aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ath5k
diff options
context:
space:
mode:
authorIngo Molnar <mingo@elte.hu>2009-03-27 23:21:18 -0400
committerIngo Molnar <mingo@elte.hu>2009-03-27 23:26:01 -0400
commit82268da1b130f763d22d04f7d016bbf6fc8815c2 (patch)
tree9803f361556d10708313e980428e63a18162e667 /drivers/net/wireless/ath5k
parent6e15cf04860074ad032e88c306bea656bbdd0f22 (diff)
parent5d80f8e5a9dc9c9a94d4aeaa567e219a808b8a4a (diff)
Merge branch 'linus' into percpu-cpumask-x86-for-linus-2
Conflicts: arch/sparc/kernel/time_64.c drivers/gpu/drm/drm_proc.c Manual merge to resolve build warning due to phys_addr_t type change on x86: drivers/gpu/drm/drm_info.c Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'drivers/net/wireless/ath5k')
-rw-r--r--drivers/net/wireless/ath5k/ath5k.h35
-rw-r--r--drivers/net/wireless/ath5k/attach.c2
-rw-r--r--drivers/net/wireless/ath5k/base.c46
-rw-r--r--drivers/net/wireless/ath5k/base.h2
-rw-r--r--drivers/net/wireless/ath5k/desc.c4
-rw-r--r--drivers/net/wireless/ath5k/eeprom.c774
-rw-r--r--drivers/net/wireless/ath5k/eeprom.h128
-rw-r--r--drivers/net/wireless/ath5k/initvals.c4
-rw-r--r--drivers/net/wireless/ath5k/led.c2
-rw-r--r--drivers/net/wireless/ath5k/phy.c1170
-rw-r--r--drivers/net/wireless/ath5k/reg.h19
-rw-r--r--drivers/net/wireless/ath5k/reset.c35
12 files changed, 1833 insertions, 388 deletions
diff --git a/drivers/net/wireless/ath5k/ath5k.h b/drivers/net/wireless/ath5k/ath5k.h
index 0dc2c7321c8b..0b616e72fe05 100644
--- a/drivers/net/wireless/ath5k/ath5k.h
+++ b/drivers/net/wireless/ath5k/ath5k.h
@@ -204,9 +204,9 @@
204#define AR5K_TUNE_CWMAX_11B 1023 204#define AR5K_TUNE_CWMAX_11B 1023
205#define AR5K_TUNE_CWMAX_XR 7 205#define AR5K_TUNE_CWMAX_XR 7
206#define AR5K_TUNE_NOISE_FLOOR -72 206#define AR5K_TUNE_NOISE_FLOOR -72
207#define AR5K_TUNE_MAX_TXPOWER 60 207#define AR5K_TUNE_MAX_TXPOWER 63
208#define AR5K_TUNE_DEFAULT_TXPOWER 30 208#define AR5K_TUNE_DEFAULT_TXPOWER 25
209#define AR5K_TUNE_TPC_TXPOWER true 209#define AR5K_TUNE_TPC_TXPOWER false
210#define AR5K_TUNE_ANT_DIVERSITY true 210#define AR5K_TUNE_ANT_DIVERSITY true
211#define AR5K_TUNE_HWTXTRIES 4 211#define AR5K_TUNE_HWTXTRIES 4
212 212
@@ -551,11 +551,11 @@ enum ath5k_pkt_type {
551 */ 551 */
552#define AR5K_TXPOWER_OFDM(_r, _v) ( \ 552#define AR5K_TXPOWER_OFDM(_r, _v) ( \
553 ((0 & 1) << ((_v) + 6)) | \ 553 ((0 & 1) << ((_v) + 6)) | \
554 (((ah->ah_txpower.txp_rates[(_r)]) & 0x3f) << (_v)) \ 554 (((ah->ah_txpower.txp_rates_power_table[(_r)]) & 0x3f) << (_v)) \
555) 555)
556 556
557#define AR5K_TXPOWER_CCK(_r, _v) ( \ 557#define AR5K_TXPOWER_CCK(_r, _v) ( \
558 (ah->ah_txpower.txp_rates[(_r)] & 0x3f) << (_v) \ 558 (ah->ah_txpower.txp_rates_power_table[(_r)] & 0x3f) << (_v) \
559) 559)
560 560
561/* 561/*
@@ -1085,13 +1085,25 @@ struct ath5k_hw {
1085 struct ath5k_gain ah_gain; 1085 struct ath5k_gain ah_gain;
1086 u8 ah_offset[AR5K_MAX_RF_BANKS]; 1086 u8 ah_offset[AR5K_MAX_RF_BANKS];
1087 1087
1088
1088 struct { 1089 struct {
1089 u16 txp_pcdac[AR5K_EEPROM_POWER_TABLE_SIZE]; 1090 /* Temporary tables used for interpolation */
1090 u16 txp_rates[AR5K_MAX_RATES]; 1091 u8 tmpL[AR5K_EEPROM_N_PD_GAINS]
1091 s16 txp_min; 1092 [AR5K_EEPROM_POWER_TABLE_SIZE];
1092 s16 txp_max; 1093 u8 tmpR[AR5K_EEPROM_N_PD_GAINS]
1094 [AR5K_EEPROM_POWER_TABLE_SIZE];
1095 u8 txp_pd_table[AR5K_EEPROM_POWER_TABLE_SIZE * 2];
1096 u16 txp_rates_power_table[AR5K_MAX_RATES];
1097 u8 txp_min_idx;
1093 bool txp_tpc; 1098 bool txp_tpc;
1099 /* Values in 0.25dB units */
1100 s16 txp_min_pwr;
1101 s16 txp_max_pwr;
1102 s16 txp_offset;
1094 s16 txp_ofdm; 1103 s16 txp_ofdm;
1104 /* Values in dB units */
1105 s16 txp_cck_ofdm_pwr_delta;
1106 s16 txp_cck_ofdm_gainf_delta;
1095 } ah_txpower; 1107 } ah_txpower;
1096 1108
1097 struct { 1109 struct {
@@ -1161,6 +1173,7 @@ extern void ath5k_hw_update_mib_counters(struct ath5k_hw *ah, struct ieee80211_l
1161 1173
1162/* EEPROM access functions */ 1174/* EEPROM access functions */
1163extern int ath5k_eeprom_init(struct ath5k_hw *ah); 1175extern int ath5k_eeprom_init(struct ath5k_hw *ah);
1176extern void ath5k_eeprom_detach(struct ath5k_hw *ah);
1164extern int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac); 1177extern int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac);
1165extern bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah); 1178extern bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah);
1166 1179
@@ -1256,8 +1269,8 @@ extern void ath5k_hw_set_def_antenna(struct ath5k_hw *ah, unsigned int ant);
1256extern unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah); 1269extern unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah);
1257extern int ath5k_hw_phy_disable(struct ath5k_hw *ah); 1270extern int ath5k_hw_phy_disable(struct ath5k_hw *ah);
1258/* TX power setup */ 1271/* TX power setup */
1259extern int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, unsigned int txpower); 1272extern int ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, u8 ee_mode, u8 txpower);
1260extern int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power); 1273extern int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 ee_mode, u8 txpower);
1261 1274
1262/* 1275/*
1263 * Functions used internaly 1276 * Functions used internaly
diff --git a/drivers/net/wireless/ath5k/attach.c b/drivers/net/wireless/ath5k/attach.c
index 656cb9dc833b..70d376c63aac 100644
--- a/drivers/net/wireless/ath5k/attach.c
+++ b/drivers/net/wireless/ath5k/attach.c
@@ -341,6 +341,8 @@ void ath5k_hw_detach(struct ath5k_hw *ah)
341 if (ah->ah_rf_banks != NULL) 341 if (ah->ah_rf_banks != NULL)
342 kfree(ah->ah_rf_banks); 342 kfree(ah->ah_rf_banks);
343 343
344 ath5k_eeprom_detach(ah);
345
344 /* assume interrupts are down */ 346 /* assume interrupts are down */
345 kfree(ah); 347 kfree(ah);
346} 348}
diff --git a/drivers/net/wireless/ath5k/base.c b/drivers/net/wireless/ath5k/base.c
index cad3ccf61b00..5d57d774e466 100644
--- a/drivers/net/wireless/ath5k/base.c
+++ b/drivers/net/wireless/ath5k/base.c
@@ -685,13 +685,6 @@ ath5k_pci_resume(struct pci_dev *pdev)
685 if (err) 685 if (err)
686 return err; 686 return err;
687 687
688 /*
689 * Suspend/Resume resets the PCI configuration space, so we have to
690 * re-disable the RETRY_TIMEOUT register (0x41) to keep
691 * PCI Tx retries from interfering with C3 CPU state
692 */
693 pci_write_config_byte(pdev, 0x41, 0);
694
695 err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc); 688 err = request_irq(pdev->irq, ath5k_intr, IRQF_SHARED, "ath", sc);
696 if (err) { 689 if (err) {
697 ATH5K_ERR(sc, "request_irq failed\n"); 690 ATH5K_ERR(sc, "request_irq failed\n");
@@ -1095,9 +1088,18 @@ ath5k_mode_setup(struct ath5k_softc *sc)
1095static inline int 1088static inline int
1096ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix) 1089ath5k_hw_to_driver_rix(struct ath5k_softc *sc, int hw_rix)
1097{ 1090{
1098 WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES, 1091 int rix;
1099 "hw_rix out of bounds: %x\n", hw_rix); 1092
1100 return sc->rate_idx[sc->curband->band][hw_rix]; 1093 /* return base rate on errors */
1094 if (WARN(hw_rix < 0 || hw_rix >= AR5K_MAX_RATES,
1095 "hw_rix out of bounds: %x\n", hw_rix))
1096 return 0;
1097
1098 rix = sc->rate_idx[sc->curband->band][hw_rix];
1099 if (WARN(rix < 0, "invalid hw_rix: %x\n", hw_rix))
1100 rix = 0;
1101
1102 return rix;
1101} 1103}
1102 1104
1103/***************\ 1105/***************\
@@ -1216,6 +1218,9 @@ ath5k_txbuf_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
1216 1218
1217 pktlen = skb->len; 1219 pktlen = skb->len;
1218 1220
1221 /* FIXME: If we are in g mode and rate is a CCK rate
1222 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
1223 * from tx power (value is in dB units already) */
1219 if (info->control.hw_key) { 1224 if (info->control.hw_key) {
1220 keyidx = info->control.hw_key->hw_key_idx; 1225 keyidx = info->control.hw_key->hw_key_idx;
1221 pktlen += info->control.hw_key->icv_len; 1226 pktlen += info->control.hw_key->icv_len;
@@ -2044,6 +2049,9 @@ ath5k_beacon_setup(struct ath5k_softc *sc, struct ath5k_buf *bf)
2044 antenna = sc->bsent & 4 ? 2 : 1; 2049 antenna = sc->bsent & 4 ? 2 : 1;
2045 } 2050 }
2046 2051
2052 /* FIXME: If we are in g mode and rate is a CCK rate
2053 * subtract ah->ah_txpower.txp_cck_ofdm_pwr_delta
2054 * from tx power (value is in dB units already) */
2047 ds->ds_data = bf->skbaddr; 2055 ds->ds_data = bf->skbaddr;
2048 ret = ah->ah_setup_tx_desc(ah, ds, skb->len, 2056 ret = ah->ah_setup_tx_desc(ah, ds, skb->len,
2049 ieee80211_get_hdrlen_from_skb(skb), 2057 ieee80211_get_hdrlen_from_skb(skb),
@@ -2305,7 +2313,7 @@ ath5k_init(struct ath5k_softc *sc)
2305 sc->curband = &sc->sbands[sc->curchan->band]; 2313 sc->curband = &sc->sbands[sc->curchan->band];
2306 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL | 2314 sc->imask = AR5K_INT_RXOK | AR5K_INT_RXERR | AR5K_INT_RXEOL |
2307 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL | 2315 AR5K_INT_RXORN | AR5K_INT_TXDESC | AR5K_INT_TXEOL |
2308 AR5K_INT_FATAL | AR5K_INT_GLOBAL | AR5K_INT_MIB; 2316 AR5K_INT_FATAL | AR5K_INT_GLOBAL;
2309 ret = ath5k_reset(sc, false, false); 2317 ret = ath5k_reset(sc, false, false);
2310 if (ret) 2318 if (ret)
2311 goto done; 2319 goto done;
@@ -2554,7 +2562,7 @@ ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2554 if (skb_headroom(skb) < padsize) { 2562 if (skb_headroom(skb) < padsize) {
2555 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough" 2563 ATH5K_ERR(sc, "tx hdrlen not %%4: %d not enough"
2556 " headroom to pad %d\n", hdrlen, padsize); 2564 " headroom to pad %d\n", hdrlen, padsize);
2557 return NETDEV_TX_BUSY; 2565 goto drop_packet;
2558 } 2566 }
2559 skb_push(skb, padsize); 2567 skb_push(skb, padsize);
2560 memmove(skb->data, skb->data+padsize, hdrlen); 2568 memmove(skb->data, skb->data+padsize, hdrlen);
@@ -2565,7 +2573,7 @@ ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2565 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n"); 2573 ATH5K_ERR(sc, "no further txbuf available, dropping packet\n");
2566 spin_unlock_irqrestore(&sc->txbuflock, flags); 2574 spin_unlock_irqrestore(&sc->txbuflock, flags);
2567 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb)); 2575 ieee80211_stop_queue(hw, skb_get_queue_mapping(skb));
2568 return NETDEV_TX_BUSY; 2576 goto drop_packet;
2569 } 2577 }
2570 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list); 2578 bf = list_first_entry(&sc->txbuf, struct ath5k_buf, list);
2571 list_del(&bf->list); 2579 list_del(&bf->list);
@@ -2582,10 +2590,12 @@ ath5k_tx(struct ieee80211_hw *hw, struct sk_buff *skb)
2582 list_add_tail(&bf->list, &sc->txbuf); 2590 list_add_tail(&bf->list, &sc->txbuf);
2583 sc->txbuf_len++; 2591 sc->txbuf_len++;
2584 spin_unlock_irqrestore(&sc->txbuflock, flags); 2592 spin_unlock_irqrestore(&sc->txbuflock, flags);
2585 dev_kfree_skb_any(skb); 2593 goto drop_packet;
2586 return NETDEV_TX_OK;
2587 } 2594 }
2595 return NETDEV_TX_OK;
2588 2596
2597drop_packet:
2598 dev_kfree_skb_any(skb);
2589 return NETDEV_TX_OK; 2599 return NETDEV_TX_OK;
2590} 2600}
2591 2601
@@ -2608,12 +2618,6 @@ ath5k_reset(struct ath5k_softc *sc, bool stop, bool change_channel)
2608 goto err; 2618 goto err;
2609 } 2619 }
2610 2620
2611 /*
2612 * This is needed only to setup initial state
2613 * but it's best done after a reset.
2614 */
2615 ath5k_hw_set_txpower_limit(sc->ah, 0);
2616
2617 ret = ath5k_rx_start(sc); 2621 ret = ath5k_rx_start(sc);
2618 if (ret) { 2622 if (ret) {
2619 ATH5K_ERR(sc, "can't start recv logic\n"); 2623 ATH5K_ERR(sc, "can't start recv logic\n");
diff --git a/drivers/net/wireless/ath5k/base.h b/drivers/net/wireless/ath5k/base.h
index 20e0d14b41ec..822956114cd7 100644
--- a/drivers/net/wireless/ath5k/base.h
+++ b/drivers/net/wireless/ath5k/base.h
@@ -112,7 +112,7 @@ struct ath5k_softc {
112 struct ieee80211_supported_band sbands[IEEE80211_NUM_BANDS]; 112 struct ieee80211_supported_band sbands[IEEE80211_NUM_BANDS];
113 struct ieee80211_channel channels[ATH_CHAN_MAX]; 113 struct ieee80211_channel channels[ATH_CHAN_MAX];
114 struct ieee80211_rate rates[IEEE80211_NUM_BANDS][AR5K_MAX_RATES]; 114 struct ieee80211_rate rates[IEEE80211_NUM_BANDS][AR5K_MAX_RATES];
115 u8 rate_idx[IEEE80211_NUM_BANDS][AR5K_MAX_RATES]; 115 s8 rate_idx[IEEE80211_NUM_BANDS][AR5K_MAX_RATES];
116 enum nl80211_iftype opmode; 116 enum nl80211_iftype opmode;
117 struct ath5k_hw *ah; /* Atheros HW */ 117 struct ath5k_hw *ah; /* Atheros HW */
118 118
diff --git a/drivers/net/wireless/ath5k/desc.c b/drivers/net/wireless/ath5k/desc.c
index b40a9287a39a..dc30a2b70a6b 100644
--- a/drivers/net/wireless/ath5k/desc.c
+++ b/drivers/net/wireless/ath5k/desc.c
@@ -194,6 +194,10 @@ static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
194 return -EINVAL; 194 return -EINVAL;
195 } 195 }
196 196
197 tx_power += ah->ah_txpower.txp_offset;
198 if (tx_power > AR5K_TUNE_MAX_TXPOWER)
199 tx_power = AR5K_TUNE_MAX_TXPOWER;
200
197 /* Clear descriptor */ 201 /* Clear descriptor */
198 memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc)); 202 memset(&desc->ud.ds_tx5212, 0, sizeof(struct ath5k_hw_5212_tx_desc));
199 203
diff --git a/drivers/net/wireless/ath5k/eeprom.c b/drivers/net/wireless/ath5k/eeprom.c
index ac45ca47ca87..c0fb3b09ba45 100644
--- a/drivers/net/wireless/ath5k/eeprom.c
+++ b/drivers/net/wireless/ath5k/eeprom.c
@@ -1,7 +1,7 @@
1/* 1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org> 2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com> 3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008 Felix Fietkau <nbd@openwrt.org> 4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5 * 5 *
6 * Permission to use, copy, modify, and distribute this software for any 6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above 7 * purpose with or without fee is hereby granted, provided that the above
@@ -98,11 +98,6 @@ ath5k_eeprom_init_header(struct ath5k_hw *ah)
98 int ret; 98 int ret;
99 u16 val; 99 u16 val;
100 100
101 /* Initial TX thermal adjustment values */
102 ee->ee_tx_clip = 4;
103 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
104 ee->ee_gain_select = 1;
105
106 /* 101 /*
107 * Read values from EEPROM and store them in the capability structure 102 * Read values from EEPROM and store them in the capability structure
108 */ 103 */
@@ -241,22 +236,22 @@ static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
241 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff); 236 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
242 switch(mode) { 237 switch(mode) {
243 case AR5K_EEPROM_MODE_11A: 238 case AR5K_EEPROM_MODE_11A:
244 ee->ee_ob[mode][3] = (val >> 5) & 0x7; 239 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
245 ee->ee_db[mode][3] = (val >> 2) & 0x7; 240 ee->ee_db[mode][3] = (val >> 2) & 0x7;
246 ee->ee_ob[mode][2] = (val << 1) & 0x7; 241 ee->ee_ob[mode][2] = (val << 1) & 0x7;
247 242
248 AR5K_EEPROM_READ(o++, val); 243 AR5K_EEPROM_READ(o++, val);
249 ee->ee_ob[mode][2] |= (val >> 15) & 0x1; 244 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
250 ee->ee_db[mode][2] = (val >> 12) & 0x7; 245 ee->ee_db[mode][2] = (val >> 12) & 0x7;
251 ee->ee_ob[mode][1] = (val >> 9) & 0x7; 246 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
252 ee->ee_db[mode][1] = (val >> 6) & 0x7; 247 ee->ee_db[mode][1] = (val >> 6) & 0x7;
253 ee->ee_ob[mode][0] = (val >> 3) & 0x7; 248 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
254 ee->ee_db[mode][0] = val & 0x7; 249 ee->ee_db[mode][0] = val & 0x7;
255 break; 250 break;
256 case AR5K_EEPROM_MODE_11G: 251 case AR5K_EEPROM_MODE_11G:
257 case AR5K_EEPROM_MODE_11B: 252 case AR5K_EEPROM_MODE_11B:
258 ee->ee_ob[mode][1] = (val >> 4) & 0x7; 253 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
259 ee->ee_db[mode][1] = val & 0x7; 254 ee->ee_db[mode][1] = val & 0x7;
260 break; 255 break;
261 } 256 }
262 257
@@ -504,35 +499,6 @@ ath5k_eeprom_init_modes(struct ath5k_hw *ah)
504 return 0; 499 return 0;
505} 500}
506 501
507/* Used to match PCDAC steps with power values on RF5111 chips
508 * (eeprom versions < 4). For RF5111 we have 10 pre-defined PCDAC
509 * steps that match with the power values we read from eeprom. On
510 * older eeprom versions (< 3.2) these steps are equaly spaced at
511 * 10% of the pcdac curve -until the curve reaches it's maximum-
512 * (10 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
513 * these 10 steps are spaced in a different way. This function returns
514 * the pcdac steps based on eeprom version and curve min/max so that we
515 * can have pcdac/pwr points.
516 */
517static inline void
518ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
519{
520 static const u16 intercepts3[] =
521 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
522 static const u16 intercepts3_2[] =
523 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
524 const u16 *ip;
525 int i;
526
527 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
528 ip = intercepts3_2;
529 else
530 ip = intercepts3;
531
532 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
533 *vp++ = (ip[i] * max + (100 - ip[i]) * min) / 100;
534}
535
536/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff 502/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
537 * frequency mask) */ 503 * frequency mask) */
538static inline int 504static inline int
@@ -546,26 +512,25 @@ ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
546 int ret; 512 int ret;
547 u16 val; 513 u16 val;
548 514
515 ee->ee_n_piers[mode] = 0;
549 while(i < max) { 516 while(i < max) {
550 AR5K_EEPROM_READ(o++, val); 517 AR5K_EEPROM_READ(o++, val);
551 518
552 freq1 = (val >> 8) & 0xff; 519 freq1 = val & 0xff;
553 freq2 = val & 0xff; 520 if (!freq1)
554 521 break;
555 if (freq1) {
556 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
557 freq1, mode);
558 ee->ee_n_piers[mode]++;
559 }
560 522
561 if (freq2) { 523 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
562 pc[i++].freq = ath5k_eeprom_bin2freq(ee, 524 freq1, mode);
563 freq2, mode); 525 ee->ee_n_piers[mode]++;
564 ee->ee_n_piers[mode]++;
565 }
566 526
567 if (!freq1 || !freq2) 527 freq2 = (val >> 8) & 0xff;
528 if (!freq2)
568 break; 529 break;
530
531 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
532 freq2, mode);
533 ee->ee_n_piers[mode]++;
569 } 534 }
570 535
571 /* return new offset */ 536 /* return new offset */
@@ -652,13 +617,122 @@ ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
652 return 0; 617 return 0;
653} 618}
654 619
655/* Read power calibration for RF5111 chips 620/*
621 * Read power calibration for RF5111 chips
622 *
656 * For RF5111 we have an XPD -eXternal Power Detector- curve 623 * For RF5111 we have an XPD -eXternal Power Detector- curve
657 * for each calibrated channel. Each curve has PCDAC steps on 624 * for each calibrated channel. Each curve has 0,5dB Power steps
658 * x axis and power on y axis and looks like a logarithmic 625 * on x axis and PCDAC steps (offsets) on y axis and looks like an
659 * function. To recreate the curve and pass the power values 626 * exponential function. To recreate the curve we read 11 points
660 * on the pcdac table, we read 10 points here and interpolate later. 627 * here and interpolate later.
661 */ 628 */
629
630/* Used to match PCDAC steps with power values on RF5111 chips
631 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
632 * steps that match with the power values we read from eeprom. On
633 * older eeprom versions (< 3.2) these steps are equaly spaced at
634 * 10% of the pcdac curve -until the curve reaches it's maximum-
635 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
636 * these 11 steps are spaced in a different way. This function returns
637 * the pcdac steps based on eeprom version and curve min/max so that we
638 * can have pcdac/pwr points.
639 */
640static inline void
641ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
642{
643 const static u16 intercepts3[] =
644 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
645 const static u16 intercepts3_2[] =
646 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
647 const u16 *ip;
648 int i;
649
650 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
651 ip = intercepts3_2;
652 else
653 ip = intercepts3;
654
655 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
656 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
657}
658
659/* Convert RF5111 specific data to generic raw data
660 * used by interpolation code */
661static int
662ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
663 struct ath5k_chan_pcal_info *chinfo)
664{
665 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
666 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
667 struct ath5k_pdgain_info *pd;
668 u8 pier, point, idx;
669 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
670
671 /* Fill raw data for each calibration pier */
672 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
673
674 pcinfo = &chinfo[pier].rf5111_info;
675
676 /* Allocate pd_curves for this cal pier */
677 chinfo[pier].pd_curves =
678 kcalloc(AR5K_EEPROM_N_PD_CURVES,
679 sizeof(struct ath5k_pdgain_info),
680 GFP_KERNEL);
681
682 if (!chinfo[pier].pd_curves)
683 return -ENOMEM;
684
685 /* Only one curve for RF5111
686 * find out which one and place
687 * in in pd_curves.
688 * Note: ee_x_gain is reversed here */
689 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
690
691 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
692 pdgain_idx[0] = idx;
693 break;
694 }
695 }
696
697 ee->ee_pd_gains[mode] = 1;
698
699 pd = &chinfo[pier].pd_curves[idx];
700
701 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
702
703 /* Allocate pd points for this curve */
704 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
705 sizeof(u8), GFP_KERNEL);
706 if (!pd->pd_step)
707 return -ENOMEM;
708
709 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
710 sizeof(s16), GFP_KERNEL);
711 if (!pd->pd_pwr)
712 return -ENOMEM;
713
714 /* Fill raw dataset
715 * (convert power to 0.25dB units
716 * for RF5112 combatibility) */
717 for (point = 0; point < pd->pd_points; point++) {
718
719 /* Absolute values */
720 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
721
722 /* Already sorted */
723 pd->pd_step[point] = pcinfo->pcdac[point];
724 }
725
726 /* Set min/max pwr */
727 chinfo[pier].min_pwr = pd->pd_pwr[0];
728 chinfo[pier].max_pwr = pd->pd_pwr[10];
729
730 }
731
732 return 0;
733}
734
735/* Parse EEPROM data */
662static int 736static int
663ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode) 737ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
664{ 738{
@@ -747,30 +821,165 @@ ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
747 cdata->pcdac_max, cdata->pcdac); 821 cdata->pcdac_max, cdata->pcdac);
748 } 822 }
749 823
750 return 0; 824 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
751} 825}
752 826
753/* Read power calibration for RF5112 chips 827
828/*
829 * Read power calibration for RF5112 chips
830 *
754 * For RF5112 we have 4 XPD -eXternal Power Detector- curves 831 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
755 * for each calibrated channel on 0, -6, -12 and -18dbm but we only 832 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
756 * use the higher (3) and the lower (0) curves. Each curve has PCDAC 833 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
757 * steps on x axis and power on y axis and looks like a linear 834 * power steps on x axis and PCDAC steps on y axis and looks like a
758 * function. To recreate the curve and pass the power values 835 * linear function. To recreate the curve and pass the power values
759 * on the pcdac table, we read 4 points for xpd 0 and 3 points 836 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
760 * for xpd 3 here and interpolate later. 837 * and 3 points for xpd 3 (higher gain -> lower power) here and
838 * interpolate later.
761 * 839 *
762 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed. 840 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
763 */ 841 */
842
843/* Convert RF5112 specific data to generic raw data
844 * used by interpolation code */
845static int
846ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
847 struct ath5k_chan_pcal_info *chinfo)
848{
849 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
850 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
851 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
852 unsigned int pier, pdg, point;
853
854 /* Fill raw data for each calibration pier */
855 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
856
857 pcinfo = &chinfo[pier].rf5112_info;
858
859 /* Allocate pd_curves for this cal pier */
860 chinfo[pier].pd_curves =
861 kcalloc(AR5K_EEPROM_N_PD_CURVES,
862 sizeof(struct ath5k_pdgain_info),
863 GFP_KERNEL);
864
865 if (!chinfo[pier].pd_curves)
866 return -ENOMEM;
867
868 /* Fill pd_curves */
869 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
870
871 u8 idx = pdgain_idx[pdg];
872 struct ath5k_pdgain_info *pd =
873 &chinfo[pier].pd_curves[idx];
874
875 /* Lowest gain curve (max power) */
876 if (pdg == 0) {
877 /* One more point for better accuracy */
878 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
879
880 /* Allocate pd points for this curve */
881 pd->pd_step = kcalloc(pd->pd_points,
882 sizeof(u8), GFP_KERNEL);
883
884 if (!pd->pd_step)
885 return -ENOMEM;
886
887 pd->pd_pwr = kcalloc(pd->pd_points,
888 sizeof(s16), GFP_KERNEL);
889
890 if (!pd->pd_pwr)
891 return -ENOMEM;
892
893
894 /* Fill raw dataset
895 * (all power levels are in 0.25dB units) */
896 pd->pd_step[0] = pcinfo->pcdac_x0[0];
897 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
898
899 for (point = 1; point < pd->pd_points;
900 point++) {
901 /* Absolute values */
902 pd->pd_pwr[point] =
903 pcinfo->pwr_x0[point];
904
905 /* Deltas */
906 pd->pd_step[point] =
907 pd->pd_step[point - 1] +
908 pcinfo->pcdac_x0[point];
909 }
910
911 /* Set min power for this frequency */
912 chinfo[pier].min_pwr = pd->pd_pwr[0];
913
914 /* Highest gain curve (min power) */
915 } else if (pdg == 1) {
916
917 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
918
919 /* Allocate pd points for this curve */
920 pd->pd_step = kcalloc(pd->pd_points,
921 sizeof(u8), GFP_KERNEL);
922
923 if (!pd->pd_step)
924 return -ENOMEM;
925
926 pd->pd_pwr = kcalloc(pd->pd_points,
927 sizeof(s16), GFP_KERNEL);
928
929 if (!pd->pd_pwr)
930 return -ENOMEM;
931
932 /* Fill raw dataset
933 * (all power levels are in 0.25dB units) */
934 for (point = 0; point < pd->pd_points;
935 point++) {
936 /* Absolute values */
937 pd->pd_pwr[point] =
938 pcinfo->pwr_x3[point];
939
940 /* Fixed points */
941 pd->pd_step[point] =
942 pcinfo->pcdac_x3[point];
943 }
944
945 /* Since we have a higher gain curve
946 * override min power */
947 chinfo[pier].min_pwr = pd->pd_pwr[0];
948 }
949 }
950 }
951
952 return 0;
953}
954
955/* Parse EEPROM data */
764static int 956static int
765ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode) 957ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
766{ 958{
767 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 959 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
768 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info; 960 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
769 struct ath5k_chan_pcal_info *gen_chan_info; 961 struct ath5k_chan_pcal_info *gen_chan_info;
962 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
770 u32 offset; 963 u32 offset;
771 unsigned int i, c; 964 u8 i, c;
772 u16 val; 965 u16 val;
773 int ret; 966 int ret;
967 u8 pd_gains = 0;
968
969 /* Count how many curves we have and
970 * identify them (which one of the 4
971 * available curves we have on each count).
972 * Curves are stored from lower (x0) to
973 * higher (x3) gain */
974 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
975 /* ee_x_gain[mode] is x gain mask */
976 if ((ee->ee_x_gain[mode] >> i) & 0x1)
977 pdgain_idx[pd_gains++] = i;
978 }
979 ee->ee_pd_gains[mode] = pd_gains;
980
981 if (pd_gains == 0 || pd_gains > 2)
982 return -EINVAL;
774 983
775 switch (mode) { 984 switch (mode) {
776 case AR5K_EEPROM_MODE_11A: 985 case AR5K_EEPROM_MODE_11A:
@@ -808,13 +1017,13 @@ ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
808 for (i = 0; i < ee->ee_n_piers[mode]; i++) { 1017 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
809 chan_pcal_info = &gen_chan_info[i].rf5112_info; 1018 chan_pcal_info = &gen_chan_info[i].rf5112_info;
810 1019
811 /* Power values in dBm * 4 1020 /* Power values in quarter dB
812 * for the lower xpd gain curve 1021 * for the lower xpd gain curve
813 * (0 dBm -> higher output power) */ 1022 * (0 dBm -> higher output power) */
814 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) { 1023 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
815 AR5K_EEPROM_READ(offset++, val); 1024 AR5K_EEPROM_READ(offset++, val);
816 chan_pcal_info->pwr_x0[c] = (val & 0xff); 1025 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
817 chan_pcal_info->pwr_x0[++c] = ((val >> 8) & 0xff); 1026 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
818 } 1027 }
819 1028
820 /* PCDAC steps 1029 /* PCDAC steps
@@ -825,12 +1034,12 @@ ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
825 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f); 1034 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
826 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f); 1035 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
827 1036
828 /* Power values in dBm * 4 1037 /* Power values in quarter dB
829 * for the higher xpd gain curve 1038 * for the higher xpd gain curve
830 * (18 dBm -> lower output power) */ 1039 * (18 dBm -> lower output power) */
831 AR5K_EEPROM_READ(offset++, val); 1040 AR5K_EEPROM_READ(offset++, val);
832 chan_pcal_info->pwr_x3[0] = (val & 0xff); 1041 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
833 chan_pcal_info->pwr_x3[1] = ((val >> 8) & 0xff); 1042 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
834 1043
835 AR5K_EEPROM_READ(offset++, val); 1044 AR5K_EEPROM_READ(offset++, val);
836 chan_pcal_info->pwr_x3[2] = (val & 0xff); 1045 chan_pcal_info->pwr_x3[2] = (val & 0xff);
@@ -843,24 +1052,36 @@ ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
843 chan_pcal_info->pcdac_x3[2] = 63; 1052 chan_pcal_info->pcdac_x3[2] = 63;
844 1053
845 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) { 1054 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
846 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0xff); 1055 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
847 1056
848 /* Last xpd0 power level is also channel maximum */ 1057 /* Last xpd0 power level is also channel maximum */
849 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3]; 1058 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
850 } else { 1059 } else {
851 chan_pcal_info->pcdac_x0[0] = 1; 1060 chan_pcal_info->pcdac_x0[0] = 1;
852 gen_chan_info[i].max_pwr = ((val >> 8) & 0xff); 1061 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
853 } 1062 }
854 1063
855 /* Recreate pcdac_x0 table for this channel using pcdac steps */
856 chan_pcal_info->pcdac_x0[1] += chan_pcal_info->pcdac_x0[0];
857 chan_pcal_info->pcdac_x0[2] += chan_pcal_info->pcdac_x0[1];
858 chan_pcal_info->pcdac_x0[3] += chan_pcal_info->pcdac_x0[2];
859 } 1064 }
860 1065
861 return 0; 1066 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
862} 1067}
863 1068
1069
1070/*
1071 * Read power calibration for RF2413 chips
1072 *
1073 * For RF2413 we have a Power to PDDAC table (Power Detector)
1074 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1075 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1076 * axis and looks like an exponential function like the RF5111 curve.
1077 *
1078 * To recreate the curves we read here the points and interpolate
1079 * later. Note that in most cases only 2 (higher and lower) curves are
1080 * used (like RF5112) but vendors have the oportunity to include all
1081 * 4 curves on eeprom. The final curve (higher power) has an extra
1082 * point for better accuracy like RF5112.
1083 */
1084
864/* For RF2413 power calibration data doesn't start on a fixed location and 1085/* For RF2413 power calibration data doesn't start on a fixed location and
865 * if a mode is not supported, it's section is missing -not zeroed-. 1086 * if a mode is not supported, it's section is missing -not zeroed-.
866 * So we need to calculate the starting offset for each section by using 1087 * So we need to calculate the starting offset for each section by using
@@ -890,13 +1111,15 @@ ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
890 switch(mode) { 1111 switch(mode) {
891 case AR5K_EEPROM_MODE_11G: 1112 case AR5K_EEPROM_MODE_11G:
892 if (AR5K_EEPROM_HDR_11B(ee->ee_header)) 1113 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
893 offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11B) + 1114 offset += ath5k_pdgains_size_2413(ee,
894 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; 1115 AR5K_EEPROM_MODE_11B) +
1116 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
895 /* fall through */ 1117 /* fall through */
896 case AR5K_EEPROM_MODE_11B: 1118 case AR5K_EEPROM_MODE_11B:
897 if (AR5K_EEPROM_HDR_11A(ee->ee_header)) 1119 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
898 offset += ath5k_pdgains_size_2413(ee, AR5K_EEPROM_MODE_11A) + 1120 offset += ath5k_pdgains_size_2413(ee,
899 AR5K_EEPROM_N_5GHZ_CHAN / 2; 1121 AR5K_EEPROM_MODE_11A) +
1122 AR5K_EEPROM_N_5GHZ_CHAN / 2;
900 /* fall through */ 1123 /* fall through */
901 case AR5K_EEPROM_MODE_11A: 1124 case AR5K_EEPROM_MODE_11A:
902 break; 1125 break;
@@ -907,37 +1130,118 @@ ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
907 return offset; 1130 return offset;
908} 1131}
909 1132
910/* Read power calibration for RF2413 chips 1133/* Convert RF2413 specific data to generic raw data
911 * For RF2413 we have a PDDAC table (Power Detector) instead 1134 * used by interpolation code */
912 * of a PCDAC and 4 pd gain curves for each calibrated channel. 1135static int
913 * Each curve has PDDAC steps on x axis and power on y axis and 1136ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
914 * looks like an exponential function. To recreate the curves 1137 struct ath5k_chan_pcal_info *chinfo)
915 * we read here the points and interpolate later. Note that 1138{
916 * in most cases only higher and lower curves are used (like 1139 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
917 * RF5112) but vendors have the oportunity to include all 4 1140 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
918 * curves on eeprom. The final curve (higher power) has an extra 1141 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
919 * point for better accuracy like RF5112. 1142 unsigned int pier, pdg, point;
920 */ 1143
1144 /* Fill raw data for each calibration pier */
1145 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1146
1147 pcinfo = &chinfo[pier].rf2413_info;
1148
1149 /* Allocate pd_curves for this cal pier */
1150 chinfo[pier].pd_curves =
1151 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1152 sizeof(struct ath5k_pdgain_info),
1153 GFP_KERNEL);
1154
1155 if (!chinfo[pier].pd_curves)
1156 return -ENOMEM;
1157
1158 /* Fill pd_curves */
1159 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1160
1161 u8 idx = pdgain_idx[pdg];
1162 struct ath5k_pdgain_info *pd =
1163 &chinfo[pier].pd_curves[idx];
1164
1165 /* One more point for the highest power
1166 * curve (lowest gain) */
1167 if (pdg == ee->ee_pd_gains[mode] - 1)
1168 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1169 else
1170 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1171
1172 /* Allocate pd points for this curve */
1173 pd->pd_step = kcalloc(pd->pd_points,
1174 sizeof(u8), GFP_KERNEL);
1175
1176 if (!pd->pd_step)
1177 return -ENOMEM;
1178
1179 pd->pd_pwr = kcalloc(pd->pd_points,
1180 sizeof(s16), GFP_KERNEL);
1181
1182 if (!pd->pd_pwr)
1183 return -ENOMEM;
1184
1185 /* Fill raw dataset
1186 * convert all pwr levels to
1187 * quarter dB for RF5112 combatibility */
1188 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1189 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1190
1191 for (point = 1; point < pd->pd_points; point++) {
1192
1193 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1194 2 * pcinfo->pwr[pdg][point - 1];
1195
1196 pd->pd_step[point] = pd->pd_step[point - 1] +
1197 pcinfo->pddac[pdg][point - 1];
1198
1199 }
1200
1201 /* Highest gain curve -> min power */
1202 if (pdg == 0)
1203 chinfo[pier].min_pwr = pd->pd_pwr[0];
1204
1205 /* Lowest gain curve -> max power */
1206 if (pdg == ee->ee_pd_gains[mode] - 1)
1207 chinfo[pier].max_pwr =
1208 pd->pd_pwr[pd->pd_points - 1];
1209 }
1210 }
1211
1212 return 0;
1213}
1214
1215/* Parse EEPROM data */
921static int 1216static int
922ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode) 1217ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
923{ 1218{
924 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1219 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
925 struct ath5k_chan_pcal_info_rf2413 *chan_pcal_info; 1220 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
926 struct ath5k_chan_pcal_info *gen_chan_info; 1221 struct ath5k_chan_pcal_info *chinfo;
927 unsigned int i, c; 1222 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
928 u32 offset; 1223 u32 offset;
929 int ret; 1224 int idx, i, ret;
930 u16 val; 1225 u16 val;
931 u8 pd_gains = 0; 1226 u8 pd_gains = 0;
932 1227
933 if (ee->ee_x_gain[mode] & 0x1) pd_gains++; 1228 /* Count how many curves we have and
934 if ((ee->ee_x_gain[mode] >> 1) & 0x1) pd_gains++; 1229 * identify them (which one of the 4
935 if ((ee->ee_x_gain[mode] >> 2) & 0x1) pd_gains++; 1230 * available curves we have on each count).
936 if ((ee->ee_x_gain[mode] >> 3) & 0x1) pd_gains++; 1231 * Curves are stored from higher to
1232 * lower gain so we go backwards */
1233 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1234 /* ee_x_gain[mode] is x gain mask */
1235 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1236 pdgain_idx[pd_gains++] = idx;
1237
1238 }
937 ee->ee_pd_gains[mode] = pd_gains; 1239 ee->ee_pd_gains[mode] = pd_gains;
938 1240
1241 if (pd_gains == 0)
1242 return -EINVAL;
1243
939 offset = ath5k_cal_data_offset_2413(ee, mode); 1244 offset = ath5k_cal_data_offset_2413(ee, mode);
940 ee->ee_n_piers[mode] = 0;
941 switch (mode) { 1245 switch (mode) {
942 case AR5K_EEPROM_MODE_11A: 1246 case AR5K_EEPROM_MODE_11A:
943 if (!AR5K_EEPROM_HDR_11A(ee->ee_header)) 1247 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
@@ -945,7 +1249,7 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
945 1249
946 ath5k_eeprom_init_11a_pcal_freq(ah, offset); 1250 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
947 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2; 1251 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
948 gen_chan_info = ee->ee_pwr_cal_a; 1252 chinfo = ee->ee_pwr_cal_a;
949 break; 1253 break;
950 case AR5K_EEPROM_MODE_11B: 1254 case AR5K_EEPROM_MODE_11B:
951 if (!AR5K_EEPROM_HDR_11B(ee->ee_header)) 1255 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
@@ -953,7 +1257,7 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
953 1257
954 ath5k_eeprom_init_11bg_2413(ah, mode, offset); 1258 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
955 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; 1259 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
956 gen_chan_info = ee->ee_pwr_cal_b; 1260 chinfo = ee->ee_pwr_cal_b;
957 break; 1261 break;
958 case AR5K_EEPROM_MODE_11G: 1262 case AR5K_EEPROM_MODE_11G:
959 if (!AR5K_EEPROM_HDR_11G(ee->ee_header)) 1263 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
@@ -961,41 +1265,35 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
961 1265
962 ath5k_eeprom_init_11bg_2413(ah, mode, offset); 1266 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
963 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2; 1267 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
964 gen_chan_info = ee->ee_pwr_cal_g; 1268 chinfo = ee->ee_pwr_cal_g;
965 break; 1269 break;
966 default: 1270 default:
967 return -EINVAL; 1271 return -EINVAL;
968 } 1272 }
969 1273
970 if (pd_gains == 0)
971 return 0;
972
973 for (i = 0; i < ee->ee_n_piers[mode]; i++) { 1274 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
974 chan_pcal_info = &gen_chan_info[i].rf2413_info; 1275 pcinfo = &chinfo[i].rf2413_info;
975 1276
976 /* 1277 /*
977 * Read pwr_i, pddac_i and the first 1278 * Read pwr_i, pddac_i and the first
978 * 2 pd points (pwr, pddac) 1279 * 2 pd points (pwr, pddac)
979 */ 1280 */
980 AR5K_EEPROM_READ(offset++, val); 1281 AR5K_EEPROM_READ(offset++, val);
981 chan_pcal_info->pwr_i[0] = val & 0x1f; 1282 pcinfo->pwr_i[0] = val & 0x1f;
982 chan_pcal_info->pddac_i[0] = (val >> 5) & 0x7f; 1283 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
983 chan_pcal_info->pwr[0][0] = 1284 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
984 (val >> 12) & 0xf;
985 1285
986 AR5K_EEPROM_READ(offset++, val); 1286 AR5K_EEPROM_READ(offset++, val);
987 chan_pcal_info->pddac[0][0] = val & 0x3f; 1287 pcinfo->pddac[0][0] = val & 0x3f;
988 chan_pcal_info->pwr[0][1] = (val >> 6) & 0xf; 1288 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
989 chan_pcal_info->pddac[0][1] = 1289 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
990 (val >> 10) & 0x3f;
991 1290
992 AR5K_EEPROM_READ(offset++, val); 1291 AR5K_EEPROM_READ(offset++, val);
993 chan_pcal_info->pwr[0][2] = val & 0xf; 1292 pcinfo->pwr[0][2] = val & 0xf;
994 chan_pcal_info->pddac[0][2] = 1293 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
995 (val >> 4) & 0x3f;
996 1294
997 chan_pcal_info->pwr[0][3] = 0; 1295 pcinfo->pwr[0][3] = 0;
998 chan_pcal_info->pddac[0][3] = 0; 1296 pcinfo->pddac[0][3] = 0;
999 1297
1000 if (pd_gains > 1) { 1298 if (pd_gains > 1) {
1001 /* 1299 /*
@@ -1003,44 +1301,36 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1003 * so it only has 2 pd points. 1301 * so it only has 2 pd points.
1004 * Continue wih pd gain 1. 1302 * Continue wih pd gain 1.
1005 */ 1303 */
1006 chan_pcal_info->pwr_i[1] = (val >> 10) & 0x1f; 1304 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1007 1305
1008 chan_pcal_info->pddac_i[1] = (val >> 15) & 0x1; 1306 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1009 AR5K_EEPROM_READ(offset++, val); 1307 AR5K_EEPROM_READ(offset++, val);
1010 chan_pcal_info->pddac_i[1] |= (val & 0x3F) << 1; 1308 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1011 1309
1012 chan_pcal_info->pwr[1][0] = (val >> 6) & 0xf; 1310 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1013 chan_pcal_info->pddac[1][0] = 1311 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1014 (val >> 10) & 0x3f;
1015 1312
1016 AR5K_EEPROM_READ(offset++, val); 1313 AR5K_EEPROM_READ(offset++, val);
1017 chan_pcal_info->pwr[1][1] = val & 0xf; 1314 pcinfo->pwr[1][1] = val & 0xf;
1018 chan_pcal_info->pddac[1][1] = 1315 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1019 (val >> 4) & 0x3f; 1316 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1020 chan_pcal_info->pwr[1][2] = 1317
1021 (val >> 10) & 0xf; 1318 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1022
1023 chan_pcal_info->pddac[1][2] =
1024 (val >> 14) & 0x3;
1025 AR5K_EEPROM_READ(offset++, val); 1319 AR5K_EEPROM_READ(offset++, val);
1026 chan_pcal_info->pddac[1][2] |= 1320 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1027 (val & 0xF) << 2;
1028 1321
1029 chan_pcal_info->pwr[1][3] = 0; 1322 pcinfo->pwr[1][3] = 0;
1030 chan_pcal_info->pddac[1][3] = 0; 1323 pcinfo->pddac[1][3] = 0;
1031 } else if (pd_gains == 1) { 1324 } else if (pd_gains == 1) {
1032 /* 1325 /*
1033 * Pd gain 0 is the last one so 1326 * Pd gain 0 is the last one so
1034 * read the extra point. 1327 * read the extra point.
1035 */ 1328 */
1036 chan_pcal_info->pwr[0][3] = 1329 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1037 (val >> 10) & 0xf;
1038 1330
1039 chan_pcal_info->pddac[0][3] = 1331 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1040 (val >> 14) & 0x3;
1041 AR5K_EEPROM_READ(offset++, val); 1332 AR5K_EEPROM_READ(offset++, val);
1042 chan_pcal_info->pddac[0][3] |= 1333 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1043 (val & 0xF) << 2;
1044 } 1334 }
1045 1335
1046 /* 1336 /*
@@ -1048,105 +1338,65 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1048 * as above. 1338 * as above.
1049 */ 1339 */
1050 if (pd_gains > 2) { 1340 if (pd_gains > 2) {
1051 chan_pcal_info->pwr_i[2] = (val >> 4) & 0x1f; 1341 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1052 chan_pcal_info->pddac_i[2] = (val >> 9) & 0x7f; 1342 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1053 1343
1054 AR5K_EEPROM_READ(offset++, val); 1344 AR5K_EEPROM_READ(offset++, val);
1055 chan_pcal_info->pwr[2][0] = 1345 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1056 (val >> 0) & 0xf; 1346 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1057 chan_pcal_info->pddac[2][0] = 1347 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1058 (val >> 4) & 0x3f; 1348
1059 chan_pcal_info->pwr[2][1] = 1349 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1060 (val >> 10) & 0xf;
1061
1062 chan_pcal_info->pddac[2][1] =
1063 (val >> 14) & 0x3;
1064 AR5K_EEPROM_READ(offset++, val); 1350 AR5K_EEPROM_READ(offset++, val);
1065 chan_pcal_info->pddac[2][1] |= 1351 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1066 (val & 0xF) << 2;
1067 1352
1068 chan_pcal_info->pwr[2][2] = 1353 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1069 (val >> 4) & 0xf; 1354 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1070 chan_pcal_info->pddac[2][2] =
1071 (val >> 8) & 0x3f;
1072 1355
1073 chan_pcal_info->pwr[2][3] = 0; 1356 pcinfo->pwr[2][3] = 0;
1074 chan_pcal_info->pddac[2][3] = 0; 1357 pcinfo->pddac[2][3] = 0;
1075 } else if (pd_gains == 2) { 1358 } else if (pd_gains == 2) {
1076 chan_pcal_info->pwr[1][3] = 1359 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1077 (val >> 4) & 0xf; 1360 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1078 chan_pcal_info->pddac[1][3] =
1079 (val >> 8) & 0x3f;
1080 } 1361 }
1081 1362
1082 if (pd_gains > 3) { 1363 if (pd_gains > 3) {
1083 chan_pcal_info->pwr_i[3] = (val >> 14) & 0x3; 1364 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1084 AR5K_EEPROM_READ(offset++, val); 1365 AR5K_EEPROM_READ(offset++, val);
1085 chan_pcal_info->pwr_i[3] |= ((val >> 0) & 0x7) << 2; 1366 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1086 1367
1087 chan_pcal_info->pddac_i[3] = (val >> 3) & 0x7f; 1368 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1088 chan_pcal_info->pwr[3][0] = 1369 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1089 (val >> 10) & 0xf; 1370 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1090 chan_pcal_info->pddac[3][0] =
1091 (val >> 14) & 0x3;
1092 1371
1093 AR5K_EEPROM_READ(offset++, val); 1372 AR5K_EEPROM_READ(offset++, val);
1094 chan_pcal_info->pddac[3][0] |= 1373 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1095 (val & 0xF) << 2; 1374 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1096 chan_pcal_info->pwr[3][1] = 1375 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1097 (val >> 4) & 0xf; 1376
1098 chan_pcal_info->pddac[3][1] = 1377 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1099 (val >> 8) & 0x3f;
1100
1101 chan_pcal_info->pwr[3][2] =
1102 (val >> 14) & 0x3;
1103 AR5K_EEPROM_READ(offset++, val); 1378 AR5K_EEPROM_READ(offset++, val);
1104 chan_pcal_info->pwr[3][2] |= 1379 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1105 ((val >> 0) & 0x3) << 2;
1106 1380
1107 chan_pcal_info->pddac[3][2] = 1381 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1108 (val >> 2) & 0x3f; 1382 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1109 chan_pcal_info->pwr[3][3] =
1110 (val >> 8) & 0xf;
1111 1383
1112 chan_pcal_info->pddac[3][3] = 1384 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1113 (val >> 12) & 0xF;
1114 AR5K_EEPROM_READ(offset++, val); 1385 AR5K_EEPROM_READ(offset++, val);
1115 chan_pcal_info->pddac[3][3] |= 1386 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1116 ((val >> 0) & 0x3) << 4;
1117 } else if (pd_gains == 3) { 1387 } else if (pd_gains == 3) {
1118 chan_pcal_info->pwr[2][3] = 1388 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1119 (val >> 14) & 0x3;
1120 AR5K_EEPROM_READ(offset++, val); 1389 AR5K_EEPROM_READ(offset++, val);
1121 chan_pcal_info->pwr[2][3] |= 1390 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1122 ((val >> 0) & 0x3) << 2;
1123
1124 chan_pcal_info->pddac[2][3] =
1125 (val >> 2) & 0x3f;
1126 }
1127 1391
1128 for (c = 0; c < pd_gains; c++) { 1392 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1129 /* Recreate pwr table for this channel using pwr steps */
1130 chan_pcal_info->pwr[c][0] += chan_pcal_info->pwr_i[c] * 2;
1131 chan_pcal_info->pwr[c][1] += chan_pcal_info->pwr[c][0];
1132 chan_pcal_info->pwr[c][2] += chan_pcal_info->pwr[c][1];
1133 chan_pcal_info->pwr[c][3] += chan_pcal_info->pwr[c][2];
1134 if (chan_pcal_info->pwr[c][3] == chan_pcal_info->pwr[c][2])
1135 chan_pcal_info->pwr[c][3] = 0;
1136
1137 /* Recreate pddac table for this channel using pddac steps */
1138 chan_pcal_info->pddac[c][0] += chan_pcal_info->pddac_i[c];
1139 chan_pcal_info->pddac[c][1] += chan_pcal_info->pddac[c][0];
1140 chan_pcal_info->pddac[c][2] += chan_pcal_info->pddac[c][1];
1141 chan_pcal_info->pddac[c][3] += chan_pcal_info->pddac[c][2];
1142 if (chan_pcal_info->pddac[c][3] == chan_pcal_info->pddac[c][2])
1143 chan_pcal_info->pddac[c][3] = 0;
1144 } 1393 }
1145 } 1394 }
1146 1395
1147 return 0; 1396 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1148} 1397}
1149 1398
1399
1150/* 1400/*
1151 * Read per rate target power (this is the maximum tx power 1401 * Read per rate target power (this is the maximum tx power
1152 * supported by the card). This info is used when setting 1402 * supported by the card). This info is used when setting
@@ -1154,11 +1404,12 @@ ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1154 * 1404 *
1155 * This also works for v5 EEPROMs. 1405 * This also works for v5 EEPROMs.
1156 */ 1406 */
1157static int ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode) 1407static int
1408ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1158{ 1409{
1159 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 1410 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1160 struct ath5k_rate_pcal_info *rate_pcal_info; 1411 struct ath5k_rate_pcal_info *rate_pcal_info;
1161 u16 *rate_target_pwr_num; 1412 u8 *rate_target_pwr_num;
1162 u32 offset; 1413 u32 offset;
1163 u16 val; 1414 u16 val;
1164 int ret, i; 1415 int ret, i;
@@ -1264,7 +1515,9 @@ ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1264 else 1515 else
1265 read_pcal = ath5k_eeprom_read_pcal_info_5111; 1516 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1266 1517
1267 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) { 1518
1519 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1520 mode++) {
1268 err = read_pcal(ah, mode); 1521 err = read_pcal(ah, mode);
1269 if (err) 1522 if (err)
1270 return err; 1523 return err;
@@ -1277,6 +1530,62 @@ ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1277 return 0; 1530 return 0;
1278} 1531}
1279 1532
1533static int
1534ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1535{
1536 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1537 struct ath5k_chan_pcal_info *chinfo;
1538 u8 pier, pdg;
1539
1540 switch (mode) {
1541 case AR5K_EEPROM_MODE_11A:
1542 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1543 return 0;
1544 chinfo = ee->ee_pwr_cal_a;
1545 break;
1546 case AR5K_EEPROM_MODE_11B:
1547 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1548 return 0;
1549 chinfo = ee->ee_pwr_cal_b;
1550 break;
1551 case AR5K_EEPROM_MODE_11G:
1552 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1553 return 0;
1554 chinfo = ee->ee_pwr_cal_g;
1555 break;
1556 default:
1557 return -EINVAL;
1558 }
1559
1560 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1561 if (!chinfo[pier].pd_curves)
1562 continue;
1563
1564 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1565 struct ath5k_pdgain_info *pd =
1566 &chinfo[pier].pd_curves[pdg];
1567
1568 if (pd != NULL) {
1569 kfree(pd->pd_step);
1570 kfree(pd->pd_pwr);
1571 }
1572 }
1573
1574 kfree(chinfo[pier].pd_curves);
1575 }
1576
1577 return 0;
1578}
1579
1580void
1581ath5k_eeprom_detach(struct ath5k_hw *ah)
1582{
1583 u8 mode;
1584
1585 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1586 ath5k_eeprom_free_pcal_info(ah, mode);
1587}
1588
1280/* Read conformance test limits used for regulatory control */ 1589/* Read conformance test limits used for regulatory control */
1281static int 1590static int
1282ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah) 1591ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
@@ -1457,3 +1766,4 @@ bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
1457 else 1766 else
1458 return false; 1767 return false;
1459} 1768}
1769
diff --git a/drivers/net/wireless/ath5k/eeprom.h b/drivers/net/wireless/ath5k/eeprom.h
index 1deebc0257d4..b0c0606dea0b 100644
--- a/drivers/net/wireless/ath5k/eeprom.h
+++ b/drivers/net/wireless/ath5k/eeprom.h
@@ -173,6 +173,7 @@
173#define AR5K_EEPROM_N_5GHZ_CHAN 10 173#define AR5K_EEPROM_N_5GHZ_CHAN 10
174#define AR5K_EEPROM_N_2GHZ_CHAN 3 174#define AR5K_EEPROM_N_2GHZ_CHAN 3
175#define AR5K_EEPROM_N_2GHZ_CHAN_2413 4 175#define AR5K_EEPROM_N_2GHZ_CHAN_2413 4
176#define AR5K_EEPROM_N_2GHZ_CHAN_MAX 4
176#define AR5K_EEPROM_MAX_CHAN 10 177#define AR5K_EEPROM_MAX_CHAN 10
177#define AR5K_EEPROM_N_PWR_POINTS_5111 11 178#define AR5K_EEPROM_N_PWR_POINTS_5111 11
178#define AR5K_EEPROM_N_PCDAC 11 179#define AR5K_EEPROM_N_PCDAC 11
@@ -193,7 +194,7 @@
193#define AR5K_EEPROM_SCALE_OC_DELTA(_x) (((_x) * 2) / 10) 194#define AR5K_EEPROM_SCALE_OC_DELTA(_x) (((_x) * 2) / 10)
194#define AR5K_EEPROM_N_CTLS(_v) AR5K_EEPROM_OFF(_v, 16, 32) 195#define AR5K_EEPROM_N_CTLS(_v) AR5K_EEPROM_OFF(_v, 16, 32)
195#define AR5K_EEPROM_MAX_CTLS 32 196#define AR5K_EEPROM_MAX_CTLS 32
196#define AR5K_EEPROM_N_XPD_PER_CHANNEL 4 197#define AR5K_EEPROM_N_PD_CURVES 4
197#define AR5K_EEPROM_N_XPD0_POINTS 4 198#define AR5K_EEPROM_N_XPD0_POINTS 4
198#define AR5K_EEPROM_N_XPD3_POINTS 3 199#define AR5K_EEPROM_N_XPD3_POINTS 3
199#define AR5K_EEPROM_N_PD_GAINS 4 200#define AR5K_EEPROM_N_PD_GAINS 4
@@ -232,7 +233,7 @@ enum ath5k_ctl_mode {
232 AR5K_CTL_11B = 1, 233 AR5K_CTL_11B = 1,
233 AR5K_CTL_11G = 2, 234 AR5K_CTL_11G = 2,
234 AR5K_CTL_TURBO = 3, 235 AR5K_CTL_TURBO = 3,
235 AR5K_CTL_108G = 4, 236 AR5K_CTL_TURBOG = 4,
236 AR5K_CTL_2GHT20 = 5, 237 AR5K_CTL_2GHT20 = 5,
237 AR5K_CTL_5GHT20 = 6, 238 AR5K_CTL_5GHT20 = 6,
238 AR5K_CTL_2GHT40 = 7, 239 AR5K_CTL_2GHT40 = 7,
@@ -240,65 +241,114 @@ enum ath5k_ctl_mode {
240 AR5K_CTL_MODE_M = 15, 241 AR5K_CTL_MODE_M = 15,
241}; 242};
242 243
244/* Default CTL ids for the 3 main reg domains.
245 * Atheros only uses these by default but vendors
246 * can have up to 32 different CTLs for different
247 * scenarios. Note that theese values are ORed with
248 * the mode id (above) so we can have up to 24 CTL
249 * datasets out of these 3 main regdomains. That leaves
250 * 8 ids that can be used by vendors and since 0x20 is
251 * missing from HAL sources i guess this is the set of
252 * custom CTLs vendors can use. */
253#define AR5K_CTL_FCC 0x10
254#define AR5K_CTL_CUSTOM 0x20
255#define AR5K_CTL_ETSI 0x30
256#define AR5K_CTL_MKK 0x40
257
258/* Indicates a CTL with only mode set and
259 * no reg domain mapping, such CTLs are used
260 * for world roaming domains or simply when
261 * a reg domain is not set */
262#define AR5K_CTL_NO_REGDOMAIN 0xf0
263
264/* Indicates an empty (invalid) CTL */
265#define AR5K_CTL_NO_CTL 0xff
266
243/* Per channel calibration data, used for power table setup */ 267/* Per channel calibration data, used for power table setup */
244struct ath5k_chan_pcal_info_rf5111 { 268struct ath5k_chan_pcal_info_rf5111 {
245 /* Power levels in half dbm units 269 /* Power levels in half dbm units
246 * for one power curve. */ 270 * for one power curve. */
247 u8 pwr[AR5K_EEPROM_N_PWR_POINTS_5111]; 271 u8 pwr[AR5K_EEPROM_N_PWR_POINTS_5111];
248 /* PCDAC table steps 272 /* PCDAC table steps
249 * for the above values */ 273 * for the above values */
250 u8 pcdac[AR5K_EEPROM_N_PWR_POINTS_5111]; 274 u8 pcdac[AR5K_EEPROM_N_PWR_POINTS_5111];
251 /* Starting PCDAC step */ 275 /* Starting PCDAC step */
252 u8 pcdac_min; 276 u8 pcdac_min;
253 /* Final PCDAC step */ 277 /* Final PCDAC step */
254 u8 pcdac_max; 278 u8 pcdac_max;
255}; 279};
256 280
257struct ath5k_chan_pcal_info_rf5112 { 281struct ath5k_chan_pcal_info_rf5112 {
258 /* Power levels in quarter dBm units 282 /* Power levels in quarter dBm units
259 * for lower (0) and higher (3) 283 * for lower (0) and higher (3)
260 * level curves */ 284 * level curves in 0.25dB units */
261 s8 pwr_x0[AR5K_EEPROM_N_XPD0_POINTS]; 285 s8 pwr_x0[AR5K_EEPROM_N_XPD0_POINTS];
262 s8 pwr_x3[AR5K_EEPROM_N_XPD3_POINTS]; 286 s8 pwr_x3[AR5K_EEPROM_N_XPD3_POINTS];
263 /* PCDAC table steps 287 /* PCDAC table steps
264 * for the above values */ 288 * for the above values */
265 u8 pcdac_x0[AR5K_EEPROM_N_XPD0_POINTS]; 289 u8 pcdac_x0[AR5K_EEPROM_N_XPD0_POINTS];
266 u8 pcdac_x3[AR5K_EEPROM_N_XPD3_POINTS]; 290 u8 pcdac_x3[AR5K_EEPROM_N_XPD3_POINTS];
267}; 291};
268 292
269struct ath5k_chan_pcal_info_rf2413 { 293struct ath5k_chan_pcal_info_rf2413 {
270 /* Starting pwr/pddac values */ 294 /* Starting pwr/pddac values */
271 s8 pwr_i[AR5K_EEPROM_N_PD_GAINS]; 295 s8 pwr_i[AR5K_EEPROM_N_PD_GAINS];
272 u8 pddac_i[AR5K_EEPROM_N_PD_GAINS]; 296 u8 pddac_i[AR5K_EEPROM_N_PD_GAINS];
273 /* (pwr,pddac) points */ 297 /* (pwr,pddac) points
274 s8 pwr[AR5K_EEPROM_N_PD_GAINS] 298 * power levels in 0.5dB units */
275 [AR5K_EEPROM_N_PD_POINTS]; 299 s8 pwr[AR5K_EEPROM_N_PD_GAINS]
276 u8 pddac[AR5K_EEPROM_N_PD_GAINS] 300 [AR5K_EEPROM_N_PD_POINTS];
277 [AR5K_EEPROM_N_PD_POINTS]; 301 u8 pddac[AR5K_EEPROM_N_PD_GAINS]
302 [AR5K_EEPROM_N_PD_POINTS];
303};
304
305enum ath5k_powertable_type {
306 AR5K_PWRTABLE_PWR_TO_PCDAC = 0,
307 AR5K_PWRTABLE_LINEAR_PCDAC = 1,
308 AR5K_PWRTABLE_PWR_TO_PDADC = 2,
309};
310
311struct ath5k_pdgain_info {
312 u8 pd_points;
313 u8 *pd_step;
314 /* Power values are in
315 * 0.25dB units */
316 s16 *pd_pwr;
278}; 317};
279 318
280struct ath5k_chan_pcal_info { 319struct ath5k_chan_pcal_info {
281 /* Frequency */ 320 /* Frequency */
282 u16 freq; 321 u16 freq;
283 /* Max available power */ 322 /* Tx power boundaries */
284 s8 max_pwr; 323 s16 max_pwr;
324 s16 min_pwr;
285 union { 325 union {
286 struct ath5k_chan_pcal_info_rf5111 rf5111_info; 326 struct ath5k_chan_pcal_info_rf5111 rf5111_info;
287 struct ath5k_chan_pcal_info_rf5112 rf5112_info; 327 struct ath5k_chan_pcal_info_rf5112 rf5112_info;
288 struct ath5k_chan_pcal_info_rf2413 rf2413_info; 328 struct ath5k_chan_pcal_info_rf2413 rf2413_info;
289 }; 329 };
330 /* Raw values used by phy code
331 * Curves are stored in order from lower
332 * gain to higher gain (max txpower -> min txpower) */
333 struct ath5k_pdgain_info *pd_curves;
290}; 334};
291 335
292/* Per rate calibration data for each mode, used for power table setup */ 336/* Per rate calibration data for each mode,
337 * used for rate power table setup.
338 * Note: Values in 0.5dB units */
293struct ath5k_rate_pcal_info { 339struct ath5k_rate_pcal_info {
294 u16 freq; /* Frequency */ 340 u16 freq; /* Frequency */
295 /* Power level for 6-24Mbit/s rates */ 341 /* Power level for 6-24Mbit/s rates or
342 * 1Mb rate */
296 u16 target_power_6to24; 343 u16 target_power_6to24;
297 /* Power level for 36Mbit rate */ 344 /* Power level for 36Mbit rate or
345 * 2Mb rate */
298 u16 target_power_36; 346 u16 target_power_36;
299 /* Power level for 48Mbit rate */ 347 /* Power level for 48Mbit rate or
348 * 5.5Mbit rate */
300 u16 target_power_48; 349 u16 target_power_48;
301 /* Power level for 54Mbit rate */ 350 /* Power level for 54Mbit rate or
351 * 11Mbit rate */
302 u16 target_power_54; 352 u16 target_power_54;
303}; 353};
304 354
@@ -330,12 +380,6 @@ struct ath5k_eeprom_info {
330 u16 ee_cck_ofdm_power_delta; 380 u16 ee_cck_ofdm_power_delta;
331 u16 ee_scaled_cck_delta; 381 u16 ee_scaled_cck_delta;
332 382
333 /* Used for tx thermal adjustment (eeprom_init, rfregs) */
334 u16 ee_tx_clip;
335 u16 ee_pwd_84;
336 u16 ee_pwd_90;
337 u16 ee_gain_select;
338
339 /* RF Calibration settings (reset, rfregs) */ 383 /* RF Calibration settings (reset, rfregs) */
340 u16 ee_i_cal[AR5K_EEPROM_N_MODES]; 384 u16 ee_i_cal[AR5K_EEPROM_N_MODES];
341 u16 ee_q_cal[AR5K_EEPROM_N_MODES]; 385 u16 ee_q_cal[AR5K_EEPROM_N_MODES];
@@ -363,23 +407,25 @@ struct ath5k_eeprom_info {
363 /* Power calibration data */ 407 /* Power calibration data */
364 u16 ee_false_detect[AR5K_EEPROM_N_MODES]; 408 u16 ee_false_detect[AR5K_EEPROM_N_MODES];
365 409
366 /* Number of pd gain curves per mode (RF2413) */ 410 /* Number of pd gain curves per mode */
367 u8 ee_pd_gains[AR5K_EEPROM_N_MODES]; 411 u8 ee_pd_gains[AR5K_EEPROM_N_MODES];
412 /* Back mapping pdcurve number -> pdcurve index in pd->pd_curves */
413 u8 ee_pdc_to_idx[AR5K_EEPROM_N_MODES][AR5K_EEPROM_N_PD_GAINS];
368 414
369 u8 ee_n_piers[AR5K_EEPROM_N_MODES]; 415 u8 ee_n_piers[AR5K_EEPROM_N_MODES];
370 struct ath5k_chan_pcal_info ee_pwr_cal_a[AR5K_EEPROM_N_5GHZ_CHAN]; 416 struct ath5k_chan_pcal_info ee_pwr_cal_a[AR5K_EEPROM_N_5GHZ_CHAN];
371 struct ath5k_chan_pcal_info ee_pwr_cal_b[AR5K_EEPROM_N_2GHZ_CHAN]; 417 struct ath5k_chan_pcal_info ee_pwr_cal_b[AR5K_EEPROM_N_2GHZ_CHAN_MAX];
372 struct ath5k_chan_pcal_info ee_pwr_cal_g[AR5K_EEPROM_N_2GHZ_CHAN]; 418 struct ath5k_chan_pcal_info ee_pwr_cal_g[AR5K_EEPROM_N_2GHZ_CHAN_MAX];
373 419
374 /* Per rate target power levels */ 420 /* Per rate target power levels */
375 u16 ee_rate_target_pwr_num[AR5K_EEPROM_N_MODES]; 421 u8 ee_rate_target_pwr_num[AR5K_EEPROM_N_MODES];
376 struct ath5k_rate_pcal_info ee_rate_tpwr_a[AR5K_EEPROM_N_5GHZ_CHAN]; 422 struct ath5k_rate_pcal_info ee_rate_tpwr_a[AR5K_EEPROM_N_5GHZ_CHAN];
377 struct ath5k_rate_pcal_info ee_rate_tpwr_b[AR5K_EEPROM_N_2GHZ_CHAN]; 423 struct ath5k_rate_pcal_info ee_rate_tpwr_b[AR5K_EEPROM_N_2GHZ_CHAN_MAX];
378 struct ath5k_rate_pcal_info ee_rate_tpwr_g[AR5K_EEPROM_N_2GHZ_CHAN]; 424 struct ath5k_rate_pcal_info ee_rate_tpwr_g[AR5K_EEPROM_N_2GHZ_CHAN_MAX];
379 425
380 /* Conformance test limits (Unused) */ 426 /* Conformance test limits (Unused) */
381 u16 ee_ctls; 427 u8 ee_ctls;
382 u16 ee_ctl[AR5K_EEPROM_MAX_CTLS]; 428 u8 ee_ctl[AR5K_EEPROM_MAX_CTLS];
383 struct ath5k_edge_power ee_ctl_pwr[AR5K_EEPROM_N_EDGES * AR5K_EEPROM_MAX_CTLS]; 429 struct ath5k_edge_power ee_ctl_pwr[AR5K_EEPROM_N_EDGES * AR5K_EEPROM_MAX_CTLS];
384 430
385 /* Noise Floor Calibration settings */ 431 /* Noise Floor Calibration settings */
diff --git a/drivers/net/wireless/ath5k/initvals.c b/drivers/net/wireless/ath5k/initvals.c
index 44886434187b..61fb621ed20d 100644
--- a/drivers/net/wireless/ath5k/initvals.c
+++ b/drivers/net/wireless/ath5k/initvals.c
@@ -1510,8 +1510,8 @@ int ath5k_hw_write_initvals(struct ath5k_hw *ah, u8 mode, bool change_channel)
1510 rf2425_ini_mode_end, mode); 1510 rf2425_ini_mode_end, mode);
1511 1511
1512 ath5k_hw_ini_registers(ah, 1512 ath5k_hw_ini_registers(ah,
1513 ARRAY_SIZE(rf2413_ini_common_end), 1513 ARRAY_SIZE(rf2425_ini_common_end),
1514 rf2413_ini_common_end, change_channel); 1514 rf2425_ini_common_end, change_channel);
1515 1515
1516 ath5k_hw_ini_registers(ah, 1516 ath5k_hw_ini_registers(ah,
1517 ARRAY_SIZE(rf5112_ini_bbgain), 1517 ARRAY_SIZE(rf5112_ini_bbgain),
diff --git a/drivers/net/wireless/ath5k/led.c b/drivers/net/wireless/ath5k/led.c
index 0686e12738b3..19555fb79c9b 100644
--- a/drivers/net/wireless/ath5k/led.c
+++ b/drivers/net/wireless/ath5k/led.c
@@ -65,6 +65,8 @@ static const struct pci_device_id ath5k_led_devices[] = {
65 { ATH_SDEVICE(PCI_VENDOR_ID_AMBIT, 0x0422), ATH_LED(1, 1) }, 65 { ATH_SDEVICE(PCI_VENDOR_ID_AMBIT, 0x0422), ATH_LED(1, 1) },
66 /* E-machines E510 (tuliom@gmail.com) */ 66 /* E-machines E510 (tuliom@gmail.com) */
67 { ATH_SDEVICE(PCI_VENDOR_ID_AMBIT, 0x0428), ATH_LED(3, 0) }, 67 { ATH_SDEVICE(PCI_VENDOR_ID_AMBIT, 0x0428), ATH_LED(3, 0) },
68 /* Acer Extensa 5620z (nekoreeve@gmail.com) */
69 { ATH_SDEVICE(PCI_VENDOR_ID_QMI, 0x0105), ATH_LED(3, 0) },
68 { } 70 { }
69}; 71};
70 72
diff --git a/drivers/net/wireless/ath5k/phy.c b/drivers/net/wireless/ath5k/phy.c
index 81f5bebc48b1..9e2faae5ae94 100644
--- a/drivers/net/wireless/ath5k/phy.c
+++ b/drivers/net/wireless/ath5k/phy.c
@@ -4,6 +4,7 @@
4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org> 4 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com> 5 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com> 6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
7 * 8 *
8 * Permission to use, copy, modify, and distribute this software for any 9 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above 10 * purpose with or without fee is hereby granted, provided that the above
@@ -183,7 +184,9 @@ static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
183 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE) 184 if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
184 return; 185 return;
185 186
186 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max, 187 /* Send the packet with 2dB below max power as
188 * patent doc suggest */
189 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_max_pwr - 4,
187 AR5K_PHY_PAPD_PROBE_TXPOWER) | 190 AR5K_PHY_PAPD_PROBE_TXPOWER) |
188 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE); 191 AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
189 192
@@ -1433,93 +1436,1120 @@ unsigned int ath5k_hw_get_def_antenna(struct ath5k_hw *ah)
1433 return false; /*XXX: What do we return for 5210 ?*/ 1436 return false; /*XXX: What do we return for 5210 ?*/
1434} 1437}
1435 1438
1439
1440/****************\
1441* TX power setup *
1442\****************/
1443
1444/*
1445 * Helper functions
1446 */
1447
1448/*
1449 * Do linear interpolation between two given (x, y) points
1450 */
1451static s16
1452ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1453 s16 y_left, s16 y_right)
1454{
1455 s16 ratio, result;
1456
1457 /* Avoid divide by zero and skip interpolation
1458 * if we have the same point */
1459 if ((x_left == x_right) || (y_left == y_right))
1460 return y_left;
1461
1462 /*
1463 * Since we use ints and not fps, we need to scale up in
1464 * order to get a sane ratio value (or else we 'll eg. get
1465 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1466 * to have some accuracy both for 0.5 and 0.25 steps.
1467 */
1468 ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1469
1470 /* Now scale down to be in range */
1471 result = y_left + (ratio * (target - x_left) / 100);
1472
1473 return result;
1474}
1475
1476/*
1477 * Find vertical boundary (min pwr) for the linear PCDAC curve.
1478 *
1479 * Since we have the top of the curve and we draw the line below
1480 * until we reach 1 (1 pcdac step) we need to know which point
1481 * (x value) that is so that we don't go below y axis and have negative
1482 * pcdac values when creating the curve, or fill the table with zeroes.
1483 */
1484static s16
1485ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1486 const s16 *pwrL, const s16 *pwrR)
1487{
1488 s8 tmp;
1489 s16 min_pwrL, min_pwrR;
1490 s16 pwr_i = pwrL[0];
1491
1492 do {
1493 pwr_i--;
1494 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1495 pwrL[0], pwrL[1],
1496 stepL[0], stepL[1]);
1497
1498 } while (tmp > 1);
1499
1500 min_pwrL = pwr_i;
1501
1502 pwr_i = pwrR[0];
1503 do {
1504 pwr_i--;
1505 tmp = (s8) ath5k_get_interpolated_value(pwr_i,
1506 pwrR[0], pwrR[1],
1507 stepR[0], stepR[1]);
1508
1509 } while (tmp > 1);
1510
1511 min_pwrR = pwr_i;
1512
1513 /* Keep the right boundary so that it works for both curves */
1514 return max(min_pwrL, min_pwrR);
1515}
1516
1517/*
1518 * Interpolate (pwr,vpd) points to create a Power to PDADC or a
1519 * Power to PCDAC curve.
1520 *
1521 * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
1522 * steps (offsets) on y axis. Power can go up to 31.5dB and max
1523 * PCDAC/PDADC step for each curve is 64 but we can write more than
1524 * one curves on hw so we can go up to 128 (which is the max step we
1525 * can write on the final table).
1526 *
1527 * We write y values (PCDAC/PDADC steps) on hw.
1528 */
1529static void
1530ath5k_create_power_curve(s16 pmin, s16 pmax,
1531 const s16 *pwr, const u8 *vpd,
1532 u8 num_points,
1533 u8 *vpd_table, u8 type)
1534{
1535 u8 idx[2] = { 0, 1 };
1536 s16 pwr_i = 2*pmin;
1537 int i;
1538
1539 if (num_points < 2)
1540 return;
1541
1542 /* We want the whole line, so adjust boundaries
1543 * to cover the entire power range. Note that
1544 * power values are already 0.25dB so no need
1545 * to multiply pwr_i by 2 */
1546 if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
1547 pwr_i = pmin;
1548 pmin = 0;
1549 pmax = 63;
1550 }
1551
1552 /* Find surrounding turning points (TPs)
1553 * and interpolate between them */
1554 for (i = 0; (i <= (u16) (pmax - pmin)) &&
1555 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
1556
1557 /* We passed the right TP, move to the next set of TPs
1558 * if we pass the last TP, extrapolate above using the last
1559 * two TPs for ratio */
1560 if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
1561 idx[0]++;
1562 idx[1]++;
1563 }
1564
1565 vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
1566 pwr[idx[0]], pwr[idx[1]],
1567 vpd[idx[0]], vpd[idx[1]]);
1568
1569 /* Increase by 0.5dB
1570 * (0.25 dB units) */
1571 pwr_i += 2;
1572 }
1573}
1574
1575/*
1576 * Get the surrounding per-channel power calibration piers
1577 * for a given frequency so that we can interpolate between
1578 * them and come up with an apropriate dataset for our current
1579 * channel.
1580 */
1581static void
1582ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
1583 struct ieee80211_channel *channel,
1584 struct ath5k_chan_pcal_info **pcinfo_l,
1585 struct ath5k_chan_pcal_info **pcinfo_r)
1586{
1587 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1588 struct ath5k_chan_pcal_info *pcinfo;
1589 u8 idx_l, idx_r;
1590 u8 mode, max, i;
1591 u32 target = channel->center_freq;
1592
1593 idx_l = 0;
1594 idx_r = 0;
1595
1596 if (!(channel->hw_value & CHANNEL_OFDM)) {
1597 pcinfo = ee->ee_pwr_cal_b;
1598 mode = AR5K_EEPROM_MODE_11B;
1599 } else if (channel->hw_value & CHANNEL_2GHZ) {
1600 pcinfo = ee->ee_pwr_cal_g;
1601 mode = AR5K_EEPROM_MODE_11G;
1602 } else {
1603 pcinfo = ee->ee_pwr_cal_a;
1604 mode = AR5K_EEPROM_MODE_11A;
1605 }
1606 max = ee->ee_n_piers[mode] - 1;
1607
1608 /* Frequency is below our calibrated
1609 * range. Use the lowest power curve
1610 * we have */
1611 if (target < pcinfo[0].freq) {
1612 idx_l = idx_r = 0;
1613 goto done;
1614 }
1615
1616 /* Frequency is above our calibrated
1617 * range. Use the highest power curve
1618 * we have */
1619 if (target > pcinfo[max].freq) {
1620 idx_l = idx_r = max;
1621 goto done;
1622 }
1623
1624 /* Frequency is inside our calibrated
1625 * channel range. Pick the surrounding
1626 * calibration piers so that we can
1627 * interpolate */
1628 for (i = 0; i <= max; i++) {
1629
1630 /* Frequency matches one of our calibration
1631 * piers, no need to interpolate, just use
1632 * that calibration pier */
1633 if (pcinfo[i].freq == target) {
1634 idx_l = idx_r = i;
1635 goto done;
1636 }
1637
1638 /* We found a calibration pier that's above
1639 * frequency, use this pier and the previous
1640 * one to interpolate */
1641 if (target < pcinfo[i].freq) {
1642 idx_r = i;
1643 idx_l = idx_r - 1;
1644 goto done;
1645 }
1646 }
1647
1648done:
1649 *pcinfo_l = &pcinfo[idx_l];
1650 *pcinfo_r = &pcinfo[idx_r];
1651
1652 return;
1653}
1654
1655/*
1656 * Get the surrounding per-rate power calibration data
1657 * for a given frequency and interpolate between power
1658 * values to set max target power supported by hw for
1659 * each rate.
1660 */
1661static void
1662ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
1663 struct ieee80211_channel *channel,
1664 struct ath5k_rate_pcal_info *rates)
1665{
1666 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1667 struct ath5k_rate_pcal_info *rpinfo;
1668 u8 idx_l, idx_r;
1669 u8 mode, max, i;
1670 u32 target = channel->center_freq;
1671
1672 idx_l = 0;
1673 idx_r = 0;
1674
1675 if (!(channel->hw_value & CHANNEL_OFDM)) {
1676 rpinfo = ee->ee_rate_tpwr_b;
1677 mode = AR5K_EEPROM_MODE_11B;
1678 } else if (channel->hw_value & CHANNEL_2GHZ) {
1679 rpinfo = ee->ee_rate_tpwr_g;
1680 mode = AR5K_EEPROM_MODE_11G;
1681 } else {
1682 rpinfo = ee->ee_rate_tpwr_a;
1683 mode = AR5K_EEPROM_MODE_11A;
1684 }
1685 max = ee->ee_rate_target_pwr_num[mode] - 1;
1686
1687 /* Get the surrounding calibration
1688 * piers - same as above */
1689 if (target < rpinfo[0].freq) {
1690 idx_l = idx_r = 0;
1691 goto done;
1692 }
1693
1694 if (target > rpinfo[max].freq) {
1695 idx_l = idx_r = max;
1696 goto done;
1697 }
1698
1699 for (i = 0; i <= max; i++) {
1700
1701 if (rpinfo[i].freq == target) {
1702 idx_l = idx_r = i;
1703 goto done;
1704 }
1705
1706 if (target < rpinfo[i].freq) {
1707 idx_r = i;
1708 idx_l = idx_r - 1;
1709 goto done;
1710 }
1711 }
1712
1713done:
1714 /* Now interpolate power value, based on the frequency */
1715 rates->freq = target;
1716
1717 rates->target_power_6to24 =
1718 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1719 rpinfo[idx_r].freq,
1720 rpinfo[idx_l].target_power_6to24,
1721 rpinfo[idx_r].target_power_6to24);
1722
1723 rates->target_power_36 =
1724 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1725 rpinfo[idx_r].freq,
1726 rpinfo[idx_l].target_power_36,
1727 rpinfo[idx_r].target_power_36);
1728
1729 rates->target_power_48 =
1730 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1731 rpinfo[idx_r].freq,
1732 rpinfo[idx_l].target_power_48,
1733 rpinfo[idx_r].target_power_48);
1734
1735 rates->target_power_54 =
1736 ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
1737 rpinfo[idx_r].freq,
1738 rpinfo[idx_l].target_power_54,
1739 rpinfo[idx_r].target_power_54);
1740}
1741
1742/*
1743 * Get the max edge power for this channel if
1744 * we have such data from EEPROM's Conformance Test
1745 * Limits (CTL), and limit max power if needed.
1746 *
1747 * FIXME: Only works for world regulatory domains
1748 */
1749static void
1750ath5k_get_max_ctl_power(struct ath5k_hw *ah,
1751 struct ieee80211_channel *channel)
1752{
1753 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1754 struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
1755 u8 *ctl_val = ee->ee_ctl;
1756 s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
1757 s16 edge_pwr = 0;
1758 u8 rep_idx;
1759 u8 i, ctl_mode;
1760 u8 ctl_idx = 0xFF;
1761 u32 target = channel->center_freq;
1762
1763 /* Find out a CTL for our mode that's not mapped
1764 * on a specific reg domain.
1765 *
1766 * TODO: Map our current reg domain to one of the 3 available
1767 * reg domain ids so that we can support more CTLs. */
1768 switch (channel->hw_value & CHANNEL_MODES) {
1769 case CHANNEL_A:
1770 ctl_mode = AR5K_CTL_11A | AR5K_CTL_NO_REGDOMAIN;
1771 break;
1772 case CHANNEL_G:
1773 ctl_mode = AR5K_CTL_11G | AR5K_CTL_NO_REGDOMAIN;
1774 break;
1775 case CHANNEL_B:
1776 ctl_mode = AR5K_CTL_11B | AR5K_CTL_NO_REGDOMAIN;
1777 break;
1778 case CHANNEL_T:
1779 ctl_mode = AR5K_CTL_TURBO | AR5K_CTL_NO_REGDOMAIN;
1780 break;
1781 case CHANNEL_TG:
1782 ctl_mode = AR5K_CTL_TURBOG | AR5K_CTL_NO_REGDOMAIN;
1783 break;
1784 case CHANNEL_XR:
1785 /* Fall through */
1786 default:
1787 return;
1788 }
1789
1790 for (i = 0; i < ee->ee_ctls; i++) {
1791 if (ctl_val[i] == ctl_mode) {
1792 ctl_idx = i;
1793 break;
1794 }
1795 }
1796
1797 /* If we have a CTL dataset available grab it and find the
1798 * edge power for our frequency */
1799 if (ctl_idx == 0xFF)
1800 return;
1801
1802 /* Edge powers are sorted by frequency from lower
1803 * to higher. Each CTL corresponds to 8 edge power
1804 * measurements. */
1805 rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
1806
1807 /* Don't do boundaries check because we
1808 * might have more that one bands defined
1809 * for this mode */
1810
1811 /* Get the edge power that's closer to our
1812 * frequency */
1813 for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
1814 rep_idx += i;
1815 if (target <= rep[rep_idx].freq)
1816 edge_pwr = (s16) rep[rep_idx].edge;
1817 }
1818
1819 if (edge_pwr)
1820 ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
1821}
1822
1823
1824/*
1825 * Power to PCDAC table functions
1826 */
1827
1436/* 1828/*
1437 * TX power setup 1829 * Fill Power to PCDAC table on RF5111
1830 *
1831 * No further processing is needed for RF5111, the only thing we have to
1832 * do is fill the values below and above calibration range since eeprom data
1833 * may not cover the entire PCDAC table.
1438 */ 1834 */
1835static void
1836ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
1837 s16 *table_max)
1838{
1839 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1840 u8 *pcdac_tmp = ah->ah_txpower.tmpL[0];
1841 u8 pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
1842 s16 min_pwr, max_pwr;
1843
1844 /* Get table boundaries */
1845 min_pwr = table_min[0];
1846 pcdac_0 = pcdac_tmp[0];
1847
1848 max_pwr = table_max[0];
1849 pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
1850
1851 /* Extrapolate below minimum using pcdac_0 */
1852 pcdac_i = 0;
1853 for (i = 0; i < min_pwr; i++)
1854 pcdac_out[pcdac_i++] = pcdac_0;
1855
1856 /* Copy values from pcdac_tmp */
1857 pwr_idx = min_pwr;
1858 for (i = 0 ; pwr_idx <= max_pwr &&
1859 pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
1860 pcdac_out[pcdac_i++] = pcdac_tmp[i];
1861 pwr_idx++;
1862 }
1863
1864 /* Extrapolate above maximum */
1865 while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
1866 pcdac_out[pcdac_i++] = pcdac_n;
1867
1868}
1439 1869
1440/* 1870/*
1441 * Initialize the tx power table (not fully implemented) 1871 * Combine available XPD Curves and fill Linear Power to PCDAC table
1872 * on RF5112
1873 *
1874 * RFX112 can have up to 2 curves (one for low txpower range and one for
1875 * higher txpower range). We need to put them both on pcdac_out and place
1876 * them in the correct location. In case we only have one curve available
1877 * just fit it on pcdac_out (it's supposed to cover the entire range of
1878 * available pwr levels since it's always the higher power curve). Extrapolate
1879 * below and above final table if needed.
1442 */ 1880 */
1443static void ath5k_txpower_table(struct ath5k_hw *ah, 1881static void
1444 struct ieee80211_channel *channel, s16 max_power) 1882ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
1883 s16 *table_max, u8 pdcurves)
1445{ 1884{
1446 unsigned int i, min, max, n; 1885 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1447 u16 txpower, *rates; 1886 u8 *pcdac_low_pwr;
1448 1887 u8 *pcdac_high_pwr;
1449 rates = ah->ah_txpower.txp_rates; 1888 u8 *pcdac_tmp;
1450 1889 u8 pwr;
1451 txpower = AR5K_TUNE_DEFAULT_TXPOWER * 2; 1890 s16 max_pwr_idx;
1452 if (max_power > txpower) 1891 s16 min_pwr_idx;
1453 txpower = max_power > AR5K_TUNE_MAX_TXPOWER ? 1892 s16 mid_pwr_idx = 0;
1454 AR5K_TUNE_MAX_TXPOWER : max_power; 1893 /* Edge flag turs on the 7nth bit on the PCDAC
1455 1894 * to delcare the higher power curve (force values
1456 for (i = 0; i < AR5K_MAX_RATES; i++) 1895 * to be greater than 64). If we only have one curve
1457 rates[i] = txpower; 1896 * we don't need to set this, if we have 2 curves and
1458 1897 * fill the table backwards this can also be used to
1459 /* XXX setup target powers by rate */ 1898 * switch from higher power curve to lower power curve */
1460 1899 u8 edge_flag;
1461 ah->ah_txpower.txp_min = rates[7]; 1900 int i;
1462 ah->ah_txpower.txp_max = rates[0]; 1901
1463 ah->ah_txpower.txp_ofdm = rates[0]; 1902 /* When we have only one curve available
1464 1903 * that's the higher power curve. If we have
1465 /* Calculate the power table */ 1904 * two curves the first is the high power curve
1466 n = ARRAY_SIZE(ah->ah_txpower.txp_pcdac); 1905 * and the next is the low power curve. */
1467 min = AR5K_EEPROM_PCDAC_START; 1906 if (pdcurves > 1) {
1468 max = AR5K_EEPROM_PCDAC_STOP; 1907 pcdac_low_pwr = ah->ah_txpower.tmpL[1];
1469 for (i = 0; i < n; i += AR5K_EEPROM_PCDAC_STEP) 1908 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1470 ah->ah_txpower.txp_pcdac[i] = 1909 mid_pwr_idx = table_max[1] - table_min[1] - 1;
1471#ifdef notyet 1910 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1472 min + ((i * (max - min)) / n); 1911
1473#else 1912 /* If table size goes beyond 31.5dB, keep the
1474 min; 1913 * upper 31.5dB range when setting tx power.
1914 * Note: 126 = 31.5 dB in quarter dB steps */
1915 if (table_max[0] - table_min[1] > 126)
1916 min_pwr_idx = table_max[0] - 126;
1917 else
1918 min_pwr_idx = table_min[1];
1919
1920 /* Since we fill table backwards
1921 * start from high power curve */
1922 pcdac_tmp = pcdac_high_pwr;
1923
1924 edge_flag = 0x40;
1925#if 0
1926 /* If both min and max power limits are in lower
1927 * power curve's range, only use the low power curve.
1928 * TODO: min/max levels are related to target
1929 * power values requested from driver/user
1930 * XXX: Is this really needed ? */
1931 if (min_pwr < table_max[1] &&
1932 max_pwr < table_max[1]) {
1933 edge_flag = 0;
1934 pcdac_tmp = pcdac_low_pwr;
1935 max_pwr_idx = (table_max[1] - table_min[1])/2;
1936 }
1475#endif 1937#endif
1938 } else {
1939 pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
1940 pcdac_high_pwr = ah->ah_txpower.tmpL[0];
1941 min_pwr_idx = table_min[0];
1942 max_pwr_idx = (table_max[0] - table_min[0]) / 2;
1943 pcdac_tmp = pcdac_high_pwr;
1944 edge_flag = 0;
1945 }
1946
1947 /* This is used when setting tx power*/
1948 ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
1949
1950 /* Fill Power to PCDAC table backwards */
1951 pwr = max_pwr_idx;
1952 for (i = 63; i >= 0; i--) {
1953 /* Entering lower power range, reset
1954 * edge flag and set pcdac_tmp to lower
1955 * power curve.*/
1956 if (edge_flag == 0x40 &&
1957 (2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
1958 edge_flag = 0x00;
1959 pcdac_tmp = pcdac_low_pwr;
1960 pwr = mid_pwr_idx/2;
1961 }
1962
1963 /* Don't go below 1, extrapolate below if we have
1964 * already swithced to the lower power curve -or
1965 * we only have one curve and edge_flag is zero
1966 * anyway */
1967 if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
1968 while (i >= 0) {
1969 pcdac_out[i] = pcdac_out[i + 1];
1970 i--;
1971 }
1972 break;
1973 }
1974
1975 pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
1976
1977 /* Extrapolate above if pcdac is greater than
1978 * 126 -this can happen because we OR pcdac_out
1979 * value with edge_flag on high power curve */
1980 if (pcdac_out[i] > 126)
1981 pcdac_out[i] = 126;
1982
1983 /* Decrease by a 0.5dB step */
1984 pwr--;
1985 }
1476} 1986}
1477 1987
1988/* Write PCDAC values on hw */
1989static void
1990ath5k_setup_pcdac_table(struct ath5k_hw *ah)
1991{
1992 u8 *pcdac_out = ah->ah_txpower.txp_pd_table;
1993 int i;
1994
1995 /*
1996 * Write TX power values
1997 */
1998 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
1999 ath5k_hw_reg_write(ah,
2000 (((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2001 (((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2002 AR5K_PHY_PCDAC_TXPOWER(i));
2003 }
2004}
2005
2006
1478/* 2007/*
1479 * Set transmition power 2008 * Power to PDADC table functions
1480 */ 2009 */
1481int /*O.K. - txpower_table is unimplemented so this doesn't work*/ 2010
1482ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel, 2011/*
1483 unsigned int txpower) 2012 * Set the gain boundaries and create final Power to PDADC table
2013 *
2014 * We can have up to 4 pd curves, we need to do a simmilar process
2015 * as we do for RF5112. This time we don't have an edge_flag but we
2016 * set the gain boundaries on a separate register.
2017 */
2018static void
2019ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2020 s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
1484{ 2021{
1485 bool tpc = ah->ah_txpower.txp_tpc; 2022 u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
1486 unsigned int i; 2023 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2024 u8 *pdadc_tmp;
2025 s16 pdadc_0;
2026 u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2027 u8 pd_gain_overlap;
2028
2029 /* Note: Register value is initialized on initvals
2030 * there is no feedback from hw.
2031 * XXX: What about pd_gain_overlap from EEPROM ? */
2032 pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2033 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2034
2035 /* Create final PDADC table */
2036 for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2037 pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2038
2039 if (pdg == pdcurves - 1)
2040 /* 2 dB boundary stretch for last
2041 * (higher power) curve */
2042 gain_boundaries[pdg] = pwr_max[pdg] + 4;
2043 else
2044 /* Set gain boundary in the middle
2045 * between this curve and the next one */
2046 gain_boundaries[pdg] =
2047 (pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2048
2049 /* Sanity check in case our 2 db stretch got out of
2050 * range. */
2051 if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2052 gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2053
2054 /* For the first curve (lower power)
2055 * start from 0 dB */
2056 if (pdg == 0)
2057 pdadc_0 = 0;
2058 else
2059 /* For the other curves use the gain overlap */
2060 pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2061 pd_gain_overlap;
1487 2062
1488 ATH5K_TRACE(ah->ah_sc); 2063 /* Force each power step to be at least 0.5 dB */
1489 if (txpower > AR5K_TUNE_MAX_TXPOWER) { 2064 if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
1490 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower); 2065 pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
1491 return -EINVAL; 2066 else
2067 pwr_step = 1;
2068
2069 /* If pdadc_0 is negative, we need to extrapolate
2070 * below this pdgain by a number of pwr_steps */
2071 while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2072 s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2073 pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2074 pdadc_0++;
2075 }
2076
2077 /* Set last pwr level, using gain boundaries */
2078 pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2079 /* Limit it to be inside pwr range */
2080 table_size = pwr_max[pdg] - pwr_min[pdg];
2081 max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2082
2083 /* Fill pdadc_out table */
2084 while (pdadc_0 < max_idx)
2085 pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2086
2087 /* Need to extrapolate above this pdgain? */
2088 if (pdadc_n <= max_idx)
2089 continue;
2090
2091 /* Force each power step to be at least 0.5 dB */
2092 if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2093 pwr_step = pdadc_tmp[table_size - 1] -
2094 pdadc_tmp[table_size - 2];
2095 else
2096 pwr_step = 1;
2097
2098 /* Extrapolate above */
2099 while ((pdadc_0 < (s16) pdadc_n) &&
2100 (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2101 s16 tmp = pdadc_tmp[table_size - 1] +
2102 (pdadc_0 - max_idx) * pwr_step;
2103 pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2104 pdadc_0++;
2105 }
1492 } 2106 }
1493 2107
2108 while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2109 gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2110 pdg++;
2111 }
2112
2113 while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2114 pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2115 pdadc_i++;
2116 }
2117
2118 /* Set gain boundaries */
2119 ath5k_hw_reg_write(ah,
2120 AR5K_REG_SM(pd_gain_overlap,
2121 AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2122 AR5K_REG_SM(gain_boundaries[0],
2123 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2124 AR5K_REG_SM(gain_boundaries[1],
2125 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2126 AR5K_REG_SM(gain_boundaries[2],
2127 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2128 AR5K_REG_SM(gain_boundaries[3],
2129 AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2130 AR5K_PHY_TPC_RG5);
2131
2132 /* Used for setting rate power table */
2133 ah->ah_txpower.txp_min_idx = pwr_min[0];
2134
2135}
2136
2137/* Write PDADC values on hw */
2138static void
2139ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2140 u8 pdcurves, u8 *pdg_to_idx)
2141{
2142 u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2143 u32 reg;
2144 u8 i;
2145
2146 /* Select the right pdgain curves */
2147
2148 /* Clear current settings */
2149 reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2150 reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2151 AR5K_PHY_TPC_RG1_PDGAIN_2 |
2152 AR5K_PHY_TPC_RG1_PDGAIN_3 |
2153 AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2154
1494 /* 2155 /*
1495 * RF2413 for some reason can't 2156 * Use pd_gains curve from eeprom
1496 * transmit anything if we call
1497 * this funtion, so we skip it
1498 * until we fix txpower.
1499 * 2157 *
1500 * XXX: Assume same for RF2425 2158 * This overrides the default setting from initvals
1501 * to be safe. 2159 * in case some vendors (e.g. Zcomax) don't use the default
2160 * curves. If we don't honor their settings we 'll get a
2161 * 5dB (1 * gain overlap ?) drop.
1502 */ 2162 */
1503 if ((ah->ah_radio == AR5K_RF2413) || (ah->ah_radio == AR5K_RF2425)) 2163 reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
1504 return 0;
1505 2164
1506 /* Reset TX power values */ 2165 switch (pdcurves) {
1507 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower)); 2166 case 3:
1508 ah->ah_txpower.txp_tpc = tpc; 2167 reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
1509 2168 /* Fall through */
1510 /* Initialize TX power table */ 2169 case 2:
1511 ath5k_txpower_table(ah, channel, txpower); 2170 reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2171 /* Fall through */
2172 case 1:
2173 reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2174 break;
2175 }
2176 ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
1512 2177
1513 /* 2178 /*
1514 * Write TX power values 2179 * Write TX power values
1515 */ 2180 */
1516 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) { 2181 for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
1517 ath5k_hw_reg_write(ah, 2182 ath5k_hw_reg_write(ah,
1518 ((((ah->ah_txpower.txp_pcdac[(i << 1) + 1] << 8) | 0xff) & 0xffff) << 16) | 2183 ((pdadc_out[4*i + 0] & 0xff) << 0) |
1519 (((ah->ah_txpower.txp_pcdac[(i << 1) ] << 8) | 0xff) & 0xffff), 2184 ((pdadc_out[4*i + 1] & 0xff) << 8) |
1520 AR5K_PHY_PCDAC_TXPOWER(i)); 2185 ((pdadc_out[4*i + 2] & 0xff) << 16) |
2186 ((pdadc_out[4*i + 3] & 0xff) << 24),
2187 AR5K_PHY_PDADC_TXPOWER(i));
2188 }
2189}
2190
2191
2192/*
2193 * Common code for PCDAC/PDADC tables
2194 */
2195
2196/*
2197 * This is the main function that uses all of the above
2198 * to set PCDAC/PDADC table on hw for the current channel.
2199 * This table is used for tx power calibration on the basband,
2200 * without it we get weird tx power levels and in some cases
2201 * distorted spectral mask
2202 */
2203static int
2204ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2205 struct ieee80211_channel *channel,
2206 u8 ee_mode, u8 type)
2207{
2208 struct ath5k_pdgain_info *pdg_L, *pdg_R;
2209 struct ath5k_chan_pcal_info *pcinfo_L;
2210 struct ath5k_chan_pcal_info *pcinfo_R;
2211 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2212 u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2213 s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2214 s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2215 u8 *tmpL;
2216 u8 *tmpR;
2217 u32 target = channel->center_freq;
2218 int pdg, i;
2219
2220 /* Get surounding freq piers for this channel */
2221 ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2222 &pcinfo_L,
2223 &pcinfo_R);
2224
2225 /* Loop over pd gain curves on
2226 * surounding freq piers by index */
2227 for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2228
2229 /* Fill curves in reverse order
2230 * from lower power (max gain)
2231 * to higher power. Use curve -> idx
2232 * backmaping we did on eeprom init */
2233 u8 idx = pdg_curve_to_idx[pdg];
2234
2235 /* Grab the needed curves by index */
2236 pdg_L = &pcinfo_L->pd_curves[idx];
2237 pdg_R = &pcinfo_R->pd_curves[idx];
2238
2239 /* Initialize the temp tables */
2240 tmpL = ah->ah_txpower.tmpL[pdg];
2241 tmpR = ah->ah_txpower.tmpR[pdg];
2242
2243 /* Set curve's x boundaries and create
2244 * curves so that they cover the same
2245 * range (if we don't do that one table
2246 * will have values on some range and the
2247 * other one won't have any so interpolation
2248 * will fail) */
2249 table_min[pdg] = min(pdg_L->pd_pwr[0],
2250 pdg_R->pd_pwr[0]) / 2;
2251
2252 table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2253 pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2254
2255 /* Now create the curves on surrounding channels
2256 * and interpolate if needed to get the final
2257 * curve for this gain on this channel */
2258 switch (type) {
2259 case AR5K_PWRTABLE_LINEAR_PCDAC:
2260 /* Override min/max so that we don't loose
2261 * accuracy (don't divide by 2) */
2262 table_min[pdg] = min(pdg_L->pd_pwr[0],
2263 pdg_R->pd_pwr[0]);
2264
2265 table_max[pdg] =
2266 max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2267 pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2268
2269 /* Override minimum so that we don't get
2270 * out of bounds while extrapolating
2271 * below. Don't do this when we have 2
2272 * curves and we are on the high power curve
2273 * because table_min is ok in this case */
2274 if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2275
2276 table_min[pdg] =
2277 ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2278 pdg_R->pd_step,
2279 pdg_L->pd_pwr,
2280 pdg_R->pd_pwr);
2281
2282 /* Don't go too low because we will
2283 * miss the upper part of the curve.
2284 * Note: 126 = 31.5dB (max power supported)
2285 * in 0.25dB units */
2286 if (table_max[pdg] - table_min[pdg] > 126)
2287 table_min[pdg] = table_max[pdg] - 126;
2288 }
2289
2290 /* Fall through */
2291 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2292 case AR5K_PWRTABLE_PWR_TO_PDADC:
2293
2294 ath5k_create_power_curve(table_min[pdg],
2295 table_max[pdg],
2296 pdg_L->pd_pwr,
2297 pdg_L->pd_step,
2298 pdg_L->pd_points, tmpL, type);
2299
2300 /* We are in a calibration
2301 * pier, no need to interpolate
2302 * between freq piers */
2303 if (pcinfo_L == pcinfo_R)
2304 continue;
2305
2306 ath5k_create_power_curve(table_min[pdg],
2307 table_max[pdg],
2308 pdg_R->pd_pwr,
2309 pdg_R->pd_step,
2310 pdg_R->pd_points, tmpR, type);
2311 break;
2312 default:
2313 return -EINVAL;
2314 }
2315
2316 /* Interpolate between curves
2317 * of surounding freq piers to
2318 * get the final curve for this
2319 * pd gain. Re-use tmpL for interpolation
2320 * output */
2321 for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2322 (i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2323 tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2324 (s16) pcinfo_L->freq,
2325 (s16) pcinfo_R->freq,
2326 (s16) tmpL[i],
2327 (s16) tmpR[i]);
2328 }
1521 } 2329 }
1522 2330
2331 /* Now we have a set of curves for this
2332 * channel on tmpL (x range is table_max - table_min
2333 * and y values are tmpL[pdg][]) sorted in the same
2334 * order as EEPROM (because we've used the backmaping).
2335 * So for RF5112 it's from higher power to lower power
2336 * and for RF2413 it's from lower power to higher power.
2337 * For RF5111 we only have one curve. */
2338
2339 /* Fill min and max power levels for this
2340 * channel by interpolating the values on
2341 * surounding channels to complete the dataset */
2342 ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2343 (s16) pcinfo_L->freq,
2344 (s16) pcinfo_R->freq,
2345 pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2346
2347 ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2348 (s16) pcinfo_L->freq,
2349 (s16) pcinfo_R->freq,
2350 pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2351
2352 /* We are ready to go, fill PCDAC/PDADC
2353 * table and write settings on hardware */
2354 switch (type) {
2355 case AR5K_PWRTABLE_LINEAR_PCDAC:
2356 /* For RF5112 we can have one or two curves
2357 * and each curve covers a certain power lvl
2358 * range so we need to do some more processing */
2359 ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2360 ee->ee_pd_gains[ee_mode]);
2361
2362 /* Set txp.offset so that we can
2363 * match max power value with max
2364 * table index */
2365 ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2366
2367 /* Write settings on hw */
2368 ath5k_setup_pcdac_table(ah);
2369 break;
2370 case AR5K_PWRTABLE_PWR_TO_PCDAC:
2371 /* We are done for RF5111 since it has only
2372 * one curve, just fit the curve on the table */
2373 ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2374
2375 /* No rate powertable adjustment for RF5111 */
2376 ah->ah_txpower.txp_min_idx = 0;
2377 ah->ah_txpower.txp_offset = 0;
2378
2379 /* Write settings on hw */
2380 ath5k_setup_pcdac_table(ah);
2381 break;
2382 case AR5K_PWRTABLE_PWR_TO_PDADC:
2383 /* Set PDADC boundaries and fill
2384 * final PDADC table */
2385 ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2386 ee->ee_pd_gains[ee_mode]);
2387
2388 /* Write settings on hw */
2389 ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2390
2391 /* Set txp.offset, note that table_min
2392 * can be negative */
2393 ah->ah_txpower.txp_offset = table_min[0];
2394 break;
2395 default:
2396 return -EINVAL;
2397 }
2398
2399 return 0;
2400}
2401
2402
2403/*
2404 * Per-rate tx power setting
2405 *
2406 * This is the code that sets the desired tx power (below
2407 * maximum) on hw for each rate (we also have TPC that sets
2408 * power per packet). We do that by providing an index on the
2409 * PCDAC/PDADC table we set up.
2410 */
2411
2412/*
2413 * Set rate power table
2414 *
2415 * For now we only limit txpower based on maximum tx power
2416 * supported by hw (what's inside rate_info). We need to limit
2417 * this even more, based on regulatory domain etc.
2418 *
2419 * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2420 * and is indexed as follows:
2421 * rates[0] - rates[7] -> OFDM rates
2422 * rates[8] - rates[14] -> CCK rates
2423 * rates[15] -> XR rates (they all have the same power)
2424 */
2425static void
2426ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2427 struct ath5k_rate_pcal_info *rate_info,
2428 u8 ee_mode)
2429{
2430 unsigned int i;
2431 u16 *rates;
2432
2433 /* max_pwr is power level we got from driver/user in 0.5dB
2434 * units, switch to 0.25dB units so we can compare */
2435 max_pwr *= 2;
2436 max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2437
2438 /* apply rate limits */
2439 rates = ah->ah_txpower.txp_rates_power_table;
2440
2441 /* OFDM rates 6 to 24Mb/s */
2442 for (i = 0; i < 5; i++)
2443 rates[i] = min(max_pwr, rate_info->target_power_6to24);
2444
2445 /* Rest OFDM rates */
2446 rates[5] = min(rates[0], rate_info->target_power_36);
2447 rates[6] = min(rates[0], rate_info->target_power_48);
2448 rates[7] = min(rates[0], rate_info->target_power_54);
2449
2450 /* CCK rates */
2451 /* 1L */
2452 rates[8] = min(rates[0], rate_info->target_power_6to24);
2453 /* 2L */
2454 rates[9] = min(rates[0], rate_info->target_power_36);
2455 /* 2S */
2456 rates[10] = min(rates[0], rate_info->target_power_36);
2457 /* 5L */
2458 rates[11] = min(rates[0], rate_info->target_power_48);
2459 /* 5S */
2460 rates[12] = min(rates[0], rate_info->target_power_48);
2461 /* 11L */
2462 rates[13] = min(rates[0], rate_info->target_power_54);
2463 /* 11S */
2464 rates[14] = min(rates[0], rate_info->target_power_54);
2465
2466 /* XR rates */
2467 rates[15] = min(rates[0], rate_info->target_power_6to24);
2468
2469 /* CCK rates have different peak to average ratio
2470 * so we have to tweak their power so that gainf
2471 * correction works ok. For this we use OFDM to
2472 * CCK delta from eeprom */
2473 if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2474 (ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2475 for (i = 8; i <= 15; i++)
2476 rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2477
2478 ah->ah_txpower.txp_min_pwr = rates[7];
2479 ah->ah_txpower.txp_max_pwr = rates[0];
2480 ah->ah_txpower.txp_ofdm = rates[7];
2481}
2482
2483
2484/*
2485 * Set transmition power
2486 */
2487int
2488ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2489 u8 ee_mode, u8 txpower)
2490{
2491 struct ath5k_rate_pcal_info rate_info;
2492 u8 type;
2493 int ret;
2494
2495 ATH5K_TRACE(ah->ah_sc);
2496 if (txpower > AR5K_TUNE_MAX_TXPOWER) {
2497 ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
2498 return -EINVAL;
2499 }
2500 if (txpower == 0)
2501 txpower = AR5K_TUNE_DEFAULT_TXPOWER;
2502
2503 /* Reset TX power values */
2504 memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
2505 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
2506 ah->ah_txpower.txp_min_pwr = 0;
2507 ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
2508
2509 /* Initialize TX power table */
2510 switch (ah->ah_radio) {
2511 case AR5K_RF5111:
2512 type = AR5K_PWRTABLE_PWR_TO_PCDAC;
2513 break;
2514 case AR5K_RF5112:
2515 type = AR5K_PWRTABLE_LINEAR_PCDAC;
2516 break;
2517 case AR5K_RF2413:
2518 case AR5K_RF5413:
2519 case AR5K_RF2316:
2520 case AR5K_RF2317:
2521 case AR5K_RF2425:
2522 type = AR5K_PWRTABLE_PWR_TO_PDADC;
2523 break;
2524 default:
2525 return -EINVAL;
2526 }
2527
2528 /* FIXME: Only on channel/mode change */
2529 ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
2530 if (ret)
2531 return ret;
2532
2533 /* Limit max power if we have a CTL available */
2534 ath5k_get_max_ctl_power(ah, channel);
2535
2536 /* FIXME: Tx power limit for this regdomain
2537 * XXX: Mac80211/CRDA will do that anyway ? */
2538
2539 /* FIXME: Antenna reduction stuff */
2540
2541 /* FIXME: Limit power on turbo modes */
2542
2543 /* FIXME: TPC scale reduction */
2544
2545 /* Get surounding channels for per-rate power table
2546 * calibration */
2547 ath5k_get_rate_pcal_data(ah, channel, &rate_info);
2548
2549 /* Setup rate power table */
2550 ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
2551
2552 /* Write rate power table on hw */
1523 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) | 2553 ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
1524 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) | 2554 AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
1525 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1); 2555 AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
@@ -1536,26 +2566,34 @@ ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
1536 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) | 2566 AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
1537 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4); 2567 AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
1538 2568
1539 if (ah->ah_txpower.txp_tpc) 2569 /* FIXME: TPC support */
2570 if (ah->ah_txpower.txp_tpc) {
1540 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE | 2571 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
1541 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 2572 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
1542 else 2573
2574 ath5k_hw_reg_write(ah,
2575 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
2576 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
2577 AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
2578 AR5K_TPC);
2579 } else {
1543 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX | 2580 ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
1544 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX); 2581 AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
2582 }
1545 2583
1546 return 0; 2584 return 0;
1547} 2585}
1548 2586
1549int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, unsigned int power) 2587int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 mode, u8 txpower)
1550{ 2588{
1551 /*Just a try M.F.*/ 2589 /*Just a try M.F.*/
1552 struct ieee80211_channel *channel = &ah->ah_current_channel; 2590 struct ieee80211_channel *channel = &ah->ah_current_channel;
1553 2591
1554 ATH5K_TRACE(ah->ah_sc); 2592 ATH5K_TRACE(ah->ah_sc);
1555 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER, 2593 ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
1556 "changing txpower to %d\n", power); 2594 "changing txpower to %d\n", txpower);
1557 2595
1558 return ath5k_hw_txpower(ah, channel, power); 2596 return ath5k_hw_txpower(ah, channel, mode, txpower);
1559} 2597}
1560 2598
1561#undef _ATH5K_PHY 2599#undef _ATH5K_PHY
diff --git a/drivers/net/wireless/ath5k/reg.h b/drivers/net/wireless/ath5k/reg.h
index 2dc008e10226..7070d1543cdc 100644
--- a/drivers/net/wireless/ath5k/reg.h
+++ b/drivers/net/wireless/ath5k/reg.h
@@ -1554,6 +1554,19 @@
1554/*===5212 Specific PCU registers===*/ 1554/*===5212 Specific PCU registers===*/
1555 1555
1556/* 1556/*
1557 * Transmit power control register
1558 */
1559#define AR5K_TPC 0x80e8
1560#define AR5K_TPC_ACK 0x0000003f /* ack frames */
1561#define AR5K_TPC_ACK_S 0
1562#define AR5K_TPC_CTS 0x00003f00 /* cts frames */
1563#define AR5K_TPC_CTS_S 8
1564#define AR5K_TPC_CHIRP 0x003f0000 /* chirp frames */
1565#define AR5K_TPC_CHIRP_S 16
1566#define AR5K_TPC_DOPPLER 0x0f000000 /* doppler chirp span */
1567#define AR5K_TPC_DOPPLER_S 24
1568
1569/*
1557 * XR (eXtended Range) mode register 1570 * XR (eXtended Range) mode register
1558 */ 1571 */
1559#define AR5K_XRMODE 0x80c0 /* Register Address */ 1572#define AR5K_XRMODE 0x80c0 /* Register Address */
@@ -2550,6 +2563,12 @@
2550#define AR5K_PHY_TPC_RG1 0xa258 2563#define AR5K_PHY_TPC_RG1 0xa258
2551#define AR5K_PHY_TPC_RG1_NUM_PD_GAIN 0x0000c000 2564#define AR5K_PHY_TPC_RG1_NUM_PD_GAIN 0x0000c000
2552#define AR5K_PHY_TPC_RG1_NUM_PD_GAIN_S 14 2565#define AR5K_PHY_TPC_RG1_NUM_PD_GAIN_S 14
2566#define AR5K_PHY_TPC_RG1_PDGAIN_1 0x00030000
2567#define AR5K_PHY_TPC_RG1_PDGAIN_1_S 16
2568#define AR5K_PHY_TPC_RG1_PDGAIN_2 0x000c0000
2569#define AR5K_PHY_TPC_RG1_PDGAIN_2_S 18
2570#define AR5K_PHY_TPC_RG1_PDGAIN_3 0x00300000
2571#define AR5K_PHY_TPC_RG1_PDGAIN_3_S 20
2553 2572
2554#define AR5K_PHY_TPC_RG5 0xa26C 2573#define AR5K_PHY_TPC_RG5 0xa26C
2555#define AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP 0x0000000F 2574#define AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP 0x0000000F
diff --git a/drivers/net/wireless/ath5k/reset.c b/drivers/net/wireless/ath5k/reset.c
index 685dc213edae..7a17d31b2fd9 100644
--- a/drivers/net/wireless/ath5k/reset.c
+++ b/drivers/net/wireless/ath5k/reset.c
@@ -664,29 +664,35 @@ static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
664 struct ieee80211_channel *channel, u8 *ant, u8 ee_mode) 664 struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
665{ 665{
666 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom; 666 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
667 s16 cck_ofdm_pwr_delta;
667 668
668 /* Set CCK to OFDM power delta */ 669 /* Adjust power delta for channel 14 */
669 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) { 670 if (channel->center_freq == 2484)
670 int16_t cck_ofdm_pwr_delta; 671 cck_ofdm_pwr_delta =
671 672 ((ee->ee_cck_ofdm_power_delta -
672 /* Adjust power delta for channel 14 */ 673 ee->ee_scaled_cck_delta) * 2) / 10;
673 if (channel->center_freq == 2484) 674 else
674 cck_ofdm_pwr_delta = 675 cck_ofdm_pwr_delta =
675 ((ee->ee_cck_ofdm_power_delta - 676 (ee->ee_cck_ofdm_power_delta * 2) / 10;
676 ee->ee_scaled_cck_delta) * 2) / 10;
677 else
678 cck_ofdm_pwr_delta =
679 (ee->ee_cck_ofdm_power_delta * 2) / 10;
680 677
678 /* Set CCK to OFDM power delta on tx power
679 * adjustment register */
680 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
681 if (channel->hw_value == CHANNEL_G) 681 if (channel->hw_value == CHANNEL_G)
682 ath5k_hw_reg_write(ah, 682 ath5k_hw_reg_write(ah,
683 AR5K_REG_SM((ee->ee_cck_ofdm_power_delta * -1), 683 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
684 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) | 684 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
685 AR5K_REG_SM((cck_ofdm_pwr_delta * -1), 685 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
686 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX), 686 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
687 AR5K_PHY_TX_PWR_ADJ); 687 AR5K_PHY_TX_PWR_ADJ);
688 else 688 else
689 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ); 689 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
690 } else {
691 /* For older revs we scale power on sw during tx power
692 * setup */
693 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
694 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
695 ee->ee_cck_ofdm_gain_delta;
690 } 696 }
691 697
692 /* Set antenna idle switch table */ 698 /* Set antenna idle switch table */
@@ -994,7 +1000,8 @@ int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
994 /* 1000 /*
995 * Set TX power (FIXME) 1001 * Set TX power (FIXME)
996 */ 1002 */
997 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER); 1003 ret = ath5k_hw_txpower(ah, channel, ee_mode,
1004 AR5K_TUNE_DEFAULT_TXPOWER);
998 if (ret) 1005 if (ret)
999 return ret; 1006 return ret;
1000 1007