aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ath5k/hw.c
diff options
context:
space:
mode:
authorJiri Slaby <jirislaby@gmail.com>2007-08-12 11:33:16 -0400
committerDavid S. Miller <davem@davemloft.net>2008-01-28 18:09:35 -0500
commitfa1c114fdaa605496045e56c42d0c8aa4c139e57 (patch)
treedf8345d8ef17cea23da3c0bbe388729b79920bfe /drivers/net/wireless/ath5k/hw.c
parent3543f8069d3cc932202e64095d1d3986a10d34ed (diff)
[PATCH] Net: add ath5k wireless driver
add ath5k wireless driver Portions of this driver are covered by one or both of the ISC and 3-clause BSD licenses. Specific license information is cited at the top of each file. Acked-by and Signed-off-by information is collected from individual patches as collected in the wireless-2.6 tree prior to upstream submission. Acked-by: Matthew W. S. Bell <mentor@madwifi.org> Acked-by: Michael Taylor <mike.taylor@apprion.com> Acked-by: Pavel Roskin <proski@gnu.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Bradley M. Kuhn <bkuhn@softwarefreedom.org> Signed-off-by: Bruno Randolf <bruno@thinktube.com> Signed-off-by: Dave Young <hidave.darkstar@gmail.com> Signed-off-by: Francesco Gringoli <francesco.gringoli@ing.unibs.it> Signed-off-by: Jiri Slaby <jirislaby@gmail.com> Signed-off-by: Johannes Berg <johannes@sipsolutions.net> Signed-off-by: Karen Sandler <karen@softwarefreedom.org> Signed-off-by: Krzysztof Halasa <khc@pm.waw.pl> Signed-off-by: Luis R. Rodriguez <mcgrof@gmail.com> Signed-off-by: Matt Norwood <norwood@softwarefreedom.org> Signed-off-by: Nick Kossifidis <mickflemm@gmail.com> Signed-off-by: Richard Fontana <fontana@softwarefreedom.org> Signed-off-by: Stephen Hemminger <shemminger@linux-foundation.org> Signed-off-by: Ulrich Meis <meis@nets.rwth-aachen.de> Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net/wireless/ath5k/hw.c')
-rw-r--r--drivers/net/wireless/ath5k/hw.c4349
1 files changed, 4349 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath5k/hw.c b/drivers/net/wireless/ath5k/hw.c
new file mode 100644
index 000000000000..5623d7dc738e
--- /dev/null
+++ b/drivers/net/wireless/ath5k/hw.c
@@ -0,0 +1,4349 @@
1 /*
2 * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2007 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007 Matthew W. S. Bell <mentor@madwifi.org>
5 * Copyright (c) 2007 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
6 * Copyright (c) 2007 Pavel Roskin <proski@gnu.org>
7 * Copyright (c) 2007 Jiri Slaby <jirislaby@gmail.com>
8 *
9 * Permission to use, copy, modify, and distribute this software for any
10 * purpose with or without fee is hereby granted, provided that the above
11 * copyright notice and this permission notice appear in all copies.
12 *
13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 *
21 */
22
23/*
24 * HW related functions for Atheros Wireless LAN devices.
25 */
26
27#include <linux/pci.h>
28#include <linux/delay.h>
29
30#include "reg.h"
31#include "base.h"
32#include "debug.h"
33
34/*Rate tables*/
35static const struct ath5k_rate_table ath5k_rt_11a = AR5K_RATES_11A;
36static const struct ath5k_rate_table ath5k_rt_11b = AR5K_RATES_11B;
37static const struct ath5k_rate_table ath5k_rt_11g = AR5K_RATES_11G;
38static const struct ath5k_rate_table ath5k_rt_turbo = AR5K_RATES_TURBO;
39static const struct ath5k_rate_table ath5k_rt_xr = AR5K_RATES_XR;
40
41/*Prototypes*/
42static int ath5k_hw_nic_reset(struct ath5k_hw *, u32);
43static int ath5k_hw_nic_wakeup(struct ath5k_hw *, int, bool);
44static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
45 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
46 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
47 unsigned int, unsigned int);
48static bool ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
49 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
50 unsigned int);
51static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
52static int ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *, struct ath5k_desc *,
53 unsigned int, unsigned int, enum ath5k_pkt_type, unsigned int,
54 unsigned int, unsigned int, unsigned int, unsigned int, unsigned int,
55 unsigned int, unsigned int);
56static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *, struct ath5k_desc *);
57static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *, struct ath5k_desc *);
58static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *, struct ath5k_desc *);
59static int ath5k_hw_get_capabilities(struct ath5k_hw *);
60
61static int ath5k_eeprom_init(struct ath5k_hw *);
62static int ath5k_eeprom_read_mac(struct ath5k_hw *, u8 *);
63
64static int ath5k_hw_enable_pspoll(struct ath5k_hw *, u8 *, u16);
65static int ath5k_hw_disable_pspoll(struct ath5k_hw *);
66
67/*
68 * Enable to overwrite the country code (use "00" for debug)
69 */
70#if 0
71#define COUNTRYCODE "00"
72#endif
73
74/*******************\
75 General Functions
76\*******************/
77
78/*
79 * Functions used internaly
80 */
81
82static inline unsigned int ath5k_hw_htoclock(unsigned int usec, bool turbo)
83{
84 return turbo == true ? (usec * 80) : (usec * 40);
85}
86
87static inline unsigned int ath5k_hw_clocktoh(unsigned int clock, bool turbo)
88{
89 return turbo == true ? (clock / 80) : (clock / 40);
90}
91
92/*
93 * Check if a register write has been completed
94 */
95int ath5k_hw_register_timeout(struct ath5k_hw *ah, u32 reg, u32 flag, u32 val,
96 bool is_set)
97{
98 int i;
99 u32 data;
100
101 for (i = AR5K_TUNE_REGISTER_TIMEOUT; i > 0; i--) {
102 data = ath5k_hw_reg_read(ah, reg);
103 if ((is_set == true) && (data & flag))
104 break;
105 else if ((data & flag) == val)
106 break;
107 udelay(15);
108 }
109
110 return (i <= 0) ? -EAGAIN : 0;
111}
112
113
114/***************************************\
115 Attach/Detach Functions
116\***************************************/
117
118/*
119 * Check if the device is supported and initialize the needed structs
120 */
121struct ath5k_hw *ath5k_hw_attach(struct ath5k_softc *sc, u8 mac_version)
122{
123 struct ath5k_hw *ah;
124 u8 mac[ETH_ALEN];
125 int ret;
126 u32 srev;
127
128 /*If we passed the test malloc a ath5k_hw struct*/
129 ah = kzalloc(sizeof(struct ath5k_hw), GFP_KERNEL);
130 if (ah == NULL) {
131 ret = -ENOMEM;
132 ATH5K_ERR(sc, "out of memory\n");
133 goto err;
134 }
135
136 ah->ah_sc = sc;
137 ah->ah_iobase = sc->iobase;
138
139 /*
140 * HW information
141 */
142
143 /* Get reg domain from eeprom */
144 ath5k_get_regdomain(ah);
145
146 ah->ah_op_mode = IEEE80211_IF_TYPE_STA;
147 ah->ah_radar.r_enabled = AR5K_TUNE_RADAR_ALERT;
148 ah->ah_turbo = false;
149 ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
150 ah->ah_imr = 0;
151 ah->ah_atim_window = 0;
152 ah->ah_aifs = AR5K_TUNE_AIFS;
153 ah->ah_cw_min = AR5K_TUNE_CWMIN;
154 ah->ah_limit_tx_retries = AR5K_INIT_TX_RETRY;
155 ah->ah_software_retry = false;
156 ah->ah_ant_diversity = AR5K_TUNE_ANT_DIVERSITY;
157
158 /*
159 * Set the mac revision based on the pci id
160 */
161 ah->ah_version = mac_version;
162
163 /*Fill the ath5k_hw struct with the needed functions*/
164 if (ah->ah_version == AR5K_AR5212)
165 ah->ah_magic = AR5K_EEPROM_MAGIC_5212;
166 else if (ah->ah_version == AR5K_AR5211)
167 ah->ah_magic = AR5K_EEPROM_MAGIC_5211;
168
169 if (ah->ah_version == AR5K_AR5212) {
170 ah->ah_setup_tx_desc = ath5k_hw_setup_4word_tx_desc;
171 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
172 ah->ah_proc_tx_desc = ath5k_hw_proc_4word_tx_status;
173 } else {
174 ah->ah_setup_tx_desc = ath5k_hw_setup_2word_tx_desc;
175 ah->ah_setup_xtx_desc = ath5k_hw_setup_xr_tx_desc;
176 ah->ah_proc_tx_desc = ath5k_hw_proc_2word_tx_status;
177 }
178
179 if (ah->ah_version == AR5K_AR5212)
180 ah->ah_proc_rx_desc = ath5k_hw_proc_new_rx_status;
181 else if (ah->ah_version <= AR5K_AR5211)
182 ah->ah_proc_rx_desc = ath5k_hw_proc_old_rx_status;
183
184 /* Bring device out of sleep and reset it's units */
185 ret = ath5k_hw_nic_wakeup(ah, AR5K_INIT_MODE, true);
186 if (ret)
187 goto err_free;
188
189 /* Get MAC, PHY and RADIO revisions */
190 srev = ath5k_hw_reg_read(ah, AR5K_SREV);
191 ah->ah_mac_srev = srev;
192 ah->ah_mac_version = AR5K_REG_MS(srev, AR5K_SREV_VER);
193 ah->ah_mac_revision = AR5K_REG_MS(srev, AR5K_SREV_REV);
194 ah->ah_phy_revision = ath5k_hw_reg_read(ah, AR5K_PHY_CHIP_ID) &
195 0xffffffff;
196 ah->ah_radio_5ghz_revision = ath5k_hw_radio_revision(ah,
197 CHANNEL_5GHZ);
198
199 if (ah->ah_version == AR5K_AR5210)
200 ah->ah_radio_2ghz_revision = 0;
201 else
202 ah->ah_radio_2ghz_revision = ath5k_hw_radio_revision(ah,
203 CHANNEL_2GHZ);
204
205 /* Return on unsuported chips (unsupported eeprom etc) */
206 if(srev >= AR5K_SREV_VER_AR5416){
207 ATH5K_ERR(sc, "Device not yet supported.\n");
208 ret = -ENODEV;
209 goto err_free;
210 }
211
212 /* Identify single chip solutions */
213 if((srev <= AR5K_SREV_VER_AR5414) &&
214 (srev >= AR5K_SREV_VER_AR2424)) {
215 ah->ah_single_chip = true;
216 } else {
217 ah->ah_single_chip = false;
218 }
219
220 /* Single chip radio */
221 if (ah->ah_radio_2ghz_revision == ah->ah_radio_5ghz_revision)
222 ah->ah_radio_2ghz_revision = 0;
223
224 /* Identify the radio chip*/
225 if (ah->ah_version == AR5K_AR5210) {
226 ah->ah_radio = AR5K_RF5110;
227 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112) {
228 ah->ah_radio = AR5K_RF5111;
229 } else if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_SC1) {
230 ah->ah_radio = AR5K_RF5112;
231 } else {
232 ah->ah_radio = AR5K_RF5413;
233 }
234
235 ah->ah_phy = AR5K_PHY(0);
236
237 /*
238 * Get card capabilities, values, ...
239 */
240
241 ret = ath5k_eeprom_init(ah);
242 if (ret) {
243 ATH5K_ERR(sc, "unable to init EEPROM\n");
244 goto err_free;
245 }
246
247 /* Get misc capabilities */
248 ret = ath5k_hw_get_capabilities(ah);
249 if (ret) {
250 ATH5K_ERR(sc, "unable to get device capabilities: 0x%04x\n",
251 sc->pdev->device);
252 goto err_free;
253 }
254
255 /* Get MAC address */
256 ret = ath5k_eeprom_read_mac(ah, mac);
257 if (ret) {
258 ATH5K_ERR(sc, "unable to read address from EEPROM: 0x%04x\n",
259 sc->pdev->device);
260 goto err_free;
261 }
262
263 ath5k_hw_set_lladdr(ah, mac);
264 /* Set BSSID to bcast address: ff:ff:ff:ff:ff:ff for now */
265 memset(ah->ah_bssid, 0xff, ETH_ALEN);
266 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
267 ath5k_hw_set_opmode(ah);
268
269 ath5k_hw_set_rfgain_opt(ah);
270
271 return ah;
272err_free:
273 kfree(ah);
274err:
275 return ERR_PTR(ret);
276}
277
278/*
279 * Bring up MAC + PHY Chips
280 */
281static int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
282{
283 u32 turbo, mode, clock;
284 int ret;
285
286 turbo = 0;
287 mode = 0;
288 clock = 0;
289
290 ATH5K_TRACE(ah->ah_sc);
291
292 /* Wakeup the device */
293 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
294 if (ret) {
295 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
296 return ret;
297 }
298
299 if (ah->ah_version != AR5K_AR5210) {
300 /*
301 * Get channel mode flags
302 */
303
304 if (ah->ah_radio >= AR5K_RF5112) {
305 mode = AR5K_PHY_MODE_RAD_RF5112;
306 clock = AR5K_PHY_PLL_RF5112;
307 } else {
308 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
309 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
310 }
311
312 if (flags & CHANNEL_2GHZ) {
313 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
314 clock |= AR5K_PHY_PLL_44MHZ;
315
316 if (flags & CHANNEL_CCK) {
317 mode |= AR5K_PHY_MODE_MOD_CCK;
318 } else if (flags & CHANNEL_OFDM) {
319 /* XXX Dynamic OFDM/CCK is not supported by the
320 * AR5211 so we set MOD_OFDM for plain g (no
321 * CCK headers) operation. We need to test
322 * this, 5211 might support ofdm-only g after
323 * all, there are also initial register values
324 * in the code for g mode (see initvals.c). */
325 if (ah->ah_version == AR5K_AR5211)
326 mode |= AR5K_PHY_MODE_MOD_OFDM;
327 else
328 mode |= AR5K_PHY_MODE_MOD_DYN;
329 } else {
330 ATH5K_ERR(ah->ah_sc,
331 "invalid radio modulation mode\n");
332 return -EINVAL;
333 }
334 } else if (flags & CHANNEL_5GHZ) {
335 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
336 clock |= AR5K_PHY_PLL_40MHZ;
337
338 if (flags & CHANNEL_OFDM)
339 mode |= AR5K_PHY_MODE_MOD_OFDM;
340 else {
341 ATH5K_ERR(ah->ah_sc,
342 "invalid radio modulation mode\n");
343 return -EINVAL;
344 }
345 } else {
346 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
347 return -EINVAL;
348 }
349
350 if (flags & CHANNEL_TURBO)
351 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
352 } else { /* Reset the device */
353
354 /* ...enable Atheros turbo mode if requested */
355 if (flags & CHANNEL_TURBO)
356 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
357 AR5K_PHY_TURBO);
358 }
359
360 /* ...reset chipset and PCI device */
361 if (ah->ah_single_chip == false && ath5k_hw_nic_reset(ah,
362 AR5K_RESET_CTL_CHIP | AR5K_RESET_CTL_PCI)) {
363 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip + PCI\n");
364 return -EIO;
365 }
366
367 if (ah->ah_version == AR5K_AR5210)
368 udelay(2300);
369
370 /* ...wakeup again!*/
371 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
372 if (ret) {
373 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
374 return ret;
375 }
376
377 /* ...final warm reset */
378 if (ath5k_hw_nic_reset(ah, 0)) {
379 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
380 return -EIO;
381 }
382
383 if (ah->ah_version != AR5K_AR5210) {
384 /* ...set the PHY operating mode */
385 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
386 udelay(300);
387
388 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
389 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
390 }
391
392 return 0;
393}
394
395/*
396 * Get the rate table for a specific operation mode
397 */
398const struct ath5k_rate_table *ath5k_hw_get_rate_table(struct ath5k_hw *ah,
399 unsigned int mode)
400{
401 ATH5K_TRACE(ah->ah_sc);
402
403 if (!test_bit(mode, ah->ah_capabilities.cap_mode))
404 return NULL;
405
406 /* Get rate tables */
407 switch (mode) {
408 case MODE_IEEE80211A:
409 return &ath5k_rt_11a;
410 case MODE_ATHEROS_TURBO:
411 return &ath5k_rt_turbo;
412 case MODE_IEEE80211B:
413 return &ath5k_rt_11b;
414 case MODE_IEEE80211G:
415 return &ath5k_rt_11g;
416 case MODE_ATHEROS_TURBOG:
417 return &ath5k_rt_xr;
418 }
419
420 return NULL;
421}
422
423/*
424 * Free the ath5k_hw struct
425 */
426void ath5k_hw_detach(struct ath5k_hw *ah)
427{
428 ATH5K_TRACE(ah->ah_sc);
429
430 if (ah->ah_rf_banks != NULL)
431 kfree(ah->ah_rf_banks);
432
433 /* assume interrupts are down */
434 kfree(ah);
435}
436
437/****************************\
438 Reset function and helpers
439\****************************/
440
441/**
442 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
443 *
444 * @ah: the &struct ath5k_hw
445 * @channel: the currently set channel upon reset
446 *
447 * Write the OFDM timings for the AR5212 upon reset. This is a helper for
448 * ath5k_hw_reset(). This seems to tune the PLL a specified frequency
449 * depending on the bandwidth of the channel.
450 *
451 */
452static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
453 struct ieee80211_channel *channel)
454{
455 /* Get exponent and mantissa and set it */
456 u32 coef_scaled, coef_exp, coef_man,
457 ds_coef_exp, ds_coef_man, clock;
458
459 if (!(ah->ah_version == AR5K_AR5212) ||
460 !(channel->val & CHANNEL_OFDM))
461 BUG();
462
463 /* Seems there are two PLLs, one for baseband sampling and one
464 * for tuning. Tuning basebands are 40 MHz or 80MHz when in
465 * turbo. */
466 clock = channel->val & CHANNEL_TURBO ? 80 : 40;
467 coef_scaled = ((5 * (clock << 24)) / 2) /
468 channel->freq;
469
470 for (coef_exp = 31; coef_exp > 0; coef_exp--)
471 if ((coef_scaled >> coef_exp) & 0x1)
472 break;
473
474 if (!coef_exp)
475 return -EINVAL;
476
477 coef_exp = 14 - (coef_exp - 24);
478 coef_man = coef_scaled +
479 (1 << (24 - coef_exp - 1));
480 ds_coef_man = coef_man >> (24 - coef_exp);
481 ds_coef_exp = coef_exp - 16;
482
483 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
484 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
485 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
486 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
487
488 return 0;
489}
490
491/**
492 * ath5k_hw_write_rate_duration - set rate duration during hw resets
493 *
494 * @ah: the &struct ath5k_hw
495 * @driver_mode: one of enum ieee80211_phymode or our one of our own
496 * vendor modes
497 *
498 * Write the rate duration table for the current mode upon hw reset. This
499 * is a helper for ath5k_hw_reset(). It seems all this is doing is setting
500 * an ACK timeout for the hardware for the current mode for each rate. The
501 * rates which are capable of short preamble (802.11b rates 2Mbps, 5.5Mbps,
502 * and 11Mbps) have another register for the short preamble ACK timeout
503 * calculation.
504 *
505 */
506static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
507 unsigned int driver_mode)
508{
509 struct ath5k_softc *sc = ah->ah_sc;
510 const struct ath5k_rate_table *rt;
511 unsigned int i;
512
513 /* Get rate table for the current operating mode */
514 rt = ath5k_hw_get_rate_table(ah,
515 driver_mode);
516
517 /* Write rate duration table */
518 for (i = 0; i < rt->rate_count; i++) {
519 const struct ath5k_rate *rate, *control_rate;
520 u32 reg;
521 u16 tx_time;
522
523 rate = &rt->rates[i];
524 control_rate = &rt->rates[rate->control_rate];
525
526 /* Set ACK timeout */
527 reg = AR5K_RATE_DUR(rate->rate_code);
528
529 /* An ACK frame consists of 10 bytes. If you add the FCS,
530 * which ieee80211_generic_frame_duration() adds,
531 * its 14 bytes. Note we use the control rate and not the
532 * actual rate for this rate. See mac80211 tx.c
533 * ieee80211_duration() for a brief description of
534 * what rate we should choose to TX ACKs. */
535 tx_time = ieee80211_generic_frame_duration(sc->hw,
536 sc->iface_id, 10, control_rate->rate_kbps/100);
537
538 ath5k_hw_reg_write(ah, tx_time, reg);
539
540 if (!HAS_SHPREAMBLE(i))
541 continue;
542
543 /*
544 * We're not distinguishing short preamble here,
545 * This is true, all we'll get is a longer value here
546 * which is not necessarilly bad. We could use
547 * export ieee80211_frame_duration() but that needs to be
548 * fixed first to be properly used by mac802111 drivers:
549 *
550 * - remove erp stuff and let the routine figure ofdm
551 * erp rates
552 * - remove passing argument ieee80211_local as
553 * drivers don't have access to it
554 * - move drivers using ieee80211_generic_frame_duration()
555 * to this
556 */
557 ath5k_hw_reg_write(ah, tx_time,
558 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
559 }
560}
561
562/*
563 * Main reset function
564 */
565int ath5k_hw_reset(struct ath5k_hw *ah, enum ieee80211_if_types op_mode,
566 struct ieee80211_channel *channel, bool change_channel)
567{
568 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
569 u32 data, s_seq, s_ant, s_led[3];
570 unsigned int i, mode, freq, ee_mode, ant[2], driver_mode = -1;
571 int ret;
572
573 ATH5K_TRACE(ah->ah_sc);
574
575 s_seq = 0;
576 s_ant = 0;
577 ee_mode = 0;
578 freq = 0;
579 mode = 0;
580
581 /*
582 * Save some registers before a reset
583 */
584 /*DCU/Antenna selection not available on 5210*/
585 if (ah->ah_version != AR5K_AR5210) {
586 if (change_channel == true) {
587 /* Seq number for queue 0 -do this for all queues ? */
588 s_seq = ath5k_hw_reg_read(ah,
589 AR5K_QUEUE_DFS_SEQNUM(0));
590 /*Default antenna*/
591 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
592 }
593 }
594
595 /*GPIOs*/
596 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) & AR5K_PCICFG_LEDSTATE;
597 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
598 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
599
600 if (change_channel == true && ah->ah_rf_banks != NULL)
601 ath5k_hw_get_rf_gain(ah);
602
603
604 /*Wakeup the device*/
605 ret = ath5k_hw_nic_wakeup(ah, channel->val, false);
606 if (ret)
607 return ret;
608
609 /*
610 * Initialize operating mode
611 */
612 ah->ah_op_mode = op_mode;
613
614 /*
615 * 5111/5112 Settings
616 * 5210 only comes with RF5110
617 */
618 if (ah->ah_version != AR5K_AR5210) {
619 if (ah->ah_radio != AR5K_RF5111 &&
620 ah->ah_radio != AR5K_RF5112 &&
621 ah->ah_radio != AR5K_RF5413) {
622 ATH5K_ERR(ah->ah_sc,
623 "invalid phy radio: %u\n", ah->ah_radio);
624 return -EINVAL;
625 }
626
627 switch (channel->val & CHANNEL_MODES) {
628 case CHANNEL_A:
629 mode = AR5K_INI_VAL_11A;
630 freq = AR5K_INI_RFGAIN_5GHZ;
631 ee_mode = AR5K_EEPROM_MODE_11A;
632 driver_mode = MODE_IEEE80211A;
633 break;
634 case CHANNEL_G:
635 mode = AR5K_INI_VAL_11G;
636 freq = AR5K_INI_RFGAIN_2GHZ;
637 ee_mode = AR5K_EEPROM_MODE_11G;
638 driver_mode = MODE_IEEE80211G;
639 break;
640 case CHANNEL_B:
641 mode = AR5K_INI_VAL_11B;
642 freq = AR5K_INI_RFGAIN_2GHZ;
643 ee_mode = AR5K_EEPROM_MODE_11B;
644 driver_mode = MODE_IEEE80211B;
645 break;
646 case CHANNEL_T:
647 mode = AR5K_INI_VAL_11A_TURBO;
648 freq = AR5K_INI_RFGAIN_5GHZ;
649 ee_mode = AR5K_EEPROM_MODE_11A;
650 driver_mode = MODE_ATHEROS_TURBO;
651 break;
652 /*Is this ok on 5211 too ?*/
653 case CHANNEL_TG:
654 mode = AR5K_INI_VAL_11G_TURBO;
655 freq = AR5K_INI_RFGAIN_2GHZ;
656 ee_mode = AR5K_EEPROM_MODE_11G;
657 driver_mode = MODE_ATHEROS_TURBOG;
658 break;
659 case CHANNEL_XR:
660 if (ah->ah_version == AR5K_AR5211) {
661 ATH5K_ERR(ah->ah_sc,
662 "XR mode not available on 5211");
663 return -EINVAL;
664 }
665 mode = AR5K_INI_VAL_XR;
666 freq = AR5K_INI_RFGAIN_5GHZ;
667 ee_mode = AR5K_EEPROM_MODE_11A;
668 driver_mode = MODE_IEEE80211A;
669 break;
670 default:
671 ATH5K_ERR(ah->ah_sc,
672 "invalid channel: %d\n", channel->freq);
673 return -EINVAL;
674 }
675
676 /* PHY access enable */
677 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
678
679 }
680
681 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
682 if (ret)
683 return ret;
684
685 /*
686 * 5211/5212 Specific
687 */
688 if (ah->ah_version != AR5K_AR5210) {
689 /*
690 * Write initial RF gain settings
691 * This should work for both 5111/5112
692 */
693 ret = ath5k_hw_rfgain(ah, freq);
694 if (ret)
695 return ret;
696
697 mdelay(1);
698
699 /*
700 * Write some more initial register settings
701 */
702 if (ah->ah_version > AR5K_AR5211){ /* found on 5213+ */
703 ath5k_hw_reg_write(ah, 0x0002a002, AR5K_PHY(11));
704
705 if (channel->val == CHANNEL_G)
706 ath5k_hw_reg_write(ah, 0x00f80d80, AR5K_PHY(83)); /* 0x00fc0ec0 */
707 else
708 ath5k_hw_reg_write(ah, 0x00000000, AR5K_PHY(83));
709
710 ath5k_hw_reg_write(ah, 0x000001b5, 0xa228); /* 0x000009b5 */
711 ath5k_hw_reg_write(ah, 0x000009b5, 0xa228);
712 ath5k_hw_reg_write(ah, 0x0000000f, 0x8060);
713 ath5k_hw_reg_write(ah, 0x00000000, 0xa254);
714 ath5k_hw_reg_write(ah, 0x0000000e, AR5K_PHY_SCAL);
715 }
716
717 /* Fix for first revision of the RF5112 RF chipset */
718 if (ah->ah_radio >= AR5K_RF5112 &&
719 ah->ah_radio_5ghz_revision <
720 AR5K_SREV_RAD_5112A) {
721 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
722 AR5K_PHY_CCKTXCTL);
723 if (channel->val & CHANNEL_5GHZ)
724 data = 0xffb81020;
725 else
726 data = 0xffb80d20;
727 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
728 }
729
730 /*
731 * Set TX power (FIXME)
732 */
733 ret = ath5k_hw_txpower(ah, channel, AR5K_TUNE_DEFAULT_TXPOWER);
734 if (ret)
735 return ret;
736
737 /* Write rate duration table */
738 if (ah->ah_version == AR5K_AR5212)
739 ath5k_hw_write_rate_duration(ah, driver_mode);
740
741 /*
742 * Write RF registers
743 * TODO:Does this work on 5211 (5111) ?
744 */
745 ret = ath5k_hw_rfregs(ah, channel, mode);
746 if (ret)
747 return ret;
748
749 /*
750 * Configure additional registers
751 */
752
753 /* Write OFDM timings on 5212*/
754 if (ah->ah_version == AR5K_AR5212 &&
755 channel->val & CHANNEL_OFDM) {
756 ret = ath5k_hw_write_ofdm_timings(ah, channel);
757 if (ret)
758 return ret;
759 }
760
761 /*Enable/disable 802.11b mode on 5111
762 (enable 2111 frequency converter + CCK)*/
763 if (ah->ah_radio == AR5K_RF5111) {
764 if (driver_mode == MODE_IEEE80211B)
765 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
766 AR5K_TXCFG_B_MODE);
767 else
768 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
769 AR5K_TXCFG_B_MODE);
770 }
771
772 /*
773 * Set channel and calibrate the PHY
774 */
775 ret = ath5k_hw_channel(ah, channel);
776 if (ret)
777 return ret;
778
779 /* Set antenna mode */
780 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x44),
781 ah->ah_antenna[ee_mode][0], 0xfffffc06);
782
783 /*
784 * In case a fixed antenna was set as default
785 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
786 * registers.
787 */
788 if (s_ant != 0){
789 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
790 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
791 else /* 2 - Aux */
792 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
793 } else {
794 ant[0] = AR5K_ANT_FIXED_A;
795 ant[1] = AR5K_ANT_FIXED_B;
796 }
797
798 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
799 AR5K_PHY_ANT_SWITCH_TABLE_0);
800 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
801 AR5K_PHY_ANT_SWITCH_TABLE_1);
802
803 /* Commit values from EEPROM */
804 if (ah->ah_radio == AR5K_RF5111)
805 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
806 AR5K_PHY_FRAME_CTL_TX_CLIP, ee->ee_tx_clip);
807
808 ath5k_hw_reg_write(ah,
809 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
810 AR5K_PHY(0x5a));
811
812 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x11),
813 (ee->ee_switch_settling[ee_mode] << 7) & 0x3f80,
814 0xffffc07f);
815 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x12),
816 (ee->ee_ant_tx_rx[ee_mode] << 12) & 0x3f000,
817 0xfffc0fff);
818 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x14),
819 (ee->ee_adc_desired_size[ee_mode] & 0x00ff) |
820 ((ee->ee_pga_desired_size[ee_mode] << 8) & 0xff00),
821 0xffff0000);
822
823 ath5k_hw_reg_write(ah,
824 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
825 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
826 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
827 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY(0x0d));
828
829 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x0a),
830 ee->ee_tx_end2xlna_enable[ee_mode] << 8, 0xffff00ff);
831 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x19),
832 (ee->ee_thr_62[ee_mode] << 12) & 0x7f000, 0xfff80fff);
833 AR5K_REG_MASKED_BITS(ah, AR5K_PHY(0x49), 4, 0xffffff01);
834
835 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
836 AR5K_PHY_IQ_CORR_ENABLE |
837 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
838 ee->ee_q_cal[ee_mode]);
839
840 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
841 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
842 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
843 ee->ee_margin_tx_rx[ee_mode]);
844
845 } else {
846 mdelay(1);
847 /* Disable phy and wait */
848 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
849 mdelay(1);
850 }
851
852 /*
853 * Restore saved values
854 */
855 /*DCU/Antenna selection not available on 5210*/
856 if (ah->ah_version != AR5K_AR5210) {
857 ath5k_hw_reg_write(ah, s_seq, AR5K_QUEUE_DFS_SEQNUM(0));
858 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
859 }
860 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
861 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
862 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
863
864 /*
865 * Misc
866 */
867 /* XXX: add ah->aid once mac80211 gives this to us */
868 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
869
870 ath5k_hw_set_opmode(ah);
871 /*PISR/SISR Not available on 5210*/
872 if (ah->ah_version != AR5K_AR5210) {
873 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
874 /* If we later allow tuning for this, store into sc structure */
875 data = AR5K_TUNE_RSSI_THRES |
876 AR5K_TUNE_BMISS_THRES << AR5K_RSSI_THR_BMISS_S;
877 ath5k_hw_reg_write(ah, data, AR5K_RSSI_THR);
878 }
879
880 /*
881 * Set Rx/Tx DMA Configuration
882 *(passing dma size not available on 5210)
883 */
884 if (ah->ah_version != AR5K_AR5210) {
885 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_SDMAMR,
886 AR5K_DMASIZE_512B | AR5K_TXCFG_DMASIZE);
887 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_SDMAMW,
888 AR5K_DMASIZE_512B);
889 }
890
891 /*
892 * Enable the PHY and wait until completion
893 */
894 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
895
896 /*
897 * 5111/5112 Specific
898 */
899 if (ah->ah_version != AR5K_AR5210) {
900 data = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
901 AR5K_PHY_RX_DELAY_M;
902 data = (channel->val & CHANNEL_CCK) ?
903 ((data << 2) / 22) : (data / 10);
904
905 udelay(100 + data);
906 } else {
907 mdelay(1);
908 }
909
910 /*
911 * Enable calibration and wait until completion
912 */
913 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
914 AR5K_PHY_AGCCTL_CAL);
915
916 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
917 AR5K_PHY_AGCCTL_CAL, 0, false)) {
918 ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
919 channel->freq);
920 return -EAGAIN;
921 }
922
923 ret = ath5k_hw_noise_floor_calibration(ah, channel->freq);
924 if (ret)
925 return ret;
926
927 ah->ah_calibration = false;
928
929 /* A and G modes can use QAM modulation which requires enabling
930 * I and Q calibration. Don't bother in B mode. */
931 if (!(driver_mode == MODE_IEEE80211B)) {
932 ah->ah_calibration = true;
933 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
934 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
935 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
936 AR5K_PHY_IQ_RUN);
937 }
938
939 /*
940 * Reset queues and start beacon timers at the end of the reset routine
941 */
942 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
943 /*No QCU on 5210*/
944 if (ah->ah_version != AR5K_AR5210)
945 AR5K_REG_WRITE_Q(ah, AR5K_QUEUE_QCUMASK(i), i);
946
947 ret = ath5k_hw_reset_tx_queue(ah, i);
948 if (ret) {
949 ATH5K_ERR(ah->ah_sc,
950 "failed to reset TX queue #%d\n", i);
951 return ret;
952 }
953 }
954
955 /* Pre-enable interrupts on 5211/5212*/
956 if (ah->ah_version != AR5K_AR5210)
957 ath5k_hw_set_intr(ah, AR5K_INT_RX | AR5K_INT_TX |
958 AR5K_INT_FATAL);
959
960 /*
961 * Set RF kill flags if supported by the device (read from the EEPROM)
962 * Disable gpio_intr for now since it results system hang.
963 * TODO: Handle this in ath5k_intr
964 */
965#if 0
966 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
967 ath5k_hw_set_gpio_input(ah, 0);
968 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
969 if (ah->ah_gpio[0] == 0)
970 ath5k_hw_set_gpio_intr(ah, 0, 1);
971 else
972 ath5k_hw_set_gpio_intr(ah, 0, 0);
973 }
974#endif
975
976 /*
977 * Set the 32MHz reference clock on 5212 phy clock sleep register
978 */
979 if (ah->ah_version == AR5K_AR5212) {
980 ath5k_hw_reg_write(ah, AR5K_PHY_SCR_32MHZ, AR5K_PHY_SCR);
981 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
982 ath5k_hw_reg_write(ah, AR5K_PHY_SCAL_32MHZ, AR5K_PHY_SCAL);
983 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
984 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
985 ath5k_hw_reg_write(ah, ah->ah_radio == AR5K_RF5111 ?
986 AR5K_PHY_SPENDING_RF5111 : AR5K_PHY_SPENDING_RF5112,
987 AR5K_PHY_SPENDING);
988 }
989
990 /*
991 * Disable beacons and reset the register
992 */
993 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
994 AR5K_BEACON_RESET_TSF);
995
996 return 0;
997}
998
999/*
1000 * Reset chipset
1001 */
1002static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
1003{
1004 int ret;
1005 u32 mask = val ? val : ~0U;
1006
1007 ATH5K_TRACE(ah->ah_sc);
1008
1009 /* Read-and-clear RX Descriptor Pointer*/
1010 ath5k_hw_reg_read(ah, AR5K_RXDP);
1011
1012 /*
1013 * Reset the device and wait until success
1014 */
1015 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
1016
1017 /* Wait at least 128 PCI clocks */
1018 udelay(15);
1019
1020 if (ah->ah_version == AR5K_AR5210) {
1021 val &= AR5K_RESET_CTL_CHIP;
1022 mask &= AR5K_RESET_CTL_CHIP;
1023 } else {
1024 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1025 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
1026 }
1027
1028 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
1029
1030 /*
1031 * Reset configuration register (for hw byte-swap). Note that this
1032 * is only set for big endian. We do the necessary magic in
1033 * AR5K_INIT_CFG.
1034 */
1035 if ((val & AR5K_RESET_CTL_PCU) == 0)
1036 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
1037
1038 return ret;
1039}
1040
1041/*
1042 * Power management functions
1043 */
1044
1045/*
1046 * Sleep control
1047 */
1048int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
1049 bool set_chip, u16 sleep_duration)
1050{
1051 unsigned int i;
1052 u32 staid;
1053
1054 ATH5K_TRACE(ah->ah_sc);
1055 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
1056
1057 switch (mode) {
1058 case AR5K_PM_AUTO:
1059 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
1060 /* fallthrough */
1061 case AR5K_PM_NETWORK_SLEEP:
1062 if (set_chip == true)
1063 ath5k_hw_reg_write(ah,
1064 AR5K_SLEEP_CTL_SLE | sleep_duration,
1065 AR5K_SLEEP_CTL);
1066
1067 staid |= AR5K_STA_ID1_PWR_SV;
1068 break;
1069
1070 case AR5K_PM_FULL_SLEEP:
1071 if (set_chip == true)
1072 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
1073 AR5K_SLEEP_CTL);
1074
1075 staid |= AR5K_STA_ID1_PWR_SV;
1076 break;
1077
1078 case AR5K_PM_AWAKE:
1079 if (set_chip == false)
1080 goto commit;
1081
1082 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
1083 AR5K_SLEEP_CTL);
1084
1085 for (i = 5000; i > 0; i--) {
1086 /* Check if the chip did wake up */
1087 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
1088 AR5K_PCICFG_SPWR_DN) == 0)
1089 break;
1090
1091 /* Wait a bit and retry */
1092 udelay(200);
1093 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_WAKE,
1094 AR5K_SLEEP_CTL);
1095 }
1096
1097 /* Fail if the chip didn't wake up */
1098 if (i <= 0)
1099 return -EIO;
1100
1101 staid &= ~AR5K_STA_ID1_PWR_SV;
1102 break;
1103
1104 default:
1105 return -EINVAL;
1106 }
1107
1108commit:
1109 ah->ah_power_mode = mode;
1110 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
1111
1112 return 0;
1113}
1114
1115/***********************\
1116 DMA Related Functions
1117\***********************/
1118
1119/*
1120 * Receive functions
1121 */
1122
1123/*
1124 * Start DMA receive
1125 */
1126void ath5k_hw_start_rx(struct ath5k_hw *ah)
1127{
1128 ATH5K_TRACE(ah->ah_sc);
1129 ath5k_hw_reg_write(ah, AR5K_CR_RXE, AR5K_CR);
1130}
1131
1132/*
1133 * Stop DMA receive
1134 */
1135int ath5k_hw_stop_rx_dma(struct ath5k_hw *ah)
1136{
1137 unsigned int i;
1138
1139 ATH5K_TRACE(ah->ah_sc);
1140 ath5k_hw_reg_write(ah, AR5K_CR_RXD, AR5K_CR);
1141
1142 /*
1143 * It may take some time to disable the DMA receive unit
1144 */
1145 for (i = 2000; i > 0 &&
1146 (ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_CR_RXE) != 0;
1147 i--)
1148 udelay(10);
1149
1150 return i ? 0 : -EBUSY;
1151}
1152
1153/*
1154 * Get the address of the RX Descriptor
1155 */
1156u32 ath5k_hw_get_rx_buf(struct ath5k_hw *ah)
1157{
1158 return ath5k_hw_reg_read(ah, AR5K_RXDP);
1159}
1160
1161/*
1162 * Set the address of the RX Descriptor
1163 */
1164void ath5k_hw_put_rx_buf(struct ath5k_hw *ah, u32 phys_addr)
1165{
1166 ATH5K_TRACE(ah->ah_sc);
1167
1168 /*TODO:Shouldn't we check if RX is enabled first ?*/
1169 ath5k_hw_reg_write(ah, phys_addr, AR5K_RXDP);
1170}
1171
1172/*
1173 * Transmit functions
1174 */
1175
1176/*
1177 * Start DMA transmit for a specific queue
1178 * (see also QCU/DCU functions)
1179 */
1180int ath5k_hw_tx_start(struct ath5k_hw *ah, unsigned int queue)
1181{
1182 u32 tx_queue;
1183
1184 ATH5K_TRACE(ah->ah_sc);
1185 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1186
1187 /* Return if queue is declared inactive */
1188 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1189 return -EIO;
1190
1191 if (ah->ah_version == AR5K_AR5210) {
1192 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1193
1194 /*
1195 * Set the queue by type on 5210
1196 */
1197 switch (ah->ah_txq[queue].tqi_type) {
1198 case AR5K_TX_QUEUE_DATA:
1199 tx_queue |= AR5K_CR_TXE0 & ~AR5K_CR_TXD0;
1200 break;
1201 case AR5K_TX_QUEUE_BEACON:
1202 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1203 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
1204 AR5K_BSR);
1205 break;
1206 case AR5K_TX_QUEUE_CAB:
1207 tx_queue |= AR5K_CR_TXE1 & ~AR5K_CR_TXD1;
1208 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1FV | AR5K_BCR_TQ1V |
1209 AR5K_BCR_BDMAE, AR5K_BSR);
1210 break;
1211 default:
1212 return -EINVAL;
1213 }
1214 /* Start queue */
1215 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1216 } else {
1217 /* Return if queue is disabled */
1218 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXD, queue))
1219 return -EIO;
1220
1221 /* Start queue */
1222 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXE, queue);
1223 }
1224
1225 return 0;
1226}
1227
1228/*
1229 * Stop DMA transmit for a specific queue
1230 * (see also QCU/DCU functions)
1231 */
1232int ath5k_hw_stop_tx_dma(struct ath5k_hw *ah, unsigned int queue)
1233{
1234 unsigned int i = 100;
1235 u32 tx_queue, pending;
1236
1237 ATH5K_TRACE(ah->ah_sc);
1238 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1239
1240 /* Return if queue is declared inactive */
1241 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
1242 return -EIO;
1243
1244 if (ah->ah_version == AR5K_AR5210) {
1245 tx_queue = ath5k_hw_reg_read(ah, AR5K_CR);
1246
1247 /*
1248 * Set by queue type
1249 */
1250 switch (ah->ah_txq[queue].tqi_type) {
1251 case AR5K_TX_QUEUE_DATA:
1252 tx_queue |= AR5K_CR_TXD0 & ~AR5K_CR_TXE0;
1253 break;
1254 case AR5K_TX_QUEUE_BEACON:
1255 case AR5K_TX_QUEUE_CAB:
1256 /* XXX Fix me... */
1257 tx_queue |= AR5K_CR_TXD1 & ~AR5K_CR_TXD1;
1258 ath5k_hw_reg_write(ah, 0, AR5K_BSR);
1259 break;
1260 default:
1261 return -EINVAL;
1262 }
1263
1264 /* Stop queue */
1265 ath5k_hw_reg_write(ah, tx_queue, AR5K_CR);
1266 } else {
1267 /*
1268 * Schedule TX disable and wait until queue is empty
1269 */
1270 AR5K_REG_WRITE_Q(ah, AR5K_QCU_TXD, queue);
1271
1272 /*Check for pending frames*/
1273 do {
1274 pending = ath5k_hw_reg_read(ah,
1275 AR5K_QUEUE_STATUS(queue)) &
1276 AR5K_QCU_STS_FRMPENDCNT;
1277 udelay(100);
1278 } while (--i && pending);
1279
1280 /* Clear register */
1281 ath5k_hw_reg_write(ah, 0, AR5K_QCU_TXD);
1282 }
1283
1284 /* TODO: Check for success else return error */
1285 return 0;
1286}
1287
1288/*
1289 * Get the address of the TX Descriptor for a specific queue
1290 * (see also QCU/DCU functions)
1291 */
1292u32 ath5k_hw_get_tx_buf(struct ath5k_hw *ah, unsigned int queue)
1293{
1294 u16 tx_reg;
1295
1296 ATH5K_TRACE(ah->ah_sc);
1297 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1298
1299 /*
1300 * Get the transmit queue descriptor pointer from the selected queue
1301 */
1302 /*5210 doesn't have QCU*/
1303 if (ah->ah_version == AR5K_AR5210) {
1304 switch (ah->ah_txq[queue].tqi_type) {
1305 case AR5K_TX_QUEUE_DATA:
1306 tx_reg = AR5K_NOQCU_TXDP0;
1307 break;
1308 case AR5K_TX_QUEUE_BEACON:
1309 case AR5K_TX_QUEUE_CAB:
1310 tx_reg = AR5K_NOQCU_TXDP1;
1311 break;
1312 default:
1313 return 0xffffffff;
1314 }
1315 } else {
1316 tx_reg = AR5K_QUEUE_TXDP(queue);
1317 }
1318
1319 return ath5k_hw_reg_read(ah, tx_reg);
1320}
1321
1322/*
1323 * Set the address of the TX Descriptor for a specific queue
1324 * (see also QCU/DCU functions)
1325 */
1326int ath5k_hw_put_tx_buf(struct ath5k_hw *ah, unsigned int queue, u32 phys_addr)
1327{
1328 u16 tx_reg;
1329
1330 ATH5K_TRACE(ah->ah_sc);
1331 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
1332
1333 /*
1334 * Set the transmit queue descriptor pointer register by type
1335 * on 5210
1336 */
1337 if (ah->ah_version == AR5K_AR5210) {
1338 switch (ah->ah_txq[queue].tqi_type) {
1339 case AR5K_TX_QUEUE_DATA:
1340 tx_reg = AR5K_NOQCU_TXDP0;
1341 break;
1342 case AR5K_TX_QUEUE_BEACON:
1343 case AR5K_TX_QUEUE_CAB:
1344 tx_reg = AR5K_NOQCU_TXDP1;
1345 break;
1346 default:
1347 return -EINVAL;
1348 }
1349 } else {
1350 /*
1351 * Set the transmit queue descriptor pointer for
1352 * the selected queue on QCU for 5211+
1353 * (this won't work if the queue is still active)
1354 */
1355 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, queue))
1356 return -EIO;
1357
1358 tx_reg = AR5K_QUEUE_TXDP(queue);
1359 }
1360
1361 /* Set descriptor pointer */
1362 ath5k_hw_reg_write(ah, phys_addr, tx_reg);
1363
1364 return 0;
1365}
1366
1367/*
1368 * Update tx trigger level
1369 */
1370int ath5k_hw_update_tx_triglevel(struct ath5k_hw *ah, bool increase)
1371{
1372 u32 trigger_level, imr;
1373 int ret = -EIO;
1374
1375 ATH5K_TRACE(ah->ah_sc);
1376
1377 /*
1378 * Disable interrupts by setting the mask
1379 */
1380 imr = ath5k_hw_set_intr(ah, ah->ah_imr & ~AR5K_INT_GLOBAL);
1381
1382 /*TODO: Boundary check on trigger_level*/
1383 trigger_level = AR5K_REG_MS(ath5k_hw_reg_read(ah, AR5K_TXCFG),
1384 AR5K_TXCFG_TXFULL);
1385
1386 if (increase == false) {
1387 if (--trigger_level < AR5K_TUNE_MIN_TX_FIFO_THRES)
1388 goto done;
1389 } else
1390 trigger_level +=
1391 ((AR5K_TUNE_MAX_TX_FIFO_THRES - trigger_level) / 2);
1392
1393 /*
1394 * Update trigger level on success
1395 */
1396 if (ah->ah_version == AR5K_AR5210)
1397 ath5k_hw_reg_write(ah, trigger_level, AR5K_TRIG_LVL);
1398 else
1399 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1400 AR5K_TXCFG_TXFULL, trigger_level);
1401
1402 ret = 0;
1403
1404done:
1405 /*
1406 * Restore interrupt mask
1407 */
1408 ath5k_hw_set_intr(ah, imr);
1409
1410 return ret;
1411}
1412
1413/*
1414 * Interrupt handling
1415 */
1416
1417/*
1418 * Check if we have pending interrupts
1419 */
1420bool ath5k_hw_is_intr_pending(struct ath5k_hw *ah)
1421{
1422 ATH5K_TRACE(ah->ah_sc);
1423 return ath5k_hw_reg_read(ah, AR5K_INTPEND);
1424}
1425
1426/*
1427 * Get interrupt mask (ISR)
1428 */
1429int ath5k_hw_get_isr(struct ath5k_hw *ah, enum ath5k_int *interrupt_mask)
1430{
1431 u32 data;
1432
1433 ATH5K_TRACE(ah->ah_sc);
1434
1435 /*
1436 * Read interrupt status from the Interrupt Status register
1437 * on 5210
1438 */
1439 if (ah->ah_version == AR5K_AR5210) {
1440 data = ath5k_hw_reg_read(ah, AR5K_ISR);
1441 if (unlikely(data == AR5K_INT_NOCARD)) {
1442 *interrupt_mask = data;
1443 return -ENODEV;
1444 }
1445 } else {
1446 /*
1447 * Read interrupt status from the Read-And-Clear shadow register
1448 * Note: PISR/SISR Not available on 5210
1449 */
1450 data = ath5k_hw_reg_read(ah, AR5K_RAC_PISR);
1451 }
1452
1453 /*
1454 * Get abstract interrupt mask (driver-compatible)
1455 */
1456 *interrupt_mask = (data & AR5K_INT_COMMON) & ah->ah_imr;
1457
1458 if (unlikely(data == AR5K_INT_NOCARD))
1459 return -ENODEV;
1460
1461 if (data & (AR5K_ISR_RXOK | AR5K_ISR_RXERR))
1462 *interrupt_mask |= AR5K_INT_RX;
1463
1464 if (data & (AR5K_ISR_TXOK | AR5K_ISR_TXERR
1465 | AR5K_ISR_TXDESC | AR5K_ISR_TXEOL))
1466 *interrupt_mask |= AR5K_INT_TX;
1467
1468 if (ah->ah_version != AR5K_AR5210) {
1469 /*HIU = Host Interface Unit (PCI etc)*/
1470 if (unlikely(data & (AR5K_ISR_HIUERR)))
1471 *interrupt_mask |= AR5K_INT_FATAL;
1472
1473 /*Beacon Not Ready*/
1474 if (unlikely(data & (AR5K_ISR_BNR)))
1475 *interrupt_mask |= AR5K_INT_BNR;
1476 }
1477
1478 /*
1479 * XXX: BMISS interrupts may occur after association.
1480 * I found this on 5210 code but it needs testing. If this is
1481 * true we should disable them before assoc and re-enable them
1482 * after a successfull assoc + some jiffies.
1483 */
1484#if 0
1485 interrupt_mask &= ~AR5K_INT_BMISS;
1486#endif
1487
1488 /*
1489 * In case we didn't handle anything,
1490 * print the register value.
1491 */
1492 if (unlikely(*interrupt_mask == 0 && net_ratelimit()))
1493 ATH5K_PRINTF("0x%08x\n", data);
1494
1495 return 0;
1496}
1497
1498/*
1499 * Set interrupt mask
1500 */
1501enum ath5k_int ath5k_hw_set_intr(struct ath5k_hw *ah, enum ath5k_int new_mask)
1502{
1503 enum ath5k_int old_mask, int_mask;
1504
1505 /*
1506 * Disable card interrupts to prevent any race conditions
1507 * (they will be re-enabled afterwards).
1508 */
1509 ath5k_hw_reg_write(ah, AR5K_IER_DISABLE, AR5K_IER);
1510
1511 old_mask = ah->ah_imr;
1512
1513 /*
1514 * Add additional, chipset-dependent interrupt mask flags
1515 * and write them to the IMR (interrupt mask register).
1516 */
1517 int_mask = new_mask & AR5K_INT_COMMON;
1518
1519 if (new_mask & AR5K_INT_RX)
1520 int_mask |= AR5K_IMR_RXOK | AR5K_IMR_RXERR | AR5K_IMR_RXORN |
1521 AR5K_IMR_RXDESC;
1522
1523 if (new_mask & AR5K_INT_TX)
1524 int_mask |= AR5K_IMR_TXOK | AR5K_IMR_TXERR | AR5K_IMR_TXDESC |
1525 AR5K_IMR_TXURN;
1526
1527 if (ah->ah_version != AR5K_AR5210) {
1528 if (new_mask & AR5K_INT_FATAL) {
1529 int_mask |= AR5K_IMR_HIUERR;
1530 AR5K_REG_ENABLE_BITS(ah, AR5K_SIMR2, AR5K_SIMR2_MCABT |
1531 AR5K_SIMR2_SSERR | AR5K_SIMR2_DPERR);
1532 }
1533 }
1534
1535 ath5k_hw_reg_write(ah, int_mask, AR5K_PIMR);
1536
1537 /* Store new interrupt mask */
1538 ah->ah_imr = new_mask;
1539
1540 /* ..re-enable interrupts */
1541 ath5k_hw_reg_write(ah, AR5K_IER_ENABLE, AR5K_IER);
1542
1543 return old_mask;
1544}
1545
1546
1547/*************************\
1548 EEPROM access functions
1549\*************************/
1550
1551/*
1552 * Read from eeprom
1553 */
1554static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
1555{
1556 u32 status, timeout;
1557
1558 ATH5K_TRACE(ah->ah_sc);
1559 /*
1560 * Initialize EEPROM access
1561 */
1562 if (ah->ah_version == AR5K_AR5210) {
1563 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1564 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
1565 } else {
1566 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1567 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1568 AR5K_EEPROM_CMD_READ);
1569 }
1570
1571 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1572 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1573 if (status & AR5K_EEPROM_STAT_RDDONE) {
1574 if (status & AR5K_EEPROM_STAT_RDERR)
1575 return -EIO;
1576 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
1577 0xffff);
1578 return 0;
1579 }
1580 udelay(15);
1581 }
1582
1583 return -ETIMEDOUT;
1584}
1585
1586/*
1587 * Write to eeprom - currently disabled, use at your own risk
1588 */
1589static int ath5k_hw_eeprom_write(struct ath5k_hw *ah, u32 offset, u16 data)
1590{
1591#if 0
1592 u32 status, timeout;
1593
1594 ATH5K_TRACE(ah->ah_sc);
1595
1596 /*
1597 * Initialize eeprom access
1598 */
1599
1600 if (ah->ah_version == AR5K_AR5210) {
1601 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
1602 } else {
1603 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1604 AR5K_EEPROM_CMD_RESET);
1605 }
1606
1607 /*
1608 * Write data to data register
1609 */
1610
1611 if (ah->ah_version == AR5K_AR5210) {
1612 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_BASE + (4 * offset));
1613 } else {
1614 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
1615 ath5k_hw_reg_write(ah, data, AR5K_EEPROM_DATA);
1616 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
1617 AR5K_EEPROM_CMD_WRITE);
1618 }
1619
1620 /*
1621 * Check status
1622 */
1623
1624 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
1625 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
1626 if (status & AR5K_EEPROM_STAT_WRDONE) {
1627 if (status & AR5K_EEPROM_STAT_WRERR)
1628 return EIO;
1629 return 0;
1630 }
1631 udelay(15);
1632 }
1633#endif
1634 ATH5K_ERR(ah->ah_sc, "EEPROM Write is disabled!");
1635 return -EIO;
1636}
1637
1638/*
1639 * Translate binary channel representation in EEPROM to frequency
1640 */
1641static u16 ath5k_eeprom_bin2freq(struct ath5k_hw *ah, u16 bin, unsigned int mode)
1642{
1643 u16 val;
1644
1645 if (bin == AR5K_EEPROM_CHANNEL_DIS)
1646 return bin;
1647
1648 if (mode == AR5K_EEPROM_MODE_11A) {
1649 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1650 val = (5 * bin) + 4800;
1651 else
1652 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
1653 (bin * 10) + 5100;
1654 } else {
1655 if (ah->ah_ee_version > AR5K_EEPROM_VERSION_3_2)
1656 val = bin + 2300;
1657 else
1658 val = bin + 2400;
1659 }
1660
1661 return val;
1662}
1663
1664/*
1665 * Read antenna infos from eeprom
1666 */
1667static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
1668 unsigned int mode)
1669{
1670 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1671 u32 o = *offset;
1672 u16 val;
1673 int ret, i = 0;
1674
1675 AR5K_EEPROM_READ(o++, val);
1676 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
1677 ee->ee_ant_tx_rx[mode] = (val >> 2) & 0x3f;
1678 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1679
1680 AR5K_EEPROM_READ(o++, val);
1681 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1682 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1683 ee->ee_ant_control[mode][i++] = val & 0x3f;
1684
1685 AR5K_EEPROM_READ(o++, val);
1686 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
1687 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
1688 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
1689
1690 AR5K_EEPROM_READ(o++, val);
1691 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
1692 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
1693 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
1694 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
1695
1696 AR5K_EEPROM_READ(o++, val);
1697 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
1698 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
1699 ee->ee_ant_control[mode][i++] = val & 0x3f;
1700
1701 /* Get antenna modes */
1702 ah->ah_antenna[mode][0] =
1703 (ee->ee_ant_control[mode][0] << 4) | 0x1;
1704 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
1705 ee->ee_ant_control[mode][1] |
1706 (ee->ee_ant_control[mode][2] << 6) |
1707 (ee->ee_ant_control[mode][3] << 12) |
1708 (ee->ee_ant_control[mode][4] << 18) |
1709 (ee->ee_ant_control[mode][5] << 24);
1710 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
1711 ee->ee_ant_control[mode][6] |
1712 (ee->ee_ant_control[mode][7] << 6) |
1713 (ee->ee_ant_control[mode][8] << 12) |
1714 (ee->ee_ant_control[mode][9] << 18) |
1715 (ee->ee_ant_control[mode][10] << 24);
1716
1717 /* return new offset */
1718 *offset = o;
1719
1720 return 0;
1721}
1722
1723/*
1724 * Read supported modes from eeprom
1725 */
1726static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
1727 unsigned int mode)
1728{
1729 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1730 u32 o = *offset;
1731 u16 val;
1732 int ret;
1733
1734 AR5K_EEPROM_READ(o++, val);
1735 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
1736 ee->ee_thr_62[mode] = val & 0xff;
1737
1738 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1739 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
1740
1741 AR5K_EEPROM_READ(o++, val);
1742 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
1743 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
1744
1745 AR5K_EEPROM_READ(o++, val);
1746 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
1747
1748 if ((val & 0xff) & 0x80)
1749 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
1750 else
1751 ee->ee_noise_floor_thr[mode] = val & 0xff;
1752
1753 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
1754 ee->ee_noise_floor_thr[mode] =
1755 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
1756
1757 AR5K_EEPROM_READ(o++, val);
1758 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
1759 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
1760 ee->ee_xpd[mode] = val & 0x1;
1761
1762 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
1763 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
1764
1765 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
1766 AR5K_EEPROM_READ(o++, val);
1767 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
1768
1769 if (mode == AR5K_EEPROM_MODE_11A)
1770 ee->ee_xr_power[mode] = val & 0x3f;
1771 else {
1772 ee->ee_ob[mode][0] = val & 0x7;
1773 ee->ee_db[mode][0] = (val >> 3) & 0x7;
1774 }
1775 }
1776
1777 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
1778 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
1779 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
1780 } else {
1781 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
1782
1783 AR5K_EEPROM_READ(o++, val);
1784 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
1785
1786 if (mode == AR5K_EEPROM_MODE_11G)
1787 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
1788 }
1789
1790 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
1791 mode == AR5K_EEPROM_MODE_11A) {
1792 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
1793 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
1794 }
1795
1796 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6 &&
1797 mode == AR5K_EEPROM_MODE_11G)
1798 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
1799
1800 /* return new offset */
1801 *offset = o;
1802
1803 return 0;
1804}
1805
1806/*
1807 * Initialize eeprom & capabilities structs
1808 */
1809static int ath5k_eeprom_init(struct ath5k_hw *ah)
1810{
1811 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1812 unsigned int mode, i;
1813 int ret;
1814 u32 offset;
1815 u16 val;
1816
1817 /* Initial TX thermal adjustment values */
1818 ee->ee_tx_clip = 4;
1819 ee->ee_pwd_84 = ee->ee_pwd_90 = 1;
1820 ee->ee_gain_select = 1;
1821
1822 /*
1823 * Read values from EEPROM and store them in the capability structure
1824 */
1825 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
1826 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
1827 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
1828 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
1829 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
1830
1831 /* Return if we have an old EEPROM */
1832 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
1833 return 0;
1834
1835#ifdef notyet
1836 /*
1837 * Validate the checksum of the EEPROM date. There are some
1838 * devices with invalid EEPROMs.
1839 */
1840 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
1841 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
1842 cksum ^= val;
1843 }
1844 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
1845 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
1846 return -EIO;
1847 }
1848#endif
1849
1850 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
1851 ee_ant_gain);
1852
1853 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1854 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
1855 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
1856 }
1857
1858 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
1859 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
1860 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
1861 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
1862
1863 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
1864 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
1865 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
1866 }
1867
1868 /*
1869 * Get conformance test limit values
1870 */
1871 offset = AR5K_EEPROM_CTL(ah->ah_ee_version);
1872 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ah->ah_ee_version);
1873
1874 for (i = 0; i < ee->ee_ctls; i++) {
1875 AR5K_EEPROM_READ(offset++, val);
1876 ee->ee_ctl[i] = (val >> 8) & 0xff;
1877 ee->ee_ctl[i + 1] = val & 0xff;
1878 }
1879
1880 /*
1881 * Get values for 802.11a (5GHz)
1882 */
1883 mode = AR5K_EEPROM_MODE_11A;
1884
1885 ee->ee_turbo_max_power[mode] =
1886 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
1887
1888 offset = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
1889
1890 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1891 if (ret)
1892 return ret;
1893
1894 AR5K_EEPROM_READ(offset++, val);
1895 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1896 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
1897 ee->ee_db[mode][3] = (val >> 2) & 0x7;
1898 ee->ee_ob[mode][2] = (val << 1) & 0x7;
1899
1900 AR5K_EEPROM_READ(offset++, val);
1901 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
1902 ee->ee_db[mode][2] = (val >> 12) & 0x7;
1903 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
1904 ee->ee_db[mode][1] = (val >> 6) & 0x7;
1905 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
1906 ee->ee_db[mode][0] = val & 0x7;
1907
1908 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1909 if (ret)
1910 return ret;
1911
1912 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1) {
1913 AR5K_EEPROM_READ(offset++, val);
1914 ee->ee_margin_tx_rx[mode] = val & 0x3f;
1915 }
1916
1917 /*
1918 * Get values for 802.11b (2.4GHz)
1919 */
1920 mode = AR5K_EEPROM_MODE_11B;
1921 offset = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
1922
1923 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1924 if (ret)
1925 return ret;
1926
1927 AR5K_EEPROM_READ(offset++, val);
1928 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1929 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
1930 ee->ee_db[mode][1] = val & 0x7;
1931
1932 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1933 if (ret)
1934 return ret;
1935
1936 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1937 AR5K_EEPROM_READ(offset++, val);
1938 ee->ee_cal_pier[mode][0] =
1939 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1940 ee->ee_cal_pier[mode][1] =
1941 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
1942
1943 AR5K_EEPROM_READ(offset++, val);
1944 ee->ee_cal_pier[mode][2] =
1945 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1946 }
1947
1948 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1949 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
1950
1951 /*
1952 * Get values for 802.11g (2.4GHz)
1953 */
1954 mode = AR5K_EEPROM_MODE_11G;
1955 offset = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
1956
1957 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
1958 if (ret)
1959 return ret;
1960
1961 AR5K_EEPROM_READ(offset++, val);
1962 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
1963 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
1964 ee->ee_db[mode][1] = val & 0x7;
1965
1966 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
1967 if (ret)
1968 return ret;
1969
1970 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
1971 AR5K_EEPROM_READ(offset++, val);
1972 ee->ee_cal_pier[mode][0] =
1973 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1974 ee->ee_cal_pier[mode][1] =
1975 ath5k_eeprom_bin2freq(ah, (val >> 8) & 0xff, mode);
1976
1977 AR5K_EEPROM_READ(offset++, val);
1978 ee->ee_turbo_max_power[mode] = val & 0x7f;
1979 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
1980
1981 AR5K_EEPROM_READ(offset++, val);
1982 ee->ee_cal_pier[mode][2] =
1983 ath5k_eeprom_bin2freq(ah, val & 0xff, mode);
1984
1985 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
1986 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
1987
1988 AR5K_EEPROM_READ(offset++, val);
1989 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
1990 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
1991
1992 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
1993 AR5K_EEPROM_READ(offset++, val);
1994 ee->ee_cck_ofdm_gain_delta = val & 0xff;
1995 }
1996 }
1997
1998 /*
1999 * Read 5GHz EEPROM channels
2000 */
2001
2002 return 0;
2003}
2004
2005/*
2006 * Read the MAC address from eeprom
2007 */
2008static int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
2009{
2010 u8 mac_d[ETH_ALEN];
2011 u32 total, offset;
2012 u16 data;
2013 int octet, ret;
2014
2015 memset(mac, 0, ETH_ALEN);
2016 memset(mac_d, 0, ETH_ALEN);
2017
2018 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
2019 if (ret)
2020 return ret;
2021
2022 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
2023 ret = ath5k_hw_eeprom_read(ah, offset, &data);
2024 if (ret)
2025 return ret;
2026
2027 total += data;
2028 mac_d[octet + 1] = data & 0xff;
2029 mac_d[octet] = data >> 8;
2030 octet += 2;
2031 }
2032
2033 memcpy(mac, mac_d, ETH_ALEN);
2034
2035 if (!total || total == 3 * 0xffff)
2036 return -EINVAL;
2037
2038 return 0;
2039}
2040
2041/*
2042 * Read/Write regulatory domain
2043 */
2044static bool ath5k_eeprom_regulation_domain(struct ath5k_hw *ah, bool write,
2045 enum ath5k_regdom *regdomain)
2046{
2047 u16 ee_regdomain;
2048
2049 /* Read current value */
2050 if (write != true) {
2051 ee_regdomain = ah->ah_capabilities.cap_eeprom.ee_regdomain;
2052 *regdomain = ath5k_regdom_to_ieee(ee_regdomain);
2053 return true;
2054 }
2055
2056 ee_regdomain = ath5k_regdom_from_ieee(*regdomain);
2057
2058 /* Try to write a new value */
2059 if (ah->ah_capabilities.cap_eeprom.ee_protect &
2060 AR5K_EEPROM_PROTECT_WR_128_191)
2061 return false;
2062 if (ath5k_hw_eeprom_write(ah, AR5K_EEPROM_REG_DOMAIN, ee_regdomain)!=0)
2063 return false;
2064
2065 ah->ah_capabilities.cap_eeprom.ee_regdomain = ee_regdomain;
2066
2067 return true;
2068}
2069
2070/*
2071 * Use the above to write a new regulatory domain
2072 */
2073int ath5k_hw_set_regdomain(struct ath5k_hw *ah, u16 regdomain)
2074{
2075 enum ath5k_regdom ieee_regdomain;
2076
2077 ieee_regdomain = ath5k_regdom_to_ieee(regdomain);
2078
2079 if (ath5k_eeprom_regulation_domain(ah, true, &ieee_regdomain) == true)
2080 return 0;
2081
2082 return -EIO;
2083}
2084
2085/*
2086 * Fill the capabilities struct
2087 */
2088static int ath5k_hw_get_capabilities(struct ath5k_hw *ah)
2089{
2090 u16 ee_header;
2091
2092 ATH5K_TRACE(ah->ah_sc);
2093 /* Capabilities stored in the EEPROM */
2094 ee_header = ah->ah_capabilities.cap_eeprom.ee_header;
2095
2096 if (ah->ah_version == AR5K_AR5210) {
2097 /*
2098 * Set radio capabilities
2099 * (The AR5110 only supports the middle 5GHz band)
2100 */
2101 ah->ah_capabilities.cap_range.range_5ghz_min = 5120;
2102 ah->ah_capabilities.cap_range.range_5ghz_max = 5430;
2103 ah->ah_capabilities.cap_range.range_2ghz_min = 0;
2104 ah->ah_capabilities.cap_range.range_2ghz_max = 0;
2105
2106 /* Set supported modes */
2107 __set_bit(MODE_IEEE80211A, ah->ah_capabilities.cap_mode);
2108 __set_bit(MODE_ATHEROS_TURBO, ah->ah_capabilities.cap_mode);
2109 } else {
2110 /*
2111 * XXX The tranceiver supports frequencies from 4920 to 6100GHz
2112 * XXX and from 2312 to 2732GHz. There are problems with the
2113 * XXX current ieee80211 implementation because the IEEE
2114 * XXX channel mapping does not support negative channel
2115 * XXX numbers (2312MHz is channel -19). Of course, this
2116 * XXX doesn't matter because these channels are out of range
2117 * XXX but some regulation domains like MKK (Japan) will
2118 * XXX support frequencies somewhere around 4.8GHz.
2119 */
2120
2121 /*
2122 * Set radio capabilities
2123 */
2124
2125 if (AR5K_EEPROM_HDR_11A(ee_header)) {
2126 ah->ah_capabilities.cap_range.range_5ghz_min = 5005; /* 4920 */
2127 ah->ah_capabilities.cap_range.range_5ghz_max = 6100;
2128
2129 /* Set supported modes */
2130 __set_bit(MODE_IEEE80211A,
2131 ah->ah_capabilities.cap_mode);
2132 __set_bit(MODE_ATHEROS_TURBO,
2133 ah->ah_capabilities.cap_mode);
2134 if (ah->ah_version == AR5K_AR5212)
2135 __set_bit(MODE_ATHEROS_TURBOG,
2136 ah->ah_capabilities.cap_mode);
2137 }
2138
2139 /* Enable 802.11b if a 2GHz capable radio (2111/5112) is
2140 * connected */
2141 if (AR5K_EEPROM_HDR_11B(ee_header) ||
2142 AR5K_EEPROM_HDR_11G(ee_header)) {
2143 ah->ah_capabilities.cap_range.range_2ghz_min = 2412; /* 2312 */
2144 ah->ah_capabilities.cap_range.range_2ghz_max = 2732;
2145
2146 if (AR5K_EEPROM_HDR_11B(ee_header))
2147 __set_bit(MODE_IEEE80211B,
2148 ah->ah_capabilities.cap_mode);
2149
2150 if (AR5K_EEPROM_HDR_11G(ee_header))
2151 __set_bit(MODE_IEEE80211G,
2152 ah->ah_capabilities.cap_mode);
2153 }
2154 }
2155
2156 /* GPIO */
2157 ah->ah_gpio_npins = AR5K_NUM_GPIO;
2158
2159 /* Set number of supported TX queues */
2160 if (ah->ah_version == AR5K_AR5210)
2161 ah->ah_capabilities.cap_queues.q_tx_num =
2162 AR5K_NUM_TX_QUEUES_NOQCU;
2163 else
2164 ah->ah_capabilities.cap_queues.q_tx_num = AR5K_NUM_TX_QUEUES;
2165
2166 return 0;
2167}
2168
2169/*********************************\
2170 Protocol Control Unit Functions
2171\*********************************/
2172
2173/*
2174 * Set Operation mode
2175 */
2176int ath5k_hw_set_opmode(struct ath5k_hw *ah)
2177{
2178 u32 pcu_reg, beacon_reg, low_id, high_id;
2179
2180 pcu_reg = 0;
2181 beacon_reg = 0;
2182
2183 ATH5K_TRACE(ah->ah_sc);
2184
2185 switch (ah->ah_op_mode) {
2186 case IEEE80211_IF_TYPE_IBSS:
2187 pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_DESC_ANTENNA |
2188 (ah->ah_version == AR5K_AR5210 ?
2189 AR5K_STA_ID1_NO_PSPOLL : 0);
2190 beacon_reg |= AR5K_BCR_ADHOC;
2191 break;
2192
2193 case IEEE80211_IF_TYPE_AP:
2194 pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_RTS_DEF_ANTENNA |
2195 (ah->ah_version == AR5K_AR5210 ?
2196 AR5K_STA_ID1_NO_PSPOLL : 0);
2197 beacon_reg |= AR5K_BCR_AP;
2198 break;
2199
2200 case IEEE80211_IF_TYPE_STA:
2201 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2202 (ah->ah_version == AR5K_AR5210 ?
2203 AR5K_STA_ID1_PWR_SV : 0);
2204 case IEEE80211_IF_TYPE_MNTR:
2205 pcu_reg |= AR5K_STA_ID1_DEFAULT_ANTENNA |
2206 (ah->ah_version == AR5K_AR5210 ?
2207 AR5K_STA_ID1_NO_PSPOLL : 0);
2208 break;
2209
2210 default:
2211 return -EINVAL;
2212 }
2213
2214 /*
2215 * Set PCU registers
2216 */
2217 low_id = AR5K_LOW_ID(ah->ah_sta_id);
2218 high_id = AR5K_HIGH_ID(ah->ah_sta_id);
2219 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2220 ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
2221
2222 /*
2223 * Set Beacon Control Register on 5210
2224 */
2225 if (ah->ah_version == AR5K_AR5210)
2226 ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
2227
2228 return 0;
2229}
2230
2231/*
2232 * BSSID Functions
2233 */
2234
2235/*
2236 * Get station id
2237 */
2238void ath5k_hw_get_lladdr(struct ath5k_hw *ah, u8 *mac)
2239{
2240 ATH5K_TRACE(ah->ah_sc);
2241 memcpy(mac, ah->ah_sta_id, ETH_ALEN);
2242}
2243
2244/*
2245 * Set station id
2246 */
2247int ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
2248{
2249 u32 low_id, high_id;
2250
2251 ATH5K_TRACE(ah->ah_sc);
2252 /* Set new station ID */
2253 memcpy(ah->ah_sta_id, mac, ETH_ALEN);
2254
2255 low_id = AR5K_LOW_ID(mac);
2256 high_id = AR5K_HIGH_ID(mac);
2257
2258 ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
2259 ath5k_hw_reg_write(ah, high_id, AR5K_STA_ID1);
2260
2261 return 0;
2262}
2263
2264/*
2265 * Set BSSID
2266 */
2267void ath5k_hw_set_associd(struct ath5k_hw *ah, const u8 *bssid, u16 assoc_id)
2268{
2269 u32 low_id, high_id;
2270 u16 tim_offset = 0;
2271
2272 /*
2273 * Set simple BSSID mask on 5212
2274 */
2275 if (ah->ah_version == AR5K_AR5212) {
2276 ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM0);
2277 ath5k_hw_reg_write(ah, 0xfffffff, AR5K_BSS_IDM1);
2278 }
2279
2280 /*
2281 * Set BSSID which triggers the "SME Join" operation
2282 */
2283 low_id = AR5K_LOW_ID(bssid);
2284 high_id = AR5K_HIGH_ID(bssid);
2285 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_ID0);
2286 ath5k_hw_reg_write(ah, high_id | ((assoc_id & 0x3fff) <<
2287 AR5K_BSS_ID1_AID_S), AR5K_BSS_ID1);
2288
2289 if (assoc_id == 0) {
2290 ath5k_hw_disable_pspoll(ah);
2291 return;
2292 }
2293
2294 AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
2295 tim_offset ? tim_offset + 4 : 0);
2296
2297 ath5k_hw_enable_pspoll(ah, NULL, 0);
2298}
2299/**
2300 * ath5k_hw_set_bssid_mask - set common bits we should listen to
2301 *
2302 * The bssid_mask is a utility used by AR5212 hardware to inform the hardware
2303 * which bits of the interface's MAC address should be looked at when trying
2304 * to decide which packets to ACK. In station mode every bit matters. In AP
2305 * mode with a single BSS every bit matters as well. In AP mode with
2306 * multiple BSSes not every bit matters.
2307 *
2308 * @ah: the &struct ath5k_hw
2309 * @mask: the bssid_mask, a u8 array of size ETH_ALEN
2310 *
2311 * Note that this is a simple filter and *does* not filter out all
2312 * relevant frames. Some non-relevant frames will get through, probability
2313 * jocks are welcomed to compute.
2314 *
2315 * When handling multiple BSSes (or VAPs) you can get the BSSID mask by
2316 * computing the set of:
2317 *
2318 * ~ ( MAC XOR BSSID )
2319 *
2320 * When you do this you are essentially computing the common bits. Later it
2321 * is assumed the harware will "and" (&) the BSSID mask with the MAC address
2322 * to obtain the relevant bits which should match on the destination frame.
2323 *
2324 * Simple example: on your card you have have two BSSes you have created with
2325 * BSSID-01 and BSSID-02. Lets assume BSSID-01 will not use the MAC address.
2326 * There is another BSSID-03 but you are not part of it. For simplicity's sake,
2327 * assuming only 4 bits for a mac address and for BSSIDs you can then have:
2328 *
2329 * \
2330 * MAC: 0001 |
2331 * BSSID-01: 0100 | --> Belongs to us
2332 * BSSID-02: 1001 |
2333 * /
2334 * -------------------
2335 * BSSID-03: 0110 | --> External
2336 * -------------------
2337 *
2338 * Our bssid_mask would then be:
2339 *
2340 * On loop iteration for BSSID-01:
2341 * ~(0001 ^ 0100) -> ~(0101)
2342 * -> 1010
2343 * bssid_mask = 1010
2344 *
2345 * On loop iteration for BSSID-02:
2346 * bssid_mask &= ~(0001 ^ 1001)
2347 * bssid_mask = (1010) & ~(0001 ^ 1001)
2348 * bssid_mask = (1010) & ~(1001)
2349 * bssid_mask = (1010) & (0110)
2350 * bssid_mask = 0010
2351 *
2352 * A bssid_mask of 0010 means "only pay attention to the second least
2353 * significant bit". This is because its the only bit common
2354 * amongst the MAC and all BSSIDs we support. To findout what the real
2355 * common bit is we can simply "&" the bssid_mask now with any BSSID we have
2356 * or our MAC address (we assume the hardware uses the MAC address).
2357 *
2358 * Now, suppose there's an incoming frame for BSSID-03:
2359 *
2360 * IFRAME-01: 0110
2361 *
2362 * An easy eye-inspeciton of this already should tell you that this frame
2363 * will not pass our check. This is beacuse the bssid_mask tells the
2364 * hardware to only look at the second least significant bit and the
2365 * common bit amongst the MAC and BSSIDs is 0, this frame has the 2nd LSB
2366 * as 1, which does not match 0.
2367 *
2368 * So with IFRAME-01 we *assume* the hardware will do:
2369 *
2370 * allow = (IFRAME-01 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2371 * --> allow = (0110 & 0010) == (0010 & 0001) ? 1 : 0;
2372 * --> allow = (0010) == 0000 ? 1 : 0;
2373 * --> allow = 0
2374 *
2375 * Lets now test a frame that should work:
2376 *
2377 * IFRAME-02: 0001 (we should allow)
2378 *
2379 * allow = (0001 & 1010) == 1010
2380 *
2381 * allow = (IFRAME-02 & bssid_mask) == (bssid_mask & MAC) ? 1 : 0;
2382 * --> allow = (0001 & 0010) == (0010 & 0001) ? 1 :0;
2383 * --> allow = (0010) == (0010)
2384 * --> allow = 1
2385 *
2386 * Other examples:
2387 *
2388 * IFRAME-03: 0100 --> allowed
2389 * IFRAME-04: 1001 --> allowed
2390 * IFRAME-05: 1101 --> allowed but its not for us!!!
2391 *
2392 */
2393int ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
2394{
2395 u32 low_id, high_id;
2396 ATH5K_TRACE(ah->ah_sc);
2397
2398 if (ah->ah_version == AR5K_AR5212) {
2399 low_id = AR5K_LOW_ID(mask);
2400 high_id = AR5K_HIGH_ID(mask);
2401
2402 ath5k_hw_reg_write(ah, low_id, AR5K_BSS_IDM0);
2403 ath5k_hw_reg_write(ah, high_id, AR5K_BSS_IDM1);
2404
2405 return 0;
2406 }
2407
2408 return -EIO;
2409}
2410
2411/*
2412 * Receive start/stop functions
2413 */
2414
2415/*
2416 * Start receive on PCU
2417 */
2418void ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
2419{
2420 ATH5K_TRACE(ah->ah_sc);
2421 AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
2422}
2423
2424/*
2425 * Stop receive on PCU
2426 */
2427void ath5k_hw_stop_pcu_recv(struct ath5k_hw *ah)
2428{
2429 ATH5K_TRACE(ah->ah_sc);
2430 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
2431}
2432
2433/*
2434 * RX Filter functions
2435 */
2436
2437/*
2438 * Set multicast filter
2439 */
2440void ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
2441{
2442 ATH5K_TRACE(ah->ah_sc);
2443 /* Set the multicat filter */
2444 ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
2445 ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
2446}
2447
2448/*
2449 * Set multicast filter by index
2450 */
2451int ath5k_hw_set_mcast_filterindex(struct ath5k_hw *ah, u32 index)
2452{
2453
2454 ATH5K_TRACE(ah->ah_sc);
2455 if (index >= 64)
2456 return -EINVAL;
2457 else if (index >= 32)
2458 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER1,
2459 (1 << (index - 32)));
2460 else
2461 AR5K_REG_ENABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2462
2463 return 0;
2464}
2465
2466/*
2467 * Clear Multicast filter by index
2468 */
2469int ath5k_hw_clear_mcast_filter_idx(struct ath5k_hw *ah, u32 index)
2470{
2471
2472 ATH5K_TRACE(ah->ah_sc);
2473 if (index >= 64)
2474 return -EINVAL;
2475 else if (index >= 32)
2476 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER1,
2477 (1 << (index - 32)));
2478 else
2479 AR5K_REG_DISABLE_BITS(ah, AR5K_MCAST_FILTER0, (1 << index));
2480
2481 return 0;
2482}
2483
2484/*
2485 * Get current rx filter
2486 */
2487u32 ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
2488{
2489 u32 data, filter = 0;
2490
2491 ATH5K_TRACE(ah->ah_sc);
2492 filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
2493
2494 /*Radar detection for 5212*/
2495 if (ah->ah_version == AR5K_AR5212) {
2496 data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
2497
2498 if (data & AR5K_PHY_ERR_FIL_RADAR)
2499 filter |= AR5K_RX_FILTER_RADARERR;
2500 if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
2501 filter |= AR5K_RX_FILTER_PHYERR;
2502 }
2503
2504 return filter;
2505}
2506
2507/*
2508 * Set rx filter
2509 */
2510void ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
2511{
2512 u32 data = 0;
2513
2514 ATH5K_TRACE(ah->ah_sc);
2515
2516 /* Set PHY error filter register on 5212*/
2517 if (ah->ah_version == AR5K_AR5212) {
2518 if (filter & AR5K_RX_FILTER_RADARERR)
2519 data |= AR5K_PHY_ERR_FIL_RADAR;
2520 if (filter & AR5K_RX_FILTER_PHYERR)
2521 data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
2522 }
2523
2524 /*
2525 * The AR5210 uses promiscous mode to detect radar activity
2526 */
2527 if (ah->ah_version == AR5K_AR5210 &&
2528 (filter & AR5K_RX_FILTER_RADARERR)) {
2529 filter &= ~AR5K_RX_FILTER_RADARERR;
2530 filter |= AR5K_RX_FILTER_PROM;
2531 }
2532
2533 /*Zero length DMA*/
2534 if (data)
2535 AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2536 else
2537 AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
2538
2539 /*Write RX Filter register*/
2540 ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
2541
2542 /*Write PHY error filter register on 5212*/
2543 if (ah->ah_version == AR5K_AR5212)
2544 ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
2545
2546}
2547
2548/*
2549 * Beacon related functions
2550 */
2551
2552/*
2553 * Get a 32bit TSF
2554 */
2555u32 ath5k_hw_get_tsf32(struct ath5k_hw *ah)
2556{
2557 ATH5K_TRACE(ah->ah_sc);
2558 return ath5k_hw_reg_read(ah, AR5K_TSF_L32);
2559}
2560
2561/*
2562 * Get the full 64bit TSF
2563 */
2564u64 ath5k_hw_get_tsf64(struct ath5k_hw *ah)
2565{
2566 u64 tsf = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
2567 ATH5K_TRACE(ah->ah_sc);
2568
2569 return ath5k_hw_reg_read(ah, AR5K_TSF_L32) | (tsf << 32);
2570}
2571
2572/*
2573 * Force a TSF reset
2574 */
2575void ath5k_hw_reset_tsf(struct ath5k_hw *ah)
2576{
2577 ATH5K_TRACE(ah->ah_sc);
2578 AR5K_REG_ENABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_RESET_TSF);
2579}
2580
2581/*
2582 * Initialize beacon timers
2583 */
2584void ath5k_hw_init_beacon(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
2585{
2586 u32 timer1, timer2, timer3;
2587
2588 ATH5K_TRACE(ah->ah_sc);
2589 /*
2590 * Set the additional timers by mode
2591 */
2592 switch (ah->ah_op_mode) {
2593 case IEEE80211_IF_TYPE_STA:
2594 if (ah->ah_version == AR5K_AR5210) {
2595 timer1 = 0xffffffff;
2596 timer2 = 0xffffffff;
2597 } else {
2598 timer1 = 0x0000ffff;
2599 timer2 = 0x0007ffff;
2600 }
2601 break;
2602
2603 default:
2604 timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) <<
2605 0x00000003;
2606 timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) <<
2607 0x00000003;
2608 }
2609
2610 timer3 = next_beacon + (ah->ah_atim_window ? ah->ah_atim_window : 1);
2611
2612 /*
2613 * Set the beacon register and enable all timers.
2614 * (next beacon, DMA beacon, software beacon, ATIM window time)
2615 */
2616 ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
2617 ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
2618 ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
2619 ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
2620
2621 ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
2622 AR5K_BEACON_RESET_TSF | AR5K_BEACON_ENABLE),
2623 AR5K_BEACON);
2624}
2625
2626#if 0
2627/*
2628 * Set beacon timers
2629 */
2630int ath5k_hw_set_beacon_timers(struct ath5k_hw *ah,
2631 const struct ath5k_beacon_state *state)
2632{
2633 u32 cfp_period, next_cfp, dtim, interval, next_beacon;
2634
2635 /*
2636 * TODO: should be changed through *state
2637 * review struct ath5k_beacon_state struct
2638 *
2639 * XXX: These are used for cfp period bellow, are they
2640 * ok ? Is it O.K. for tsf here to be 0 or should we use
2641 * get_tsf ?
2642 */
2643 u32 dtim_count = 0; /* XXX */
2644 u32 cfp_count = 0; /* XXX */
2645 u32 tsf = 0; /* XXX */
2646
2647 ATH5K_TRACE(ah->ah_sc);
2648 /* Return on an invalid beacon state */
2649 if (state->bs_interval < 1)
2650 return -EINVAL;
2651
2652 interval = state->bs_interval;
2653 dtim = state->bs_dtim_period;
2654
2655 /*
2656 * PCF support?
2657 */
2658 if (state->bs_cfp_period > 0) {
2659 /*
2660 * Enable PCF mode and set the CFP
2661 * (Contention Free Period) and timer registers
2662 */
2663 cfp_period = state->bs_cfp_period * state->bs_dtim_period *
2664 state->bs_interval;
2665 next_cfp = (cfp_count * state->bs_dtim_period + dtim_count) *
2666 state->bs_interval;
2667
2668 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
2669 AR5K_STA_ID1_DEFAULT_ANTENNA |
2670 AR5K_STA_ID1_PCF);
2671 ath5k_hw_reg_write(ah, cfp_period, AR5K_CFP_PERIOD);
2672 ath5k_hw_reg_write(ah, state->bs_cfp_max_duration,
2673 AR5K_CFP_DUR);
2674 ath5k_hw_reg_write(ah, (tsf + (next_cfp == 0 ? cfp_period :
2675 next_cfp)) << 3, AR5K_TIMER2);
2676 } else {
2677 /* Disable PCF mode */
2678 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2679 AR5K_STA_ID1_DEFAULT_ANTENNA |
2680 AR5K_STA_ID1_PCF);
2681 }
2682
2683 /*
2684 * Enable the beacon timer register
2685 */
2686 ath5k_hw_reg_write(ah, state->bs_next_beacon, AR5K_TIMER0);
2687
2688 /*
2689 * Start the beacon timers
2690 */
2691 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_BEACON) &~
2692 (AR5K_BEACON_PERIOD | AR5K_BEACON_TIM)) |
2693 AR5K_REG_SM(state->bs_tim_offset ? state->bs_tim_offset + 4 : 0,
2694 AR5K_BEACON_TIM) | AR5K_REG_SM(state->bs_interval,
2695 AR5K_BEACON_PERIOD), AR5K_BEACON);
2696
2697 /*
2698 * Write new beacon miss threshold, if it appears to be valid
2699 * XXX: Figure out right values for min <= bs_bmiss_threshold <= max
2700 * and return if its not in range. We can test this by reading value and
2701 * setting value to a largest value and seeing which values register.
2702 */
2703
2704 AR5K_REG_WRITE_BITS(ah, AR5K_RSSI_THR, AR5K_RSSI_THR_BMISS,
2705 state->bs_bmiss_threshold);
2706
2707 /*
2708 * Set sleep control register
2709 * XXX: Didn't find this in 5210 code but since this register
2710 * exists also in ar5k's 5210 headers i leave it as common code.
2711 */
2712 AR5K_REG_WRITE_BITS(ah, AR5K_SLEEP_CTL, AR5K_SLEEP_CTL_SLDUR,
2713 (state->bs_sleep_duration - 3) << 3);
2714
2715 /*
2716 * Set enhanced sleep registers on 5212
2717 */
2718 if (ah->ah_version == AR5K_AR5212) {
2719 if (state->bs_sleep_duration > state->bs_interval &&
2720 roundup(state->bs_sleep_duration, interval) ==
2721 state->bs_sleep_duration)
2722 interval = state->bs_sleep_duration;
2723
2724 if (state->bs_sleep_duration > dtim && (dtim == 0 ||
2725 roundup(state->bs_sleep_duration, dtim) ==
2726 state->bs_sleep_duration))
2727 dtim = state->bs_sleep_duration;
2728
2729 if (interval > dtim)
2730 return -EINVAL;
2731
2732 next_beacon = interval == dtim ? state->bs_next_dtim :
2733 state->bs_next_beacon;
2734
2735 ath5k_hw_reg_write(ah,
2736 AR5K_REG_SM((state->bs_next_dtim - 3) << 3,
2737 AR5K_SLEEP0_NEXT_DTIM) |
2738 AR5K_REG_SM(10, AR5K_SLEEP0_CABTO) |
2739 AR5K_SLEEP0_ENH_SLEEP_EN |
2740 AR5K_SLEEP0_ASSUME_DTIM, AR5K_SLEEP0);
2741
2742 ath5k_hw_reg_write(ah, AR5K_REG_SM((next_beacon - 3) << 3,
2743 AR5K_SLEEP1_NEXT_TIM) |
2744 AR5K_REG_SM(10, AR5K_SLEEP1_BEACON_TO), AR5K_SLEEP1);
2745
2746 ath5k_hw_reg_write(ah,
2747 AR5K_REG_SM(interval, AR5K_SLEEP2_TIM_PER) |
2748 AR5K_REG_SM(dtim, AR5K_SLEEP2_DTIM_PER), AR5K_SLEEP2);
2749 }
2750
2751 return 0;
2752}
2753
2754/*
2755 * Reset beacon timers
2756 */
2757void ath5k_hw_reset_beacon(struct ath5k_hw *ah)
2758{
2759 ATH5K_TRACE(ah->ah_sc);
2760 /*
2761 * Disable beacon timer
2762 */
2763 ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
2764
2765 /*
2766 * Disable some beacon register values
2767 */
2768 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
2769 AR5K_STA_ID1_DEFAULT_ANTENNA | AR5K_STA_ID1_PCF);
2770 ath5k_hw_reg_write(ah, AR5K_BEACON_PERIOD, AR5K_BEACON);
2771}
2772
2773/*
2774 * Wait for beacon queue to finish
2775 */
2776int ath5k_hw_beaconq_finish(struct ath5k_hw *ah, unsigned long phys_addr)
2777{
2778 unsigned int i;
2779 int ret;
2780
2781 ATH5K_TRACE(ah->ah_sc);
2782
2783 /* 5210 doesn't have QCU*/
2784 if (ah->ah_version == AR5K_AR5210) {
2785 /*
2786 * Wait for beaconn queue to finish by checking
2787 * Control Register and Beacon Status Register.
2788 */
2789 for (i = AR5K_TUNE_BEACON_INTERVAL / 2; i > 0; i--) {
2790 if (!(ath5k_hw_reg_read(ah, AR5K_BSR) & AR5K_BSR_TXQ1F)
2791 ||
2792 !(ath5k_hw_reg_read(ah, AR5K_CR) & AR5K_BSR_TXQ1F))
2793 break;
2794 udelay(10);
2795 }
2796
2797 /* Timeout... */
2798 if (i <= 0) {
2799 /*
2800 * Re-schedule the beacon queue
2801 */
2802 ath5k_hw_reg_write(ah, phys_addr, AR5K_NOQCU_TXDP1);
2803 ath5k_hw_reg_write(ah, AR5K_BCR_TQ1V | AR5K_BCR_BDMAE,
2804 AR5K_BCR);
2805
2806 return -EIO;
2807 }
2808 ret = 0;
2809 } else {
2810 /*5211/5212*/
2811 ret = ath5k_hw_register_timeout(ah,
2812 AR5K_QUEUE_STATUS(AR5K_TX_QUEUE_ID_BEACON),
2813 AR5K_QCU_STS_FRMPENDCNT, 0, false);
2814
2815 if (AR5K_REG_READ_Q(ah, AR5K_QCU_TXE, AR5K_TX_QUEUE_ID_BEACON))
2816 return -EIO;
2817 }
2818
2819 return ret;
2820}
2821#endif
2822
2823/*
2824 * Update mib counters (statistics)
2825 */
2826void ath5k_hw_update_mib_counters(struct ath5k_hw *ah,
2827 struct ath5k_mib_stats *statistics)
2828{
2829 ATH5K_TRACE(ah->ah_sc);
2830 /* Read-And-Clear */
2831 statistics->ackrcv_bad += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
2832 statistics->rts_bad += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
2833 statistics->rts_good += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
2834 statistics->fcs_bad += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
2835 statistics->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
2836
2837 /* Reset profile count registers on 5212*/
2838 if (ah->ah_version == AR5K_AR5212) {
2839 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_TX);
2840 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RX);
2841 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_RXCLR);
2842 ath5k_hw_reg_write(ah, 0, AR5K_PROFCNT_CYCLE);
2843 }
2844}
2845
2846/** ath5k_hw_set_ack_bitrate - set bitrate for ACKs
2847 *
2848 * @ah: the &struct ath5k_hw
2849 * @high: determines if to use low bit rate or now
2850 */
2851void ath5k_hw_set_ack_bitrate_high(struct ath5k_hw *ah, bool high)
2852{
2853 if (ah->ah_version != AR5K_AR5212)
2854 return;
2855 else {
2856 u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
2857 if (high)
2858 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
2859 else
2860 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
2861 }
2862}
2863
2864
2865/*
2866 * ACK/CTS Timeouts
2867 */
2868
2869/*
2870 * Set ACK timeout on PCU
2871 */
2872int ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
2873{
2874 ATH5K_TRACE(ah->ah_sc);
2875 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK),
2876 ah->ah_turbo) <= timeout)
2877 return -EINVAL;
2878
2879 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
2880 ath5k_hw_htoclock(timeout, ah->ah_turbo));
2881
2882 return 0;
2883}
2884
2885/*
2886 * Read the ACK timeout from PCU
2887 */
2888unsigned int ath5k_hw_get_ack_timeout(struct ath5k_hw *ah)
2889{
2890 ATH5K_TRACE(ah->ah_sc);
2891
2892 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
2893 AR5K_TIME_OUT), AR5K_TIME_OUT_ACK), ah->ah_turbo);
2894}
2895
2896/*
2897 * Set CTS timeout on PCU
2898 */
2899int ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
2900{
2901 ATH5K_TRACE(ah->ah_sc);
2902 if (ath5k_hw_clocktoh(AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS),
2903 ah->ah_turbo) <= timeout)
2904 return -EINVAL;
2905
2906 AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
2907 ath5k_hw_htoclock(timeout, ah->ah_turbo));
2908
2909 return 0;
2910}
2911
2912/*
2913 * Read CTS timeout from PCU
2914 */
2915unsigned int ath5k_hw_get_cts_timeout(struct ath5k_hw *ah)
2916{
2917 ATH5K_TRACE(ah->ah_sc);
2918 return ath5k_hw_clocktoh(AR5K_REG_MS(ath5k_hw_reg_read(ah,
2919 AR5K_TIME_OUT), AR5K_TIME_OUT_CTS), ah->ah_turbo);
2920}
2921
2922/*
2923 * Key table (WEP) functions
2924 */
2925
2926int ath5k_hw_reset_key(struct ath5k_hw *ah, u16 entry)
2927{
2928 unsigned int i;
2929
2930 ATH5K_TRACE(ah->ah_sc);
2931 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
2932
2933 for (i = 0; i < AR5K_KEYCACHE_SIZE; i++)
2934 ath5k_hw_reg_write(ah, 0, AR5K_KEYTABLE_OFF(entry, i));
2935
2936 /* Set NULL encryption on non-5210*/
2937 if (ah->ah_version != AR5K_AR5210)
2938 ath5k_hw_reg_write(ah, AR5K_KEYTABLE_TYPE_NULL,
2939 AR5K_KEYTABLE_TYPE(entry));
2940
2941 return 0;
2942}
2943
2944int ath5k_hw_is_key_valid(struct ath5k_hw *ah, u16 entry)
2945{
2946 ATH5K_TRACE(ah->ah_sc);
2947 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
2948
2949 /* Check the validation flag at the end of the entry */
2950 return ath5k_hw_reg_read(ah, AR5K_KEYTABLE_MAC1(entry)) &
2951 AR5K_KEYTABLE_VALID;
2952}
2953
2954int ath5k_hw_set_key(struct ath5k_hw *ah, u16 entry,
2955 const struct ieee80211_key_conf *key, const u8 *mac)
2956{
2957 unsigned int i;
2958 __le32 key_v[5] = {};
2959 u32 keytype;
2960
2961 ATH5K_TRACE(ah->ah_sc);
2962
2963 /* key->keylen comes in from mac80211 in bytes */
2964
2965 if (key->keylen > AR5K_KEYTABLE_SIZE / 8)
2966 return -EOPNOTSUPP;
2967
2968 switch (key->keylen) {
2969 /* WEP 40-bit = 40-bit entered key + 24 bit IV = 64-bit */
2970 case 40 / 8:
2971 memcpy(&key_v[0], key->key, 5);
2972 keytype = AR5K_KEYTABLE_TYPE_40;
2973 break;
2974
2975 /* WEP 104-bit = 104-bit entered key + 24-bit IV = 128-bit */
2976 case 104 / 8:
2977 memcpy(&key_v[0], &key->key[0], 6);
2978 memcpy(&key_v[2], &key->key[6], 6);
2979 memcpy(&key_v[4], &key->key[12], 1);
2980 keytype = AR5K_KEYTABLE_TYPE_104;
2981 break;
2982 /* WEP 128-bit = 128-bit entered key + 24 bit IV = 152-bit */
2983 case 128 / 8:
2984 memcpy(&key_v[0], &key->key[0], 6);
2985 memcpy(&key_v[2], &key->key[6], 6);
2986 memcpy(&key_v[4], &key->key[12], 4);
2987 keytype = AR5K_KEYTABLE_TYPE_128;
2988 break;
2989
2990 default:
2991 return -EINVAL; /* shouldn't happen */
2992 }
2993
2994 for (i = 0; i < ARRAY_SIZE(key_v); i++)
2995 ath5k_hw_reg_write(ah, le32_to_cpu(key_v[i]),
2996 AR5K_KEYTABLE_OFF(entry, i));
2997
2998 ath5k_hw_reg_write(ah, keytype, AR5K_KEYTABLE_TYPE(entry));
2999
3000 return ath5k_hw_set_key_lladdr(ah, entry, mac);
3001}
3002
3003int ath5k_hw_set_key_lladdr(struct ath5k_hw *ah, u16 entry, const u8 *mac)
3004{
3005 u32 low_id, high_id;
3006
3007 ATH5K_TRACE(ah->ah_sc);
3008 /* Invalid entry (key table overflow) */
3009 AR5K_ASSERT_ENTRY(entry, AR5K_KEYTABLE_SIZE);
3010
3011 /* MAC may be NULL if it's a broadcast key. In this case no need to
3012 * to compute AR5K_LOW_ID and AR5K_HIGH_ID as we already know it. */
3013 if (unlikely(mac == NULL)) {
3014 low_id = 0xffffffff;
3015 high_id = 0xffff | AR5K_KEYTABLE_VALID;
3016 } else {
3017 low_id = AR5K_LOW_ID(mac);
3018 high_id = AR5K_HIGH_ID(mac) | AR5K_KEYTABLE_VALID;
3019 }
3020
3021 ath5k_hw_reg_write(ah, low_id, AR5K_KEYTABLE_MAC0(entry));
3022 ath5k_hw_reg_write(ah, high_id, AR5K_KEYTABLE_MAC1(entry));
3023
3024 return 0;
3025}
3026
3027
3028/********************************************\
3029Queue Control Unit, DFS Control Unit Functions
3030\********************************************/
3031
3032/*
3033 * Initialize a transmit queue
3034 */
3035int ath5k_hw_setup_tx_queue(struct ath5k_hw *ah, enum ath5k_tx_queue queue_type,
3036 struct ath5k_txq_info *queue_info)
3037{
3038 unsigned int queue;
3039 int ret;
3040
3041 ATH5K_TRACE(ah->ah_sc);
3042
3043 /*
3044 * Get queue by type
3045 */
3046 /*5210 only has 2 queues*/
3047 if (ah->ah_version == AR5K_AR5210) {
3048 switch (queue_type) {
3049 case AR5K_TX_QUEUE_DATA:
3050 queue = AR5K_TX_QUEUE_ID_NOQCU_DATA;
3051 break;
3052 case AR5K_TX_QUEUE_BEACON:
3053 case AR5K_TX_QUEUE_CAB:
3054 queue = AR5K_TX_QUEUE_ID_NOQCU_BEACON;
3055 break;
3056 default:
3057 return -EINVAL;
3058 }
3059 } else {
3060 switch (queue_type) {
3061 case AR5K_TX_QUEUE_DATA:
3062 for (queue = AR5K_TX_QUEUE_ID_DATA_MIN;
3063 ah->ah_txq[queue].tqi_type !=
3064 AR5K_TX_QUEUE_INACTIVE; queue++) {
3065
3066 if (queue > AR5K_TX_QUEUE_ID_DATA_MAX)
3067 return -EINVAL;
3068 }
3069 break;
3070 case AR5K_TX_QUEUE_UAPSD:
3071 queue = AR5K_TX_QUEUE_ID_UAPSD;
3072 break;
3073 case AR5K_TX_QUEUE_BEACON:
3074 queue = AR5K_TX_QUEUE_ID_BEACON;
3075 break;
3076 case AR5K_TX_QUEUE_CAB:
3077 queue = AR5K_TX_QUEUE_ID_CAB;
3078 break;
3079 case AR5K_TX_QUEUE_XR_DATA:
3080 if (ah->ah_version != AR5K_AR5212)
3081 ATH5K_ERR(ah->ah_sc,
3082 "XR data queues only supported in"
3083 " 5212!\n");
3084 queue = AR5K_TX_QUEUE_ID_XR_DATA;
3085 break;
3086 default:
3087 return -EINVAL;
3088 }
3089 }
3090
3091 /*
3092 * Setup internal queue structure
3093 */
3094 memset(&ah->ah_txq[queue], 0, sizeof(struct ath5k_txq_info));
3095 ah->ah_txq[queue].tqi_type = queue_type;
3096
3097 if (queue_info != NULL) {
3098 queue_info->tqi_type = queue_type;
3099 ret = ath5k_hw_setup_tx_queueprops(ah, queue, queue_info);
3100 if (ret)
3101 return ret;
3102 }
3103 /*
3104 * We use ah_txq_status to hold a temp value for
3105 * the Secondary interrupt mask registers on 5211+
3106 * check out ath5k_hw_reset_tx_queue
3107 */
3108 AR5K_Q_ENABLE_BITS(ah->ah_txq_status, queue);
3109
3110 return queue;
3111}
3112
3113/*
3114 * Setup a transmit queue
3115 */
3116int ath5k_hw_setup_tx_queueprops(struct ath5k_hw *ah, int queue,
3117 const struct ath5k_txq_info *queue_info)
3118{
3119 ATH5K_TRACE(ah->ah_sc);
3120 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3121
3122 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3123 return -EIO;
3124
3125 memcpy(&ah->ah_txq[queue], queue_info, sizeof(struct ath5k_txq_info));
3126
3127 /*XXX: Is this supported on 5210 ?*/
3128 if ((queue_info->tqi_type == AR5K_TX_QUEUE_DATA &&
3129 ((queue_info->tqi_subtype == AR5K_WME_AC_VI) ||
3130 (queue_info->tqi_subtype == AR5K_WME_AC_VO))) ||
3131 queue_info->tqi_type == AR5K_TX_QUEUE_UAPSD)
3132 ah->ah_txq[queue].tqi_flags |= AR5K_TXQ_FLAG_POST_FR_BKOFF_DIS;
3133
3134 return 0;
3135}
3136
3137/*
3138 * Get properties for a specific transmit queue
3139 */
3140int ath5k_hw_get_tx_queueprops(struct ath5k_hw *ah, int queue,
3141 struct ath5k_txq_info *queue_info)
3142{
3143 ATH5K_TRACE(ah->ah_sc);
3144 memcpy(queue_info, &ah->ah_txq[queue], sizeof(struct ath5k_txq_info));
3145 return 0;
3146}
3147
3148/*
3149 * Set a transmit queue inactive
3150 */
3151void ath5k_hw_release_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3152{
3153 ATH5K_TRACE(ah->ah_sc);
3154 if (WARN_ON(queue >= ah->ah_capabilities.cap_queues.q_tx_num))
3155 return;
3156
3157 /* This queue will be skipped in further operations */
3158 ah->ah_txq[queue].tqi_type = AR5K_TX_QUEUE_INACTIVE;
3159 /*For SIMR setup*/
3160 AR5K_Q_DISABLE_BITS(ah->ah_txq_status, queue);
3161}
3162
3163/*
3164 * Set DFS params for a transmit queue
3165 */
3166int ath5k_hw_reset_tx_queue(struct ath5k_hw *ah, unsigned int queue)
3167{
3168 u32 cw_min, cw_max, retry_lg, retry_sh;
3169 struct ath5k_txq_info *tq = &ah->ah_txq[queue];
3170
3171 ATH5K_TRACE(ah->ah_sc);
3172 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3173
3174 tq = &ah->ah_txq[queue];
3175
3176 if (tq->tqi_type == AR5K_TX_QUEUE_INACTIVE)
3177 return 0;
3178
3179 if (ah->ah_version == AR5K_AR5210) {
3180 /* Only handle data queues, others will be ignored */
3181 if (tq->tqi_type != AR5K_TX_QUEUE_DATA)
3182 return 0;
3183
3184 /* Set Slot time */
3185 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3186 AR5K_INIT_SLOT_TIME_TURBO : AR5K_INIT_SLOT_TIME,
3187 AR5K_SLOT_TIME);
3188 /* Set ACK_CTS timeout */
3189 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3190 AR5K_INIT_ACK_CTS_TIMEOUT_TURBO :
3191 AR5K_INIT_ACK_CTS_TIMEOUT, AR5K_SLOT_TIME);
3192 /* Set Transmit Latency */
3193 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3194 AR5K_INIT_TRANSMIT_LATENCY_TURBO :
3195 AR5K_INIT_TRANSMIT_LATENCY, AR5K_USEC_5210);
3196 /* Set IFS0 */
3197 if (ah->ah_turbo == true)
3198 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS_TURBO +
3199 (ah->ah_aifs + tq->tqi_aifs) *
3200 AR5K_INIT_SLOT_TIME_TURBO) <<
3201 AR5K_IFS0_DIFS_S) | AR5K_INIT_SIFS_TURBO,
3202 AR5K_IFS0);
3203 else
3204 ath5k_hw_reg_write(ah, ((AR5K_INIT_SIFS +
3205 (ah->ah_aifs + tq->tqi_aifs) *
3206 AR5K_INIT_SLOT_TIME) << AR5K_IFS0_DIFS_S) |
3207 AR5K_INIT_SIFS, AR5K_IFS0);
3208
3209 /* Set IFS1 */
3210 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3211 AR5K_INIT_PROTO_TIME_CNTRL_TURBO :
3212 AR5K_INIT_PROTO_TIME_CNTRL, AR5K_IFS1);
3213 /* Set PHY register 0x9844 (??) */
3214 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3215 (ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x38 :
3216 (ath5k_hw_reg_read(ah, AR5K_PHY(17)) & ~0x7F) | 0x1C,
3217 AR5K_PHY(17));
3218 /* Set Frame Control Register */
3219 ath5k_hw_reg_write(ah, ah->ah_turbo == true ?
3220 (AR5K_PHY_FRAME_CTL_INI | AR5K_PHY_TURBO_MODE |
3221 AR5K_PHY_TURBO_SHORT | 0x2020) :
3222 (AR5K_PHY_FRAME_CTL_INI | 0x1020),
3223 AR5K_PHY_FRAME_CTL_5210);
3224 }
3225
3226 /*
3227 * Calculate cwmin/max by channel mode
3228 */
3229 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN;
3230 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX;
3231 ah->ah_aifs = AR5K_TUNE_AIFS;
3232 /*XR is only supported on 5212*/
3233 if (IS_CHAN_XR(ah->ah_current_channel) &&
3234 ah->ah_version == AR5K_AR5212) {
3235 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_XR;
3236 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_XR;
3237 ah->ah_aifs = AR5K_TUNE_AIFS_XR;
3238 /*B mode is not supported on 5210*/
3239 } else if (IS_CHAN_B(ah->ah_current_channel) &&
3240 ah->ah_version != AR5K_AR5210) {
3241 cw_min = ah->ah_cw_min = AR5K_TUNE_CWMIN_11B;
3242 cw_max = ah->ah_cw_max = AR5K_TUNE_CWMAX_11B;
3243 ah->ah_aifs = AR5K_TUNE_AIFS_11B;
3244 }
3245
3246 cw_min = 1;
3247 while (cw_min < ah->ah_cw_min)
3248 cw_min = (cw_min << 1) | 1;
3249
3250 cw_min = tq->tqi_cw_min < 0 ? (cw_min >> (-tq->tqi_cw_min)) :
3251 ((cw_min << tq->tqi_cw_min) + (1 << tq->tqi_cw_min) - 1);
3252 cw_max = tq->tqi_cw_max < 0 ? (cw_max >> (-tq->tqi_cw_max)) :
3253 ((cw_max << tq->tqi_cw_max) + (1 << tq->tqi_cw_max) - 1);
3254
3255 /*
3256 * Calculate and set retry limits
3257 */
3258 if (ah->ah_software_retry == true) {
3259 /* XXX Need to test this */
3260 retry_lg = ah->ah_limit_tx_retries;
3261 retry_sh = retry_lg = retry_lg > AR5K_DCU_RETRY_LMT_SH_RETRY ?
3262 AR5K_DCU_RETRY_LMT_SH_RETRY : retry_lg;
3263 } else {
3264 retry_lg = AR5K_INIT_LG_RETRY;
3265 retry_sh = AR5K_INIT_SH_RETRY;
3266 }
3267
3268 /*No QCU/DCU [5210]*/
3269 if (ah->ah_version == AR5K_AR5210) {
3270 ath5k_hw_reg_write(ah,
3271 (cw_min << AR5K_NODCU_RETRY_LMT_CW_MIN_S)
3272 | AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3273 AR5K_NODCU_RETRY_LMT_SLG_RETRY)
3274 | AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3275 AR5K_NODCU_RETRY_LMT_SSH_RETRY)
3276 | AR5K_REG_SM(retry_lg, AR5K_NODCU_RETRY_LMT_LG_RETRY)
3277 | AR5K_REG_SM(retry_sh, AR5K_NODCU_RETRY_LMT_SH_RETRY),
3278 AR5K_NODCU_RETRY_LMT);
3279 } else {
3280 /*QCU/DCU [5211+]*/
3281 ath5k_hw_reg_write(ah,
3282 AR5K_REG_SM(AR5K_INIT_SLG_RETRY,
3283 AR5K_DCU_RETRY_LMT_SLG_RETRY) |
3284 AR5K_REG_SM(AR5K_INIT_SSH_RETRY,
3285 AR5K_DCU_RETRY_LMT_SSH_RETRY) |
3286 AR5K_REG_SM(retry_lg, AR5K_DCU_RETRY_LMT_LG_RETRY) |
3287 AR5K_REG_SM(retry_sh, AR5K_DCU_RETRY_LMT_SH_RETRY),
3288 AR5K_QUEUE_DFS_RETRY_LIMIT(queue));
3289
3290 /*===Rest is also for QCU/DCU only [5211+]===*/
3291
3292 /*
3293 * Set initial content window (cw_min/cw_max)
3294 * and arbitrated interframe space (aifs)...
3295 */
3296 ath5k_hw_reg_write(ah,
3297 AR5K_REG_SM(cw_min, AR5K_DCU_LCL_IFS_CW_MIN) |
3298 AR5K_REG_SM(cw_max, AR5K_DCU_LCL_IFS_CW_MAX) |
3299 AR5K_REG_SM(ah->ah_aifs + tq->tqi_aifs,
3300 AR5K_DCU_LCL_IFS_AIFS),
3301 AR5K_QUEUE_DFS_LOCAL_IFS(queue));
3302
3303 /*
3304 * Set misc registers
3305 */
3306 ath5k_hw_reg_write(ah, AR5K_QCU_MISC_DCU_EARLY,
3307 AR5K_QUEUE_MISC(queue));
3308
3309 if (tq->tqi_cbr_period) {
3310 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_cbr_period,
3311 AR5K_QCU_CBRCFG_INTVAL) |
3312 AR5K_REG_SM(tq->tqi_cbr_overflow_limit,
3313 AR5K_QCU_CBRCFG_ORN_THRES),
3314 AR5K_QUEUE_CBRCFG(queue));
3315 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3316 AR5K_QCU_MISC_FRSHED_CBR);
3317 if (tq->tqi_cbr_overflow_limit)
3318 AR5K_REG_ENABLE_BITS(ah,
3319 AR5K_QUEUE_MISC(queue),
3320 AR5K_QCU_MISC_CBR_THRES_ENABLE);
3321 }
3322
3323 if (tq->tqi_ready_time)
3324 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_ready_time,
3325 AR5K_QCU_RDYTIMECFG_INTVAL) |
3326 AR5K_QCU_RDYTIMECFG_ENABLE,
3327 AR5K_QUEUE_RDYTIMECFG(queue));
3328
3329 if (tq->tqi_burst_time) {
3330 ath5k_hw_reg_write(ah, AR5K_REG_SM(tq->tqi_burst_time,
3331 AR5K_DCU_CHAN_TIME_DUR) |
3332 AR5K_DCU_CHAN_TIME_ENABLE,
3333 AR5K_QUEUE_DFS_CHANNEL_TIME(queue));
3334
3335 if (tq->tqi_flags & AR5K_TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE)
3336 AR5K_REG_ENABLE_BITS(ah,
3337 AR5K_QUEUE_MISC(queue),
3338 AR5K_QCU_MISC_TXE);
3339 }
3340
3341 if (tq->tqi_flags & AR5K_TXQ_FLAG_BACKOFF_DISABLE)
3342 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_POST_FR_BKOFF_DIS,
3343 AR5K_QUEUE_DFS_MISC(queue));
3344
3345 if (tq->tqi_flags & AR5K_TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
3346 ath5k_hw_reg_write(ah, AR5K_DCU_MISC_BACKOFF_FRAG,
3347 AR5K_QUEUE_DFS_MISC(queue));
3348
3349 /*
3350 * Set registers by queue type
3351 */
3352 switch (tq->tqi_type) {
3353 case AR5K_TX_QUEUE_BEACON:
3354 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3355 AR5K_QCU_MISC_FRSHED_DBA_GT |
3356 AR5K_QCU_MISC_CBREXP_BCN |
3357 AR5K_QCU_MISC_BCN_ENABLE);
3358
3359 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3360 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3361 AR5K_DCU_MISC_ARBLOCK_CTL_S) |
3362 AR5K_DCU_MISC_POST_FR_BKOFF_DIS |
3363 AR5K_DCU_MISC_BCN_ENABLE);
3364
3365 ath5k_hw_reg_write(ah, ((AR5K_TUNE_BEACON_INTERVAL -
3366 (AR5K_TUNE_SW_BEACON_RESP -
3367 AR5K_TUNE_DMA_BEACON_RESP) -
3368 AR5K_TUNE_ADDITIONAL_SWBA_BACKOFF) * 1024) |
3369 AR5K_QCU_RDYTIMECFG_ENABLE,
3370 AR5K_QUEUE_RDYTIMECFG(queue));
3371 break;
3372
3373 case AR5K_TX_QUEUE_CAB:
3374 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3375 AR5K_QCU_MISC_FRSHED_DBA_GT |
3376 AR5K_QCU_MISC_CBREXP |
3377 AR5K_QCU_MISC_CBREXP_BCN);
3378
3379 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_DFS_MISC(queue),
3380 (AR5K_DCU_MISC_ARBLOCK_CTL_GLOBAL <<
3381 AR5K_DCU_MISC_ARBLOCK_CTL_S));
3382 break;
3383
3384 case AR5K_TX_QUEUE_UAPSD:
3385 AR5K_REG_ENABLE_BITS(ah, AR5K_QUEUE_MISC(queue),
3386 AR5K_QCU_MISC_CBREXP);
3387 break;
3388
3389 case AR5K_TX_QUEUE_DATA:
3390 default:
3391 break;
3392 }
3393
3394 /*
3395 * Enable interrupts for this tx queue
3396 * in the secondary interrupt mask registers
3397 */
3398 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXOKINT_ENABLE)
3399 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txok, queue);
3400
3401 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXERRINT_ENABLE)
3402 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txerr, queue);
3403
3404 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXURNINT_ENABLE)
3405 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txurn, queue);
3406
3407 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXDESCINT_ENABLE)
3408 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txdesc, queue);
3409
3410 if (tq->tqi_flags & AR5K_TXQ_FLAG_TXEOLINT_ENABLE)
3411 AR5K_Q_ENABLE_BITS(ah->ah_txq_imr_txeol, queue);
3412
3413
3414 /* Update secondary interrupt mask registers */
3415 ah->ah_txq_imr_txok &= ah->ah_txq_status;
3416 ah->ah_txq_imr_txerr &= ah->ah_txq_status;
3417 ah->ah_txq_imr_txurn &= ah->ah_txq_status;
3418 ah->ah_txq_imr_txdesc &= ah->ah_txq_status;
3419 ah->ah_txq_imr_txeol &= ah->ah_txq_status;
3420
3421 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txok,
3422 AR5K_SIMR0_QCU_TXOK) |
3423 AR5K_REG_SM(ah->ah_txq_imr_txdesc,
3424 AR5K_SIMR0_QCU_TXDESC), AR5K_SIMR0);
3425 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txerr,
3426 AR5K_SIMR1_QCU_TXERR) |
3427 AR5K_REG_SM(ah->ah_txq_imr_txeol,
3428 AR5K_SIMR1_QCU_TXEOL), AR5K_SIMR1);
3429 ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txq_imr_txurn,
3430 AR5K_SIMR2_QCU_TXURN), AR5K_SIMR2);
3431 }
3432
3433 return 0;
3434}
3435
3436/*
3437 * Get number of pending frames
3438 * for a specific queue [5211+]
3439 */
3440u32 ath5k_hw_num_tx_pending(struct ath5k_hw *ah, unsigned int queue) {
3441 ATH5K_TRACE(ah->ah_sc);
3442 AR5K_ASSERT_ENTRY(queue, ah->ah_capabilities.cap_queues.q_tx_num);
3443
3444 /* Return if queue is declared inactive */
3445 if (ah->ah_txq[queue].tqi_type == AR5K_TX_QUEUE_INACTIVE)
3446 return false;
3447
3448 /* XXX: How about AR5K_CFG_TXCNT ? */
3449 if (ah->ah_version == AR5K_AR5210)
3450 return false;
3451
3452 return AR5K_QUEUE_STATUS(queue) & AR5K_QCU_STS_FRMPENDCNT;
3453}
3454
3455/*
3456 * Set slot time
3457 */
3458int ath5k_hw_set_slot_time(struct ath5k_hw *ah, unsigned int slot_time)
3459{
3460 ATH5K_TRACE(ah->ah_sc);
3461 if (slot_time < AR5K_SLOT_TIME_9 || slot_time > AR5K_SLOT_TIME_MAX)
3462 return -EINVAL;
3463
3464 if (ah->ah_version == AR5K_AR5210)
3465 ath5k_hw_reg_write(ah, ath5k_hw_htoclock(slot_time,
3466 ah->ah_turbo), AR5K_SLOT_TIME);
3467 else
3468 ath5k_hw_reg_write(ah, slot_time, AR5K_DCU_GBL_IFS_SLOT);
3469
3470 return 0;
3471}
3472
3473/*
3474 * Get slot time
3475 */
3476unsigned int ath5k_hw_get_slot_time(struct ath5k_hw *ah)
3477{
3478 ATH5K_TRACE(ah->ah_sc);
3479 if (ah->ah_version == AR5K_AR5210)
3480 return ath5k_hw_clocktoh(ath5k_hw_reg_read(ah,
3481 AR5K_SLOT_TIME) & 0xffff, ah->ah_turbo);
3482 else
3483 return ath5k_hw_reg_read(ah, AR5K_DCU_GBL_IFS_SLOT) & 0xffff;
3484}
3485
3486
3487/******************************\
3488 Hardware Descriptor Functions
3489\******************************/
3490
3491/*
3492 * TX Descriptor
3493 */
3494
3495/*
3496 * Initialize the 2-word tx descriptor on 5210/5211
3497 */
3498static int
3499ath5k_hw_setup_2word_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3500 unsigned int pkt_len, unsigned int hdr_len, enum ath5k_pkt_type type,
3501 unsigned int tx_power, unsigned int tx_rate0, unsigned int tx_tries0,
3502 unsigned int key_index, unsigned int antenna_mode, unsigned int flags,
3503 unsigned int rtscts_rate, unsigned int rtscts_duration)
3504{
3505 u32 frame_type;
3506 struct ath5k_hw_2w_tx_desc *tx_desc;
3507 unsigned int buff_len;
3508
3509 tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
3510
3511 /*
3512 * Validate input
3513 * - Zero retries don't make sense.
3514 * - A zero rate will put the HW into a mode where it continously sends
3515 * noise on the channel, so it is important to avoid this.
3516 */
3517 if (unlikely(tx_tries0 == 0)) {
3518 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3519 WARN_ON(1);
3520 return -EINVAL;
3521 }
3522 if (unlikely(tx_rate0 == 0)) {
3523 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3524 WARN_ON(1);
3525 return -EINVAL;
3526 }
3527
3528 /* Clear status descriptor */
3529 memset(desc->ds_hw, 0, sizeof(struct ath5k_hw_tx_status));
3530
3531 /* Initialize control descriptor */
3532 tx_desc->tx_control_0 = 0;
3533 tx_desc->tx_control_1 = 0;
3534
3535 /* Setup control descriptor */
3536
3537 /* Verify and set frame length */
3538 if (pkt_len & ~AR5K_2W_TX_DESC_CTL0_FRAME_LEN)
3539 return -EINVAL;
3540
3541 tx_desc->tx_control_0 = pkt_len & AR5K_2W_TX_DESC_CTL0_FRAME_LEN;
3542
3543 /* Verify and set buffer length */
3544 buff_len = pkt_len - FCS_LEN;
3545
3546 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3547 if(type == AR5K_PKT_TYPE_BEACON)
3548 buff_len = roundup(buff_len, 4);
3549
3550 if (buff_len & ~AR5K_2W_TX_DESC_CTL1_BUF_LEN)
3551 return -EINVAL;
3552
3553 tx_desc->tx_control_1 = buff_len & AR5K_2W_TX_DESC_CTL1_BUF_LEN;
3554
3555 /*
3556 * Verify and set header length
3557 * XXX: I only found that on 5210 code, does it work on 5211 ?
3558 */
3559 if (ah->ah_version == AR5K_AR5210) {
3560 if (hdr_len & ~AR5K_2W_TX_DESC_CTL0_HEADER_LEN)
3561 return -EINVAL;
3562 tx_desc->tx_control_0 |=
3563 AR5K_REG_SM(hdr_len, AR5K_2W_TX_DESC_CTL0_HEADER_LEN);
3564 }
3565
3566 /*Diferences between 5210-5211*/
3567 if (ah->ah_version == AR5K_AR5210) {
3568 switch (type) {
3569 case AR5K_PKT_TYPE_BEACON:
3570 case AR5K_PKT_TYPE_PROBE_RESP:
3571 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_NO_DELAY;
3572 case AR5K_PKT_TYPE_PIFS:
3573 frame_type = AR5K_AR5210_TX_DESC_FRAME_TYPE_PIFS;
3574 default:
3575 frame_type = type /*<< 2 ?*/;
3576 }
3577
3578 tx_desc->tx_control_0 |=
3579 AR5K_REG_SM(frame_type, AR5K_2W_TX_DESC_CTL0_FRAME_TYPE) |
3580 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3581 } else {
3582 tx_desc->tx_control_0 |=
3583 AR5K_REG_SM(tx_rate0, AR5K_2W_TX_DESC_CTL0_XMIT_RATE) |
3584 AR5K_REG_SM(antenna_mode, AR5K_2W_TX_DESC_CTL0_ANT_MODE_XMIT);
3585 tx_desc->tx_control_1 |=
3586 AR5K_REG_SM(type, AR5K_2W_TX_DESC_CTL1_FRAME_TYPE);
3587 }
3588#define _TX_FLAGS(_c, _flag) \
3589 if (flags & AR5K_TXDESC_##_flag) \
3590 tx_desc->tx_control_##_c |= \
3591 AR5K_2W_TX_DESC_CTL##_c##_##_flag
3592
3593 _TX_FLAGS(0, CLRDMASK);
3594 _TX_FLAGS(0, VEOL);
3595 _TX_FLAGS(0, INTREQ);
3596 _TX_FLAGS(0, RTSENA);
3597 _TX_FLAGS(1, NOACK);
3598
3599#undef _TX_FLAGS
3600
3601 /*
3602 * WEP crap
3603 */
3604 if (key_index != AR5K_TXKEYIX_INVALID) {
3605 tx_desc->tx_control_0 |=
3606 AR5K_2W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3607 tx_desc->tx_control_1 |=
3608 AR5K_REG_SM(key_index,
3609 AR5K_2W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3610 }
3611
3612 /*
3613 * RTS/CTS Duration [5210 ?]
3614 */
3615 if ((ah->ah_version == AR5K_AR5210) &&
3616 (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)))
3617 tx_desc->tx_control_1 |= rtscts_duration &
3618 AR5K_2W_TX_DESC_CTL1_RTS_DURATION;
3619
3620 return 0;
3621}
3622
3623/*
3624 * Initialize the 4-word tx descriptor on 5212
3625 */
3626static int ath5k_hw_setup_4word_tx_desc(struct ath5k_hw *ah,
3627 struct ath5k_desc *desc, unsigned int pkt_len, unsigned int hdr_len,
3628 enum ath5k_pkt_type type, unsigned int tx_power, unsigned int tx_rate0,
3629 unsigned int tx_tries0, unsigned int key_index,
3630 unsigned int antenna_mode, unsigned int flags, unsigned int rtscts_rate,
3631 unsigned int rtscts_duration)
3632{
3633 struct ath5k_hw_4w_tx_desc *tx_desc;
3634 struct ath5k_hw_tx_status *tx_status;
3635 unsigned int buff_len;
3636
3637 ATH5K_TRACE(ah->ah_sc);
3638 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3639 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
3640
3641 /*
3642 * Validate input
3643 * - Zero retries don't make sense.
3644 * - A zero rate will put the HW into a mode where it continously sends
3645 * noise on the channel, so it is important to avoid this.
3646 */
3647 if (unlikely(tx_tries0 == 0)) {
3648 ATH5K_ERR(ah->ah_sc, "zero retries\n");
3649 WARN_ON(1);
3650 return -EINVAL;
3651 }
3652 if (unlikely(tx_rate0 == 0)) {
3653 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3654 WARN_ON(1);
3655 return -EINVAL;
3656 }
3657
3658 /* Clear status descriptor */
3659 memset(tx_status, 0, sizeof(struct ath5k_hw_tx_status));
3660
3661 /* Initialize control descriptor */
3662 tx_desc->tx_control_0 = 0;
3663 tx_desc->tx_control_1 = 0;
3664 tx_desc->tx_control_2 = 0;
3665 tx_desc->tx_control_3 = 0;
3666
3667 /* Setup control descriptor */
3668
3669 /* Verify and set frame length */
3670 if (pkt_len & ~AR5K_4W_TX_DESC_CTL0_FRAME_LEN)
3671 return -EINVAL;
3672
3673 tx_desc->tx_control_0 = pkt_len & AR5K_4W_TX_DESC_CTL0_FRAME_LEN;
3674
3675 /* Verify and set buffer length */
3676 buff_len = pkt_len - FCS_LEN;
3677
3678 /* NB: beacon's BufLen must be a multiple of 4 bytes */
3679 if(type == AR5K_PKT_TYPE_BEACON)
3680 buff_len = roundup(buff_len, 4);
3681
3682 if (buff_len & ~AR5K_4W_TX_DESC_CTL1_BUF_LEN)
3683 return -EINVAL;
3684
3685 tx_desc->tx_control_1 = buff_len & AR5K_4W_TX_DESC_CTL1_BUF_LEN;
3686
3687 tx_desc->tx_control_0 |=
3688 AR5K_REG_SM(tx_power, AR5K_4W_TX_DESC_CTL0_XMIT_POWER) |
3689 AR5K_REG_SM(antenna_mode, AR5K_4W_TX_DESC_CTL0_ANT_MODE_XMIT);
3690 tx_desc->tx_control_1 |= AR5K_REG_SM(type,
3691 AR5K_4W_TX_DESC_CTL1_FRAME_TYPE);
3692 tx_desc->tx_control_2 = AR5K_REG_SM(tx_tries0 + AR5K_TUNE_HWTXTRIES,
3693 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES0);
3694 tx_desc->tx_control_3 = tx_rate0 & AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
3695
3696#define _TX_FLAGS(_c, _flag) \
3697 if (flags & AR5K_TXDESC_##_flag) \
3698 tx_desc->tx_control_##_c |= \
3699 AR5K_4W_TX_DESC_CTL##_c##_##_flag
3700
3701 _TX_FLAGS(0, CLRDMASK);
3702 _TX_FLAGS(0, VEOL);
3703 _TX_FLAGS(0, INTREQ);
3704 _TX_FLAGS(0, RTSENA);
3705 _TX_FLAGS(0, CTSENA);
3706 _TX_FLAGS(1, NOACK);
3707
3708#undef _TX_FLAGS
3709
3710 /*
3711 * WEP crap
3712 */
3713 if (key_index != AR5K_TXKEYIX_INVALID) {
3714 tx_desc->tx_control_0 |= AR5K_4W_TX_DESC_CTL0_ENCRYPT_KEY_VALID;
3715 tx_desc->tx_control_1 |= AR5K_REG_SM(key_index,
3716 AR5K_4W_TX_DESC_CTL1_ENCRYPT_KEY_INDEX);
3717 }
3718
3719 /*
3720 * RTS/CTS
3721 */
3722 if (flags & (AR5K_TXDESC_RTSENA | AR5K_TXDESC_CTSENA)) {
3723 if ((flags & AR5K_TXDESC_RTSENA) &&
3724 (flags & AR5K_TXDESC_CTSENA))
3725 return -EINVAL;
3726 tx_desc->tx_control_2 |= rtscts_duration &
3727 AR5K_4W_TX_DESC_CTL2_RTS_DURATION;
3728 tx_desc->tx_control_3 |= AR5K_REG_SM(rtscts_rate,
3729 AR5K_4W_TX_DESC_CTL3_RTS_CTS_RATE);
3730 }
3731
3732 return 0;
3733}
3734
3735/*
3736 * Initialize a 4-word multirate tx descriptor on 5212
3737 */
3738static bool
3739ath5k_hw_setup_xr_tx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3740 unsigned int tx_rate1, u_int tx_tries1, u_int tx_rate2, u_int tx_tries2,
3741 unsigned int tx_rate3, u_int tx_tries3)
3742{
3743 struct ath5k_hw_4w_tx_desc *tx_desc;
3744
3745 /*
3746 * Rates can be 0 as long as the retry count is 0 too.
3747 * A zero rate and nonzero retry count will put the HW into a mode where
3748 * it continously sends noise on the channel, so it is important to
3749 * avoid this.
3750 */
3751 if (unlikely((tx_rate1 == 0 && tx_tries1 != 0) ||
3752 (tx_rate2 == 0 && tx_tries2 != 0) ||
3753 (tx_rate3 == 0 && tx_tries3 != 0))) {
3754 ATH5K_ERR(ah->ah_sc, "zero rate\n");
3755 WARN_ON(1);
3756 return -EINVAL;
3757 }
3758
3759 if (ah->ah_version == AR5K_AR5212) {
3760 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3761
3762#define _XTX_TRIES(_n) \
3763 if (tx_tries##_n) { \
3764 tx_desc->tx_control_2 |= \
3765 AR5K_REG_SM(tx_tries##_n, \
3766 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES##_n); \
3767 tx_desc->tx_control_3 |= \
3768 AR5K_REG_SM(tx_rate##_n, \
3769 AR5K_4W_TX_DESC_CTL3_XMIT_RATE##_n); \
3770 }
3771
3772 _XTX_TRIES(1);
3773 _XTX_TRIES(2);
3774 _XTX_TRIES(3);
3775
3776#undef _XTX_TRIES
3777
3778 return true;
3779 }
3780
3781 return false;
3782}
3783
3784/*
3785 * Proccess the tx status descriptor on 5210/5211
3786 */
3787static int ath5k_hw_proc_2word_tx_status(struct ath5k_hw *ah,
3788 struct ath5k_desc *desc)
3789{
3790 struct ath5k_hw_tx_status *tx_status;
3791 struct ath5k_hw_2w_tx_desc *tx_desc;
3792
3793 tx_desc = (struct ath5k_hw_2w_tx_desc *)&desc->ds_ctl0;
3794 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[0];
3795
3796 /* No frame has been send or error */
3797 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3798 return -EINPROGRESS;
3799
3800 /*
3801 * Get descriptor status
3802 */
3803 desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
3804 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
3805 desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
3806 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
3807 desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
3808 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
3809 /*TODO: desc->ds_us.tx.ts_virtcol + test*/
3810 desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
3811 AR5K_DESC_TX_STATUS1_SEQ_NUM);
3812 desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
3813 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
3814 desc->ds_us.tx.ts_antenna = 1;
3815 desc->ds_us.tx.ts_status = 0;
3816 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_0,
3817 AR5K_2W_TX_DESC_CTL0_XMIT_RATE);
3818
3819 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3820 if (tx_status->tx_status_0 &
3821 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
3822 desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
3823
3824 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
3825 desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
3826
3827 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
3828 desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
3829 }
3830
3831 return 0;
3832}
3833
3834/*
3835 * Proccess a tx descriptor on 5212
3836 */
3837static int ath5k_hw_proc_4word_tx_status(struct ath5k_hw *ah,
3838 struct ath5k_desc *desc)
3839{
3840 struct ath5k_hw_tx_status *tx_status;
3841 struct ath5k_hw_4w_tx_desc *tx_desc;
3842
3843 ATH5K_TRACE(ah->ah_sc);
3844 tx_desc = (struct ath5k_hw_4w_tx_desc *)&desc->ds_ctl0;
3845 tx_status = (struct ath5k_hw_tx_status *)&desc->ds_hw[2];
3846
3847 /* No frame has been send or error */
3848 if (unlikely((tx_status->tx_status_1 & AR5K_DESC_TX_STATUS1_DONE) == 0))
3849 return -EINPROGRESS;
3850
3851 /*
3852 * Get descriptor status
3853 */
3854 desc->ds_us.tx.ts_tstamp = AR5K_REG_MS(tx_status->tx_status_0,
3855 AR5K_DESC_TX_STATUS0_SEND_TIMESTAMP);
3856 desc->ds_us.tx.ts_shortretry = AR5K_REG_MS(tx_status->tx_status_0,
3857 AR5K_DESC_TX_STATUS0_SHORT_RETRY_COUNT);
3858 desc->ds_us.tx.ts_longretry = AR5K_REG_MS(tx_status->tx_status_0,
3859 AR5K_DESC_TX_STATUS0_LONG_RETRY_COUNT);
3860 desc->ds_us.tx.ts_seqnum = AR5K_REG_MS(tx_status->tx_status_1,
3861 AR5K_DESC_TX_STATUS1_SEQ_NUM);
3862 desc->ds_us.tx.ts_rssi = AR5K_REG_MS(tx_status->tx_status_1,
3863 AR5K_DESC_TX_STATUS1_ACK_SIG_STRENGTH);
3864 desc->ds_us.tx.ts_antenna = (tx_status->tx_status_1 &
3865 AR5K_DESC_TX_STATUS1_XMIT_ANTENNA) ? 2 : 1;
3866 desc->ds_us.tx.ts_status = 0;
3867
3868 switch (AR5K_REG_MS(tx_status->tx_status_1,
3869 AR5K_DESC_TX_STATUS1_FINAL_TS_INDEX)) {
3870 case 0:
3871 desc->ds_us.tx.ts_rate = tx_desc->tx_control_3 &
3872 AR5K_4W_TX_DESC_CTL3_XMIT_RATE0;
3873 break;
3874 case 1:
3875 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3876 AR5K_4W_TX_DESC_CTL3_XMIT_RATE1);
3877 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3878 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES1);
3879 break;
3880 case 2:
3881 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3882 AR5K_4W_TX_DESC_CTL3_XMIT_RATE2);
3883 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3884 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES2);
3885 break;
3886 case 3:
3887 desc->ds_us.tx.ts_rate = AR5K_REG_MS(tx_desc->tx_control_3,
3888 AR5K_4W_TX_DESC_CTL3_XMIT_RATE3);
3889 desc->ds_us.tx.ts_longretry +=AR5K_REG_MS(tx_desc->tx_control_2,
3890 AR5K_4W_TX_DESC_CTL2_XMIT_TRIES3);
3891 break;
3892 }
3893
3894 if ((tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FRAME_XMIT_OK) == 0){
3895 if (tx_status->tx_status_0 &
3896 AR5K_DESC_TX_STATUS0_EXCESSIVE_RETRIES)
3897 desc->ds_us.tx.ts_status |= AR5K_TXERR_XRETRY;
3898
3899 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FIFO_UNDERRUN)
3900 desc->ds_us.tx.ts_status |= AR5K_TXERR_FIFO;
3901
3902 if (tx_status->tx_status_0 & AR5K_DESC_TX_STATUS0_FILTERED)
3903 desc->ds_us.tx.ts_status |= AR5K_TXERR_FILT;
3904 }
3905
3906 return 0;
3907}
3908
3909/*
3910 * RX Descriptor
3911 */
3912
3913/*
3914 * Initialize an rx descriptor
3915 */
3916int ath5k_hw_setup_rx_desc(struct ath5k_hw *ah, struct ath5k_desc *desc,
3917 u32 size, unsigned int flags)
3918{
3919 struct ath5k_rx_desc *rx_desc;
3920
3921 ATH5K_TRACE(ah->ah_sc);
3922 rx_desc = (struct ath5k_rx_desc *)&desc->ds_ctl0;
3923
3924 /*
3925 *Clear ds_hw
3926 * If we don't clean the status descriptor,
3927 * while scanning we get too many results,
3928 * most of them virtual, after some secs
3929 * of scanning system hangs. M.F.
3930 */
3931 memset(desc->ds_hw, 0, sizeof(desc->ds_hw));
3932
3933 /*Initialize rx descriptor*/
3934 rx_desc->rx_control_0 = 0;
3935 rx_desc->rx_control_1 = 0;
3936
3937 /* Setup descriptor */
3938 rx_desc->rx_control_1 = size & AR5K_DESC_RX_CTL1_BUF_LEN;
3939 if (unlikely(rx_desc->rx_control_1 != size))
3940 return -EINVAL;
3941
3942 if (flags & AR5K_RXDESC_INTREQ)
3943 rx_desc->rx_control_1 |= AR5K_DESC_RX_CTL1_INTREQ;
3944
3945 return 0;
3946}
3947
3948/*
3949 * Proccess the rx status descriptor on 5210/5211
3950 */
3951static int ath5k_hw_proc_old_rx_status(struct ath5k_hw *ah,
3952 struct ath5k_desc *desc)
3953{
3954 struct ath5k_hw_old_rx_status *rx_status;
3955
3956 rx_status = (struct ath5k_hw_old_rx_status *)&desc->ds_hw[0];
3957
3958 /* No frame received / not ready */
3959 if (unlikely((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_DONE)
3960 == 0))
3961 return -EINPROGRESS;
3962
3963 /*
3964 * Frame receive status
3965 */
3966 desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
3967 AR5K_OLD_RX_DESC_STATUS0_DATA_LEN;
3968 desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
3969 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_SIGNAL);
3970 desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
3971 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_RATE);
3972 desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
3973 AR5K_OLD_RX_DESC_STATUS0_RECEIVE_ANTENNA;
3974 desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
3975 AR5K_OLD_RX_DESC_STATUS0_MORE;
3976 desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
3977 AR5K_OLD_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
3978 desc->ds_us.rx.rs_status = 0;
3979
3980 /*
3981 * Key table status
3982 */
3983 if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX_VALID)
3984 desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
3985 AR5K_OLD_RX_DESC_STATUS1_KEY_INDEX);
3986 else
3987 desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
3988
3989 /*
3990 * Receive/descriptor errors
3991 */
3992 if ((rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_FRAME_RECEIVE_OK)
3993 == 0) {
3994 if (rx_status->rx_status_1 & AR5K_OLD_RX_DESC_STATUS1_CRC_ERROR)
3995 desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
3996
3997 if (rx_status->rx_status_1 &
3998 AR5K_OLD_RX_DESC_STATUS1_FIFO_OVERRUN)
3999 desc->ds_us.rx.rs_status |= AR5K_RXERR_FIFO;
4000
4001 if (rx_status->rx_status_1 &
4002 AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR) {
4003 desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
4004 desc->ds_us.rx.rs_phyerr =
4005 AR5K_REG_MS(rx_status->rx_status_1,
4006 AR5K_OLD_RX_DESC_STATUS1_PHY_ERROR);
4007 }
4008
4009 if (rx_status->rx_status_1 &
4010 AR5K_OLD_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
4011 desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
4012 }
4013
4014 return 0;
4015}
4016
4017/*
4018 * Proccess the rx status descriptor on 5212
4019 */
4020static int ath5k_hw_proc_new_rx_status(struct ath5k_hw *ah,
4021 struct ath5k_desc *desc)
4022{
4023 struct ath5k_hw_new_rx_status *rx_status;
4024 struct ath5k_hw_rx_error *rx_err;
4025
4026 ATH5K_TRACE(ah->ah_sc);
4027 rx_status = (struct ath5k_hw_new_rx_status *)&desc->ds_hw[0];
4028
4029 /* Overlay on error */
4030 rx_err = (struct ath5k_hw_rx_error *)&desc->ds_hw[0];
4031
4032 /* No frame received / not ready */
4033 if (unlikely((rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_DONE)
4034 == 0))
4035 return -EINPROGRESS;
4036
4037 /*
4038 * Frame receive status
4039 */
4040 desc->ds_us.rx.rs_datalen = rx_status->rx_status_0 &
4041 AR5K_NEW_RX_DESC_STATUS0_DATA_LEN;
4042 desc->ds_us.rx.rs_rssi = AR5K_REG_MS(rx_status->rx_status_0,
4043 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_SIGNAL);
4044 desc->ds_us.rx.rs_rate = AR5K_REG_MS(rx_status->rx_status_0,
4045 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_RATE);
4046 desc->ds_us.rx.rs_antenna = rx_status->rx_status_0 &
4047 AR5K_NEW_RX_DESC_STATUS0_RECEIVE_ANTENNA;
4048 desc->ds_us.rx.rs_more = rx_status->rx_status_0 &
4049 AR5K_NEW_RX_DESC_STATUS0_MORE;
4050 desc->ds_us.rx.rs_tstamp = AR5K_REG_MS(rx_status->rx_status_1,
4051 AR5K_NEW_RX_DESC_STATUS1_RECEIVE_TIMESTAMP);
4052 desc->ds_us.rx.rs_status = 0;
4053
4054 /*
4055 * Key table status
4056 */
4057 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX_VALID)
4058 desc->ds_us.rx.rs_keyix = AR5K_REG_MS(rx_status->rx_status_1,
4059 AR5K_NEW_RX_DESC_STATUS1_KEY_INDEX);
4060 else
4061 desc->ds_us.rx.rs_keyix = AR5K_RXKEYIX_INVALID;
4062
4063 /*
4064 * Receive/descriptor errors
4065 */
4066 if ((rx_status->rx_status_1 &
4067 AR5K_NEW_RX_DESC_STATUS1_FRAME_RECEIVE_OK) == 0) {
4068 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_CRC_ERROR)
4069 desc->ds_us.rx.rs_status |= AR5K_RXERR_CRC;
4070
4071 if (rx_status->rx_status_1 &
4072 AR5K_NEW_RX_DESC_STATUS1_PHY_ERROR) {
4073 desc->ds_us.rx.rs_status |= AR5K_RXERR_PHY;
4074 desc->ds_us.rx.rs_phyerr =
4075 AR5K_REG_MS(rx_err->rx_error_1,
4076 AR5K_RX_DESC_ERROR1_PHY_ERROR_CODE);
4077 }
4078
4079 if (rx_status->rx_status_1 &
4080 AR5K_NEW_RX_DESC_STATUS1_DECRYPT_CRC_ERROR)
4081 desc->ds_us.rx.rs_status |= AR5K_RXERR_DECRYPT;
4082
4083 if (rx_status->rx_status_1 & AR5K_NEW_RX_DESC_STATUS1_MIC_ERROR)
4084 desc->ds_us.rx.rs_status |= AR5K_RXERR_MIC;
4085 }
4086
4087 return 0;
4088}
4089
4090
4091/****************\
4092 GPIO Functions
4093\****************/
4094
4095/*
4096 * Set led state
4097 */
4098void ath5k_hw_set_ledstate(struct ath5k_hw *ah, unsigned int state)
4099{
4100 u32 led;
4101 /*5210 has different led mode handling*/
4102 u32 led_5210;
4103
4104 ATH5K_TRACE(ah->ah_sc);
4105
4106 /*Reset led status*/
4107 if (ah->ah_version != AR5K_AR5210)
4108 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
4109 AR5K_PCICFG_LEDMODE | AR5K_PCICFG_LED);
4110 else
4111 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_LED);
4112
4113 /*
4114 * Some blinking values, define at your wish
4115 */
4116 switch (state) {
4117 case AR5K_LED_SCAN:
4118 case AR5K_LED_AUTH:
4119 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_PEND;
4120 led_5210 = AR5K_PCICFG_LED_PEND | AR5K_PCICFG_LED_BCTL;
4121 break;
4122
4123 case AR5K_LED_INIT:
4124 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_NONE;
4125 led_5210 = AR5K_PCICFG_LED_PEND;
4126 break;
4127
4128 case AR5K_LED_ASSOC:
4129 case AR5K_LED_RUN:
4130 led = AR5K_PCICFG_LEDMODE_PROP | AR5K_PCICFG_LED_ASSOC;
4131 led_5210 = AR5K_PCICFG_LED_ASSOC;
4132 break;
4133
4134 default:
4135 led = AR5K_PCICFG_LEDMODE_PROM | AR5K_PCICFG_LED_NONE;
4136 led_5210 = AR5K_PCICFG_LED_PEND;
4137 break;
4138 }
4139
4140 /*Write new status to the register*/
4141 if (ah->ah_version != AR5K_AR5210)
4142 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led);
4143 else
4144 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, led_5210);
4145}
4146
4147/*
4148 * Set GPIO outputs
4149 */
4150int ath5k_hw_set_gpio_output(struct ath5k_hw *ah, u32 gpio)
4151{
4152 ATH5K_TRACE(ah->ah_sc);
4153 if (gpio > AR5K_NUM_GPIO)
4154 return -EINVAL;
4155
4156 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4157 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_OUT(gpio), AR5K_GPIOCR);
4158
4159 return 0;
4160}
4161
4162/*
4163 * Set GPIO inputs
4164 */
4165int ath5k_hw_set_gpio_input(struct ath5k_hw *ah, u32 gpio)
4166{
4167 ATH5K_TRACE(ah->ah_sc);
4168 if (gpio > AR5K_NUM_GPIO)
4169 return -EINVAL;
4170
4171 ath5k_hw_reg_write(ah, (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &~
4172 AR5K_GPIOCR_OUT(gpio)) | AR5K_GPIOCR_IN(gpio), AR5K_GPIOCR);
4173
4174 return 0;
4175}
4176
4177/*
4178 * Get GPIO state
4179 */
4180u32 ath5k_hw_get_gpio(struct ath5k_hw *ah, u32 gpio)
4181{
4182 ATH5K_TRACE(ah->ah_sc);
4183 if (gpio > AR5K_NUM_GPIO)
4184 return 0xffffffff;
4185
4186 /* GPIO input magic */
4187 return ((ath5k_hw_reg_read(ah, AR5K_GPIODI) & AR5K_GPIODI_M) >> gpio) &
4188 0x1;
4189}
4190
4191/*
4192 * Set GPIO state
4193 */
4194int ath5k_hw_set_gpio(struct ath5k_hw *ah, u32 gpio, u32 val)
4195{
4196 u32 data;
4197 ATH5K_TRACE(ah->ah_sc);
4198
4199 if (gpio > AR5K_NUM_GPIO)
4200 return -EINVAL;
4201
4202 /* GPIO output magic */
4203 data = ath5k_hw_reg_read(ah, AR5K_GPIODO);
4204
4205 data &= ~(1 << gpio);
4206 data |= (val & 1) << gpio;
4207
4208 ath5k_hw_reg_write(ah, data, AR5K_GPIODO);
4209
4210 return 0;
4211}
4212
4213/*
4214 * Initialize the GPIO interrupt (RFKill switch)
4215 */
4216void ath5k_hw_set_gpio_intr(struct ath5k_hw *ah, unsigned int gpio,
4217 u32 interrupt_level)
4218{
4219 u32 data;
4220
4221 ATH5K_TRACE(ah->ah_sc);
4222 if (gpio > AR5K_NUM_GPIO)
4223 return;
4224
4225 /*
4226 * Set the GPIO interrupt
4227 */
4228 data = (ath5k_hw_reg_read(ah, AR5K_GPIOCR) &
4229 ~(AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_SELH |
4230 AR5K_GPIOCR_INT_ENA | AR5K_GPIOCR_OUT(gpio))) |
4231 (AR5K_GPIOCR_INT_SEL(gpio) | AR5K_GPIOCR_INT_ENA);
4232
4233 ath5k_hw_reg_write(ah, interrupt_level ? data :
4234 (data | AR5K_GPIOCR_INT_SELH), AR5K_GPIOCR);
4235
4236 ah->ah_imr |= AR5K_IMR_GPIO;
4237
4238 /* Enable GPIO interrupts */
4239 AR5K_REG_ENABLE_BITS(ah, AR5K_PIMR, AR5K_IMR_GPIO);
4240}
4241
4242
4243/*********************************\
4244 Regulatory Domain/Channels Setup
4245\*********************************/
4246
4247u16 ath5k_get_regdomain(struct ath5k_hw *ah)
4248{
4249 u16 regdomain;
4250 enum ath5k_regdom ieee_regdomain;
4251#ifdef COUNTRYCODE
4252 u16 code;
4253#endif
4254
4255 ath5k_eeprom_regulation_domain(ah, false, &ieee_regdomain);
4256 ah->ah_capabilities.cap_regdomain.reg_hw = ieee_regdomain;
4257
4258#ifdef COUNTRYCODE
4259 /*
4260 * Get the regulation domain by country code. This will ignore
4261 * the settings found in the EEPROM.
4262 */
4263 code = ieee80211_name2countrycode(COUNTRYCODE);
4264 ieee_regdomain = ieee80211_countrycode2regdomain(code);
4265#endif
4266
4267 regdomain = ath5k_regdom_from_ieee(ieee_regdomain);
4268 ah->ah_capabilities.cap_regdomain.reg_current = regdomain;
4269
4270 return regdomain;
4271}
4272
4273
4274/****************\
4275 Misc functions
4276\****************/
4277
4278int ath5k_hw_get_capability(struct ath5k_hw *ah,
4279 enum ath5k_capability_type cap_type,
4280 u32 capability, u32 *result)
4281{
4282 ATH5K_TRACE(ah->ah_sc);
4283
4284 switch (cap_type) {
4285 case AR5K_CAP_NUM_TXQUEUES:
4286 if (result) {
4287 if (ah->ah_version == AR5K_AR5210)
4288 *result = AR5K_NUM_TX_QUEUES_NOQCU;
4289 else
4290 *result = AR5K_NUM_TX_QUEUES;
4291 goto yes;
4292 }
4293 case AR5K_CAP_VEOL:
4294 goto yes;
4295 case AR5K_CAP_COMPRESSION:
4296 if (ah->ah_version == AR5K_AR5212)
4297 goto yes;
4298 else
4299 goto no;
4300 case AR5K_CAP_BURST:
4301 goto yes;
4302 case AR5K_CAP_TPC:
4303 goto yes;
4304 case AR5K_CAP_BSSIDMASK:
4305 if (ah->ah_version == AR5K_AR5212)
4306 goto yes;
4307 else
4308 goto no;
4309 case AR5K_CAP_XR:
4310 if (ah->ah_version == AR5K_AR5212)
4311 goto yes;
4312 else
4313 goto no;
4314 default:
4315 goto no;
4316 }
4317
4318no:
4319 return -EINVAL;
4320yes:
4321 return 0;
4322}
4323
4324static int ath5k_hw_enable_pspoll(struct ath5k_hw *ah, u8 *bssid,
4325 u16 assoc_id)
4326{
4327 ATH5K_TRACE(ah->ah_sc);
4328
4329 if (ah->ah_version == AR5K_AR5210) {
4330 AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1,
4331 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4332 return 0;
4333 }
4334
4335 return -EIO;
4336}
4337
4338static int ath5k_hw_disable_pspoll(struct ath5k_hw *ah)
4339{
4340 ATH5K_TRACE(ah->ah_sc);
4341
4342 if (ah->ah_version == AR5K_AR5210) {
4343 AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1,
4344 AR5K_STA_ID1_NO_PSPOLL | AR5K_STA_ID1_DEFAULT_ANTENNA);
4345 return 0;
4346 }
4347
4348 return -EIO;
4349}