aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wireless/ath/ath5k/reset.c
diff options
context:
space:
mode:
authorLuis R. Rodriguez <lrodriguez@atheros.com>2009-03-30 22:30:33 -0400
committerJohn W. Linville <linville@tuxdriver.com>2009-04-22 16:54:38 -0400
commit203c4805e91786f9a010bc7945a0fde70c9da28e (patch)
tree00415276b2fe65713f066ffe07b11ad2d8b6bea8 /drivers/net/wireless/ath/ath5k/reset.c
parent1878f77e13b9d720b78c4f818b94bfd4a7f596e5 (diff)
atheros: put atheros wireless drivers into ath/
Signed-off-by: Luis R. Rodriguez <lrodriguez@atheros.com> Signed-off-by: John W. Linville <linville@tuxdriver.com>
Diffstat (limited to 'drivers/net/wireless/ath/ath5k/reset.c')
-rw-r--r--drivers/net/wireless/ath/ath5k/reset.c1346
1 files changed, 1346 insertions, 0 deletions
diff --git a/drivers/net/wireless/ath/ath5k/reset.c b/drivers/net/wireless/ath/ath5k/reset.c
new file mode 100644
index 000000000000..775fdf78554b
--- /dev/null
+++ b/drivers/net/wireless/ath/ath5k/reset.c
@@ -0,0 +1,1346 @@
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
5 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
6 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7 *
8 * Permission to use, copy, modify, and distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 *
20 */
21
22#define _ATH5K_RESET
23
24/*****************************\
25 Reset functions and helpers
26\*****************************/
27
28#include <linux/pci.h> /* To determine if a card is pci-e */
29#include <linux/bitops.h> /* For get_bitmask_order */
30#include "ath5k.h"
31#include "reg.h"
32#include "base.h"
33#include "debug.h"
34
35/**
36 * ath5k_hw_write_ofdm_timings - set OFDM timings on AR5212
37 *
38 * @ah: the &struct ath5k_hw
39 * @channel: the currently set channel upon reset
40 *
41 * Write the delta slope coefficient (used on pilot tracking ?) for OFDM
42 * operation on the AR5212 upon reset. This is a helper for ath5k_hw_reset().
43 *
44 * Since delta slope is floating point we split it on its exponent and
45 * mantissa and provide these values on hw.
46 *
47 * For more infos i think this patent is related
48 * http://www.freepatentsonline.com/7184495.html
49 */
50static inline int ath5k_hw_write_ofdm_timings(struct ath5k_hw *ah,
51 struct ieee80211_channel *channel)
52{
53 /* Get exponent and mantissa and set it */
54 u32 coef_scaled, coef_exp, coef_man,
55 ds_coef_exp, ds_coef_man, clock;
56
57 BUG_ON(!(ah->ah_version == AR5K_AR5212) ||
58 !(channel->hw_value & CHANNEL_OFDM));
59
60 /* Get coefficient
61 * ALGO: coef = (5 * clock * carrier_freq) / 2)
62 * we scale coef by shifting clock value by 24 for
63 * better precision since we use integers */
64 /* TODO: Half/quarter rate */
65 clock = ath5k_hw_htoclock(1, channel->hw_value & CHANNEL_TURBO);
66
67 coef_scaled = ((5 * (clock << 24)) / 2) / channel->center_freq;
68
69 /* Get exponent
70 * ALGO: coef_exp = 14 - highest set bit position */
71 coef_exp = get_bitmask_order(coef_scaled);
72
73 /* Doesn't make sense if it's zero*/
74 if (!coef_exp)
75 return -EINVAL;
76
77 /* Note: we've shifted coef_scaled by 24 */
78 coef_exp = 14 - (coef_exp - 24);
79
80
81 /* Get mantissa (significant digits)
82 * ALGO: coef_mant = floor(coef_scaled* 2^coef_exp+0.5) */
83 coef_man = coef_scaled +
84 (1 << (24 - coef_exp - 1));
85
86 /* Calculate delta slope coefficient exponent
87 * and mantissa (remove scaling) and set them on hw */
88 ds_coef_man = coef_man >> (24 - coef_exp);
89 ds_coef_exp = coef_exp - 16;
90
91 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
92 AR5K_PHY_TIMING_3_DSC_MAN, ds_coef_man);
93 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_3,
94 AR5K_PHY_TIMING_3_DSC_EXP, ds_coef_exp);
95
96 return 0;
97}
98
99
100/*
101 * index into rates for control rates, we can set it up like this because
102 * this is only used for AR5212 and we know it supports G mode
103 */
104static const unsigned int control_rates[] =
105 { 0, 1, 1, 1, 4, 4, 6, 6, 8, 8, 8, 8 };
106
107/**
108 * ath5k_hw_write_rate_duration - fill rate code to duration table
109 *
110 * @ah: the &struct ath5k_hw
111 * @mode: one of enum ath5k_driver_mode
112 *
113 * Write the rate code to duration table upon hw reset. This is a helper for
114 * ath5k_hw_reset(). It seems all this is doing is setting an ACK timeout on
115 * the hardware, based on current mode, for each rate. The rates which are
116 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
117 * different rate code so we write their value twice (one for long preample
118 * and one for short).
119 *
120 * Note: Band doesn't matter here, if we set the values for OFDM it works
121 * on both a and g modes. So all we have to do is set values for all g rates
122 * that include all OFDM and CCK rates. If we operate in turbo or xr/half/
123 * quarter rate mode, we need to use another set of bitrates (that's why we
124 * need the mode parameter) but we don't handle these proprietary modes yet.
125 */
126static inline void ath5k_hw_write_rate_duration(struct ath5k_hw *ah,
127 unsigned int mode)
128{
129 struct ath5k_softc *sc = ah->ah_sc;
130 struct ieee80211_rate *rate;
131 unsigned int i;
132
133 /* Write rate duration table */
134 for (i = 0; i < sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates; i++) {
135 u32 reg;
136 u16 tx_time;
137
138 rate = &sc->sbands[IEEE80211_BAND_2GHZ].bitrates[control_rates[i]];
139
140 /* Set ACK timeout */
141 reg = AR5K_RATE_DUR(rate->hw_value);
142
143 /* An ACK frame consists of 10 bytes. If you add the FCS,
144 * which ieee80211_generic_frame_duration() adds,
145 * its 14 bytes. Note we use the control rate and not the
146 * actual rate for this rate. See mac80211 tx.c
147 * ieee80211_duration() for a brief description of
148 * what rate we should choose to TX ACKs. */
149 tx_time = le16_to_cpu(ieee80211_generic_frame_duration(sc->hw,
150 sc->vif, 10, rate));
151
152 ath5k_hw_reg_write(ah, tx_time, reg);
153
154 if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
155 continue;
156
157 /*
158 * We're not distinguishing short preamble here,
159 * This is true, all we'll get is a longer value here
160 * which is not necessarilly bad. We could use
161 * export ieee80211_frame_duration() but that needs to be
162 * fixed first to be properly used by mac802111 drivers:
163 *
164 * - remove erp stuff and let the routine figure ofdm
165 * erp rates
166 * - remove passing argument ieee80211_local as
167 * drivers don't have access to it
168 * - move drivers using ieee80211_generic_frame_duration()
169 * to this
170 */
171 ath5k_hw_reg_write(ah, tx_time,
172 reg + (AR5K_SET_SHORT_PREAMBLE << 2));
173 }
174}
175
176/*
177 * Reset chipset
178 */
179static int ath5k_hw_nic_reset(struct ath5k_hw *ah, u32 val)
180{
181 int ret;
182 u32 mask = val ? val : ~0U;
183
184 ATH5K_TRACE(ah->ah_sc);
185
186 /* Read-and-clear RX Descriptor Pointer*/
187 ath5k_hw_reg_read(ah, AR5K_RXDP);
188
189 /*
190 * Reset the device and wait until success
191 */
192 ath5k_hw_reg_write(ah, val, AR5K_RESET_CTL);
193
194 /* Wait at least 128 PCI clocks */
195 udelay(15);
196
197 if (ah->ah_version == AR5K_AR5210) {
198 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
199 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
200 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_DMA
201 | AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_PHY;
202 } else {
203 val &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
204 mask &= AR5K_RESET_CTL_PCU | AR5K_RESET_CTL_BASEBAND;
205 }
206
207 ret = ath5k_hw_register_timeout(ah, AR5K_RESET_CTL, mask, val, false);
208
209 /*
210 * Reset configuration register (for hw byte-swap). Note that this
211 * is only set for big endian. We do the necessary magic in
212 * AR5K_INIT_CFG.
213 */
214 if ((val & AR5K_RESET_CTL_PCU) == 0)
215 ath5k_hw_reg_write(ah, AR5K_INIT_CFG, AR5K_CFG);
216
217 return ret;
218}
219
220/*
221 * Sleep control
222 */
223int ath5k_hw_set_power(struct ath5k_hw *ah, enum ath5k_power_mode mode,
224 bool set_chip, u16 sleep_duration)
225{
226 unsigned int i;
227 u32 staid, data;
228
229 ATH5K_TRACE(ah->ah_sc);
230 staid = ath5k_hw_reg_read(ah, AR5K_STA_ID1);
231
232 switch (mode) {
233 case AR5K_PM_AUTO:
234 staid &= ~AR5K_STA_ID1_DEFAULT_ANTENNA;
235 /* fallthrough */
236 case AR5K_PM_NETWORK_SLEEP:
237 if (set_chip)
238 ath5k_hw_reg_write(ah,
239 AR5K_SLEEP_CTL_SLE_ALLOW |
240 sleep_duration,
241 AR5K_SLEEP_CTL);
242
243 staid |= AR5K_STA_ID1_PWR_SV;
244 break;
245
246 case AR5K_PM_FULL_SLEEP:
247 if (set_chip)
248 ath5k_hw_reg_write(ah, AR5K_SLEEP_CTL_SLE_SLP,
249 AR5K_SLEEP_CTL);
250
251 staid |= AR5K_STA_ID1_PWR_SV;
252 break;
253
254 case AR5K_PM_AWAKE:
255
256 staid &= ~AR5K_STA_ID1_PWR_SV;
257
258 if (!set_chip)
259 goto commit;
260
261 /* Preserve sleep duration */
262 data = ath5k_hw_reg_read(ah, AR5K_SLEEP_CTL);
263 if (data & 0xffc00000)
264 data = 0;
265 else
266 data = data & 0xfffcffff;
267
268 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
269 udelay(15);
270
271 for (i = 50; i > 0; i--) {
272 /* Check if the chip did wake up */
273 if ((ath5k_hw_reg_read(ah, AR5K_PCICFG) &
274 AR5K_PCICFG_SPWR_DN) == 0)
275 break;
276
277 /* Wait a bit and retry */
278 udelay(200);
279 ath5k_hw_reg_write(ah, data, AR5K_SLEEP_CTL);
280 }
281
282 /* Fail if the chip didn't wake up */
283 if (i <= 0)
284 return -EIO;
285
286 break;
287
288 default:
289 return -EINVAL;
290 }
291
292commit:
293 ah->ah_power_mode = mode;
294 ath5k_hw_reg_write(ah, staid, AR5K_STA_ID1);
295
296 return 0;
297}
298
299/*
300 * Bring up MAC + PHY Chips and program PLL
301 * TODO: Half/Quarter rate support
302 */
303int ath5k_hw_nic_wakeup(struct ath5k_hw *ah, int flags, bool initial)
304{
305 struct pci_dev *pdev = ah->ah_sc->pdev;
306 u32 turbo, mode, clock, bus_flags;
307 int ret;
308
309 turbo = 0;
310 mode = 0;
311 clock = 0;
312
313 ATH5K_TRACE(ah->ah_sc);
314
315 /* Wakeup the device */
316 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
317 if (ret) {
318 ATH5K_ERR(ah->ah_sc, "failed to wakeup the MAC Chip\n");
319 return ret;
320 }
321
322 if (ah->ah_version != AR5K_AR5210) {
323 /*
324 * Get channel mode flags
325 */
326
327 if (ah->ah_radio >= AR5K_RF5112) {
328 mode = AR5K_PHY_MODE_RAD_RF5112;
329 clock = AR5K_PHY_PLL_RF5112;
330 } else {
331 mode = AR5K_PHY_MODE_RAD_RF5111; /*Zero*/
332 clock = AR5K_PHY_PLL_RF5111; /*Zero*/
333 }
334
335 if (flags & CHANNEL_2GHZ) {
336 mode |= AR5K_PHY_MODE_FREQ_2GHZ;
337 clock |= AR5K_PHY_PLL_44MHZ;
338
339 if (flags & CHANNEL_CCK) {
340 mode |= AR5K_PHY_MODE_MOD_CCK;
341 } else if (flags & CHANNEL_OFDM) {
342 /* XXX Dynamic OFDM/CCK is not supported by the
343 * AR5211 so we set MOD_OFDM for plain g (no
344 * CCK headers) operation. We need to test
345 * this, 5211 might support ofdm-only g after
346 * all, there are also initial register values
347 * in the code for g mode (see initvals.c). */
348 if (ah->ah_version == AR5K_AR5211)
349 mode |= AR5K_PHY_MODE_MOD_OFDM;
350 else
351 mode |= AR5K_PHY_MODE_MOD_DYN;
352 } else {
353 ATH5K_ERR(ah->ah_sc,
354 "invalid radio modulation mode\n");
355 return -EINVAL;
356 }
357 } else if (flags & CHANNEL_5GHZ) {
358 mode |= AR5K_PHY_MODE_FREQ_5GHZ;
359
360 if (ah->ah_radio == AR5K_RF5413)
361 clock = AR5K_PHY_PLL_40MHZ_5413;
362 else
363 clock |= AR5K_PHY_PLL_40MHZ;
364
365 if (flags & CHANNEL_OFDM)
366 mode |= AR5K_PHY_MODE_MOD_OFDM;
367 else {
368 ATH5K_ERR(ah->ah_sc,
369 "invalid radio modulation mode\n");
370 return -EINVAL;
371 }
372 } else {
373 ATH5K_ERR(ah->ah_sc, "invalid radio frequency mode\n");
374 return -EINVAL;
375 }
376
377 if (flags & CHANNEL_TURBO)
378 turbo = AR5K_PHY_TURBO_MODE | AR5K_PHY_TURBO_SHORT;
379 } else { /* Reset the device */
380
381 /* ...enable Atheros turbo mode if requested */
382 if (flags & CHANNEL_TURBO)
383 ath5k_hw_reg_write(ah, AR5K_PHY_TURBO_MODE,
384 AR5K_PHY_TURBO);
385 }
386
387 /* reseting PCI on PCI-E cards results card to hang
388 * and always return 0xffff... so we ingore that flag
389 * for PCI-E cards */
390 bus_flags = (pdev->is_pcie) ? 0 : AR5K_RESET_CTL_PCI;
391
392 /* Reset chipset */
393 if (ah->ah_version == AR5K_AR5210) {
394 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
395 AR5K_RESET_CTL_MAC | AR5K_RESET_CTL_DMA |
396 AR5K_RESET_CTL_PHY | AR5K_RESET_CTL_PCI);
397 mdelay(2);
398 } else {
399 ret = ath5k_hw_nic_reset(ah, AR5K_RESET_CTL_PCU |
400 AR5K_RESET_CTL_BASEBAND | bus_flags);
401 }
402 if (ret) {
403 ATH5K_ERR(ah->ah_sc, "failed to reset the MAC Chip\n");
404 return -EIO;
405 }
406
407 /* ...wakeup again!*/
408 ret = ath5k_hw_set_power(ah, AR5K_PM_AWAKE, true, 0);
409 if (ret) {
410 ATH5K_ERR(ah->ah_sc, "failed to resume the MAC Chip\n");
411 return ret;
412 }
413
414 /* ...final warm reset */
415 if (ath5k_hw_nic_reset(ah, 0)) {
416 ATH5K_ERR(ah->ah_sc, "failed to warm reset the MAC Chip\n");
417 return -EIO;
418 }
419
420 if (ah->ah_version != AR5K_AR5210) {
421
422 /* ...update PLL if needed */
423 if (ath5k_hw_reg_read(ah, AR5K_PHY_PLL) != clock) {
424 ath5k_hw_reg_write(ah, clock, AR5K_PHY_PLL);
425 udelay(300);
426 }
427
428 /* ...set the PHY operating mode */
429 ath5k_hw_reg_write(ah, mode, AR5K_PHY_MODE);
430 ath5k_hw_reg_write(ah, turbo, AR5K_PHY_TURBO);
431 }
432
433 return 0;
434}
435
436/*
437 * If there is an external 32KHz crystal available, use it
438 * as ref. clock instead of 32/40MHz clock and baseband clocks
439 * to save power during sleep or restore normal 32/40MHz
440 * operation.
441 *
442 * XXX: When operating on 32KHz certain PHY registers (27 - 31,
443 * 123 - 127) require delay on access.
444 */
445static void ath5k_hw_set_sleep_clock(struct ath5k_hw *ah, bool enable)
446{
447 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
448 u32 scal, spending, usec32;
449
450 /* Only set 32KHz settings if we have an external
451 * 32KHz crystal present */
452 if ((AR5K_EEPROM_HAS32KHZCRYSTAL(ee->ee_misc1) ||
453 AR5K_EEPROM_HAS32KHZCRYSTAL_OLD(ee->ee_misc1)) &&
454 enable) {
455
456 /* 1 usec/cycle */
457 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, 1);
458 /* Set up tsf increment on each cycle */
459 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 61);
460
461 /* Set baseband sleep control registers
462 * and sleep control rate */
463 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
464
465 if ((ah->ah_radio == AR5K_RF5112) ||
466 (ah->ah_radio == AR5K_RF5413) ||
467 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
468 spending = 0x14;
469 else
470 spending = 0x18;
471 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
472
473 if ((ah->ah_radio == AR5K_RF5112) ||
474 (ah->ah_radio == AR5K_RF5413) ||
475 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
476 ath5k_hw_reg_write(ah, 0x26, AR5K_PHY_SLMT);
477 ath5k_hw_reg_write(ah, 0x0d, AR5K_PHY_SCAL);
478 ath5k_hw_reg_write(ah, 0x07, AR5K_PHY_SCLOCK);
479 ath5k_hw_reg_write(ah, 0x3f, AR5K_PHY_SDELAY);
480 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
481 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x02);
482 } else {
483 ath5k_hw_reg_write(ah, 0x0a, AR5K_PHY_SLMT);
484 ath5k_hw_reg_write(ah, 0x0c, AR5K_PHY_SCAL);
485 ath5k_hw_reg_write(ah, 0x03, AR5K_PHY_SCLOCK);
486 ath5k_hw_reg_write(ah, 0x20, AR5K_PHY_SDELAY);
487 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
488 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0x03);
489 }
490
491 /* Enable sleep clock operation */
492 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG,
493 AR5K_PCICFG_SLEEP_CLOCK_EN);
494
495 } else {
496
497 /* Disable sleep clock operation and
498 * restore default parameters */
499 AR5K_REG_DISABLE_BITS(ah, AR5K_PCICFG,
500 AR5K_PCICFG_SLEEP_CLOCK_EN);
501
502 AR5K_REG_WRITE_BITS(ah, AR5K_PCICFG,
503 AR5K_PCICFG_SLEEP_CLOCK_RATE, 0);
504
505 ath5k_hw_reg_write(ah, 0x1f, AR5K_PHY_SCR);
506 ath5k_hw_reg_write(ah, AR5K_PHY_SLMT_32MHZ, AR5K_PHY_SLMT);
507
508 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
509 scal = AR5K_PHY_SCAL_32MHZ_2417;
510 else if (ath5k_eeprom_is_hb63(ah))
511 scal = AR5K_PHY_SCAL_32MHZ_HB63;
512 else
513 scal = AR5K_PHY_SCAL_32MHZ;
514 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
515
516 ath5k_hw_reg_write(ah, AR5K_PHY_SCLOCK_32MHZ, AR5K_PHY_SCLOCK);
517 ath5k_hw_reg_write(ah, AR5K_PHY_SDELAY_32MHZ, AR5K_PHY_SDELAY);
518
519 if ((ah->ah_radio == AR5K_RF5112) ||
520 (ah->ah_radio == AR5K_RF5413) ||
521 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
522 spending = 0x14;
523 else
524 spending = 0x18;
525 ath5k_hw_reg_write(ah, spending, AR5K_PHY_SPENDING);
526
527 if ((ah->ah_radio == AR5K_RF5112) ||
528 (ah->ah_radio == AR5K_RF5413))
529 usec32 = 39;
530 else
531 usec32 = 31;
532 AR5K_REG_WRITE_BITS(ah, AR5K_USEC_5211, AR5K_USEC_32, usec32);
533
534 AR5K_REG_WRITE_BITS(ah, AR5K_TSF_PARM, AR5K_TSF_PARM_INC, 1);
535 }
536 return;
537}
538
539static bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
540 struct ieee80211_channel *channel)
541{
542 u8 refclk_freq;
543
544 if ((ah->ah_radio == AR5K_RF5112) ||
545 (ah->ah_radio == AR5K_RF5413) ||
546 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
547 refclk_freq = 40;
548 else
549 refclk_freq = 32;
550
551 if ((channel->center_freq % refclk_freq != 0) &&
552 ((channel->center_freq % refclk_freq < 10) ||
553 (channel->center_freq % refclk_freq > 22)))
554 return true;
555 else
556 return false;
557}
558
559/* TODO: Half/Quarter rate */
560static void ath5k_hw_tweak_initval_settings(struct ath5k_hw *ah,
561 struct ieee80211_channel *channel)
562{
563 if (ah->ah_version == AR5K_AR5212 &&
564 ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
565
566 /* Setup ADC control */
567 ath5k_hw_reg_write(ah,
568 (AR5K_REG_SM(2,
569 AR5K_PHY_ADC_CTL_INBUFGAIN_OFF) |
570 AR5K_REG_SM(2,
571 AR5K_PHY_ADC_CTL_INBUFGAIN_ON) |
572 AR5K_PHY_ADC_CTL_PWD_DAC_OFF |
573 AR5K_PHY_ADC_CTL_PWD_ADC_OFF),
574 AR5K_PHY_ADC_CTL);
575
576
577
578 /* Disable barker RSSI threshold */
579 AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
580 AR5K_PHY_DAG_CCK_CTL_EN_RSSI_THR);
581
582 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DAG_CCK_CTL,
583 AR5K_PHY_DAG_CCK_CTL_RSSI_THR, 2);
584
585 /* Set the mute mask */
586 ath5k_hw_reg_write(ah, 0x0000000f, AR5K_SEQ_MASK);
587 }
588
589 /* Clear PHY_BLUETOOTH to allow RX_CLEAR line debug */
590 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212B)
591 ath5k_hw_reg_write(ah, 0, AR5K_PHY_BLUETOOTH);
592
593 /* Enable DCU double buffering */
594 if (ah->ah_phy_revision > AR5K_SREV_PHY_5212B)
595 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
596 AR5K_TXCFG_DCU_DBL_BUF_DIS);
597
598 /* Set DAC/ADC delays */
599 if (ah->ah_version == AR5K_AR5212) {
600 u32 scal;
601 if (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))
602 scal = AR5K_PHY_SCAL_32MHZ_2417;
603 else if (ath5k_eeprom_is_hb63(ah))
604 scal = AR5K_PHY_SCAL_32MHZ_HB63;
605 else
606 scal = AR5K_PHY_SCAL_32MHZ;
607 ath5k_hw_reg_write(ah, scal, AR5K_PHY_SCAL);
608 }
609
610 /* Set fast ADC */
611 if ((ah->ah_radio == AR5K_RF5413) ||
612 (ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4))) {
613 u32 fast_adc = true;
614
615 if (channel->center_freq == 2462 ||
616 channel->center_freq == 2467)
617 fast_adc = 0;
618
619 /* Only update if needed */
620 if (ath5k_hw_reg_read(ah, AR5K_PHY_FAST_ADC) != fast_adc)
621 ath5k_hw_reg_write(ah, fast_adc,
622 AR5K_PHY_FAST_ADC);
623 }
624
625 /* Fix for first revision of the RF5112 RF chipset */
626 if (ah->ah_radio == AR5K_RF5112 &&
627 ah->ah_radio_5ghz_revision <
628 AR5K_SREV_RAD_5112A) {
629 u32 data;
630 ath5k_hw_reg_write(ah, AR5K_PHY_CCKTXCTL_WORLD,
631 AR5K_PHY_CCKTXCTL);
632 if (channel->hw_value & CHANNEL_5GHZ)
633 data = 0xffb81020;
634 else
635 data = 0xffb80d20;
636 ath5k_hw_reg_write(ah, data, AR5K_PHY_FRAME_CTL);
637 }
638
639 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
640 u32 usec_reg;
641 /* 5311 has different tx/rx latency masks
642 * from 5211, since we deal 5311 the same
643 * as 5211 when setting initvals, shift
644 * values here to their proper locations */
645 usec_reg = ath5k_hw_reg_read(ah, AR5K_USEC_5211);
646 ath5k_hw_reg_write(ah, usec_reg & (AR5K_USEC_1 |
647 AR5K_USEC_32 |
648 AR5K_USEC_TX_LATENCY_5211 |
649 AR5K_REG_SM(29,
650 AR5K_USEC_RX_LATENCY_5210)),
651 AR5K_USEC_5211);
652 /* Clear QCU/DCU clock gating register */
653 ath5k_hw_reg_write(ah, 0, AR5K_QCUDCU_CLKGT);
654 /* Set DAC/ADC delays */
655 ath5k_hw_reg_write(ah, 0x08, AR5K_PHY_SCAL);
656 /* Enable PCU FIFO corruption ECO */
657 AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5211,
658 AR5K_DIAG_SW_ECO_ENABLE);
659 }
660}
661
662static void ath5k_hw_commit_eeprom_settings(struct ath5k_hw *ah,
663 struct ieee80211_channel *channel, u8 *ant, u8 ee_mode)
664{
665 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
666 s16 cck_ofdm_pwr_delta;
667
668 /* Adjust power delta for channel 14 */
669 if (channel->center_freq == 2484)
670 cck_ofdm_pwr_delta =
671 ((ee->ee_cck_ofdm_power_delta -
672 ee->ee_scaled_cck_delta) * 2) / 10;
673 else
674 cck_ofdm_pwr_delta =
675 (ee->ee_cck_ofdm_power_delta * 2) / 10;
676
677 /* Set CCK to OFDM power delta on tx power
678 * adjustment register */
679 if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
680 if (channel->hw_value == CHANNEL_G)
681 ath5k_hw_reg_write(ah,
682 AR5K_REG_SM((ee->ee_cck_ofdm_gain_delta * -1),
683 AR5K_PHY_TX_PWR_ADJ_CCK_GAIN_DELTA) |
684 AR5K_REG_SM((cck_ofdm_pwr_delta * -1),
685 AR5K_PHY_TX_PWR_ADJ_CCK_PCDAC_INDEX),
686 AR5K_PHY_TX_PWR_ADJ);
687 else
688 ath5k_hw_reg_write(ah, 0, AR5K_PHY_TX_PWR_ADJ);
689 } else {
690 /* For older revs we scale power on sw during tx power
691 * setup */
692 ah->ah_txpower.txp_cck_ofdm_pwr_delta = cck_ofdm_pwr_delta;
693 ah->ah_txpower.txp_cck_ofdm_gainf_delta =
694 ee->ee_cck_ofdm_gain_delta;
695 }
696
697 /* Set antenna idle switch table */
698 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
699 AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
700 (ah->ah_antenna[ee_mode][0] |
701 AR5K_PHY_ANT_CTL_TXRX_EN));
702
703 /* Set antenna switch table */
704 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[0]],
705 AR5K_PHY_ANT_SWITCH_TABLE_0);
706 ath5k_hw_reg_write(ah, ah->ah_antenna[ee_mode][ant[1]],
707 AR5K_PHY_ANT_SWITCH_TABLE_1);
708
709 /* Noise floor threshold */
710 ath5k_hw_reg_write(ah,
711 AR5K_PHY_NF_SVAL(ee->ee_noise_floor_thr[ee_mode]),
712 AR5K_PHY_NFTHRES);
713
714 if ((channel->hw_value & CHANNEL_TURBO) &&
715 (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0)) {
716 /* Switch settling time (Turbo) */
717 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
718 AR5K_PHY_SETTLING_SWITCH,
719 ee->ee_switch_settling_turbo[ee_mode]);
720
721 /* Tx/Rx attenuation (Turbo) */
722 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
723 AR5K_PHY_GAIN_TXRX_ATTEN,
724 ee->ee_atn_tx_rx_turbo[ee_mode]);
725
726 /* ADC/PGA desired size (Turbo) */
727 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
728 AR5K_PHY_DESIRED_SIZE_ADC,
729 ee->ee_adc_desired_size_turbo[ee_mode]);
730
731 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
732 AR5K_PHY_DESIRED_SIZE_PGA,
733 ee->ee_pga_desired_size_turbo[ee_mode]);
734
735 /* Tx/Rx margin (Turbo) */
736 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
737 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
738 ee->ee_margin_tx_rx_turbo[ee_mode]);
739
740 } else {
741 /* Switch settling time */
742 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_SETTLING,
743 AR5K_PHY_SETTLING_SWITCH,
744 ee->ee_switch_settling[ee_mode]);
745
746 /* Tx/Rx attenuation */
747 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN,
748 AR5K_PHY_GAIN_TXRX_ATTEN,
749 ee->ee_atn_tx_rx[ee_mode]);
750
751 /* ADC/PGA desired size */
752 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
753 AR5K_PHY_DESIRED_SIZE_ADC,
754 ee->ee_adc_desired_size[ee_mode]);
755
756 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_DESIRED_SIZE,
757 AR5K_PHY_DESIRED_SIZE_PGA,
758 ee->ee_pga_desired_size[ee_mode]);
759
760 /* Tx/Rx margin */
761 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
762 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_GAIN_2GHZ,
763 AR5K_PHY_GAIN_2GHZ_MARGIN_TXRX,
764 ee->ee_margin_tx_rx[ee_mode]);
765 }
766
767 /* XPA delays */
768 ath5k_hw_reg_write(ah,
769 (ee->ee_tx_end2xpa_disable[ee_mode] << 24) |
770 (ee->ee_tx_end2xpa_disable[ee_mode] << 16) |
771 (ee->ee_tx_frm2xpa_enable[ee_mode] << 8) |
772 (ee->ee_tx_frm2xpa_enable[ee_mode]), AR5K_PHY_RF_CTL4);
773
774 /* XLNA delay */
775 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RF_CTL3,
776 AR5K_PHY_RF_CTL3_TXE2XLNA_ON,
777 ee->ee_tx_end2xlna_enable[ee_mode]);
778
779 /* Thresh64 (ANI) */
780 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_NF,
781 AR5K_PHY_NF_THRESH62,
782 ee->ee_thr_62[ee_mode]);
783
784
785 /* False detect backoff for channels
786 * that have spur noise. Write the new
787 * cyclic power RSSI threshold. */
788 if (ath5k_hw_chan_has_spur_noise(ah, channel))
789 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
790 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
791 AR5K_INIT_CYCRSSI_THR1 +
792 ee->ee_false_detect[ee_mode]);
793 else
794 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_OFDM_SELFCORR,
795 AR5K_PHY_OFDM_SELFCORR_CYPWR_THR1,
796 AR5K_INIT_CYCRSSI_THR1);
797
798 /* I/Q correction
799 * TODO: Per channel i/q infos ? */
800 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
801 AR5K_PHY_IQ_CORR_ENABLE |
802 (ee->ee_i_cal[ee_mode] << AR5K_PHY_IQ_CORR_Q_I_COFF_S) |
803 ee->ee_q_cal[ee_mode]);
804
805 /* Heavy clipping -disable for now */
806 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_1)
807 ath5k_hw_reg_write(ah, 0, AR5K_PHY_HEAVY_CLIP_ENABLE);
808
809 return;
810}
811
812/*
813 * Main reset function
814 */
815int ath5k_hw_reset(struct ath5k_hw *ah, enum nl80211_iftype op_mode,
816 struct ieee80211_channel *channel, bool change_channel)
817{
818 u32 s_seq[10], s_ant, s_led[3], staid1_flags, tsf_up, tsf_lo;
819 u32 phy_tst1;
820 u8 mode, freq, ee_mode, ant[2];
821 int i, ret;
822
823 ATH5K_TRACE(ah->ah_sc);
824
825 s_ant = 0;
826 ee_mode = 0;
827 staid1_flags = 0;
828 tsf_up = 0;
829 tsf_lo = 0;
830 freq = 0;
831 mode = 0;
832
833 /*
834 * Save some registers before a reset
835 */
836 /*DCU/Antenna selection not available on 5210*/
837 if (ah->ah_version != AR5K_AR5210) {
838
839 switch (channel->hw_value & CHANNEL_MODES) {
840 case CHANNEL_A:
841 mode = AR5K_MODE_11A;
842 freq = AR5K_INI_RFGAIN_5GHZ;
843 ee_mode = AR5K_EEPROM_MODE_11A;
844 break;
845 case CHANNEL_G:
846 mode = AR5K_MODE_11G;
847 freq = AR5K_INI_RFGAIN_2GHZ;
848 ee_mode = AR5K_EEPROM_MODE_11G;
849 break;
850 case CHANNEL_B:
851 mode = AR5K_MODE_11B;
852 freq = AR5K_INI_RFGAIN_2GHZ;
853 ee_mode = AR5K_EEPROM_MODE_11B;
854 break;
855 case CHANNEL_T:
856 mode = AR5K_MODE_11A_TURBO;
857 freq = AR5K_INI_RFGAIN_5GHZ;
858 ee_mode = AR5K_EEPROM_MODE_11A;
859 break;
860 case CHANNEL_TG:
861 if (ah->ah_version == AR5K_AR5211) {
862 ATH5K_ERR(ah->ah_sc,
863 "TurboG mode not available on 5211");
864 return -EINVAL;
865 }
866 mode = AR5K_MODE_11G_TURBO;
867 freq = AR5K_INI_RFGAIN_2GHZ;
868 ee_mode = AR5K_EEPROM_MODE_11G;
869 break;
870 case CHANNEL_XR:
871 if (ah->ah_version == AR5K_AR5211) {
872 ATH5K_ERR(ah->ah_sc,
873 "XR mode not available on 5211");
874 return -EINVAL;
875 }
876 mode = AR5K_MODE_XR;
877 freq = AR5K_INI_RFGAIN_5GHZ;
878 ee_mode = AR5K_EEPROM_MODE_11A;
879 break;
880 default:
881 ATH5K_ERR(ah->ah_sc,
882 "invalid channel: %d\n", channel->center_freq);
883 return -EINVAL;
884 }
885
886 if (change_channel) {
887 /*
888 * Save frame sequence count
889 * For revs. after Oahu, only save
890 * seq num for DCU 0 (Global seq num)
891 */
892 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
893
894 for (i = 0; i < 10; i++)
895 s_seq[i] = ath5k_hw_reg_read(ah,
896 AR5K_QUEUE_DCU_SEQNUM(i));
897
898 } else {
899 s_seq[0] = ath5k_hw_reg_read(ah,
900 AR5K_QUEUE_DCU_SEQNUM(0));
901 }
902
903 /* TSF accelerates on AR5211 durring reset
904 * As a workaround save it here and restore
905 * it later so that it's back in time after
906 * reset. This way it'll get re-synced on the
907 * next beacon without breaking ad-hoc.
908 *
909 * On AR5212 TSF is almost preserved across a
910 * reset so it stays back in time anyway and
911 * we don't have to save/restore it.
912 *
913 * XXX: Since this breaks power saving we have
914 * to disable power saving until we receive the
915 * next beacon, so we can resync beacon timers */
916 if (ah->ah_version == AR5K_AR5211) {
917 tsf_up = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
918 tsf_lo = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
919 }
920 }
921
922 /* Save default antenna */
923 s_ant = ath5k_hw_reg_read(ah, AR5K_DEFAULT_ANTENNA);
924
925 if (ah->ah_version == AR5K_AR5212) {
926 /* Restore normal 32/40MHz clock operation
927 * to avoid register access delay on certain
928 * PHY registers */
929 ath5k_hw_set_sleep_clock(ah, false);
930
931 /* Since we are going to write rf buffer
932 * check if we have any pending gain_F
933 * optimization settings */
934 if (change_channel && ah->ah_rf_banks != NULL)
935 ath5k_hw_gainf_calibrate(ah);
936 }
937 }
938
939 /*GPIOs*/
940 s_led[0] = ath5k_hw_reg_read(ah, AR5K_PCICFG) &
941 AR5K_PCICFG_LEDSTATE;
942 s_led[1] = ath5k_hw_reg_read(ah, AR5K_GPIOCR);
943 s_led[2] = ath5k_hw_reg_read(ah, AR5K_GPIODO);
944
945 /* AR5K_STA_ID1 flags, only preserve antenna
946 * settings and ack/cts rate mode */
947 staid1_flags = ath5k_hw_reg_read(ah, AR5K_STA_ID1) &
948 (AR5K_STA_ID1_DEFAULT_ANTENNA |
949 AR5K_STA_ID1_DESC_ANTENNA |
950 AR5K_STA_ID1_RTS_DEF_ANTENNA |
951 AR5K_STA_ID1_ACKCTS_6MB |
952 AR5K_STA_ID1_BASE_RATE_11B |
953 AR5K_STA_ID1_SELFGEN_DEF_ANT);
954
955 /* Wakeup the device */
956 ret = ath5k_hw_nic_wakeup(ah, channel->hw_value, false);
957 if (ret)
958 return ret;
959
960 /*
961 * Initialize operating mode
962 */
963 ah->ah_op_mode = op_mode;
964
965 /* PHY access enable */
966 if (ah->ah_mac_srev >= AR5K_SREV_AR5211)
967 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
968 else
969 ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ | 0x40,
970 AR5K_PHY(0));
971
972 /* Write initial settings */
973 ret = ath5k_hw_write_initvals(ah, mode, change_channel);
974 if (ret)
975 return ret;
976
977 /*
978 * 5211/5212 Specific
979 */
980 if (ah->ah_version != AR5K_AR5210) {
981
982 /*
983 * Write initial RF gain settings
984 * This should work for both 5111/5112
985 */
986 ret = ath5k_hw_rfgain_init(ah, freq);
987 if (ret)
988 return ret;
989
990 mdelay(1);
991
992 /*
993 * Tweak initval settings for revised
994 * chipsets and add some more config
995 * bits
996 */
997 ath5k_hw_tweak_initval_settings(ah, channel);
998
999 /*
1000 * Set TX power (FIXME)
1001 */
1002 ret = ath5k_hw_txpower(ah, channel, ee_mode,
1003 AR5K_TUNE_DEFAULT_TXPOWER);
1004 if (ret)
1005 return ret;
1006
1007 /* Write rate duration table only on AR5212 and if
1008 * virtual interface has already been brought up
1009 * XXX: rethink this after new mode changes to
1010 * mac80211 are integrated */
1011 if (ah->ah_version == AR5K_AR5212 &&
1012 ah->ah_sc->vif != NULL)
1013 ath5k_hw_write_rate_duration(ah, mode);
1014
1015 /*
1016 * Write RF buffer
1017 */
1018 ret = ath5k_hw_rfregs_init(ah, channel, mode);
1019 if (ret)
1020 return ret;
1021
1022
1023 /* Write OFDM timings on 5212*/
1024 if (ah->ah_version == AR5K_AR5212 &&
1025 channel->hw_value & CHANNEL_OFDM) {
1026 ret = ath5k_hw_write_ofdm_timings(ah, channel);
1027 if (ret)
1028 return ret;
1029 }
1030
1031 /*Enable/disable 802.11b mode on 5111
1032 (enable 2111 frequency converter + CCK)*/
1033 if (ah->ah_radio == AR5K_RF5111) {
1034 if (mode == AR5K_MODE_11B)
1035 AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG,
1036 AR5K_TXCFG_B_MODE);
1037 else
1038 AR5K_REG_DISABLE_BITS(ah, AR5K_TXCFG,
1039 AR5K_TXCFG_B_MODE);
1040 }
1041
1042 /*
1043 * In case a fixed antenna was set as default
1044 * write the same settings on both AR5K_PHY_ANT_SWITCH_TABLE
1045 * registers.
1046 */
1047 if (s_ant != 0) {
1048 if (s_ant == AR5K_ANT_FIXED_A) /* 1 - Main */
1049 ant[0] = ant[1] = AR5K_ANT_FIXED_A;
1050 else /* 2 - Aux */
1051 ant[0] = ant[1] = AR5K_ANT_FIXED_B;
1052 } else {
1053 ant[0] = AR5K_ANT_FIXED_A;
1054 ant[1] = AR5K_ANT_FIXED_B;
1055 }
1056
1057 /* Commit values from EEPROM */
1058 ath5k_hw_commit_eeprom_settings(ah, channel, ant, ee_mode);
1059
1060 } else {
1061 /*
1062 * For 5210 we do all initialization using
1063 * initvals, so we don't have to modify
1064 * any settings (5210 also only supports
1065 * a/aturbo modes)
1066 */
1067 mdelay(1);
1068 /* Disable phy and wait */
1069 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1070 mdelay(1);
1071 }
1072
1073 /*
1074 * Restore saved values
1075 */
1076
1077 /*DCU/Antenna selection not available on 5210*/
1078 if (ah->ah_version != AR5K_AR5210) {
1079
1080 if (change_channel) {
1081 if (ah->ah_mac_srev < AR5K_SREV_AR5211) {
1082 for (i = 0; i < 10; i++)
1083 ath5k_hw_reg_write(ah, s_seq[i],
1084 AR5K_QUEUE_DCU_SEQNUM(i));
1085 } else {
1086 ath5k_hw_reg_write(ah, s_seq[0],
1087 AR5K_QUEUE_DCU_SEQNUM(0));
1088 }
1089
1090
1091 if (ah->ah_version == AR5K_AR5211) {
1092 ath5k_hw_reg_write(ah, tsf_up, AR5K_TSF_U32);
1093 ath5k_hw_reg_write(ah, tsf_lo, AR5K_TSF_L32);
1094 }
1095 }
1096
1097 ath5k_hw_reg_write(ah, s_ant, AR5K_DEFAULT_ANTENNA);
1098 }
1099
1100 /* Ledstate */
1101 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, s_led[0]);
1102
1103 /* Gpio settings */
1104 ath5k_hw_reg_write(ah, s_led[1], AR5K_GPIOCR);
1105 ath5k_hw_reg_write(ah, s_led[2], AR5K_GPIODO);
1106
1107 /* Restore sta_id flags and preserve our mac address*/
1108 ath5k_hw_reg_write(ah, AR5K_LOW_ID(ah->ah_sta_id),
1109 AR5K_STA_ID0);
1110 ath5k_hw_reg_write(ah, staid1_flags | AR5K_HIGH_ID(ah->ah_sta_id),
1111 AR5K_STA_ID1);
1112
1113
1114 /*
1115 * Configure PCU
1116 */
1117
1118 /* Restore bssid and bssid mask */
1119 /* XXX: add ah->aid once mac80211 gives this to us */
1120 ath5k_hw_set_associd(ah, ah->ah_bssid, 0);
1121
1122 /* Set PCU config */
1123 ath5k_hw_set_opmode(ah);
1124
1125 /* Clear any pending interrupts
1126 * PISR/SISR Not available on 5210 */
1127 if (ah->ah_version != AR5K_AR5210)
1128 ath5k_hw_reg_write(ah, 0xffffffff, AR5K_PISR);
1129
1130 /* Set RSSI/BRSSI thresholds
1131 *
1132 * Note: If we decide to set this value
1133 * dynamicaly, have in mind that when AR5K_RSSI_THR
1134 * register is read it might return 0x40 if we haven't
1135 * wrote anything to it plus BMISS RSSI threshold is zeroed.
1136 * So doing a save/restore procedure here isn't the right
1137 * choice. Instead store it on ath5k_hw */
1138 ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
1139 AR5K_TUNE_BMISS_THRES <<
1140 AR5K_RSSI_THR_BMISS_S),
1141 AR5K_RSSI_THR);
1142
1143 /* MIC QoS support */
1144 if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
1145 ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
1146 ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
1147 }
1148
1149 /* QoS NOACK Policy */
1150 if (ah->ah_version == AR5K_AR5212) {
1151 ath5k_hw_reg_write(ah,
1152 AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
1153 AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET) |
1154 AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
1155 AR5K_QOS_NOACK);
1156 }
1157
1158
1159 /*
1160 * Configure PHY
1161 */
1162
1163 /* Set channel on PHY */
1164 ret = ath5k_hw_channel(ah, channel);
1165 if (ret)
1166 return ret;
1167
1168 /*
1169 * Enable the PHY and wait until completion
1170 * This includes BaseBand and Synthesizer
1171 * activation.
1172 */
1173 ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1174
1175 /*
1176 * On 5211+ read activation -> rx delay
1177 * and use it.
1178 *
1179 * TODO: Half/quarter rate support
1180 */
1181 if (ah->ah_version != AR5K_AR5210) {
1182 u32 delay;
1183 delay = ath5k_hw_reg_read(ah, AR5K_PHY_RX_DELAY) &
1184 AR5K_PHY_RX_DELAY_M;
1185 delay = (channel->hw_value & CHANNEL_CCK) ?
1186 ((delay << 2) / 22) : (delay / 10);
1187
1188 udelay(100 + (2 * delay));
1189 } else {
1190 mdelay(1);
1191 }
1192
1193 /*
1194 * Perform ADC test to see if baseband is ready
1195 * Set tx hold and check adc test register
1196 */
1197 phy_tst1 = ath5k_hw_reg_read(ah, AR5K_PHY_TST1);
1198 ath5k_hw_reg_write(ah, AR5K_PHY_TST1_TXHOLD, AR5K_PHY_TST1);
1199 for (i = 0; i <= 20; i++) {
1200 if (!(ath5k_hw_reg_read(ah, AR5K_PHY_ADC_TEST) & 0x10))
1201 break;
1202 udelay(200);
1203 }
1204 ath5k_hw_reg_write(ah, phy_tst1, AR5K_PHY_TST1);
1205
1206 /*
1207 * Start automatic gain control calibration
1208 *
1209 * During AGC calibration RX path is re-routed to
1210 * a power detector so we don't receive anything.
1211 *
1212 * This method is used to calibrate some static offsets
1213 * used together with on-the fly I/Q calibration (the
1214 * one performed via ath5k_hw_phy_calibrate), that doesn't
1215 * interrupt rx path.
1216 *
1217 * While rx path is re-routed to the power detector we also
1218 * start a noise floor calibration, to measure the
1219 * card's noise floor (the noise we measure when we are not
1220 * transmiting or receiving anything).
1221 *
1222 * If we are in a noisy environment AGC calibration may time
1223 * out and/or noise floor calibration might timeout.
1224 */
1225 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1226 AR5K_PHY_AGCCTL_CAL);
1227
1228 /* At the same time start I/Q calibration for QAM constellation
1229 * -no need for CCK- */
1230 ah->ah_calibration = false;
1231 if (!(mode == AR5K_MODE_11B)) {
1232 ah->ah_calibration = true;
1233 AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1234 AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1235 AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1236 AR5K_PHY_IQ_RUN);
1237 }
1238
1239 /* Wait for gain calibration to finish (we check for I/Q calibration
1240 * during ath5k_phy_calibrate) */
1241 if (ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1242 AR5K_PHY_AGCCTL_CAL, 0, false)) {
1243 ATH5K_ERR(ah->ah_sc, "gain calibration timeout (%uMHz)\n",
1244 channel->center_freq);
1245 }
1246
1247 /*
1248 * If we run NF calibration before AGC, it always times out.
1249 * Binary HAL starts NF and AGC calibration at the same time
1250 * and only waits for AGC to finish. Also if AGC or NF cal.
1251 * times out, reset doesn't fail on binary HAL. I believe
1252 * that's wrong because since rx path is routed to a detector,
1253 * if cal. doesn't finish we won't have RX. Sam's HAL for AR5210/5211
1254 * enables noise floor calibration after offset calibration and if noise
1255 * floor calibration fails, reset fails. I believe that's
1256 * a better approach, we just need to find a polling interval
1257 * that suits best, even if reset continues we need to make
1258 * sure that rx path is ready.
1259 */
1260 ath5k_hw_noise_floor_calibration(ah, channel->center_freq);
1261
1262
1263 /*
1264 * Configure QCUs/DCUs
1265 */
1266
1267 /* TODO: HW Compression support for data queues */
1268 /* TODO: Burst prefetch for data queues */
1269
1270 /*
1271 * Reset queues and start beacon timers at the end of the reset routine
1272 * This also sets QCU mask on each DCU for 1:1 qcu to dcu mapping
1273 * Note: If we want we can assign multiple qcus on one dcu.
1274 */
1275 for (i = 0; i < ah->ah_capabilities.cap_queues.q_tx_num; i++) {
1276 ret = ath5k_hw_reset_tx_queue(ah, i);
1277 if (ret) {
1278 ATH5K_ERR(ah->ah_sc,
1279 "failed to reset TX queue #%d\n", i);
1280 return ret;
1281 }
1282 }
1283
1284
1285 /*
1286 * Configure DMA/Interrupts
1287 */
1288
1289 /*
1290 * Set Rx/Tx DMA Configuration
1291 *
1292 * Set standard DMA size (128). Note that
1293 * a DMA size of 512 causes rx overruns and tx errors
1294 * on pci-e cards (tested on 5424 but since rx overruns
1295 * also occur on 5416/5418 with madwifi we set 128
1296 * for all PCI-E cards to be safe).
1297 *
1298 * XXX: need to check 5210 for this
1299 * TODO: Check out tx triger level, it's always 64 on dumps but I
1300 * guess we can tweak it and see how it goes ;-)
1301 */
1302 if (ah->ah_version != AR5K_AR5210) {
1303 AR5K_REG_WRITE_BITS(ah, AR5K_TXCFG,
1304 AR5K_TXCFG_SDMAMR, AR5K_DMASIZE_128B);
1305 AR5K_REG_WRITE_BITS(ah, AR5K_RXCFG,
1306 AR5K_RXCFG_SDMAMW, AR5K_DMASIZE_128B);
1307 }
1308
1309 /* Pre-enable interrupts on 5211/5212*/
1310 if (ah->ah_version != AR5K_AR5210)
1311 ath5k_hw_set_imr(ah, ah->ah_imr);
1312
1313 /*
1314 * Setup RFKill interrupt if rfkill flag is set on eeprom.
1315 * TODO: Use gpio pin and polarity infos from eeprom
1316 * TODO: Handle this in ath5k_intr because it'll result
1317 * a nasty interrupt storm.
1318 */
1319#if 0
1320 if (AR5K_EEPROM_HDR_RFKILL(ah->ah_capabilities.cap_eeprom.ee_header)) {
1321 ath5k_hw_set_gpio_input(ah, 0);
1322 ah->ah_gpio[0] = ath5k_hw_get_gpio(ah, 0);
1323 if (ah->ah_gpio[0] == 0)
1324 ath5k_hw_set_gpio_intr(ah, 0, 1);
1325 else
1326 ath5k_hw_set_gpio_intr(ah, 0, 0);
1327 }
1328#endif
1329
1330 /* Enable 32KHz clock function for AR5212+ chips
1331 * Set clocks to 32KHz operation and use an
1332 * external 32KHz crystal when sleeping if one
1333 * exists */
1334 if (ah->ah_version == AR5K_AR5212)
1335 ath5k_hw_set_sleep_clock(ah, true);
1336
1337 /*
1338 * Disable beacons and reset the register
1339 */
1340 AR5K_REG_DISABLE_BITS(ah, AR5K_BEACON, AR5K_BEACON_ENABLE |
1341 AR5K_BEACON_RESET_TSF);
1342
1343 return 0;
1344}
1345
1346#undef _ATH5K_RESET