diff options
author | Emmanuel Grumbach <emmanuel.grumbach@intel.com> | 2008-04-16 19:34:47 -0400 |
---|---|---|
committer | John W. Linville <linville@tuxdriver.com> | 2008-05-07 15:02:10 -0400 |
commit | f0832f137c21d130998a0f97f97ac01a2d97210b (patch) | |
tree | 6b9af836baa6133caaf4aebe3717719c9cbb7725 /drivers/net/wireless/iwlwifi/iwl-calib.c | |
parent | a7ca0268b5dfffcaa8a1fe40c6eccdeac50fa3ea (diff) |
iwlwifi: HW dependent run time calibration
This patch does several things:
1) rename CONFIG_IWL4965_SENSITIVITY to IWL4965_RUN_TIME_CALIB which is
better semantic
2) move all the run time calibration to a new file: iwl-calib.c
3) simplify the sensitivity calibration flow and make it HW dependent
4) make the chain noise calibration flow HW dependent
Signed-off-by: Emmanuel Grumbach <emmanuel.grumbach@intel.com>
Signed-off-by: Tomas Winkler <tomas.winkler@intel.com>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net/wireless/iwlwifi/iwl-calib.c')
-rw-r--r-- | drivers/net/wireless/iwlwifi/iwl-calib.c | 778 |
1 files changed, 778 insertions, 0 deletions
diff --git a/drivers/net/wireless/iwlwifi/iwl-calib.c b/drivers/net/wireless/iwlwifi/iwl-calib.c new file mode 100644 index 000000000000..16213b05ed93 --- /dev/null +++ b/drivers/net/wireless/iwlwifi/iwl-calib.c | |||
@@ -0,0 +1,778 @@ | |||
1 | /****************************************************************************** | ||
2 | * | ||
3 | * This file is provided under a dual BSD/GPLv2 license. When using or | ||
4 | * redistributing this file, you may do so under either license. | ||
5 | * | ||
6 | * GPL LICENSE SUMMARY | ||
7 | * | ||
8 | * Copyright(c) 2008 Intel Corporation. All rights reserved. | ||
9 | * | ||
10 | * This program is free software; you can redistribute it and/or modify | ||
11 | * it under the terms of version 2 of the GNU General Public License as | ||
12 | * published by the Free Software Foundation. | ||
13 | * | ||
14 | * This program is distributed in the hope that it will be useful, but | ||
15 | * WITHOUT ANY WARRANTY; without even the implied warranty of | ||
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
17 | * General Public License for more details. | ||
18 | * | ||
19 | * You should have received a copy of the GNU General Public License | ||
20 | * along with this program; if not, write to the Free Software | ||
21 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110, | ||
22 | * USA | ||
23 | * | ||
24 | * The full GNU General Public License is included in this distribution | ||
25 | * in the file called LICENSE.GPL. | ||
26 | * | ||
27 | * Contact Information: | ||
28 | * Tomas Winkler <tomas.winkler@intel.com> | ||
29 | * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
30 | * | ||
31 | * BSD LICENSE | ||
32 | * | ||
33 | * Copyright(c) 2005 - 2008 Intel Corporation. All rights reserved. | ||
34 | * All rights reserved. | ||
35 | * | ||
36 | * Redistribution and use in source and binary forms, with or without | ||
37 | * modification, are permitted provided that the following conditions | ||
38 | * are met: | ||
39 | * | ||
40 | * * Redistributions of source code must retain the above copyright | ||
41 | * notice, this list of conditions and the following disclaimer. | ||
42 | * * Redistributions in binary form must reproduce the above copyright | ||
43 | * notice, this list of conditions and the following disclaimer in | ||
44 | * the documentation and/or other materials provided with the | ||
45 | * distribution. | ||
46 | * * Neither the name Intel Corporation nor the names of its | ||
47 | * contributors may be used to endorse or promote products derived | ||
48 | * from this software without specific prior written permission. | ||
49 | * | ||
50 | * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | ||
51 | * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | ||
52 | * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | ||
53 | * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | ||
54 | * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | ||
55 | * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | ||
56 | * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | ||
57 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | ||
58 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | ||
59 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
60 | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | ||
61 | *****************************************************************************/ | ||
62 | |||
63 | #include <linux/kernel.h> | ||
64 | #include <net/mac80211.h> | ||
65 | |||
66 | #include "iwl-4965.h" | ||
67 | #include "iwl-core.h" | ||
68 | #include "iwl-calib.h" | ||
69 | #include "iwl-eeprom.h" | ||
70 | |||
71 | /* "false alarms" are signals that our DSP tries to lock onto, | ||
72 | * but then determines that they are either noise, or transmissions | ||
73 | * from a distant wireless network (also "noise", really) that get | ||
74 | * "stepped on" by stronger transmissions within our own network. | ||
75 | * This algorithm attempts to set a sensitivity level that is high | ||
76 | * enough to receive all of our own network traffic, but not so | ||
77 | * high that our DSP gets too busy trying to lock onto non-network | ||
78 | * activity/noise. */ | ||
79 | static int iwl_sens_energy_cck(struct iwl_priv *priv, | ||
80 | u32 norm_fa, | ||
81 | u32 rx_enable_time, | ||
82 | struct statistics_general_data *rx_info) | ||
83 | { | ||
84 | u32 max_nrg_cck = 0; | ||
85 | int i = 0; | ||
86 | u8 max_silence_rssi = 0; | ||
87 | u32 silence_ref = 0; | ||
88 | u8 silence_rssi_a = 0; | ||
89 | u8 silence_rssi_b = 0; | ||
90 | u8 silence_rssi_c = 0; | ||
91 | u32 val; | ||
92 | |||
93 | /* "false_alarms" values below are cross-multiplications to assess the | ||
94 | * numbers of false alarms within the measured period of actual Rx | ||
95 | * (Rx is off when we're txing), vs the min/max expected false alarms | ||
96 | * (some should be expected if rx is sensitive enough) in a | ||
97 | * hypothetical listening period of 200 time units (TU), 204.8 msec: | ||
98 | * | ||
99 | * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time | ||
100 | * | ||
101 | * */ | ||
102 | u32 false_alarms = norm_fa * 200 * 1024; | ||
103 | u32 max_false_alarms = MAX_FA_CCK * rx_enable_time; | ||
104 | u32 min_false_alarms = MIN_FA_CCK * rx_enable_time; | ||
105 | struct iwl_sensitivity_data *data = NULL; | ||
106 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
107 | |||
108 | data = &(priv->sensitivity_data); | ||
109 | |||
110 | data->nrg_auto_corr_silence_diff = 0; | ||
111 | |||
112 | /* Find max silence rssi among all 3 receivers. | ||
113 | * This is background noise, which may include transmissions from other | ||
114 | * networks, measured during silence before our network's beacon */ | ||
115 | silence_rssi_a = (u8)((rx_info->beacon_silence_rssi_a & | ||
116 | ALL_BAND_FILTER) >> 8); | ||
117 | silence_rssi_b = (u8)((rx_info->beacon_silence_rssi_b & | ||
118 | ALL_BAND_FILTER) >> 8); | ||
119 | silence_rssi_c = (u8)((rx_info->beacon_silence_rssi_c & | ||
120 | ALL_BAND_FILTER) >> 8); | ||
121 | |||
122 | val = max(silence_rssi_b, silence_rssi_c); | ||
123 | max_silence_rssi = max(silence_rssi_a, (u8) val); | ||
124 | |||
125 | /* Store silence rssi in 20-beacon history table */ | ||
126 | data->nrg_silence_rssi[data->nrg_silence_idx] = max_silence_rssi; | ||
127 | data->nrg_silence_idx++; | ||
128 | if (data->nrg_silence_idx >= NRG_NUM_PREV_STAT_L) | ||
129 | data->nrg_silence_idx = 0; | ||
130 | |||
131 | /* Find max silence rssi across 20 beacon history */ | ||
132 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) { | ||
133 | val = data->nrg_silence_rssi[i]; | ||
134 | silence_ref = max(silence_ref, val); | ||
135 | } | ||
136 | IWL_DEBUG_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", | ||
137 | silence_rssi_a, silence_rssi_b, silence_rssi_c, | ||
138 | silence_ref); | ||
139 | |||
140 | /* Find max rx energy (min value!) among all 3 receivers, | ||
141 | * measured during beacon frame. | ||
142 | * Save it in 10-beacon history table. */ | ||
143 | i = data->nrg_energy_idx; | ||
144 | val = min(rx_info->beacon_energy_b, rx_info->beacon_energy_c); | ||
145 | data->nrg_value[i] = min(rx_info->beacon_energy_a, val); | ||
146 | |||
147 | data->nrg_energy_idx++; | ||
148 | if (data->nrg_energy_idx >= 10) | ||
149 | data->nrg_energy_idx = 0; | ||
150 | |||
151 | /* Find min rx energy (max value) across 10 beacon history. | ||
152 | * This is the minimum signal level that we want to receive well. | ||
153 | * Add backoff (margin so we don't miss slightly lower energy frames). | ||
154 | * This establishes an upper bound (min value) for energy threshold. */ | ||
155 | max_nrg_cck = data->nrg_value[0]; | ||
156 | for (i = 1; i < 10; i++) | ||
157 | max_nrg_cck = (u32) max(max_nrg_cck, (data->nrg_value[i])); | ||
158 | max_nrg_cck += 6; | ||
159 | |||
160 | IWL_DEBUG_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n", | ||
161 | rx_info->beacon_energy_a, rx_info->beacon_energy_b, | ||
162 | rx_info->beacon_energy_c, max_nrg_cck - 6); | ||
163 | |||
164 | /* Count number of consecutive beacons with fewer-than-desired | ||
165 | * false alarms. */ | ||
166 | if (false_alarms < min_false_alarms) | ||
167 | data->num_in_cck_no_fa++; | ||
168 | else | ||
169 | data->num_in_cck_no_fa = 0; | ||
170 | IWL_DEBUG_CALIB("consecutive bcns with few false alarms = %u\n", | ||
171 | data->num_in_cck_no_fa); | ||
172 | |||
173 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
174 | if ((false_alarms > max_false_alarms) && | ||
175 | (data->auto_corr_cck > AUTO_CORR_MAX_TH_CCK)) { | ||
176 | IWL_DEBUG_CALIB("norm FA %u > max FA %u\n", | ||
177 | false_alarms, max_false_alarms); | ||
178 | IWL_DEBUG_CALIB("... reducing sensitivity\n"); | ||
179 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
180 | /* Store for "fewer than desired" on later beacon */ | ||
181 | data->nrg_silence_ref = silence_ref; | ||
182 | |||
183 | /* increase energy threshold (reduce nrg value) | ||
184 | * to decrease sensitivity */ | ||
185 | if (data->nrg_th_cck > | ||
186 | (ranges->max_nrg_cck + NRG_STEP_CCK)) | ||
187 | data->nrg_th_cck = data->nrg_th_cck | ||
188 | - NRG_STEP_CCK; | ||
189 | else | ||
190 | data->nrg_th_cck = ranges->max_nrg_cck; | ||
191 | /* Else if we got fewer than desired, increase sensitivity */ | ||
192 | } else if (false_alarms < min_false_alarms) { | ||
193 | data->nrg_curr_state = IWL_FA_TOO_FEW; | ||
194 | |||
195 | /* Compare silence level with silence level for most recent | ||
196 | * healthy number or too many false alarms */ | ||
197 | data->nrg_auto_corr_silence_diff = (s32)data->nrg_silence_ref - | ||
198 | (s32)silence_ref; | ||
199 | |||
200 | IWL_DEBUG_CALIB("norm FA %u < min FA %u, silence diff %d\n", | ||
201 | false_alarms, min_false_alarms, | ||
202 | data->nrg_auto_corr_silence_diff); | ||
203 | |||
204 | /* Increase value to increase sensitivity, but only if: | ||
205 | * 1a) previous beacon did *not* have *too many* false alarms | ||
206 | * 1b) AND there's a significant difference in Rx levels | ||
207 | * from a previous beacon with too many, or healthy # FAs | ||
208 | * OR 2) We've seen a lot of beacons (100) with too few | ||
209 | * false alarms */ | ||
210 | if ((data->nrg_prev_state != IWL_FA_TOO_MANY) && | ||
211 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
212 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
213 | |||
214 | IWL_DEBUG_CALIB("... increasing sensitivity\n"); | ||
215 | /* Increase nrg value to increase sensitivity */ | ||
216 | val = data->nrg_th_cck + NRG_STEP_CCK; | ||
217 | data->nrg_th_cck = min((u32)ranges->min_nrg_cck, val); | ||
218 | } else { | ||
219 | IWL_DEBUG_CALIB("... but not changing sensitivity\n"); | ||
220 | } | ||
221 | |||
222 | /* Else we got a healthy number of false alarms, keep status quo */ | ||
223 | } else { | ||
224 | IWL_DEBUG_CALIB(" FA in safe zone\n"); | ||
225 | data->nrg_curr_state = IWL_FA_GOOD_RANGE; | ||
226 | |||
227 | /* Store for use in "fewer than desired" with later beacon */ | ||
228 | data->nrg_silence_ref = silence_ref; | ||
229 | |||
230 | /* If previous beacon had too many false alarms, | ||
231 | * give it some extra margin by reducing sensitivity again | ||
232 | * (but don't go below measured energy of desired Rx) */ | ||
233 | if (IWL_FA_TOO_MANY == data->nrg_prev_state) { | ||
234 | IWL_DEBUG_CALIB("... increasing margin\n"); | ||
235 | if (data->nrg_th_cck > (max_nrg_cck + NRG_MARGIN)) | ||
236 | data->nrg_th_cck -= NRG_MARGIN; | ||
237 | else | ||
238 | data->nrg_th_cck = max_nrg_cck; | ||
239 | } | ||
240 | } | ||
241 | |||
242 | /* Make sure the energy threshold does not go above the measured | ||
243 | * energy of the desired Rx signals (reduced by backoff margin), | ||
244 | * or else we might start missing Rx frames. | ||
245 | * Lower value is higher energy, so we use max()! | ||
246 | */ | ||
247 | data->nrg_th_cck = max(max_nrg_cck, data->nrg_th_cck); | ||
248 | IWL_DEBUG_CALIB("new nrg_th_cck %u\n", data->nrg_th_cck); | ||
249 | |||
250 | data->nrg_prev_state = data->nrg_curr_state; | ||
251 | |||
252 | /* Auto-correlation CCK algorithm */ | ||
253 | if (false_alarms > min_false_alarms) { | ||
254 | |||
255 | /* increase auto_corr values to decrease sensitivity | ||
256 | * so the DSP won't be disturbed by the noise | ||
257 | */ | ||
258 | if (data->auto_corr_cck < AUTO_CORR_MAX_TH_CCK) | ||
259 | data->auto_corr_cck = AUTO_CORR_MAX_TH_CCK + 1; | ||
260 | else { | ||
261 | val = data->auto_corr_cck + AUTO_CORR_STEP_CCK; | ||
262 | data->auto_corr_cck = | ||
263 | min((u32)ranges->auto_corr_max_cck, val); | ||
264 | } | ||
265 | val = data->auto_corr_cck_mrc + AUTO_CORR_STEP_CCK; | ||
266 | data->auto_corr_cck_mrc = | ||
267 | min((u32)ranges->auto_corr_max_cck_mrc, val); | ||
268 | } else if ((false_alarms < min_false_alarms) && | ||
269 | ((data->nrg_auto_corr_silence_diff > NRG_DIFF) || | ||
270 | (data->num_in_cck_no_fa > MAX_NUMBER_CCK_NO_FA))) { | ||
271 | |||
272 | /* Decrease auto_corr values to increase sensitivity */ | ||
273 | val = data->auto_corr_cck - AUTO_CORR_STEP_CCK; | ||
274 | data->auto_corr_cck = | ||
275 | max((u32)ranges->auto_corr_min_cck, val); | ||
276 | val = data->auto_corr_cck_mrc - AUTO_CORR_STEP_CCK; | ||
277 | data->auto_corr_cck_mrc = | ||
278 | max((u32)ranges->auto_corr_min_cck_mrc, val); | ||
279 | } | ||
280 | |||
281 | return 0; | ||
282 | } | ||
283 | |||
284 | |||
285 | static int iwl_sens_auto_corr_ofdm(struct iwl_priv *priv, | ||
286 | u32 norm_fa, | ||
287 | u32 rx_enable_time) | ||
288 | { | ||
289 | u32 val; | ||
290 | u32 false_alarms = norm_fa * 200 * 1024; | ||
291 | u32 max_false_alarms = MAX_FA_OFDM * rx_enable_time; | ||
292 | u32 min_false_alarms = MIN_FA_OFDM * rx_enable_time; | ||
293 | struct iwl_sensitivity_data *data = NULL; | ||
294 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
295 | |||
296 | data = &(priv->sensitivity_data); | ||
297 | |||
298 | /* If we got too many false alarms this time, reduce sensitivity */ | ||
299 | if (false_alarms > max_false_alarms) { | ||
300 | |||
301 | IWL_DEBUG_CALIB("norm FA %u > max FA %u)\n", | ||
302 | false_alarms, max_false_alarms); | ||
303 | |||
304 | val = data->auto_corr_ofdm + AUTO_CORR_STEP_OFDM; | ||
305 | data->auto_corr_ofdm = | ||
306 | min((u32)ranges->auto_corr_max_ofdm, val); | ||
307 | |||
308 | val = data->auto_corr_ofdm_mrc + AUTO_CORR_STEP_OFDM; | ||
309 | data->auto_corr_ofdm_mrc = | ||
310 | min((u32)ranges->auto_corr_max_ofdm_mrc, val); | ||
311 | |||
312 | val = data->auto_corr_ofdm_x1 + AUTO_CORR_STEP_OFDM; | ||
313 | data->auto_corr_ofdm_x1 = | ||
314 | min((u32)ranges->auto_corr_max_ofdm_x1, val); | ||
315 | |||
316 | val = data->auto_corr_ofdm_mrc_x1 + AUTO_CORR_STEP_OFDM; | ||
317 | data->auto_corr_ofdm_mrc_x1 = | ||
318 | min((u32)ranges->auto_corr_max_ofdm_mrc_x1, val); | ||
319 | } | ||
320 | |||
321 | /* Else if we got fewer than desired, increase sensitivity */ | ||
322 | else if (false_alarms < min_false_alarms) { | ||
323 | |||
324 | IWL_DEBUG_CALIB("norm FA %u < min FA %u\n", | ||
325 | false_alarms, min_false_alarms); | ||
326 | |||
327 | val = data->auto_corr_ofdm - AUTO_CORR_STEP_OFDM; | ||
328 | data->auto_corr_ofdm = | ||
329 | max((u32)ranges->auto_corr_min_ofdm, val); | ||
330 | |||
331 | val = data->auto_corr_ofdm_mrc - AUTO_CORR_STEP_OFDM; | ||
332 | data->auto_corr_ofdm_mrc = | ||
333 | max((u32)ranges->auto_corr_min_ofdm_mrc, val); | ||
334 | |||
335 | val = data->auto_corr_ofdm_x1 - AUTO_CORR_STEP_OFDM; | ||
336 | data->auto_corr_ofdm_x1 = | ||
337 | max((u32)ranges->auto_corr_min_ofdm_x1, val); | ||
338 | |||
339 | val = data->auto_corr_ofdm_mrc_x1 - AUTO_CORR_STEP_OFDM; | ||
340 | data->auto_corr_ofdm_mrc_x1 = | ||
341 | max((u32)ranges->auto_corr_min_ofdm_mrc_x1, val); | ||
342 | } else { | ||
343 | IWL_DEBUG_CALIB("min FA %u < norm FA %u < max FA %u OK\n", | ||
344 | min_false_alarms, false_alarms, max_false_alarms); | ||
345 | } | ||
346 | return 0; | ||
347 | } | ||
348 | |||
349 | /* Prepare a SENSITIVITY_CMD, send to uCode if values have changed */ | ||
350 | static int iwl_sensitivity_write(struct iwl_priv *priv) | ||
351 | { | ||
352 | int ret = 0; | ||
353 | struct iwl_sensitivity_cmd cmd ; | ||
354 | struct iwl_sensitivity_data *data = NULL; | ||
355 | struct iwl_host_cmd cmd_out = { | ||
356 | .id = SENSITIVITY_CMD, | ||
357 | .len = sizeof(struct iwl_sensitivity_cmd), | ||
358 | .meta.flags = CMD_ASYNC, | ||
359 | .data = &cmd, | ||
360 | }; | ||
361 | |||
362 | data = &(priv->sensitivity_data); | ||
363 | |||
364 | memset(&cmd, 0, sizeof(cmd)); | ||
365 | |||
366 | cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_INDEX] = | ||
367 | cpu_to_le16((u16)data->auto_corr_ofdm); | ||
368 | cmd.table[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_INDEX] = | ||
369 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc); | ||
370 | cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_INDEX] = | ||
371 | cpu_to_le16((u16)data->auto_corr_ofdm_x1); | ||
372 | cmd.table[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_INDEX] = | ||
373 | cpu_to_le16((u16)data->auto_corr_ofdm_mrc_x1); | ||
374 | |||
375 | cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_INDEX] = | ||
376 | cpu_to_le16((u16)data->auto_corr_cck); | ||
377 | cmd.table[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_INDEX] = | ||
378 | cpu_to_le16((u16)data->auto_corr_cck_mrc); | ||
379 | |||
380 | cmd.table[HD_MIN_ENERGY_CCK_DET_INDEX] = | ||
381 | cpu_to_le16((u16)data->nrg_th_cck); | ||
382 | cmd.table[HD_MIN_ENERGY_OFDM_DET_INDEX] = | ||
383 | cpu_to_le16((u16)data->nrg_th_ofdm); | ||
384 | |||
385 | cmd.table[HD_BARKER_CORR_TH_ADD_MIN_INDEX] = | ||
386 | __constant_cpu_to_le16(190); | ||
387 | cmd.table[HD_BARKER_CORR_TH_ADD_MIN_MRC_INDEX] = | ||
388 | __constant_cpu_to_le16(390); | ||
389 | cmd.table[HD_OFDM_ENERGY_TH_IN_INDEX] = | ||
390 | __constant_cpu_to_le16(62); | ||
391 | |||
392 | IWL_DEBUG_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n", | ||
393 | data->auto_corr_ofdm, data->auto_corr_ofdm_mrc, | ||
394 | data->auto_corr_ofdm_x1, data->auto_corr_ofdm_mrc_x1, | ||
395 | data->nrg_th_ofdm); | ||
396 | |||
397 | IWL_DEBUG_CALIB("cck: ac %u mrc %u thresh %u\n", | ||
398 | data->auto_corr_cck, data->auto_corr_cck_mrc, | ||
399 | data->nrg_th_cck); | ||
400 | |||
401 | /* Update uCode's "work" table, and copy it to DSP */ | ||
402 | cmd.control = SENSITIVITY_CMD_CONTROL_WORK_TABLE; | ||
403 | |||
404 | /* Don't send command to uCode if nothing has changed */ | ||
405 | if (!memcmp(&cmd.table[0], &(priv->sensitivity_tbl[0]), | ||
406 | sizeof(u16)*HD_TABLE_SIZE)) { | ||
407 | IWL_DEBUG_CALIB("No change in SENSITIVITY_CMD\n"); | ||
408 | return 0; | ||
409 | } | ||
410 | |||
411 | /* Copy table for comparison next time */ | ||
412 | memcpy(&(priv->sensitivity_tbl[0]), &(cmd.table[0]), | ||
413 | sizeof(u16)*HD_TABLE_SIZE); | ||
414 | |||
415 | ret = iwl_send_cmd(priv, &cmd_out); | ||
416 | if (ret) | ||
417 | IWL_ERROR("SENSITIVITY_CMD failed\n"); | ||
418 | |||
419 | return ret; | ||
420 | } | ||
421 | |||
422 | void iwl_init_sensitivity(struct iwl_priv *priv) | ||
423 | { | ||
424 | int ret = 0; | ||
425 | int i; | ||
426 | struct iwl_sensitivity_data *data = NULL; | ||
427 | const struct iwl_sensitivity_ranges *ranges = priv->hw_params.sens; | ||
428 | |||
429 | IWL_DEBUG_CALIB("Start iwl_init_sensitivity\n"); | ||
430 | |||
431 | /* Clear driver's sensitivity algo data */ | ||
432 | data = &(priv->sensitivity_data); | ||
433 | |||
434 | if (ranges == NULL) | ||
435 | /* can happen if IWLWIFI_RUN_TIME_CALIB is selected | ||
436 | * but no IWLXXXX_RUN_TIME_CALIB for specific is selected */ | ||
437 | return; | ||
438 | |||
439 | memset(data, 0, sizeof(struct iwl_sensitivity_data)); | ||
440 | |||
441 | data->num_in_cck_no_fa = 0; | ||
442 | data->nrg_curr_state = IWL_FA_TOO_MANY; | ||
443 | data->nrg_prev_state = IWL_FA_TOO_MANY; | ||
444 | data->nrg_silence_ref = 0; | ||
445 | data->nrg_silence_idx = 0; | ||
446 | data->nrg_energy_idx = 0; | ||
447 | |||
448 | for (i = 0; i < 10; i++) | ||
449 | data->nrg_value[i] = 0; | ||
450 | |||
451 | for (i = 0; i < NRG_NUM_PREV_STAT_L; i++) | ||
452 | data->nrg_silence_rssi[i] = 0; | ||
453 | |||
454 | data->auto_corr_ofdm = 90; | ||
455 | data->auto_corr_ofdm_mrc = ranges->auto_corr_min_ofdm_mrc; | ||
456 | data->auto_corr_ofdm_x1 = ranges->auto_corr_min_ofdm_x1; | ||
457 | data->auto_corr_ofdm_mrc_x1 = ranges->auto_corr_min_ofdm_mrc_x1; | ||
458 | data->auto_corr_cck = AUTO_CORR_CCK_MIN_VAL_DEF; | ||
459 | data->auto_corr_cck_mrc = ranges->auto_corr_min_cck_mrc; | ||
460 | data->nrg_th_cck = ranges->nrg_th_cck; | ||
461 | data->nrg_th_ofdm = ranges->nrg_th_ofdm; | ||
462 | |||
463 | data->last_bad_plcp_cnt_ofdm = 0; | ||
464 | data->last_fa_cnt_ofdm = 0; | ||
465 | data->last_bad_plcp_cnt_cck = 0; | ||
466 | data->last_fa_cnt_cck = 0; | ||
467 | |||
468 | ret |= iwl_sensitivity_write(priv); | ||
469 | IWL_DEBUG_CALIB("<<return 0x%X\n", ret); | ||
470 | } | ||
471 | EXPORT_SYMBOL(iwl_init_sensitivity); | ||
472 | |||
473 | void iwl_sensitivity_calibration(struct iwl_priv *priv, | ||
474 | struct iwl4965_notif_statistics *resp) | ||
475 | { | ||
476 | u32 rx_enable_time; | ||
477 | u32 fa_cck; | ||
478 | u32 fa_ofdm; | ||
479 | u32 bad_plcp_cck; | ||
480 | u32 bad_plcp_ofdm; | ||
481 | u32 norm_fa_ofdm; | ||
482 | u32 norm_fa_cck; | ||
483 | struct iwl_sensitivity_data *data = NULL; | ||
484 | struct statistics_rx_non_phy *rx_info = &(resp->rx.general); | ||
485 | struct statistics_rx *statistics = &(resp->rx); | ||
486 | unsigned long flags; | ||
487 | struct statistics_general_data statis; | ||
488 | |||
489 | data = &(priv->sensitivity_data); | ||
490 | |||
491 | if (!iwl_is_associated(priv)) { | ||
492 | IWL_DEBUG_CALIB("<< - not associated\n"); | ||
493 | return; | ||
494 | } | ||
495 | |||
496 | spin_lock_irqsave(&priv->lock, flags); | ||
497 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
498 | IWL_DEBUG_CALIB("<< invalid data.\n"); | ||
499 | spin_unlock_irqrestore(&priv->lock, flags); | ||
500 | return; | ||
501 | } | ||
502 | |||
503 | /* Extract Statistics: */ | ||
504 | rx_enable_time = le32_to_cpu(rx_info->channel_load); | ||
505 | fa_cck = le32_to_cpu(statistics->cck.false_alarm_cnt); | ||
506 | fa_ofdm = le32_to_cpu(statistics->ofdm.false_alarm_cnt); | ||
507 | bad_plcp_cck = le32_to_cpu(statistics->cck.plcp_err); | ||
508 | bad_plcp_ofdm = le32_to_cpu(statistics->ofdm.plcp_err); | ||
509 | |||
510 | statis.beacon_silence_rssi_a = | ||
511 | le32_to_cpu(statistics->general.beacon_silence_rssi_a); | ||
512 | statis.beacon_silence_rssi_b = | ||
513 | le32_to_cpu(statistics->general.beacon_silence_rssi_b); | ||
514 | statis.beacon_silence_rssi_c = | ||
515 | le32_to_cpu(statistics->general.beacon_silence_rssi_c); | ||
516 | statis.beacon_energy_a = | ||
517 | le32_to_cpu(statistics->general.beacon_energy_a); | ||
518 | statis.beacon_energy_b = | ||
519 | le32_to_cpu(statistics->general.beacon_energy_b); | ||
520 | statis.beacon_energy_c = | ||
521 | le32_to_cpu(statistics->general.beacon_energy_c); | ||
522 | |||
523 | spin_unlock_irqrestore(&priv->lock, flags); | ||
524 | |||
525 | IWL_DEBUG_CALIB("rx_enable_time = %u usecs\n", rx_enable_time); | ||
526 | |||
527 | if (!rx_enable_time) { | ||
528 | IWL_DEBUG_CALIB("<< RX Enable Time == 0! \n"); | ||
529 | return; | ||
530 | } | ||
531 | |||
532 | /* These statistics increase monotonically, and do not reset | ||
533 | * at each beacon. Calculate difference from last value, or just | ||
534 | * use the new statistics value if it has reset or wrapped around. */ | ||
535 | if (data->last_bad_plcp_cnt_cck > bad_plcp_cck) | ||
536 | data->last_bad_plcp_cnt_cck = bad_plcp_cck; | ||
537 | else { | ||
538 | bad_plcp_cck -= data->last_bad_plcp_cnt_cck; | ||
539 | data->last_bad_plcp_cnt_cck += bad_plcp_cck; | ||
540 | } | ||
541 | |||
542 | if (data->last_bad_plcp_cnt_ofdm > bad_plcp_ofdm) | ||
543 | data->last_bad_plcp_cnt_ofdm = bad_plcp_ofdm; | ||
544 | else { | ||
545 | bad_plcp_ofdm -= data->last_bad_plcp_cnt_ofdm; | ||
546 | data->last_bad_plcp_cnt_ofdm += bad_plcp_ofdm; | ||
547 | } | ||
548 | |||
549 | if (data->last_fa_cnt_ofdm > fa_ofdm) | ||
550 | data->last_fa_cnt_ofdm = fa_ofdm; | ||
551 | else { | ||
552 | fa_ofdm -= data->last_fa_cnt_ofdm; | ||
553 | data->last_fa_cnt_ofdm += fa_ofdm; | ||
554 | } | ||
555 | |||
556 | if (data->last_fa_cnt_cck > fa_cck) | ||
557 | data->last_fa_cnt_cck = fa_cck; | ||
558 | else { | ||
559 | fa_cck -= data->last_fa_cnt_cck; | ||
560 | data->last_fa_cnt_cck += fa_cck; | ||
561 | } | ||
562 | |||
563 | /* Total aborted signal locks */ | ||
564 | norm_fa_ofdm = fa_ofdm + bad_plcp_ofdm; | ||
565 | norm_fa_cck = fa_cck + bad_plcp_cck; | ||
566 | |||
567 | IWL_DEBUG_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck, | ||
568 | bad_plcp_cck, fa_ofdm, bad_plcp_ofdm); | ||
569 | |||
570 | iwl_sens_auto_corr_ofdm(priv, norm_fa_ofdm, rx_enable_time); | ||
571 | iwl_sens_energy_cck(priv, norm_fa_cck, rx_enable_time, &statis); | ||
572 | iwl_sensitivity_write(priv); | ||
573 | |||
574 | return; | ||
575 | } | ||
576 | EXPORT_SYMBOL(iwl_sensitivity_calibration); | ||
577 | |||
578 | /* | ||
579 | * Accumulate 20 beacons of signal and noise statistics for each of | ||
580 | * 3 receivers/antennas/rx-chains, then figure out: | ||
581 | * 1) Which antennas are connected. | ||
582 | * 2) Differential rx gain settings to balance the 3 receivers. | ||
583 | */ | ||
584 | void iwl_chain_noise_calibration(struct iwl_priv *priv, | ||
585 | struct iwl4965_notif_statistics *stat_resp) | ||
586 | { | ||
587 | struct iwl_chain_noise_data *data = NULL; | ||
588 | |||
589 | u32 chain_noise_a; | ||
590 | u32 chain_noise_b; | ||
591 | u32 chain_noise_c; | ||
592 | u32 chain_sig_a; | ||
593 | u32 chain_sig_b; | ||
594 | u32 chain_sig_c; | ||
595 | u32 average_sig[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
596 | u32 average_noise[NUM_RX_CHAINS] = {INITIALIZATION_VALUE}; | ||
597 | u32 max_average_sig; | ||
598 | u16 max_average_sig_antenna_i; | ||
599 | u32 min_average_noise = MIN_AVERAGE_NOISE_MAX_VALUE; | ||
600 | u16 min_average_noise_antenna_i = INITIALIZATION_VALUE; | ||
601 | u16 i = 0; | ||
602 | u16 rxon_chnum = INITIALIZATION_VALUE; | ||
603 | u16 stat_chnum = INITIALIZATION_VALUE; | ||
604 | u8 rxon_band24; | ||
605 | u8 stat_band24; | ||
606 | u32 active_chains = 0; | ||
607 | u8 num_tx_chains; | ||
608 | unsigned long flags; | ||
609 | struct statistics_rx_non_phy *rx_info = &(stat_resp->rx.general); | ||
610 | |||
611 | data = &(priv->chain_noise_data); | ||
612 | |||
613 | /* Accumulate just the first 20 beacons after the first association, | ||
614 | * then we're done forever. */ | ||
615 | if (data->state != IWL_CHAIN_NOISE_ACCUMULATE) { | ||
616 | if (data->state == IWL_CHAIN_NOISE_ALIVE) | ||
617 | IWL_DEBUG_CALIB("Wait for noise calib reset\n"); | ||
618 | return; | ||
619 | } | ||
620 | |||
621 | spin_lock_irqsave(&priv->lock, flags); | ||
622 | if (rx_info->interference_data_flag != INTERFERENCE_DATA_AVAILABLE) { | ||
623 | IWL_DEBUG_CALIB(" << Interference data unavailable\n"); | ||
624 | spin_unlock_irqrestore(&priv->lock, flags); | ||
625 | return; | ||
626 | } | ||
627 | |||
628 | rxon_band24 = !!(priv->staging_rxon.flags & RXON_FLG_BAND_24G_MSK); | ||
629 | rxon_chnum = le16_to_cpu(priv->staging_rxon.channel); | ||
630 | stat_band24 = !!(stat_resp->flag & STATISTICS_REPLY_FLG_BAND_24G_MSK); | ||
631 | stat_chnum = le32_to_cpu(stat_resp->flag) >> 16; | ||
632 | |||
633 | /* Make sure we accumulate data for just the associated channel | ||
634 | * (even if scanning). */ | ||
635 | if ((rxon_chnum != stat_chnum) || (rxon_band24 != stat_band24)) { | ||
636 | IWL_DEBUG_CALIB("Stats not from chan=%d, band24=%d\n", | ||
637 | rxon_chnum, rxon_band24); | ||
638 | spin_unlock_irqrestore(&priv->lock, flags); | ||
639 | return; | ||
640 | } | ||
641 | |||
642 | /* Accumulate beacon statistics values across 20 beacons */ | ||
643 | chain_noise_a = le32_to_cpu(rx_info->beacon_silence_rssi_a) & | ||
644 | IN_BAND_FILTER; | ||
645 | chain_noise_b = le32_to_cpu(rx_info->beacon_silence_rssi_b) & | ||
646 | IN_BAND_FILTER; | ||
647 | chain_noise_c = le32_to_cpu(rx_info->beacon_silence_rssi_c) & | ||
648 | IN_BAND_FILTER; | ||
649 | |||
650 | chain_sig_a = le32_to_cpu(rx_info->beacon_rssi_a) & IN_BAND_FILTER; | ||
651 | chain_sig_b = le32_to_cpu(rx_info->beacon_rssi_b) & IN_BAND_FILTER; | ||
652 | chain_sig_c = le32_to_cpu(rx_info->beacon_rssi_c) & IN_BAND_FILTER; | ||
653 | |||
654 | spin_unlock_irqrestore(&priv->lock, flags); | ||
655 | |||
656 | data->beacon_count++; | ||
657 | |||
658 | data->chain_noise_a = (chain_noise_a + data->chain_noise_a); | ||
659 | data->chain_noise_b = (chain_noise_b + data->chain_noise_b); | ||
660 | data->chain_noise_c = (chain_noise_c + data->chain_noise_c); | ||
661 | |||
662 | data->chain_signal_a = (chain_sig_a + data->chain_signal_a); | ||
663 | data->chain_signal_b = (chain_sig_b + data->chain_signal_b); | ||
664 | data->chain_signal_c = (chain_sig_c + data->chain_signal_c); | ||
665 | |||
666 | IWL_DEBUG_CALIB("chan=%d, band24=%d, beacon=%d\n", | ||
667 | rxon_chnum, rxon_band24, data->beacon_count); | ||
668 | IWL_DEBUG_CALIB("chain_sig: a %d b %d c %d\n", | ||
669 | chain_sig_a, chain_sig_b, chain_sig_c); | ||
670 | IWL_DEBUG_CALIB("chain_noise: a %d b %d c %d\n", | ||
671 | chain_noise_a, chain_noise_b, chain_noise_c); | ||
672 | |||
673 | /* If this is the 20th beacon, determine: | ||
674 | * 1) Disconnected antennas (using signal strengths) | ||
675 | * 2) Differential gain (using silence noise) to balance receivers */ | ||
676 | if (data->beacon_count != CAL_NUM_OF_BEACONS) | ||
677 | return; | ||
678 | |||
679 | /* Analyze signal for disconnected antenna */ | ||
680 | average_sig[0] = (data->chain_signal_a) / CAL_NUM_OF_BEACONS; | ||
681 | average_sig[1] = (data->chain_signal_b) / CAL_NUM_OF_BEACONS; | ||
682 | average_sig[2] = (data->chain_signal_c) / CAL_NUM_OF_BEACONS; | ||
683 | |||
684 | if (average_sig[0] >= average_sig[1]) { | ||
685 | max_average_sig = average_sig[0]; | ||
686 | max_average_sig_antenna_i = 0; | ||
687 | active_chains = (1 << max_average_sig_antenna_i); | ||
688 | } else { | ||
689 | max_average_sig = average_sig[1]; | ||
690 | max_average_sig_antenna_i = 1; | ||
691 | active_chains = (1 << max_average_sig_antenna_i); | ||
692 | } | ||
693 | |||
694 | if (average_sig[2] >= max_average_sig) { | ||
695 | max_average_sig = average_sig[2]; | ||
696 | max_average_sig_antenna_i = 2; | ||
697 | active_chains = (1 << max_average_sig_antenna_i); | ||
698 | } | ||
699 | |||
700 | IWL_DEBUG_CALIB("average_sig: a %d b %d c %d\n", | ||
701 | average_sig[0], average_sig[1], average_sig[2]); | ||
702 | IWL_DEBUG_CALIB("max_average_sig = %d, antenna %d\n", | ||
703 | max_average_sig, max_average_sig_antenna_i); | ||
704 | |||
705 | /* Compare signal strengths for all 3 receivers. */ | ||
706 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
707 | if (i != max_average_sig_antenna_i) { | ||
708 | s32 rssi_delta = (max_average_sig - average_sig[i]); | ||
709 | |||
710 | /* If signal is very weak, compared with | ||
711 | * strongest, mark it as disconnected. */ | ||
712 | if (rssi_delta > MAXIMUM_ALLOWED_PATHLOSS) | ||
713 | data->disconn_array[i] = 1; | ||
714 | else | ||
715 | active_chains |= (1 << i); | ||
716 | IWL_DEBUG_CALIB("i = %d rssiDelta = %d " | ||
717 | "disconn_array[i] = %d\n", | ||
718 | i, rssi_delta, data->disconn_array[i]); | ||
719 | } | ||
720 | } | ||
721 | |||
722 | num_tx_chains = 0; | ||
723 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
724 | /* loops on all the bits of | ||
725 | * priv->hw_setting.valid_tx_ant */ | ||
726 | u8 ant_msk = (1 << i); | ||
727 | if (!(priv->hw_params.valid_tx_ant & ant_msk)) | ||
728 | continue; | ||
729 | |||
730 | num_tx_chains++; | ||
731 | if (data->disconn_array[i] == 0) | ||
732 | /* there is a Tx antenna connected */ | ||
733 | break; | ||
734 | if (num_tx_chains == priv->hw_params.tx_chains_num && | ||
735 | data->disconn_array[i]) { | ||
736 | /* This is the last TX antenna and is also | ||
737 | * disconnected connect it anyway */ | ||
738 | data->disconn_array[i] = 0; | ||
739 | active_chains |= ant_msk; | ||
740 | IWL_DEBUG_CALIB("All Tx chains are disconnected W/A - " | ||
741 | "declare %d as connected\n", i); | ||
742 | break; | ||
743 | } | ||
744 | } | ||
745 | |||
746 | IWL_DEBUG_CALIB("active_chains (bitwise) = 0x%x\n", | ||
747 | active_chains); | ||
748 | |||
749 | /* Save for use within RXON, TX, SCAN commands, etc. */ | ||
750 | priv->valid_antenna = active_chains; | ||
751 | |||
752 | /* Analyze noise for rx balance */ | ||
753 | average_noise[0] = ((data->chain_noise_a)/CAL_NUM_OF_BEACONS); | ||
754 | average_noise[1] = ((data->chain_noise_b)/CAL_NUM_OF_BEACONS); | ||
755 | average_noise[2] = ((data->chain_noise_c)/CAL_NUM_OF_BEACONS); | ||
756 | |||
757 | for (i = 0; i < NUM_RX_CHAINS; i++) { | ||
758 | if (!(data->disconn_array[i]) && | ||
759 | (average_noise[i] <= min_average_noise)) { | ||
760 | /* This means that chain i is active and has | ||
761 | * lower noise values so far: */ | ||
762 | min_average_noise = average_noise[i]; | ||
763 | min_average_noise_antenna_i = i; | ||
764 | } | ||
765 | } | ||
766 | |||
767 | IWL_DEBUG_CALIB("average_noise: a %d b %d c %d\n", | ||
768 | average_noise[0], average_noise[1], | ||
769 | average_noise[2]); | ||
770 | |||
771 | IWL_DEBUG_CALIB("min_average_noise = %d, antenna %d\n", | ||
772 | min_average_noise, min_average_noise_antenna_i); | ||
773 | |||
774 | priv->cfg->ops->utils->gain_computation(priv, average_noise, | ||
775 | min_average_noise_antenna_i, min_average_noise); | ||
776 | } | ||
777 | EXPORT_SYMBOL(iwl_chain_noise_calibration); | ||
778 | |||