NAPI */ | ||
3089 | netdev->last_rx = jiffies; | ||
3090 | |||
3091 | next_desc: | ||
3092 | rx_desc->wb.middle.status_error &= ~0xFF; | ||
3093 | buffer_info->skb = NULL; | ||
3094 | if(unlikely(++i == rx_ring->count)) i = 0; | ||
3095 | |||
3096 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
3097 | staterr = rx_desc->wb.middle.status_error; | ||
3098 | } | ||
3099 | rx_ring->next_to_clean = i; | ||
3100 | adapter->alloc_rx_buf(adapter); | ||
2646 | 3101 | ||
2647 | return cleaned; | 3102 | return cleaned; |
2648 | } | 3103 | } |
2649 | 3104 | ||
2650 | /** | 3105 | /** |
2651 | * e1000_alloc_rx_buffers - Replace used receive buffers | 3106 | * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended |
2652 | * @adapter: address of board private structure | 3107 | * @adapter: address of board private structure |
2653 | **/ | 3108 | **/ |
2654 | 3109 | ||
@@ -2753,6 +3208,95 @@ e1000_alloc_rx_buffers(struct e1000_adapter *adapter) | |||
2753 | } | 3208 | } |
2754 | 3209 | ||
2755 | /** | 3210 | /** |
3211 | * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split | ||
3212 | * @adapter: address of board private structure | ||
3213 | **/ | ||
3214 | |||
3215 | static void | ||
3216 | e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter) | ||
3217 | { | ||
3218 | struct e1000_desc_ring *rx_ring = &adapter->rx_ring; | ||
3219 | struct net_device *netdev = adapter->netdev; | ||
3220 | struct pci_dev *pdev = adapter->pdev; | ||
3221 | union e1000_rx_desc_packet_split *rx_desc; | ||
3222 | struct e1000_buffer *buffer_info; | ||
3223 | struct e1000_ps_page *ps_page; | ||
3224 | struct e1000_ps_page_dma *ps_page_dma; | ||
3225 | struct sk_buff *skb; | ||
3226 | unsigned int i, j; | ||
3227 | |||
3228 | i = rx_ring->next_to_use; | ||
3229 | buffer_info = &rx_ring->buffer_info[i]; | ||
3230 | ps_page = &rx_ring->ps_page[i]; | ||
3231 | ps_page_dma = &rx_ring->ps_page_dma[i]; | ||
3232 | |||
3233 | while(!buffer_info->skb) { | ||
3234 | rx_desc = E1000_RX_DESC_PS(*rx_ring, i); | ||
3235 | |||
3236 | for(j = 0; j < PS_PAGE_BUFFERS; j++) { | ||
3237 | if(unlikely(!ps_page->ps_page[j])) { | ||
3238 | ps_page->ps_page[j] = | ||
3239 | alloc_page(GFP_ATOMIC); | ||
3240 | if(unlikely(!ps_page->ps_page[j])) | ||
3241 | goto no_buffers; | ||
3242 | ps_page_dma->ps_page_dma[j] = | ||
3243 | pci_map_page(pdev, | ||
3244 | ps_page->ps_page[j], | ||
3245 | 0, PAGE_SIZE, | ||
3246 | PCI_DMA_FROMDEVICE); | ||
3247 | } | ||
3248 | /* Refresh the desc even if buffer_addrs didn't | ||
3249 | * change because each write-back erases this info. | ||
3250 | */ | ||
3251 | rx_desc->read.buffer_addr[j+1] = | ||
3252 | cpu_to_le64(ps_page_dma->ps_page_dma[j]); | ||
3253 | } | ||
3254 | |||
3255 | skb = dev_alloc_skb(adapter->rx_ps_bsize0 + NET_IP_ALIGN); | ||
3256 | |||
3257 | if(unlikely(!skb)) | ||
3258 | break; | ||
3259 | |||
3260 | /* Make buffer alignment 2 beyond a 16 byte boundary | ||
3261 | * this will result in a 16 byte aligned IP header after | ||
3262 | * the 14 byte MAC header is removed | ||
3263 | */ | ||
3264 | skb_reserve(skb, NET_IP_ALIGN); | ||
3265 | |||
3266 | skb->dev = netdev; | ||
3267 | |||
3268 | buffer_info->skb = skb; | ||
3269 | buffer_info->length = adapter->rx_ps_bsize0; | ||
3270 | buffer_info->dma = pci_map_single(pdev, skb->data, | ||
3271 | adapter->rx_ps_bsize0, | ||
3272 | PCI_DMA_FROMDEVICE); | ||
3273 | |||
3274 | rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma); | ||
3275 | |||
3276 | if(unlikely((i & ~(E1000_RX_BUFFER_WRITE - 1)) == i)) { | ||
3277 | /* Force memory writes to complete before letting h/w | ||
3278 | * know there are new descriptors to fetch. (Only | ||
3279 | * applicable for weak-ordered memory model archs, | ||
3280 | * such as IA-64). */ | ||
3281 | wmb(); | ||
3282 | /* Hardware increments by 16 bytes, but packet split | ||
3283 | * descriptors are 32 bytes...so we increment tail | ||
3284 | * twice as much. | ||
3285 | */ | ||
3286 | E1000_WRITE_REG(&adapter->hw, RDT, i<<1); | ||
3287 | } | ||
3288 | |||
3289 | if(unlikely(++i == rx_ring->count)) i = 0; | ||
3290 | buffer_info = &rx_ring->buffer_info[i]; | ||
3291 | ps_page = &rx_ring->ps_page[i]; | ||
3292 | ps_page_dma = &rx_ring->ps_page_dma[i]; | ||
3293 | } | ||
3294 | |||
3295 | no_buffers: | ||
3296 | rx_ring->next_to_use = i; | ||
3297 | } | ||
3298 | |||
3299 | /** | ||
2756 | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. | 3300 | * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers. |
2757 | * @adapter: | 3301 | * @adapter: |
2758 | **/ | 3302 | **/ |
@@ -2986,6 +3530,7 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | |||
2986 | rctl |= E1000_RCTL_VFE; | 3530 | rctl |= E1000_RCTL_VFE; |
2987 | rctl &= ~E1000_RCTL_CFIEN; | 3531 | rctl &= ~E1000_RCTL_CFIEN; |
2988 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 3532 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
3533 | e1000_update_mng_vlan(adapter); | ||
2989 | } else { | 3534 | } else { |
2990 | /* disable VLAN tag insert/strip */ | 3535 | /* disable VLAN tag insert/strip */ |
2991 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); | 3536 | ctrl = E1000_READ_REG(&adapter->hw, CTRL); |
@@ -2996,6 +3541,10 @@ e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp) | |||
2996 | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 3541 | rctl = E1000_READ_REG(&adapter->hw, RCTL); |
2997 | rctl &= ~E1000_RCTL_VFE; | 3542 | rctl &= ~E1000_RCTL_VFE; |
2998 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 3543 | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); |
3544 | if(adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) { | ||
3545 | e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id); | ||
3546 | adapter->mng_vlan_id = E1000_MNG_VLAN_NONE; | ||
3547 | } | ||
2999 | } | 3548 | } |
3000 | 3549 | ||
3001 | e1000_irq_enable(adapter); | 3550 | e1000_irq_enable(adapter); |
@@ -3006,7 +3555,10 @@ e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid) | |||
3006 | { | 3555 | { |
3007 | struct e1000_adapter *adapter = netdev->priv; | 3556 | struct e1000_adapter *adapter = netdev->priv; |
3008 | uint32_t vfta, index; | 3557 | uint32_t vfta, index; |
3009 | 3558 | if((adapter->hw.mng_cookie.status & | |
3559 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | ||
3560 | (vid == adapter->mng_vlan_id)) | ||
3561 | return; | ||
3010 | /* add VID to filter table */ | 3562 | /* add VID to filter table */ |
3011 | index = (vid >> 5) & 0x7F; | 3563 | index = (vid >> 5) & 0x7F; |
3012 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); | 3564 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); |
@@ -3027,6 +3579,10 @@ e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid) | |||
3027 | 3579 | ||
3028 | e1000_irq_enable(adapter); | 3580 | e1000_irq_enable(adapter); |
3029 | 3581 | ||
3582 | if((adapter->hw.mng_cookie.status & | ||
3583 | E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) && | ||
3584 | (vid == adapter->mng_vlan_id)) | ||
3585 | return; | ||
3030 | /* remove VID from filter table */ | 3586 | /* remove VID from filter table */ |
3031 | index = (vid >> 5) & 0x7F; | 3587 | index = (vid >> 5) & 0x7F; |
3032 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); | 3588 | vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index); |
@@ -3102,7 +3658,7 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state) | |||
3102 | { | 3658 | { |
3103 | struct net_device *netdev = pci_get_drvdata(pdev); | 3659 | struct net_device *netdev = pci_get_drvdata(pdev); |
3104 | struct e1000_adapter *adapter = netdev->priv; | 3660 | struct e1000_adapter *adapter = netdev->priv; |
3105 | uint32_t ctrl, ctrl_ext, rctl, manc, status; | 3661 | uint32_t ctrl, ctrl_ext, rctl, manc, status, swsm; |
3106 | uint32_t wufc = adapter->wol; | 3662 | uint32_t wufc = adapter->wol; |
3107 | 3663 | ||
3108 | netif_device_detach(netdev); | 3664 | netif_device_detach(netdev); |
@@ -3144,6 +3700,9 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state) | |||
3144 | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); | 3700 | E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext); |
3145 | } | 3701 | } |
3146 | 3702 | ||
3703 | /* Allow time for pending master requests to run */ | ||
3704 | e1000_disable_pciex_master(&adapter->hw); | ||
3705 | |||
3147 | E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); | 3706 | E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN); |
3148 | E1000_WRITE_REG(&adapter->hw, WUFC, wufc); | 3707 | E1000_WRITE_REG(&adapter->hw, WUFC, wufc); |
3149 | pci_enable_wake(pdev, 3, 1); | 3708 | pci_enable_wake(pdev, 3, 1); |
@@ -3168,6 +3727,16 @@ e1000_suspend(struct pci_dev *pdev, uint32_t state) | |||
3168 | } | 3727 | } |
3169 | } | 3728 | } |
3170 | 3729 | ||
3730 | switch(adapter->hw.mac_type) { | ||
3731 | case e1000_82573: | ||
3732 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | ||
3733 | E1000_WRITE_REG(&adapter->hw, SWSM, | ||
3734 | swsm & ~E1000_SWSM_DRV_LOAD); | ||
3735 | break; | ||
3736 | default: | ||
3737 | break; | ||
3738 | } | ||
3739 | |||
3171 | pci_disable_device(pdev); | 3740 | pci_disable_device(pdev); |
3172 | 3741 | ||
3173 | state = (state > 0) ? 3 : 0; | 3742 | state = (state > 0) ? 3 : 0; |
@@ -3182,7 +3751,7 @@ e1000_resume(struct pci_dev *pdev) | |||
3182 | { | 3751 | { |
3183 | struct net_device *netdev = pci_get_drvdata(pdev); | 3752 | struct net_device *netdev = pci_get_drvdata(pdev); |
3184 | struct e1000_adapter *adapter = netdev->priv; | 3753 | struct e1000_adapter *adapter = netdev->priv; |
3185 | uint32_t manc, ret; | 3754 | uint32_t manc, ret, swsm; |
3186 | 3755 | ||
3187 | pci_set_power_state(pdev, 0); | 3756 | pci_set_power_state(pdev, 0); |
3188 | pci_restore_state(pdev); | 3757 | pci_restore_state(pdev); |
@@ -3207,10 +3776,19 @@ e1000_resume(struct pci_dev *pdev) | |||
3207 | E1000_WRITE_REG(&adapter->hw, MANC, manc); | 3776 | E1000_WRITE_REG(&adapter->hw, MANC, manc); |
3208 | } | 3777 | } |
3209 | 3778 | ||
3779 | switch(adapter->hw.mac_type) { | ||
3780 | case e1000_82573: | ||
3781 | swsm = E1000_READ_REG(&adapter->hw, SWSM); | ||
3782 | E1000_WRITE_REG(&adapter->hw, SWSM, | ||
3783 | swsm | E1000_SWSM_DRV_LOAD); | ||
3784 | break; | ||
3785 | default: | ||
3786 | break; | ||
3787 | } | ||
3788 | |||
3210 | return 0; | 3789 | return 0; |
3211 | } | 3790 | } |
3212 | #endif | 3791 | #endif |
3213 | |||
3214 | #ifdef CONFIG_NET_POLL_CONTROLLER | 3792 | #ifdef CONFIG_NET_POLL_CONTROLLER |
3215 | /* | 3793 | /* |
3216 | * Polling 'interrupt' - used by things like netconsole to send skbs | 3794 | * Polling 'interrupt' - used by things like netconsole to send skbs |
diff --git a/drivers/net/e1000/e1000_osdep.h b/drivers/net/e1000/e1000_osdep.h index 2efa3b1b64dc..b1915e8eb564 100644 --- a/drivers/net/e1000/e1000_osdep.h +++ b/drivers/net/e1000/e1000_osdep.h | |||
@@ -101,6 +101,29 @@ typedef enum { | |||
101 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | 101 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ |
102 | ((offset) << 2))) | 102 | ((offset) << 2))) |
103 | 103 | ||
104 | #define E1000_READ_REG_ARRAY_DWORD E1000_READ_REG_ARRAY | ||
105 | #define E1000_WRITE_REG_ARRAY_DWORD E1000_WRITE_REG_ARRAY | ||
106 | |||
107 | #define E1000_WRITE_REG_ARRAY_WORD(a, reg, offset, value) ( \ | ||
108 | writew((value), ((a)->hw_addr + \ | ||
109 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
110 | ((offset) << 1)))) | ||
111 | |||
112 | #define E1000_READ_REG_ARRAY_WORD(a, reg, offset) ( \ | ||
113 | readw((a)->hw_addr + \ | ||
114 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
115 | ((offset) << 1))) | ||
116 | |||
117 | #define E1000_WRITE_REG_ARRAY_BYTE(a, reg, offset, value) ( \ | ||
118 | writeb((value), ((a)->hw_addr + \ | ||
119 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
120 | (offset)))) | ||
121 | |||
122 | #define E1000_READ_REG_ARRAY_BYTE(a, reg, offset) ( \ | ||
123 | readb((a)->hw_addr + \ | ||
124 | (((a)->mac_type >= e1000_82543) ? E1000_##reg : E1000_82542_##reg) + \ | ||
125 | (offset))) | ||
126 | |||
104 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) | 127 | #define E1000_WRITE_FLUSH(a) E1000_READ_REG(a, STATUS) |
105 | 128 | ||
106 | #endif /* _E1000_OSDEP_H_ */ | 129 | #endif /* _E1000_OSDEP_H_ */ |