aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net
diff options
context:
space:
mode:
authorHerbert Valerio Riedel <hvr@gnu.org>2006-06-01 03:41:04 -0400
committerJeff Garzik <jeff@garzik.org>2006-06-11 23:19:00 -0400
commit0638dec01e89059c853515ab71c55fd13ba5a8ea (patch)
tree7743a5714b03ef408b3147475cfe61127d580ed3 /drivers/net
parent96e672c79fb114ec38a868dc864e743205c24332 (diff)
[PATCH] net: au1000_eth: PHY framework conversion
convert au1000_eth driver to use PHY framework and garbage collected functions and identifiers that became unused/obsolete in the process Signed-off-by: Herbert Valerio Riedel <hvr@gnu.org> Signed-off-by: Jeff Garzik <jeff@garzik.org>
Diffstat (limited to 'drivers/net')
-rw-r--r--drivers/net/Kconfig1
-rw-r--r--drivers/net/au1000_eth.c1602
-rw-r--r--drivers/net/au1000_eth.h134
3 files changed, 378 insertions, 1359 deletions
diff --git a/drivers/net/Kconfig b/drivers/net/Kconfig
index 2f0b2549e9ec..20bdb9732a09 100644
--- a/drivers/net/Kconfig
+++ b/drivers/net/Kconfig
@@ -447,6 +447,7 @@ config MIPS_GT96100ETH
447config MIPS_AU1X00_ENET 447config MIPS_AU1X00_ENET
448 bool "MIPS AU1000 Ethernet support" 448 bool "MIPS AU1000 Ethernet support"
449 depends on NET_ETHERNET && SOC_AU1X00 449 depends on NET_ETHERNET && SOC_AU1X00
450 select PHYLIB
450 select CRC32 451 select CRC32
451 help 452 help
452 If you have an Alchemy Semi AU1X00 based system 453 If you have an Alchemy Semi AU1X00 based system
diff --git a/drivers/net/au1000_eth.c b/drivers/net/au1000_eth.c
index e1fe960d71b3..038d5fcb15e6 100644
--- a/drivers/net/au1000_eth.c
+++ b/drivers/net/au1000_eth.c
@@ -9,6 +9,9 @@
9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de 9 * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de
10 * or riemer@riemer-nt.de: fixed the link beat detection with 10 * or riemer@riemer-nt.de: fixed the link beat detection with
11 * ioctls (SIOCGMIIPHY) 11 * ioctls (SIOCGMIIPHY)
12 * Copyright 2006 Herbert Valerio Riedel <hvr@gnu.org>
13 * converted to use linux-2.6.x's PHY framework
14 *
12 * Author: MontaVista Software, Inc. 15 * Author: MontaVista Software, Inc.
13 * ppopov@mvista.com or source@mvista.com 16 * ppopov@mvista.com or source@mvista.com
14 * 17 *
@@ -53,6 +56,7 @@
53#include <linux/skbuff.h> 56#include <linux/skbuff.h>
54#include <linux/delay.h> 57#include <linux/delay.h>
55#include <linux/crc32.h> 58#include <linux/crc32.h>
59#include <linux/phy.h>
56#include <asm/mipsregs.h> 60#include <asm/mipsregs.h>
57#include <asm/irq.h> 61#include <asm/irq.h>
58#include <asm/io.h> 62#include <asm/io.h>
@@ -88,17 +92,15 @@ static int au1000_tx(struct sk_buff *, struct net_device *);
88static int au1000_rx(struct net_device *); 92static int au1000_rx(struct net_device *);
89static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *); 93static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *);
90static void au1000_tx_timeout(struct net_device *); 94static void au1000_tx_timeout(struct net_device *);
91static int au1000_set_config(struct net_device *dev, struct ifmap *map);
92static void set_rx_mode(struct net_device *); 95static void set_rx_mode(struct net_device *);
93static struct net_device_stats *au1000_get_stats(struct net_device *); 96static struct net_device_stats *au1000_get_stats(struct net_device *);
94static void au1000_timer(unsigned long);
95static int au1000_ioctl(struct net_device *, struct ifreq *, int); 97static int au1000_ioctl(struct net_device *, struct ifreq *, int);
96static int mdio_read(struct net_device *, int, int); 98static int mdio_read(struct net_device *, int, int);
97static void mdio_write(struct net_device *, int, int, u16); 99static void mdio_write(struct net_device *, int, int, u16);
98static void dump_mii(struct net_device *dev, int phy_id); 100static void au1000_adjust_link(struct net_device *);
101static void enable_mac(struct net_device *, int);
99 102
100// externs 103// externs
101extern void ack_rise_edge_irq(unsigned int);
102extern int get_ethernet_addr(char *ethernet_addr); 104extern int get_ethernet_addr(char *ethernet_addr);
103extern void str2eaddr(unsigned char *ea, unsigned char *str); 105extern void str2eaddr(unsigned char *ea, unsigned char *str);
104extern char * __init prom_getcmdline(void); 106extern char * __init prom_getcmdline(void);
@@ -126,705 +128,83 @@ static unsigned char au1000_mac_addr[6] __devinitdata = {
126 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 128 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00
127}; 129};
128 130
129#define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0))
130#define RUN_AT(x) (jiffies + (x))
131
132// For reading/writing 32-bit words from/to DMA memory
133#define cpu_to_dma32 cpu_to_be32
134#define dma32_to_cpu be32_to_cpu
135
136struct au1000_private *au_macs[NUM_ETH_INTERFACES]; 131struct au1000_private *au_macs[NUM_ETH_INTERFACES];
137 132
138/* FIXME 133/*
139 * All of the PHY code really should be detached from the MAC 134 * board-specific configurations
140 * code. 135 *
136 * PHY detection algorithm
137 *
138 * If AU1XXX_PHY_STATIC_CONFIG is undefined, the PHY setup is
139 * autodetected:
140 *
141 * mii_probe() first searches the current MAC's MII bus for a PHY,
142 * selecting the first (or last, if AU1XXX_PHY_SEARCH_HIGHEST_ADDR is
143 * defined) PHY address not already claimed by another netdev.
144 *
145 * If nothing was found that way when searching for the 2nd ethernet
146 * controller's PHY and AU1XXX_PHY1_SEARCH_ON_MAC0 is defined, then
147 * the first MII bus is searched as well for an unclaimed PHY; this is
148 * needed in case of a dual-PHY accessible only through the MAC0's MII
149 * bus.
150 *
151 * Finally, if no PHY is found, then the corresponding ethernet
152 * controller is not registered to the network subsystem.
141 */ 153 */
142 154
143/* Default advertise */ 155/* autodetection defaults */
144#define GENMII_DEFAULT_ADVERTISE \ 156#undef AU1XXX_PHY_SEARCH_HIGHEST_ADDR
145 ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ 157#define AU1XXX_PHY1_SEARCH_ON_MAC0
146 ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \
147 ADVERTISED_Autoneg
148
149#define GENMII_DEFAULT_FEATURES \
150 SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
151 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
152 SUPPORTED_Autoneg
153
154int bcm_5201_init(struct net_device *dev, int phy_addr)
155{
156 s16 data;
157
158 /* Stop auto-negotiation */
159 data = mdio_read(dev, phy_addr, MII_CONTROL);
160 mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
161
162 /* Set advertisement to 10/100 and Half/Full duplex
163 * (full capabilities) */
164 data = mdio_read(dev, phy_addr, MII_ANADV);
165 data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
166 mdio_write(dev, phy_addr, MII_ANADV, data);
167
168 /* Restart auto-negotiation */
169 data = mdio_read(dev, phy_addr, MII_CONTROL);
170 data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
171 mdio_write(dev, phy_addr, MII_CONTROL, data);
172
173 if (au1000_debug > 4)
174 dump_mii(dev, phy_addr);
175 return 0;
176}
177
178int bcm_5201_reset(struct net_device *dev, int phy_addr)
179{
180 s16 mii_control, timeout;
181
182 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
183 mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
184 mdelay(1);
185 for (timeout = 100; timeout > 0; --timeout) {
186 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
187 if ((mii_control & MII_CNTL_RESET) == 0)
188 break;
189 mdelay(1);
190 }
191 if (mii_control & MII_CNTL_RESET) {
192 printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
193 return -1;
194 }
195 return 0;
196}
197
198int
199bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
200{
201 u16 mii_data;
202 struct au1000_private *aup;
203
204 if (!dev) {
205 printk(KERN_ERR "bcm_5201_status error: NULL dev\n");
206 return -1;
207 }
208 aup = (struct au1000_private *) dev->priv;
209
210 mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
211 if (mii_data & MII_STAT_LINK) {
212 *link = 1;
213 mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
214 if (mii_data & MII_AUX_100) {
215 if (mii_data & MII_AUX_FDX) {
216 *speed = IF_PORT_100BASEFX;
217 dev->if_port = IF_PORT_100BASEFX;
218 }
219 else {
220 *speed = IF_PORT_100BASETX;
221 dev->if_port = IF_PORT_100BASETX;
222 }
223 }
224 else {
225 *speed = IF_PORT_10BASET;
226 dev->if_port = IF_PORT_10BASET;
227 }
228
229 }
230 else {
231 *link = 0;
232 *speed = 0;
233 dev->if_port = IF_PORT_UNKNOWN;
234 }
235 return 0;
236}
237
238int lsi_80227_init(struct net_device *dev, int phy_addr)
239{
240 if (au1000_debug > 4)
241 printk("lsi_80227_init\n");
242
243 /* restart auto-negotiation */
244 mdio_write(dev, phy_addr, MII_CONTROL,
245 MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); // | MII_CNTL_FDX);
246 mdelay(1);
247
248 /* set up LEDs to correct display */
249#ifdef CONFIG_MIPS_MTX1
250 mdio_write(dev, phy_addr, 17, 0xff80);
251#else
252 mdio_write(dev, phy_addr, 17, 0xffc0);
253#endif
254
255 if (au1000_debug > 4)
256 dump_mii(dev, phy_addr);
257 return 0;
258}
259
260int lsi_80227_reset(struct net_device *dev, int phy_addr)
261{
262 s16 mii_control, timeout;
263
264 if (au1000_debug > 4) {
265 printk("lsi_80227_reset\n");
266 dump_mii(dev, phy_addr);
267 }
268
269 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
270 mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
271 mdelay(1);
272 for (timeout = 100; timeout > 0; --timeout) {
273 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
274 if ((mii_control & MII_CNTL_RESET) == 0)
275 break;
276 mdelay(1);
277 }
278 if (mii_control & MII_CNTL_RESET) {
279 printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
280 return -1;
281 }
282 return 0;
283}
284
285int
286lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
287{
288 u16 mii_data;
289 struct au1000_private *aup;
290
291 if (!dev) {
292 printk(KERN_ERR "lsi_80227_status error: NULL dev\n");
293 return -1;
294 }
295 aup = (struct au1000_private *) dev->priv;
296
297 mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
298 if (mii_data & MII_STAT_LINK) {
299 *link = 1;
300 mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_PHY_STAT);
301 if (mii_data & MII_LSI_PHY_STAT_SPD) {
302 if (mii_data & MII_LSI_PHY_STAT_FDX) {
303 *speed = IF_PORT_100BASEFX;
304 dev->if_port = IF_PORT_100BASEFX;
305 }
306 else {
307 *speed = IF_PORT_100BASETX;
308 dev->if_port = IF_PORT_100BASETX;
309 }
310 }
311 else {
312 *speed = IF_PORT_10BASET;
313 dev->if_port = IF_PORT_10BASET;
314 }
315
316 }
317 else {
318 *link = 0;
319 *speed = 0;
320 dev->if_port = IF_PORT_UNKNOWN;
321 }
322 return 0;
323}
324
325int am79c901_init(struct net_device *dev, int phy_addr)
326{
327 printk("am79c901_init\n");
328 return 0;
329}
330
331int am79c901_reset(struct net_device *dev, int phy_addr)
332{
333 printk("am79c901_reset\n");
334 return 0;
335}
336
337int
338am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
339{
340 return 0;
341}
342
343int am79c874_init(struct net_device *dev, int phy_addr)
344{
345 s16 data;
346
347 /* 79c874 has quit resembled bit assignments to BCM5201 */
348 if (au1000_debug > 4)
349 printk("am79c847_init\n");
350
351 /* Stop auto-negotiation */
352 data = mdio_read(dev, phy_addr, MII_CONTROL);
353 mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
354
355 /* Set advertisement to 10/100 and Half/Full duplex
356 * (full capabilities) */
357 data = mdio_read(dev, phy_addr, MII_ANADV);
358 data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
359 mdio_write(dev, phy_addr, MII_ANADV, data);
360
361 /* Restart auto-negotiation */
362 data = mdio_read(dev, phy_addr, MII_CONTROL);
363 data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
364
365 mdio_write(dev, phy_addr, MII_CONTROL, data);
366
367 if (au1000_debug > 4) dump_mii(dev, phy_addr);
368 return 0;
369}
370
371int am79c874_reset(struct net_device *dev, int phy_addr)
372{
373 s16 mii_control, timeout;
374
375 if (au1000_debug > 4)
376 printk("am79c874_reset\n");
377
378 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
379 mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
380 mdelay(1);
381 for (timeout = 100; timeout > 0; --timeout) {
382 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
383 if ((mii_control & MII_CNTL_RESET) == 0)
384 break;
385 mdelay(1);
386 }
387 if (mii_control & MII_CNTL_RESET) {
388 printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
389 return -1;
390 }
391 return 0;
392}
393
394int
395am79c874_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
396{
397 u16 mii_data;
398 struct au1000_private *aup;
399
400 // printk("am79c874_status\n");
401 if (!dev) {
402 printk(KERN_ERR "am79c874_status error: NULL dev\n");
403 return -1;
404 }
405
406 aup = (struct au1000_private *) dev->priv;
407 mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
408 158
409 if (mii_data & MII_STAT_LINK) { 159/* static PHY setup
410 *link = 1; 160 *
411 mii_data = mdio_read(dev, aup->phy_addr, MII_AMD_PHY_STAT); 161 * most boards PHY setup should be detectable properly with the
412 if (mii_data & MII_AMD_PHY_STAT_SPD) { 162 * autodetection algorithm in mii_probe(), but in some cases (e.g. if
413 if (mii_data & MII_AMD_PHY_STAT_FDX) { 163 * you have a switch attached, or want to use the PHY's interrupt
414 *speed = IF_PORT_100BASEFX; 164 * notification capabilities) you can provide a static PHY
415 dev->if_port = IF_PORT_100BASEFX; 165 * configuration here
416 } 166 *
417 else { 167 * IRQs may only be set, if a PHY address was configured
418 *speed = IF_PORT_100BASETX; 168 * If a PHY address is given, also a bus id is required to be set
419 dev->if_port = IF_PORT_100BASETX; 169 *
420 } 170 * ps: make sure the used irqs are configured properly in the board
421 } 171 * specific irq-map
422 else { 172 */
423 *speed = IF_PORT_10BASET;
424 dev->if_port = IF_PORT_10BASET;
425 }
426
427 }
428 else {
429 *link = 0;
430 *speed = 0;
431 dev->if_port = IF_PORT_UNKNOWN;
432 }
433 return 0;
434}
435
436int lxt971a_init(struct net_device *dev, int phy_addr)
437{
438 if (au1000_debug > 4)
439 printk("lxt971a_init\n");
440
441 /* restart auto-negotiation */
442 mdio_write(dev, phy_addr, MII_CONTROL,
443 MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO | MII_CNTL_FDX);
444
445 /* set up LEDs to correct display */
446 mdio_write(dev, phy_addr, 20, 0x0422);
447
448 if (au1000_debug > 4)
449 dump_mii(dev, phy_addr);
450 return 0;
451}
452
453int lxt971a_reset(struct net_device *dev, int phy_addr)
454{
455 s16 mii_control, timeout;
456
457 if (au1000_debug > 4) {
458 printk("lxt971a_reset\n");
459 dump_mii(dev, phy_addr);
460 }
461
462 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
463 mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
464 mdelay(1);
465 for (timeout = 100; timeout > 0; --timeout) {
466 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
467 if ((mii_control & MII_CNTL_RESET) == 0)
468 break;
469 mdelay(1);
470 }
471 if (mii_control & MII_CNTL_RESET) {
472 printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
473 return -1;
474 }
475 return 0;
476}
477
478int
479lxt971a_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
480{
481 u16 mii_data;
482 struct au1000_private *aup;
483
484 if (!dev) {
485 printk(KERN_ERR "lxt971a_status error: NULL dev\n");
486 return -1;
487 }
488 aup = (struct au1000_private *) dev->priv;
489
490 mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
491 if (mii_data & MII_STAT_LINK) {
492 *link = 1;
493 mii_data = mdio_read(dev, aup->phy_addr, MII_INTEL_PHY_STAT);
494 if (mii_data & MII_INTEL_PHY_STAT_SPD) {
495 if (mii_data & MII_INTEL_PHY_STAT_FDX) {
496 *speed = IF_PORT_100BASEFX;
497 dev->if_port = IF_PORT_100BASEFX;
498 }
499 else {
500 *speed = IF_PORT_100BASETX;
501 dev->if_port = IF_PORT_100BASETX;
502 }
503 }
504 else {
505 *speed = IF_PORT_10BASET;
506 dev->if_port = IF_PORT_10BASET;
507 }
508
509 }
510 else {
511 *link = 0;
512 *speed = 0;
513 dev->if_port = IF_PORT_UNKNOWN;
514 }
515 return 0;
516}
517
518int ks8995m_init(struct net_device *dev, int phy_addr)
519{
520 s16 data;
521
522// printk("ks8995m_init\n");
523 /* Stop auto-negotiation */
524 data = mdio_read(dev, phy_addr, MII_CONTROL);
525 mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
526
527 /* Set advertisement to 10/100 and Half/Full duplex
528 * (full capabilities) */
529 data = mdio_read(dev, phy_addr, MII_ANADV);
530 data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
531 mdio_write(dev, phy_addr, MII_ANADV, data);
532
533 /* Restart auto-negotiation */
534 data = mdio_read(dev, phy_addr, MII_CONTROL);
535 data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
536 mdio_write(dev, phy_addr, MII_CONTROL, data);
537
538 if (au1000_debug > 4) dump_mii(dev, phy_addr);
539
540 return 0;
541}
542
543int ks8995m_reset(struct net_device *dev, int phy_addr)
544{
545 s16 mii_control, timeout;
546
547// printk("ks8995m_reset\n");
548 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
549 mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
550 mdelay(1);
551 for (timeout = 100; timeout > 0; --timeout) {
552 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
553 if ((mii_control & MII_CNTL_RESET) == 0)
554 break;
555 mdelay(1);
556 }
557 if (mii_control & MII_CNTL_RESET) {
558 printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
559 return -1;
560 }
561 return 0;
562}
563
564int ks8995m_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
565{
566 u16 mii_data;
567 struct au1000_private *aup;
568
569 if (!dev) {
570 printk(KERN_ERR "ks8995m_status error: NULL dev\n");
571 return -1;
572 }
573 aup = (struct au1000_private *) dev->priv;
574
575 mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
576 if (mii_data & MII_STAT_LINK) {
577 *link = 1;
578 mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL);
579 if (mii_data & MII_AUX_100) {
580 if (mii_data & MII_AUX_FDX) {
581 *speed = IF_PORT_100BASEFX;
582 dev->if_port = IF_PORT_100BASEFX;
583 }
584 else {
585 *speed = IF_PORT_100BASETX;
586 dev->if_port = IF_PORT_100BASETX;
587 }
588 }
589 else {
590 *speed = IF_PORT_10BASET;
591 dev->if_port = IF_PORT_10BASET;
592 }
593
594 }
595 else {
596 *link = 0;
597 *speed = 0;
598 dev->if_port = IF_PORT_UNKNOWN;
599 }
600 return 0;
601}
602
603int
604smsc_83C185_init (struct net_device *dev, int phy_addr)
605{
606 s16 data;
607
608 if (au1000_debug > 4)
609 printk("smsc_83C185_init\n");
610
611 /* Stop auto-negotiation */
612 data = mdio_read(dev, phy_addr, MII_CONTROL);
613 mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO);
614
615 /* Set advertisement to 10/100 and Half/Full duplex
616 * (full capabilities) */
617 data = mdio_read(dev, phy_addr, MII_ANADV);
618 data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T;
619 mdio_write(dev, phy_addr, MII_ANADV, data);
620
621 /* Restart auto-negotiation */
622 data = mdio_read(dev, phy_addr, MII_CONTROL);
623 data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO;
624
625 mdio_write(dev, phy_addr, MII_CONTROL, data);
626
627 if (au1000_debug > 4) dump_mii(dev, phy_addr);
628 return 0;
629}
630
631int
632smsc_83C185_reset (struct net_device *dev, int phy_addr)
633{
634 s16 mii_control, timeout;
635
636 if (au1000_debug > 4)
637 printk("smsc_83C185_reset\n");
638
639 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
640 mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET);
641 mdelay(1);
642 for (timeout = 100; timeout > 0; --timeout) {
643 mii_control = mdio_read(dev, phy_addr, MII_CONTROL);
644 if ((mii_control & MII_CNTL_RESET) == 0)
645 break;
646 mdelay(1);
647 }
648 if (mii_control & MII_CNTL_RESET) {
649 printk(KERN_ERR "%s PHY reset timeout !\n", dev->name);
650 return -1;
651 }
652 return 0;
653}
654
655int
656smsc_83C185_status (struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
657{
658 u16 mii_data;
659 struct au1000_private *aup;
660
661 if (!dev) {
662 printk(KERN_ERR "smsc_83C185_status error: NULL dev\n");
663 return -1;
664 }
665
666 aup = (struct au1000_private *) dev->priv;
667 mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS);
668
669 if (mii_data & MII_STAT_LINK) {
670 *link = 1;
671 mii_data = mdio_read(dev, aup->phy_addr, 0x1f);
672 if (mii_data & (1<<3)) {
673 if (mii_data & (1<<4)) {
674 *speed = IF_PORT_100BASEFX;
675 dev->if_port = IF_PORT_100BASEFX;
676 }
677 else {
678 *speed = IF_PORT_100BASETX;
679 dev->if_port = IF_PORT_100BASETX;
680 }
681 }
682 else {
683 *speed = IF_PORT_10BASET;
684 dev->if_port = IF_PORT_10BASET;
685 }
686 }
687 else {
688 *link = 0;
689 *speed = 0;
690 dev->if_port = IF_PORT_UNKNOWN;
691 }
692 return 0;
693}
694
695
696#ifdef CONFIG_MIPS_BOSPORUS
697int stub_init(struct net_device *dev, int phy_addr)
698{
699 //printk("PHY stub_init\n");
700 return 0;
701}
702
703int stub_reset(struct net_device *dev, int phy_addr)
704{
705 //printk("PHY stub_reset\n");
706 return 0;
707}
708
709int
710stub_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed)
711{
712 //printk("PHY stub_status\n");
713 *link = 1;
714 /* hmmm, revisit */
715 *speed = IF_PORT_100BASEFX;
716 dev->if_port = IF_PORT_100BASEFX;
717 return 0;
718}
719#endif
720
721struct phy_ops bcm_5201_ops = {
722 bcm_5201_init,
723 bcm_5201_reset,
724 bcm_5201_status,
725};
726
727struct phy_ops am79c874_ops = {
728 am79c874_init,
729 am79c874_reset,
730 am79c874_status,
731};
732
733struct phy_ops am79c901_ops = {
734 am79c901_init,
735 am79c901_reset,
736 am79c901_status,
737};
738
739struct phy_ops lsi_80227_ops = {
740 lsi_80227_init,
741 lsi_80227_reset,
742 lsi_80227_status,
743};
744
745struct phy_ops lxt971a_ops = {
746 lxt971a_init,
747 lxt971a_reset,
748 lxt971a_status,
749};
750 173
751struct phy_ops ks8995m_ops = { 174#if defined(CONFIG_MIPS_BOSPORUS)
752 ks8995m_init, 175/*
753 ks8995m_reset, 176 * Micrel/Kendin 5 port switch attached to MAC0,
754 ks8995m_status, 177 * MAC0 is associated with PHY address 5 (== WAN port)
755}; 178 * MAC1 is not associated with any PHY, since it's connected directly
179 * to the switch.
180 * no interrupts are used
181 */
182# define AU1XXX_PHY_STATIC_CONFIG
756 183
757struct phy_ops smsc_83C185_ops = { 184# define AU1XXX_PHY0_ADDR 5
758 smsc_83C185_init, 185# define AU1XXX_PHY0_BUSID 0
759 smsc_83C185_reset, 186# undef AU1XXX_PHY0_IRQ
760 smsc_83C185_status,
761};
762 187
763#ifdef CONFIG_MIPS_BOSPORUS 188# undef AU1XXX_PHY1_ADDR
764struct phy_ops stub_ops = { 189# undef AU1XXX_PHY1_BUSID
765 stub_init, 190# undef AU1XXX_PHY1_IRQ
766 stub_reset,
767 stub_status,
768};
769#endif 191#endif
770 192
771static struct mii_chip_info { 193#if defined(AU1XXX_PHY0_BUSID) && (AU1XXX_PHY0_BUSID > 0)
772 const char * name; 194# error MAC0-associated PHY attached 2nd MACs MII bus not supported yet
773 u16 phy_id0;
774 u16 phy_id1;
775 struct phy_ops *phy_ops;
776 int dual_phy;
777} mii_chip_table[] = {
778 {"Broadcom BCM5201 10/100 BaseT PHY",0x0040,0x6212, &bcm_5201_ops,0},
779 {"Broadcom BCM5221 10/100 BaseT PHY",0x0040,0x61e4, &bcm_5201_ops,0},
780 {"Broadcom BCM5222 10/100 BaseT PHY",0x0040,0x6322, &bcm_5201_ops,1},
781 {"NS DP83847 PHY", 0x2000, 0x5c30, &bcm_5201_ops ,0},
782 {"AMD 79C901 HomePNA PHY",0x0000,0x35c8, &am79c901_ops,0},
783 {"AMD 79C874 10/100 BaseT PHY",0x0022,0x561b, &am79c874_ops,0},
784 {"LSI 80227 10/100 BaseT PHY",0x0016,0xf840, &lsi_80227_ops,0},
785 {"Intel LXT971A Dual Speed PHY",0x0013,0x78e2, &lxt971a_ops,0},
786 {"Kendin KS8995M 10/100 BaseT PHY",0x0022,0x1450, &ks8995m_ops,0},
787 {"SMSC LAN83C185 10/100 BaseT PHY",0x0007,0xc0a3, &smsc_83C185_ops,0},
788#ifdef CONFIG_MIPS_BOSPORUS
789 {"Stub", 0x1234, 0x5678, &stub_ops },
790#endif 195#endif
791 {0,},
792};
793 196
794static int mdio_read(struct net_device *dev, int phy_id, int reg) 197/*
198 * MII operations
199 */
200static int mdio_read(struct net_device *dev, int phy_addr, int reg)
795{ 201{
796 struct au1000_private *aup = (struct au1000_private *) dev->priv; 202 struct au1000_private *aup = (struct au1000_private *) dev->priv;
797 volatile u32 *mii_control_reg; 203 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
798 volatile u32 *mii_data_reg; 204 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
799 u32 timedout = 20; 205 u32 timedout = 20;
800 u32 mii_control; 206 u32 mii_control;
801 207
802 #ifdef CONFIG_BCM5222_DUAL_PHY
803 /* First time we probe, it's for the mac0 phy.
804 * Since we haven't determined yet that we have a dual phy,
805 * aup->mii->mii_control_reg won't be setup and we'll
806 * default to the else statement.
807 * By the time we probe for the mac1 phy, the mii_control_reg
808 * will be setup to be the address of the mac0 phy control since
809 * both phys are controlled through mac0.
810 */
811 if (aup->mii && aup->mii->mii_control_reg) {
812 mii_control_reg = aup->mii->mii_control_reg;
813 mii_data_reg = aup->mii->mii_data_reg;
814 }
815 else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
816 /* assume both phys are controlled through mac0 */
817 mii_control_reg = au_macs[0]->mii->mii_control_reg;
818 mii_data_reg = au_macs[0]->mii->mii_data_reg;
819 }
820 else
821 #endif
822 {
823 /* default control and data reg addresses */
824 mii_control_reg = &aup->mac->mii_control;
825 mii_data_reg = &aup->mac->mii_data;
826 }
827
828 while (*mii_control_reg & MAC_MII_BUSY) { 208 while (*mii_control_reg & MAC_MII_BUSY) {
829 mdelay(1); 209 mdelay(1);
830 if (--timedout == 0) { 210 if (--timedout == 0) {
@@ -835,7 +215,7 @@ static int mdio_read(struct net_device *dev, int phy_id, int reg)
835 } 215 }
836 216
837 mii_control = MAC_SET_MII_SELECT_REG(reg) | 217 mii_control = MAC_SET_MII_SELECT_REG(reg) |
838 MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ; 218 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_READ;
839 219
840 *mii_control_reg = mii_control; 220 *mii_control_reg = mii_control;
841 221
@@ -851,32 +231,14 @@ static int mdio_read(struct net_device *dev, int phy_id, int reg)
851 return (int)*mii_data_reg; 231 return (int)*mii_data_reg;
852} 232}
853 233
854static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value) 234static void mdio_write(struct net_device *dev, int phy_addr, int reg, u16 value)
855{ 235{
856 struct au1000_private *aup = (struct au1000_private *) dev->priv; 236 struct au1000_private *aup = (struct au1000_private *) dev->priv;
857 volatile u32 *mii_control_reg; 237 volatile u32 *const mii_control_reg = &aup->mac->mii_control;
858 volatile u32 *mii_data_reg; 238 volatile u32 *const mii_data_reg = &aup->mac->mii_data;
859 u32 timedout = 20; 239 u32 timedout = 20;
860 u32 mii_control; 240 u32 mii_control;
861 241
862 #ifdef CONFIG_BCM5222_DUAL_PHY
863 if (aup->mii && aup->mii->mii_control_reg) {
864 mii_control_reg = aup->mii->mii_control_reg;
865 mii_data_reg = aup->mii->mii_data_reg;
866 }
867 else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) {
868 /* assume both phys are controlled through mac0 */
869 mii_control_reg = au_macs[0]->mii->mii_control_reg;
870 mii_data_reg = au_macs[0]->mii->mii_data_reg;
871 }
872 else
873 #endif
874 {
875 /* default control and data reg addresses */
876 mii_control_reg = &aup->mac->mii_control;
877 mii_data_reg = &aup->mac->mii_data;
878 }
879
880 while (*mii_control_reg & MAC_MII_BUSY) { 242 while (*mii_control_reg & MAC_MII_BUSY) {
881 mdelay(1); 243 mdelay(1);
882 if (--timedout == 0) { 244 if (--timedout == 0) {
@@ -887,165 +249,145 @@ static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value)
887 } 249 }
888 250
889 mii_control = MAC_SET_MII_SELECT_REG(reg) | 251 mii_control = MAC_SET_MII_SELECT_REG(reg) |
890 MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE; 252 MAC_SET_MII_SELECT_PHY(phy_addr) | MAC_MII_WRITE;
891 253
892 *mii_data_reg = value; 254 *mii_data_reg = value;
893 *mii_control_reg = mii_control; 255 *mii_control_reg = mii_control;
894} 256}
895 257
258static int mdiobus_read(struct mii_bus *bus, int phy_addr, int regnum)
259{
260 /* WARNING: bus->phy_map[phy_addr].attached_dev == dev does
261 * _NOT_ hold (e.g. when PHY is accessed through other MAC's MII bus) */
262 struct net_device *const dev = bus->priv;
263
264 enable_mac(dev, 0); /* make sure the MAC associated with this
265 * mii_bus is enabled */
266 return mdio_read(dev, phy_addr, regnum);
267}
896 268
897static void dump_mii(struct net_device *dev, int phy_id) 269static int mdiobus_write(struct mii_bus *bus, int phy_addr, int regnum,
270 u16 value)
898{ 271{
899 int i, val; 272 struct net_device *const dev = bus->priv;
900 273
901 for (i = 0; i < 7; i++) { 274 enable_mac(dev, 0); /* make sure the MAC associated with this
902 if ((val = mdio_read(dev, phy_id, i)) >= 0) 275 * mii_bus is enabled */
903 printk("%s: MII Reg %d=%x\n", dev->name, i, val); 276 mdio_write(dev, phy_addr, regnum, value);
904 } 277 return 0;
905 for (i = 16; i < 25; i++) {
906 if ((val = mdio_read(dev, phy_id, i)) >= 0)
907 printk("%s: MII Reg %d=%x\n", dev->name, i, val);
908 }
909} 278}
910 279
911static int mii_probe (struct net_device * dev) 280static int mdiobus_reset(struct mii_bus *bus)
912{ 281{
913 struct au1000_private *aup = (struct au1000_private *) dev->priv; 282 struct net_device *const dev = bus->priv;
914 int phy_addr;
915#ifdef CONFIG_MIPS_BOSPORUS
916 int phy_found=0;
917#endif
918 283
919 /* search for total of 32 possible mii phy addresses */ 284 enable_mac(dev, 0); /* make sure the MAC associated with this
920 for (phy_addr = 0; phy_addr < 32; phy_addr++) { 285 * mii_bus is enabled */
921 u16 mii_status; 286 return 0;
922 u16 phy_id0, phy_id1; 287}
923 int i;
924 288
925 #ifdef CONFIG_BCM5222_DUAL_PHY 289static int mii_probe (struct net_device *dev)
926 /* Mask the already found phy, try next one */ 290{
927 if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { 291 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
928 if (au_macs[0]->phy_addr == phy_addr) 292 struct phy_device *phydev = NULL;
929 continue; 293
930 } 294#if defined(AU1XXX_PHY_STATIC_CONFIG)
931 #endif 295 BUG_ON(aup->mac_id < 0 || aup->mac_id > 1);
932 296
933 mii_status = mdio_read(dev, phy_addr, MII_STATUS); 297 if(aup->mac_id == 0) { /* get PHY0 */
934 if (mii_status == 0xffff || mii_status == 0x0000) 298# if defined(AU1XXX_PHY0_ADDR)
935 /* the mii is not accessable, try next one */ 299 phydev = au_macs[AU1XXX_PHY0_BUSID]->mii_bus.phy_map[AU1XXX_PHY0_ADDR];
936 continue; 300# else
937 301 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
938 phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0); 302 dev->name);
939 phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1); 303 return 0;
940 304# endif /* defined(AU1XXX_PHY0_ADDR) */
941 /* search our mii table for the current mii */ 305 } else if (aup->mac_id == 1) { /* get PHY1 */
942 for (i = 0; mii_chip_table[i].phy_id1; i++) { 306# if defined(AU1XXX_PHY1_ADDR)
943 if (phy_id0 == mii_chip_table[i].phy_id0 && 307 phydev = au_macs[AU1XXX_PHY1_BUSID]->mii_bus.phy_map[AU1XXX_PHY1_ADDR];
944 phy_id1 == mii_chip_table[i].phy_id1) { 308# else
945 struct mii_phy * mii_phy = aup->mii; 309 printk (KERN_INFO DRV_NAME ":%s: using PHY-less setup\n",
946 310 dev->name);
947 printk(KERN_INFO "%s: %s at phy address %d\n", 311 return 0;
948 dev->name, mii_chip_table[i].name, 312# endif /* defined(AU1XXX_PHY1_ADDR) */
949 phy_addr); 313 }
950#ifdef CONFIG_MIPS_BOSPORUS 314
951 phy_found = 1; 315#else /* defined(AU1XXX_PHY_STATIC_CONFIG) */
952#endif 316 int phy_addr;
953 mii_phy->chip_info = mii_chip_table+i; 317
954 aup->phy_addr = phy_addr; 318 /* find the first (lowest address) PHY on the current MAC's MII bus */
955 aup->want_autoneg = 1; 319 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++)
956 aup->phy_ops = mii_chip_table[i].phy_ops; 320 if (aup->mii_bus.phy_map[phy_addr]) {
957 aup->phy_ops->phy_init(dev,phy_addr); 321 phydev = aup->mii_bus.phy_map[phy_addr];
958 322# if !defined(AU1XXX_PHY_SEARCH_HIGHEST_ADDR)
959 // Check for dual-phy and then store required 323 break; /* break out with first one found */
960 // values and set indicators. We need to do 324# endif
961 // this now since mdio_{read,write} need the
962 // control and data register addresses.
963 #ifdef CONFIG_BCM5222_DUAL_PHY
964 if ( mii_chip_table[i].dual_phy) {
965
966 /* assume both phys are controlled
967 * through MAC0. Board specific? */
968
969 /* sanity check */
970 if (!au_macs[0] || !au_macs[0]->mii)
971 return -1;
972 aup->mii->mii_control_reg = (u32 *)
973 &au_macs[0]->mac->mii_control;
974 aup->mii->mii_data_reg = (u32 *)
975 &au_macs[0]->mac->mii_data;
976 }
977 #endif
978 goto found;
979 }
980 } 325 }
981 }
982found:
983
984#ifdef CONFIG_MIPS_BOSPORUS
985 /* This is a workaround for the Micrel/Kendin 5 port switch
986 The second MAC doesn't see a PHY connected... so we need to
987 trick it into thinking we have one.
988
989 If this kernel is run on another Au1500 development board
990 the stub will be found as well as the actual PHY. However,
991 the last found PHY will be used... usually at Addr 31 (Db1500).
992 */
993 if ( (!phy_found) )
994 {
995 u16 phy_id0, phy_id1;
996 int i;
997 326
998 phy_id0 = 0x1234; 327# if defined(AU1XXX_PHY1_SEARCH_ON_MAC0)
999 phy_id1 = 0x5678; 328 /* try harder to find a PHY */
1000 329 if (!phydev && (aup->mac_id == 1)) {
1001 /* search our mii table for the current mii */ 330 /* no PHY found, maybe we have a dual PHY? */
1002 for (i = 0; mii_chip_table[i].phy_id1; i++) { 331 printk (KERN_INFO DRV_NAME ": no PHY found on MAC1, "
1003 if (phy_id0 == mii_chip_table[i].phy_id0 && 332 "let's see if it's attached to MAC0...\n");
1004 phy_id1 == mii_chip_table[i].phy_id1) { 333
1005 struct mii_phy * mii_phy; 334 BUG_ON(!au_macs[0]);
1006 335
1007 printk(KERN_INFO "%s: %s at phy address %d\n", 336 /* find the first (lowest address) non-attached PHY on
1008 dev->name, mii_chip_table[i].name, 337 * the MAC0 MII bus */
1009 phy_addr); 338 for (phy_addr = 0; phy_addr < PHY_MAX_ADDR; phy_addr++) {
1010 mii_phy = kmalloc(sizeof(struct mii_phy), 339 struct phy_device *const tmp_phydev =
1011 GFP_KERNEL); 340 au_macs[0]->mii_bus.phy_map[phy_addr];
1012 if (mii_phy) { 341
1013 mii_phy->chip_info = mii_chip_table+i; 342 if (!tmp_phydev)
1014 aup->phy_addr = phy_addr; 343 continue; /* no PHY here... */
1015 mii_phy->next = aup->mii; 344
1016 aup->phy_ops = 345 if (tmp_phydev->attached_dev)
1017 mii_chip_table[i].phy_ops; 346 continue; /* already claimed by MAC0 */
1018 aup->mii = mii_phy; 347
1019 aup->phy_ops->phy_init(dev,phy_addr); 348 phydev = tmp_phydev;
1020 } else { 349 break; /* found it */
1021 printk(KERN_ERR "%s: out of memory\n",
1022 dev->name);
1023 return -1;
1024 }
1025 mii_phy->chip_info = mii_chip_table+i;
1026 aup->phy_addr = phy_addr;
1027 aup->phy_ops = mii_chip_table[i].phy_ops;
1028 aup->phy_ops->phy_init(dev,phy_addr);
1029 break;
1030 }
1031 } 350 }
1032 } 351 }
1033 if (aup->mac_id == 0) { 352# endif /* defined(AU1XXX_PHY1_SEARCH_OTHER_BUS) */
1034 /* the Bosporus phy responds to addresses 0-5 but
1035 * 5 is the correct one.
1036 */
1037 aup->phy_addr = 5;
1038 }
1039#endif
1040 353
1041 if (aup->mii->chip_info == NULL) { 354#endif /* defined(AU1XXX_PHY_STATIC_CONFIG) */
1042 printk(KERN_ERR "%s: Au1x No known MII transceivers found!\n", 355 if (!phydev) {
1043 dev->name); 356 printk (KERN_ERR DRV_NAME ":%s: no PHY found\n", dev->name);
1044 return -1; 357 return -1;
1045 } 358 }
1046 359
1047 printk(KERN_INFO "%s: Using %s as default\n", 360 /* now we are supposed to have a proper phydev, to attach to... */
1048 dev->name, aup->mii->chip_info->name); 361 BUG_ON(!phydev);
362 BUG_ON(phydev->attached_dev);
363
364 phydev = phy_connect(dev, phydev->dev.bus_id, &au1000_adjust_link, 0);
365
366 if (IS_ERR(phydev)) {
367 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
368 return PTR_ERR(phydev);
369 }
370
371 /* mask with MAC supported features */
372 phydev->supported &= (SUPPORTED_10baseT_Half
373 | SUPPORTED_10baseT_Full
374 | SUPPORTED_100baseT_Half
375 | SUPPORTED_100baseT_Full
376 | SUPPORTED_Autoneg
377 /* | SUPPORTED_Pause | SUPPORTED_Asym_Pause */
378 | SUPPORTED_MII
379 | SUPPORTED_TP);
380
381 phydev->advertising = phydev->supported;
382
383 aup->old_link = 0;
384 aup->old_speed = 0;
385 aup->old_duplex = -1;
386 aup->phy_dev = phydev;
387
388 printk(KERN_INFO "%s: attached PHY driver [%s] "
389 "(mii_bus:phy_addr=%s, irq=%d)\n",
390 dev->name, phydev->drv->name, phydev->dev.bus_id, phydev->irq);
1049 391
1050 return 0; 392 return 0;
1051} 393}
@@ -1097,35 +439,38 @@ static void hard_stop(struct net_device *dev)
1097 au_sync_delay(10); 439 au_sync_delay(10);
1098} 440}
1099 441
1100 442static void enable_mac(struct net_device *dev, int force_reset)
1101static void reset_mac(struct net_device *dev)
1102{ 443{
1103 int i; 444 unsigned long flags;
1104 u32 flags;
1105 struct au1000_private *aup = (struct au1000_private *) dev->priv; 445 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1106 446
1107 if (au1000_debug > 4)
1108 printk(KERN_INFO "%s: reset mac, aup %x\n",
1109 dev->name, (unsigned)aup);
1110
1111 spin_lock_irqsave(&aup->lock, flags); 447 spin_lock_irqsave(&aup->lock, flags);
1112 if (aup->timer.function == &au1000_timer) {/* check if timer initted */
1113 del_timer(&aup->timer);
1114 }
1115 448
1116 hard_stop(dev); 449 if(force_reset || (!aup->mac_enabled)) {
1117 #ifdef CONFIG_BCM5222_DUAL_PHY
1118 if (aup->mac_id != 0) {
1119 #endif
1120 /* If BCM5222, we can't leave MAC0 in reset because then
1121 * we can't access the dual phy for ETH1 */
1122 *aup->enable = MAC_EN_CLOCK_ENABLE; 450 *aup->enable = MAC_EN_CLOCK_ENABLE;
1123 au_sync_delay(2); 451 au_sync_delay(2);
1124 *aup->enable = 0; 452 *aup->enable = (MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2
453 | MAC_EN_CLOCK_ENABLE);
1125 au_sync_delay(2); 454 au_sync_delay(2);
1126 #ifdef CONFIG_BCM5222_DUAL_PHY 455
456 aup->mac_enabled = 1;
1127 } 457 }
1128 #endif 458
459 spin_unlock_irqrestore(&aup->lock, flags);
460}
461
462static void reset_mac_unlocked(struct net_device *dev)
463{
464 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
465 int i;
466
467 hard_stop(dev);
468
469 *aup->enable = MAC_EN_CLOCK_ENABLE;
470 au_sync_delay(2);
471 *aup->enable = 0;
472 au_sync_delay(2);
473
1129 aup->tx_full = 0; 474 aup->tx_full = 0;
1130 for (i = 0; i < NUM_RX_DMA; i++) { 475 for (i = 0; i < NUM_RX_DMA; i++) {
1131 /* reset control bits */ 476 /* reset control bits */
@@ -1135,9 +480,26 @@ static void reset_mac(struct net_device *dev)
1135 /* reset control bits */ 480 /* reset control bits */
1136 aup->tx_dma_ring[i]->buff_stat &= ~0xf; 481 aup->tx_dma_ring[i]->buff_stat &= ~0xf;
1137 } 482 }
1138 spin_unlock_irqrestore(&aup->lock, flags); 483
484 aup->mac_enabled = 0;
485
1139} 486}
1140 487
488static void reset_mac(struct net_device *dev)
489{
490 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
491 unsigned long flags;
492
493 if (au1000_debug > 4)
494 printk(KERN_INFO "%s: reset mac, aup %x\n",
495 dev->name, (unsigned)aup);
496
497 spin_lock_irqsave(&aup->lock, flags);
498
499 reset_mac_unlocked (dev);
500
501 spin_unlock_irqrestore(&aup->lock, flags);
502}
1141 503
1142/* 504/*
1143 * Setup the receive and transmit "rings". These pointers are the addresses 505 * Setup the receive and transmit "rings". These pointers are the addresses
@@ -1208,178 +570,31 @@ static int __init au1000_init_module(void)
1208 return 0; 570 return 0;
1209} 571}
1210 572
1211static int au1000_setup_aneg(struct net_device *dev, u32 advertise) 573/*
1212{ 574 * ethtool operations
1213 struct au1000_private *aup = (struct au1000_private *)dev->priv; 575 */
1214 u16 ctl, adv;
1215
1216 /* Setup standard advertise */
1217 adv = mdio_read(dev, aup->phy_addr, MII_ADVERTISE);
1218 adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
1219 if (advertise & ADVERTISED_10baseT_Half)
1220 adv |= ADVERTISE_10HALF;
1221 if (advertise & ADVERTISED_10baseT_Full)
1222 adv |= ADVERTISE_10FULL;
1223 if (advertise & ADVERTISED_100baseT_Half)
1224 adv |= ADVERTISE_100HALF;
1225 if (advertise & ADVERTISED_100baseT_Full)
1226 adv |= ADVERTISE_100FULL;
1227 mdio_write(dev, aup->phy_addr, MII_ADVERTISE, adv);
1228
1229 /* Start/Restart aneg */
1230 ctl = mdio_read(dev, aup->phy_addr, MII_BMCR);
1231 ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
1232 mdio_write(dev, aup->phy_addr, MII_BMCR, ctl);
1233
1234 return 0;
1235}
1236 576
1237static int au1000_setup_forced(struct net_device *dev, int speed, int fd) 577static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1238{ 578{
1239 struct au1000_private *aup = (struct au1000_private *)dev->priv; 579 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1240 u16 ctl;
1241
1242 ctl = mdio_read(dev, aup->phy_addr, MII_BMCR);
1243 ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE);
1244
1245 /* First reset the PHY */
1246 mdio_write(dev, aup->phy_addr, MII_BMCR, ctl | BMCR_RESET);
1247
1248 /* Select speed & duplex */
1249 switch (speed) {
1250 case SPEED_10:
1251 break;
1252 case SPEED_100:
1253 ctl |= BMCR_SPEED100;
1254 break;
1255 case SPEED_1000:
1256 default:
1257 return -EINVAL;
1258 }
1259 if (fd == DUPLEX_FULL)
1260 ctl |= BMCR_FULLDPLX;
1261 mdio_write(dev, aup->phy_addr, MII_BMCR, ctl);
1262
1263 return 0;
1264}
1265
1266 580
1267static void 581 if (aup->phy_dev)
1268au1000_start_link(struct net_device *dev, struct ethtool_cmd *cmd) 582 return phy_ethtool_gset(aup->phy_dev, cmd);
1269{
1270 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1271 u32 advertise;
1272 int autoneg;
1273 int forced_speed;
1274 int forced_duplex;
1275
1276 /* Default advertise */
1277 advertise = GENMII_DEFAULT_ADVERTISE;
1278 autoneg = aup->want_autoneg;
1279 forced_speed = SPEED_100;
1280 forced_duplex = DUPLEX_FULL;
1281
1282 /* Setup link parameters */
1283 if (cmd) {
1284 if (cmd->autoneg == AUTONEG_ENABLE) {
1285 advertise = cmd->advertising;
1286 autoneg = 1;
1287 } else {
1288 autoneg = 0;
1289
1290 forced_speed = cmd->speed;
1291 forced_duplex = cmd->duplex;
1292 }
1293 }
1294 583
1295 /* Configure PHY & start aneg */ 584 return -EINVAL;
1296 aup->want_autoneg = autoneg;
1297 if (autoneg)
1298 au1000_setup_aneg(dev, advertise);
1299 else
1300 au1000_setup_forced(dev, forced_speed, forced_duplex);
1301 mod_timer(&aup->timer, jiffies + HZ);
1302} 585}
1303 586
1304static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 587static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1305{ 588{
1306 struct au1000_private *aup = (struct au1000_private *)dev->priv; 589 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1307 u16 link, speed;
1308
1309 cmd->supported = GENMII_DEFAULT_FEATURES;
1310 cmd->advertising = GENMII_DEFAULT_ADVERTISE;
1311 cmd->port = PORT_MII;
1312 cmd->transceiver = XCVR_EXTERNAL;
1313 cmd->phy_address = aup->phy_addr;
1314 spin_lock_irq(&aup->lock);
1315 cmd->autoneg = aup->want_autoneg;
1316 aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed);
1317 if ((speed == IF_PORT_100BASETX) || (speed == IF_PORT_100BASEFX))
1318 cmd->speed = SPEED_100;
1319 else if (speed == IF_PORT_10BASET)
1320 cmd->speed = SPEED_10;
1321 if (link && (dev->if_port == IF_PORT_100BASEFX))
1322 cmd->duplex = DUPLEX_FULL;
1323 else
1324 cmd->duplex = DUPLEX_HALF;
1325 spin_unlock_irq(&aup->lock);
1326 return 0;
1327}
1328 590
1329static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 591 if (!capable(CAP_NET_ADMIN))
1330{ 592 return -EPERM;
1331 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1332 unsigned long features = GENMII_DEFAULT_FEATURES;
1333
1334 if (!capable(CAP_NET_ADMIN))
1335 return -EPERM;
1336
1337 if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE)
1338 return -EINVAL;
1339 if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0)
1340 return -EINVAL;
1341 if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL)
1342 return -EINVAL;
1343 if (cmd->autoneg == AUTONEG_DISABLE)
1344 switch (cmd->speed) {
1345 case SPEED_10:
1346 if (cmd->duplex == DUPLEX_HALF &&
1347 (features & SUPPORTED_10baseT_Half) == 0)
1348 return -EINVAL;
1349 if (cmd->duplex == DUPLEX_FULL &&
1350 (features & SUPPORTED_10baseT_Full) == 0)
1351 return -EINVAL;
1352 break;
1353 case SPEED_100:
1354 if (cmd->duplex == DUPLEX_HALF &&
1355 (features & SUPPORTED_100baseT_Half) == 0)
1356 return -EINVAL;
1357 if (cmd->duplex == DUPLEX_FULL &&
1358 (features & SUPPORTED_100baseT_Full) == 0)
1359 return -EINVAL;
1360 break;
1361 default:
1362 return -EINVAL;
1363 }
1364 else if ((features & SUPPORTED_Autoneg) == 0)
1365 return -EINVAL;
1366
1367 spin_lock_irq(&aup->lock);
1368 au1000_start_link(dev, cmd);
1369 spin_unlock_irq(&aup->lock);
1370 return 0;
1371}
1372 593
1373static int au1000_nway_reset(struct net_device *dev) 594 if (aup->phy_dev)
1374{ 595 return phy_ethtool_sset(aup->phy_dev, cmd);
1375 struct au1000_private *aup = (struct au1000_private *)dev->priv;
1376 596
1377 if (!aup->want_autoneg) 597 return -EINVAL;
1378 return -EINVAL;
1379 spin_lock_irq(&aup->lock);
1380 au1000_start_link(dev, NULL);
1381 spin_unlock_irq(&aup->lock);
1382 return 0;
1383} 598}
1384 599
1385static void 600static void
@@ -1394,17 +609,11 @@ au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1394 info->regdump_len = 0; 609 info->regdump_len = 0;
1395} 610}
1396 611
1397static u32 au1000_get_link(struct net_device *dev)
1398{
1399 return netif_carrier_ok(dev);
1400}
1401
1402static struct ethtool_ops au1000_ethtool_ops = { 612static struct ethtool_ops au1000_ethtool_ops = {
1403 .get_settings = au1000_get_settings, 613 .get_settings = au1000_get_settings,
1404 .set_settings = au1000_set_settings, 614 .set_settings = au1000_set_settings,
1405 .get_drvinfo = au1000_get_drvinfo, 615 .get_drvinfo = au1000_get_drvinfo,
1406 .nway_reset = au1000_nway_reset, 616 .get_link = ethtool_op_get_link,
1407 .get_link = au1000_get_link
1408}; 617};
1409 618
1410static struct net_device * au1000_probe(int port_num) 619static struct net_device * au1000_probe(int port_num)
@@ -1499,23 +708,31 @@ static struct net_device * au1000_probe(int port_num)
1499 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); 708 memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr));
1500 dev->dev_addr[5] += port_num; 709 dev->dev_addr[5] += port_num;
1501 710
1502 /* Bring the device out of reset, otherwise probing the MII will hang */ 711 *aup->enable = 0;
1503 *aup->enable = MAC_EN_CLOCK_ENABLE; 712 aup->mac_enabled = 0;
1504 au_sync_delay(2); 713
1505 *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | MAC_EN_RESET2 | 714 aup->mii_bus.priv = dev;
1506 MAC_EN_CLOCK_ENABLE; 715 aup->mii_bus.read = mdiobus_read;
1507 au_sync_delay(2); 716 aup->mii_bus.write = mdiobus_write;
1508 717 aup->mii_bus.reset = mdiobus_reset;
1509 aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL); 718 aup->mii_bus.name = "au1000_eth_mii";
1510 if (!aup->mii) { 719 aup->mii_bus.id = aup->mac_id;
1511 printk(KERN_ERR "%s: out of memory\n", dev->name); 720 aup->mii_bus.irq = kmalloc(sizeof(int)*PHY_MAX_ADDR, GFP_KERNEL);
1512 goto err_out; 721 for(i = 0; i < PHY_MAX_ADDR; ++i)
1513 } 722 aup->mii_bus.irq[i] = PHY_POLL;
1514 aup->mii->next = NULL; 723
1515 aup->mii->chip_info = NULL; 724 /* if known, set corresponding PHY IRQs */
1516 aup->mii->status = 0; 725#if defined(AU1XXX_PHY_STATIC_CONFIG)
1517 aup->mii->mii_control_reg = 0; 726# if defined(AU1XXX_PHY0_IRQ)
1518 aup->mii->mii_data_reg = 0; 727 if (AU1XXX_PHY0_BUSID == aup->mii_bus.id)
728 aup->mii_bus.irq[AU1XXX_PHY0_ADDR] = AU1XXX_PHY0_IRQ;
729# endif
730# if defined(AU1XXX_PHY1_IRQ)
731 if (AU1XXX_PHY1_BUSID == aup->mii_bus.id)
732 aup->mii_bus.irq[AU1XXX_PHY1_ADDR] = AU1XXX_PHY1_IRQ;
733# endif
734#endif
735 mdiobus_register(&aup->mii_bus);
1519 736
1520 if (mii_probe(dev) != 0) { 737 if (mii_probe(dev) != 0) {
1521 goto err_out; 738 goto err_out;
@@ -1561,7 +778,6 @@ static struct net_device * au1000_probe(int port_num)
1561 dev->set_multicast_list = &set_rx_mode; 778 dev->set_multicast_list = &set_rx_mode;
1562 dev->do_ioctl = &au1000_ioctl; 779 dev->do_ioctl = &au1000_ioctl;
1563 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); 780 SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops);
1564 dev->set_config = &au1000_set_config;
1565 dev->tx_timeout = au1000_tx_timeout; 781 dev->tx_timeout = au1000_tx_timeout;
1566 dev->watchdog_timeo = ETH_TX_TIMEOUT; 782 dev->watchdog_timeo = ETH_TX_TIMEOUT;
1567 783
@@ -1577,7 +793,7 @@ err_out:
1577 /* here we should have a valid dev plus aup-> register addresses 793 /* here we should have a valid dev plus aup-> register addresses
1578 * so we can reset the mac properly.*/ 794 * so we can reset the mac properly.*/
1579 reset_mac(dev); 795 reset_mac(dev);
1580 kfree(aup->mii); 796
1581 for (i = 0; i < NUM_RX_DMA; i++) { 797 for (i = 0; i < NUM_RX_DMA; i++) {
1582 if (aup->rx_db_inuse[i]) 798 if (aup->rx_db_inuse[i])
1583 ReleaseDB(aup, aup->rx_db_inuse[i]); 799 ReleaseDB(aup, aup->rx_db_inuse[i]);
@@ -1610,19 +826,14 @@ static int au1000_init(struct net_device *dev)
1610 u32 flags; 826 u32 flags;
1611 int i; 827 int i;
1612 u32 control; 828 u32 control;
1613 u16 link, speed;
1614 829
1615 if (au1000_debug > 4) 830 if (au1000_debug > 4)
1616 printk("%s: au1000_init\n", dev->name); 831 printk("%s: au1000_init\n", dev->name);
1617 832
1618 spin_lock_irqsave(&aup->lock, flags);
1619
1620 /* bring the device out of reset */ 833 /* bring the device out of reset */
1621 *aup->enable = MAC_EN_CLOCK_ENABLE; 834 enable_mac(dev, 1);
1622 au_sync_delay(2); 835
1623 *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | 836 spin_lock_irqsave(&aup->lock, flags);
1624 MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE;
1625 au_sync_delay(20);
1626 837
1627 aup->mac->control = 0; 838 aup->mac->control = 0;
1628 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; 839 aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2;
@@ -1638,12 +849,16 @@ static int au1000_init(struct net_device *dev)
1638 } 849 }
1639 au_sync(); 850 au_sync();
1640 851
1641 aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); 852 control = MAC_RX_ENABLE | MAC_TX_ENABLE;
1642 control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE;
1643#ifndef CONFIG_CPU_LITTLE_ENDIAN 853#ifndef CONFIG_CPU_LITTLE_ENDIAN
1644 control |= MAC_BIG_ENDIAN; 854 control |= MAC_BIG_ENDIAN;
1645#endif 855#endif
1646 if (link && (dev->if_port == IF_PORT_100BASEFX)) { 856 if (aup->phy_dev) {
857 if (aup->phy_dev->link && (DUPLEX_FULL == aup->phy_dev->duplex))
858 control |= MAC_FULL_DUPLEX;
859 else
860 control |= MAC_DISABLE_RX_OWN;
861 } else { /* PHY-less op, assume full-duplex */
1647 control |= MAC_FULL_DUPLEX; 862 control |= MAC_FULL_DUPLEX;
1648 } 863 }
1649 864
@@ -1655,57 +870,84 @@ static int au1000_init(struct net_device *dev)
1655 return 0; 870 return 0;
1656} 871}
1657 872
1658static void au1000_timer(unsigned long data) 873static void
874au1000_adjust_link(struct net_device *dev)
1659{ 875{
1660 struct net_device *dev = (struct net_device *)data;
1661 struct au1000_private *aup = (struct au1000_private *) dev->priv; 876 struct au1000_private *aup = (struct au1000_private *) dev->priv;
1662 unsigned char if_port; 877 struct phy_device *phydev = aup->phy_dev;
1663 u16 link, speed; 878 unsigned long flags;
1664 879
1665 if (!dev) { 880 int status_change = 0;
1666 /* fatal error, don't restart the timer */
1667 printk(KERN_ERR "au1000_timer error: NULL dev\n");
1668 return;
1669 }
1670 881
1671 if_port = dev->if_port; 882 BUG_ON(!aup->phy_dev);
1672 if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) { 883
1673 if (link) { 884 spin_lock_irqsave(&aup->lock, flags);
1674 if (!netif_carrier_ok(dev)) { 885
1675 netif_carrier_on(dev); 886 if (phydev->link && (aup->old_speed != phydev->speed)) {
1676 printk(KERN_INFO "%s: link up\n", dev->name); 887 // speed changed
1677 } 888
1678 } 889 switch(phydev->speed) {
1679 else { 890 case SPEED_10:
1680 if (netif_carrier_ok(dev)) { 891 case SPEED_100:
1681 netif_carrier_off(dev); 892 break;
1682 dev->if_port = 0; 893 default:
1683 printk(KERN_INFO "%s: link down\n", dev->name); 894 printk(KERN_WARNING
1684 } 895 "%s: Speed (%d) is not 10/100 ???\n",
896 dev->name, phydev->speed);
897 break;
1685 } 898 }
899
900 aup->old_speed = phydev->speed;
901
902 status_change = 1;
1686 } 903 }
1687 904
1688 if (link && (dev->if_port != if_port) && 905 if (phydev->link && (aup->old_duplex != phydev->duplex)) {
1689 (dev->if_port != IF_PORT_UNKNOWN)) { 906 // duplex mode changed
907
908 /* switching duplex mode requires to disable rx and tx! */
1690 hard_stop(dev); 909 hard_stop(dev);
1691 if (dev->if_port == IF_PORT_100BASEFX) { 910
1692 printk(KERN_INFO "%s: going to full duplex\n", 911 if (DUPLEX_FULL == phydev->duplex)
1693 dev->name); 912 aup->mac->control = ((aup->mac->control
1694 aup->mac->control |= MAC_FULL_DUPLEX; 913 | MAC_FULL_DUPLEX)
1695 au_sync_delay(1); 914 & ~MAC_DISABLE_RX_OWN);
1696 } 915 else
1697 else { 916 aup->mac->control = ((aup->mac->control
1698 aup->mac->control &= ~MAC_FULL_DUPLEX; 917 & ~MAC_FULL_DUPLEX)
1699 au_sync_delay(1); 918 | MAC_DISABLE_RX_OWN);
1700 } 919 au_sync_delay(1);
920
1701 enable_rx_tx(dev); 921 enable_rx_tx(dev);
922 aup->old_duplex = phydev->duplex;
923
924 status_change = 1;
925 }
926
927 if(phydev->link != aup->old_link) {
928 // link state changed
929
930 if (phydev->link) // link went up
931 netif_schedule(dev);
932 else { // link went down
933 aup->old_speed = 0;
934 aup->old_duplex = -1;
935 }
936
937 aup->old_link = phydev->link;
938 status_change = 1;
1702 } 939 }
1703 940
1704 aup->timer.expires = RUN_AT((1*HZ)); 941 spin_unlock_irqrestore(&aup->lock, flags);
1705 aup->timer.data = (unsigned long)dev;
1706 aup->timer.function = &au1000_timer; /* timer handler */
1707 add_timer(&aup->timer);
1708 942
943 if (status_change) {
944 if (phydev->link)
945 printk(KERN_INFO "%s: link up (%d/%s)\n",
946 dev->name, phydev->speed,
947 DUPLEX_FULL == phydev->duplex ? "Full" : "Half");
948 else
949 printk(KERN_INFO "%s: link down\n", dev->name);
950 }
1709} 951}
1710 952
1711static int au1000_open(struct net_device *dev) 953static int au1000_open(struct net_device *dev)
@@ -1716,25 +958,26 @@ static int au1000_open(struct net_device *dev)
1716 if (au1000_debug > 4) 958 if (au1000_debug > 4)
1717 printk("%s: open: dev=%p\n", dev->name, dev); 959 printk("%s: open: dev=%p\n", dev->name, dev);
1718 960
961 if ((retval = request_irq(dev->irq, &au1000_interrupt, 0,
962 dev->name, dev))) {
963 printk(KERN_ERR "%s: unable to get IRQ %d\n",
964 dev->name, dev->irq);
965 return retval;
966 }
967
1719 if ((retval = au1000_init(dev))) { 968 if ((retval = au1000_init(dev))) {
1720 printk(KERN_ERR "%s: error in au1000_init\n", dev->name); 969 printk(KERN_ERR "%s: error in au1000_init\n", dev->name);
1721 free_irq(dev->irq, dev); 970 free_irq(dev->irq, dev);
1722 return retval; 971 return retval;
1723 } 972 }
1724 netif_start_queue(dev);
1725 973
1726 if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, 974 if (aup->phy_dev) {
1727 dev->name, dev))) { 975 /* cause the PHY state machine to schedule a link state check */
1728 printk(KERN_ERR "%s: unable to get IRQ %d\n", 976 aup->phy_dev->state = PHY_CHANGELINK;
1729 dev->name, dev->irq); 977 phy_start(aup->phy_dev);
1730 return retval;
1731 } 978 }
1732 979
1733 init_timer(&aup->timer); /* used in ioctl() */ 980 netif_start_queue(dev);
1734 aup->timer.expires = RUN_AT((3*HZ));
1735 aup->timer.data = (unsigned long)dev;
1736 aup->timer.function = &au1000_timer; /* timer handler */
1737 add_timer(&aup->timer);
1738 981
1739 if (au1000_debug > 4) 982 if (au1000_debug > 4)
1740 printk("%s: open: Initialization done.\n", dev->name); 983 printk("%s: open: Initialization done.\n", dev->name);
@@ -1744,16 +987,19 @@ static int au1000_open(struct net_device *dev)
1744 987
1745static int au1000_close(struct net_device *dev) 988static int au1000_close(struct net_device *dev)
1746{ 989{
1747 u32 flags; 990 unsigned long flags;
1748 struct au1000_private *aup = (struct au1000_private *) dev->priv; 991 struct au1000_private *const aup = (struct au1000_private *) dev->priv;
1749 992
1750 if (au1000_debug > 4) 993 if (au1000_debug > 4)
1751 printk("%s: close: dev=%p\n", dev->name, dev); 994 printk("%s: close: dev=%p\n", dev->name, dev);
1752 995
1753 reset_mac(dev); 996 if (aup->phy_dev)
997 phy_stop(aup->phy_dev);
1754 998
1755 spin_lock_irqsave(&aup->lock, flags); 999 spin_lock_irqsave(&aup->lock, flags);
1756 1000
1001 reset_mac_unlocked (dev);
1002
1757 /* stop the device */ 1003 /* stop the device */
1758 netif_stop_queue(dev); 1004 netif_stop_queue(dev);
1759 1005
@@ -1775,7 +1021,6 @@ static void __exit au1000_cleanup_module(void)
1775 if (dev) { 1021 if (dev) {
1776 aup = (struct au1000_private *) dev->priv; 1022 aup = (struct au1000_private *) dev->priv;
1777 unregister_netdev(dev); 1023 unregister_netdev(dev);
1778 kfree(aup->mii);
1779 for (j = 0; j < NUM_RX_DMA; j++) 1024 for (j = 0; j < NUM_RX_DMA; j++)
1780 if (aup->rx_db_inuse[j]) 1025 if (aup->rx_db_inuse[j])
1781 ReleaseDB(aup, aup->rx_db_inuse[j]); 1026 ReleaseDB(aup, aup->rx_db_inuse[j]);
@@ -1798,7 +1043,7 @@ static void update_tx_stats(struct net_device *dev, u32 status)
1798 struct net_device_stats *ps = &aup->stats; 1043 struct net_device_stats *ps = &aup->stats;
1799 1044
1800 if (status & TX_FRAME_ABORTED) { 1045 if (status & TX_FRAME_ABORTED) {
1801 if (dev->if_port == IF_PORT_100BASEFX) { 1046 if (!aup->phy_dev || (DUPLEX_FULL == aup->phy_dev->duplex)) {
1802 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { 1047 if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) {
1803 /* any other tx errors are only valid 1048 /* any other tx errors are only valid
1804 * in half duplex mode */ 1049 * in half duplex mode */
@@ -2072,126 +1317,15 @@ static void set_rx_mode(struct net_device *dev)
2072 } 1317 }
2073} 1318}
2074 1319
2075
2076static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1320static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2077{ 1321{
2078 struct au1000_private *aup = (struct au1000_private *)dev->priv; 1322 struct au1000_private *aup = (struct au1000_private *)dev->priv;
2079 u16 *data = (u16 *)&rq->ifr_ifru;
2080
2081 switch(cmd) {
2082 case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */
2083 case SIOCGMIIPHY:
2084 if (!netif_running(dev)) return -EINVAL;
2085 data[0] = aup->phy_addr;
2086 case SIOCDEVPRIVATE+1: /* Read the specified MII register. */
2087 case SIOCGMIIREG:
2088 data[3] = mdio_read(dev, data[0], data[1]);
2089 return 0;
2090 case SIOCDEVPRIVATE+2: /* Write the specified MII register */
2091 case SIOCSMIIREG:
2092 if (!capable(CAP_NET_ADMIN))
2093 return -EPERM;
2094 mdio_write(dev, data[0], data[1],data[2]);
2095 return 0;
2096 default:
2097 return -EOPNOTSUPP;
2098 }
2099
2100}
2101
2102
2103static int au1000_set_config(struct net_device *dev, struct ifmap *map)
2104{
2105 struct au1000_private *aup = (struct au1000_private *) dev->priv;
2106 u16 control;
2107 1323
2108 if (au1000_debug > 4) { 1324 if (!netif_running(dev)) return -EINVAL;
2109 printk("%s: set_config called: dev->if_port %d map->port %x\n",
2110 dev->name, dev->if_port, map->port);
2111 }
2112 1325
2113 switch(map->port){ 1326 if (!aup->phy_dev) return -EINVAL; // PHY not controllable
2114 case IF_PORT_UNKNOWN: /* use auto here */
2115 printk(KERN_INFO "%s: config phy for aneg\n",
2116 dev->name);
2117 dev->if_port = map->port;
2118 /* Link Down: the timer will bring it up */
2119 netif_carrier_off(dev);
2120
2121 /* read current control */
2122 control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
2123 control &= ~(MII_CNTL_FDX | MII_CNTL_F100);
2124
2125 /* enable auto negotiation and reset the negotiation */
2126 mdio_write(dev, aup->phy_addr, MII_CONTROL,
2127 control | MII_CNTL_AUTO |
2128 MII_CNTL_RST_AUTO);
2129 1327
2130 break; 1328 return phy_mii_ioctl(aup->phy_dev, if_mii(rq), cmd);
2131
2132 case IF_PORT_10BASET: /* 10BaseT */
2133 printk(KERN_INFO "%s: config phy for 10BaseT\n",
2134 dev->name);
2135 dev->if_port = map->port;
2136
2137 /* Link Down: the timer will bring it up */
2138 netif_carrier_off(dev);
2139
2140 /* set Speed to 10Mbps, Half Duplex */
2141 control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
2142 control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO |
2143 MII_CNTL_FDX);
2144
2145 /* disable auto negotiation and force 10M/HD mode*/
2146 mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
2147 break;
2148
2149 case IF_PORT_100BASET: /* 100BaseT */
2150 case IF_PORT_100BASETX: /* 100BaseTx */
2151 printk(KERN_INFO "%s: config phy for 100BaseTX\n",
2152 dev->name);
2153 dev->if_port = map->port;
2154
2155 /* Link Down: the timer will bring it up */
2156 netif_carrier_off(dev);
2157
2158 /* set Speed to 100Mbps, Half Duplex */
2159 /* disable auto negotiation and enable 100MBit Mode */
2160 control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
2161 control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX);
2162 control |= MII_CNTL_F100;
2163 mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
2164 break;
2165
2166 case IF_PORT_100BASEFX: /* 100BaseFx */
2167 printk(KERN_INFO "%s: config phy for 100BaseFX\n",
2168 dev->name);
2169 dev->if_port = map->port;
2170
2171 /* Link Down: the timer will bring it up */
2172 netif_carrier_off(dev);
2173
2174 /* set Speed to 100Mbps, Full Duplex */
2175 /* disable auto negotiation and enable 100MBit Mode */
2176 control = mdio_read(dev, aup->phy_addr, MII_CONTROL);
2177 control &= ~MII_CNTL_AUTO;
2178 control |= MII_CNTL_F100 | MII_CNTL_FDX;
2179 mdio_write(dev, aup->phy_addr, MII_CONTROL, control);
2180 break;
2181 case IF_PORT_10BASE2: /* 10Base2 */
2182 case IF_PORT_AUI: /* AUI */
2183 /* These Modes are not supported (are they?)*/
2184 printk(KERN_ERR "%s: 10Base2/AUI not supported",
2185 dev->name);
2186 return -EOPNOTSUPP;
2187 break;
2188
2189 default:
2190 printk(KERN_ERR "%s: Invalid media selected",
2191 dev->name);
2192 return -EINVAL;
2193 }
2194 return 0;
2195} 1329}
2196 1330
2197static struct net_device_stats *au1000_get_stats(struct net_device *dev) 1331static struct net_device_stats *au1000_get_stats(struct net_device *dev)
diff --git a/drivers/net/au1000_eth.h b/drivers/net/au1000_eth.h
index 7f9326e39cc0..41c2f848d2c4 100644
--- a/drivers/net/au1000_eth.h
+++ b/drivers/net/au1000_eth.h
@@ -40,120 +40,6 @@
40 40
41#define MULTICAST_FILTER_LIMIT 64 41#define MULTICAST_FILTER_LIMIT 64
42 42
43/* FIXME
44 * The PHY defines should be in a separate file.
45 */
46
47/* MII register offsets */
48#define MII_CONTROL 0x0000
49#define MII_STATUS 0x0001
50#define MII_PHY_ID0 0x0002
51#define MII_PHY_ID1 0x0003
52#define MII_ANADV 0x0004
53#define MII_ANLPAR 0x0005
54#define MII_AEXP 0x0006
55#define MII_ANEXT 0x0007
56#define MII_LSI_PHY_CONFIG 0x0011
57/* Status register */
58#define MII_LSI_PHY_STAT 0x0012
59#define MII_AMD_PHY_STAT MII_LSI_PHY_STAT
60#define MII_INTEL_PHY_STAT 0x0011
61
62#define MII_AUX_CNTRL 0x0018
63/* mii registers specific to AMD 79C901 */
64#define MII_STATUS_SUMMARY = 0x0018
65
66/* MII Control register bit definitions. */
67#define MII_CNTL_FDX 0x0100
68#define MII_CNTL_RST_AUTO 0x0200
69#define MII_CNTL_ISOLATE 0x0400
70#define MII_CNTL_PWRDWN 0x0800
71#define MII_CNTL_AUTO 0x1000
72#define MII_CNTL_F100 0x2000
73#define MII_CNTL_LPBK 0x4000
74#define MII_CNTL_RESET 0x8000
75
76/* MII Status register bit */
77#define MII_STAT_EXT 0x0001
78#define MII_STAT_JAB 0x0002
79#define MII_STAT_LINK 0x0004
80#define MII_STAT_CAN_AUTO 0x0008
81#define MII_STAT_FAULT 0x0010
82#define MII_STAT_AUTO_DONE 0x0020
83#define MII_STAT_CAN_T 0x0800
84#define MII_STAT_CAN_T_FDX 0x1000
85#define MII_STAT_CAN_TX 0x2000
86#define MII_STAT_CAN_TX_FDX 0x4000
87#define MII_STAT_CAN_T4 0x8000
88
89
90#define MII_ID1_OUI_LO 0xFC00 /* low bits of OUI mask */
91#define MII_ID1_MODEL 0x03F0 /* model number */
92#define MII_ID1_REV 0x000F /* model number */
93
94/* MII NWAY Register Bits ...
95 valid for the ANAR (Auto-Negotiation Advertisement) and
96 ANLPAR (Auto-Negotiation Link Partner) registers */
97#define MII_NWAY_NODE_SEL 0x001f
98#define MII_NWAY_CSMA_CD 0x0001
99#define MII_NWAY_T 0x0020
100#define MII_NWAY_T_FDX 0x0040
101#define MII_NWAY_TX 0x0080
102#define MII_NWAY_TX_FDX 0x0100
103#define MII_NWAY_T4 0x0200
104#define MII_NWAY_PAUSE 0x0400
105#define MII_NWAY_RF 0x2000 /* Remote Fault */
106#define MII_NWAY_ACK 0x4000 /* Remote Acknowledge */
107#define MII_NWAY_NP 0x8000 /* Next Page (Enable) */
108
109/* mii stsout register bits */
110#define MII_STSOUT_LINK_FAIL 0x4000
111#define MII_STSOUT_SPD 0x0080
112#define MII_STSOUT_DPLX 0x0040
113
114/* mii stsics register bits */
115#define MII_STSICS_SPD 0x8000
116#define MII_STSICS_DPLX 0x4000
117#define MII_STSICS_LINKSTS 0x0001
118
119/* mii stssum register bits */
120#define MII_STSSUM_LINK 0x0008
121#define MII_STSSUM_DPLX 0x0004
122#define MII_STSSUM_AUTO 0x0002
123#define MII_STSSUM_SPD 0x0001
124
125/* lsi phy status register */
126#define MII_LSI_PHY_STAT_FDX 0x0040
127#define MII_LSI_PHY_STAT_SPD 0x0080
128
129/* amd phy status register */
130#define MII_AMD_PHY_STAT_FDX 0x0800
131#define MII_AMD_PHY_STAT_SPD 0x0400
132
133/* intel phy status register */
134#define MII_INTEL_PHY_STAT_FDX 0x0200
135#define MII_INTEL_PHY_STAT_SPD 0x4000
136
137/* Auxilliary Control/Status Register */
138#define MII_AUX_FDX 0x0001
139#define MII_AUX_100 0x0002
140#define MII_AUX_F100 0x0004
141#define MII_AUX_ANEG 0x0008
142
143typedef struct mii_phy {
144 struct mii_phy * next;
145 struct mii_chip_info * chip_info;
146 u16 status;
147 u32 *mii_control_reg;
148 u32 *mii_data_reg;
149} mii_phy_t;
150
151struct phy_ops {
152 int (*phy_init) (struct net_device *, int);
153 int (*phy_reset) (struct net_device *, int);
154 int (*phy_status) (struct net_device *, int, u16 *, u16 *);
155};
156
157/* 43/*
158 * Data Buffer Descriptor. Data buffers must be aligned on 32 byte 44 * Data Buffer Descriptor. Data buffers must be aligned on 32 byte
159 * boundary for both, receive and transmit. 45 * boundary for both, receive and transmit.
@@ -200,7 +86,6 @@ typedef struct mac_reg {
200 86
201 87
202struct au1000_private { 88struct au1000_private {
203
204 db_dest_t *pDBfree; 89 db_dest_t *pDBfree;
205 db_dest_t db[NUM_RX_BUFFS+NUM_TX_BUFFS]; 90 db_dest_t db[NUM_RX_BUFFS+NUM_TX_BUFFS];
206 volatile rx_dma_t *rx_dma_ring[NUM_RX_DMA]; 91 volatile rx_dma_t *rx_dma_ring[NUM_RX_DMA];
@@ -213,8 +98,15 @@ struct au1000_private {
213 u32 tx_full; 98 u32 tx_full;
214 99
215 int mac_id; 100 int mac_id;
216 mii_phy_t *mii; 101
217 struct phy_ops *phy_ops; 102 int mac_enabled; /* whether MAC is currently enabled and running (req. for mdio) */
103
104 int old_link; /* used by au1000_adjust_link */
105 int old_speed;
106 int old_duplex;
107
108 struct phy_device *phy_dev;
109 struct mii_bus mii_bus;
218 110
219 /* These variables are just for quick access to certain regs addresses. */ 111 /* These variables are just for quick access to certain regs addresses. */
220 volatile mac_reg_t *mac; /* mac registers */ 112 volatile mac_reg_t *mac; /* mac registers */
@@ -223,14 +115,6 @@ struct au1000_private {
223 u32 vaddr; /* virtual address of rx/tx buffers */ 115 u32 vaddr; /* virtual address of rx/tx buffers */
224 dma_addr_t dma_addr; /* dma address of rx/tx buffers */ 116 dma_addr_t dma_addr; /* dma address of rx/tx buffers */
225 117
226 u8 *hash_table;
227 u32 hash_mode;
228 u32 intr_work_done; /* number of Rx and Tx pkts processed in the isr */
229 int phy_addr; /* phy address */
230 u32 options; /* User-settable misc. driver options. */
231 u32 drv_flags;
232 int want_autoneg;
233 struct net_device_stats stats; 118 struct net_device_stats stats;
234 struct timer_list timer;
235 spinlock_t lock; /* Serialise access to device */ 119 spinlock_t lock; /* Serialise access to device */
236}; 120};