aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net
diff options
context:
space:
mode:
authorRusty Russell <rusty@rustcorp.com.au>2007-07-26 13:41:03 -0400
committerLinus Torvalds <torvalds@woody.linux-foundation.org>2007-07-26 14:35:17 -0400
commite2c9784325490c878b7f69aeec1bed98b288bd97 (patch)
treed474007607c713a30db818107ca0581269f059a2 /drivers/net
parentb2b47c214f4e85ce3968120d42e8b18eccb4f4e3 (diff)
lguest: documentation III: Drivers
Documentation: The Drivers Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'drivers/net')
-rw-r--r--drivers/net/lguest_net.c218
1 files changed, 201 insertions, 17 deletions
diff --git a/drivers/net/lguest_net.c b/drivers/net/lguest_net.c
index 112778652f7d..20df6a848923 100644
--- a/drivers/net/lguest_net.c
+++ b/drivers/net/lguest_net.c
@@ -1,6 +1,13 @@
1/* A simple network driver for lguest. 1/*D:500
2 * The Guest network driver.
2 * 3 *
3 * Copyright 2006 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation 4 * This is very simple a virtual network driver, and our last Guest driver.
5 * The only trick is that it can talk directly to multiple other recipients
6 * (ie. other Guests on the same network). It can also be used with only the
7 * Host on the network.
8 :*/
9
10/* Copyright 2006 Rusty Russell <rusty@rustcorp.com.au> IBM Corporation
4 * 11 *
5 * This program is free software; you can redistribute it and/or modify 12 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by 13 * it under the terms of the GNU General Public License as published by
@@ -28,23 +35,28 @@
28#define MAX_LANS 4 35#define MAX_LANS 4
29#define NUM_SKBS 8 36#define NUM_SKBS 8
30 37
38/*D:530 The "struct lguestnet_info" contains all the information we need to
39 * know about the network device. */
31struct lguestnet_info 40struct lguestnet_info
32{ 41{
33 /* The shared page(s). */ 42 /* The mapped device page(s) (an array of "struct lguest_net"). */
34 struct lguest_net *peer; 43 struct lguest_net *peer;
44 /* The physical address of the device page(s) */
35 unsigned long peer_phys; 45 unsigned long peer_phys;
46 /* The size of the device page(s). */
36 unsigned long mapsize; 47 unsigned long mapsize;
37 48
38 /* The lguest_device I come from */ 49 /* The lguest_device I come from */
39 struct lguest_device *lgdev; 50 struct lguest_device *lgdev;
40 51
41 /* My peerid. */ 52 /* My peerid (ie. my slot in the array). */
42 unsigned int me; 53 unsigned int me;
43 54
44 /* Receive queue. */ 55 /* Receive queue: the network packets waiting to be filled. */
45 struct sk_buff *skb[NUM_SKBS]; 56 struct sk_buff *skb[NUM_SKBS];
46 struct lguest_dma dma[NUM_SKBS]; 57 struct lguest_dma dma[NUM_SKBS];
47}; 58};
59/*:*/
48 60
49/* How many bytes left in this page. */ 61/* How many bytes left in this page. */
50static unsigned int rest_of_page(void *data) 62static unsigned int rest_of_page(void *data)
@@ -52,39 +64,82 @@ static unsigned int rest_of_page(void *data)
52 return PAGE_SIZE - ((unsigned long)data % PAGE_SIZE); 64 return PAGE_SIZE - ((unsigned long)data % PAGE_SIZE);
53} 65}
54 66
55/* Simple convention: offset 4 * peernum. */ 67/*D:570 Each peer (ie. Guest or Host) on the network binds their receive
68 * buffers to a different key: we simply use the physical address of the
69 * device's memory page plus the peer number. The Host insists that all keys
70 * be a multiple of 4, so we multiply the peer number by 4. */
56static unsigned long peer_key(struct lguestnet_info *info, unsigned peernum) 71static unsigned long peer_key(struct lguestnet_info *info, unsigned peernum)
57{ 72{
58 return info->peer_phys + 4 * peernum; 73 return info->peer_phys + 4 * peernum;
59} 74}
60 75
76/* This is the routine which sets up a "struct lguest_dma" to point to a
77 * network packet, similar to req_to_dma() in lguest_blk.c. The structure of a
78 * "struct sk_buff" has grown complex over the years: it consists of a "head"
79 * linear section pointed to by "skb->data", and possibly an array of
80 * "fragments" in the case of a non-linear packet.
81 *
82 * Our receive buffers don't use fragments at all but outgoing skbs might, so
83 * we handle it. */
61static void skb_to_dma(const struct sk_buff *skb, unsigned int headlen, 84static void skb_to_dma(const struct sk_buff *skb, unsigned int headlen,
62 struct lguest_dma *dma) 85 struct lguest_dma *dma)
63{ 86{
64 unsigned int i, seg; 87 unsigned int i, seg;
65 88
89 /* First, we put the linear region into the "struct lguest_dma". Each
90 * entry can't go over a page boundary, so even though all our packets
91 * are 1514 bytes or less, we might need to use two entries here: */
66 for (i = seg = 0; i < headlen; seg++, i += rest_of_page(skb->data+i)) { 92 for (i = seg = 0; i < headlen; seg++, i += rest_of_page(skb->data+i)) {
67 dma->addr[seg] = virt_to_phys(skb->data + i); 93 dma->addr[seg] = virt_to_phys(skb->data + i);
68 dma->len[seg] = min((unsigned)(headlen - i), 94 dma->len[seg] = min((unsigned)(headlen - i),
69 rest_of_page(skb->data + i)); 95 rest_of_page(skb->data + i));
70 } 96 }
97
98 /* Now we handle the fragments: at least they're guaranteed not to go
99 * over a page. skb_shinfo(skb) returns a pointer to the structure
100 * which tells us about the number of fragments and the fragment
101 * array. */
71 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, seg++) { 102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++, seg++) {
72 const skb_frag_t *f = &skb_shinfo(skb)->frags[i]; 103 const skb_frag_t *f = &skb_shinfo(skb)->frags[i];
73 /* Should not happen with MTU less than 64k - 2 * PAGE_SIZE. */ 104 /* Should not happen with MTU less than 64k - 2 * PAGE_SIZE. */
74 if (seg == LGUEST_MAX_DMA_SECTIONS) { 105 if (seg == LGUEST_MAX_DMA_SECTIONS) {
106 /* We will end up sending a truncated packet should
107 * this ever happen. Plus, a cool log message! */
75 printk("Woah dude! Megapacket!\n"); 108 printk("Woah dude! Megapacket!\n");
76 break; 109 break;
77 } 110 }
78 dma->addr[seg] = page_to_phys(f->page) + f->page_offset; 111 dma->addr[seg] = page_to_phys(f->page) + f->page_offset;
79 dma->len[seg] = f->size; 112 dma->len[seg] = f->size;
80 } 113 }
114
115 /* If after all that we didn't use the entire "struct lguest_dma"
116 * array, we terminate it with a 0 length. */
81 if (seg < LGUEST_MAX_DMA_SECTIONS) 117 if (seg < LGUEST_MAX_DMA_SECTIONS)
82 dma->len[seg] = 0; 118 dma->len[seg] = 0;
83} 119}
84 120
85/* We overload multicast bit to show promiscuous mode. */ 121/*
122 * Packet transmission.
123 *
124 * Our packet transmission is a little unusual. A real network card would just
125 * send out the packet and leave the receivers to decide if they're interested.
126 * Instead, we look through the network device memory page and see if any of
127 * the ethernet addresses match the packet destination, and if so we send it to
128 * that Guest.
129 *
130 * This is made a little more complicated in two cases. The first case is
131 * broadcast packets: for that we send the packet to all Guests on the network,
132 * one at a time. The second case is "promiscuous" mode, where a Guest wants
133 * to see all the packets on the network. We need a way for the Guest to tell
134 * us it wants to see all packets, so it sets the "multicast" bit on its
135 * published MAC address, which is never valid in a real ethernet address.
136 */
86#define PROMISC_BIT 0x01 137#define PROMISC_BIT 0x01
87 138
139/* This is the callback which is summoned whenever the network device's
140 * multicast or promiscuous state changes. If the card is in promiscuous mode,
141 * we advertise that in our ethernet address in the device's memory. We do the
142 * same if Linux wants any or all multicast traffic. */
88static void lguestnet_set_multicast(struct net_device *dev) 143static void lguestnet_set_multicast(struct net_device *dev)
89{ 144{
90 struct lguestnet_info *info = netdev_priv(dev); 145 struct lguestnet_info *info = netdev_priv(dev);
@@ -95,11 +150,14 @@ static void lguestnet_set_multicast(struct net_device *dev)
95 info->peer[info->me].mac[0] &= ~PROMISC_BIT; 150 info->peer[info->me].mac[0] &= ~PROMISC_BIT;
96} 151}
97 152
153/* A simple test function to see if a peer wants to see all packets.*/
98static int promisc(struct lguestnet_info *info, unsigned int peer) 154static int promisc(struct lguestnet_info *info, unsigned int peer)
99{ 155{
100 return info->peer[peer].mac[0] & PROMISC_BIT; 156 return info->peer[peer].mac[0] & PROMISC_BIT;
101} 157}
102 158
159/* Another simple function to see if a peer's advertised ethernet address
160 * matches a packet's destination ethernet address. */
103static int mac_eq(const unsigned char mac[ETH_ALEN], 161static int mac_eq(const unsigned char mac[ETH_ALEN],
104 struct lguestnet_info *info, unsigned int peer) 162 struct lguestnet_info *info, unsigned int peer)
105{ 163{
@@ -109,6 +167,8 @@ static int mac_eq(const unsigned char mac[ETH_ALEN],
109 return memcmp(mac+1, info->peer[peer].mac+1, ETH_ALEN-1) == 0; 167 return memcmp(mac+1, info->peer[peer].mac+1, ETH_ALEN-1) == 0;
110} 168}
111 169
170/* This is the function which actually sends a packet once we've decided a
171 * peer wants it: */
112static void transfer_packet(struct net_device *dev, 172static void transfer_packet(struct net_device *dev,
113 struct sk_buff *skb, 173 struct sk_buff *skb,
114 unsigned int peernum) 174 unsigned int peernum)
@@ -116,76 +176,134 @@ static void transfer_packet(struct net_device *dev,
116 struct lguestnet_info *info = netdev_priv(dev); 176 struct lguestnet_info *info = netdev_priv(dev);
117 struct lguest_dma dma; 177 struct lguest_dma dma;
118 178
179 /* We use our handy "struct lguest_dma" packing function to prepare
180 * the skb for sending. */
119 skb_to_dma(skb, skb_headlen(skb), &dma); 181 skb_to_dma(skb, skb_headlen(skb), &dma);
120 pr_debug("xfer length %04x (%u)\n", htons(skb->len), skb->len); 182 pr_debug("xfer length %04x (%u)\n", htons(skb->len), skb->len);
121 183
184 /* This is the actual send call which copies the packet. */
122 lguest_send_dma(peer_key(info, peernum), &dma); 185 lguest_send_dma(peer_key(info, peernum), &dma);
186
187 /* Check that the entire packet was transmitted. If not, it could mean
188 * that the other Guest registered a short receive buffer, but this
189 * driver should never do that. More likely, the peer is dead. */
123 if (dma.used_len != skb->len) { 190 if (dma.used_len != skb->len) {
124 dev->stats.tx_carrier_errors++; 191 dev->stats.tx_carrier_errors++;
125 pr_debug("Bad xfer to peer %i: %i of %i (dma %p/%i)\n", 192 pr_debug("Bad xfer to peer %i: %i of %i (dma %p/%i)\n",
126 peernum, dma.used_len, skb->len, 193 peernum, dma.used_len, skb->len,
127 (void *)dma.addr[0], dma.len[0]); 194 (void *)dma.addr[0], dma.len[0]);
128 } else { 195 } else {
196 /* On success we update the stats. */
129 dev->stats.tx_bytes += skb->len; 197 dev->stats.tx_bytes += skb->len;
130 dev->stats.tx_packets++; 198 dev->stats.tx_packets++;
131 } 199 }
132} 200}
133 201
202/* Another helper function to tell is if a slot in the device memory is unused.
203 * Since we always set the Local Assignment bit in the ethernet address, the
204 * first byte can never be 0. */
134static int unused_peer(const struct lguest_net peer[], unsigned int num) 205static int unused_peer(const struct lguest_net peer[], unsigned int num)
135{ 206{
136 return peer[num].mac[0] == 0; 207 return peer[num].mac[0] == 0;
137} 208}
138 209
210/* Finally, here is the routine which handles an outgoing packet. It's called
211 * "start_xmit" for traditional reasons. */
139static int lguestnet_start_xmit(struct sk_buff *skb, struct net_device *dev) 212static int lguestnet_start_xmit(struct sk_buff *skb, struct net_device *dev)
140{ 213{
141 unsigned int i; 214 unsigned int i;
142 int broadcast; 215 int broadcast;
143 struct lguestnet_info *info = netdev_priv(dev); 216 struct lguestnet_info *info = netdev_priv(dev);
217 /* Extract the destination ethernet address from the packet. */
144 const unsigned char *dest = ((struct ethhdr *)skb->data)->h_dest; 218 const unsigned char *dest = ((struct ethhdr *)skb->data)->h_dest;
145 219
146 pr_debug("%s: xmit %02x:%02x:%02x:%02x:%02x:%02x\n", 220 pr_debug("%s: xmit %02x:%02x:%02x:%02x:%02x:%02x\n",
147 dev->name, dest[0],dest[1],dest[2],dest[3],dest[4],dest[5]); 221 dev->name, dest[0],dest[1],dest[2],dest[3],dest[4],dest[5]);
148 222
223 /* If it's a multicast packet, we broadcast to everyone. That's not
224 * very efficient, but there are very few applications which actually
225 * use multicast, which is a shame really.
226 *
227 * As etherdevice.h points out: "By definition the broadcast address is
228 * also a multicast address." So we don't have to test for broadcast
229 * packets separately. */
149 broadcast = is_multicast_ether_addr(dest); 230 broadcast = is_multicast_ether_addr(dest);
231
232 /* Look through all the published ethernet addresses to see if we
233 * should send this packet. */
150 for (i = 0; i < info->mapsize/sizeof(struct lguest_net); i++) { 234 for (i = 0; i < info->mapsize/sizeof(struct lguest_net); i++) {
235 /* We don't send to ourselves (we actually can't SEND_DMA to
236 * ourselves anyway), and don't send to unused slots.*/
151 if (i == info->me || unused_peer(info->peer, i)) 237 if (i == info->me || unused_peer(info->peer, i))
152 continue; 238 continue;
153 239
240 /* If it's broadcast we send it. If they want every packet we
241 * send it. If the destination matches their address we send
242 * it. Otherwise we go to the next peer. */
154 if (!broadcast && !promisc(info, i) && !mac_eq(dest, info, i)) 243 if (!broadcast && !promisc(info, i) && !mac_eq(dest, info, i))
155 continue; 244 continue;
156 245
157 pr_debug("lguestnet %s: sending from %i to %i\n", 246 pr_debug("lguestnet %s: sending from %i to %i\n",
158 dev->name, info->me, i); 247 dev->name, info->me, i);
248 /* Our routine which actually does the transfer. */
159 transfer_packet(dev, skb, i); 249 transfer_packet(dev, skb, i);
160 } 250 }
251
252 /* An xmit routine is expected to dispose of the packet, so we do. */
161 dev_kfree_skb(skb); 253 dev_kfree_skb(skb);
254
255 /* As per kernel convention, 0 means success. This is why I love
256 * networking: even if we never sent to anyone, that's still
257 * success! */
162 return 0; 258 return 0;
163} 259}
164 260
165/* Find a new skb to put in this slot in shared mem. */ 261/*D:560
262 * Packet receiving.
263 *
264 * First, here's a helper routine which fills one of our array of receive
265 * buffers: */
166static int fill_slot(struct net_device *dev, unsigned int slot) 266static int fill_slot(struct net_device *dev, unsigned int slot)
167{ 267{
168 struct lguestnet_info *info = netdev_priv(dev); 268 struct lguestnet_info *info = netdev_priv(dev);
169 /* Try to create and register a new one. */ 269
270 /* We can receive ETH_DATA_LEN (1500) byte packets, plus a standard
271 * ethernet header of ETH_HLEN (14) bytes. */
170 info->skb[slot] = netdev_alloc_skb(dev, ETH_HLEN + ETH_DATA_LEN); 272 info->skb[slot] = netdev_alloc_skb(dev, ETH_HLEN + ETH_DATA_LEN);
171 if (!info->skb[slot]) { 273 if (!info->skb[slot]) {
172 printk("%s: could not fill slot %i\n", dev->name, slot); 274 printk("%s: could not fill slot %i\n", dev->name, slot);
173 return -ENOMEM; 275 return -ENOMEM;
174 } 276 }
175 277
278 /* skb_to_dma() is a helper which sets up the "struct lguest_dma" to
279 * point to the data in the skb: we also use it for sending out a
280 * packet. */
176 skb_to_dma(info->skb[slot], ETH_HLEN + ETH_DATA_LEN, &info->dma[slot]); 281 skb_to_dma(info->skb[slot], ETH_HLEN + ETH_DATA_LEN, &info->dma[slot]);
282
283 /* This is a Write Memory Barrier: it ensures that the entry in the
284 * receive buffer array is written *before* we set the "used_len" entry
285 * to 0. If the Host were looking at the receive buffer array from a
286 * different CPU, it could potentially see "used_len = 0" and not see
287 * the updated receive buffer information. This would be a horribly
288 * nasty bug, so make sure the compiler and CPU know this has to happen
289 * first. */
177 wmb(); 290 wmb();
178 /* Now we tell hypervisor it can use the slot. */ 291 /* Writing 0 to "used_len" tells the Host it can use this receive
292 * buffer now. */
179 info->dma[slot].used_len = 0; 293 info->dma[slot].used_len = 0;
180 return 0; 294 return 0;
181} 295}
182 296
297/* This is the actual receive routine. When we receive an interrupt from the
298 * Host to tell us a packet has been delivered, we arrive here: */
183static irqreturn_t lguestnet_rcv(int irq, void *dev_id) 299static irqreturn_t lguestnet_rcv(int irq, void *dev_id)
184{ 300{
185 struct net_device *dev = dev_id; 301 struct net_device *dev = dev_id;
186 struct lguestnet_info *info = netdev_priv(dev); 302 struct lguestnet_info *info = netdev_priv(dev);
187 unsigned int i, done = 0; 303 unsigned int i, done = 0;
188 304
305 /* Look through our entire receive array for an entry which has data
306 * in it. */
189 for (i = 0; i < ARRAY_SIZE(info->dma); i++) { 307 for (i = 0; i < ARRAY_SIZE(info->dma); i++) {
190 unsigned int length; 308 unsigned int length;
191 struct sk_buff *skb; 309 struct sk_buff *skb;
@@ -194,10 +312,16 @@ static irqreturn_t lguestnet_rcv(int irq, void *dev_id)
194 if (length == 0) 312 if (length == 0)
195 continue; 313 continue;
196 314
315 /* We've found one! Remember the skb (we grabbed the length
316 * above), and immediately refill the slot we've taken it
317 * from. */
197 done++; 318 done++;
198 skb = info->skb[i]; 319 skb = info->skb[i];
199 fill_slot(dev, i); 320 fill_slot(dev, i);
200 321
322 /* This shouldn't happen: micropackets could be sent by a
323 * badly-behaved Guest on the network, but the Host will never
324 * stuff more data in the buffer than the buffer length. */
201 if (length < ETH_HLEN || length > ETH_HLEN + ETH_DATA_LEN) { 325 if (length < ETH_HLEN || length > ETH_HLEN + ETH_DATA_LEN) {
202 pr_debug(KERN_WARNING "%s: unbelievable skb len: %i\n", 326 pr_debug(KERN_WARNING "%s: unbelievable skb len: %i\n",
203 dev->name, length); 327 dev->name, length);
@@ -205,36 +329,72 @@ static irqreturn_t lguestnet_rcv(int irq, void *dev_id)
205 continue; 329 continue;
206 } 330 }
207 331
332 /* skb_put(), what a great function! I've ranted about this
333 * function before (http://lkml.org/lkml/1999/9/26/24). You
334 * call it after you've added data to the end of an skb (in
335 * this case, it was the Host which wrote the data). */
208 skb_put(skb, length); 336 skb_put(skb, length);
337
338 /* The ethernet header contains a protocol field: we use the
339 * standard helper to extract it, and place the result in
340 * skb->protocol. The helper also sets up skb->pkt_type and
341 * eats up the ethernet header from the front of the packet. */
209 skb->protocol = eth_type_trans(skb, dev); 342 skb->protocol = eth_type_trans(skb, dev);
210 /* This is a reliable transport. */ 343
344 /* If this device doesn't need checksums for sending, we also
345 * don't need to check the packets when they come in. */
211 if (dev->features & NETIF_F_NO_CSUM) 346 if (dev->features & NETIF_F_NO_CSUM)
212 skb->ip_summed = CHECKSUM_UNNECESSARY; 347 skb->ip_summed = CHECKSUM_UNNECESSARY;
348
349 /* As a last resort for debugging the driver or the lguest I/O
350 * subsystem, you can uncomment the "#define DEBUG" at the top
351 * of this file, which turns all the pr_debug() into printk()
352 * and floods the logs. */
213 pr_debug("Receiving skb proto 0x%04x len %i type %i\n", 353 pr_debug("Receiving skb proto 0x%04x len %i type %i\n",
214 ntohs(skb->protocol), skb->len, skb->pkt_type); 354 ntohs(skb->protocol), skb->len, skb->pkt_type);
215 355
356 /* Update the packet and byte counts (visible from ifconfig,
357 * and good for debugging). */
216 dev->stats.rx_bytes += skb->len; 358 dev->stats.rx_bytes += skb->len;
217 dev->stats.rx_packets++; 359 dev->stats.rx_packets++;
360
361 /* Hand our fresh network packet into the stack's "network
362 * interface receive" routine. That will free the packet
363 * itself when it's finished. */
218 netif_rx(skb); 364 netif_rx(skb);
219 } 365 }
366
367 /* If we found any packets, we assume the interrupt was for us. */
220 return done ? IRQ_HANDLED : IRQ_NONE; 368 return done ? IRQ_HANDLED : IRQ_NONE;
221} 369}
222 370
371/*D:550 This is where we start: when the device is brought up by dhcpd or
372 * ifconfig. At this point we advertise our MAC address to the rest of the
373 * network, and register receive buffers ready for incoming packets. */
223static int lguestnet_open(struct net_device *dev) 374static int lguestnet_open(struct net_device *dev)
224{ 375{
225 int i; 376 int i;
226 struct lguestnet_info *info = netdev_priv(dev); 377 struct lguestnet_info *info = netdev_priv(dev);
227 378
228 /* Set up our MAC address */ 379 /* Copy our MAC address into the device page, so others on the network
380 * can find us. */
229 memcpy(info->peer[info->me].mac, dev->dev_addr, ETH_ALEN); 381 memcpy(info->peer[info->me].mac, dev->dev_addr, ETH_ALEN);
230 382
231 /* Turn on promisc mode if needed */ 383 /* We might already be in promisc mode (dev->flags & IFF_PROMISC). Our
384 * set_multicast callback handles this already, so we call it now. */
232 lguestnet_set_multicast(dev); 385 lguestnet_set_multicast(dev);
233 386
387 /* Allocate packets and put them into our "struct lguest_dma" array.
388 * If we fail to allocate all the packets we could still limp along,
389 * but it's a sign of real stress so we should probably give up now. */
234 for (i = 0; i < ARRAY_SIZE(info->dma); i++) { 390 for (i = 0; i < ARRAY_SIZE(info->dma); i++) {
235 if (fill_slot(dev, i) != 0) 391 if (fill_slot(dev, i) != 0)
236 goto cleanup; 392 goto cleanup;
237 } 393 }
394
395 /* Finally we tell the Host where our array of "struct lguest_dma"
396 * receive buffers is, binding it to the key corresponding to the
397 * device's physical memory plus our peerid. */
238 if (lguest_bind_dma(peer_key(info,info->me), info->dma, 398 if (lguest_bind_dma(peer_key(info,info->me), info->dma,
239 NUM_SKBS, lgdev_irq(info->lgdev)) != 0) 399 NUM_SKBS, lgdev_irq(info->lgdev)) != 0)
240 goto cleanup; 400 goto cleanup;
@@ -245,22 +405,29 @@ cleanup:
245 dev_kfree_skb(info->skb[i]); 405 dev_kfree_skb(info->skb[i]);
246 return -ENOMEM; 406 return -ENOMEM;
247} 407}
408/*:*/
248 409
410/* The close routine is called when the device is no longer in use: we clean up
411 * elegantly. */
249static int lguestnet_close(struct net_device *dev) 412static int lguestnet_close(struct net_device *dev)
250{ 413{
251 unsigned int i; 414 unsigned int i;
252 struct lguestnet_info *info = netdev_priv(dev); 415 struct lguestnet_info *info = netdev_priv(dev);
253 416
254 /* Clear all trace: others might deliver packets, we'll ignore it. */ 417 /* Clear all trace of our existence out of the device memory by setting
418 * the slot which held our MAC address to 0 (unused). */
255 memset(&info->peer[info->me], 0, sizeof(info->peer[info->me])); 419 memset(&info->peer[info->me], 0, sizeof(info->peer[info->me]));
256 420
257 /* Deregister sg lists. */ 421 /* Unregister our array of receive buffers */
258 lguest_unbind_dma(peer_key(info, info->me), info->dma); 422 lguest_unbind_dma(peer_key(info, info->me), info->dma);
259 for (i = 0; i < ARRAY_SIZE(info->dma); i++) 423 for (i = 0; i < ARRAY_SIZE(info->dma); i++)
260 dev_kfree_skb(info->skb[i]); 424 dev_kfree_skb(info->skb[i]);
261 return 0; 425 return 0;
262} 426}
263 427
428/*D:510 The network device probe function is basically a standard ethernet
429 * device setup. It reads the "struct lguest_device_desc" and sets the "struct
430 * net_device". Oh, the line-by-line excitement! Let's skip over it. :*/
264static int lguestnet_probe(struct lguest_device *lgdev) 431static int lguestnet_probe(struct lguest_device *lgdev)
265{ 432{
266 int err, irqf = IRQF_SHARED; 433 int err, irqf = IRQF_SHARED;
@@ -290,10 +457,16 @@ static int lguestnet_probe(struct lguest_device *lgdev)
290 dev->stop = lguestnet_close; 457 dev->stop = lguestnet_close;
291 dev->hard_start_xmit = lguestnet_start_xmit; 458 dev->hard_start_xmit = lguestnet_start_xmit;
292 459
293 /* Turning on/off promisc will call dev->set_multicast_list. 460 /* We don't actually support multicast yet, but turning on/off
294 * We don't actually support multicast yet */ 461 * promisc also calls dev->set_multicast_list. */
295 dev->set_multicast_list = lguestnet_set_multicast; 462 dev->set_multicast_list = lguestnet_set_multicast;
296 SET_NETDEV_DEV(dev, &lgdev->dev); 463 SET_NETDEV_DEV(dev, &lgdev->dev);
464
465 /* The network code complains if you have "scatter-gather" capability
466 * if you don't also handle checksums (it seem that would be
467 * "illogical"). So we use a lie of omission and don't tell it that we
468 * can handle scattered packets unless we also don't want checksums,
469 * even though to us they're completely independent. */
297 if (desc->features & LGUEST_NET_F_NOCSUM) 470 if (desc->features & LGUEST_NET_F_NOCSUM)
298 dev->features = NETIF_F_SG|NETIF_F_NO_CSUM; 471 dev->features = NETIF_F_SG|NETIF_F_NO_CSUM;
299 472
@@ -325,6 +498,9 @@ static int lguestnet_probe(struct lguest_device *lgdev)
325 } 498 }
326 499
327 pr_debug("lguestnet: registered device %s\n", dev->name); 500 pr_debug("lguestnet: registered device %s\n", dev->name);
501 /* Finally, we put the "struct net_device" in the generic "struct
502 * lguest_device"s private pointer. Again, it's not necessary, but
503 * makes sure the cool kernel kids don't tease us. */
328 lgdev->private = dev; 504 lgdev->private = dev;
329 return 0; 505 return 0;
330 506
@@ -352,3 +528,11 @@ module_init(lguestnet_init);
352 528
353MODULE_DESCRIPTION("Lguest network driver"); 529MODULE_DESCRIPTION("Lguest network driver");
354MODULE_LICENSE("GPL"); 530MODULE_LICENSE("GPL");
531
532/*D:580
533 * This is the last of the Drivers, and with this we have covered the many and
534 * wonderous and fine (and boring) details of the Guest.
535 *
536 * "make Launcher" beckons, where we answer questions like "Where do Guests
537 * come from?", and "What do you do when someone asks for optimization?"
538 */