aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net
diff options
context:
space:
mode:
authordanborkmann@iogearbox.net <danborkmann@iogearbox.net>2012-01-18 19:39:31 -0500
committerDavid S. Miller <davem@davemloft.net>2012-01-25 16:59:47 -0500
commit8a3b7a252dca9fb28c23b5bf76c49180a2b60d3b (patch)
tree0fbf680fa4b679f8fd7f72ee8335f3c6021ce483 /drivers/net
parenta44acd551467d78a26bfa76ea348225575830efc (diff)
drivers/net/ethernet/xilinx: added Xilinx AXI Ethernet driver
This driver adds support for Xilinx 10/100/1000 AXI Ethernet. It can be used, for instance, on Xilinx boards with a Microblaze architecture like the ML605. The patch is against the latest net-next tree and checkpatch clean. Signed-off-by: Ariane Keller <ariane.keller@tik.ee.ethz.ch> Signed-off-by: Daniel Borkmann <daniel.borkmann@tik.ee.ethz.ch> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'drivers/net')
-rw-r--r--drivers/net/ethernet/xilinx/Kconfig8
-rw-r--r--drivers/net/ethernet/xilinx/Makefile2
-rw-r--r--drivers/net/ethernet/xilinx/xilinx_axienet.h508
-rw-r--r--drivers/net/ethernet/xilinx/xilinx_axienet_main.c1682
-rw-r--r--drivers/net/ethernet/xilinx/xilinx_axienet_mdio.c238
5 files changed, 2438 insertions, 0 deletions
diff --git a/drivers/net/ethernet/xilinx/Kconfig b/drivers/net/ethernet/xilinx/Kconfig
index d5a826063a82..5778a4ae1164 100644
--- a/drivers/net/ethernet/xilinx/Kconfig
+++ b/drivers/net/ethernet/xilinx/Kconfig
@@ -25,6 +25,14 @@ config XILINX_EMACLITE
25 ---help--- 25 ---help---
26 This driver supports the 10/100 Ethernet Lite from Xilinx. 26 This driver supports the 10/100 Ethernet Lite from Xilinx.
27 27
28config XILINX_AXI_EMAC
29 tristate "Xilinx 10/100/1000 AXI Ethernet support"
30 depends on (PPC32 || MICROBLAZE)
31 select PHYLIB
32 ---help---
33 This driver supports the 10/100/1000 Ethernet from Xilinx for the
34 AXI bus interface used in Xilinx Virtex FPGAs.
35
28config XILINX_LL_TEMAC 36config XILINX_LL_TEMAC
29 tristate "Xilinx LL TEMAC (LocalLink Tri-mode Ethernet MAC) driver" 37 tristate "Xilinx LL TEMAC (LocalLink Tri-mode Ethernet MAC) driver"
30 depends on (PPC || MICROBLAZE) 38 depends on (PPC || MICROBLAZE)
diff --git a/drivers/net/ethernet/xilinx/Makefile b/drivers/net/ethernet/xilinx/Makefile
index 5feac734ea45..214205e975e3 100644
--- a/drivers/net/ethernet/xilinx/Makefile
+++ b/drivers/net/ethernet/xilinx/Makefile
@@ -5,3 +5,5 @@
5ll_temac-objs := ll_temac_main.o ll_temac_mdio.o 5ll_temac-objs := ll_temac_main.o ll_temac_mdio.o
6obj-$(CONFIG_XILINX_LL_TEMAC) += ll_temac.o 6obj-$(CONFIG_XILINX_LL_TEMAC) += ll_temac.o
7obj-$(CONFIG_XILINX_EMACLITE) += xilinx_emaclite.o 7obj-$(CONFIG_XILINX_EMACLITE) += xilinx_emaclite.o
8xilinx_emac-objs := xilinx_axienet_main.o xilinx_axienet_mdio.o
9obj-$(CONFIG_XILINX_AXI_EMAC) += xilinx_emac.o
diff --git a/drivers/net/ethernet/xilinx/xilinx_axienet.h b/drivers/net/ethernet/xilinx/xilinx_axienet.h
new file mode 100644
index 000000000000..cc83af083fd7
--- /dev/null
+++ b/drivers/net/ethernet/xilinx/xilinx_axienet.h
@@ -0,0 +1,508 @@
1/*
2 * Definitions for Xilinx Axi Ethernet device driver.
3 *
4 * Copyright (c) 2009 Secret Lab Technologies, Ltd.
5 * Copyright (c) 2010 Xilinx, Inc. All rights reserved.
6 * Copyright (c) 2012 Daniel Borkmann, <daniel.borkmann@tik.ee.ethz.ch>
7 * Copyright (c) 2012 Ariane Keller, <ariane.keller@tik.ee.ethz.ch>
8 */
9
10#ifndef XILINX_AXIENET_H
11#define XILINX_AXIENET_H
12
13#include <linux/netdevice.h>
14#include <linux/spinlock.h>
15#include <linux/interrupt.h>
16
17/* Packet size info */
18#define XAE_HDR_SIZE 14 /* Size of Ethernet header */
19#define XAE_HDR_VLAN_SIZE 18 /* Size of an Ethernet hdr + VLAN */
20#define XAE_TRL_SIZE 4 /* Size of Ethernet trailer (FCS) */
21#define XAE_MTU 1500 /* Max MTU of an Ethernet frame */
22#define XAE_JUMBO_MTU 9000 /* Max MTU of a jumbo Eth. frame */
23
24#define XAE_MAX_FRAME_SIZE (XAE_MTU + XAE_HDR_SIZE + XAE_TRL_SIZE)
25#define XAE_MAX_VLAN_FRAME_SIZE (XAE_MTU + XAE_HDR_VLAN_SIZE + XAE_TRL_SIZE)
26#define XAE_MAX_JUMBO_FRAME_SIZE (XAE_JUMBO_MTU + XAE_HDR_SIZE + XAE_TRL_SIZE)
27
28/* Configuration options */
29
30/* Accept all incoming packets. Default: disabled (cleared) */
31#define XAE_OPTION_PROMISC (1 << 0)
32
33/* Jumbo frame support for Tx & Rx. Default: disabled (cleared) */
34#define XAE_OPTION_JUMBO (1 << 1)
35
36/* VLAN Rx & Tx frame support. Default: disabled (cleared) */
37#define XAE_OPTION_VLAN (1 << 2)
38
39/* Enable recognition of flow control frames on Rx. Default: enabled (set) */
40#define XAE_OPTION_FLOW_CONTROL (1 << 4)
41
42/* Strip FCS and PAD from incoming frames. Note: PAD from VLAN frames is not
43 * stripped. Default: disabled (set) */
44#define XAE_OPTION_FCS_STRIP (1 << 5)
45
46/* Generate FCS field and add PAD automatically for outgoing frames.
47 * Default: enabled (set) */
48#define XAE_OPTION_FCS_INSERT (1 << 6)
49
50/* Enable Length/Type error checking for incoming frames. When this option is
51 * set, the MAC will filter frames that have a mismatched type/length field
52 * and if XAE_OPTION_REPORT_RXERR is set, the user is notified when these
53 * types of frames are encountered. When this option is cleared, the MAC will
54 * allow these types of frames to be received. Default: enabled (set) */
55#define XAE_OPTION_LENTYPE_ERR (1 << 7)
56
57/* Enable the transmitter. Default: enabled (set) */
58#define XAE_OPTION_TXEN (1 << 11)
59
60/* Enable the receiver. Default: enabled (set) */
61#define XAE_OPTION_RXEN (1 << 12)
62
63/* Default options set when device is initialized or reset */
64#define XAE_OPTION_DEFAULTS \
65 (XAE_OPTION_TXEN | \
66 XAE_OPTION_FLOW_CONTROL | \
67 XAE_OPTION_RXEN)
68
69/* Axi DMA Register definitions */
70
71#define XAXIDMA_TX_CR_OFFSET 0x00000000 /* Channel control */
72#define XAXIDMA_TX_SR_OFFSET 0x00000004 /* Status */
73#define XAXIDMA_TX_CDESC_OFFSET 0x00000008 /* Current descriptor pointer */
74#define XAXIDMA_TX_TDESC_OFFSET 0x00000010 /* Tail descriptor pointer */
75
76#define XAXIDMA_RX_CR_OFFSET 0x00000030 /* Channel control */
77#define XAXIDMA_RX_SR_OFFSET 0x00000034 /* Status */
78#define XAXIDMA_RX_CDESC_OFFSET 0x00000038 /* Current descriptor pointer */
79#define XAXIDMA_RX_TDESC_OFFSET 0x00000040 /* Tail descriptor pointer */
80
81#define XAXIDMA_CR_RUNSTOP_MASK 0x00000001 /* Start/stop DMA channel */
82#define XAXIDMA_CR_RESET_MASK 0x00000004 /* Reset DMA engine */
83
84#define XAXIDMA_BD_NDESC_OFFSET 0x00 /* Next descriptor pointer */
85#define XAXIDMA_BD_BUFA_OFFSET 0x08 /* Buffer address */
86#define XAXIDMA_BD_CTRL_LEN_OFFSET 0x18 /* Control/buffer length */
87#define XAXIDMA_BD_STS_OFFSET 0x1C /* Status */
88#define XAXIDMA_BD_USR0_OFFSET 0x20 /* User IP specific word0 */
89#define XAXIDMA_BD_USR1_OFFSET 0x24 /* User IP specific word1 */
90#define XAXIDMA_BD_USR2_OFFSET 0x28 /* User IP specific word2 */
91#define XAXIDMA_BD_USR3_OFFSET 0x2C /* User IP specific word3 */
92#define XAXIDMA_BD_USR4_OFFSET 0x30 /* User IP specific word4 */
93#define XAXIDMA_BD_ID_OFFSET 0x34 /* Sw ID */
94#define XAXIDMA_BD_HAS_STSCNTRL_OFFSET 0x38 /* Whether has stscntrl strm */
95#define XAXIDMA_BD_HAS_DRE_OFFSET 0x3C /* Whether has DRE */
96
97#define XAXIDMA_BD_HAS_DRE_SHIFT 8 /* Whether has DRE shift */
98#define XAXIDMA_BD_HAS_DRE_MASK 0xF00 /* Whether has DRE mask */
99#define XAXIDMA_BD_WORDLEN_MASK 0xFF /* Whether has DRE mask */
100
101#define XAXIDMA_BD_CTRL_LENGTH_MASK 0x007FFFFF /* Requested len */
102#define XAXIDMA_BD_CTRL_TXSOF_MASK 0x08000000 /* First tx packet */
103#define XAXIDMA_BD_CTRL_TXEOF_MASK 0x04000000 /* Last tx packet */
104#define XAXIDMA_BD_CTRL_ALL_MASK 0x0C000000 /* All control bits */
105
106#define XAXIDMA_DELAY_MASK 0xFF000000 /* Delay timeout counter */
107#define XAXIDMA_COALESCE_MASK 0x00FF0000 /* Coalesce counter */
108
109#define XAXIDMA_DELAY_SHIFT 24
110#define XAXIDMA_COALESCE_SHIFT 16
111
112#define XAXIDMA_IRQ_IOC_MASK 0x00001000 /* Completion intr */
113#define XAXIDMA_IRQ_DELAY_MASK 0x00002000 /* Delay interrupt */
114#define XAXIDMA_IRQ_ERROR_MASK 0x00004000 /* Error interrupt */
115#define XAXIDMA_IRQ_ALL_MASK 0x00007000 /* All interrupts */
116
117/* Default TX/RX Threshold and waitbound values for SGDMA mode */
118#define XAXIDMA_DFT_TX_THRESHOLD 24
119#define XAXIDMA_DFT_TX_WAITBOUND 254
120#define XAXIDMA_DFT_RX_THRESHOLD 24
121#define XAXIDMA_DFT_RX_WAITBOUND 254
122
123#define XAXIDMA_BD_CTRL_TXSOF_MASK 0x08000000 /* First tx packet */
124#define XAXIDMA_BD_CTRL_TXEOF_MASK 0x04000000 /* Last tx packet */
125#define XAXIDMA_BD_CTRL_ALL_MASK 0x0C000000 /* All control bits */
126
127#define XAXIDMA_BD_STS_ACTUAL_LEN_MASK 0x007FFFFF /* Actual len */
128#define XAXIDMA_BD_STS_COMPLETE_MASK 0x80000000 /* Completed */
129#define XAXIDMA_BD_STS_DEC_ERR_MASK 0x40000000 /* Decode error */
130#define XAXIDMA_BD_STS_SLV_ERR_MASK 0x20000000 /* Slave error */
131#define XAXIDMA_BD_STS_INT_ERR_MASK 0x10000000 /* Internal err */
132#define XAXIDMA_BD_STS_ALL_ERR_MASK 0x70000000 /* All errors */
133#define XAXIDMA_BD_STS_RXSOF_MASK 0x08000000 /* First rx pkt */
134#define XAXIDMA_BD_STS_RXEOF_MASK 0x04000000 /* Last rx pkt */
135#define XAXIDMA_BD_STS_ALL_MASK 0xFC000000 /* All status bits */
136
137#define XAXIDMA_BD_MINIMUM_ALIGNMENT 0x40
138
139/* Axi Ethernet registers definition */
140#define XAE_RAF_OFFSET 0x00000000 /* Reset and Address filter */
141#define XAE_TPF_OFFSET 0x00000004 /* Tx Pause Frame */
142#define XAE_IFGP_OFFSET 0x00000008 /* Tx Inter-frame gap adjustment*/
143#define XAE_IS_OFFSET 0x0000000C /* Interrupt status */
144#define XAE_IP_OFFSET 0x00000010 /* Interrupt pending */
145#define XAE_IE_OFFSET 0x00000014 /* Interrupt enable */
146#define XAE_TTAG_OFFSET 0x00000018 /* Tx VLAN TAG */
147#define XAE_RTAG_OFFSET 0x0000001C /* Rx VLAN TAG */
148#define XAE_UAWL_OFFSET 0x00000020 /* Unicast address word lower */
149#define XAE_UAWU_OFFSET 0x00000024 /* Unicast address word upper */
150#define XAE_TPID0_OFFSET 0x00000028 /* VLAN TPID0 register */
151#define XAE_TPID1_OFFSET 0x0000002C /* VLAN TPID1 register */
152#define XAE_PPST_OFFSET 0x00000030 /* PCS PMA Soft Temac Status Reg */
153#define XAE_RCW0_OFFSET 0x00000400 /* Rx Configuration Word 0 */
154#define XAE_RCW1_OFFSET 0x00000404 /* Rx Configuration Word 1 */
155#define XAE_TC_OFFSET 0x00000408 /* Tx Configuration */
156#define XAE_FCC_OFFSET 0x0000040C /* Flow Control Configuration */
157#define XAE_EMMC_OFFSET 0x00000410 /* EMAC mode configuration */
158#define XAE_PHYC_OFFSET 0x00000414 /* RGMII/SGMII configuration */
159#define XAE_MDIO_MC_OFFSET 0x00000500 /* MII Management Config */
160#define XAE_MDIO_MCR_OFFSET 0x00000504 /* MII Management Control */
161#define XAE_MDIO_MWD_OFFSET 0x00000508 /* MII Management Write Data */
162#define XAE_MDIO_MRD_OFFSET 0x0000050C /* MII Management Read Data */
163#define XAE_MDIO_MIS_OFFSET 0x00000600 /* MII Management Interrupt Status */
164#define XAE_MDIO_MIP_OFFSET 0x00000620 /* MII Mgmt Interrupt Pending
165 * register offset */
166#define XAE_MDIO_MIE_OFFSET 0x00000640 /* MII Management Interrupt Enable
167 * register offset */
168#define XAE_MDIO_MIC_OFFSET 0x00000660 /* MII Management Interrupt Clear
169 * register offset. */
170#define XAE_UAW0_OFFSET 0x00000700 /* Unicast address word 0 */
171#define XAE_UAW1_OFFSET 0x00000704 /* Unicast address word 1 */
172#define XAE_FMI_OFFSET 0x00000708 /* Filter Mask Index */
173#define XAE_AF0_OFFSET 0x00000710 /* Address Filter 0 */
174#define XAE_AF1_OFFSET 0x00000714 /* Address Filter 1 */
175
176#define XAE_TX_VLAN_DATA_OFFSET 0x00004000 /* TX VLAN data table address */
177#define XAE_RX_VLAN_DATA_OFFSET 0x00008000 /* RX VLAN data table address */
178#define XAE_MCAST_TABLE_OFFSET 0x00020000 /* Multicast table address */
179
180/* Bit Masks for Axi Ethernet RAF register */
181#define XAE_RAF_MCSTREJ_MASK 0x00000002 /* Reject receive multicast
182 * destination address */
183#define XAE_RAF_BCSTREJ_MASK 0x00000004 /* Reject receive broadcast
184 * destination address */
185#define XAE_RAF_TXVTAGMODE_MASK 0x00000018 /* Tx VLAN TAG mode */
186#define XAE_RAF_RXVTAGMODE_MASK 0x00000060 /* Rx VLAN TAG mode */
187#define XAE_RAF_TXVSTRPMODE_MASK 0x00000180 /* Tx VLAN STRIP mode */
188#define XAE_RAF_RXVSTRPMODE_MASK 0x00000600 /* Rx VLAN STRIP mode */
189#define XAE_RAF_NEWFNCENBL_MASK 0x00000800 /* New function mode */
190#define XAE_RAF_EMULTIFLTRENBL_MASK 0x00001000 /* Exteneded Multicast
191 * Filtering mode
192 */
193#define XAE_RAF_STATSRST_MASK 0x00002000 /* Stats. Counter Reset */
194#define XAE_RAF_RXBADFRMEN_MASK 0x00004000 /* Recv Bad Frame Enable */
195#define XAE_RAF_TXVTAGMODE_SHIFT 3 /* Tx Tag mode shift bits */
196#define XAE_RAF_RXVTAGMODE_SHIFT 5 /* Rx Tag mode shift bits */
197#define XAE_RAF_TXVSTRPMODE_SHIFT 7 /* Tx strip mode shift bits*/
198#define XAE_RAF_RXVSTRPMODE_SHIFT 9 /* Rx Strip mode shift bits*/
199
200/* Bit Masks for Axi Ethernet TPF and IFGP registers */
201#define XAE_TPF_TPFV_MASK 0x0000FFFF /* Tx pause frame value */
202#define XAE_IFGP0_IFGP_MASK 0x0000007F /* Transmit inter-frame
203 * gap adjustment value */
204
205/* Bit Masks for Axi Ethernet IS, IE and IP registers, Same masks apply
206 * for all 3 registers. */
207#define XAE_INT_HARDACSCMPLT_MASK 0x00000001 /* Hard register access
208 * complete */
209#define XAE_INT_AUTONEG_MASK 0x00000002 /* Auto negotiation
210 * complete */
211#define XAE_INT_RXCMPIT_MASK 0x00000004 /* Rx complete */
212#define XAE_INT_RXRJECT_MASK 0x00000008 /* Rx frame rejected */
213#define XAE_INT_RXFIFOOVR_MASK 0x00000010 /* Rx fifo overrun */
214#define XAE_INT_TXCMPIT_MASK 0x00000020 /* Tx complete */
215#define XAE_INT_RXDCMLOCK_MASK 0x00000040 /* Rx Dcm Lock */
216#define XAE_INT_MGTRDY_MASK 0x00000080 /* MGT clock Lock */
217#define XAE_INT_PHYRSTCMPLT_MASK 0x00000100 /* Phy Reset complete */
218#define XAE_INT_ALL_MASK 0x0000003F /* All the ints */
219
220#define XAE_INT_RECV_ERROR_MASK \
221 (XAE_INT_RXRJECT_MASK | XAE_INT_RXFIFOOVR_MASK) /* INT bits that
222 * indicate receive
223 * errors */
224
225/* Bit masks for Axi Ethernet VLAN TPID Word 0 register */
226#define XAE_TPID_0_MASK 0x0000FFFF /* TPID 0 */
227#define XAE_TPID_1_MASK 0xFFFF0000 /* TPID 1 */
228
229/* Bit masks for Axi Ethernet VLAN TPID Word 1 register */
230#define XAE_TPID_2_MASK 0x0000FFFF /* TPID 0 */
231#define XAE_TPID_3_MASK 0xFFFF0000 /* TPID 1 */
232
233/* Bit masks for Axi Ethernet RCW1 register */
234#define XAE_RCW1_RST_MASK 0x80000000 /* Reset */
235#define XAE_RCW1_JUM_MASK 0x40000000 /* Jumbo frame enable */
236#define XAE_RCW1_FCS_MASK 0x20000000 /* In-Band FCS enable
237 * (FCS not stripped) */
238#define XAE_RCW1_RX_MASK 0x10000000 /* Receiver enable */
239#define XAE_RCW1_VLAN_MASK 0x08000000 /* VLAN frame enable */
240#define XAE_RCW1_LT_DIS_MASK 0x02000000 /* Length/type field valid check
241 * disable */
242#define XAE_RCW1_CL_DIS_MASK 0x01000000 /* Control frame Length check
243 * disable */
244#define XAE_RCW1_PAUSEADDR_MASK 0x0000FFFF /* Pause frame source address
245 * bits [47:32]. Bits [31:0] are
246 * stored in register RCW0 */
247
248/* Bit masks for Axi Ethernet TC register */
249#define XAE_TC_RST_MASK 0x80000000 /* Reset */
250#define XAE_TC_JUM_MASK 0x40000000 /* Jumbo frame enable */
251#define XAE_TC_FCS_MASK 0x20000000 /* In-Band FCS enable
252 * (FCS not generated) */
253#define XAE_TC_TX_MASK 0x10000000 /* Transmitter enable */
254#define XAE_TC_VLAN_MASK 0x08000000 /* VLAN frame enable */
255#define XAE_TC_IFG_MASK 0x02000000 /* Inter-frame gap adjustment
256 * enable */
257
258/* Bit masks for Axi Ethernet FCC register */
259#define XAE_FCC_FCRX_MASK 0x20000000 /* Rx flow control enable */
260#define XAE_FCC_FCTX_MASK 0x40000000 /* Tx flow control enable */
261
262/* Bit masks for Axi Ethernet EMMC register */
263#define XAE_EMMC_LINKSPEED_MASK 0xC0000000 /* Link speed */
264#define XAE_EMMC_RGMII_MASK 0x20000000 /* RGMII mode enable */
265#define XAE_EMMC_SGMII_MASK 0x10000000 /* SGMII mode enable */
266#define XAE_EMMC_GPCS_MASK 0x08000000 /* 1000BaseX mode enable */
267#define XAE_EMMC_HOST_MASK 0x04000000 /* Host interface enable */
268#define XAE_EMMC_TX16BIT 0x02000000 /* 16 bit Tx client enable */
269#define XAE_EMMC_RX16BIT 0x01000000 /* 16 bit Rx client enable */
270#define XAE_EMMC_LINKSPD_10 0x00000000 /* Link Speed mask for 10 Mbit */
271#define XAE_EMMC_LINKSPD_100 0x40000000 /* Link Speed mask for 100 Mbit */
272#define XAE_EMMC_LINKSPD_1000 0x80000000 /* Link Speed mask for 1000 Mbit */
273
274/* Bit masks for Axi Ethernet PHYC register */
275#define XAE_PHYC_SGMIILINKSPEED_MASK 0xC0000000 /* SGMII link speed mask*/
276#define XAE_PHYC_RGMIILINKSPEED_MASK 0x0000000C /* RGMII link speed */
277#define XAE_PHYC_RGMIIHD_MASK 0x00000002 /* RGMII Half-duplex */
278#define XAE_PHYC_RGMIILINK_MASK 0x00000001 /* RGMII link status */
279#define XAE_PHYC_RGLINKSPD_10 0x00000000 /* RGMII link 10 Mbit */
280#define XAE_PHYC_RGLINKSPD_100 0x00000004 /* RGMII link 100 Mbit */
281#define XAE_PHYC_RGLINKSPD_1000 0x00000008 /* RGMII link 1000 Mbit */
282#define XAE_PHYC_SGLINKSPD_10 0x00000000 /* SGMII link 10 Mbit */
283#define XAE_PHYC_SGLINKSPD_100 0x40000000 /* SGMII link 100 Mbit */
284#define XAE_PHYC_SGLINKSPD_1000 0x80000000 /* SGMII link 1000 Mbit */
285
286/* Bit masks for Axi Ethernet MDIO interface MC register */
287#define XAE_MDIO_MC_MDIOEN_MASK 0x00000040 /* MII management enable */
288#define XAE_MDIO_MC_CLOCK_DIVIDE_MAX 0x3F /* Maximum MDIO divisor */
289
290/* Bit masks for Axi Ethernet MDIO interface MCR register */
291#define XAE_MDIO_MCR_PHYAD_MASK 0x1F000000 /* Phy Address Mask */
292#define XAE_MDIO_MCR_PHYAD_SHIFT 24 /* Phy Address Shift */
293#define XAE_MDIO_MCR_REGAD_MASK 0x001F0000 /* Reg Address Mask */
294#define XAE_MDIO_MCR_REGAD_SHIFT 16 /* Reg Address Shift */
295#define XAE_MDIO_MCR_OP_MASK 0x0000C000 /* Operation Code Mask */
296#define XAE_MDIO_MCR_OP_SHIFT 13 /* Operation Code Shift */
297#define XAE_MDIO_MCR_OP_READ_MASK 0x00008000 /* Op Code Read Mask */
298#define XAE_MDIO_MCR_OP_WRITE_MASK 0x00004000 /* Op Code Write Mask */
299#define XAE_MDIO_MCR_INITIATE_MASK 0x00000800 /* Ready Mask */
300#define XAE_MDIO_MCR_READY_MASK 0x00000080 /* Ready Mask */
301
302/* Bit masks for Axi Ethernet MDIO interface MIS, MIP, MIE, MIC registers */
303#define XAE_MDIO_INT_MIIM_RDY_MASK 0x00000001 /* MIIM Interrupt */
304
305/* Bit masks for Axi Ethernet UAW1 register */
306#define XAE_UAW1_UNICASTADDR_MASK 0x0000FFFF /* Station address bits
307 * [47:32]; Station address
308 * bits [31:0] are stored in
309 * register UAW0 */
310
311/* Bit masks for Axi Ethernet FMI register */
312#define XAE_FMI_PM_MASK 0x80000000 /* Promis. mode enable */
313#define XAE_FMI_IND_MASK 0x00000003 /* Index Mask */
314
315#define XAE_MDIO_DIV_DFT 29 /* Default MDIO clock divisor */
316
317/* Defines for different options for C_PHY_TYPE parameter in Axi Ethernet IP */
318#define XAE_PHY_TYPE_MII 0
319#define XAE_PHY_TYPE_GMII 1
320#define XAE_PHY_TYPE_RGMII_1_3 2
321#define XAE_PHY_TYPE_RGMII_2_0 3
322#define XAE_PHY_TYPE_SGMII 4
323#define XAE_PHY_TYPE_1000BASE_X 5
324
325#define XAE_MULTICAST_CAM_TABLE_NUM 4 /* Total number of entries in the
326 * hardware multicast table. */
327
328/* Axi Ethernet Synthesis features */
329#define XAE_FEATURE_PARTIAL_RX_CSUM (1 << 0)
330#define XAE_FEATURE_PARTIAL_TX_CSUM (1 << 1)
331#define XAE_FEATURE_FULL_RX_CSUM (1 << 2)
332#define XAE_FEATURE_FULL_TX_CSUM (1 << 3)
333
334#define XAE_NO_CSUM_OFFLOAD 0
335
336#define XAE_FULL_CSUM_STATUS_MASK 0x00000038
337#define XAE_IP_UDP_CSUM_VALIDATED 0x00000003
338#define XAE_IP_TCP_CSUM_VALIDATED 0x00000002
339
340#define DELAY_OF_ONE_MILLISEC 1000
341
342/**
343 * struct axidma_bd - Axi Dma buffer descriptor layout
344 * @next: MM2S/S2MM Next Descriptor Pointer
345 * @reserved1: Reserved and not used
346 * @phys: MM2S/S2MM Buffer Address
347 * @reserved2: Reserved and not used
348 * @reserved3: Reserved and not used
349 * @reserved4: Reserved and not used
350 * @cntrl: MM2S/S2MM Control value
351 * @status: MM2S/S2MM Status value
352 * @app0: MM2S/S2MM User Application Field 0.
353 * @app1: MM2S/S2MM User Application Field 1.
354 * @app2: MM2S/S2MM User Application Field 2.
355 * @app3: MM2S/S2MM User Application Field 3.
356 * @app4: MM2S/S2MM User Application Field 4.
357 * @sw_id_offset: MM2S/S2MM Sw ID
358 * @reserved5: Reserved and not used
359 * @reserved6: Reserved and not used
360 */
361struct axidma_bd {
362 u32 next; /* Physical address of next buffer descriptor */
363 u32 reserved1;
364 u32 phys;
365 u32 reserved2;
366 u32 reserved3;
367 u32 reserved4;
368 u32 cntrl;
369 u32 status;
370 u32 app0;
371 u32 app1; /* TX start << 16 | insert */
372 u32 app2; /* TX csum seed */
373 u32 app3;
374 u32 app4;
375 u32 sw_id_offset;
376 u32 reserved5;
377 u32 reserved6;
378};
379
380/**
381 * struct axienet_local - axienet private per device data
382 * @ndev: Pointer for net_device to which it will be attached.
383 * @dev: Pointer to device structure
384 * @phy_dev: Pointer to PHY device structure attached to the axienet_local
385 * @phy_node: Pointer to device node structure
386 * @mii_bus: Pointer to MII bus structure
387 * @mdio_irqs: IRQs table for MDIO bus required in mii_bus structure
388 * @regs: Base address for the axienet_local device address space
389 * @dma_regs: Base address for the axidma device address space
390 * @dma_err_tasklet: Tasklet structure to process Axi DMA errors
391 * @tx_irq: Axidma TX IRQ number
392 * @rx_irq: Axidma RX IRQ number
393 * @temac_type: axienet type to identify between soft and hard temac
394 * @phy_type: Phy type to identify between MII/GMII/RGMII/SGMII/1000 Base-X
395 * @options: AxiEthernet option word
396 * @last_link: Phy link state in which the PHY was negotiated earlier
397 * @features: Stores the extended features supported by the axienet hw
398 * @tx_bd_v: Virtual address of the TX buffer descriptor ring
399 * @tx_bd_p: Physical address(start address) of the TX buffer descr. ring
400 * @rx_bd_v: Virtual address of the RX buffer descriptor ring
401 * @rx_bd_p: Physical address(start address) of the RX buffer descr. ring
402 * @tx_bd_ci: Stores the index of the Tx buffer descriptor in the ring being
403 * accessed currently. Used while alloc. BDs before a TX starts
404 * @tx_bd_tail: Stores the index of the Tx buffer descriptor in the ring being
405 * accessed currently. Used while processing BDs after the TX
406 * completed.
407 * @rx_bd_ci: Stores the index of the Rx buffer descriptor in the ring being
408 * accessed currently.
409 * @max_frm_size: Stores the maximum size of the frame that can be that
410 * Txed/Rxed in the existing hardware. If jumbo option is
411 * supported, the maximum frame size would be 9k. Else it is
412 * 1522 bytes (assuming support for basic VLAN)
413 * @jumbo_support: Stores hardware configuration for jumbo support. If hardware
414 * can handle jumbo packets, this entry will be 1, else 0.
415 */
416struct axienet_local {
417 struct net_device *ndev;
418 struct device *dev;
419
420 /* Connection to PHY device */
421 struct phy_device *phy_dev; /* Pointer to PHY device */
422 struct device_node *phy_node;
423
424 /* MDIO bus data */
425 struct mii_bus *mii_bus; /* MII bus reference */
426 int mdio_irqs[PHY_MAX_ADDR]; /* IRQs table for MDIO bus */
427
428 /* IO registers, dma functions and IRQs */
429 void __iomem *regs;
430 void __iomem *dma_regs;
431
432 struct tasklet_struct dma_err_tasklet;
433
434 int tx_irq;
435 int rx_irq;
436 u32 temac_type;
437 u32 phy_type;
438
439 u32 options; /* Current options word */
440 u32 last_link;
441 u32 features;
442
443 /* Buffer descriptors */
444 struct axidma_bd *tx_bd_v;
445 dma_addr_t tx_bd_p;
446 struct axidma_bd *rx_bd_v;
447 dma_addr_t rx_bd_p;
448 u32 tx_bd_ci;
449 u32 tx_bd_tail;
450 u32 rx_bd_ci;
451
452 u32 max_frm_size;
453 u32 jumbo_support;
454
455 int csum_offload_on_tx_path;
456 int csum_offload_on_rx_path;
457
458 u32 coalesce_count_rx;
459 u32 coalesce_count_tx;
460};
461
462/**
463 * struct axiethernet_option - Used to set axi ethernet hardware options
464 * @opt: Option to be set.
465 * @reg: Register offset to be written for setting the option
466 * @m_or: Mask to be ORed for setting the option in the register
467 */
468struct axienet_option {
469 u32 opt;
470 u32 reg;
471 u32 m_or;
472};
473
474/**
475 * axienet_ior - Memory mapped Axi Ethernet register read
476 * @lp: Pointer to axienet local structure
477 * @offset: Address offset from the base address of Axi Ethernet core
478 *
479 * returns: The contents of the Axi Ethernet register
480 *
481 * This function returns the contents of the corresponding register.
482 */
483static inline u32 axienet_ior(struct axienet_local *lp, off_t offset)
484{
485 return in_be32(lp->regs + offset);
486}
487
488/**
489 * axienet_iow - Memory mapped Axi Ethernet register write
490 * @lp: Pointer to axienet local structure
491 * @offset: Address offset from the base address of Axi Ethernet core
492 * @value: Value to be written into the Axi Ethernet register
493 *
494 * This function writes the desired value into the corresponding Axi Ethernet
495 * register.
496 */
497static inline void axienet_iow(struct axienet_local *lp, off_t offset,
498 u32 value)
499{
500 out_be32((lp->regs + offset), value);
501}
502
503/* Function prototypes visible in xilinx_axienet_mdio.c for other files */
504int axienet_mdio_setup(struct axienet_local *lp, struct device_node *np);
505int axienet_mdio_wait_until_ready(struct axienet_local *lp);
506void axienet_mdio_teardown(struct axienet_local *lp);
507
508#endif /* XILINX_AXI_ENET_H */
diff --git a/drivers/net/ethernet/xilinx/xilinx_axienet_main.c b/drivers/net/ethernet/xilinx/xilinx_axienet_main.c
new file mode 100644
index 000000000000..ea50caf8925b
--- /dev/null
+++ b/drivers/net/ethernet/xilinx/xilinx_axienet_main.c
@@ -0,0 +1,1682 @@
1/*
2 * Xilinx Axi Ethernet device driver
3 *
4 * Copyright (c) 2008 Nissin Systems Co., Ltd., Yoshio Kashiwagi
5 * Copyright (c) 2005-2008 DLA Systems, David H. Lynch Jr. <dhlii@dlasys.net>
6 * Copyright (c) 2008-2009 Secret Lab Technologies Ltd.
7 * Copyright (c) 2010 Xilinx, Inc. All rights reserved.
8 * Copyright (c) 2012 Daniel Borkmann, <daniel.borkmann@tik.ee.ethz.ch>
9 * Copyright (c) 2012 Ariane Keller, <ariane.keller@tik.ee.ethz.ch>
10 *
11 * This is a driver for the Xilinx Axi Ethernet which is used in the Virtex6
12 * and Spartan6.
13 *
14 * TODO:
15 * - Add Axi Fifo support.
16 * - Factor out Axi DMA code into separate driver.
17 * - Test and fix basic multicast filtering.
18 * - Add support for extended multicast filtering.
19 * - Test basic VLAN support.
20 * - Add support for extended VLAN support.
21 */
22
23#include <linux/delay.h>
24#include <linux/etherdevice.h>
25#include <linux/init.h>
26#include <linux/module.h>
27#include <linux/netdevice.h>
28#include <linux/of_mdio.h>
29#include <linux/of_platform.h>
30#include <linux/of_address.h>
31#include <linux/skbuff.h>
32#include <linux/spinlock.h>
33#include <linux/phy.h>
34#include <linux/mii.h>
35#include <linux/ethtool.h>
36
37#include "xilinx_axienet.h"
38
39/* Descriptors defines for Tx and Rx DMA - 2^n for the best performance */
40#define TX_BD_NUM 64
41#define RX_BD_NUM 128
42
43/* Must be shorter than length of ethtool_drvinfo.driver field to fit */
44#define DRIVER_NAME "xaxienet"
45#define DRIVER_DESCRIPTION "Xilinx Axi Ethernet driver"
46#define DRIVER_VERSION "1.00a"
47
48#define AXIENET_REGS_N 32
49
50/* Match table for of_platform binding */
51static struct of_device_id axienet_of_match[] __devinitdata = {
52 { .compatible = "xlnx,axi-ethernet-1.00.a", },
53 { .compatible = "xlnx,axi-ethernet-1.01.a", },
54 { .compatible = "xlnx,axi-ethernet-2.01.a", },
55 {},
56};
57
58MODULE_DEVICE_TABLE(of, axienet_of_match);
59
60/* Option table for setting up Axi Ethernet hardware options */
61static struct axienet_option axienet_options[] = {
62 /* Turn on jumbo packet support for both Rx and Tx */
63 {
64 .opt = XAE_OPTION_JUMBO,
65 .reg = XAE_TC_OFFSET,
66 .m_or = XAE_TC_JUM_MASK,
67 }, {
68 .opt = XAE_OPTION_JUMBO,
69 .reg = XAE_RCW1_OFFSET,
70 .m_or = XAE_RCW1_JUM_MASK,
71 }, { /* Turn on VLAN packet support for both Rx and Tx */
72 .opt = XAE_OPTION_VLAN,
73 .reg = XAE_TC_OFFSET,
74 .m_or = XAE_TC_VLAN_MASK,
75 }, {
76 .opt = XAE_OPTION_VLAN,
77 .reg = XAE_RCW1_OFFSET,
78 .m_or = XAE_RCW1_VLAN_MASK,
79 }, { /* Turn on FCS stripping on receive packets */
80 .opt = XAE_OPTION_FCS_STRIP,
81 .reg = XAE_RCW1_OFFSET,
82 .m_or = XAE_RCW1_FCS_MASK,
83 }, { /* Turn on FCS insertion on transmit packets */
84 .opt = XAE_OPTION_FCS_INSERT,
85 .reg = XAE_TC_OFFSET,
86 .m_or = XAE_TC_FCS_MASK,
87 }, { /* Turn off length/type field checking on receive packets */
88 .opt = XAE_OPTION_LENTYPE_ERR,
89 .reg = XAE_RCW1_OFFSET,
90 .m_or = XAE_RCW1_LT_DIS_MASK,
91 }, { /* Turn on Rx flow control */
92 .opt = XAE_OPTION_FLOW_CONTROL,
93 .reg = XAE_FCC_OFFSET,
94 .m_or = XAE_FCC_FCRX_MASK,
95 }, { /* Turn on Tx flow control */
96 .opt = XAE_OPTION_FLOW_CONTROL,
97 .reg = XAE_FCC_OFFSET,
98 .m_or = XAE_FCC_FCTX_MASK,
99 }, { /* Turn on promiscuous frame filtering */
100 .opt = XAE_OPTION_PROMISC,
101 .reg = XAE_FMI_OFFSET,
102 .m_or = XAE_FMI_PM_MASK,
103 }, { /* Enable transmitter */
104 .opt = XAE_OPTION_TXEN,
105 .reg = XAE_TC_OFFSET,
106 .m_or = XAE_TC_TX_MASK,
107 }, { /* Enable receiver */
108 .opt = XAE_OPTION_RXEN,
109 .reg = XAE_RCW1_OFFSET,
110 .m_or = XAE_RCW1_RX_MASK,
111 },
112 {}
113};
114
115/**
116 * axienet_dma_in32 - Memory mapped Axi DMA register read
117 * @lp: Pointer to axienet local structure
118 * @reg: Address offset from the base address of the Axi DMA core
119 *
120 * returns: The contents of the Axi DMA register
121 *
122 * This function returns the contents of the corresponding Axi DMA register.
123 */
124static inline u32 axienet_dma_in32(struct axienet_local *lp, off_t reg)
125{
126 return in_be32(lp->dma_regs + reg);
127}
128
129/**
130 * axienet_dma_out32 - Memory mapped Axi DMA register write.
131 * @lp: Pointer to axienet local structure
132 * @reg: Address offset from the base address of the Axi DMA core
133 * @value: Value to be written into the Axi DMA register
134 *
135 * This function writes the desired value into the corresponding Axi DMA
136 * register.
137 */
138static inline void axienet_dma_out32(struct axienet_local *lp,
139 off_t reg, u32 value)
140{
141 out_be32((lp->dma_regs + reg), value);
142}
143
144/**
145 * axienet_dma_bd_release - Release buffer descriptor rings
146 * @ndev: Pointer to the net_device structure
147 *
148 * This function is used to release the descriptors allocated in
149 * axienet_dma_bd_init. axienet_dma_bd_release is called when Axi Ethernet
150 * driver stop api is called.
151 */
152static void axienet_dma_bd_release(struct net_device *ndev)
153{
154 int i;
155 struct axienet_local *lp = netdev_priv(ndev);
156
157 for (i = 0; i < RX_BD_NUM; i++) {
158 dma_unmap_single(ndev->dev.parent, lp->rx_bd_v[i].phys,
159 lp->max_frm_size, DMA_FROM_DEVICE);
160 dev_kfree_skb((struct sk_buff *)
161 (lp->rx_bd_v[i].sw_id_offset));
162 }
163
164 if (lp->rx_bd_v) {
165 dma_free_coherent(ndev->dev.parent,
166 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
167 lp->rx_bd_v,
168 lp->rx_bd_p);
169 }
170 if (lp->tx_bd_v) {
171 dma_free_coherent(ndev->dev.parent,
172 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
173 lp->tx_bd_v,
174 lp->tx_bd_p);
175 }
176}
177
178/**
179 * axienet_dma_bd_init - Setup buffer descriptor rings for Axi DMA
180 * @ndev: Pointer to the net_device structure
181 *
182 * returns: 0, on success
183 * -ENOMEM, on failure
184 *
185 * This function is called to initialize the Rx and Tx DMA descriptor
186 * rings. This initializes the descriptors with required default values
187 * and is called when Axi Ethernet driver reset is called.
188 */
189static int axienet_dma_bd_init(struct net_device *ndev)
190{
191 u32 cr;
192 int i;
193 struct sk_buff *skb;
194 struct axienet_local *lp = netdev_priv(ndev);
195
196 /* Reset the indexes which are used for accessing the BDs */
197 lp->tx_bd_ci = 0;
198 lp->tx_bd_tail = 0;
199 lp->rx_bd_ci = 0;
200
201 /*
202 * Allocate the Tx and Rx buffer descriptors.
203 */
204 lp->tx_bd_v = dma_alloc_coherent(ndev->dev.parent,
205 sizeof(*lp->tx_bd_v) * TX_BD_NUM,
206 &lp->tx_bd_p,
207 GFP_KERNEL);
208 if (!lp->tx_bd_v) {
209 dev_err(&ndev->dev, "unable to allocate DMA Tx buffer "
210 "descriptors");
211 goto out;
212 }
213
214 lp->rx_bd_v = dma_alloc_coherent(ndev->dev.parent,
215 sizeof(*lp->rx_bd_v) * RX_BD_NUM,
216 &lp->rx_bd_p,
217 GFP_KERNEL);
218 if (!lp->rx_bd_v) {
219 dev_err(&ndev->dev, "unable to allocate DMA Rx buffer "
220 "descriptors");
221 goto out;
222 }
223
224 memset(lp->tx_bd_v, 0, sizeof(*lp->tx_bd_v) * TX_BD_NUM);
225 for (i = 0; i < TX_BD_NUM; i++) {
226 lp->tx_bd_v[i].next = lp->tx_bd_p +
227 sizeof(*lp->tx_bd_v) *
228 ((i + 1) % TX_BD_NUM);
229 }
230
231 memset(lp->rx_bd_v, 0, sizeof(*lp->rx_bd_v) * RX_BD_NUM);
232 for (i = 0; i < RX_BD_NUM; i++) {
233 lp->rx_bd_v[i].next = lp->rx_bd_p +
234 sizeof(*lp->rx_bd_v) *
235 ((i + 1) % RX_BD_NUM);
236
237 skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
238 if (!skb) {
239 dev_err(&ndev->dev, "alloc_skb error %d\n", i);
240 goto out;
241 }
242
243 lp->rx_bd_v[i].sw_id_offset = (u32) skb;
244 lp->rx_bd_v[i].phys = dma_map_single(ndev->dev.parent,
245 skb->data,
246 lp->max_frm_size,
247 DMA_FROM_DEVICE);
248 lp->rx_bd_v[i].cntrl = lp->max_frm_size;
249 }
250
251 /* Start updating the Rx channel control register */
252 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
253 /* Update the interrupt coalesce count */
254 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
255 ((lp->coalesce_count_rx) << XAXIDMA_COALESCE_SHIFT));
256 /* Update the delay timer count */
257 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
258 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
259 /* Enable coalesce, delay timer and error interrupts */
260 cr |= XAXIDMA_IRQ_ALL_MASK;
261 /* Write to the Rx channel control register */
262 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
263
264 /* Start updating the Tx channel control register */
265 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
266 /* Update the interrupt coalesce count */
267 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
268 ((lp->coalesce_count_tx) << XAXIDMA_COALESCE_SHIFT));
269 /* Update the delay timer count */
270 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
271 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
272 /* Enable coalesce, delay timer and error interrupts */
273 cr |= XAXIDMA_IRQ_ALL_MASK;
274 /* Write to the Tx channel control register */
275 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
276
277 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
278 * halted state. This will make the Rx side ready for reception.*/
279 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
280 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
281 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
282 cr | XAXIDMA_CR_RUNSTOP_MASK);
283 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
284 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
285
286 /* Write to the RS (Run-stop) bit in the Tx channel control register.
287 * Tx channel is now ready to run. But only after we write to the
288 * tail pointer register that the Tx channel will start transmitting */
289 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
290 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
291 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
292 cr | XAXIDMA_CR_RUNSTOP_MASK);
293
294 return 0;
295out:
296 axienet_dma_bd_release(ndev);
297 return -ENOMEM;
298}
299
300/**
301 * axienet_set_mac_address - Write the MAC address
302 * @ndev: Pointer to the net_device structure
303 * @address: 6 byte Address to be written as MAC address
304 *
305 * This function is called to initialize the MAC address of the Axi Ethernet
306 * core. It writes to the UAW0 and UAW1 registers of the core.
307 */
308static void axienet_set_mac_address(struct net_device *ndev, void *address)
309{
310 struct axienet_local *lp = netdev_priv(ndev);
311
312 if (address)
313 memcpy(ndev->dev_addr, address, ETH_ALEN);
314 if (!is_valid_ether_addr(ndev->dev_addr))
315 random_ether_addr(ndev->dev_addr);
316
317 /* Set up unicast MAC address filter set its mac address */
318 axienet_iow(lp, XAE_UAW0_OFFSET,
319 (ndev->dev_addr[0]) |
320 (ndev->dev_addr[1] << 8) |
321 (ndev->dev_addr[2] << 16) |
322 (ndev->dev_addr[3] << 24));
323 axienet_iow(lp, XAE_UAW1_OFFSET,
324 (((axienet_ior(lp, XAE_UAW1_OFFSET)) &
325 ~XAE_UAW1_UNICASTADDR_MASK) |
326 (ndev->dev_addr[4] |
327 (ndev->dev_addr[5] << 8))));
328}
329
330/**
331 * netdev_set_mac_address - Write the MAC address (from outside the driver)
332 * @ndev: Pointer to the net_device structure
333 * @p: 6 byte Address to be written as MAC address
334 *
335 * returns: 0 for all conditions. Presently, there is no failure case.
336 *
337 * This function is called to initialize the MAC address of the Axi Ethernet
338 * core. It calls the core specific axienet_set_mac_address. This is the
339 * function that goes into net_device_ops structure entry ndo_set_mac_address.
340 */
341static int netdev_set_mac_address(struct net_device *ndev, void *p)
342{
343 struct sockaddr *addr = p;
344 axienet_set_mac_address(ndev, addr->sa_data);
345 return 0;
346}
347
348/**
349 * axienet_set_multicast_list - Prepare the multicast table
350 * @ndev: Pointer to the net_device structure
351 *
352 * This function is called to initialize the multicast table during
353 * initialization. The Axi Ethernet basic multicast support has a four-entry
354 * multicast table which is initialized here. Additionally this function
355 * goes into the net_device_ops structure entry ndo_set_multicast_list. This
356 * means whenever the multicast table entries need to be updated this
357 * function gets called.
358 */
359static void axienet_set_multicast_list(struct net_device *ndev)
360{
361 int i;
362 u32 reg, af0reg, af1reg;
363 struct axienet_local *lp = netdev_priv(ndev);
364
365 if (ndev->flags & (IFF_ALLMULTI | IFF_PROMISC) ||
366 netdev_mc_count(ndev) > XAE_MULTICAST_CAM_TABLE_NUM) {
367 /* We must make the kernel realize we had to move into
368 * promiscuous mode. If it was a promiscuous mode request
369 * the flag is already set. If not we set it. */
370 ndev->flags |= IFF_PROMISC;
371 reg = axienet_ior(lp, XAE_FMI_OFFSET);
372 reg |= XAE_FMI_PM_MASK;
373 axienet_iow(lp, XAE_FMI_OFFSET, reg);
374 dev_info(&ndev->dev, "Promiscuous mode enabled.\n");
375 } else if (!netdev_mc_empty(ndev)) {
376 struct netdev_hw_addr *ha;
377
378 i = 0;
379 netdev_for_each_mc_addr(ha, ndev) {
380 if (i >= XAE_MULTICAST_CAM_TABLE_NUM)
381 break;
382
383 af0reg = (ha->addr[0]);
384 af0reg |= (ha->addr[1] << 8);
385 af0reg |= (ha->addr[2] << 16);
386 af0reg |= (ha->addr[3] << 24);
387
388 af1reg = (ha->addr[4]);
389 af1reg |= (ha->addr[5] << 8);
390
391 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
392 reg |= i;
393
394 axienet_iow(lp, XAE_FMI_OFFSET, reg);
395 axienet_iow(lp, XAE_AF0_OFFSET, af0reg);
396 axienet_iow(lp, XAE_AF1_OFFSET, af1reg);
397 i++;
398 }
399 } else {
400 reg = axienet_ior(lp, XAE_FMI_OFFSET);
401 reg &= ~XAE_FMI_PM_MASK;
402
403 axienet_iow(lp, XAE_FMI_OFFSET, reg);
404
405 for (i = 0; i < XAE_MULTICAST_CAM_TABLE_NUM; i++) {
406 reg = axienet_ior(lp, XAE_FMI_OFFSET) & 0xFFFFFF00;
407 reg |= i;
408
409 axienet_iow(lp, XAE_FMI_OFFSET, reg);
410 axienet_iow(lp, XAE_AF0_OFFSET, 0);
411 axienet_iow(lp, XAE_AF1_OFFSET, 0);
412 }
413
414 dev_info(&ndev->dev, "Promiscuous mode disabled.\n");
415 }
416}
417
418/**
419 * axienet_setoptions - Set an Axi Ethernet option
420 * @ndev: Pointer to the net_device structure
421 * @options: Option to be enabled/disabled
422 *
423 * The Axi Ethernet core has multiple features which can be selectively turned
424 * on or off. The typical options could be jumbo frame option, basic VLAN
425 * option, promiscuous mode option etc. This function is used to set or clear
426 * these options in the Axi Ethernet hardware. This is done through
427 * axienet_option structure .
428 */
429static void axienet_setoptions(struct net_device *ndev, u32 options)
430{
431 int reg;
432 struct axienet_local *lp = netdev_priv(ndev);
433 struct axienet_option *tp = &axienet_options[0];
434
435 while (tp->opt) {
436 reg = ((axienet_ior(lp, tp->reg)) & ~(tp->m_or));
437 if (options & tp->opt)
438 reg |= tp->m_or;
439 axienet_iow(lp, tp->reg, reg);
440 tp++;
441 }
442
443 lp->options |= options;
444}
445
446static void __axienet_device_reset(struct axienet_local *lp,
447 struct device *dev, off_t offset)
448{
449 u32 timeout;
450 /* Reset Axi DMA. This would reset Axi Ethernet core as well. The reset
451 * process of Axi DMA takes a while to complete as all pending
452 * commands/transfers will be flushed or completed during this
453 * reset process. */
454 axienet_dma_out32(lp, offset, XAXIDMA_CR_RESET_MASK);
455 timeout = DELAY_OF_ONE_MILLISEC;
456 while (axienet_dma_in32(lp, offset) & XAXIDMA_CR_RESET_MASK) {
457 udelay(1);
458 if (--timeout == 0) {
459 dev_err(dev, "axienet_device_reset DMA "
460 "reset timeout!\n");
461 break;
462 }
463 }
464}
465
466/**
467 * axienet_device_reset - Reset and initialize the Axi Ethernet hardware.
468 * @ndev: Pointer to the net_device structure
469 *
470 * This function is called to reset and initialize the Axi Ethernet core. This
471 * is typically called during initialization. It does a reset of the Axi DMA
472 * Rx/Tx channels and initializes the Axi DMA BDs. Since Axi DMA reset lines
473 * areconnected to Axi Ethernet reset lines, this in turn resets the Axi
474 * Ethernet core. No separate hardware reset is done for the Axi Ethernet
475 * core.
476 */
477static void axienet_device_reset(struct net_device *ndev)
478{
479 u32 axienet_status;
480 struct axienet_local *lp = netdev_priv(ndev);
481
482 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
483 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
484
485 lp->max_frm_size = XAE_MAX_VLAN_FRAME_SIZE;
486 lp->options &= (~XAE_OPTION_JUMBO);
487
488 if ((ndev->mtu > XAE_MTU) &&
489 (ndev->mtu <= XAE_JUMBO_MTU) &&
490 (lp->jumbo_support)) {
491 lp->max_frm_size = ndev->mtu + XAE_HDR_VLAN_SIZE +
492 XAE_TRL_SIZE;
493 lp->options |= XAE_OPTION_JUMBO;
494 }
495
496 if (axienet_dma_bd_init(ndev)) {
497 dev_err(&ndev->dev, "axienet_device_reset descriptor "
498 "allocation failed\n");
499 }
500
501 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
502 axienet_status &= ~XAE_RCW1_RX_MASK;
503 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
504
505 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
506 if (axienet_status & XAE_INT_RXRJECT_MASK)
507 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
508
509 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
510
511 /* Sync default options with HW but leave receiver and
512 * transmitter disabled.*/
513 axienet_setoptions(ndev, lp->options &
514 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
515 axienet_set_mac_address(ndev, NULL);
516 axienet_set_multicast_list(ndev);
517 axienet_setoptions(ndev, lp->options);
518
519 ndev->trans_start = jiffies;
520}
521
522/**
523 * axienet_adjust_link - Adjust the PHY link speed/duplex.
524 * @ndev: Pointer to the net_device structure
525 *
526 * This function is called to change the speed and duplex setting after
527 * auto negotiation is done by the PHY. This is the function that gets
528 * registered with the PHY interface through the "of_phy_connect" call.
529 */
530static void axienet_adjust_link(struct net_device *ndev)
531{
532 u32 emmc_reg;
533 u32 link_state;
534 u32 setspeed = 1;
535 struct axienet_local *lp = netdev_priv(ndev);
536 struct phy_device *phy = lp->phy_dev;
537
538 link_state = phy->speed | (phy->duplex << 1) | phy->link;
539 if (lp->last_link != link_state) {
540 if ((phy->speed == SPEED_10) || (phy->speed == SPEED_100)) {
541 if (lp->phy_type == XAE_PHY_TYPE_1000BASE_X)
542 setspeed = 0;
543 } else {
544 if ((phy->speed == SPEED_1000) &&
545 (lp->phy_type == XAE_PHY_TYPE_MII))
546 setspeed = 0;
547 }
548
549 if (setspeed == 1) {
550 emmc_reg = axienet_ior(lp, XAE_EMMC_OFFSET);
551 emmc_reg &= ~XAE_EMMC_LINKSPEED_MASK;
552
553 switch (phy->speed) {
554 case SPEED_1000:
555 emmc_reg |= XAE_EMMC_LINKSPD_1000;
556 break;
557 case SPEED_100:
558 emmc_reg |= XAE_EMMC_LINKSPD_100;
559 break;
560 case SPEED_10:
561 emmc_reg |= XAE_EMMC_LINKSPD_10;
562 break;
563 default:
564 dev_err(&ndev->dev, "Speed other than 10, 100 "
565 "or 1Gbps is not supported\n");
566 break;
567 }
568
569 axienet_iow(lp, XAE_EMMC_OFFSET, emmc_reg);
570 lp->last_link = link_state;
571 phy_print_status(phy);
572 } else {
573 dev_err(&ndev->dev, "Error setting Axi Ethernet "
574 "mac speed\n");
575 }
576 }
577}
578
579/**
580 * axienet_start_xmit_done - Invoked once a transmit is completed by the
581 * Axi DMA Tx channel.
582 * @ndev: Pointer to the net_device structure
583 *
584 * This function is invoked from the Axi DMA Tx isr to notify the completion
585 * of transmit operation. It clears fields in the corresponding Tx BDs and
586 * unmaps the corresponding buffer so that CPU can regain ownership of the
587 * buffer. It finally invokes "netif_wake_queue" to restart transmission if
588 * required.
589 */
590static void axienet_start_xmit_done(struct net_device *ndev)
591{
592 u32 size = 0;
593 u32 packets = 0;
594 struct axienet_local *lp = netdev_priv(ndev);
595 struct axidma_bd *cur_p;
596 unsigned int status = 0;
597
598 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
599 status = cur_p->status;
600 while (status & XAXIDMA_BD_STS_COMPLETE_MASK) {
601 dma_unmap_single(ndev->dev.parent, cur_p->phys,
602 (cur_p->cntrl & XAXIDMA_BD_CTRL_LENGTH_MASK),
603 DMA_TO_DEVICE);
604 if (cur_p->app4)
605 dev_kfree_skb_irq((struct sk_buff *)cur_p->app4);
606 /*cur_p->phys = 0;*/
607 cur_p->app0 = 0;
608 cur_p->app1 = 0;
609 cur_p->app2 = 0;
610 cur_p->app4 = 0;
611 cur_p->status = 0;
612
613 size += status & XAXIDMA_BD_STS_ACTUAL_LEN_MASK;
614 packets++;
615
616 lp->tx_bd_ci = ++lp->tx_bd_ci % TX_BD_NUM;
617 cur_p = &lp->tx_bd_v[lp->tx_bd_ci];
618 status = cur_p->status;
619 }
620
621 ndev->stats.tx_packets += packets;
622 ndev->stats.tx_bytes += size;
623 netif_wake_queue(ndev);
624}
625
626/**
627 * axienet_check_tx_bd_space - Checks if a BD/group of BDs are currently busy
628 * @lp: Pointer to the axienet_local structure
629 * @num_frag: The number of BDs to check for
630 *
631 * returns: 0, on success
632 * NETDEV_TX_BUSY, if any of the descriptors are not free
633 *
634 * This function is invoked before BDs are allocated and transmission starts.
635 * This function returns 0 if a BD or group of BDs can be allocated for
636 * transmission. If the BD or any of the BDs are not free the function
637 * returns a busy status. This is invoked from axienet_start_xmit.
638 */
639static inline int axienet_check_tx_bd_space(struct axienet_local *lp,
640 int num_frag)
641{
642 struct axidma_bd *cur_p;
643 cur_p = &lp->tx_bd_v[(lp->tx_bd_tail + num_frag) % TX_BD_NUM];
644 if (cur_p->status & XAXIDMA_BD_STS_ALL_MASK)
645 return NETDEV_TX_BUSY;
646 return 0;
647}
648
649/**
650 * axienet_start_xmit - Starts the transmission.
651 * @skb: sk_buff pointer that contains data to be Txed.
652 * @ndev: Pointer to net_device structure.
653 *
654 * returns: NETDEV_TX_OK, on success
655 * NETDEV_TX_BUSY, if any of the descriptors are not free
656 *
657 * This function is invoked from upper layers to initiate transmission. The
658 * function uses the next available free BDs and populates their fields to
659 * start the transmission. Additionally if checksum offloading is supported,
660 * it populates AXI Stream Control fields with appropriate values.
661 */
662static int axienet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
663{
664 u32 ii;
665 u32 num_frag;
666 u32 csum_start_off;
667 u32 csum_index_off;
668 skb_frag_t *frag;
669 dma_addr_t tail_p;
670 struct axienet_local *lp = netdev_priv(ndev);
671 struct axidma_bd *cur_p;
672
673 num_frag = skb_shinfo(skb)->nr_frags;
674 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
675
676 if (axienet_check_tx_bd_space(lp, num_frag)) {
677 if (!netif_queue_stopped(ndev))
678 netif_stop_queue(ndev);
679 return NETDEV_TX_BUSY;
680 }
681
682 if (skb->ip_summed == CHECKSUM_PARTIAL) {
683 if (lp->features & XAE_FEATURE_FULL_TX_CSUM) {
684 /* Tx Full Checksum Offload Enabled */
685 cur_p->app0 |= 2;
686 } else if (lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) {
687 csum_start_off = skb_transport_offset(skb);
688 csum_index_off = csum_start_off + skb->csum_offset;
689 /* Tx Partial Checksum Offload Enabled */
690 cur_p->app0 |= 1;
691 cur_p->app1 = (csum_start_off << 16) | csum_index_off;
692 }
693 } else if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
694 cur_p->app0 |= 2; /* Tx Full Checksum Offload Enabled */
695 }
696
697 cur_p->cntrl = skb_headlen(skb) | XAXIDMA_BD_CTRL_TXSOF_MASK;
698 cur_p->phys = dma_map_single(ndev->dev.parent, skb->data,
699 skb_headlen(skb), DMA_TO_DEVICE);
700
701 for (ii = 0; ii < num_frag; ii++) {
702 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
703 cur_p = &lp->tx_bd_v[lp->tx_bd_tail];
704 frag = &skb_shinfo(skb)->frags[ii];
705 cur_p->phys = dma_map_single(ndev->dev.parent,
706 skb_frag_address(frag),
707 skb_frag_size(frag),
708 DMA_TO_DEVICE);
709 cur_p->cntrl = skb_frag_size(frag);
710 }
711
712 cur_p->cntrl |= XAXIDMA_BD_CTRL_TXEOF_MASK;
713 cur_p->app4 = (unsigned long)skb;
714
715 tail_p = lp->tx_bd_p + sizeof(*lp->tx_bd_v) * lp->tx_bd_tail;
716 /* Start the transfer */
717 axienet_dma_out32(lp, XAXIDMA_TX_TDESC_OFFSET, tail_p);
718 lp->tx_bd_tail = ++lp->tx_bd_tail % TX_BD_NUM;
719
720 return NETDEV_TX_OK;
721}
722
723/**
724 * axienet_recv - Is called from Axi DMA Rx Isr to complete the received
725 * BD processing.
726 * @ndev: Pointer to net_device structure.
727 *
728 * This function is invoked from the Axi DMA Rx isr to process the Rx BDs. It
729 * does minimal processing and invokes "netif_rx" to complete further
730 * processing.
731 */
732static void axienet_recv(struct net_device *ndev)
733{
734 u32 length;
735 u32 csumstatus;
736 u32 size = 0;
737 u32 packets = 0;
738 dma_addr_t tail_p;
739 struct axienet_local *lp = netdev_priv(ndev);
740 struct sk_buff *skb, *new_skb;
741 struct axidma_bd *cur_p;
742
743 tail_p = lp->rx_bd_p + sizeof(*lp->rx_bd_v) * lp->rx_bd_ci;
744 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
745
746 while ((cur_p->status & XAXIDMA_BD_STS_COMPLETE_MASK)) {
747 skb = (struct sk_buff *) (cur_p->sw_id_offset);
748 length = cur_p->app4 & 0x0000FFFF;
749
750 dma_unmap_single(ndev->dev.parent, cur_p->phys,
751 lp->max_frm_size,
752 DMA_FROM_DEVICE);
753
754 skb_put(skb, length);
755 skb->protocol = eth_type_trans(skb, ndev);
756 /*skb_checksum_none_assert(skb);*/
757 skb->ip_summed = CHECKSUM_NONE;
758
759 /* if we're doing Rx csum offload, set it up */
760 if (lp->features & XAE_FEATURE_FULL_RX_CSUM) {
761 csumstatus = (cur_p->app2 &
762 XAE_FULL_CSUM_STATUS_MASK) >> 3;
763 if ((csumstatus == XAE_IP_TCP_CSUM_VALIDATED) ||
764 (csumstatus == XAE_IP_UDP_CSUM_VALIDATED)) {
765 skb->ip_summed = CHECKSUM_UNNECESSARY;
766 }
767 } else if ((lp->features & XAE_FEATURE_PARTIAL_RX_CSUM) != 0 &&
768 skb->protocol == __constant_htons(ETH_P_IP) &&
769 skb->len > 64) {
770 skb->csum = be32_to_cpu(cur_p->app3 & 0xFFFF);
771 skb->ip_summed = CHECKSUM_COMPLETE;
772 }
773
774 netif_rx(skb);
775
776 size += length;
777 packets++;
778
779 new_skb = netdev_alloc_skb_ip_align(ndev, lp->max_frm_size);
780 if (!new_skb) {
781 dev_err(&ndev->dev, "no memory for new sk_buff\n");
782 return;
783 }
784 cur_p->phys = dma_map_single(ndev->dev.parent, new_skb->data,
785 lp->max_frm_size,
786 DMA_FROM_DEVICE);
787 cur_p->cntrl = lp->max_frm_size;
788 cur_p->status = 0;
789 cur_p->sw_id_offset = (u32) new_skb;
790
791 lp->rx_bd_ci = ++lp->rx_bd_ci % RX_BD_NUM;
792 cur_p = &lp->rx_bd_v[lp->rx_bd_ci];
793 }
794
795 ndev->stats.rx_packets += packets;
796 ndev->stats.rx_bytes += size;
797
798 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, tail_p);
799}
800
801/**
802 * axienet_tx_irq - Tx Done Isr.
803 * @irq: irq number
804 * @_ndev: net_device pointer
805 *
806 * returns: IRQ_HANDLED for all cases.
807 *
808 * This is the Axi DMA Tx done Isr. It invokes "axienet_start_xmit_done"
809 * to complete the BD processing.
810 */
811static irqreturn_t axienet_tx_irq(int irq, void *_ndev)
812{
813 u32 cr;
814 unsigned int status;
815 struct net_device *ndev = _ndev;
816 struct axienet_local *lp = netdev_priv(ndev);
817
818 status = axienet_dma_in32(lp, XAXIDMA_TX_SR_OFFSET);
819 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
820 axienet_start_xmit_done(lp->ndev);
821 goto out;
822 }
823 if (!(status & XAXIDMA_IRQ_ALL_MASK))
824 dev_err(&ndev->dev, "No interrupts asserted in Tx path");
825 if (status & XAXIDMA_IRQ_ERROR_MASK) {
826 dev_err(&ndev->dev, "DMA Tx error 0x%x\n", status);
827 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
828 (lp->tx_bd_v[lp->tx_bd_ci]).phys);
829
830 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
831 /* Disable coalesce, delay timer and error interrupts */
832 cr &= (~XAXIDMA_IRQ_ALL_MASK);
833 /* Write to the Tx channel control register */
834 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
835
836 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
837 /* Disable coalesce, delay timer and error interrupts */
838 cr &= (~XAXIDMA_IRQ_ALL_MASK);
839 /* Write to the Rx channel control register */
840 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
841
842 tasklet_schedule(&lp->dma_err_tasklet);
843 }
844out:
845 axienet_dma_out32(lp, XAXIDMA_TX_SR_OFFSET, status);
846 return IRQ_HANDLED;
847}
848
849/**
850 * axienet_rx_irq - Rx Isr.
851 * @irq: irq number
852 * @_ndev: net_device pointer
853 *
854 * returns: IRQ_HANDLED for all cases.
855 *
856 * This is the Axi DMA Rx Isr. It invokes "axienet_recv" to complete the BD
857 * processing.
858 */
859static irqreturn_t axienet_rx_irq(int irq, void *_ndev)
860{
861 u32 cr;
862 unsigned int status;
863 struct net_device *ndev = _ndev;
864 struct axienet_local *lp = netdev_priv(ndev);
865
866 status = axienet_dma_in32(lp, XAXIDMA_RX_SR_OFFSET);
867 if (status & (XAXIDMA_IRQ_IOC_MASK | XAXIDMA_IRQ_DELAY_MASK)) {
868 axienet_recv(lp->ndev);
869 goto out;
870 }
871 if (!(status & XAXIDMA_IRQ_ALL_MASK))
872 dev_err(&ndev->dev, "No interrupts asserted in Rx path");
873 if (status & XAXIDMA_IRQ_ERROR_MASK) {
874 dev_err(&ndev->dev, "DMA Rx error 0x%x\n", status);
875 dev_err(&ndev->dev, "Current BD is at: 0x%x\n",
876 (lp->rx_bd_v[lp->rx_bd_ci]).phys);
877
878 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
879 /* Disable coalesce, delay timer and error interrupts */
880 cr &= (~XAXIDMA_IRQ_ALL_MASK);
881 /* Finally write to the Tx channel control register */
882 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
883
884 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
885 /* Disable coalesce, delay timer and error interrupts */
886 cr &= (~XAXIDMA_IRQ_ALL_MASK);
887 /* write to the Rx channel control register */
888 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
889
890 tasklet_schedule(&lp->dma_err_tasklet);
891 }
892out:
893 axienet_dma_out32(lp, XAXIDMA_RX_SR_OFFSET, status);
894 return IRQ_HANDLED;
895}
896
897/**
898 * axienet_open - Driver open routine.
899 * @ndev: Pointer to net_device structure
900 *
901 * returns: 0, on success.
902 * -ENODEV, if PHY cannot be connected to
903 * non-zero error value on failure
904 *
905 * This is the driver open routine. It calls phy_start to start the PHY device.
906 * It also allocates interrupt service routines, enables the interrupt lines
907 * and ISR handling. Axi Ethernet core is reset through Axi DMA core. Buffer
908 * descriptors are initialized.
909 */
910static int axienet_open(struct net_device *ndev)
911{
912 int ret, mdio_mcreg;
913 struct axienet_local *lp = netdev_priv(ndev);
914
915 dev_dbg(&ndev->dev, "axienet_open()\n");
916
917 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
918 ret = axienet_mdio_wait_until_ready(lp);
919 if (ret < 0)
920 return ret;
921 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
922 * When we do an Axi Ethernet reset, it resets the complete core
923 * including the MDIO. If MDIO is not disabled when the reset
924 * process is started, MDIO will be broken afterwards. */
925 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
926 (mdio_mcreg & (~XAE_MDIO_MC_MDIOEN_MASK)));
927 axienet_device_reset(ndev);
928 /* Enable the MDIO */
929 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
930 ret = axienet_mdio_wait_until_ready(lp);
931 if (ret < 0)
932 return ret;
933
934 if (lp->phy_node) {
935 lp->phy_dev = of_phy_connect(lp->ndev, lp->phy_node,
936 axienet_adjust_link, 0,
937 PHY_INTERFACE_MODE_GMII);
938 if (!lp->phy_dev) {
939 dev_err(lp->dev, "of_phy_connect() failed\n");
940 return -ENODEV;
941 }
942 phy_start(lp->phy_dev);
943 }
944
945 /* Enable interrupts for Axi DMA Tx */
946 ret = request_irq(lp->tx_irq, axienet_tx_irq, 0, ndev->name, ndev);
947 if (ret)
948 goto err_tx_irq;
949 /* Enable interrupts for Axi DMA Rx */
950 ret = request_irq(lp->rx_irq, axienet_rx_irq, 0, ndev->name, ndev);
951 if (ret)
952 goto err_rx_irq;
953 /* Enable tasklets for Axi DMA error handling */
954 tasklet_enable(&lp->dma_err_tasklet);
955 return 0;
956
957err_rx_irq:
958 free_irq(lp->tx_irq, ndev);
959err_tx_irq:
960 if (lp->phy_dev)
961 phy_disconnect(lp->phy_dev);
962 lp->phy_dev = NULL;
963 dev_err(lp->dev, "request_irq() failed\n");
964 return ret;
965}
966
967/**
968 * axienet_stop - Driver stop routine.
969 * @ndev: Pointer to net_device structure
970 *
971 * returns: 0, on success.
972 *
973 * This is the driver stop routine. It calls phy_disconnect to stop the PHY
974 * device. It also removes the interrupt handlers and disables the interrupts.
975 * The Axi DMA Tx/Rx BDs are released.
976 */
977static int axienet_stop(struct net_device *ndev)
978{
979 u32 cr;
980 struct axienet_local *lp = netdev_priv(ndev);
981
982 dev_dbg(&ndev->dev, "axienet_close()\n");
983
984 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
985 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
986 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
987 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
988 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
989 cr & (~XAXIDMA_CR_RUNSTOP_MASK));
990 axienet_setoptions(ndev, lp->options &
991 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
992
993 tasklet_disable(&lp->dma_err_tasklet);
994
995 free_irq(lp->tx_irq, ndev);
996 free_irq(lp->rx_irq, ndev);
997
998 if (lp->phy_dev)
999 phy_disconnect(lp->phy_dev);
1000 lp->phy_dev = NULL;
1001
1002 axienet_dma_bd_release(ndev);
1003 return 0;
1004}
1005
1006/**
1007 * axienet_change_mtu - Driver change mtu routine.
1008 * @ndev: Pointer to net_device structure
1009 * @new_mtu: New mtu value to be applied
1010 *
1011 * returns: Always returns 0 (success).
1012 *
1013 * This is the change mtu driver routine. It checks if the Axi Ethernet
1014 * hardware supports jumbo frames before changing the mtu. This can be
1015 * called only when the device is not up.
1016 */
1017static int axienet_change_mtu(struct net_device *ndev, int new_mtu)
1018{
1019 struct axienet_local *lp = netdev_priv(ndev);
1020
1021 if (netif_running(ndev))
1022 return -EBUSY;
1023 if (lp->jumbo_support) {
1024 if ((new_mtu > XAE_JUMBO_MTU) || (new_mtu < 64))
1025 return -EINVAL;
1026 ndev->mtu = new_mtu;
1027 } else {
1028 if ((new_mtu > XAE_MTU) || (new_mtu < 64))
1029 return -EINVAL;
1030 ndev->mtu = new_mtu;
1031 }
1032
1033 return 0;
1034}
1035
1036#ifdef CONFIG_NET_POLL_CONTROLLER
1037/**
1038 * axienet_poll_controller - Axi Ethernet poll mechanism.
1039 * @ndev: Pointer to net_device structure
1040 *
1041 * This implements Rx/Tx ISR poll mechanisms. The interrupts are disabled prior
1042 * to polling the ISRs and are enabled back after the polling is done.
1043 */
1044static void axienet_poll_controller(struct net_device *ndev)
1045{
1046 struct axienet_local *lp = netdev_priv(ndev);
1047 disable_irq(lp->tx_irq);
1048 disable_irq(lp->rx_irq);
1049 axienet_rx_irq(lp->tx_irq, ndev);
1050 axienet_tx_irq(lp->rx_irq, ndev);
1051 enable_irq(lp->tx_irq);
1052 enable_irq(lp->rx_irq);
1053}
1054#endif
1055
1056static const struct net_device_ops axienet_netdev_ops = {
1057 .ndo_open = axienet_open,
1058 .ndo_stop = axienet_stop,
1059 .ndo_start_xmit = axienet_start_xmit,
1060 .ndo_change_mtu = axienet_change_mtu,
1061 .ndo_set_mac_address = netdev_set_mac_address,
1062 .ndo_validate_addr = eth_validate_addr,
1063 .ndo_set_rx_mode = axienet_set_multicast_list,
1064#ifdef CONFIG_NET_POLL_CONTROLLER
1065 .ndo_poll_controller = axienet_poll_controller,
1066#endif
1067};
1068
1069/**
1070 * axienet_ethtools_get_settings - Get Axi Ethernet settings related to PHY.
1071 * @ndev: Pointer to net_device structure
1072 * @ecmd: Pointer to ethtool_cmd structure
1073 *
1074 * This implements ethtool command for getting PHY settings. If PHY could
1075 * not be found, the function returns -ENODEV. This function calls the
1076 * relevant PHY ethtool API to get the PHY settings.
1077 * Issue "ethtool ethX" under linux prompt to execute this function.
1078 */
1079static int axienet_ethtools_get_settings(struct net_device *ndev,
1080 struct ethtool_cmd *ecmd)
1081{
1082 struct axienet_local *lp = netdev_priv(ndev);
1083 struct phy_device *phydev = lp->phy_dev;
1084 if (!phydev)
1085 return -ENODEV;
1086 return phy_ethtool_gset(phydev, ecmd);
1087}
1088
1089/**
1090 * axienet_ethtools_set_settings - Set PHY settings as passed in the argument.
1091 * @ndev: Pointer to net_device structure
1092 * @ecmd: Pointer to ethtool_cmd structure
1093 *
1094 * This implements ethtool command for setting various PHY settings. If PHY
1095 * could not be found, the function returns -ENODEV. This function calls the
1096 * relevant PHY ethtool API to set the PHY.
1097 * Issue e.g. "ethtool -s ethX speed 1000" under linux prompt to execute this
1098 * function.
1099 */
1100static int axienet_ethtools_set_settings(struct net_device *ndev,
1101 struct ethtool_cmd *ecmd)
1102{
1103 struct axienet_local *lp = netdev_priv(ndev);
1104 struct phy_device *phydev = lp->phy_dev;
1105 if (!phydev)
1106 return -ENODEV;
1107 return phy_ethtool_sset(phydev, ecmd);
1108}
1109
1110/**
1111 * axienet_ethtools_get_drvinfo - Get various Axi Ethernet driver information.
1112 * @ndev: Pointer to net_device structure
1113 * @ed: Pointer to ethtool_drvinfo structure
1114 *
1115 * This implements ethtool command for getting the driver information.
1116 * Issue "ethtool -i ethX" under linux prompt to execute this function.
1117 */
1118static void axienet_ethtools_get_drvinfo(struct net_device *ndev,
1119 struct ethtool_drvinfo *ed)
1120{
1121 memset(ed, 0, sizeof(struct ethtool_drvinfo));
1122 strcpy(ed->driver, DRIVER_NAME);
1123 strcpy(ed->version, DRIVER_VERSION);
1124 ed->regdump_len = sizeof(u32) * AXIENET_REGS_N;
1125}
1126
1127/**
1128 * axienet_ethtools_get_regs_len - Get the total regs length present in the
1129 * AxiEthernet core.
1130 * @ndev: Pointer to net_device structure
1131 *
1132 * This implements ethtool command for getting the total register length
1133 * information.
1134 */
1135static int axienet_ethtools_get_regs_len(struct net_device *ndev)
1136{
1137 return sizeof(u32) * AXIENET_REGS_N;
1138}
1139
1140/**
1141 * axienet_ethtools_get_regs - Dump the contents of all registers present
1142 * in AxiEthernet core.
1143 * @ndev: Pointer to net_device structure
1144 * @regs: Pointer to ethtool_regs structure
1145 * @ret: Void pointer used to return the contents of the registers.
1146 *
1147 * This implements ethtool command for getting the Axi Ethernet register dump.
1148 * Issue "ethtool -d ethX" to execute this function.
1149 */
1150static void axienet_ethtools_get_regs(struct net_device *ndev,
1151 struct ethtool_regs *regs, void *ret)
1152{
1153 u32 *data = (u32 *) ret;
1154 size_t len = sizeof(u32) * AXIENET_REGS_N;
1155 struct axienet_local *lp = netdev_priv(ndev);
1156
1157 regs->version = 0;
1158 regs->len = len;
1159
1160 memset(data, 0, len);
1161 data[0] = axienet_ior(lp, XAE_RAF_OFFSET);
1162 data[1] = axienet_ior(lp, XAE_TPF_OFFSET);
1163 data[2] = axienet_ior(lp, XAE_IFGP_OFFSET);
1164 data[3] = axienet_ior(lp, XAE_IS_OFFSET);
1165 data[4] = axienet_ior(lp, XAE_IP_OFFSET);
1166 data[5] = axienet_ior(lp, XAE_IE_OFFSET);
1167 data[6] = axienet_ior(lp, XAE_TTAG_OFFSET);
1168 data[7] = axienet_ior(lp, XAE_RTAG_OFFSET);
1169 data[8] = axienet_ior(lp, XAE_UAWL_OFFSET);
1170 data[9] = axienet_ior(lp, XAE_UAWU_OFFSET);
1171 data[10] = axienet_ior(lp, XAE_TPID0_OFFSET);
1172 data[11] = axienet_ior(lp, XAE_TPID1_OFFSET);
1173 data[12] = axienet_ior(lp, XAE_PPST_OFFSET);
1174 data[13] = axienet_ior(lp, XAE_RCW0_OFFSET);
1175 data[14] = axienet_ior(lp, XAE_RCW1_OFFSET);
1176 data[15] = axienet_ior(lp, XAE_TC_OFFSET);
1177 data[16] = axienet_ior(lp, XAE_FCC_OFFSET);
1178 data[17] = axienet_ior(lp, XAE_EMMC_OFFSET);
1179 data[18] = axienet_ior(lp, XAE_PHYC_OFFSET);
1180 data[19] = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1181 data[20] = axienet_ior(lp, XAE_MDIO_MCR_OFFSET);
1182 data[21] = axienet_ior(lp, XAE_MDIO_MWD_OFFSET);
1183 data[22] = axienet_ior(lp, XAE_MDIO_MRD_OFFSET);
1184 data[23] = axienet_ior(lp, XAE_MDIO_MIS_OFFSET);
1185 data[24] = axienet_ior(lp, XAE_MDIO_MIP_OFFSET);
1186 data[25] = axienet_ior(lp, XAE_MDIO_MIE_OFFSET);
1187 data[26] = axienet_ior(lp, XAE_MDIO_MIC_OFFSET);
1188 data[27] = axienet_ior(lp, XAE_UAW0_OFFSET);
1189 data[28] = axienet_ior(lp, XAE_UAW1_OFFSET);
1190 data[29] = axienet_ior(lp, XAE_FMI_OFFSET);
1191 data[30] = axienet_ior(lp, XAE_AF0_OFFSET);
1192 data[31] = axienet_ior(lp, XAE_AF1_OFFSET);
1193}
1194
1195/**
1196 * axienet_ethtools_get_pauseparam - Get the pause parameter setting for
1197 * Tx and Rx paths.
1198 * @ndev: Pointer to net_device structure
1199 * @epauseparm: Pointer to ethtool_pauseparam structure.
1200 *
1201 * This implements ethtool command for getting axi ethernet pause frame
1202 * setting. Issue "ethtool -a ethX" to execute this function.
1203 */
1204static void
1205axienet_ethtools_get_pauseparam(struct net_device *ndev,
1206 struct ethtool_pauseparam *epauseparm)
1207{
1208 u32 regval;
1209 struct axienet_local *lp = netdev_priv(ndev);
1210 epauseparm->autoneg = 0;
1211 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1212 epauseparm->tx_pause = regval & XAE_FCC_FCTX_MASK;
1213 epauseparm->rx_pause = regval & XAE_FCC_FCRX_MASK;
1214}
1215
1216/**
1217 * axienet_ethtools_set_pauseparam - Set device pause parameter(flow control)
1218 * settings.
1219 * @ndev: Pointer to net_device structure
1220 * @epauseparam:Pointer to ethtool_pauseparam structure
1221 *
1222 * This implements ethtool command for enabling flow control on Rx and Tx
1223 * paths. Issue "ethtool -A ethX tx on|off" under linux prompt to execute this
1224 * function.
1225 */
1226static int
1227axienet_ethtools_set_pauseparam(struct net_device *ndev,
1228 struct ethtool_pauseparam *epauseparm)
1229{
1230 u32 regval = 0;
1231 struct axienet_local *lp = netdev_priv(ndev);
1232
1233 if (netif_running(ndev)) {
1234 printk(KERN_ERR "%s: Please stop netif before applying "
1235 "configruation\n", ndev->name);
1236 return -EFAULT;
1237 }
1238
1239 regval = axienet_ior(lp, XAE_FCC_OFFSET);
1240 if (epauseparm->tx_pause)
1241 regval |= XAE_FCC_FCTX_MASK;
1242 else
1243 regval &= ~XAE_FCC_FCTX_MASK;
1244 if (epauseparm->rx_pause)
1245 regval |= XAE_FCC_FCRX_MASK;
1246 else
1247 regval &= ~XAE_FCC_FCRX_MASK;
1248 axienet_iow(lp, XAE_FCC_OFFSET, regval);
1249
1250 return 0;
1251}
1252
1253/**
1254 * axienet_ethtools_get_coalesce - Get DMA interrupt coalescing count.
1255 * @ndev: Pointer to net_device structure
1256 * @ecoalesce: Pointer to ethtool_coalesce structure
1257 *
1258 * This implements ethtool command for getting the DMA interrupt coalescing
1259 * count on Tx and Rx paths. Issue "ethtool -c ethX" under linux prompt to
1260 * execute this function.
1261 */
1262static int axienet_ethtools_get_coalesce(struct net_device *ndev,
1263 struct ethtool_coalesce *ecoalesce)
1264{
1265 u32 regval = 0;
1266 struct axienet_local *lp = netdev_priv(ndev);
1267 regval = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1268 ecoalesce->rx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1269 >> XAXIDMA_COALESCE_SHIFT;
1270 regval = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1271 ecoalesce->tx_max_coalesced_frames = (regval & XAXIDMA_COALESCE_MASK)
1272 >> XAXIDMA_COALESCE_SHIFT;
1273 return 0;
1274}
1275
1276/**
1277 * axienet_ethtools_set_coalesce - Set DMA interrupt coalescing count.
1278 * @ndev: Pointer to net_device structure
1279 * @ecoalesce: Pointer to ethtool_coalesce structure
1280 *
1281 * This implements ethtool command for setting the DMA interrupt coalescing
1282 * count on Tx and Rx paths. Issue "ethtool -C ethX rx-frames 5" under linux
1283 * prompt to execute this function.
1284 */
1285static int axienet_ethtools_set_coalesce(struct net_device *ndev,
1286 struct ethtool_coalesce *ecoalesce)
1287{
1288 struct axienet_local *lp = netdev_priv(ndev);
1289
1290 if (netif_running(ndev)) {
1291 printk(KERN_ERR "%s: Please stop netif before applying "
1292 "configruation\n", ndev->name);
1293 return -EFAULT;
1294 }
1295
1296 if ((ecoalesce->rx_coalesce_usecs) ||
1297 (ecoalesce->rx_coalesce_usecs_irq) ||
1298 (ecoalesce->rx_max_coalesced_frames_irq) ||
1299 (ecoalesce->tx_coalesce_usecs) ||
1300 (ecoalesce->tx_coalesce_usecs_irq) ||
1301 (ecoalesce->tx_max_coalesced_frames_irq) ||
1302 (ecoalesce->stats_block_coalesce_usecs) ||
1303 (ecoalesce->use_adaptive_rx_coalesce) ||
1304 (ecoalesce->use_adaptive_tx_coalesce) ||
1305 (ecoalesce->pkt_rate_low) ||
1306 (ecoalesce->rx_coalesce_usecs_low) ||
1307 (ecoalesce->rx_max_coalesced_frames_low) ||
1308 (ecoalesce->tx_coalesce_usecs_low) ||
1309 (ecoalesce->tx_max_coalesced_frames_low) ||
1310 (ecoalesce->pkt_rate_high) ||
1311 (ecoalesce->rx_coalesce_usecs_high) ||
1312 (ecoalesce->rx_max_coalesced_frames_high) ||
1313 (ecoalesce->tx_coalesce_usecs_high) ||
1314 (ecoalesce->tx_max_coalesced_frames_high) ||
1315 (ecoalesce->rate_sample_interval))
1316 return -EOPNOTSUPP;
1317 if (ecoalesce->rx_max_coalesced_frames)
1318 lp->coalesce_count_rx = ecoalesce->rx_max_coalesced_frames;
1319 if (ecoalesce->tx_max_coalesced_frames)
1320 lp->coalesce_count_tx = ecoalesce->tx_max_coalesced_frames;
1321
1322 return 0;
1323}
1324
1325static struct ethtool_ops axienet_ethtool_ops = {
1326 .get_settings = axienet_ethtools_get_settings,
1327 .set_settings = axienet_ethtools_set_settings,
1328 .get_drvinfo = axienet_ethtools_get_drvinfo,
1329 .get_regs_len = axienet_ethtools_get_regs_len,
1330 .get_regs = axienet_ethtools_get_regs,
1331 .get_link = ethtool_op_get_link,
1332 .get_pauseparam = axienet_ethtools_get_pauseparam,
1333 .set_pauseparam = axienet_ethtools_set_pauseparam,
1334 .get_coalesce = axienet_ethtools_get_coalesce,
1335 .set_coalesce = axienet_ethtools_set_coalesce,
1336};
1337
1338/**
1339 * axienet_dma_err_handler - Tasklet handler for Axi DMA Error
1340 * @data: Data passed
1341 *
1342 * Resets the Axi DMA and Axi Ethernet devices, and reconfigures the
1343 * Tx/Rx BDs.
1344 */
1345static void axienet_dma_err_handler(unsigned long data)
1346{
1347 u32 axienet_status;
1348 u32 cr, i;
1349 int mdio_mcreg;
1350 struct axienet_local *lp = (struct axienet_local *) data;
1351 struct net_device *ndev = lp->ndev;
1352 struct axidma_bd *cur_p;
1353
1354 axienet_setoptions(ndev, lp->options &
1355 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1356 mdio_mcreg = axienet_ior(lp, XAE_MDIO_MC_OFFSET);
1357 axienet_mdio_wait_until_ready(lp);
1358 /* Disable the MDIO interface till Axi Ethernet Reset is completed.
1359 * When we do an Axi Ethernet reset, it resets the complete core
1360 * including the MDIO. So if MDIO is not disabled when the reset
1361 * process is started, MDIO will be broken afterwards. */
1362 axienet_iow(lp, XAE_MDIO_MC_OFFSET, (mdio_mcreg &
1363 ~XAE_MDIO_MC_MDIOEN_MASK));
1364
1365 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_TX_CR_OFFSET);
1366 __axienet_device_reset(lp, &ndev->dev, XAXIDMA_RX_CR_OFFSET);
1367
1368 axienet_iow(lp, XAE_MDIO_MC_OFFSET, mdio_mcreg);
1369 axienet_mdio_wait_until_ready(lp);
1370
1371 for (i = 0; i < TX_BD_NUM; i++) {
1372 cur_p = &lp->tx_bd_v[i];
1373 if (cur_p->phys)
1374 dma_unmap_single(ndev->dev.parent, cur_p->phys,
1375 (cur_p->cntrl &
1376 XAXIDMA_BD_CTRL_LENGTH_MASK),
1377 DMA_TO_DEVICE);
1378 if (cur_p->app4)
1379 dev_kfree_skb_irq((struct sk_buff *) cur_p->app4);
1380 cur_p->phys = 0;
1381 cur_p->cntrl = 0;
1382 cur_p->status = 0;
1383 cur_p->app0 = 0;
1384 cur_p->app1 = 0;
1385 cur_p->app2 = 0;
1386 cur_p->app3 = 0;
1387 cur_p->app4 = 0;
1388 cur_p->sw_id_offset = 0;
1389 }
1390
1391 for (i = 0; i < RX_BD_NUM; i++) {
1392 cur_p = &lp->rx_bd_v[i];
1393 cur_p->status = 0;
1394 cur_p->app0 = 0;
1395 cur_p->app1 = 0;
1396 cur_p->app2 = 0;
1397 cur_p->app3 = 0;
1398 cur_p->app4 = 0;
1399 }
1400
1401 lp->tx_bd_ci = 0;
1402 lp->tx_bd_tail = 0;
1403 lp->rx_bd_ci = 0;
1404
1405 /* Start updating the Rx channel control register */
1406 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1407 /* Update the interrupt coalesce count */
1408 cr = ((cr & ~XAXIDMA_COALESCE_MASK) |
1409 (XAXIDMA_DFT_RX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1410 /* Update the delay timer count */
1411 cr = ((cr & ~XAXIDMA_DELAY_MASK) |
1412 (XAXIDMA_DFT_RX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1413 /* Enable coalesce, delay timer and error interrupts */
1414 cr |= XAXIDMA_IRQ_ALL_MASK;
1415 /* Finally write to the Rx channel control register */
1416 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET, cr);
1417
1418 /* Start updating the Tx channel control register */
1419 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1420 /* Update the interrupt coalesce count */
1421 cr = (((cr & ~XAXIDMA_COALESCE_MASK)) |
1422 (XAXIDMA_DFT_TX_THRESHOLD << XAXIDMA_COALESCE_SHIFT));
1423 /* Update the delay timer count */
1424 cr = (((cr & ~XAXIDMA_DELAY_MASK)) |
1425 (XAXIDMA_DFT_TX_WAITBOUND << XAXIDMA_DELAY_SHIFT));
1426 /* Enable coalesce, delay timer and error interrupts */
1427 cr |= XAXIDMA_IRQ_ALL_MASK;
1428 /* Finally write to the Tx channel control register */
1429 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET, cr);
1430
1431 /* Populate the tail pointer and bring the Rx Axi DMA engine out of
1432 * halted state. This will make the Rx side ready for reception.*/
1433 axienet_dma_out32(lp, XAXIDMA_RX_CDESC_OFFSET, lp->rx_bd_p);
1434 cr = axienet_dma_in32(lp, XAXIDMA_RX_CR_OFFSET);
1435 axienet_dma_out32(lp, XAXIDMA_RX_CR_OFFSET,
1436 cr | XAXIDMA_CR_RUNSTOP_MASK);
1437 axienet_dma_out32(lp, XAXIDMA_RX_TDESC_OFFSET, lp->rx_bd_p +
1438 (sizeof(*lp->rx_bd_v) * (RX_BD_NUM - 1)));
1439
1440 /* Write to the RS (Run-stop) bit in the Tx channel control register.
1441 * Tx channel is now ready to run. But only after we write to the
1442 * tail pointer register that the Tx channel will start transmitting */
1443 axienet_dma_out32(lp, XAXIDMA_TX_CDESC_OFFSET, lp->tx_bd_p);
1444 cr = axienet_dma_in32(lp, XAXIDMA_TX_CR_OFFSET);
1445 axienet_dma_out32(lp, XAXIDMA_TX_CR_OFFSET,
1446 cr | XAXIDMA_CR_RUNSTOP_MASK);
1447
1448 axienet_status = axienet_ior(lp, XAE_RCW1_OFFSET);
1449 axienet_status &= ~XAE_RCW1_RX_MASK;
1450 axienet_iow(lp, XAE_RCW1_OFFSET, axienet_status);
1451
1452 axienet_status = axienet_ior(lp, XAE_IP_OFFSET);
1453 if (axienet_status & XAE_INT_RXRJECT_MASK)
1454 axienet_iow(lp, XAE_IS_OFFSET, XAE_INT_RXRJECT_MASK);
1455 axienet_iow(lp, XAE_FCC_OFFSET, XAE_FCC_FCRX_MASK);
1456
1457 /* Sync default options with HW but leave receiver and
1458 * transmitter disabled.*/
1459 axienet_setoptions(ndev, lp->options &
1460 ~(XAE_OPTION_TXEN | XAE_OPTION_RXEN));
1461 axienet_set_mac_address(ndev, NULL);
1462 axienet_set_multicast_list(ndev);
1463 axienet_setoptions(ndev, lp->options);
1464}
1465
1466/**
1467 * axienet_of_probe - Axi Ethernet probe function.
1468 * @op: Pointer to platform device structure.
1469 * @match: Pointer to device id structure
1470 *
1471 * returns: 0, on success
1472 * Non-zero error value on failure.
1473 *
1474 * This is the probe routine for Axi Ethernet driver. This is called before
1475 * any other driver routines are invoked. It allocates and sets up the Ethernet
1476 * device. Parses through device tree and populates fields of
1477 * axienet_local. It registers the Ethernet device.
1478 */
1479static int __devinit axienet_of_probe(struct platform_device *op)
1480{
1481 __be32 *p;
1482 int size, ret = 0;
1483 struct device_node *np;
1484 struct axienet_local *lp;
1485 struct net_device *ndev;
1486 const void *addr;
1487
1488 ndev = alloc_etherdev(sizeof(*lp));
1489 if (!ndev) {
1490 dev_err(&op->dev, "could not allocate device.\n");
1491 return -ENOMEM;
1492 }
1493
1494 ether_setup(ndev);
1495 dev_set_drvdata(&op->dev, ndev);
1496
1497 SET_NETDEV_DEV(ndev, &op->dev);
1498 ndev->flags &= ~IFF_MULTICAST; /* clear multicast */
1499 ndev->features = NETIF_F_SG | NETIF_F_FRAGLIST;
1500 ndev->netdev_ops = &axienet_netdev_ops;
1501 ndev->ethtool_ops = &axienet_ethtool_ops;
1502
1503 lp = netdev_priv(ndev);
1504 lp->ndev = ndev;
1505 lp->dev = &op->dev;
1506 lp->options = XAE_OPTION_DEFAULTS;
1507 /* Map device registers */
1508 lp->regs = of_iomap(op->dev.of_node, 0);
1509 if (!lp->regs) {
1510 dev_err(&op->dev, "could not map Axi Ethernet regs.\n");
1511 goto nodev;
1512 }
1513 /* Setup checksum offload, but default to off if not specified */
1514 lp->features = 0;
1515
1516 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,txcsum", NULL);
1517 if (p) {
1518 switch (be32_to_cpup(p)) {
1519 case 1:
1520 lp->csum_offload_on_tx_path =
1521 XAE_FEATURE_PARTIAL_TX_CSUM;
1522 lp->features |= XAE_FEATURE_PARTIAL_TX_CSUM;
1523 /* Can checksum TCP/UDP over IPv4. */
1524 ndev->features |= NETIF_F_IP_CSUM;
1525 break;
1526 case 2:
1527 lp->csum_offload_on_tx_path =
1528 XAE_FEATURE_FULL_TX_CSUM;
1529 lp->features |= XAE_FEATURE_FULL_TX_CSUM;
1530 /* Can checksum TCP/UDP over IPv4. */
1531 ndev->features |= NETIF_F_IP_CSUM;
1532 break;
1533 default:
1534 lp->csum_offload_on_tx_path = XAE_NO_CSUM_OFFLOAD;
1535 }
1536 }
1537 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxcsum", NULL);
1538 if (p) {
1539 switch (be32_to_cpup(p)) {
1540 case 1:
1541 lp->csum_offload_on_rx_path =
1542 XAE_FEATURE_PARTIAL_RX_CSUM;
1543 lp->features |= XAE_FEATURE_PARTIAL_RX_CSUM;
1544 break;
1545 case 2:
1546 lp->csum_offload_on_rx_path =
1547 XAE_FEATURE_FULL_RX_CSUM;
1548 lp->features |= XAE_FEATURE_FULL_RX_CSUM;
1549 break;
1550 default:
1551 lp->csum_offload_on_rx_path = XAE_NO_CSUM_OFFLOAD;
1552 }
1553 }
1554 /* For supporting jumbo frames, the Axi Ethernet hardware must have
1555 * a larger Rx/Tx Memory. Typically, the size must be more than or
1556 * equal to 16384 bytes, so that we can enable jumbo option and start
1557 * supporting jumbo frames. Here we check for memory allocated for
1558 * Rx/Tx in the hardware from the device-tree and accordingly set
1559 * flags. */
1560 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,rxmem", NULL);
1561 if (p) {
1562 if ((be32_to_cpup(p)) >= 0x4000)
1563 lp->jumbo_support = 1;
1564 }
1565 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,temac-type",
1566 NULL);
1567 if (p)
1568 lp->temac_type = be32_to_cpup(p);
1569 p = (__be32 *) of_get_property(op->dev.of_node, "xlnx,phy-type", NULL);
1570 if (p)
1571 lp->phy_type = be32_to_cpup(p);
1572
1573 /* Find the DMA node, map the DMA registers, and decode the DMA IRQs */
1574 np = of_parse_phandle(op->dev.of_node, "axistream-connected", 0);
1575 if (!np) {
1576 dev_err(&op->dev, "could not find DMA node\n");
1577 goto err_iounmap;
1578 }
1579 lp->dma_regs = of_iomap(np, 0);
1580 if (lp->dma_regs) {
1581 dev_dbg(&op->dev, "MEM base: %p\n", lp->dma_regs);
1582 } else {
1583 dev_err(&op->dev, "unable to map DMA registers\n");
1584 of_node_put(np);
1585 }
1586 lp->rx_irq = irq_of_parse_and_map(np, 1);
1587 lp->tx_irq = irq_of_parse_and_map(np, 0);
1588 of_node_put(np);
1589 if ((lp->rx_irq == NO_IRQ) || (lp->tx_irq == NO_IRQ)) {
1590 dev_err(&op->dev, "could not determine irqs\n");
1591 ret = -ENOMEM;
1592 goto err_iounmap_2;
1593 }
1594
1595 /* Retrieve the MAC address */
1596 addr = of_get_property(op->dev.of_node, "local-mac-address", &size);
1597 if ((!addr) || (size != 6)) {
1598 dev_err(&op->dev, "could not find MAC address\n");
1599 ret = -ENODEV;
1600 goto err_iounmap_2;
1601 }
1602 axienet_set_mac_address(ndev, (void *) addr);
1603
1604 lp->coalesce_count_rx = XAXIDMA_DFT_RX_THRESHOLD;
1605 lp->coalesce_count_tx = XAXIDMA_DFT_TX_THRESHOLD;
1606
1607 lp->phy_node = of_parse_phandle(op->dev.of_node, "phy-handle", 0);
1608 ret = axienet_mdio_setup(lp, op->dev.of_node);
1609 if (ret)
1610 dev_warn(&op->dev, "error registering MDIO bus\n");
1611
1612 ret = register_netdev(lp->ndev);
1613 if (ret) {
1614 dev_err(lp->dev, "register_netdev() error (%i)\n", ret);
1615 goto err_iounmap_2;
1616 }
1617
1618 tasklet_init(&lp->dma_err_tasklet, axienet_dma_err_handler,
1619 (unsigned long) lp);
1620 tasklet_disable(&lp->dma_err_tasklet);
1621
1622 return 0;
1623
1624err_iounmap_2:
1625 if (lp->dma_regs)
1626 iounmap(lp->dma_regs);
1627err_iounmap:
1628 iounmap(lp->regs);
1629nodev:
1630 free_netdev(ndev);
1631 ndev = NULL;
1632 return ret;
1633}
1634
1635static int __devexit axienet_of_remove(struct platform_device *op)
1636{
1637 struct net_device *ndev = dev_get_drvdata(&op->dev);
1638 struct axienet_local *lp = netdev_priv(ndev);
1639
1640 axienet_mdio_teardown(lp);
1641 unregister_netdev(ndev);
1642
1643 if (lp->phy_node)
1644 of_node_put(lp->phy_node);
1645 lp->phy_node = NULL;
1646
1647 dev_set_drvdata(&op->dev, NULL);
1648
1649 iounmap(lp->regs);
1650 if (lp->dma_regs)
1651 iounmap(lp->dma_regs);
1652 free_netdev(ndev);
1653
1654 return 0;
1655}
1656
1657static struct platform_driver axienet_of_driver = {
1658 .probe = axienet_of_probe,
1659 .remove = __devexit_p(axienet_of_remove),
1660 .driver = {
1661 .owner = THIS_MODULE,
1662 .name = "xilinx_axienet",
1663 .of_match_table = axienet_of_match,
1664 },
1665};
1666
1667static int __init axienet_init(void)
1668{
1669 return platform_driver_register(&axienet_of_driver);
1670}
1671
1672static void __exit axienet_exit(void)
1673{
1674 platform_driver_unregister(&axienet_of_driver);
1675}
1676
1677module_init(axienet_init);
1678module_exit(axienet_exit);
1679
1680MODULE_DESCRIPTION("Xilinx Axi Ethernet driver");
1681MODULE_AUTHOR("Xilinx");
1682MODULE_LICENSE("GPL");
diff --git a/drivers/net/ethernet/xilinx/xilinx_axienet_mdio.c b/drivers/net/ethernet/xilinx/xilinx_axienet_mdio.c
new file mode 100644
index 000000000000..d70b6e79f6c0
--- /dev/null
+++ b/drivers/net/ethernet/xilinx/xilinx_axienet_mdio.c
@@ -0,0 +1,238 @@
1/*
2 * MDIO bus driver for the Xilinx Axi Ethernet device
3 *
4 * Copyright (c) 2009 Secret Lab Technologies, Ltd.
5 * Copyright (c) 2010 Xilinx, Inc. All rights reserved.
6 * Copyright (c) 2012 Daniel Borkmann, <daniel.borkmann@tik.ee.ethz.ch>
7 * Copyright (c) 2012 Ariane Keller, <ariane.keller@tik.ee.ethz.ch>
8 */
9
10#include <linux/of_address.h>
11#include <linux/of_mdio.h>
12#include <linux/jiffies.h>
13
14#include "xilinx_axienet.h"
15
16#define MAX_MDIO_FREQ 2500000 /* 2.5 MHz */
17#define DEFAULT_CLOCK_DIVISOR XAE_MDIO_DIV_DFT
18
19/* Wait till MDIO interface is ready to accept a new transaction.*/
20int axienet_mdio_wait_until_ready(struct axienet_local *lp)
21{
22 long end = jiffies + 2;
23 while (!(axienet_ior(lp, XAE_MDIO_MCR_OFFSET) &
24 XAE_MDIO_MCR_READY_MASK)) {
25 if (end - jiffies <= 0) {
26 WARN_ON(1);
27 return -ETIMEDOUT;
28 }
29 udelay(1);
30 }
31 return 0;
32}
33
34/**
35 * axienet_mdio_read - MDIO interface read function
36 * @bus: Pointer to mii bus structure
37 * @phy_id: Address of the PHY device
38 * @reg: PHY register to read
39 *
40 * returns: The register contents on success, -ETIMEDOUT on a timeout
41 *
42 * Reads the contents of the requested register from the requested PHY
43 * address by first writing the details into MCR register. After a while
44 * the register MRD is read to obtain the PHY register content.
45 */
46static int axienet_mdio_read(struct mii_bus *bus, int phy_id, int reg)
47{
48 u32 rc;
49 int ret;
50 struct axienet_local *lp = bus->priv;
51
52 ret = axienet_mdio_wait_until_ready(lp);
53 if (ret < 0)
54 return ret;
55
56 axienet_iow(lp, XAE_MDIO_MCR_OFFSET,
57 (((phy_id << XAE_MDIO_MCR_PHYAD_SHIFT) &
58 XAE_MDIO_MCR_PHYAD_MASK) |
59 ((reg << XAE_MDIO_MCR_REGAD_SHIFT) &
60 XAE_MDIO_MCR_REGAD_MASK) |
61 XAE_MDIO_MCR_INITIATE_MASK |
62 XAE_MDIO_MCR_OP_READ_MASK));
63
64 ret = axienet_mdio_wait_until_ready(lp);
65 if (ret < 0)
66 return ret;
67
68 rc = axienet_ior(lp, XAE_MDIO_MRD_OFFSET) & 0x0000FFFF;
69
70 dev_dbg(lp->dev, "axienet_mdio_read(phy_id=%i, reg=%x) == %x\n",
71 phy_id, reg, rc);
72
73 return rc;
74}
75
76/**
77 * axienet_mdio_write - MDIO interface write function
78 * @bus: Pointer to mii bus structure
79 * @phy_id: Address of the PHY device
80 * @reg: PHY register to write to
81 * @val: Value to be written into the register
82 *
83 * returns: 0 on success, -ETIMEDOUT on a timeout
84 *
85 * Writes the value to the requested register by first writing the value
86 * into MWD register. The the MCR register is then appropriately setup
87 * to finish the write operation.
88 */
89static int axienet_mdio_write(struct mii_bus *bus, int phy_id, int reg,
90 u16 val)
91{
92 int ret;
93 struct axienet_local *lp = bus->priv;
94
95 dev_dbg(lp->dev, "axienet_mdio_write(phy_id=%i, reg=%x, val=%x)\n",
96 phy_id, reg, val);
97
98 ret = axienet_mdio_wait_until_ready(lp);
99 if (ret < 0)
100 return ret;
101
102 axienet_iow(lp, XAE_MDIO_MWD_OFFSET, (u32) val);
103 axienet_iow(lp, XAE_MDIO_MCR_OFFSET,
104 (((phy_id << XAE_MDIO_MCR_PHYAD_SHIFT) &
105 XAE_MDIO_MCR_PHYAD_MASK) |
106 ((reg << XAE_MDIO_MCR_REGAD_SHIFT) &
107 XAE_MDIO_MCR_REGAD_MASK) |
108 XAE_MDIO_MCR_INITIATE_MASK |
109 XAE_MDIO_MCR_OP_WRITE_MASK));
110
111 ret = axienet_mdio_wait_until_ready(lp);
112 if (ret < 0)
113 return ret;
114 return 0;
115}
116
117/**
118 * axienet_mdio_setup - MDIO setup function
119 * @lp: Pointer to axienet local data structure.
120 * @np: Pointer to device node
121 *
122 * returns: 0 on success, -ETIMEDOUT on a timeout, -ENOMEM when
123 * mdiobus_alloc (to allocate memory for mii bus structure) fails.
124 *
125 * Sets up the MDIO interface by initializing the MDIO clock and enabling the
126 * MDIO interface in hardware. Register the MDIO interface.
127 **/
128int axienet_mdio_setup(struct axienet_local *lp, struct device_node *np)
129{
130 int ret;
131 u32 clk_div, host_clock;
132 u32 *property_p;
133 struct mii_bus *bus;
134 struct resource res;
135 struct device_node *np1;
136
137 /* clk_div can be calculated by deriving it from the equation:
138 * fMDIO = fHOST / ((1 + clk_div) * 2)
139 *
140 * Where fMDIO <= 2500000, so we get:
141 * fHOST / ((1 + clk_div) * 2) <= 2500000
142 *
143 * Then we get:
144 * 1 / ((1 + clk_div) * 2) <= (2500000 / fHOST)
145 *
146 * Then we get:
147 * 1 / (1 + clk_div) <= ((2500000 * 2) / fHOST)
148 *
149 * Then we get:
150 * 1 / (1 + clk_div) <= (5000000 / fHOST)
151 *
152 * So:
153 * (1 + clk_div) >= (fHOST / 5000000)
154 *
155 * And finally:
156 * clk_div >= (fHOST / 5000000) - 1
157 *
158 * fHOST can be read from the flattened device tree as property
159 * "clock-frequency" from the CPU
160 */
161
162 np1 = of_find_node_by_name(NULL, "cpu");
163 if (!np1) {
164 printk(KERN_WARNING "%s(): Could not find CPU device node.",
165 __func__);
166 printk(KERN_WARNING "Setting MDIO clock divisor to "
167 "default %d\n", DEFAULT_CLOCK_DIVISOR);
168 clk_div = DEFAULT_CLOCK_DIVISOR;
169 goto issue;
170 }
171 property_p = (u32 *) of_get_property(np1, "clock-frequency", NULL);
172 if (!property_p) {
173 printk(KERN_WARNING "%s(): Could not find CPU property: "
174 "clock-frequency.", __func__);
175 printk(KERN_WARNING "Setting MDIO clock divisor to "
176 "default %d\n", DEFAULT_CLOCK_DIVISOR);
177 clk_div = DEFAULT_CLOCK_DIVISOR;
178 goto issue;
179 }
180
181 host_clock = be32_to_cpup(property_p);
182 clk_div = (host_clock / (MAX_MDIO_FREQ * 2)) - 1;
183 /* If there is any remainder from the division of
184 * fHOST / (MAX_MDIO_FREQ * 2), then we need to add
185 * 1 to the clock divisor or we will surely be above 2.5 MHz */
186 if (host_clock % (MAX_MDIO_FREQ * 2))
187 clk_div++;
188
189 printk(KERN_DEBUG "%s(): Setting MDIO clock divisor to %u based "
190 "on %u Hz host clock.\n", __func__, clk_div, host_clock);
191
192 of_node_put(np1);
193issue:
194 axienet_iow(lp, XAE_MDIO_MC_OFFSET,
195 (((u32) clk_div) | XAE_MDIO_MC_MDIOEN_MASK));
196
197 ret = axienet_mdio_wait_until_ready(lp);
198 if (ret < 0)
199 return ret;
200
201 bus = mdiobus_alloc();
202 if (!bus)
203 return -ENOMEM;
204
205 np1 = of_get_parent(lp->phy_node);
206 of_address_to_resource(np1, 0, &res);
207 snprintf(bus->id, MII_BUS_ID_SIZE, "%.8llx",
208 (unsigned long long) res.start);
209
210 bus->priv = lp;
211 bus->name = "Xilinx Axi Ethernet MDIO";
212 bus->read = axienet_mdio_read;
213 bus->write = axienet_mdio_write;
214 bus->parent = lp->dev;
215 bus->irq = lp->mdio_irqs; /* preallocated IRQ table */
216 lp->mii_bus = bus;
217
218 ret = of_mdiobus_register(bus, np1);
219 if (ret) {
220 mdiobus_free(bus);
221 return ret;
222 }
223 return 0;
224}
225
226/**
227 * axienet_mdio_teardown - MDIO remove function
228 * @lp: Pointer to axienet local data structure.
229 *
230 * Unregisters the MDIO and frees any associate memory for mii bus.
231 */
232void axienet_mdio_teardown(struct axienet_local *lp)
233{
234 mdiobus_unregister(lp->mii_bus);
235 kfree(lp->mii_bus->irq);
236 mdiobus_free(lp->mii_bus);
237 lp->mii_bus = NULL;
238}