aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/rt2x00/rt2500pci.c
diff options
context:
space:
mode:
authorIvo van Doorn <IvDoorn@gmail.com>2007-09-25 20:57:13 -0400
committerDavid S. Miller <davem@sunset.davemloft.net>2007-10-10 19:51:39 -0400
commit95ea36275f3c9a1d3d04c217b4b576c657c4e70e (patch)
tree55477b946a46aa871a087857a1dc698d74fe79d2 /drivers/net/wireless/rt2x00/rt2500pci.c
parentb481de9ca074528fe8c429604e2777db8b89806a (diff)
[RT2x00]: add driver for Ralink wireless hardware
Signed-off-by: Ivo van Doorn <IvDoorn@gmail.com> Signed-off-by: John W. Linville <linville@tuxdriver.com> Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'drivers/net/wireless/rt2x00/rt2500pci.c')
-rw-r--r--drivers/net/wireless/rt2x00/rt2500pci.c2000
1 files changed, 2000 insertions, 0 deletions
diff --git a/drivers/net/wireless/rt2x00/rt2500pci.c b/drivers/net/wireless/rt2x00/rt2500pci.c
new file mode 100644
index 000000000000..f6115c626fa7
--- /dev/null
+++ b/drivers/net/wireless/rt2x00/rt2500pci.c
@@ -0,0 +1,2000 @@
1/*
2 Copyright (C) 2004 - 2007 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21/*
22 Module: rt2500pci
23 Abstract: rt2500pci device specific routines.
24 Supported chipsets: RT2560.
25 */
26
27/*
28 * Set enviroment defines for rt2x00.h
29 */
30#define DRV_NAME "rt2500pci"
31
32#include <linux/delay.h>
33#include <linux/etherdevice.h>
34#include <linux/init.h>
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/eeprom_93cx6.h>
39
40#include "rt2x00.h"
41#include "rt2x00pci.h"
42#include "rt2500pci.h"
43
44/*
45 * Register access.
46 * All access to the CSR registers will go through the methods
47 * rt2x00pci_register_read and rt2x00pci_register_write.
48 * BBP and RF register require indirect register access,
49 * and use the CSR registers BBPCSR and RFCSR to achieve this.
50 * These indirect registers work with busy bits,
51 * and we will try maximal REGISTER_BUSY_COUNT times to access
52 * the register while taking a REGISTER_BUSY_DELAY us delay
53 * between each attampt. When the busy bit is still set at that time,
54 * the access attempt is considered to have failed,
55 * and we will print an error.
56 */
57static u32 rt2500pci_bbp_check(const struct rt2x00_dev *rt2x00dev)
58{
59 u32 reg;
60 unsigned int i;
61
62 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
63 rt2x00pci_register_read(rt2x00dev, BBPCSR, &reg);
64 if (!rt2x00_get_field32(reg, BBPCSR_BUSY))
65 break;
66 udelay(REGISTER_BUSY_DELAY);
67 }
68
69 return reg;
70}
71
72static void rt2500pci_bbp_write(const struct rt2x00_dev *rt2x00dev,
73 const unsigned int word, const u8 value)
74{
75 u32 reg;
76
77 /*
78 * Wait until the BBP becomes ready.
79 */
80 reg = rt2500pci_bbp_check(rt2x00dev);
81 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
82 ERROR(rt2x00dev, "BBPCSR register busy. Write failed.\n");
83 return;
84 }
85
86 /*
87 * Write the data into the BBP.
88 */
89 reg = 0;
90 rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
91 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
92 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
93 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
94
95 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
96}
97
98static void rt2500pci_bbp_read(const struct rt2x00_dev *rt2x00dev,
99 const unsigned int word, u8 *value)
100{
101 u32 reg;
102
103 /*
104 * Wait until the BBP becomes ready.
105 */
106 reg = rt2500pci_bbp_check(rt2x00dev);
107 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
108 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
109 return;
110 }
111
112 /*
113 * Write the request into the BBP.
114 */
115 reg = 0;
116 rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
117 rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
118 rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
119
120 rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
121
122 /*
123 * Wait until the BBP becomes ready.
124 */
125 reg = rt2500pci_bbp_check(rt2x00dev);
126 if (rt2x00_get_field32(reg, BBPCSR_BUSY)) {
127 ERROR(rt2x00dev, "BBPCSR register busy. Read failed.\n");
128 *value = 0xff;
129 return;
130 }
131
132 *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
133}
134
135static void rt2500pci_rf_write(const struct rt2x00_dev *rt2x00dev,
136 const unsigned int word, const u32 value)
137{
138 u32 reg;
139 unsigned int i;
140
141 if (!word)
142 return;
143
144 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
145 rt2x00pci_register_read(rt2x00dev, RFCSR, &reg);
146 if (!rt2x00_get_field32(reg, RFCSR_BUSY))
147 goto rf_write;
148 udelay(REGISTER_BUSY_DELAY);
149 }
150
151 ERROR(rt2x00dev, "RFCSR register busy. Write failed.\n");
152 return;
153
154rf_write:
155 reg = 0;
156 rt2x00_set_field32(&reg, RFCSR_VALUE, value);
157 rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
158 rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
159 rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
160
161 rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
162 rt2x00_rf_write(rt2x00dev, word, value);
163}
164
165static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
166{
167 struct rt2x00_dev *rt2x00dev = eeprom->data;
168 u32 reg;
169
170 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
171
172 eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
173 eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
174 eeprom->reg_data_clock =
175 !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
176 eeprom->reg_chip_select =
177 !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
178}
179
180static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
181{
182 struct rt2x00_dev *rt2x00dev = eeprom->data;
183 u32 reg = 0;
184
185 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
186 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
187 rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
188 !!eeprom->reg_data_clock);
189 rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
190 !!eeprom->reg_chip_select);
191
192 rt2x00pci_register_write(rt2x00dev, CSR21, reg);
193}
194
195#ifdef CONFIG_RT2X00_LIB_DEBUGFS
196#define CSR_OFFSET(__word) ( CSR_REG_BASE + ((__word) * sizeof(u32)) )
197
198static void rt2500pci_read_csr(const struct rt2x00_dev *rt2x00dev,
199 const unsigned int word, u32 *data)
200{
201 rt2x00pci_register_read(rt2x00dev, CSR_OFFSET(word), data);
202}
203
204static void rt2500pci_write_csr(const struct rt2x00_dev *rt2x00dev,
205 const unsigned int word, u32 data)
206{
207 rt2x00pci_register_write(rt2x00dev, CSR_OFFSET(word), data);
208}
209
210static const struct rt2x00debug rt2500pci_rt2x00debug = {
211 .owner = THIS_MODULE,
212 .csr = {
213 .read = rt2500pci_read_csr,
214 .write = rt2500pci_write_csr,
215 .word_size = sizeof(u32),
216 .word_count = CSR_REG_SIZE / sizeof(u32),
217 },
218 .eeprom = {
219 .read = rt2x00_eeprom_read,
220 .write = rt2x00_eeprom_write,
221 .word_size = sizeof(u16),
222 .word_count = EEPROM_SIZE / sizeof(u16),
223 },
224 .bbp = {
225 .read = rt2500pci_bbp_read,
226 .write = rt2500pci_bbp_write,
227 .word_size = sizeof(u8),
228 .word_count = BBP_SIZE / sizeof(u8),
229 },
230 .rf = {
231 .read = rt2x00_rf_read,
232 .write = rt2500pci_rf_write,
233 .word_size = sizeof(u32),
234 .word_count = RF_SIZE / sizeof(u32),
235 },
236};
237#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
238
239#ifdef CONFIG_RT2500PCI_RFKILL
240static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
241{
242 u32 reg;
243
244 rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
245 return rt2x00_get_field32(reg, GPIOCSR_BIT0);
246}
247#endif /* CONFIG_RT2400PCI_RFKILL */
248
249/*
250 * Configuration handlers.
251 */
252static void rt2500pci_config_mac_addr(struct rt2x00_dev *rt2x00dev, u8 *addr)
253{
254 __le32 reg[2];
255
256 memset(&reg, 0, sizeof(reg));
257 memcpy(&reg, addr, ETH_ALEN);
258
259 /*
260 * The MAC address is passed to us as an array of bytes,
261 * that array is little endian, so no need for byte ordering.
262 */
263 rt2x00pci_register_multiwrite(rt2x00dev, CSR3, &reg, sizeof(reg));
264}
265
266static void rt2500pci_config_bssid(struct rt2x00_dev *rt2x00dev, u8 *bssid)
267{
268 __le32 reg[2];
269
270 memset(&reg, 0, sizeof(reg));
271 memcpy(&reg, bssid, ETH_ALEN);
272
273 /*
274 * The BSSID is passed to us as an array of bytes,
275 * that array is little endian, so no need for byte ordering.
276 */
277 rt2x00pci_register_multiwrite(rt2x00dev, CSR5, &reg, sizeof(reg));
278}
279
280static void rt2500pci_config_packet_filter(struct rt2x00_dev *rt2x00dev,
281 const unsigned int filter)
282{
283 int promisc = !!(filter & IFF_PROMISC);
284 int multicast = !!(filter & IFF_MULTICAST);
285 int broadcast = !!(filter & IFF_BROADCAST);
286 u32 reg;
287
288 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
289 rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME, !promisc);
290 rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST, !multicast);
291 rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, !broadcast);
292 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
293}
294
295static void rt2500pci_config_type(struct rt2x00_dev *rt2x00dev, const int type)
296{
297 u32 reg;
298
299 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
300
301 /*
302 * Apply hardware packet filter.
303 */
304 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
305
306 if (!is_monitor_present(&rt2x00dev->interface) &&
307 (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_STA))
308 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 1);
309 else
310 rt2x00_set_field32(&reg, RXCSR0_DROP_TODS, 0);
311
312 /*
313 * If there is a non-monitor interface present
314 * the packet should be strict (even if a monitor interface is present!).
315 * When there is only 1 interface present which is in monitor mode
316 * we should start accepting _all_ frames.
317 */
318 if (is_interface_present(&rt2x00dev->interface)) {
319 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC, 1);
320 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 1);
321 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 1);
322 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
323 } else if (is_monitor_present(&rt2x00dev->interface)) {
324 rt2x00_set_field32(&reg, RXCSR0_DROP_CRC, 0);
325 rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL, 0);
326 rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL, 0);
327 rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 0);
328 }
329
330 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
331
332 /*
333 * Enable beacon config
334 */
335 rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
336 rt2x00_set_field32(&reg, BCNCSR1_PRELOAD,
337 PREAMBLE + get_duration(IEEE80211_HEADER, 2));
338 rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN,
339 rt2x00lib_get_ring(rt2x00dev,
340 IEEE80211_TX_QUEUE_BEACON)
341 ->tx_params.cw_min);
342 rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
343
344 /*
345 * Enable synchronisation.
346 */
347 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
348 if (is_interface_present(&rt2x00dev->interface)) {
349 rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
350 rt2x00_set_field32(&reg, CSR14_TBCN, 1);
351 }
352
353 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
354 if (type == IEEE80211_IF_TYPE_IBSS || type == IEEE80211_IF_TYPE_AP)
355 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 2);
356 else if (type == IEEE80211_IF_TYPE_STA)
357 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 1);
358 else if (is_monitor_present(&rt2x00dev->interface) &&
359 !is_interface_present(&rt2x00dev->interface))
360 rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
361
362 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
363}
364
365static void rt2500pci_config_rate(struct rt2x00_dev *rt2x00dev, const int rate)
366{
367 struct ieee80211_conf *conf = &rt2x00dev->hw->conf;
368 u32 reg;
369 u32 preamble;
370 u16 value;
371
372 if (DEVICE_GET_RATE_FIELD(rate, PREAMBLE))
373 preamble = SHORT_PREAMBLE;
374 else
375 preamble = PREAMBLE;
376
377 reg = DEVICE_GET_RATE_FIELD(rate, RATEMASK) & DEV_BASIC_RATEMASK;
378 rt2x00pci_register_write(rt2x00dev, ARCSR1, reg);
379
380 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
381 value = ((conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME) ?
382 SHORT_DIFS : DIFS) +
383 PLCP + preamble + get_duration(ACK_SIZE, 10);
384 rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, value);
385 value = SIFS + PLCP + preamble + get_duration(ACK_SIZE, 10);
386 rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, value);
387 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
388
389 preamble = DEVICE_GET_RATE_FIELD(rate, PREAMBLE) ? 0x08 : 0x00;
390
391 rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
392 rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00 | preamble);
393 rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
394 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 10));
395 rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
396
397 rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
398 rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble);
399 rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
400 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 20));
401 rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
402
403 rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
404 rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble);
405 rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
406 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 55));
407 rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
408
409 rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
410 rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble);
411 rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
412 rt2x00_set_field32(&reg, ARCSR2_LENGTH, get_duration(ACK_SIZE, 110));
413 rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
414}
415
416static void rt2500pci_config_phymode(struct rt2x00_dev *rt2x00dev,
417 const int phymode)
418{
419 struct ieee80211_hw_mode *mode;
420 struct ieee80211_rate *rate;
421
422 if (phymode == MODE_IEEE80211A)
423 rt2x00dev->curr_hwmode = HWMODE_A;
424 else if (phymode == MODE_IEEE80211B)
425 rt2x00dev->curr_hwmode = HWMODE_B;
426 else
427 rt2x00dev->curr_hwmode = HWMODE_G;
428
429 mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode];
430 rate = &mode->rates[mode->num_rates - 1];
431
432 rt2500pci_config_rate(rt2x00dev, rate->val2);
433}
434
435static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
436 const int index, const int channel,
437 const int txpower)
438{
439 struct rf_channel reg;
440 u8 r70;
441
442 /*
443 * Fill rf_reg structure.
444 */
445 memcpy(&reg, &rt2x00dev->spec.channels[index], sizeof(reg));
446
447 /*
448 * Set TXpower.
449 */
450 rt2x00_set_field32(&reg.rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
451
452 /*
453 * Switch on tuning bits.
454 * For RT2523 devices we do not need to update the R1 register.
455 */
456 if (!rt2x00_rf(&rt2x00dev->chip, RF2523))
457 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 1);
458 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 1);
459
460 /*
461 * For RT2525 we should first set the channel to half band higher.
462 */
463 if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
464 static const u32 vals[] = {
465 0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
466 0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
467 0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
468 0x00080d2e, 0x00080d3a
469 };
470
471 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
472 rt2500pci_rf_write(rt2x00dev, 2, vals[channel - 1]);
473 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
474 if (reg.rf4)
475 rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
476 }
477
478 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
479 rt2500pci_rf_write(rt2x00dev, 2, reg.rf2);
480 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
481 if (reg.rf4)
482 rt2500pci_rf_write(rt2x00dev, 4, reg.rf4);
483
484 /*
485 * Channel 14 requires the Japan filter bit to be set.
486 */
487 r70 = 0x46;
488 rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, channel == 14);
489 rt2500pci_bbp_write(rt2x00dev, 70, r70);
490
491 msleep(1);
492
493 /*
494 * Switch off tuning bits.
495 * For RT2523 devices we do not need to update the R1 register.
496 */
497 if (!rt2x00_rf(&rt2x00dev->chip, RF2523)) {
498 rt2x00_set_field32(&reg.rf1, RF1_TUNER, 0);
499 rt2500pci_rf_write(rt2x00dev, 1, reg.rf1);
500 }
501
502 rt2x00_set_field32(&reg.rf3, RF3_TUNER, 0);
503 rt2500pci_rf_write(rt2x00dev, 3, reg.rf3);
504
505 /*
506 * Clear false CRC during channel switch.
507 */
508 rt2x00pci_register_read(rt2x00dev, CNT0, &reg.rf1);
509}
510
511static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
512 const int txpower)
513{
514 u32 rf3;
515
516 rt2x00_rf_read(rt2x00dev, 3, &rf3);
517 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
518 rt2500pci_rf_write(rt2x00dev, 3, rf3);
519}
520
521static void rt2500pci_config_antenna(struct rt2x00_dev *rt2x00dev,
522 const int antenna_tx, const int antenna_rx)
523{
524 u32 reg;
525 u8 r14;
526 u8 r2;
527
528 rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
529 rt2500pci_bbp_read(rt2x00dev, 14, &r14);
530 rt2500pci_bbp_read(rt2x00dev, 2, &r2);
531
532 /*
533 * Configure the TX antenna.
534 */
535 switch (antenna_tx) {
536 case ANTENNA_SW_DIVERSITY:
537 case ANTENNA_HW_DIVERSITY:
538 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
539 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
540 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
541 break;
542 case ANTENNA_A:
543 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
544 rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
545 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
546 break;
547 case ANTENNA_B:
548 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
549 rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
550 rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
551 break;
552 }
553
554 /*
555 * Configure the RX antenna.
556 */
557 switch (antenna_rx) {
558 case ANTENNA_SW_DIVERSITY:
559 case ANTENNA_HW_DIVERSITY:
560 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
561 break;
562 case ANTENNA_A:
563 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
564 break;
565 case ANTENNA_B:
566 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
567 break;
568 }
569
570 /*
571 * RT2525E and RT5222 need to flip TX I/Q
572 */
573 if (rt2x00_rf(&rt2x00dev->chip, RF2525E) ||
574 rt2x00_rf(&rt2x00dev->chip, RF5222)) {
575 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
576 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
577 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
578
579 /*
580 * RT2525E does not need RX I/Q Flip.
581 */
582 if (rt2x00_rf(&rt2x00dev->chip, RF2525E))
583 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
584 } else {
585 rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
586 rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
587 }
588
589 rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
590 rt2500pci_bbp_write(rt2x00dev, 14, r14);
591 rt2500pci_bbp_write(rt2x00dev, 2, r2);
592}
593
594static void rt2500pci_config_duration(struct rt2x00_dev *rt2x00dev,
595 const int short_slot_time,
596 const int beacon_int)
597{
598 u32 reg;
599
600 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
601 rt2x00_set_field32(&reg, CSR11_SLOT_TIME,
602 short_slot_time ? SHORT_SLOT_TIME : SLOT_TIME);
603 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
604
605 rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
606 rt2x00_set_field32(&reg, CSR18_SIFS, SIFS);
607 rt2x00_set_field32(&reg, CSR18_PIFS,
608 short_slot_time ? SHORT_PIFS : PIFS);
609 rt2x00pci_register_write(rt2x00dev, CSR18, reg);
610
611 rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
612 rt2x00_set_field32(&reg, CSR19_DIFS,
613 short_slot_time ? SHORT_DIFS : DIFS);
614 rt2x00_set_field32(&reg, CSR19_EIFS, EIFS);
615 rt2x00pci_register_write(rt2x00dev, CSR19, reg);
616
617 rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
618 rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
619 rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
620 rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
621
622 rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
623 rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL, beacon_int * 16);
624 rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION, beacon_int * 16);
625 rt2x00pci_register_write(rt2x00dev, CSR12, reg);
626}
627
628static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
629 const unsigned int flags,
630 struct ieee80211_conf *conf)
631{
632 int short_slot_time = conf->flags & IEEE80211_CONF_SHORT_SLOT_TIME;
633
634 if (flags & CONFIG_UPDATE_PHYMODE)
635 rt2500pci_config_phymode(rt2x00dev, conf->phymode);
636 if (flags & CONFIG_UPDATE_CHANNEL)
637 rt2500pci_config_channel(rt2x00dev, conf->channel_val,
638 conf->channel, conf->power_level);
639 if ((flags & CONFIG_UPDATE_TXPOWER) && !(flags & CONFIG_UPDATE_CHANNEL))
640 rt2500pci_config_txpower(rt2x00dev, conf->power_level);
641 if (flags & CONFIG_UPDATE_ANTENNA)
642 rt2500pci_config_antenna(rt2x00dev, conf->antenna_sel_tx,
643 conf->antenna_sel_rx);
644 if (flags & (CONFIG_UPDATE_SLOT_TIME | CONFIG_UPDATE_BEACON_INT))
645 rt2500pci_config_duration(rt2x00dev, short_slot_time,
646 conf->beacon_int);
647}
648
649/*
650 * LED functions.
651 */
652static void rt2500pci_enable_led(struct rt2x00_dev *rt2x00dev)
653{
654 u32 reg;
655
656 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
657
658 rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, 70);
659 rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, 30);
660
661 if (rt2x00dev->led_mode == LED_MODE_TXRX_ACTIVITY) {
662 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
663 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
664 } else if (rt2x00dev->led_mode == LED_MODE_ASUS) {
665 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
666 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
667 } else {
668 rt2x00_set_field32(&reg, LEDCSR_LINK, 1);
669 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 1);
670 }
671
672 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
673}
674
675static void rt2500pci_disable_led(struct rt2x00_dev *rt2x00dev)
676{
677 u32 reg;
678
679 rt2x00pci_register_read(rt2x00dev, LEDCSR, &reg);
680 rt2x00_set_field32(&reg, LEDCSR_LINK, 0);
681 rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, 0);
682 rt2x00pci_register_write(rt2x00dev, LEDCSR, reg);
683}
684
685/*
686 * Link tuning
687 */
688static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev)
689{
690 u32 reg;
691
692 /*
693 * Update FCS error count from register.
694 */
695 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
696 rt2x00dev->link.rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
697
698 /*
699 * Update False CCA count from register.
700 */
701 rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
702 rt2x00dev->link.false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
703}
704
705static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev)
706{
707 rt2500pci_bbp_write(rt2x00dev, 17, 0x48);
708 rt2x00dev->link.vgc_level = 0x48;
709}
710
711static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev)
712{
713 int rssi = rt2x00_get_link_rssi(&rt2x00dev->link);
714 u8 r17;
715
716 /*
717 * To prevent collisions with MAC ASIC on chipsets
718 * up to version C the link tuning should halt after 20
719 * seconds.
720 */
721 if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D &&
722 rt2x00dev->link.count > 20)
723 return;
724
725 rt2500pci_bbp_read(rt2x00dev, 17, &r17);
726
727 /*
728 * Chipset versions C and lower should directly continue
729 * to the dynamic CCA tuning.
730 */
731 if (rt2x00_get_rev(&rt2x00dev->chip) < RT2560_VERSION_D)
732 goto dynamic_cca_tune;
733
734 /*
735 * A too low RSSI will cause too much false CCA which will
736 * then corrupt the R17 tuning. To remidy this the tuning should
737 * be stopped (While making sure the R17 value will not exceed limits)
738 */
739 if (rssi < -80 && rt2x00dev->link.count > 20) {
740 if (r17 >= 0x41) {
741 r17 = rt2x00dev->link.vgc_level;
742 rt2500pci_bbp_write(rt2x00dev, 17, r17);
743 }
744 return;
745 }
746
747 /*
748 * Special big-R17 for short distance
749 */
750 if (rssi >= -58) {
751 if (r17 != 0x50)
752 rt2500pci_bbp_write(rt2x00dev, 17, 0x50);
753 return;
754 }
755
756 /*
757 * Special mid-R17 for middle distance
758 */
759 if (rssi >= -74) {
760 if (r17 != 0x41)
761 rt2500pci_bbp_write(rt2x00dev, 17, 0x41);
762 return;
763 }
764
765 /*
766 * Leave short or middle distance condition, restore r17
767 * to the dynamic tuning range.
768 */
769 if (r17 >= 0x41) {
770 rt2500pci_bbp_write(rt2x00dev, 17, rt2x00dev->link.vgc_level);
771 return;
772 }
773
774dynamic_cca_tune:
775
776 /*
777 * R17 is inside the dynamic tuning range,
778 * start tuning the link based on the false cca counter.
779 */
780 if (rt2x00dev->link.false_cca > 512 && r17 < 0x40) {
781 rt2500pci_bbp_write(rt2x00dev, 17, ++r17);
782 rt2x00dev->link.vgc_level = r17;
783 } else if (rt2x00dev->link.false_cca < 100 && r17 > 0x32) {
784 rt2500pci_bbp_write(rt2x00dev, 17, --r17);
785 rt2x00dev->link.vgc_level = r17;
786 }
787}
788
789/*
790 * Initialization functions.
791 */
792static void rt2500pci_init_rxring(struct rt2x00_dev *rt2x00dev)
793{
794 struct data_ring *ring = rt2x00dev->rx;
795 struct data_desc *rxd;
796 unsigned int i;
797 u32 word;
798
799 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
800
801 for (i = 0; i < ring->stats.limit; i++) {
802 rxd = ring->entry[i].priv;
803
804 rt2x00_desc_read(rxd, 1, &word);
805 rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS,
806 ring->entry[i].data_dma);
807 rt2x00_desc_write(rxd, 1, word);
808
809 rt2x00_desc_read(rxd, 0, &word);
810 rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
811 rt2x00_desc_write(rxd, 0, word);
812 }
813
814 rt2x00_ring_index_clear(rt2x00dev->rx);
815}
816
817static void rt2500pci_init_txring(struct rt2x00_dev *rt2x00dev, const int queue)
818{
819 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
820 struct data_desc *txd;
821 unsigned int i;
822 u32 word;
823
824 memset(ring->data_addr, 0x00, rt2x00_get_ring_size(ring));
825
826 for (i = 0; i < ring->stats.limit; i++) {
827 txd = ring->entry[i].priv;
828
829 rt2x00_desc_read(txd, 1, &word);
830 rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS,
831 ring->entry[i].data_dma);
832 rt2x00_desc_write(txd, 1, word);
833
834 rt2x00_desc_read(txd, 0, &word);
835 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
836 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
837 rt2x00_desc_write(txd, 0, word);
838 }
839
840 rt2x00_ring_index_clear(ring);
841}
842
843static int rt2500pci_init_rings(struct rt2x00_dev *rt2x00dev)
844{
845 u32 reg;
846
847 /*
848 * Initialize rings.
849 */
850 rt2500pci_init_rxring(rt2x00dev);
851 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
852 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
853 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
854 rt2500pci_init_txring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON);
855
856 /*
857 * Initialize registers.
858 */
859 rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
860 rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE,
861 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].desc_size);
862 rt2x00_set_field32(&reg, TXCSR2_NUM_TXD,
863 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].stats.limit);
864 rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM,
865 rt2x00dev->bcn[1].stats.limit);
866 rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO,
867 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].stats.limit);
868 rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
869
870 rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
871 rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
872 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA1].data_dma);
873 rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
874
875 rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
876 rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
877 rt2x00dev->tx[IEEE80211_TX_QUEUE_DATA0].data_dma);
878 rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
879
880 rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
881 rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
882 rt2x00dev->bcn[1].data_dma);
883 rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
884
885 rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
886 rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
887 rt2x00dev->bcn[0].data_dma);
888 rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
889
890 rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
891 rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
892 rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->stats.limit);
893 rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
894
895 rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
896 rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
897 rt2x00dev->rx->data_dma);
898 rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
899
900 return 0;
901}
902
903static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
904{
905 u32 reg;
906
907 rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
908 rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
909 rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
910 rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
911
912 rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
913 rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
914 rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
915 rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
916 rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
917
918 rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
919 rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
920 rt2x00dev->rx->data_size / 128);
921 rt2x00pci_register_write(rt2x00dev, CSR9, reg);
922
923 /*
924 * Always use CWmin and CWmax set in descriptor.
925 */
926 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
927 rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
928 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
929
930 rt2x00pci_register_write(rt2x00dev, CNT3, 0);
931
932 rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
933 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
934 rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
935 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
936 rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
937 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
938 rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
939 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
940 rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
941 rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
942
943 rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
944 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
945 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
946 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
947 rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
948 rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
949
950 rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
951 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
952 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
953 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
954 rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
955 rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
956
957 rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
958 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
959 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
960 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
961 rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
962 rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
963
964 rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
965 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
966 rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
967 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
968 rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
969 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
970 rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
971 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
972 rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
973 rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
974
975 rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
976 rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
977 rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
978 rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
979 rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
980 rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
981 rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
982 rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
983 rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
984
985 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
986
987 rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
988 rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
989
990 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
991 return -EBUSY;
992
993 rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
994 rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
995
996 rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
997 rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
998 rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
999
1000 rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1001 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1002 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1003 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1004 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1005 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1006 rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1007 rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1008
1009 rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1010
1011 rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1012
1013 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1014 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1015 rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1016 rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1017 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1018
1019 rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1020 rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1021 rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1022 rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1023
1024 /*
1025 * We must clear the FCS and FIFO error count.
1026 * These registers are cleared on read,
1027 * so we may pass a useless variable to store the value.
1028 */
1029 rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1030 rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1031
1032 return 0;
1033}
1034
1035static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1036{
1037 unsigned int i;
1038 u16 eeprom;
1039 u8 reg_id;
1040 u8 value;
1041
1042 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1043 rt2500pci_bbp_read(rt2x00dev, 0, &value);
1044 if ((value != 0xff) && (value != 0x00))
1045 goto continue_csr_init;
1046 NOTICE(rt2x00dev, "Waiting for BBP register.\n");
1047 udelay(REGISTER_BUSY_DELAY);
1048 }
1049
1050 ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1051 return -EACCES;
1052
1053continue_csr_init:
1054 rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1055 rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1056 rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1057 rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1058 rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1059 rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1060 rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1061 rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1062 rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1063 rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1064 rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1065 rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1066 rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1067 rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1068 rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1069 rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1070 rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1071 rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1072 rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1073 rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1074 rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1075 rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1076 rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1077 rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1078 rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1079 rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1080 rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1081 rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1082 rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1083 rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1084
1085 DEBUG(rt2x00dev, "Start initialization from EEPROM...\n");
1086 for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1087 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1088
1089 if (eeprom != 0xffff && eeprom != 0x0000) {
1090 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1091 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1092 DEBUG(rt2x00dev, "BBP: 0x%02x, value: 0x%02x.\n",
1093 reg_id, value);
1094 rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1095 }
1096 }
1097 DEBUG(rt2x00dev, "...End initialization from EEPROM.\n");
1098
1099 return 0;
1100}
1101
1102/*
1103 * Device state switch handlers.
1104 */
1105static void rt2500pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
1106 enum dev_state state)
1107{
1108 u32 reg;
1109
1110 rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
1111 rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX,
1112 state == STATE_RADIO_RX_OFF);
1113 rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
1114}
1115
1116static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1117 enum dev_state state)
1118{
1119 int mask = (state == STATE_RADIO_IRQ_OFF);
1120 u32 reg;
1121
1122 /*
1123 * When interrupts are being enabled, the interrupt registers
1124 * should clear the register to assure a clean state.
1125 */
1126 if (state == STATE_RADIO_IRQ_ON) {
1127 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1128 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1129 }
1130
1131 /*
1132 * Only toggle the interrupts bits we are going to use.
1133 * Non-checked interrupt bits are disabled by default.
1134 */
1135 rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1136 rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1137 rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1138 rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1139 rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1140 rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1141 rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1142}
1143
1144static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1145{
1146 /*
1147 * Initialize all registers.
1148 */
1149 if (rt2500pci_init_rings(rt2x00dev) ||
1150 rt2500pci_init_registers(rt2x00dev) ||
1151 rt2500pci_init_bbp(rt2x00dev)) {
1152 ERROR(rt2x00dev, "Register initialization failed.\n");
1153 return -EIO;
1154 }
1155
1156 /*
1157 * Enable interrupts.
1158 */
1159 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_ON);
1160
1161 /*
1162 * Enable LED
1163 */
1164 rt2500pci_enable_led(rt2x00dev);
1165
1166 return 0;
1167}
1168
1169static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1170{
1171 u32 reg;
1172
1173 /*
1174 * Disable LED
1175 */
1176 rt2500pci_disable_led(rt2x00dev);
1177
1178 rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1179
1180 /*
1181 * Disable synchronisation.
1182 */
1183 rt2x00pci_register_write(rt2x00dev, CSR14, 0);
1184
1185 /*
1186 * Cancel RX and TX.
1187 */
1188 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1189 rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
1190 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1191
1192 /*
1193 * Disable interrupts.
1194 */
1195 rt2500pci_toggle_irq(rt2x00dev, STATE_RADIO_IRQ_OFF);
1196}
1197
1198static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1199 enum dev_state state)
1200{
1201 u32 reg;
1202 unsigned int i;
1203 char put_to_sleep;
1204 char bbp_state;
1205 char rf_state;
1206
1207 put_to_sleep = (state != STATE_AWAKE);
1208
1209 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1210 rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1211 rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1212 rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1213 rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1214 rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1215
1216 /*
1217 * Device is not guaranteed to be in the requested state yet.
1218 * We must wait until the register indicates that the
1219 * device has entered the correct state.
1220 */
1221 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1222 rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1223 bbp_state = rt2x00_get_field32(reg, PWRCSR1_BBP_CURR_STATE);
1224 rf_state = rt2x00_get_field32(reg, PWRCSR1_RF_CURR_STATE);
1225 if (bbp_state == state && rf_state == state)
1226 return 0;
1227 msleep(10);
1228 }
1229
1230 NOTICE(rt2x00dev, "Device failed to enter state %d, "
1231 "current device state: bbp %d and rf %d.\n",
1232 state, bbp_state, rf_state);
1233
1234 return -EBUSY;
1235}
1236
1237static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1238 enum dev_state state)
1239{
1240 int retval = 0;
1241
1242 switch (state) {
1243 case STATE_RADIO_ON:
1244 retval = rt2500pci_enable_radio(rt2x00dev);
1245 break;
1246 case STATE_RADIO_OFF:
1247 rt2500pci_disable_radio(rt2x00dev);
1248 break;
1249 case STATE_RADIO_RX_ON:
1250 case STATE_RADIO_RX_OFF:
1251 rt2500pci_toggle_rx(rt2x00dev, state);
1252 break;
1253 case STATE_DEEP_SLEEP:
1254 case STATE_SLEEP:
1255 case STATE_STANDBY:
1256 case STATE_AWAKE:
1257 retval = rt2500pci_set_state(rt2x00dev, state);
1258 break;
1259 default:
1260 retval = -ENOTSUPP;
1261 break;
1262 }
1263
1264 return retval;
1265}
1266
1267/*
1268 * TX descriptor initialization
1269 */
1270static void rt2500pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
1271 struct data_desc *txd,
1272 struct data_entry_desc *desc,
1273 struct ieee80211_hdr *ieee80211hdr,
1274 unsigned int length,
1275 struct ieee80211_tx_control *control)
1276{
1277 u32 word;
1278
1279 /*
1280 * Start writing the descriptor words.
1281 */
1282 rt2x00_desc_read(txd, 2, &word);
1283 rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1284 rt2x00_set_field32(&word, TXD_W2_AIFS, desc->aifs);
1285 rt2x00_set_field32(&word, TXD_W2_CWMIN, desc->cw_min);
1286 rt2x00_set_field32(&word, TXD_W2_CWMAX, desc->cw_max);
1287 rt2x00_desc_write(txd, 2, word);
1288
1289 rt2x00_desc_read(txd, 3, &word);
1290 rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, desc->signal);
1291 rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, desc->service);
1292 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW, desc->length_low);
1293 rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH, desc->length_high);
1294 rt2x00_desc_write(txd, 3, word);
1295
1296 rt2x00_desc_read(txd, 10, &word);
1297 rt2x00_set_field32(&word, TXD_W10_RTS,
1298 test_bit(ENTRY_TXD_RTS_FRAME, &desc->flags));
1299 rt2x00_desc_write(txd, 10, word);
1300
1301 rt2x00_desc_read(txd, 0, &word);
1302 rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1303 rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1304 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1305 test_bit(ENTRY_TXD_MORE_FRAG, &desc->flags));
1306 rt2x00_set_field32(&word, TXD_W0_ACK,
1307 !(control->flags & IEEE80211_TXCTL_NO_ACK));
1308 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1309 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc->flags));
1310 rt2x00_set_field32(&word, TXD_W0_OFDM,
1311 test_bit(ENTRY_TXD_OFDM_RATE, &desc->flags));
1312 rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1313 rt2x00_set_field32(&word, TXD_W0_IFS, desc->ifs);
1314 rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1315 !!(control->flags &
1316 IEEE80211_TXCTL_LONG_RETRY_LIMIT));
1317 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, length);
1318 rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1319 rt2x00_desc_write(txd, 0, word);
1320}
1321
1322/*
1323 * TX data initialization
1324 */
1325static void rt2500pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
1326 unsigned int queue)
1327{
1328 u32 reg;
1329
1330 if (queue == IEEE80211_TX_QUEUE_BEACON) {
1331 rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1332 if (!rt2x00_get_field32(reg, CSR14_BEACON_GEN)) {
1333 rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1334 rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1335 }
1336 return;
1337 }
1338
1339 rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
1340 if (queue == IEEE80211_TX_QUEUE_DATA0)
1341 rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
1342 else if (queue == IEEE80211_TX_QUEUE_DATA1)
1343 rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
1344 else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON)
1345 rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
1346 rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
1347}
1348
1349/*
1350 * RX control handlers
1351 */
1352static int rt2500pci_fill_rxdone(struct data_entry *entry,
1353 int *signal, int *rssi, int *ofdm, int *size)
1354{
1355 struct data_desc *rxd = entry->priv;
1356 u32 word0;
1357 u32 word2;
1358
1359 rt2x00_desc_read(rxd, 0, &word0);
1360 rt2x00_desc_read(rxd, 2, &word2);
1361
1362 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR) ||
1363 rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR) ||
1364 rt2x00_get_field32(word0, RXD_W0_ICV_ERROR))
1365 return -EINVAL;
1366
1367 *signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1368 *rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1369 entry->ring->rt2x00dev->rssi_offset;
1370 *ofdm = rt2x00_get_field32(word0, RXD_W0_OFDM);
1371 *size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1372
1373 return 0;
1374}
1375
1376/*
1377 * Interrupt functions.
1378 */
1379static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev, const int queue)
1380{
1381 struct data_ring *ring = rt2x00lib_get_ring(rt2x00dev, queue);
1382 struct data_entry *entry;
1383 struct data_desc *txd;
1384 u32 word;
1385 int tx_status;
1386 int retry;
1387
1388 while (!rt2x00_ring_empty(ring)) {
1389 entry = rt2x00_get_data_entry_done(ring);
1390 txd = entry->priv;
1391 rt2x00_desc_read(txd, 0, &word);
1392
1393 if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1394 !rt2x00_get_field32(word, TXD_W0_VALID))
1395 break;
1396
1397 /*
1398 * Obtain the status about this packet.
1399 */
1400 tx_status = rt2x00_get_field32(word, TXD_W0_RESULT);
1401 retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1402
1403 rt2x00lib_txdone(entry, tx_status, retry);
1404
1405 /*
1406 * Make this entry available for reuse.
1407 */
1408 entry->flags = 0;
1409 rt2x00_set_field32(&word, TXD_W0_VALID, 0);
1410 rt2x00_desc_write(txd, 0, word);
1411 rt2x00_ring_index_done_inc(ring);
1412 }
1413
1414 /*
1415 * If the data ring was full before the txdone handler
1416 * we must make sure the packet queue in the mac80211 stack
1417 * is reenabled when the txdone handler has finished.
1418 */
1419 entry = ring->entry;
1420 if (!rt2x00_ring_full(ring))
1421 ieee80211_wake_queue(rt2x00dev->hw,
1422 entry->tx_status.control.queue);
1423}
1424
1425static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1426{
1427 struct rt2x00_dev *rt2x00dev = dev_instance;
1428 u32 reg;
1429
1430 /*
1431 * Get the interrupt sources & saved to local variable.
1432 * Write register value back to clear pending interrupts.
1433 */
1434 rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1435 rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1436
1437 if (!reg)
1438 return IRQ_NONE;
1439
1440 if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags))
1441 return IRQ_HANDLED;
1442
1443 /*
1444 * Handle interrupts, walk through all bits
1445 * and run the tasks, the bits are checked in order of
1446 * priority.
1447 */
1448
1449 /*
1450 * 1 - Beacon timer expired interrupt.
1451 */
1452 if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1453 rt2x00lib_beacondone(rt2x00dev);
1454
1455 /*
1456 * 2 - Rx ring done interrupt.
1457 */
1458 if (rt2x00_get_field32(reg, CSR7_RXDONE))
1459 rt2x00pci_rxdone(rt2x00dev);
1460
1461 /*
1462 * 3 - Atim ring transmit done interrupt.
1463 */
1464 if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING))
1465 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_AFTER_BEACON);
1466
1467 /*
1468 * 4 - Priority ring transmit done interrupt.
1469 */
1470 if (rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING))
1471 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA0);
1472
1473 /*
1474 * 5 - Tx ring transmit done interrupt.
1475 */
1476 if (rt2x00_get_field32(reg, CSR7_TXDONE_TXRING))
1477 rt2500pci_txdone(rt2x00dev, IEEE80211_TX_QUEUE_DATA1);
1478
1479 return IRQ_HANDLED;
1480}
1481
1482/*
1483 * Device probe functions.
1484 */
1485static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1486{
1487 struct eeprom_93cx6 eeprom;
1488 u32 reg;
1489 u16 word;
1490 u8 *mac;
1491
1492 rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1493
1494 eeprom.data = rt2x00dev;
1495 eeprom.register_read = rt2500pci_eepromregister_read;
1496 eeprom.register_write = rt2500pci_eepromregister_write;
1497 eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1498 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1499 eeprom.reg_data_in = 0;
1500 eeprom.reg_data_out = 0;
1501 eeprom.reg_data_clock = 0;
1502 eeprom.reg_chip_select = 0;
1503
1504 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1505 EEPROM_SIZE / sizeof(u16));
1506
1507 /*
1508 * Start validation of the data that has been read.
1509 */
1510 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1511 if (!is_valid_ether_addr(mac)) {
1512 random_ether_addr(mac);
1513 EEPROM(rt2x00dev, "MAC: " MAC_FMT "\n", MAC_ARG(mac));
1514 }
1515
1516 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1517 if (word == 0xffff) {
1518 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1519 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 0);
1520 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 0);
1521 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 0);
1522 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1523 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1524 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1525 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1526 EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1527 }
1528
1529 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1530 if (word == 0xffff) {
1531 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1532 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1533 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1534 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1535 EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1536 }
1537
1538 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1539 if (word == 0xffff) {
1540 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1541 DEFAULT_RSSI_OFFSET);
1542 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1543 EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1544 }
1545
1546 return 0;
1547}
1548
1549static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1550{
1551 u32 reg;
1552 u16 value;
1553 u16 eeprom;
1554
1555 /*
1556 * Read EEPROM word for configuration.
1557 */
1558 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1559
1560 /*
1561 * Identify RF chipset.
1562 */
1563 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1564 rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1565 rt2x00_set_chip(rt2x00dev, RT2560, value, reg);
1566
1567 if (!rt2x00_rf(&rt2x00dev->chip, RF2522) &&
1568 !rt2x00_rf(&rt2x00dev->chip, RF2523) &&
1569 !rt2x00_rf(&rt2x00dev->chip, RF2524) &&
1570 !rt2x00_rf(&rt2x00dev->chip, RF2525) &&
1571 !rt2x00_rf(&rt2x00dev->chip, RF2525E) &&
1572 !rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1573 ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1574 return -ENODEV;
1575 }
1576
1577 /*
1578 * Identify default antenna configuration.
1579 */
1580 rt2x00dev->hw->conf.antenna_sel_tx =
1581 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1582 rt2x00dev->hw->conf.antenna_sel_rx =
1583 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1584
1585 /*
1586 * Store led mode, for correct led behaviour.
1587 */
1588 rt2x00dev->led_mode =
1589 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1590
1591 /*
1592 * Detect if this device has an hardware controlled radio.
1593 */
1594 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1595 __set_bit(DEVICE_SUPPORT_HW_BUTTON, &rt2x00dev->flags);
1596
1597 /*
1598 * Check if the BBP tuning should be enabled.
1599 */
1600 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1601
1602 if (rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1603 __set_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags);
1604
1605 /*
1606 * Read the RSSI <-> dBm offset information.
1607 */
1608 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1609 rt2x00dev->rssi_offset =
1610 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1611
1612 return 0;
1613}
1614
1615/*
1616 * RF value list for RF2522
1617 * Supports: 2.4 GHz
1618 */
1619static const struct rf_channel rf_vals_bg_2522[] = {
1620 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 },
1621 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 },
1622 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 },
1623 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 },
1624 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 },
1625 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 },
1626 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 },
1627 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 },
1628 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 },
1629 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1630 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1631 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1632 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1633 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1634};
1635
1636/*
1637 * RF value list for RF2523
1638 * Supports: 2.4 GHz
1639 */
1640static const struct rf_channel rf_vals_bg_2523[] = {
1641 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1642 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1643 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1644 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1645 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1646 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1647 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1648 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1649 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1650 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1651 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1652 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1653 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1654 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1655};
1656
1657/*
1658 * RF value list for RF2524
1659 * Supports: 2.4 GHz
1660 */
1661static const struct rf_channel rf_vals_bg_2524[] = {
1662 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1663 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1664 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1665 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1666 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1667 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1668 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1669 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1670 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1671 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1672 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1673 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1674 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1675 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1676};
1677
1678/*
1679 * RF value list for RF2525
1680 * Supports: 2.4 GHz
1681 */
1682static const struct rf_channel rf_vals_bg_2525[] = {
1683 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1684 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1685 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1686 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1687 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1688 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1689 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1690 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1691 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1692 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1693 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1694 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1695 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1696 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1697};
1698
1699/*
1700 * RF value list for RF2525e
1701 * Supports: 2.4 GHz
1702 */
1703static const struct rf_channel rf_vals_bg_2525e[] = {
1704 { 1, 0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1705 { 2, 0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1706 { 3, 0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1707 { 4, 0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1708 { 5, 0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1709 { 6, 0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1710 { 7, 0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1711 { 8, 0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1712 { 9, 0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1713 { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1714 { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1715 { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1716 { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1717 { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1718};
1719
1720/*
1721 * RF value list for RF5222
1722 * Supports: 2.4 GHz & 5.2 GHz
1723 */
1724static const struct rf_channel rf_vals_5222[] = {
1725 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1726 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1727 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1728 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1729 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1730 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1731 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1732 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1733 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1734 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1735 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1736 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1737 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1738 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1739
1740 /* 802.11 UNI / HyperLan 2 */
1741 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1742 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1743 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1744 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1745 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1746 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1747 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1748 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1749
1750 /* 802.11 HyperLan 2 */
1751 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1752 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1753 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1754 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1755 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1756 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1757 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1758 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1759 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1760 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1761
1762 /* 802.11 UNII */
1763 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1764 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1765 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1766 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1767 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1768};
1769
1770static void rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1771{
1772 struct hw_mode_spec *spec = &rt2x00dev->spec;
1773 u8 *txpower;
1774 unsigned int i;
1775
1776 /*
1777 * Initialize all hw fields.
1778 */
1779 rt2x00dev->hw->flags =
1780 IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1781 IEEE80211_HW_MONITOR_DURING_OPER |
1782 IEEE80211_HW_NO_PROBE_FILTERING;
1783 rt2x00dev->hw->extra_tx_headroom = 0;
1784 rt2x00dev->hw->max_signal = MAX_SIGNAL;
1785 rt2x00dev->hw->max_rssi = MAX_RX_SSI;
1786 rt2x00dev->hw->queues = 2;
1787
1788 SET_IEEE80211_DEV(rt2x00dev->hw, &rt2x00dev_pci(rt2x00dev)->dev);
1789 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1790 rt2x00_eeprom_addr(rt2x00dev,
1791 EEPROM_MAC_ADDR_0));
1792
1793 /*
1794 * Convert tx_power array in eeprom.
1795 */
1796 txpower = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1797 for (i = 0; i < 14; i++)
1798 txpower[i] = TXPOWER_FROM_DEV(txpower[i]);
1799
1800 /*
1801 * Initialize hw_mode information.
1802 */
1803 spec->num_modes = 2;
1804 spec->num_rates = 12;
1805 spec->tx_power_a = NULL;
1806 spec->tx_power_bg = txpower;
1807 spec->tx_power_default = DEFAULT_TXPOWER;
1808
1809 if (rt2x00_rf(&rt2x00dev->chip, RF2522)) {
1810 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1811 spec->channels = rf_vals_bg_2522;
1812 } else if (rt2x00_rf(&rt2x00dev->chip, RF2523)) {
1813 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1814 spec->channels = rf_vals_bg_2523;
1815 } else if (rt2x00_rf(&rt2x00dev->chip, RF2524)) {
1816 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1817 spec->channels = rf_vals_bg_2524;
1818 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525)) {
1819 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1820 spec->channels = rf_vals_bg_2525;
1821 } else if (rt2x00_rf(&rt2x00dev->chip, RF2525E)) {
1822 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1823 spec->channels = rf_vals_bg_2525e;
1824 } else if (rt2x00_rf(&rt2x00dev->chip, RF5222)) {
1825 spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1826 spec->channels = rf_vals_5222;
1827 spec->num_modes = 3;
1828 }
1829}
1830
1831static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1832{
1833 int retval;
1834
1835 /*
1836 * Allocate eeprom data.
1837 */
1838 retval = rt2500pci_validate_eeprom(rt2x00dev);
1839 if (retval)
1840 return retval;
1841
1842 retval = rt2500pci_init_eeprom(rt2x00dev);
1843 if (retval)
1844 return retval;
1845
1846 /*
1847 * Initialize hw specifications.
1848 */
1849 rt2500pci_probe_hw_mode(rt2x00dev);
1850
1851 /*
1852 * This device requires the beacon ring
1853 */
1854 __set_bit(REQUIRE_BEACON_RING, &rt2x00dev->flags);
1855
1856 /*
1857 * Set the rssi offset.
1858 */
1859 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1860
1861 return 0;
1862}
1863
1864/*
1865 * IEEE80211 stack callback functions.
1866 */
1867static int rt2500pci_set_retry_limit(struct ieee80211_hw *hw,
1868 u32 short_retry, u32 long_retry)
1869{
1870 struct rt2x00_dev *rt2x00dev = hw->priv;
1871 u32 reg;
1872
1873 rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
1874 rt2x00_set_field32(&reg, CSR11_LONG_RETRY, long_retry);
1875 rt2x00_set_field32(&reg, CSR11_SHORT_RETRY, short_retry);
1876 rt2x00pci_register_write(rt2x00dev, CSR11, reg);
1877
1878 return 0;
1879}
1880
1881static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1882{
1883 struct rt2x00_dev *rt2x00dev = hw->priv;
1884 u64 tsf;
1885 u32 reg;
1886
1887 rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1888 tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1889 rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1890 tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1891
1892 return tsf;
1893}
1894
1895static void rt2500pci_reset_tsf(struct ieee80211_hw *hw)
1896{
1897 struct rt2x00_dev *rt2x00dev = hw->priv;
1898
1899 rt2x00pci_register_write(rt2x00dev, CSR16, 0);
1900 rt2x00pci_register_write(rt2x00dev, CSR17, 0);
1901}
1902
1903static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1904{
1905 struct rt2x00_dev *rt2x00dev = hw->priv;
1906 u32 reg;
1907
1908 rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1909 return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1910}
1911
1912static const struct ieee80211_ops rt2500pci_mac80211_ops = {
1913 .tx = rt2x00mac_tx,
1914 .add_interface = rt2x00mac_add_interface,
1915 .remove_interface = rt2x00mac_remove_interface,
1916 .config = rt2x00mac_config,
1917 .config_interface = rt2x00mac_config_interface,
1918 .set_multicast_list = rt2x00mac_set_multicast_list,
1919 .get_stats = rt2x00mac_get_stats,
1920 .set_retry_limit = rt2500pci_set_retry_limit,
1921 .conf_tx = rt2x00mac_conf_tx,
1922 .get_tx_stats = rt2x00mac_get_tx_stats,
1923 .get_tsf = rt2500pci_get_tsf,
1924 .reset_tsf = rt2500pci_reset_tsf,
1925 .beacon_update = rt2x00pci_beacon_update,
1926 .tx_last_beacon = rt2500pci_tx_last_beacon,
1927};
1928
1929static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
1930 .irq_handler = rt2500pci_interrupt,
1931 .probe_hw = rt2500pci_probe_hw,
1932 .initialize = rt2x00pci_initialize,
1933 .uninitialize = rt2x00pci_uninitialize,
1934 .set_device_state = rt2500pci_set_device_state,
1935#ifdef CONFIG_RT2500PCI_RFKILL
1936 .rfkill_poll = rt2500pci_rfkill_poll,
1937#endif /* CONFIG_RT2500PCI_RFKILL */
1938 .link_stats = rt2500pci_link_stats,
1939 .reset_tuner = rt2500pci_reset_tuner,
1940 .link_tuner = rt2500pci_link_tuner,
1941 .write_tx_desc = rt2500pci_write_tx_desc,
1942 .write_tx_data = rt2x00pci_write_tx_data,
1943 .kick_tx_queue = rt2500pci_kick_tx_queue,
1944 .fill_rxdone = rt2500pci_fill_rxdone,
1945 .config_mac_addr = rt2500pci_config_mac_addr,
1946 .config_bssid = rt2500pci_config_bssid,
1947 .config_packet_filter = rt2500pci_config_packet_filter,
1948 .config_type = rt2500pci_config_type,
1949 .config = rt2500pci_config,
1950};
1951
1952static const struct rt2x00_ops rt2500pci_ops = {
1953 .name = DRV_NAME,
1954 .rxd_size = RXD_DESC_SIZE,
1955 .txd_size = TXD_DESC_SIZE,
1956 .eeprom_size = EEPROM_SIZE,
1957 .rf_size = RF_SIZE,
1958 .lib = &rt2500pci_rt2x00_ops,
1959 .hw = &rt2500pci_mac80211_ops,
1960#ifdef CONFIG_RT2X00_LIB_DEBUGFS
1961 .debugfs = &rt2500pci_rt2x00debug,
1962#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1963};
1964
1965/*
1966 * RT2500pci module information.
1967 */
1968static struct pci_device_id rt2500pci_device_table[] = {
1969 { PCI_DEVICE(0x1814, 0x0201), PCI_DEVICE_DATA(&rt2500pci_ops) },
1970 { 0, }
1971};
1972
1973MODULE_AUTHOR(DRV_PROJECT);
1974MODULE_VERSION(DRV_VERSION);
1975MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
1976MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
1977MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
1978MODULE_LICENSE("GPL");
1979
1980static struct pci_driver rt2500pci_driver = {
1981 .name = DRV_NAME,
1982 .id_table = rt2500pci_device_table,
1983 .probe = rt2x00pci_probe,
1984 .remove = __devexit_p(rt2x00pci_remove),
1985 .suspend = rt2x00pci_suspend,
1986 .resume = rt2x00pci_resume,
1987};
1988
1989static int __init rt2500pci_init(void)
1990{
1991 return pci_register_driver(&rt2500pci_driver);
1992}
1993
1994static void __exit rt2500pci_exit(void)
1995{
1996 pci_unregister_driver(&rt2500pci_driver);
1997}
1998
1999module_init(rt2500pci_init);
2000module_exit(rt2500pci_exit);