aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ath9k/rc.c
diff options
context:
space:
mode:
authorLuis R. Rodriguez <lrodriguez@atheros.com>2009-03-30 22:30:33 -0400
committerJohn W. Linville <linville@tuxdriver.com>2009-04-22 16:54:38 -0400
commit203c4805e91786f9a010bc7945a0fde70c9da28e (patch)
tree00415276b2fe65713f066ffe07b11ad2d8b6bea8 /drivers/net/wireless/ath9k/rc.c
parent1878f77e13b9d720b78c4f818b94bfd4a7f596e5 (diff)
atheros: put atheros wireless drivers into ath/
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net/wireless/ath9k/rc.c')
-rw-r--r--drivers/net/wireless/ath9k/rc.c1752
1 files changed, 0 insertions, 1752 deletions
diff --git a/drivers/net/wireless/ath9k/rc.c b/drivers/net/wireless/ath9k/rc.c
deleted file mode 100644
index a13668b9b6dc..000000000000
--- a/drivers/net/wireless/ath9k/rc.c
+++ /dev/null
@@ -1,1752 +0,0 @@
1/*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2009 Atheros Communications, Inc.
4 *
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
8 *
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16 */
17
18#include "ath9k.h"
19
20static struct ath_rate_table ar5416_11na_ratetable = {
21 42,
22 {
23 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
24 5400, 0x0b, 0x00, 12,
25 0, 2, 1, 0, 0, 0, 0, 0 },
26 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
27 7800, 0x0f, 0x00, 18,
28 0, 3, 1, 1, 1, 1, 1, 0 },
29 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
30 10000, 0x0a, 0x00, 24,
31 2, 4, 2, 2, 2, 2, 2, 0 },
32 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
33 13900, 0x0e, 0x00, 36,
34 2, 6, 2, 3, 3, 3, 3, 0 },
35 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
36 17300, 0x09, 0x00, 48,
37 4, 10, 3, 4, 4, 4, 4, 0 },
38 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
39 23000, 0x0d, 0x00, 72,
40 4, 14, 3, 5, 5, 5, 5, 0 },
41 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
42 27400, 0x08, 0x00, 96,
43 4, 20, 3, 6, 6, 6, 6, 0 },
44 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
45 29300, 0x0c, 0x00, 108,
46 4, 23, 3, 7, 7, 7, 7, 0 },
47 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
48 6400, 0x80, 0x00, 0,
49 0, 2, 3, 8, 24, 8, 24, 3216 },
50 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
51 12700, 0x81, 0x00, 1,
52 2, 4, 3, 9, 25, 9, 25, 6434 },
53 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
54 18800, 0x82, 0x00, 2,
55 2, 6, 3, 10, 26, 10, 26, 9650 },
56 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
57 25000, 0x83, 0x00, 3,
58 4, 10, 3, 11, 27, 11, 27, 12868 },
59 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
60 36700, 0x84, 0x00, 4,
61 4, 14, 3, 12, 28, 12, 28, 19304 },
62 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
63 48100, 0x85, 0x00, 5,
64 4, 20, 3, 13, 29, 13, 29, 25740 },
65 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
66 53500, 0x86, 0x00, 6,
67 4, 23, 3, 14, 30, 14, 30, 28956 },
68 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
69 59000, 0x87, 0x00, 7,
70 4, 25, 3, 15, 31, 15, 32, 32180 },
71 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
72 12700, 0x88, 0x00,
73 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
74 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
75 24800, 0x89, 0x00, 9,
76 2, 4, 3, 17, 34, 17, 34, 12860 },
77 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
78 36600, 0x8a, 0x00, 10,
79 2, 6, 3, 18, 35, 18, 35, 19300 },
80 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
81 48100, 0x8b, 0x00, 11,
82 4, 10, 3, 19, 36, 19, 36, 25736 },
83 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
84 69500, 0x8c, 0x00, 12,
85 4, 14, 3, 20, 37, 20, 37, 38600 },
86 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
87 89500, 0x8d, 0x00, 13,
88 4, 20, 3, 21, 38, 21, 38, 51472 },
89 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
90 98900, 0x8e, 0x00, 14,
91 4, 23, 3, 22, 39, 22, 39, 57890 },
92 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
93 108300, 0x8f, 0x00, 15,
94 4, 25, 3, 23, 40, 23, 41, 64320 },
95 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
96 13200, 0x80, 0x00, 0,
97 0, 2, 3, 8, 24, 24, 24, 6684 },
98 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
99 25900, 0x81, 0x00, 1,
100 2, 4, 3, 9, 25, 25, 25, 13368 },
101 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
102 38600, 0x82, 0x00, 2,
103 2, 6, 3, 10, 26, 26, 26, 20052 },
104 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
105 49800, 0x83, 0x00, 3,
106 4, 10, 3, 11, 27, 27, 27, 26738 },
107 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
108 72200, 0x84, 0x00, 4,
109 4, 14, 3, 12, 28, 28, 28, 40104 },
110 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
111 92900, 0x85, 0x00, 5,
112 4, 20, 3, 13, 29, 29, 29, 53476 },
113 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
114 102700, 0x86, 0x00, 6,
115 4, 23, 3, 14, 30, 30, 30, 60156 },
116 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
117 112000, 0x87, 0x00, 7,
118 4, 25, 3, 15, 31, 32, 32, 66840 },
119 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
120 122000, 0x87, 0x00, 7,
121 4, 25, 3, 15, 31, 32, 32, 74200 },
122 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
123 25800, 0x88, 0x00, 8,
124 0, 2, 3, 16, 33, 33, 33, 13360 },
125 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
126 49800, 0x89, 0x00, 9,
127 2, 4, 3, 17, 34, 34, 34, 26720 },
128 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
129 71900, 0x8a, 0x00, 10,
130 2, 6, 3, 18, 35, 35, 35, 40080 },
131 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
132 92500, 0x8b, 0x00, 11,
133 4, 10, 3, 19, 36, 36, 36, 53440 },
134 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
135 130300, 0x8c, 0x00, 12,
136 4, 14, 3, 20, 37, 37, 37, 80160 },
137 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
138 162800, 0x8d, 0x00, 13,
139 4, 20, 3, 21, 38, 38, 38, 106880 },
140 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
141 178200, 0x8e, 0x00, 14,
142 4, 23, 3, 22, 39, 39, 39, 120240 },
143 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
144 192100, 0x8f, 0x00, 15,
145 4, 25, 3, 23, 40, 41, 41, 133600 },
146 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
147 207000, 0x8f, 0x00, 15,
148 4, 25, 3, 23, 40, 41, 41, 148400 },
149 },
150 50, /* probe interval */
151 50, /* rssi reduce interval */
152 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
153};
154
155/* 4ms frame limit not used for NG mode. The values filled
156 * for HT are the 64K max aggregate limit */
157
158static struct ath_rate_table ar5416_11ng_ratetable = {
159 46,
160 {
161 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
162 900, 0x1b, 0x00, 2,
163 0, 0, 1, 0, 0, 0, 0, 0 },
164 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
165 1900, 0x1a, 0x04, 4,
166 1, 1, 1, 1, 1, 1, 1, 0 },
167 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
168 4900, 0x19, 0x04, 11,
169 2, 2, 2, 2, 2, 2, 2, 0 },
170 { VALID_ALL, VALID_ALL, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
171 8100, 0x18, 0x04, 22,
172 3, 3, 2, 3, 3, 3, 3, 0 },
173 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
174 5400, 0x0b, 0x00, 12,
175 4, 2, 1, 4, 4, 4, 4, 0 },
176 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
177 7800, 0x0f, 0x00, 18,
178 4, 3, 1, 5, 5, 5, 5, 0 },
179 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
180 10100, 0x0a, 0x00, 24,
181 6, 4, 1, 6, 6, 6, 6, 0 },
182 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
183 14100, 0x0e, 0x00, 36,
184 6, 6, 2, 7, 7, 7, 7, 0 },
185 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
186 17700, 0x09, 0x00, 48,
187 8, 10, 3, 8, 8, 8, 8, 0 },
188 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
189 23700, 0x0d, 0x00, 72,
190 8, 14, 3, 9, 9, 9, 9, 0 },
191 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
192 27400, 0x08, 0x00, 96,
193 8, 20, 3, 10, 10, 10, 10, 0 },
194 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
195 30900, 0x0c, 0x00, 108,
196 8, 23, 3, 11, 11, 11, 11, 0 },
197 { INVALID, INVALID, WLAN_RC_PHY_HT_20_SS, 6500, /* 6.5 Mb */
198 6400, 0x80, 0x00, 0,
199 4, 2, 3, 12, 28, 12, 28, 3216 },
200 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 13000, /* 13 Mb */
201 12700, 0x81, 0x00, 1,
202 6, 4, 3, 13, 29, 13, 29, 6434 },
203 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 19500, /* 19.5 Mb */
204 18800, 0x82, 0x00, 2,
205 6, 6, 3, 14, 30, 14, 30, 9650 },
206 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 26000, /* 26 Mb */
207 25000, 0x83, 0x00, 3,
208 8, 10, 3, 15, 31, 15, 31, 12868 },
209 { VALID_20, VALID_20, WLAN_RC_PHY_HT_20_SS, 39000, /* 39 Mb */
210 36700, 0x84, 0x00, 4,
211 8, 14, 3, 16, 32, 16, 32, 19304 },
212 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 52000, /* 52 Mb */
213 48100, 0x85, 0x00, 5,
214 8, 20, 3, 17, 33, 17, 33, 25740 },
215 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 58500, /* 58.5 Mb */
216 53500, 0x86, 0x00, 6,
217 8, 23, 3, 18, 34, 18, 34, 28956 },
218 { INVALID, VALID_20, WLAN_RC_PHY_HT_20_SS, 65000, /* 65 Mb */
219 59000, 0x87, 0x00, 7,
220 8, 25, 3, 19, 35, 19, 36, 32180 },
221 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 13000, /* 13 Mb */
222 12700, 0x88, 0x00, 8,
223 4, 2, 3, 20, 37, 20, 37, 6430 },
224 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 26000, /* 26 Mb */
225 24800, 0x89, 0x00, 9,
226 6, 4, 3, 21, 38, 21, 38, 12860 },
227 { INVALID, INVALID, WLAN_RC_PHY_HT_20_DS, 39000, /* 39 Mb */
228 36600, 0x8a, 0x00, 10,
229 6, 6, 3, 22, 39, 22, 39, 19300 },
230 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 52000, /* 52 Mb */
231 48100, 0x8b, 0x00, 11,
232 8, 10, 3, 23, 40, 23, 40, 25736 },
233 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 78000, /* 78 Mb */
234 69500, 0x8c, 0x00, 12,
235 8, 14, 3, 24, 41, 24, 41, 38600 },
236 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 104000, /* 104 Mb */
237 89500, 0x8d, 0x00, 13,
238 8, 20, 3, 25, 42, 25, 42, 51472 },
239 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 117000, /* 117 Mb */
240 98900, 0x8e, 0x00, 14,
241 8, 23, 3, 26, 43, 26, 44, 57890 },
242 { VALID_20, INVALID, WLAN_RC_PHY_HT_20_DS, 130000, /* 130 Mb */
243 108300, 0x8f, 0x00, 15,
244 8, 25, 3, 27, 44, 27, 45, 64320 },
245 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 13500, /* 13.5 Mb */
246 13200, 0x80, 0x00, 0,
247 8, 2, 3, 12, 28, 28, 28, 6684 },
248 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 27500, /* 27.0 Mb */
249 25900, 0x81, 0x00, 1,
250 8, 4, 3, 13, 29, 29, 29, 13368 },
251 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 40500, /* 40.5 Mb */
252 38600, 0x82, 0x00, 2,
253 8, 6, 3, 14, 30, 30, 30, 20052 },
254 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 54000, /* 54 Mb */
255 49800, 0x83, 0x00, 3,
256 8, 10, 3, 15, 31, 31, 31, 26738 },
257 { VALID_40, VALID_40, WLAN_RC_PHY_HT_40_SS, 81500, /* 81 Mb */
258 72200, 0x84, 0x00, 4,
259 8, 14, 3, 16, 32, 32, 32, 40104 },
260 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 108000, /* 108 Mb */
261 92900, 0x85, 0x00, 5,
262 8, 20, 3, 17, 33, 33, 33, 53476 },
263 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 121500, /* 121.5 Mb */
264 102700, 0x86, 0x00, 6,
265 8, 23, 3, 18, 34, 34, 34, 60156 },
266 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS, 135000, /* 135 Mb */
267 112000, 0x87, 0x00, 7,
268 8, 23, 3, 19, 35, 36, 36, 66840 },
269 { INVALID, VALID_40, WLAN_RC_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
270 122000, 0x87, 0x00, 7,
271 8, 25, 3, 19, 35, 36, 36, 74200 },
272 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 27000, /* 27 Mb */
273 25800, 0x88, 0x00, 8,
274 8, 2, 3, 20, 37, 37, 37, 13360 },
275 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 54000, /* 54 Mb */
276 49800, 0x89, 0x00, 9,
277 8, 4, 3, 21, 38, 38, 38, 26720 },
278 { INVALID, INVALID, WLAN_RC_PHY_HT_40_DS, 81000, /* 81 Mb */
279 71900, 0x8a, 0x00, 10,
280 8, 6, 3, 22, 39, 39, 39, 40080 },
281 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 108000, /* 108 Mb */
282 92500, 0x8b, 0x00, 11,
283 8, 10, 3, 23, 40, 40, 40, 53440 },
284 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 162000, /* 162 Mb */
285 130300, 0x8c, 0x00, 12,
286 8, 14, 3, 24, 41, 41, 41, 80160 },
287 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 216000, /* 216 Mb */
288 162800, 0x8d, 0x00, 13,
289 8, 20, 3, 25, 42, 42, 42, 106880 },
290 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 243000, /* 243 Mb */
291 178200, 0x8e, 0x00, 14,
292 8, 23, 3, 26, 43, 43, 43, 120240 },
293 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS, 270000, /* 270 Mb */
294 192100, 0x8f, 0x00, 15,
295 8, 23, 3, 27, 44, 45, 45, 133600 },
296 { VALID_40, INVALID, WLAN_RC_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
297 207000, 0x8f, 0x00, 15,
298 8, 25, 3, 27, 44, 45, 45, 148400 },
299 },
300 50, /* probe interval */
301 50, /* rssi reduce interval */
302 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
303};
304
305static struct ath_rate_table ar5416_11a_ratetable = {
306 8,
307 {
308 { VALID, VALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
309 5400, 0x0b, 0x00, (0x80|12),
310 0, 2, 1, 0, 0 },
311 { VALID, VALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
312 7800, 0x0f, 0x00, 18,
313 0, 3, 1, 1, 0 },
314 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
315 10000, 0x0a, 0x00, (0x80|24),
316 2, 4, 2, 2, 0 },
317 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
318 13900, 0x0e, 0x00, 36,
319 2, 6, 2, 3, 0 },
320 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
321 17300, 0x09, 0x00, (0x80|48),
322 4, 10, 3, 4, 0 },
323 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
324 23000, 0x0d, 0x00, 72,
325 4, 14, 3, 5, 0 },
326 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
327 27400, 0x08, 0x00, 96,
328 4, 19, 3, 6, 0 },
329 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
330 29300, 0x0c, 0x00, 108,
331 4, 23, 3, 7, 0 },
332 },
333 50, /* probe interval */
334 50, /* rssi reduce interval */
335 0, /* Phy rates allowed initially */
336};
337
338static struct ath_rate_table ar5416_11g_ratetable = {
339 12,
340 {
341 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
342 900, 0x1b, 0x00, 2,
343 0, 0, 1, 0, 0 },
344 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
345 1900, 0x1a, 0x04, 4,
346 1, 1, 1, 1, 0 },
347 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
348 4900, 0x19, 0x04, 11,
349 2, 2, 2, 2, 0 },
350 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
351 8100, 0x18, 0x04, 22,
352 3, 3, 2, 3, 0 },
353 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 6000, /* 6 Mb */
354 5400, 0x0b, 0x00, 12,
355 4, 2, 1, 4, 0 },
356 { INVALID, INVALID, WLAN_RC_PHY_OFDM, 9000, /* 9 Mb */
357 7800, 0x0f, 0x00, 18,
358 4, 3, 1, 5, 0 },
359 { VALID, VALID, WLAN_RC_PHY_OFDM, 12000, /* 12 Mb */
360 10000, 0x0a, 0x00, 24,
361 6, 4, 1, 6, 0 },
362 { VALID, VALID, WLAN_RC_PHY_OFDM, 18000, /* 18 Mb */
363 13900, 0x0e, 0x00, 36,
364 6, 6, 2, 7, 0 },
365 { VALID, VALID, WLAN_RC_PHY_OFDM, 24000, /* 24 Mb */
366 17300, 0x09, 0x00, 48,
367 8, 10, 3, 8, 0 },
368 { VALID, VALID, WLAN_RC_PHY_OFDM, 36000, /* 36 Mb */
369 23000, 0x0d, 0x00, 72,
370 8, 14, 3, 9, 0 },
371 { VALID, VALID, WLAN_RC_PHY_OFDM, 48000, /* 48 Mb */
372 27400, 0x08, 0x00, 96,
373 8, 19, 3, 10, 0 },
374 { VALID, VALID, WLAN_RC_PHY_OFDM, 54000, /* 54 Mb */
375 29300, 0x0c, 0x00, 108,
376 8, 23, 3, 11, 0 },
377 },
378 50, /* probe interval */
379 50, /* rssi reduce interval */
380 0, /* Phy rates allowed initially */
381};
382
383static struct ath_rate_table ar5416_11b_ratetable = {
384 4,
385 {
386 { VALID, VALID, WLAN_RC_PHY_CCK, 1000, /* 1 Mb */
387 900, 0x1b, 0x00, (0x80|2),
388 0, 0, 1, 0, 0 },
389 { VALID, VALID, WLAN_RC_PHY_CCK, 2000, /* 2 Mb */
390 1800, 0x1a, 0x04, (0x80|4),
391 1, 1, 1, 1, 0 },
392 { VALID, VALID, WLAN_RC_PHY_CCK, 5500, /* 5.5 Mb */
393 4300, 0x19, 0x04, (0x80|11),
394 1, 2, 2, 2, 0 },
395 { VALID, VALID, WLAN_RC_PHY_CCK, 11000, /* 11 Mb */
396 7100, 0x18, 0x04, (0x80|22),
397 1, 4, 100, 3, 0 },
398 },
399 100, /* probe interval */
400 100, /* rssi reduce interval */
401 0, /* Phy rates allowed initially */
402};
403
404static inline int8_t median(int8_t a, int8_t b, int8_t c)
405{
406 if (a >= b) {
407 if (b >= c)
408 return b;
409 else if (a > c)
410 return c;
411 else
412 return a;
413 } else {
414 if (a >= c)
415 return a;
416 else if (b >= c)
417 return c;
418 else
419 return b;
420 }
421}
422
423static void ath_rc_sort_validrates(struct ath_rate_table *rate_table,
424 struct ath_rate_priv *ath_rc_priv)
425{
426 u8 i, j, idx, idx_next;
427
428 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
429 for (j = 0; j <= i-1; j++) {
430 idx = ath_rc_priv->valid_rate_index[j];
431 idx_next = ath_rc_priv->valid_rate_index[j+1];
432
433 if (rate_table->info[idx].ratekbps >
434 rate_table->info[idx_next].ratekbps) {
435 ath_rc_priv->valid_rate_index[j] = idx_next;
436 ath_rc_priv->valid_rate_index[j+1] = idx;
437 }
438 }
439 }
440}
441
442static void ath_rc_init_valid_txmask(struct ath_rate_priv *ath_rc_priv)
443{
444 u8 i;
445
446 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
447 ath_rc_priv->valid_rate_index[i] = 0;
448}
449
450static inline void ath_rc_set_valid_txmask(struct ath_rate_priv *ath_rc_priv,
451 u8 index, int valid_tx_rate)
452{
453 ASSERT(index <= ath_rc_priv->rate_table_size);
454 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? 1 : 0;
455}
456
457static inline int ath_rc_isvalid_txmask(struct ath_rate_priv *ath_rc_priv,
458 u8 index)
459{
460 ASSERT(index <= ath_rc_priv->rate_table_size);
461 return ath_rc_priv->valid_rate_index[index];
462}
463
464static inline int ath_rc_get_nextvalid_txrate(struct ath_rate_table *rate_table,
465 struct ath_rate_priv *ath_rc_priv,
466 u8 cur_valid_txrate,
467 u8 *next_idx)
468{
469 u8 i;
470
471 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
472 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
473 *next_idx = ath_rc_priv->valid_rate_index[i+1];
474 return 1;
475 }
476 }
477
478 /* No more valid rates */
479 *next_idx = 0;
480
481 return 0;
482}
483
484/* Return true only for single stream */
485
486static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
487{
488 if (WLAN_RC_PHY_HT(phy) && !(capflag & WLAN_RC_HT_FLAG))
489 return 0;
490 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
491 return 0;
492 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
493 return 0;
494 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
495 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
496 return 0;
497 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
498 return 0;
499 return 1;
500}
501
502static inline int
503ath_rc_get_nextlowervalid_txrate(struct ath_rate_table *rate_table,
504 struct ath_rate_priv *ath_rc_priv,
505 u8 cur_valid_txrate, u8 *next_idx)
506{
507 int8_t i;
508
509 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
510 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
511 *next_idx = ath_rc_priv->valid_rate_index[i-1];
512 return 1;
513 }
514 }
515
516 return 0;
517}
518
519static u8 ath_rc_init_validrates(struct ath_rate_priv *ath_rc_priv,
520 struct ath_rate_table *rate_table,
521 u32 capflag)
522{
523 u8 i, hi = 0;
524 u32 valid;
525
526 for (i = 0; i < rate_table->rate_cnt; i++) {
527 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
528 rate_table->info[i].valid_single_stream :
529 rate_table->info[i].valid);
530 if (valid == 1) {
531 u32 phy = rate_table->info[i].phy;
532 u8 valid_rate_count = 0;
533
534 if (!ath_rc_valid_phyrate(phy, capflag, 0))
535 continue;
536
537 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
538
539 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
540 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
541 ath_rc_set_valid_txmask(ath_rc_priv, i, 1);
542 hi = A_MAX(hi, i);
543 }
544 }
545
546 return hi;
547}
548
549static u8 ath_rc_setvalid_rates(struct ath_rate_priv *ath_rc_priv,
550 struct ath_rate_table *rate_table,
551 struct ath_rateset *rateset,
552 u32 capflag)
553{
554 u8 i, j, hi = 0;
555
556 /* Use intersection of working rates and valid rates */
557 for (i = 0; i < rateset->rs_nrates; i++) {
558 for (j = 0; j < rate_table->rate_cnt; j++) {
559 u32 phy = rate_table->info[j].phy;
560 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
561 rate_table->info[j].valid_single_stream :
562 rate_table->info[j].valid);
563 u8 rate = rateset->rs_rates[i];
564 u8 dot11rate = rate_table->info[j].dot11rate;
565
566 /* We allow a rate only if its valid and the
567 * capflag matches one of the validity
568 * (VALID/VALID_20/VALID_40) flags */
569
570 if (((rate & 0x7F) == (dot11rate & 0x7F)) &&
571 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
572 WLAN_RC_CAP_MODE(capflag)) &&
573 !WLAN_RC_PHY_HT(phy)) {
574 u8 valid_rate_count = 0;
575
576 if (!ath_rc_valid_phyrate(phy, capflag, 0))
577 continue;
578
579 valid_rate_count =
580 ath_rc_priv->valid_phy_ratecnt[phy];
581
582 ath_rc_priv->valid_phy_rateidx[phy]
583 [valid_rate_count] = j;
584 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
585 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
586 hi = A_MAX(hi, j);
587 }
588 }
589 }
590
591 return hi;
592}
593
594static u8 ath_rc_setvalid_htrates(struct ath_rate_priv *ath_rc_priv,
595 struct ath_rate_table *rate_table,
596 u8 *mcs_set, u32 capflag)
597{
598 struct ath_rateset *rateset = (struct ath_rateset *)mcs_set;
599
600 u8 i, j, hi = 0;
601
602 /* Use intersection of working rates and valid rates */
603 for (i = 0; i < rateset->rs_nrates; i++) {
604 for (j = 0; j < rate_table->rate_cnt; j++) {
605 u32 phy = rate_table->info[j].phy;
606 u32 valid = (!(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG) ?
607 rate_table->info[j].valid_single_stream :
608 rate_table->info[j].valid);
609 u8 rate = rateset->rs_rates[i];
610 u8 dot11rate = rate_table->info[j].dot11rate;
611
612 if (((rate & 0x7F) != (dot11rate & 0x7F)) ||
613 !WLAN_RC_PHY_HT(phy) ||
614 !WLAN_RC_PHY_HT_VALID(valid, capflag))
615 continue;
616
617 if (!ath_rc_valid_phyrate(phy, capflag, 0))
618 continue;
619
620 ath_rc_priv->valid_phy_rateidx[phy]
621 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
622 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
623 ath_rc_set_valid_txmask(ath_rc_priv, j, 1);
624 hi = A_MAX(hi, j);
625 }
626 }
627
628 return hi;
629}
630
631static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
632 struct ath_rate_priv *ath_rc_priv,
633 struct ath_rate_table *rate_table,
634 int *is_probing)
635{
636 u32 dt, best_thruput, this_thruput, now_msec;
637 u8 rate, next_rate, best_rate, maxindex, minindex;
638 int8_t rssi_last, rssi_reduce = 0, index = 0;
639
640 *is_probing = 0;
641
642 rssi_last = median(ath_rc_priv->rssi_last,
643 ath_rc_priv->rssi_last_prev,
644 ath_rc_priv->rssi_last_prev2);
645
646 /*
647 * Age (reduce) last ack rssi based on how old it is.
648 * The bizarre numbers are so the delta is 160msec,
649 * meaning we divide by 16.
650 * 0msec <= dt <= 25msec: don't derate
651 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
652 * 185msec <= dt: derate by 10dB
653 */
654
655 now_msec = jiffies_to_msecs(jiffies);
656 dt = now_msec - ath_rc_priv->rssi_time;
657
658 if (dt >= 185)
659 rssi_reduce = 10;
660 else if (dt >= 25)
661 rssi_reduce = (u8)((dt - 25) >> 4);
662
663 /* Now reduce rssi_last by rssi_reduce */
664 if (rssi_last < rssi_reduce)
665 rssi_last = 0;
666 else
667 rssi_last -= rssi_reduce;
668
669 /*
670 * Now look up the rate in the rssi table and return it.
671 * If no rates match then we return 0 (lowest rate)
672 */
673
674 best_thruput = 0;
675 maxindex = ath_rc_priv->max_valid_rate-1;
676
677 minindex = 0;
678 best_rate = minindex;
679
680 /*
681 * Try the higher rate first. It will reduce memory moving time
682 * if we have very good channel characteristics.
683 */
684 for (index = maxindex; index >= minindex ; index--) {
685 u8 per_thres;
686
687 rate = ath_rc_priv->valid_rate_index[index];
688 if (rate > ath_rc_priv->rate_max_phy)
689 continue;
690
691 /*
692 * For TCP the average collision rate is around 11%,
693 * so we ignore PERs less than this. This is to
694 * prevent the rate we are currently using (whose
695 * PER might be in the 10-15 range because of TCP
696 * collisions) looking worse than the next lower
697 * rate whose PER has decayed close to 0. If we
698 * used to next lower rate, its PER would grow to
699 * 10-15 and we would be worse off then staying
700 * at the current rate.
701 */
702 per_thres = ath_rc_priv->state[rate].per;
703 if (per_thres < 12)
704 per_thres = 12;
705
706 this_thruput = rate_table->info[rate].user_ratekbps *
707 (100 - per_thres);
708
709 if (best_thruput <= this_thruput) {
710 best_thruput = this_thruput;
711 best_rate = rate;
712 }
713 }
714
715 rate = best_rate;
716 ath_rc_priv->rssi_last_lookup = rssi_last;
717
718 /*
719 * Must check the actual rate (ratekbps) to account for
720 * non-monoticity of 11g's rate table
721 */
722
723 if (rate >= ath_rc_priv->rate_max_phy) {
724 rate = ath_rc_priv->rate_max_phy;
725
726 /* Probe the next allowed phy state */
727 if (ath_rc_get_nextvalid_txrate(rate_table,
728 ath_rc_priv, rate, &next_rate) &&
729 (now_msec - ath_rc_priv->probe_time >
730 rate_table->probe_interval) &&
731 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
732 rate = next_rate;
733 ath_rc_priv->probe_rate = rate;
734 ath_rc_priv->probe_time = now_msec;
735 ath_rc_priv->hw_maxretry_pktcnt = 0;
736 *is_probing = 1;
737 }
738 }
739
740 if (rate > (ath_rc_priv->rate_table_size - 1))
741 rate = ath_rc_priv->rate_table_size - 1;
742
743 ASSERT((rate_table->info[rate].valid &&
744 (ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG)) ||
745 (rate_table->info[rate].valid_single_stream &&
746 !(ath_rc_priv->ht_cap & WLAN_RC_DS_FLAG)));
747
748 return rate;
749}
750
751static void ath_rc_rate_set_series(struct ath_rate_table *rate_table,
752 struct ieee80211_tx_rate *rate,
753 struct ieee80211_tx_rate_control *txrc,
754 u8 tries, u8 rix, int rtsctsenable)
755{
756 rate->count = tries;
757 rate->idx = rix;
758
759 if (txrc->short_preamble)
760 rate->flags |= IEEE80211_TX_RC_USE_SHORT_PREAMBLE;
761 if (txrc->rts || rtsctsenable)
762 rate->flags |= IEEE80211_TX_RC_USE_RTS_CTS;
763 if (WLAN_RC_PHY_40(rate_table->info[rix].phy))
764 rate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
765 if (WLAN_RC_PHY_SGI(rate_table->info[rix].phy))
766 rate->flags |= IEEE80211_TX_RC_SHORT_GI;
767 if (WLAN_RC_PHY_HT(rate_table->info[rix].phy))
768 rate->flags |= IEEE80211_TX_RC_MCS;
769}
770
771static void ath_rc_rate_set_rtscts(struct ath_softc *sc,
772 struct ath_rate_table *rate_table,
773 struct ieee80211_tx_info *tx_info)
774{
775 struct ieee80211_tx_rate *rates = tx_info->control.rates;
776 int i = 0, rix = 0, cix, enable_g_protection = 0;
777
778 /* get the cix for the lowest valid rix */
779 for (i = 3; i >= 0; i--) {
780 if (rates[i].count && (rates[i].idx >= 0)) {
781 rix = rates[i].idx;
782 break;
783 }
784 }
785 cix = rate_table->info[rix].ctrl_rate;
786
787 /* All protection frames are transmited at 2Mb/s for 802.11g,
788 * otherwise we transmit them at 1Mb/s */
789 if (sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ &&
790 !conf_is_ht(&sc->hw->conf))
791 enable_g_protection = 1;
792
793 /*
794 * If 802.11g protection is enabled, determine whether to use RTS/CTS or
795 * just CTS. Note that this is only done for OFDM/HT unicast frames.
796 */
797 if ((sc->sc_flags & SC_OP_PROTECT_ENABLE) &&
798 !(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) &&
799 (rate_table->info[rix].phy == WLAN_RC_PHY_OFDM ||
800 WLAN_RC_PHY_HT(rate_table->info[rix].phy))) {
801 rates[0].flags |= IEEE80211_TX_RC_USE_CTS_PROTECT;
802 cix = rate_table->info[enable_g_protection].ctrl_rate;
803 }
804
805 tx_info->control.rts_cts_rate_idx = cix;
806}
807
808static u8 ath_rc_rate_getidx(struct ath_softc *sc,
809 struct ath_rate_priv *ath_rc_priv,
810 struct ath_rate_table *rate_table,
811 u8 rix, u16 stepdown,
812 u16 min_rate)
813{
814 u32 j;
815 u8 nextindex;
816
817 if (min_rate) {
818 for (j = RATE_TABLE_SIZE; j > 0; j--) {
819 if (ath_rc_get_nextlowervalid_txrate(rate_table,
820 ath_rc_priv, rix, &nextindex))
821 rix = nextindex;
822 else
823 break;
824 }
825 } else {
826 for (j = stepdown; j > 0; j--) {
827 if (ath_rc_get_nextlowervalid_txrate(rate_table,
828 ath_rc_priv, rix, &nextindex))
829 rix = nextindex;
830 else
831 break;
832 }
833 }
834 return rix;
835}
836
837static void ath_rc_ratefind(struct ath_softc *sc,
838 struct ath_rate_priv *ath_rc_priv,
839 struct ieee80211_tx_rate_control *txrc)
840{
841 struct ath_rate_table *rate_table;
842 struct sk_buff *skb = txrc->skb;
843 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
844 struct ieee80211_tx_rate *rates = tx_info->control.rates;
845 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
846 __le16 fc = hdr->frame_control;
847 u8 try_per_rate = 0, i = 0, rix, nrix;
848 int is_probe = 0;
849
850 rate_table = sc->cur_rate_table;
851 rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table, &is_probe);
852 nrix = rix;
853
854 if (is_probe) {
855 /* set one try for probe rates. For the
856 * probes don't enable rts */
857 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
858 1, nrix, 0);
859
860 try_per_rate = (ATH_11N_TXMAXTRY/4);
861 /* Get the next tried/allowed rate. No RTS for the next series
862 * after the probe rate
863 */
864 nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
865 rate_table, nrix, 1, 0);
866 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
867 try_per_rate, nrix, 0);
868
869 tx_info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
870 } else {
871 try_per_rate = (ATH_11N_TXMAXTRY/4);
872 /* Set the choosen rate. No RTS for first series entry. */
873 ath_rc_rate_set_series(rate_table, &rates[i++], txrc,
874 try_per_rate, nrix, 0);
875 }
876
877 /* Fill in the other rates for multirate retry */
878 for ( ; i < 4; i++) {
879 u8 try_num;
880 u8 min_rate;
881
882 try_num = ((i + 1) == 4) ?
883 ATH_11N_TXMAXTRY - (try_per_rate * i) : try_per_rate ;
884 min_rate = (((i + 1) == 4) && 0);
885
886 nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
887 rate_table, nrix, 1, min_rate);
888 /* All other rates in the series have RTS enabled */
889 ath_rc_rate_set_series(rate_table, &rates[i], txrc,
890 try_num, nrix, 1);
891 }
892
893 /*
894 * NB:Change rate series to enable aggregation when operating
895 * at lower MCS rates. When first rate in series is MCS2
896 * in HT40 @ 2.4GHz, series should look like:
897 *
898 * {MCS2, MCS1, MCS0, MCS0}.
899 *
900 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
901 * look like:
902 *
903 * {MCS3, MCS2, MCS1, MCS1}
904 *
905 * So, set fourth rate in series to be same as third one for
906 * above conditions.
907 */
908 if ((sc->hw->conf.channel->band == IEEE80211_BAND_2GHZ) &&
909 (conf_is_ht(&sc->hw->conf))) {
910 u8 dot11rate = rate_table->info[rix].dot11rate;
911 u8 phy = rate_table->info[rix].phy;
912 if (i == 4 &&
913 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
914 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
915 rates[3].idx = rates[2].idx;
916 rates[3].flags = rates[2].flags;
917 }
918 }
919
920 /*
921 * Force hardware to use computed duration for next
922 * fragment by disabling multi-rate retry, which
923 * updates duration based on the multi-rate duration table.
924 *
925 * FIXME: Fix duration
926 */
927 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK) &&
928 (ieee80211_has_morefrags(fc) ||
929 (le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG))) {
930 rates[1].count = rates[2].count = rates[3].count = 0;
931 rates[1].idx = rates[2].idx = rates[3].idx = 0;
932 rates[0].count = ATH_TXMAXTRY;
933 }
934
935 /* Setup RTS/CTS */
936 ath_rc_rate_set_rtscts(sc, rate_table, tx_info);
937}
938
939static bool ath_rc_update_per(struct ath_softc *sc,
940 struct ath_rate_table *rate_table,
941 struct ath_rate_priv *ath_rc_priv,
942 struct ath_tx_info_priv *tx_info_priv,
943 int tx_rate, int xretries, int retries,
944 u32 now_msec)
945{
946 bool state_change = false;
947 int count;
948 u8 last_per;
949 static u32 nretry_to_per_lookup[10] = {
950 100 * 0 / 1,
951 100 * 1 / 4,
952 100 * 1 / 2,
953 100 * 3 / 4,
954 100 * 4 / 5,
955 100 * 5 / 6,
956 100 * 6 / 7,
957 100 * 7 / 8,
958 100 * 8 / 9,
959 100 * 9 / 10
960 };
961
962 last_per = ath_rc_priv->state[tx_rate].per;
963
964 if (xretries) {
965 if (xretries == 1) {
966 ath_rc_priv->state[tx_rate].per += 30;
967 if (ath_rc_priv->state[tx_rate].per > 100)
968 ath_rc_priv->state[tx_rate].per = 100;
969 } else {
970 /* xretries == 2 */
971 count = ARRAY_SIZE(nretry_to_per_lookup);
972 if (retries >= count)
973 retries = count - 1;
974
975 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
976 ath_rc_priv->state[tx_rate].per =
977 (u8)(last_per - (last_per >> 3) + (100 >> 3));
978 }
979
980 /* xretries == 1 or 2 */
981
982 if (ath_rc_priv->probe_rate == tx_rate)
983 ath_rc_priv->probe_rate = 0;
984
985 } else { /* xretries == 0 */
986 count = ARRAY_SIZE(nretry_to_per_lookup);
987 if (retries >= count)
988 retries = count - 1;
989
990 if (tx_info_priv->n_bad_frames) {
991 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
992 * Assuming that n_frames is not 0. The current PER
993 * from the retries is 100 * retries / (retries+1),
994 * since the first retries attempts failed, and the
995 * next one worked. For the one that worked,
996 * n_bad_frames subframes out of n_frames wored,
997 * so the PER for that part is
998 * 100 * n_bad_frames / n_frames, and it contributes
999 * 100 * n_bad_frames / (n_frames * (retries+1)) to
1000 * the above PER. The expression below is a
1001 * simplified version of the sum of these two terms.
1002 */
1003 if (tx_info_priv->n_frames > 0) {
1004 int n_frames, n_bad_frames;
1005 u8 cur_per, new_per;
1006
1007 n_bad_frames = retries * tx_info_priv->n_frames +
1008 tx_info_priv->n_bad_frames;
1009 n_frames = tx_info_priv->n_frames * (retries + 1);
1010 cur_per = (100 * n_bad_frames / n_frames) >> 3;
1011 new_per = (u8)(last_per - (last_per >> 3) + cur_per);
1012 ath_rc_priv->state[tx_rate].per = new_per;
1013 }
1014 } else {
1015 ath_rc_priv->state[tx_rate].per =
1016 (u8)(last_per - (last_per >> 3) +
1017 (nretry_to_per_lookup[retries] >> 3));
1018 }
1019
1020 ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
1021 ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
1022 ath_rc_priv->rssi_last = tx_info_priv->tx.ts_rssi;
1023 ath_rc_priv->rssi_time = now_msec;
1024
1025 /*
1026 * If we got at most one retry then increase the max rate if
1027 * this was a probe. Otherwise, ignore the probe.
1028 */
1029 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
1030 if (retries > 0 || 2 * tx_info_priv->n_bad_frames >
1031 tx_info_priv->n_frames) {
1032 /*
1033 * Since we probed with just a single attempt,
1034 * any retries means the probe failed. Also,
1035 * if the attempt worked, but more than half
1036 * the subframes were bad then also consider
1037 * the probe a failure.
1038 */
1039 ath_rc_priv->probe_rate = 0;
1040 } else {
1041 u8 probe_rate = 0;
1042
1043 ath_rc_priv->rate_max_phy =
1044 ath_rc_priv->probe_rate;
1045 probe_rate = ath_rc_priv->probe_rate;
1046
1047 if (ath_rc_priv->state[probe_rate].per > 30)
1048 ath_rc_priv->state[probe_rate].per = 20;
1049
1050 ath_rc_priv->probe_rate = 0;
1051
1052 /*
1053 * Since this probe succeeded, we allow the next
1054 * probe twice as soon. This allows the maxRate
1055 * to move up faster if the probes are
1056 * succesful.
1057 */
1058 ath_rc_priv->probe_time =
1059 now_msec - rate_table->probe_interval / 2;
1060 }
1061 }
1062
1063 if (retries > 0) {
1064 /*
1065 * Don't update anything. We don't know if
1066 * this was because of collisions or poor signal.
1067 *
1068 * Later: if rssi_ack is close to
1069 * ath_rc_priv->state[txRate].rssi_thres and we see lots
1070 * of retries, then we could increase
1071 * ath_rc_priv->state[txRate].rssi_thres.
1072 */
1073 ath_rc_priv->hw_maxretry_pktcnt = 0;
1074 } else {
1075 int32_t rssi_ackAvg;
1076 int8_t rssi_thres;
1077 int8_t rssi_ack_vmin;
1078
1079 /*
1080 * It worked with no retries. First ignore bogus (small)
1081 * rssi_ack values.
1082 */
1083 if (tx_rate == ath_rc_priv->rate_max_phy &&
1084 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1085 ath_rc_priv->hw_maxretry_pktcnt++;
1086 }
1087
1088 if (tx_info_priv->tx.ts_rssi <
1089 rate_table->info[tx_rate].rssi_ack_validmin)
1090 goto exit;
1091
1092 /* Average the rssi */
1093 if (tx_rate != ath_rc_priv->rssi_sum_rate) {
1094 ath_rc_priv->rssi_sum_rate = tx_rate;
1095 ath_rc_priv->rssi_sum =
1096 ath_rc_priv->rssi_sum_cnt = 0;
1097 }
1098
1099 ath_rc_priv->rssi_sum += tx_info_priv->tx.ts_rssi;
1100 ath_rc_priv->rssi_sum_cnt++;
1101
1102 if (ath_rc_priv->rssi_sum_cnt < 4)
1103 goto exit;
1104
1105 rssi_ackAvg =
1106 (ath_rc_priv->rssi_sum + 2) / 4;
1107 rssi_thres =
1108 ath_rc_priv->state[tx_rate].rssi_thres;
1109 rssi_ack_vmin =
1110 rate_table->info[tx_rate].rssi_ack_validmin;
1111
1112 ath_rc_priv->rssi_sum =
1113 ath_rc_priv->rssi_sum_cnt = 0;
1114
1115 /* Now reduce the current rssi threshold */
1116 if ((rssi_ackAvg < rssi_thres + 2) &&
1117 (rssi_thres > rssi_ack_vmin)) {
1118 ath_rc_priv->state[tx_rate].rssi_thres--;
1119 }
1120
1121 state_change = true;
1122 }
1123 }
1124exit:
1125 return state_change;
1126}
1127
1128/* Update PER, RSSI and whatever else that the code thinks it is doing.
1129 If you can make sense of all this, you really need to go out more. */
1130
1131static void ath_rc_update_ht(struct ath_softc *sc,
1132 struct ath_rate_priv *ath_rc_priv,
1133 struct ath_tx_info_priv *tx_info_priv,
1134 int tx_rate, int xretries, int retries)
1135{
1136#define CHK_RSSI(rate) \
1137 ((ath_rc_priv->state[(rate)].rssi_thres + \
1138 rate_table->info[(rate)].rssi_ack_deltamin) > \
1139 ath_rc_priv->state[(rate)+1].rssi_thres)
1140
1141 u32 now_msec = jiffies_to_msecs(jiffies);
1142 int rate;
1143 u8 last_per;
1144 bool state_change = false;
1145 struct ath_rate_table *rate_table = sc->cur_rate_table;
1146 int size = ath_rc_priv->rate_table_size;
1147
1148 if ((tx_rate < 0) || (tx_rate > rate_table->rate_cnt))
1149 return;
1150
1151 /* To compensate for some imbalance between ctrl and ext. channel */
1152
1153 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1154 tx_info_priv->tx.ts_rssi =
1155 tx_info_priv->tx.ts_rssi < 3 ? 0 :
1156 tx_info_priv->tx.ts_rssi - 3;
1157
1158 last_per = ath_rc_priv->state[tx_rate].per;
1159
1160 /* Update PER first */
1161 state_change = ath_rc_update_per(sc, rate_table, ath_rc_priv,
1162 tx_info_priv, tx_rate, xretries,
1163 retries, now_msec);
1164
1165 /*
1166 * If this rate looks bad (high PER) then stop using it for
1167 * a while (except if we are probing).
1168 */
1169 if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
1170 rate_table->info[tx_rate].ratekbps <=
1171 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1172 ath_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv,
1173 (u8)tx_rate, &ath_rc_priv->rate_max_phy);
1174
1175 /* Don't probe for a little while. */
1176 ath_rc_priv->probe_time = now_msec;
1177 }
1178
1179 if (state_change) {
1180 /*
1181 * Make sure the rates above this have higher rssi thresholds.
1182 * (Note: Monotonicity is kept within the OFDM rates and
1183 * within the CCK rates. However, no adjustment is
1184 * made to keep the rssi thresholds monotonically
1185 * increasing between the CCK and OFDM rates.)
1186 */
1187 for (rate = tx_rate; rate < size - 1; rate++) {
1188 if (rate_table->info[rate+1].phy !=
1189 rate_table->info[tx_rate].phy)
1190 break;
1191
1192 if (CHK_RSSI(rate)) {
1193 ath_rc_priv->state[rate+1].rssi_thres =
1194 ath_rc_priv->state[rate].rssi_thres +
1195 rate_table->info[rate].rssi_ack_deltamin;
1196 }
1197 }
1198
1199 /* Make sure the rates below this have lower rssi thresholds. */
1200 for (rate = tx_rate - 1; rate >= 0; rate--) {
1201 if (rate_table->info[rate].phy !=
1202 rate_table->info[tx_rate].phy)
1203 break;
1204
1205 if (CHK_RSSI(rate)) {
1206 if (ath_rc_priv->state[rate+1].rssi_thres <
1207 rate_table->info[rate].rssi_ack_deltamin)
1208 ath_rc_priv->state[rate].rssi_thres = 0;
1209 else {
1210 ath_rc_priv->state[rate].rssi_thres =
1211 ath_rc_priv->state[rate+1].rssi_thres -
1212 rate_table->info[rate].rssi_ack_deltamin;
1213 }
1214
1215 if (ath_rc_priv->state[rate].rssi_thres <
1216 rate_table->info[rate].rssi_ack_validmin) {
1217 ath_rc_priv->state[rate].rssi_thres =
1218 rate_table->info[rate].rssi_ack_validmin;
1219 }
1220 }
1221 }
1222 }
1223
1224 /* Make sure the rates below this have lower PER */
1225 /* Monotonicity is kept only for rates below the current rate. */
1226 if (ath_rc_priv->state[tx_rate].per < last_per) {
1227 for (rate = tx_rate - 1; rate >= 0; rate--) {
1228 if (rate_table->info[rate].phy !=
1229 rate_table->info[tx_rate].phy)
1230 break;
1231
1232 if (ath_rc_priv->state[rate].per >
1233 ath_rc_priv->state[rate+1].per) {
1234 ath_rc_priv->state[rate].per =
1235 ath_rc_priv->state[rate+1].per;
1236 }
1237 }
1238 }
1239
1240 /* Maintain monotonicity for rates above the current rate */
1241 for (rate = tx_rate; rate < size - 1; rate++) {
1242 if (ath_rc_priv->state[rate+1].per <
1243 ath_rc_priv->state[rate].per)
1244 ath_rc_priv->state[rate+1].per =
1245 ath_rc_priv->state[rate].per;
1246 }
1247
1248 /* Every so often, we reduce the thresholds and
1249 * PER (different for CCK and OFDM). */
1250 if (now_msec - ath_rc_priv->rssi_down_time >=
1251 rate_table->rssi_reduce_interval) {
1252
1253 for (rate = 0; rate < size; rate++) {
1254 if (ath_rc_priv->state[rate].rssi_thres >
1255 rate_table->info[rate].rssi_ack_validmin)
1256 ath_rc_priv->state[rate].rssi_thres -= 1;
1257 }
1258 ath_rc_priv->rssi_down_time = now_msec;
1259 }
1260
1261 /* Every so often, we reduce the thresholds
1262 * and PER (different for CCK and OFDM). */
1263 if (now_msec - ath_rc_priv->per_down_time >=
1264 rate_table->rssi_reduce_interval) {
1265 for (rate = 0; rate < size; rate++) {
1266 ath_rc_priv->state[rate].per =
1267 7 * ath_rc_priv->state[rate].per / 8;
1268 }
1269
1270 ath_rc_priv->per_down_time = now_msec;
1271 }
1272
1273 ath_debug_stat_retries(sc, tx_rate, xretries, retries,
1274 ath_rc_priv->state[tx_rate].per);
1275
1276#undef CHK_RSSI
1277}
1278
1279static int ath_rc_get_rateindex(struct ath_rate_table *rate_table,
1280 struct ieee80211_tx_rate *rate)
1281{
1282 int rix;
1283
1284 if ((rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1285 (rate->flags & IEEE80211_TX_RC_SHORT_GI))
1286 rix = rate_table->info[rate->idx].ht_index;
1287 else if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
1288 rix = rate_table->info[rate->idx].sgi_index;
1289 else if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1290 rix = rate_table->info[rate->idx].cw40index;
1291 else
1292 rix = rate_table->info[rate->idx].base_index;
1293
1294 return rix;
1295}
1296
1297static void ath_rc_tx_status(struct ath_softc *sc,
1298 struct ath_rate_priv *ath_rc_priv,
1299 struct ieee80211_tx_info *tx_info,
1300 int final_ts_idx, int xretries, int long_retry)
1301{
1302 struct ath_tx_info_priv *tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1303 struct ath_rate_table *rate_table;
1304 struct ieee80211_tx_rate *rates = tx_info->status.rates;
1305 u8 flags;
1306 u32 i = 0, rix;
1307
1308 rate_table = sc->cur_rate_table;
1309
1310 /*
1311 * If the first rate is not the final index, there
1312 * are intermediate rate failures to be processed.
1313 */
1314 if (final_ts_idx != 0) {
1315 /* Process intermediate rates that failed.*/
1316 for (i = 0; i < final_ts_idx ; i++) {
1317 if (rates[i].count != 0 && (rates[i].idx >= 0)) {
1318 flags = rates[i].flags;
1319
1320 /* If HT40 and we have switched mode from
1321 * 40 to 20 => don't update */
1322
1323 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1324 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1325 return;
1326
1327 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1328 ath_rc_update_ht(sc, ath_rc_priv,
1329 tx_info_priv, rix,
1330 xretries ? 1 : 2,
1331 rates[i].count);
1332 }
1333 }
1334 } else {
1335 /*
1336 * Handle the special case of MIMO PS burst, where the second
1337 * aggregate is sent out with only one rate and one try.
1338 * Treating it as an excessive retry penalizes the rate
1339 * inordinately.
1340 */
1341 if (rates[0].count == 1 && xretries == 1)
1342 xretries = 2;
1343 }
1344
1345 flags = rates[i].flags;
1346
1347 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1348 if ((flags & IEEE80211_TX_RC_40_MHZ_WIDTH) &&
1349 !(ath_rc_priv->ht_cap & WLAN_RC_40_FLAG))
1350 return;
1351
1352 rix = ath_rc_get_rateindex(rate_table, &rates[i]);
1353 ath_rc_update_ht(sc, ath_rc_priv, tx_info_priv, rix,
1354 xretries, long_retry);
1355}
1356
1357static struct ath_rate_table *ath_choose_rate_table(struct ath_softc *sc,
1358 enum ieee80211_band band,
1359 bool is_ht, bool is_cw_40)
1360{
1361 int mode = 0;
1362
1363 switch(band) {
1364 case IEEE80211_BAND_2GHZ:
1365 mode = ATH9K_MODE_11G;
1366 if (is_ht)
1367 mode = ATH9K_MODE_11NG_HT20;
1368 if (is_cw_40)
1369 mode = ATH9K_MODE_11NG_HT40PLUS;
1370 break;
1371 case IEEE80211_BAND_5GHZ:
1372 mode = ATH9K_MODE_11A;
1373 if (is_ht)
1374 mode = ATH9K_MODE_11NA_HT20;
1375 if (is_cw_40)
1376 mode = ATH9K_MODE_11NA_HT40PLUS;
1377 break;
1378 default:
1379 DPRINTF(sc, ATH_DBG_CONFIG, "Invalid band\n");
1380 return NULL;
1381 }
1382
1383 BUG_ON(mode >= ATH9K_MODE_MAX);
1384
1385 DPRINTF(sc, ATH_DBG_CONFIG, "Choosing rate table for mode: %d\n", mode);
1386 return sc->hw_rate_table[mode];
1387}
1388
1389static void ath_rc_init(struct ath_softc *sc,
1390 struct ath_rate_priv *ath_rc_priv,
1391 struct ieee80211_supported_band *sband,
1392 struct ieee80211_sta *sta,
1393 struct ath_rate_table *rate_table)
1394{
1395 struct ath_rateset *rateset = &ath_rc_priv->neg_rates;
1396 u8 *ht_mcs = (u8 *)&ath_rc_priv->neg_ht_rates;
1397 u8 i, j, k, hi = 0, hthi = 0;
1398
1399 if (!rate_table) {
1400 DPRINTF(sc, ATH_DBG_FATAL, "Rate table not initialized\n");
1401 return;
1402 }
1403
1404 /* Initial rate table size. Will change depending
1405 * on the working rate set */
1406 ath_rc_priv->rate_table_size = RATE_TABLE_SIZE;
1407
1408 /* Initialize thresholds according to the global rate table */
1409 for (i = 0 ; i < ath_rc_priv->rate_table_size; i++) {
1410 ath_rc_priv->state[i].rssi_thres =
1411 rate_table->info[i].rssi_ack_validmin;
1412 ath_rc_priv->state[i].per = 0;
1413 }
1414
1415 /* Determine the valid rates */
1416 ath_rc_init_valid_txmask(ath_rc_priv);
1417
1418 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1419 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1420 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1421 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1422 }
1423
1424 if (!rateset->rs_nrates) {
1425 /* No working rate, just initialize valid rates */
1426 hi = ath_rc_init_validrates(ath_rc_priv, rate_table,
1427 ath_rc_priv->ht_cap);
1428 } else {
1429 /* Use intersection of working rates and valid rates */
1430 hi = ath_rc_setvalid_rates(ath_rc_priv, rate_table,
1431 rateset, ath_rc_priv->ht_cap);
1432 if (ath_rc_priv->ht_cap & WLAN_RC_HT_FLAG) {
1433 hthi = ath_rc_setvalid_htrates(ath_rc_priv,
1434 rate_table,
1435 ht_mcs,
1436 ath_rc_priv->ht_cap);
1437 }
1438 hi = A_MAX(hi, hthi);
1439 }
1440
1441 ath_rc_priv->rate_table_size = hi + 1;
1442 ath_rc_priv->rate_max_phy = 0;
1443 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1444
1445 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1446 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1447 ath_rc_priv->valid_rate_index[k++] =
1448 ath_rc_priv->valid_phy_rateidx[i][j];
1449 }
1450
1451 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, 1)
1452 || !ath_rc_priv->valid_phy_ratecnt[i])
1453 continue;
1454
1455 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1456 }
1457 ASSERT(ath_rc_priv->rate_table_size <= RATE_TABLE_SIZE);
1458 ASSERT(k <= RATE_TABLE_SIZE);
1459
1460 ath_rc_priv->max_valid_rate = k;
1461 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1462 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1463 sc->cur_rate_table = rate_table;
1464
1465 DPRINTF(sc, ATH_DBG_CONFIG, "RC Initialized with capabilities: 0x%x\n",
1466 ath_rc_priv->ht_cap);
1467}
1468
1469static u8 ath_rc_build_ht_caps(struct ath_softc *sc, struct ieee80211_sta *sta,
1470 bool is_cw40, bool is_sgi40)
1471{
1472 u8 caps = 0;
1473
1474 if (sta->ht_cap.ht_supported) {
1475 caps = WLAN_RC_HT_FLAG;
1476 if (sc->sc_ah->caps.tx_chainmask != 1 &&
1477 ath9k_hw_getcapability(sc->sc_ah, ATH9K_CAP_DS, 0, NULL)) {
1478 if (sta->ht_cap.mcs.rx_mask[1])
1479 caps |= WLAN_RC_DS_FLAG;
1480 }
1481 if (is_cw40)
1482 caps |= WLAN_RC_40_FLAG;
1483 if (is_sgi40)
1484 caps |= WLAN_RC_SGI_FLAG;
1485 }
1486
1487 return caps;
1488}
1489
1490/***********************************/
1491/* mac80211 Rate Control callbacks */
1492/***********************************/
1493
1494static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1495 struct ieee80211_sta *sta, void *priv_sta,
1496 struct sk_buff *skb)
1497{
1498 struct ath_softc *sc = priv;
1499 struct ath_rate_priv *ath_rc_priv = priv_sta;
1500 struct ath_tx_info_priv *tx_info_priv = NULL;
1501 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1502 struct ieee80211_hdr *hdr;
1503 int final_ts_idx, tx_status = 0, is_underrun = 0;
1504 __le16 fc;
1505
1506 hdr = (struct ieee80211_hdr *)skb->data;
1507 fc = hdr->frame_control;
1508 tx_info_priv = ATH_TX_INFO_PRIV(tx_info);
1509 final_ts_idx = tx_info_priv->tx.ts_rateindex;
1510
1511 if (!priv_sta || !ieee80211_is_data(fc) ||
1512 !tx_info_priv->update_rc)
1513 goto exit;
1514
1515 if (tx_info_priv->tx.ts_status & ATH9K_TXERR_FILT)
1516 goto exit;
1517
1518 /*
1519 * If underrun error is seen assume it as an excessive retry only
1520 * if prefetch trigger level have reached the max (0x3f for 5416)
1521 * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
1522 * times. This affects how ratectrl updates PER for the failed rate.
1523 */
1524 if (tx_info_priv->tx.ts_flags &
1525 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1526 ((sc->sc_ah->tx_trig_level) >= ath_rc_priv->tx_triglevel_max)) {
1527 tx_status = 1;
1528 is_underrun = 1;
1529 }
1530
1531 if ((tx_info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1532 (tx_info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1533 tx_status = 1;
1534
1535 ath_rc_tx_status(sc, ath_rc_priv, tx_info, final_ts_idx, tx_status,
1536 (is_underrun) ? ATH_11N_TXMAXTRY :
1537 tx_info_priv->tx.ts_longretry);
1538
1539 /* Check if aggregation has to be enabled for this tid */
1540 if (conf_is_ht(&sc->hw->conf) &&
1541 !(skb->protocol == cpu_to_be16(ETH_P_PAE))) {
1542 if (ieee80211_is_data_qos(fc)) {
1543 u8 *qc, tid;
1544 struct ath_node *an;
1545
1546 qc = ieee80211_get_qos_ctl(hdr);
1547 tid = qc[0] & 0xf;
1548 an = (struct ath_node *)sta->drv_priv;
1549
1550 if(ath_tx_aggr_check(sc, an, tid))
1551 ieee80211_start_tx_ba_session(sc->hw, hdr->addr1, tid);
1552 }
1553 }
1554
1555 ath_debug_stat_rc(sc, skb);
1556exit:
1557 kfree(tx_info_priv);
1558}
1559
1560static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1561 struct ieee80211_tx_rate_control *txrc)
1562{
1563 struct ieee80211_supported_band *sband = txrc->sband;
1564 struct sk_buff *skb = txrc->skb;
1565 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1566 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1567 struct ath_softc *sc = priv;
1568 struct ath_rate_priv *ath_rc_priv = priv_sta;
1569 __le16 fc = hdr->frame_control;
1570
1571 /* lowest rate for management and multicast/broadcast frames */
1572 if (!ieee80211_is_data(fc) || is_multicast_ether_addr(hdr->addr1) ||
1573 !sta) {
1574 tx_info->control.rates[0].idx = rate_lowest_index(sband, sta);
1575 tx_info->control.rates[0].count =
1576 is_multicast_ether_addr(hdr->addr1) ? 1 : ATH_MGT_TXMAXTRY;
1577 return;
1578 }
1579
1580 /* Find tx rate for unicast frames */
1581 ath_rc_ratefind(sc, ath_rc_priv, txrc);
1582}
1583
1584static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1585 struct ieee80211_sta *sta, void *priv_sta)
1586{
1587 struct ath_softc *sc = priv;
1588 struct ath_rate_priv *ath_rc_priv = priv_sta;
1589 struct ath_rate_table *rate_table = NULL;
1590 bool is_cw40, is_sgi40;
1591 int i, j = 0;
1592
1593 for (i = 0; i < sband->n_bitrates; i++) {
1594 if (sta->supp_rates[sband->band] & BIT(i)) {
1595 ath_rc_priv->neg_rates.rs_rates[j]
1596 = (sband->bitrates[i].bitrate * 2) / 10;
1597 j++;
1598 }
1599 }
1600 ath_rc_priv->neg_rates.rs_nrates = j;
1601
1602 if (sta->ht_cap.ht_supported) {
1603 for (i = 0, j = 0; i < 77; i++) {
1604 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1605 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1606 if (j == ATH_RATE_MAX)
1607 break;
1608 }
1609 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1610 }
1611
1612 is_cw40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SUP_WIDTH_20_40;
1613 is_sgi40 = sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40;
1614
1615 /* Choose rate table first */
1616
1617 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) ||
1618 (sc->sc_ah->opmode == NL80211_IFTYPE_MESH_POINT) ||
1619 (sc->sc_ah->opmode == NL80211_IFTYPE_ADHOC)) {
1620 rate_table = ath_choose_rate_table(sc, sband->band,
1621 sta->ht_cap.ht_supported,
1622 is_cw40);
1623 } else if (sc->sc_ah->opmode == NL80211_IFTYPE_AP) {
1624 /* cur_rate_table would be set on init through config() */
1625 rate_table = sc->cur_rate_table;
1626 }
1627
1628 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta, is_cw40, is_sgi40);
1629 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1630}
1631
1632static void ath_rate_update(void *priv, struct ieee80211_supported_band *sband,
1633 struct ieee80211_sta *sta, void *priv_sta,
1634 u32 changed)
1635{
1636 struct ath_softc *sc = priv;
1637 struct ath_rate_priv *ath_rc_priv = priv_sta;
1638 struct ath_rate_table *rate_table = NULL;
1639 bool oper_cw40 = false, oper_sgi40;
1640 bool local_cw40 = (ath_rc_priv->ht_cap & WLAN_RC_40_FLAG) ?
1641 true : false;
1642 bool local_sgi40 = (ath_rc_priv->ht_cap & WLAN_RC_SGI_FLAG) ?
1643 true : false;
1644
1645 /* FIXME: Handle AP mode later when we support CWM */
1646
1647 if (changed & IEEE80211_RC_HT_CHANGED) {
1648 if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
1649 return;
1650
1651 if (sc->hw->conf.channel_type == NL80211_CHAN_HT40MINUS ||
1652 sc->hw->conf.channel_type == NL80211_CHAN_HT40PLUS)
1653 oper_cw40 = true;
1654
1655 oper_sgi40 = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
1656 true : false;
1657
1658 if ((local_cw40 != oper_cw40) || (local_sgi40 != oper_sgi40)) {
1659 rate_table = ath_choose_rate_table(sc, sband->band,
1660 sta->ht_cap.ht_supported,
1661 oper_cw40);
1662 ath_rc_priv->ht_cap = ath_rc_build_ht_caps(sc, sta,
1663 oper_cw40, oper_sgi40);
1664 ath_rc_init(sc, priv_sta, sband, sta, rate_table);
1665
1666 DPRINTF(sc, ATH_DBG_CONFIG,
1667 "Operating HT Bandwidth changed to: %d\n",
1668 sc->hw->conf.channel_type);
1669 }
1670 }
1671}
1672
1673static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1674{
1675 struct ath_wiphy *aphy = hw->priv;
1676 return aphy->sc;
1677}
1678
1679static void ath_rate_free(void *priv)
1680{
1681 return;
1682}
1683
1684static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1685{
1686 struct ath_softc *sc = priv;
1687 struct ath_rate_priv *rate_priv;
1688
1689 rate_priv = kzalloc(sizeof(struct ath_rate_priv), gfp);
1690 if (!rate_priv) {
1691 DPRINTF(sc, ATH_DBG_FATAL,
1692 "Unable to allocate private rc structure\n");
1693 return NULL;
1694 }
1695
1696 rate_priv->rssi_down_time = jiffies_to_msecs(jiffies);
1697 rate_priv->tx_triglevel_max = sc->sc_ah->caps.tx_triglevel_max;
1698
1699 return rate_priv;
1700}
1701
1702static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1703 void *priv_sta)
1704{
1705 struct ath_rate_priv *rate_priv = priv_sta;
1706 kfree(rate_priv);
1707}
1708
1709static struct rate_control_ops ath_rate_ops = {
1710 .module = NULL,
1711 .name = "ath9k_rate_control",
1712 .tx_status = ath_tx_status,
1713 .get_rate = ath_get_rate,
1714 .rate_init = ath_rate_init,
1715 .rate_update = ath_rate_update,
1716 .alloc = ath_rate_alloc,
1717 .free = ath_rate_free,
1718 .alloc_sta = ath_rate_alloc_sta,
1719 .free_sta = ath_rate_free_sta,
1720};
1721
1722void ath_rate_attach(struct ath_softc *sc)
1723{
1724 sc->hw_rate_table[ATH9K_MODE_11B] =
1725 &ar5416_11b_ratetable;
1726 sc->hw_rate_table[ATH9K_MODE_11A] =
1727 &ar5416_11a_ratetable;
1728 sc->hw_rate_table[ATH9K_MODE_11G] =
1729 &ar5416_11g_ratetable;
1730 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] =
1731 &ar5416_11na_ratetable;
1732 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] =
1733 &ar5416_11ng_ratetable;
1734 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
1735 &ar5416_11na_ratetable;
1736 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
1737 &ar5416_11na_ratetable;
1738 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
1739 &ar5416_11ng_ratetable;
1740 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
1741 &ar5416_11ng_ratetable;
1742}
1743
1744int ath_rate_control_register(void)
1745{
1746 return ieee80211_rate_control_register(&ath_rate_ops);
1747}
1748
1749void ath_rate_control_unregister(void)
1750{
1751 ieee80211_rate_control_unregister(&ath_rate_ops);
1752}