aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ath9k/main.c
diff options
context:
space:
mode:
authorSujith <Sujith.Manoharan@atheros.com>2008-11-24 01:37:55 -0500
committerJohn W. Linville <linville@tuxdriver.com>2008-11-26 09:47:49 -0500
commitff37e337beb838d4c2540fa93b2c4c632ee17750 (patch)
tree649d6dfedaef70558b222cc75e952193147449ed /drivers/net/wireless/ath9k/main.c
parentbf8c1ac6d81ba8c0e4dc2215f84f5e2a3c8227e8 (diff)
ath9k: Code scrub
Merge core.c and base.c Remove Antenna Diversity (unused now). Remove unused chainmask handling code. Comment, indentation scrub. Signed-off-by: Sujith <Sujith.Manoharan@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net/wireless/ath9k/main.c')
-rw-r--r--drivers/net/wireless/ath9k/main.c1195
1 files changed, 1171 insertions, 24 deletions
diff --git a/drivers/net/wireless/ath9k/main.c b/drivers/net/wireless/ath9k/main.c
index 54d89abce478..f226a4daef75 100644
--- a/drivers/net/wireless/ath9k/main.c
+++ b/drivers/net/wireless/ath9k/main.c
@@ -14,8 +14,6 @@
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */ 15 */
16 16
17/* mac80211 and PCI callbacks */
18
19#include <linux/nl80211.h> 17#include <linux/nl80211.h>
20#include "core.h" 18#include "core.h"
21#include "reg.h" 19#include "reg.h"
@@ -40,6 +38,580 @@ static struct pci_device_id ath_pci_id_table[] __devinitdata = {
40 38
41static void ath_detach(struct ath_softc *sc); 39static void ath_detach(struct ath_softc *sc);
42 40
41/* return bus cachesize in 4B word units */
42
43static void bus_read_cachesize(struct ath_softc *sc, int *csz)
44{
45 u8 u8tmp;
46
47 pci_read_config_byte(sc->pdev, PCI_CACHE_LINE_SIZE, (u8 *)&u8tmp);
48 *csz = (int)u8tmp;
49
50 /*
51 * This check was put in to avoid "unplesant" consequences if
52 * the bootrom has not fully initialized all PCI devices.
53 * Sometimes the cache line size register is not set
54 */
55
56 if (*csz == 0)
57 *csz = DEFAULT_CACHELINE >> 2; /* Use the default size */
58}
59
60static void ath_setcurmode(struct ath_softc *sc, enum wireless_mode mode)
61{
62 sc->sc_curmode = mode;
63 /*
64 * All protection frames are transmited at 2Mb/s for
65 * 11g, otherwise at 1Mb/s.
66 * XXX select protection rate index from rate table.
67 */
68 sc->sc_protrix = (mode == ATH9K_MODE_11G ? 1 : 0);
69}
70
71static enum wireless_mode ath_chan2mode(struct ath9k_channel *chan)
72{
73 if (chan->chanmode == CHANNEL_A)
74 return ATH9K_MODE_11A;
75 else if (chan->chanmode == CHANNEL_G)
76 return ATH9K_MODE_11G;
77 else if (chan->chanmode == CHANNEL_B)
78 return ATH9K_MODE_11B;
79 else if (chan->chanmode == CHANNEL_A_HT20)
80 return ATH9K_MODE_11NA_HT20;
81 else if (chan->chanmode == CHANNEL_G_HT20)
82 return ATH9K_MODE_11NG_HT20;
83 else if (chan->chanmode == CHANNEL_A_HT40PLUS)
84 return ATH9K_MODE_11NA_HT40PLUS;
85 else if (chan->chanmode == CHANNEL_A_HT40MINUS)
86 return ATH9K_MODE_11NA_HT40MINUS;
87 else if (chan->chanmode == CHANNEL_G_HT40PLUS)
88 return ATH9K_MODE_11NG_HT40PLUS;
89 else if (chan->chanmode == CHANNEL_G_HT40MINUS)
90 return ATH9K_MODE_11NG_HT40MINUS;
91
92 WARN_ON(1); /* should not get here */
93
94 return ATH9K_MODE_11B;
95}
96
97static void ath_update_txpow(struct ath_softc *sc)
98{
99 struct ath_hal *ah = sc->sc_ah;
100 u32 txpow;
101
102 if (sc->sc_curtxpow != sc->sc_config.txpowlimit) {
103 ath9k_hw_set_txpowerlimit(ah, sc->sc_config.txpowlimit);
104 /* read back in case value is clamped */
105 ath9k_hw_getcapability(ah, ATH9K_CAP_TXPOW, 1, &txpow);
106 sc->sc_curtxpow = txpow;
107 }
108}
109
110static u8 parse_mpdudensity(u8 mpdudensity)
111{
112 /*
113 * 802.11n D2.0 defined values for "Minimum MPDU Start Spacing":
114 * 0 for no restriction
115 * 1 for 1/4 us
116 * 2 for 1/2 us
117 * 3 for 1 us
118 * 4 for 2 us
119 * 5 for 4 us
120 * 6 for 8 us
121 * 7 for 16 us
122 */
123 switch (mpdudensity) {
124 case 0:
125 return 0;
126 case 1:
127 case 2:
128 case 3:
129 /* Our lower layer calculations limit our precision to
130 1 microsecond */
131 return 1;
132 case 4:
133 return 2;
134 case 5:
135 return 4;
136 case 6:
137 return 8;
138 case 7:
139 return 16;
140 default:
141 return 0;
142 }
143}
144
145static void ath_setup_rates(struct ath_softc *sc, enum ieee80211_band band)
146{
147 struct ath_rate_table *rate_table = NULL;
148 struct ieee80211_supported_band *sband;
149 struct ieee80211_rate *rate;
150 int i, maxrates;
151
152 switch (band) {
153 case IEEE80211_BAND_2GHZ:
154 rate_table = sc->hw_rate_table[ATH9K_MODE_11G];
155 break;
156 case IEEE80211_BAND_5GHZ:
157 rate_table = sc->hw_rate_table[ATH9K_MODE_11A];
158 break;
159 default:
160 break;
161 }
162
163 if (rate_table == NULL)
164 return;
165
166 sband = &sc->sbands[band];
167 rate = sc->rates[band];
168
169 if (rate_table->rate_cnt > ATH_RATE_MAX)
170 maxrates = ATH_RATE_MAX;
171 else
172 maxrates = rate_table->rate_cnt;
173
174 for (i = 0; i < maxrates; i++) {
175 rate[i].bitrate = rate_table->info[i].ratekbps / 100;
176 rate[i].hw_value = rate_table->info[i].ratecode;
177 sband->n_bitrates++;
178 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Rate: %2dMbps, ratecode: %2d\n",
179 __func__, rate[i].bitrate / 10, rate[i].hw_value);
180 }
181}
182
183static int ath_setup_channels(struct ath_softc *sc)
184{
185 struct ath_hal *ah = sc->sc_ah;
186 int nchan, i, a = 0, b = 0;
187 u8 regclassids[ATH_REGCLASSIDS_MAX];
188 u32 nregclass = 0;
189 struct ieee80211_supported_band *band_2ghz;
190 struct ieee80211_supported_band *band_5ghz;
191 struct ieee80211_channel *chan_2ghz;
192 struct ieee80211_channel *chan_5ghz;
193 struct ath9k_channel *c;
194
195 /* Fill in ah->ah_channels */
196 if (!ath9k_regd_init_channels(ah, ATH_CHAN_MAX, (u32 *)&nchan,
197 regclassids, ATH_REGCLASSIDS_MAX,
198 &nregclass, CTRY_DEFAULT, false, 1)) {
199 u32 rd = ah->ah_currentRD;
200 DPRINTF(sc, ATH_DBG_FATAL,
201 "%s: unable to collect channel list; "
202 "regdomain likely %u country code %u\n",
203 __func__, rd, CTRY_DEFAULT);
204 return -EINVAL;
205 }
206
207 band_2ghz = &sc->sbands[IEEE80211_BAND_2GHZ];
208 band_5ghz = &sc->sbands[IEEE80211_BAND_5GHZ];
209 chan_2ghz = sc->channels[IEEE80211_BAND_2GHZ];
210 chan_5ghz = sc->channels[IEEE80211_BAND_5GHZ];
211
212 for (i = 0; i < nchan; i++) {
213 c = &ah->ah_channels[i];
214 if (IS_CHAN_2GHZ(c)) {
215 chan_2ghz[a].band = IEEE80211_BAND_2GHZ;
216 chan_2ghz[a].center_freq = c->channel;
217 chan_2ghz[a].max_power = c->maxTxPower;
218
219 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
220 chan_2ghz[a].flags |= IEEE80211_CHAN_NO_IBSS;
221 if (c->channelFlags & CHANNEL_PASSIVE)
222 chan_2ghz[a].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
223
224 band_2ghz->n_channels = ++a;
225
226 DPRINTF(sc, ATH_DBG_CONFIG, "%s: 2MHz channel: %d, "
227 "channelFlags: 0x%x\n",
228 __func__, c->channel, c->channelFlags);
229 } else if (IS_CHAN_5GHZ(c)) {
230 chan_5ghz[b].band = IEEE80211_BAND_5GHZ;
231 chan_5ghz[b].center_freq = c->channel;
232 chan_5ghz[b].max_power = c->maxTxPower;
233
234 if (c->privFlags & CHANNEL_DISALLOW_ADHOC)
235 chan_5ghz[b].flags |= IEEE80211_CHAN_NO_IBSS;
236 if (c->channelFlags & CHANNEL_PASSIVE)
237 chan_5ghz[b].flags |= IEEE80211_CHAN_PASSIVE_SCAN;
238
239 band_5ghz->n_channels = ++b;
240
241 DPRINTF(sc, ATH_DBG_CONFIG, "%s: 5MHz channel: %d, "
242 "channelFlags: 0x%x\n",
243 __func__, c->channel, c->channelFlags);
244 }
245 }
246
247 return 0;
248}
249
250/*
251 * Set/change channels. If the channel is really being changed, it's done
252 * by reseting the chip. To accomplish this we must first cleanup any pending
253 * DMA, then restart stuff.
254*/
255static int ath_set_channel(struct ath_softc *sc, struct ath9k_channel *hchan)
256{
257 struct ath_hal *ah = sc->sc_ah;
258 bool fastcc = true, stopped;
259
260 if (sc->sc_flags & SC_OP_INVALID)
261 return -EIO;
262
263 DPRINTF(sc, ATH_DBG_CONFIG,
264 "%s: %u (%u MHz) -> %u (%u MHz), cflags:%x\n",
265 __func__,
266 ath9k_hw_mhz2ieee(ah, sc->sc_ah->ah_curchan->channel,
267 sc->sc_ah->ah_curchan->channelFlags),
268 sc->sc_ah->ah_curchan->channel,
269 ath9k_hw_mhz2ieee(ah, hchan->channel, hchan->channelFlags),
270 hchan->channel, hchan->channelFlags);
271
272 if (hchan->channel != sc->sc_ah->ah_curchan->channel ||
273 hchan->channelFlags != sc->sc_ah->ah_curchan->channelFlags ||
274 (sc->sc_flags & SC_OP_CHAINMASK_UPDATE) ||
275 (sc->sc_flags & SC_OP_FULL_RESET)) {
276 int status;
277 /*
278 * This is only performed if the channel settings have
279 * actually changed.
280 *
281 * To switch channels clear any pending DMA operations;
282 * wait long enough for the RX fifo to drain, reset the
283 * hardware at the new frequency, and then re-enable
284 * the relevant bits of the h/w.
285 */
286 ath9k_hw_set_interrupts(ah, 0); /* disable interrupts */
287 ath_draintxq(sc, false); /* clear pending tx frames */
288 stopped = ath_stoprecv(sc); /* turn off frame recv */
289
290 /* XXX: do not flush receive queue here. We don't want
291 * to flush data frames already in queue because of
292 * changing channel. */
293
294 if (!stopped || (sc->sc_flags & SC_OP_FULL_RESET))
295 fastcc = false;
296
297 spin_lock_bh(&sc->sc_resetlock);
298 if (!ath9k_hw_reset(ah, hchan, sc->sc_ht_info.tx_chan_width,
299 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
300 sc->sc_ht_extprotspacing, fastcc, &status)) {
301 DPRINTF(sc, ATH_DBG_FATAL,
302 "%s: unable to reset channel %u (%uMhz) "
303 "flags 0x%x hal status %u\n", __func__,
304 ath9k_hw_mhz2ieee(ah, hchan->channel,
305 hchan->channelFlags),
306 hchan->channel, hchan->channelFlags, status);
307 spin_unlock_bh(&sc->sc_resetlock);
308 return -EIO;
309 }
310 spin_unlock_bh(&sc->sc_resetlock);
311
312 sc->sc_flags &= ~SC_OP_CHAINMASK_UPDATE;
313 sc->sc_flags &= ~SC_OP_FULL_RESET;
314
315 if (ath_startrecv(sc) != 0) {
316 DPRINTF(sc, ATH_DBG_FATAL,
317 "%s: unable to restart recv logic\n", __func__);
318 return -EIO;
319 }
320
321 ath_setcurmode(sc, ath_chan2mode(hchan));
322 ath_update_txpow(sc);
323 ath9k_hw_set_interrupts(ah, sc->sc_imask);
324 }
325 return 0;
326}
327
328/*
329 * This routine performs the periodic noise floor calibration function
330 * that is used to adjust and optimize the chip performance. This
331 * takes environmental changes (location, temperature) into account.
332 * When the task is complete, it reschedules itself depending on the
333 * appropriate interval that was calculated.
334 */
335static void ath_ani_calibrate(unsigned long data)
336{
337 struct ath_softc *sc;
338 struct ath_hal *ah;
339 bool longcal = false;
340 bool shortcal = false;
341 bool aniflag = false;
342 unsigned int timestamp = jiffies_to_msecs(jiffies);
343 u32 cal_interval;
344
345 sc = (struct ath_softc *)data;
346 ah = sc->sc_ah;
347
348 /*
349 * don't calibrate when we're scanning.
350 * we are most likely not on our home channel.
351 */
352 if (sc->rx_filter & FIF_BCN_PRBRESP_PROMISC)
353 return;
354
355 /* Long calibration runs independently of short calibration. */
356 if ((timestamp - sc->sc_ani.sc_longcal_timer) >= ATH_LONG_CALINTERVAL) {
357 longcal = true;
358 DPRINTF(sc, ATH_DBG_ANI, "%s: longcal @%lu\n",
359 __func__, jiffies);
360 sc->sc_ani.sc_longcal_timer = timestamp;
361 }
362
363 /* Short calibration applies only while sc_caldone is false */
364 if (!sc->sc_ani.sc_caldone) {
365 if ((timestamp - sc->sc_ani.sc_shortcal_timer) >=
366 ATH_SHORT_CALINTERVAL) {
367 shortcal = true;
368 DPRINTF(sc, ATH_DBG_ANI, "%s: shortcal @%lu\n",
369 __func__, jiffies);
370 sc->sc_ani.sc_shortcal_timer = timestamp;
371 sc->sc_ani.sc_resetcal_timer = timestamp;
372 }
373 } else {
374 if ((timestamp - sc->sc_ani.sc_resetcal_timer) >=
375 ATH_RESTART_CALINTERVAL) {
376 ath9k_hw_reset_calvalid(ah, ah->ah_curchan,
377 &sc->sc_ani.sc_caldone);
378 if (sc->sc_ani.sc_caldone)
379 sc->sc_ani.sc_resetcal_timer = timestamp;
380 }
381 }
382
383 /* Verify whether we must check ANI */
384 if ((timestamp - sc->sc_ani.sc_checkani_timer) >=
385 ATH_ANI_POLLINTERVAL) {
386 aniflag = true;
387 sc->sc_ani.sc_checkani_timer = timestamp;
388 }
389
390 /* Skip all processing if there's nothing to do. */
391 if (longcal || shortcal || aniflag) {
392 /* Call ANI routine if necessary */
393 if (aniflag)
394 ath9k_hw_ani_monitor(ah, &sc->sc_halstats,
395 ah->ah_curchan);
396
397 /* Perform calibration if necessary */
398 if (longcal || shortcal) {
399 bool iscaldone = false;
400
401 if (ath9k_hw_calibrate(ah, ah->ah_curchan,
402 sc->sc_rx_chainmask, longcal,
403 &iscaldone)) {
404 if (longcal)
405 sc->sc_ani.sc_noise_floor =
406 ath9k_hw_getchan_noise(ah,
407 ah->ah_curchan);
408
409 DPRINTF(sc, ATH_DBG_ANI,
410 "%s: calibrate chan %u/%x nf: %d\n",
411 __func__,
412 ah->ah_curchan->channel,
413 ah->ah_curchan->channelFlags,
414 sc->sc_ani.sc_noise_floor);
415 } else {
416 DPRINTF(sc, ATH_DBG_ANY,
417 "%s: calibrate chan %u/%x failed\n",
418 __func__,
419 ah->ah_curchan->channel,
420 ah->ah_curchan->channelFlags);
421 }
422 sc->sc_ani.sc_caldone = iscaldone;
423 }
424 }
425
426 /*
427 * Set timer interval based on previous results.
428 * The interval must be the shortest necessary to satisfy ANI,
429 * short calibration and long calibration.
430 */
431
432 cal_interval = ATH_ANI_POLLINTERVAL;
433 if (!sc->sc_ani.sc_caldone)
434 cal_interval = min(cal_interval, (u32)ATH_SHORT_CALINTERVAL);
435
436 mod_timer(&sc->sc_ani.timer, jiffies + msecs_to_jiffies(cal_interval));
437}
438
439/*
440 * Update tx/rx chainmask. For legacy association,
441 * hard code chainmask to 1x1, for 11n association, use
442 * the chainmask configuration.
443 */
444static void ath_update_chainmask(struct ath_softc *sc, int is_ht)
445{
446 sc->sc_flags |= SC_OP_CHAINMASK_UPDATE;
447 if (is_ht) {
448 sc->sc_tx_chainmask = sc->sc_ah->ah_caps.tx_chainmask;
449 sc->sc_rx_chainmask = sc->sc_ah->ah_caps.rx_chainmask;
450 } else {
451 sc->sc_tx_chainmask = 1;
452 sc->sc_rx_chainmask = 1;
453 }
454
455 DPRINTF(sc, ATH_DBG_CONFIG, "%s: tx chmask: %d, rx chmask: %d\n",
456 __func__, sc->sc_tx_chainmask, sc->sc_rx_chainmask);
457}
458
459static void ath_node_attach(struct ath_softc *sc, struct ieee80211_sta *sta)
460{
461 struct ath_node *an;
462
463 an = (struct ath_node *)sta->drv_priv;
464
465 if (sc->sc_flags & SC_OP_TXAGGR)
466 ath_tx_node_init(sc, an);
467
468 an->maxampdu = 1 << (IEEE80211_HTCAP_MAXRXAMPDU_FACTOR +
469 sta->ht_cap.ampdu_factor);
470 an->mpdudensity = parse_mpdudensity(sta->ht_cap.ampdu_density);
471}
472
473static void ath_node_detach(struct ath_softc *sc, struct ieee80211_sta *sta)
474{
475 struct ath_node *an = (struct ath_node *)sta->drv_priv;
476
477 if (sc->sc_flags & SC_OP_TXAGGR)
478 ath_tx_node_cleanup(sc, an);
479}
480
481static void ath9k_tasklet(unsigned long data)
482{
483 struct ath_softc *sc = (struct ath_softc *)data;
484 u32 status = sc->sc_intrstatus;
485
486 if (status & ATH9K_INT_FATAL) {
487 /* need a chip reset */
488 ath_reset(sc, false);
489 return;
490 } else {
491
492 if (status &
493 (ATH9K_INT_RX | ATH9K_INT_RXEOL | ATH9K_INT_RXORN)) {
494 spin_lock_bh(&sc->sc_rxflushlock);
495 ath_rx_tasklet(sc, 0);
496 spin_unlock_bh(&sc->sc_rxflushlock);
497 }
498 /* XXX: optimize this */
499 if (status & ATH9K_INT_TX)
500 ath_tx_tasklet(sc);
501 }
502
503 /* re-enable hardware interrupt */
504 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
505}
506
507static irqreturn_t ath_isr(int irq, void *dev)
508{
509 struct ath_softc *sc = dev;
510 struct ath_hal *ah = sc->sc_ah;
511 enum ath9k_int status;
512 bool sched = false;
513
514 do {
515 if (sc->sc_flags & SC_OP_INVALID) {
516 /*
517 * The hardware is not ready/present, don't
518 * touch anything. Note this can happen early
519 * on if the IRQ is shared.
520 */
521 return IRQ_NONE;
522 }
523 if (!ath9k_hw_intrpend(ah)) { /* shared irq, not for us */
524 return IRQ_NONE;
525 }
526
527 /*
528 * Figure out the reason(s) for the interrupt. Note
529 * that the hal returns a pseudo-ISR that may include
530 * bits we haven't explicitly enabled so we mask the
531 * value to insure we only process bits we requested.
532 */
533 ath9k_hw_getisr(ah, &status); /* NB: clears ISR too */
534
535 status &= sc->sc_imask; /* discard unasked-for bits */
536
537 /*
538 * If there are no status bits set, then this interrupt was not
539 * for me (should have been caught above).
540 */
541 if (!status)
542 return IRQ_NONE;
543
544 sc->sc_intrstatus = status;
545
546 if (status & ATH9K_INT_FATAL) {
547 /* need a chip reset */
548 sched = true;
549 } else if (status & ATH9K_INT_RXORN) {
550 /* need a chip reset */
551 sched = true;
552 } else {
553 if (status & ATH9K_INT_SWBA) {
554 /* schedule a tasklet for beacon handling */
555 tasklet_schedule(&sc->bcon_tasklet);
556 }
557 if (status & ATH9K_INT_RXEOL) {
558 /*
559 * NB: the hardware should re-read the link when
560 * RXE bit is written, but it doesn't work
561 * at least on older hardware revs.
562 */
563 sched = true;
564 }
565
566 if (status & ATH9K_INT_TXURN)
567 /* bump tx trigger level */
568 ath9k_hw_updatetxtriglevel(ah, true);
569 /* XXX: optimize this */
570 if (status & ATH9K_INT_RX)
571 sched = true;
572 if (status & ATH9K_INT_TX)
573 sched = true;
574 if (status & ATH9K_INT_BMISS)
575 sched = true;
576 /* carrier sense timeout */
577 if (status & ATH9K_INT_CST)
578 sched = true;
579 if (status & ATH9K_INT_MIB) {
580 /*
581 * Disable interrupts until we service the MIB
582 * interrupt; otherwise it will continue to
583 * fire.
584 */
585 ath9k_hw_set_interrupts(ah, 0);
586 /*
587 * Let the hal handle the event. We assume
588 * it will clear whatever condition caused
589 * the interrupt.
590 */
591 ath9k_hw_procmibevent(ah, &sc->sc_halstats);
592 ath9k_hw_set_interrupts(ah, sc->sc_imask);
593 }
594 if (status & ATH9K_INT_TIM_TIMER) {
595 if (!(ah->ah_caps.hw_caps &
596 ATH9K_HW_CAP_AUTOSLEEP)) {
597 /* Clear RxAbort bit so that we can
598 * receive frames */
599 ath9k_hw_setrxabort(ah, 0);
600 sched = true;
601 }
602 }
603 }
604 } while (0);
605
606 if (sched) {
607 /* turn off every interrupt except SWBA */
608 ath9k_hw_set_interrupts(ah, (sc->sc_imask & ATH9K_INT_SWBA));
609 tasklet_schedule(&sc->intr_tq);
610 }
611
612 return IRQ_HANDLED;
613}
614
43static int ath_get_channel(struct ath_softc *sc, 615static int ath_get_channel(struct ath_softc *sc,
44 struct ieee80211_channel *chan) 616 struct ieee80211_channel *chan)
45{ 617{
@@ -90,6 +662,23 @@ static u32 ath_get_extchanmode(struct ath_softc *sc,
90 return chanmode; 662 return chanmode;
91} 663}
92 664
665static void ath_key_reset(struct ath_softc *sc, u16 keyix, int freeslot)
666{
667 ath9k_hw_keyreset(sc->sc_ah, keyix);
668 if (freeslot)
669 clear_bit(keyix, sc->sc_keymap);
670}
671
672static int ath_keyset(struct ath_softc *sc, u16 keyix,
673 struct ath9k_keyval *hk, const u8 mac[ETH_ALEN])
674{
675 bool status;
676
677 status = ath9k_hw_set_keycache_entry(sc->sc_ah,
678 keyix, hk, mac, false);
679
680 return status != false;
681}
93 682
94static int ath_setkey_tkip(struct ath_softc *sc, 683static int ath_setkey_tkip(struct ath_softc *sc,
95 struct ieee80211_key_conf *key, 684 struct ieee80211_key_conf *key,
@@ -327,20 +916,6 @@ static void ath9k_bss_assoc_info(struct ath_softc *sc,
327 } 916 }
328} 917}
329 918
330void ath_get_beaconconfig(struct ath_softc *sc,
331 int if_id,
332 struct ath_beacon_config *conf)
333{
334 struct ieee80211_hw *hw = sc->hw;
335
336 /* fill in beacon config data */
337
338 conf->beacon_interval = hw->conf.beacon_int;
339 conf->listen_interval = 100;
340 conf->dtim_count = 1;
341 conf->bmiss_timeout = ATH_DEFAULT_BMISS_LIMIT * conf->listen_interval;
342}
343
344/********************************/ 919/********************************/
345/* LED functions */ 920/* LED functions */
346/********************************/ 921/********************************/
@@ -722,6 +1297,244 @@ static void ath_detach(struct ath_softc *sc)
722 ath9k_hw_detach(sc->sc_ah); 1297 ath9k_hw_detach(sc->sc_ah);
723} 1298}
724 1299
1300static int ath_init(u16 devid, struct ath_softc *sc)
1301{
1302 struct ath_hal *ah = NULL;
1303 int status;
1304 int error = 0, i;
1305 int csz = 0;
1306
1307 /* XXX: hardware will not be ready until ath_open() being called */
1308 sc->sc_flags |= SC_OP_INVALID;
1309 sc->sc_debug = DBG_DEFAULT;
1310
1311 spin_lock_init(&sc->sc_resetlock);
1312 tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
1313 tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
1314 (unsigned long)sc);
1315
1316 /*
1317 * Cache line size is used to size and align various
1318 * structures used to communicate with the hardware.
1319 */
1320 bus_read_cachesize(sc, &csz);
1321 /* XXX assert csz is non-zero */
1322 sc->sc_cachelsz = csz << 2; /* convert to bytes */
1323
1324 ah = ath9k_hw_attach(devid, sc, sc->mem, &status);
1325 if (ah == NULL) {
1326 DPRINTF(sc, ATH_DBG_FATAL,
1327 "%s: unable to attach hardware; HAL status %u\n",
1328 __func__, status);
1329 error = -ENXIO;
1330 goto bad;
1331 }
1332 sc->sc_ah = ah;
1333
1334 /* Get the hardware key cache size. */
1335 sc->sc_keymax = ah->ah_caps.keycache_size;
1336 if (sc->sc_keymax > ATH_KEYMAX) {
1337 DPRINTF(sc, ATH_DBG_KEYCACHE,
1338 "%s: Warning, using only %u entries in %u key cache\n",
1339 __func__, ATH_KEYMAX, sc->sc_keymax);
1340 sc->sc_keymax = ATH_KEYMAX;
1341 }
1342
1343 /*
1344 * Reset the key cache since some parts do not
1345 * reset the contents on initial power up.
1346 */
1347 for (i = 0; i < sc->sc_keymax; i++)
1348 ath9k_hw_keyreset(ah, (u16) i);
1349 /*
1350 * Mark key cache slots associated with global keys
1351 * as in use. If we knew TKIP was not to be used we
1352 * could leave the +32, +64, and +32+64 slots free.
1353 * XXX only for splitmic.
1354 */
1355 for (i = 0; i < IEEE80211_WEP_NKID; i++) {
1356 set_bit(i, sc->sc_keymap);
1357 set_bit(i + 32, sc->sc_keymap);
1358 set_bit(i + 64, sc->sc_keymap);
1359 set_bit(i + 32 + 64, sc->sc_keymap);
1360 }
1361
1362 /* Collect the channel list using the default country code */
1363
1364 error = ath_setup_channels(sc);
1365 if (error)
1366 goto bad;
1367
1368 /* default to MONITOR mode */
1369 sc->sc_ah->ah_opmode = ATH9K_M_MONITOR;
1370
1371 /* Setup rate tables */
1372
1373 ath_rate_attach(sc);
1374 ath_setup_rates(sc, IEEE80211_BAND_2GHZ);
1375 ath_setup_rates(sc, IEEE80211_BAND_5GHZ);
1376
1377 /*
1378 * Allocate hardware transmit queues: one queue for
1379 * beacon frames and one data queue for each QoS
1380 * priority. Note that the hal handles reseting
1381 * these queues at the needed time.
1382 */
1383 sc->sc_bhalq = ath_beaconq_setup(ah);
1384 if (sc->sc_bhalq == -1) {
1385 DPRINTF(sc, ATH_DBG_FATAL,
1386 "%s: unable to setup a beacon xmit queue\n", __func__);
1387 error = -EIO;
1388 goto bad2;
1389 }
1390 sc->sc_cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
1391 if (sc->sc_cabq == NULL) {
1392 DPRINTF(sc, ATH_DBG_FATAL,
1393 "%s: unable to setup CAB xmit queue\n", __func__);
1394 error = -EIO;
1395 goto bad2;
1396 }
1397
1398 sc->sc_config.cabqReadytime = ATH_CABQ_READY_TIME;
1399 ath_cabq_update(sc);
1400
1401 for (i = 0; i < ARRAY_SIZE(sc->sc_haltype2q); i++)
1402 sc->sc_haltype2q[i] = -1;
1403
1404 /* Setup data queues */
1405 /* NB: ensure BK queue is the lowest priority h/w queue */
1406 if (!ath_tx_setup(sc, ATH9K_WME_AC_BK)) {
1407 DPRINTF(sc, ATH_DBG_FATAL,
1408 "%s: unable to setup xmit queue for BK traffic\n",
1409 __func__);
1410 error = -EIO;
1411 goto bad2;
1412 }
1413
1414 if (!ath_tx_setup(sc, ATH9K_WME_AC_BE)) {
1415 DPRINTF(sc, ATH_DBG_FATAL,
1416 "%s: unable to setup xmit queue for BE traffic\n",
1417 __func__);
1418 error = -EIO;
1419 goto bad2;
1420 }
1421 if (!ath_tx_setup(sc, ATH9K_WME_AC_VI)) {
1422 DPRINTF(sc, ATH_DBG_FATAL,
1423 "%s: unable to setup xmit queue for VI traffic\n",
1424 __func__);
1425 error = -EIO;
1426 goto bad2;
1427 }
1428 if (!ath_tx_setup(sc, ATH9K_WME_AC_VO)) {
1429 DPRINTF(sc, ATH_DBG_FATAL,
1430 "%s: unable to setup xmit queue for VO traffic\n",
1431 __func__);
1432 error = -EIO;
1433 goto bad2;
1434 }
1435
1436 /* Initializes the noise floor to a reasonable default value.
1437 * Later on this will be updated during ANI processing. */
1438
1439 sc->sc_ani.sc_noise_floor = ATH_DEFAULT_NOISE_FLOOR;
1440 setup_timer(&sc->sc_ani.timer, ath_ani_calibrate, (unsigned long)sc);
1441
1442 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1443 ATH9K_CIPHER_TKIP, NULL)) {
1444 /*
1445 * Whether we should enable h/w TKIP MIC.
1446 * XXX: if we don't support WME TKIP MIC, then we wouldn't
1447 * report WMM capable, so it's always safe to turn on
1448 * TKIP MIC in this case.
1449 */
1450 ath9k_hw_setcapability(sc->sc_ah, ATH9K_CAP_TKIP_MIC,
1451 0, 1, NULL);
1452 }
1453
1454 /*
1455 * Check whether the separate key cache entries
1456 * are required to handle both tx+rx MIC keys.
1457 * With split mic keys the number of stations is limited
1458 * to 27 otherwise 59.
1459 */
1460 if (ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1461 ATH9K_CIPHER_TKIP, NULL)
1462 && ath9k_hw_getcapability(ah, ATH9K_CAP_CIPHER,
1463 ATH9K_CIPHER_MIC, NULL)
1464 && ath9k_hw_getcapability(ah, ATH9K_CAP_TKIP_SPLIT,
1465 0, NULL))
1466 sc->sc_splitmic = 1;
1467
1468 /* turn on mcast key search if possible */
1469 if (!ath9k_hw_getcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 0, NULL))
1470 (void)ath9k_hw_setcapability(ah, ATH9K_CAP_MCAST_KEYSRCH, 1,
1471 1, NULL);
1472
1473 sc->sc_config.txpowlimit = ATH_TXPOWER_MAX;
1474 sc->sc_config.txpowlimit_override = 0;
1475
1476 /* 11n Capabilities */
1477 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT) {
1478 sc->sc_flags |= SC_OP_TXAGGR;
1479 sc->sc_flags |= SC_OP_RXAGGR;
1480 }
1481
1482 sc->sc_tx_chainmask = ah->ah_caps.tx_chainmask;
1483 sc->sc_rx_chainmask = ah->ah_caps.rx_chainmask;
1484
1485 ath9k_hw_setcapability(ah, ATH9K_CAP_DIVERSITY, 1, true, NULL);
1486 sc->sc_defant = ath9k_hw_getdefantenna(ah);
1487
1488 ath9k_hw_getmac(ah, sc->sc_myaddr);
1489 if (ah->ah_caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK) {
1490 ath9k_hw_getbssidmask(ah, sc->sc_bssidmask);
1491 ATH_SET_VAP_BSSID_MASK(sc->sc_bssidmask);
1492 ath9k_hw_setbssidmask(ah, sc->sc_bssidmask);
1493 }
1494
1495 sc->sc_slottime = ATH9K_SLOT_TIME_9; /* default to short slot time */
1496
1497 /* initialize beacon slots */
1498 for (i = 0; i < ARRAY_SIZE(sc->sc_bslot); i++)
1499 sc->sc_bslot[i] = ATH_IF_ID_ANY;
1500
1501 /* save MISC configurations */
1502 sc->sc_config.swBeaconProcess = 1;
1503
1504#ifdef CONFIG_SLOW_ANT_DIV
1505 /* range is 40 - 255, we use something in the middle */
1506 ath_slow_ant_div_init(&sc->sc_antdiv, sc, 0x127);
1507#endif
1508
1509 /* setup channels and rates */
1510
1511 sc->sbands[IEEE80211_BAND_2GHZ].channels =
1512 sc->channels[IEEE80211_BAND_2GHZ];
1513 sc->sbands[IEEE80211_BAND_2GHZ].bitrates =
1514 sc->rates[IEEE80211_BAND_2GHZ];
1515 sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
1516
1517 if (test_bit(ATH9K_MODE_11A, sc->sc_ah->ah_caps.wireless_modes)) {
1518 sc->sbands[IEEE80211_BAND_5GHZ].channels =
1519 sc->channels[IEEE80211_BAND_5GHZ];
1520 sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
1521 sc->rates[IEEE80211_BAND_5GHZ];
1522 sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
1523 }
1524
1525 return 0;
1526bad2:
1527 /* cleanup tx queues */
1528 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1529 if (ATH_TXQ_SETUP(sc, i))
1530 ath_tx_cleanupq(sc, &sc->sc_txq[i]);
1531bad:
1532 if (ah)
1533 ath9k_hw_detach(ah);
1534
1535 return error;
1536}
1537
725static int ath_attach(u16 devid, struct ath_softc *sc) 1538static int ath_attach(u16 devid, struct ath_softc *sc)
726{ 1539{
727 struct ieee80211_hw *hw = sc->hw; 1540 struct ieee80211_hw *hw = sc->hw;
@@ -810,11 +1623,243 @@ bad:
810 return error; 1623 return error;
811} 1624}
812 1625
1626int ath_reset(struct ath_softc *sc, bool retry_tx)
1627{
1628 struct ath_hal *ah = sc->sc_ah;
1629 int status;
1630 int error = 0;
1631
1632 ath9k_hw_set_interrupts(ah, 0);
1633 ath_draintxq(sc, retry_tx);
1634 ath_stoprecv(sc);
1635 ath_flushrecv(sc);
1636
1637 spin_lock_bh(&sc->sc_resetlock);
1638 if (!ath9k_hw_reset(ah, sc->sc_ah->ah_curchan,
1639 sc->sc_ht_info.tx_chan_width,
1640 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1641 sc->sc_ht_extprotspacing, false, &status)) {
1642 DPRINTF(sc, ATH_DBG_FATAL,
1643 "%s: unable to reset hardware; hal status %u\n",
1644 __func__, status);
1645 error = -EIO;
1646 }
1647 spin_unlock_bh(&sc->sc_resetlock);
1648
1649 if (ath_startrecv(sc) != 0)
1650 DPRINTF(sc, ATH_DBG_FATAL,
1651 "%s: unable to start recv logic\n", __func__);
1652
1653 /*
1654 * We may be doing a reset in response to a request
1655 * that changes the channel so update any state that
1656 * might change as a result.
1657 */
1658 ath_setcurmode(sc, ath_chan2mode(sc->sc_ah->ah_curchan));
1659
1660 ath_update_txpow(sc);
1661
1662 if (sc->sc_flags & SC_OP_BEACONS)
1663 ath_beacon_config(sc, ATH_IF_ID_ANY); /* restart beacons */
1664
1665 ath9k_hw_set_interrupts(ah, sc->sc_imask);
1666
1667 if (retry_tx) {
1668 int i;
1669 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1670 if (ATH_TXQ_SETUP(sc, i)) {
1671 spin_lock_bh(&sc->sc_txq[i].axq_lock);
1672 ath_txq_schedule(sc, &sc->sc_txq[i]);
1673 spin_unlock_bh(&sc->sc_txq[i].axq_lock);
1674 }
1675 }
1676 }
1677
1678 return error;
1679}
1680
1681/*
1682 * This function will allocate both the DMA descriptor structure, and the
1683 * buffers it contains. These are used to contain the descriptors used
1684 * by the system.
1685*/
1686int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
1687 struct list_head *head, const char *name,
1688 int nbuf, int ndesc)
1689{
1690#define DS2PHYS(_dd, _ds) \
1691 ((_dd)->dd_desc_paddr + ((caddr_t)(_ds) - (caddr_t)(_dd)->dd_desc))
1692#define ATH_DESC_4KB_BOUND_CHECK(_daddr) ((((_daddr) & 0xFFF) > 0xF7F) ? 1 : 0)
1693#define ATH_DESC_4KB_BOUND_NUM_SKIPPED(_len) ((_len) / 4096)
1694
1695 struct ath_desc *ds;
1696 struct ath_buf *bf;
1697 int i, bsize, error;
1698
1699 DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA: %u buffers %u desc/buf\n",
1700 __func__, name, nbuf, ndesc);
1701
1702 /* ath_desc must be a multiple of DWORDs */
1703 if ((sizeof(struct ath_desc) % 4) != 0) {
1704 DPRINTF(sc, ATH_DBG_FATAL, "%s: ath_desc not DWORD aligned\n",
1705 __func__);
1706 ASSERT((sizeof(struct ath_desc) % 4) == 0);
1707 error = -ENOMEM;
1708 goto fail;
1709 }
1710
1711 dd->dd_name = name;
1712 dd->dd_desc_len = sizeof(struct ath_desc) * nbuf * ndesc;
1713
1714 /*
1715 * Need additional DMA memory because we can't use
1716 * descriptors that cross the 4K page boundary. Assume
1717 * one skipped descriptor per 4K page.
1718 */
1719 if (!(sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1720 u32 ndesc_skipped =
1721 ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
1722 u32 dma_len;
1723
1724 while (ndesc_skipped) {
1725 dma_len = ndesc_skipped * sizeof(struct ath_desc);
1726 dd->dd_desc_len += dma_len;
1727
1728 ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
1729 };
1730 }
1731
1732 /* allocate descriptors */
1733 dd->dd_desc = pci_alloc_consistent(sc->pdev,
1734 dd->dd_desc_len,
1735 &dd->dd_desc_paddr);
1736 if (dd->dd_desc == NULL) {
1737 error = -ENOMEM;
1738 goto fail;
1739 }
1740 ds = dd->dd_desc;
1741 DPRINTF(sc, ATH_DBG_CONFIG, "%s: %s DMA map: %p (%u) -> %llx (%u)\n",
1742 __func__, dd->dd_name, ds, (u32) dd->dd_desc_len,
1743 ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
1744
1745 /* allocate buffers */
1746 bsize = sizeof(struct ath_buf) * nbuf;
1747 bf = kmalloc(bsize, GFP_KERNEL);
1748 if (bf == NULL) {
1749 error = -ENOMEM;
1750 goto fail2;
1751 }
1752 memset(bf, 0, bsize);
1753 dd->dd_bufptr = bf;
1754
1755 INIT_LIST_HEAD(head);
1756 for (i = 0; i < nbuf; i++, bf++, ds += ndesc) {
1757 bf->bf_desc = ds;
1758 bf->bf_daddr = DS2PHYS(dd, ds);
1759
1760 if (!(sc->sc_ah->ah_caps.hw_caps &
1761 ATH9K_HW_CAP_4KB_SPLITTRANS)) {
1762 /*
1763 * Skip descriptor addresses which can cause 4KB
1764 * boundary crossing (addr + length) with a 32 dword
1765 * descriptor fetch.
1766 */
1767 while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
1768 ASSERT((caddr_t) bf->bf_desc <
1769 ((caddr_t) dd->dd_desc +
1770 dd->dd_desc_len));
1771
1772 ds += ndesc;
1773 bf->bf_desc = ds;
1774 bf->bf_daddr = DS2PHYS(dd, ds);
1775 }
1776 }
1777 list_add_tail(&bf->list, head);
1778 }
1779 return 0;
1780fail2:
1781 pci_free_consistent(sc->pdev,
1782 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1783fail:
1784 memset(dd, 0, sizeof(*dd));
1785 return error;
1786#undef ATH_DESC_4KB_BOUND_CHECK
1787#undef ATH_DESC_4KB_BOUND_NUM_SKIPPED
1788#undef DS2PHYS
1789}
1790
1791void ath_descdma_cleanup(struct ath_softc *sc,
1792 struct ath_descdma *dd,
1793 struct list_head *head)
1794{
1795 pci_free_consistent(sc->pdev,
1796 dd->dd_desc_len, dd->dd_desc, dd->dd_desc_paddr);
1797
1798 INIT_LIST_HEAD(head);
1799 kfree(dd->dd_bufptr);
1800 memset(dd, 0, sizeof(*dd));
1801}
1802
1803int ath_get_hal_qnum(u16 queue, struct ath_softc *sc)
1804{
1805 int qnum;
1806
1807 switch (queue) {
1808 case 0:
1809 qnum = sc->sc_haltype2q[ATH9K_WME_AC_VO];
1810 break;
1811 case 1:
1812 qnum = sc->sc_haltype2q[ATH9K_WME_AC_VI];
1813 break;
1814 case 2:
1815 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
1816 break;
1817 case 3:
1818 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BK];
1819 break;
1820 default:
1821 qnum = sc->sc_haltype2q[ATH9K_WME_AC_BE];
1822 break;
1823 }
1824
1825 return qnum;
1826}
1827
1828int ath_get_mac80211_qnum(u32 queue, struct ath_softc *sc)
1829{
1830 int qnum;
1831
1832 switch (queue) {
1833 case ATH9K_WME_AC_VO:
1834 qnum = 0;
1835 break;
1836 case ATH9K_WME_AC_VI:
1837 qnum = 1;
1838 break;
1839 case ATH9K_WME_AC_BE:
1840 qnum = 2;
1841 break;
1842 case ATH9K_WME_AC_BK:
1843 qnum = 3;
1844 break;
1845 default:
1846 qnum = -1;
1847 break;
1848 }
1849
1850 return qnum;
1851}
1852
1853/**********************/
1854/* mac80211 callbacks */
1855/**********************/
1856
813static int ath9k_start(struct ieee80211_hw *hw) 1857static int ath9k_start(struct ieee80211_hw *hw)
814{ 1858{
815 struct ath_softc *sc = hw->priv; 1859 struct ath_softc *sc = hw->priv;
816 struct ieee80211_channel *curchan = hw->conf.channel; 1860 struct ieee80211_channel *curchan = hw->conf.channel;
817 int error = 0, pos; 1861 struct ath9k_channel *init_channel;
1862 int error = 0, pos, status;
818 1863
819 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Starting driver with " 1864 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Starting driver with "
820 "initial channel: %d MHz\n", __func__, curchan->center_freq); 1865 "initial channel: %d MHz\n", __func__, curchan->center_freq);
@@ -827,24 +1872,103 @@ static int ath9k_start(struct ieee80211_hw *hw)
827 if (pos == -1) { 1872 if (pos == -1) {
828 DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__); 1873 DPRINTF(sc, ATH_DBG_FATAL, "%s: Invalid channel\n", __func__);
829 error = -EINVAL; 1874 error = -EINVAL;
830 goto exit; 1875 goto error;
831 } 1876 }
832 1877
833 sc->sc_ah->ah_channels[pos].chanmode = 1878 sc->sc_ah->ah_channels[pos].chanmode =
834 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A; 1879 (curchan->band == IEEE80211_BAND_2GHZ) ? CHANNEL_G : CHANNEL_A;
1880 init_channel = &sc->sc_ah->ah_channels[pos];
835 1881
836 error = ath_open(sc, &sc->sc_ah->ah_channels[pos]); 1882 /* Reset SERDES registers */
837 if (error) { 1883 ath9k_hw_configpcipowersave(sc->sc_ah, 0);
1884
1885 /*
1886 * The basic interface to setting the hardware in a good
1887 * state is ``reset''. On return the hardware is known to
1888 * be powered up and with interrupts disabled. This must
1889 * be followed by initialization of the appropriate bits
1890 * and then setup of the interrupt mask.
1891 */
1892 spin_lock_bh(&sc->sc_resetlock);
1893 if (!ath9k_hw_reset(sc->sc_ah, init_channel,
1894 sc->sc_ht_info.tx_chan_width,
1895 sc->sc_tx_chainmask, sc->sc_rx_chainmask,
1896 sc->sc_ht_extprotspacing, false, &status)) {
838 DPRINTF(sc, ATH_DBG_FATAL, 1897 DPRINTF(sc, ATH_DBG_FATAL,
839 "%s: Unable to complete ath_open\n", __func__); 1898 "%s: unable to reset hardware; hal status %u "
840 goto exit; 1899 "(freq %u flags 0x%x)\n", __func__, status,
1900 init_channel->channel, init_channel->channelFlags);
1901 error = -EIO;
1902 spin_unlock_bh(&sc->sc_resetlock);
1903 goto error;
841 } 1904 }
1905 spin_unlock_bh(&sc->sc_resetlock);
1906
1907 /*
1908 * This is needed only to setup initial state
1909 * but it's best done after a reset.
1910 */
1911 ath_update_txpow(sc);
1912
1913 /*
1914 * Setup the hardware after reset:
1915 * The receive engine is set going.
1916 * Frame transmit is handled entirely
1917 * in the frame output path; there's nothing to do
1918 * here except setup the interrupt mask.
1919 */
1920 if (ath_startrecv(sc) != 0) {
1921 DPRINTF(sc, ATH_DBG_FATAL,
1922 "%s: unable to start recv logic\n", __func__);
1923 error = -EIO;
1924 goto error;
1925 }
1926
1927 /* Setup our intr mask. */
1928 sc->sc_imask = ATH9K_INT_RX | ATH9K_INT_TX
1929 | ATH9K_INT_RXEOL | ATH9K_INT_RXORN
1930 | ATH9K_INT_FATAL | ATH9K_INT_GLOBAL;
1931
1932 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_GTT)
1933 sc->sc_imask |= ATH9K_INT_GTT;
1934
1935 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_HT)
1936 sc->sc_imask |= ATH9K_INT_CST;
1937
1938 /*
1939 * Enable MIB interrupts when there are hardware phy counters.
1940 * Note we only do this (at the moment) for station mode.
1941 */
1942 if (ath9k_hw_phycounters(sc->sc_ah) &&
1943 ((sc->sc_ah->ah_opmode == ATH9K_M_STA) ||
1944 (sc->sc_ah->ah_opmode == ATH9K_M_IBSS)))
1945 sc->sc_imask |= ATH9K_INT_MIB;
1946 /*
1947 * Some hardware processes the TIM IE and fires an
1948 * interrupt when the TIM bit is set. For hardware
1949 * that does, if not overridden by configuration,
1950 * enable the TIM interrupt when operating as station.
1951 */
1952 if ((sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_ENHANCEDPM) &&
1953 (sc->sc_ah->ah_opmode == ATH9K_M_STA) &&
1954 !sc->sc_config.swBeaconProcess)
1955 sc->sc_imask |= ATH9K_INT_TIM;
1956
1957 ath_setcurmode(sc, ath_chan2mode(init_channel));
1958
1959 sc->sc_flags &= ~SC_OP_INVALID;
1960
1961 /* Disable BMISS interrupt when we're not associated */
1962 sc->sc_imask &= ~(ATH9K_INT_SWBA | ATH9K_INT_BMISS);
1963 ath9k_hw_set_interrupts(sc->sc_ah, sc->sc_imask);
1964
1965 ieee80211_wake_queues(sc->hw);
842 1966
843#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 1967#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
844 error = ath_start_rfkill_poll(sc); 1968 error = ath_start_rfkill_poll(sc);
845#endif 1969#endif
846 1970
847exit: 1971error:
848 return error; 1972 return error;
849} 1973}
850 1974
@@ -911,7 +2035,30 @@ static void ath9k_stop(struct ieee80211_hw *hw)
911 return; 2035 return;
912 } 2036 }
913 2037
914 ath_stop(sc); 2038 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Cleaning up\n", __func__);
2039
2040 ieee80211_stop_queues(sc->hw);
2041
2042 /* make sure h/w will not generate any interrupt
2043 * before setting the invalid flag. */
2044 ath9k_hw_set_interrupts(sc->sc_ah, 0);
2045
2046 if (!(sc->sc_flags & SC_OP_INVALID)) {
2047 ath_draintxq(sc, false);
2048 ath_stoprecv(sc);
2049 ath9k_hw_phy_disable(sc->sc_ah);
2050 } else
2051 sc->sc_rxlink = NULL;
2052
2053#if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2054 if (sc->sc_ah->ah_caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2055 cancel_delayed_work_sync(&sc->rf_kill.rfkill_poll);
2056#endif
2057 /* disable HAL and put h/w to sleep */
2058 ath9k_hw_disable(sc->sc_ah);
2059 ath9k_hw_configpcipowersave(sc->sc_ah, 1);
2060
2061 sc->sc_flags |= SC_OP_INVALID;
915 2062
916 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Driver halt\n", __func__); 2063 DPRINTF(sc, ATH_DBG_CONFIG, "%s: Driver halt\n", __func__);
917} 2064}