aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/wimax
diff options
context:
space:
mode:
authorInaky Perez-Gonzalez <inaky@linux.intel.com>2008-12-20 19:57:44 -0500
committerGreg Kroah-Hartman <gregkh@suse.de>2009-01-07 13:00:18 -0500
commit024f7f31ed15c471f80408d8b5045497e27e1135 (patch)
treecae3fcb7b2c12245dd0f2d9630dee5b01ea32c42 /drivers/net/wimax
parentea24652d253eabfb83e955e55ce032228d9d99b9 (diff)
i2400m: Generic probe/disconnect, reset and message passing
Implements the generic probe and disconnect functions that will be called by the USB and SDIO driver's probe/disconnect functions. Implements the backends for the WiMAX stack's basic operations: message passing, rfkill control and reset. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
Diffstat (limited to 'drivers/net/wimax')
-rw-r--r--drivers/net/wimax/i2400m/driver.c728
-rw-r--r--drivers/net/wimax/i2400m/op-rfkill.c207
2 files changed, 935 insertions, 0 deletions
diff --git a/drivers/net/wimax/i2400m/driver.c b/drivers/net/wimax/i2400m/driver.c
new file mode 100644
index 000000000000..5f98047e18cf
--- /dev/null
+++ b/drivers/net/wimax/i2400m/driver.c
@@ -0,0 +1,728 @@
1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Generic probe/disconnect, reset and message passing
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 *
23 *
24 * See i2400m.h for driver documentation. This contains helpers for
25 * the driver model glue [_setup()/_release()], handling device resets
26 * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27 * reset [_op_reset()] and message from user [_op_msg_from_user()].
28 *
29 * ROADMAP:
30 *
31 * i2400m_op_msg_from_user()
32 * i2400m_msg_to_dev()
33 * wimax_msg_to_user_send()
34 *
35 * i2400m_op_reset()
36 * i240m->bus_reset()
37 *
38 * i2400m_dev_reset_handle()
39 * __i2400m_dev_reset_handle()
40 * __i2400m_dev_stop()
41 * __i2400m_dev_start()
42 *
43 * i2400m_setup()
44 * i2400m_bootrom_init()
45 * register_netdev()
46 * i2400m_dev_start()
47 * __i2400m_dev_start()
48 * i2400m_dev_bootstrap()
49 * i2400m_tx_setup()
50 * i2400m->bus_dev_start()
51 * i2400m_check_mac_addr()
52 * wimax_dev_add()
53 *
54 * i2400m_release()
55 * wimax_dev_rm()
56 * i2400m_dev_stop()
57 * __i2400m_dev_stop()
58 * i2400m_dev_shutdown()
59 * i2400m->bus_dev_stop()
60 * i2400m_tx_release()
61 * unregister_netdev()
62 */
63#include "i2400m.h"
64#include <linux/wimax/i2400m.h>
65#include <linux/module.h>
66#include <linux/moduleparam.h>
67
68#define D_SUBMODULE driver
69#include "debug-levels.h"
70
71
72int i2400m_idle_mode_disabled; /* 0 (idle mode enabled) by default */
73module_param_named(idle_mode_disabled, i2400m_idle_mode_disabled, int, 0644);
74MODULE_PARM_DESC(idle_mode_disabled,
75 "If true, the device will not enable idle mode negotiation "
76 "with the base station (when connected) to save power.");
77
78/**
79 * i2400m_queue_work - schedule work on a i2400m's queue
80 *
81 * @i2400m: device descriptor
82 *
83 * @fn: function to run to execute work. It gets passed a 'struct
84 * work_struct' that is wrapped in a 'struct i2400m_work'. Once
85 * done, you have to (1) i2400m_put(i2400m_work->i2400m) and then
86 * (2) kfree(i2400m_work).
87 *
88 * @gfp_flags: GFP flags for memory allocation.
89 *
90 * @pl: pointer to a payload buffer that you want to pass to the _work
91 * function. Use this to pack (for example) a struct with extra
92 * arguments.
93 *
94 * @pl_size: size of the payload buffer.
95 *
96 * We do this quite often, so this just saves typing; allocate a
97 * wrapper for a i2400m, get a ref to it, pack arguments and launch
98 * the work.
99 *
100 * A usual workflow is:
101 *
102 * struct my_work_args {
103 * void *something;
104 * int whatever;
105 * };
106 * ...
107 *
108 * struct my_work_args my_args = {
109 * .something = FOO,
110 * .whaetever = BLAH
111 * };
112 * i2400m_queue_work(i2400m, 1, my_work_function, GFP_KERNEL,
113 * &args, sizeof(args))
114 *
115 * And now the work function can unpack the arguments and call the
116 * real function (or do the job itself):
117 *
118 * static
119 * void my_work_fn((struct work_struct *ws)
120 * {
121 * struct i2400m_work *iw =
122 * container_of(ws, struct i2400m_work, ws);
123 * struct my_work_args *my_args = (void *) iw->pl;
124 *
125 * my_work(iw->i2400m, my_args->something, my_args->whatevert);
126 * }
127 */
128int i2400m_queue_work(struct i2400m *i2400m,
129 void (*fn)(struct work_struct *), gfp_t gfp_flags,
130 const void *pl, size_t pl_size)
131{
132 int result;
133 struct i2400m_work *iw;
134
135 BUG_ON(i2400m->work_queue == NULL);
136 result = -ENOMEM;
137 iw = kzalloc(sizeof(*iw) + pl_size, gfp_flags);
138 if (iw == NULL)
139 goto error_kzalloc;
140 iw->i2400m = i2400m_get(i2400m);
141 memcpy(iw->pl, pl, pl_size);
142 INIT_WORK(&iw->ws, fn);
143 result = queue_work(i2400m->work_queue, &iw->ws);
144error_kzalloc:
145 return result;
146}
147EXPORT_SYMBOL_GPL(i2400m_queue_work);
148
149
150/*
151 * Schedule i2400m's specific work on the system's queue.
152 *
153 * Used for a few cases where we really need it; otherwise, identical
154 * to i2400m_queue_work().
155 *
156 * Returns < 0 errno code on error, 1 if ok.
157 *
158 * If it returns zero, something really bad happened, as it means the
159 * works struct was already queued, but we have just allocated it, so
160 * it should not happen.
161 */
162int i2400m_schedule_work(struct i2400m *i2400m,
163 void (*fn)(struct work_struct *), gfp_t gfp_flags)
164{
165 int result;
166 struct i2400m_work *iw;
167
168 BUG_ON(i2400m->work_queue == NULL);
169 result = -ENOMEM;
170 iw = kzalloc(sizeof(*iw), gfp_flags);
171 if (iw == NULL)
172 goto error_kzalloc;
173 iw->i2400m = i2400m_get(i2400m);
174 INIT_WORK(&iw->ws, fn);
175 result = schedule_work(&iw->ws);
176 if (result == 0)
177 result = -ENXIO;
178error_kzalloc:
179 return result;
180}
181
182
183/*
184 * WiMAX stack operation: relay a message from user space
185 *
186 * @wimax_dev: device descriptor
187 * @pipe_name: named pipe the message is for
188 * @msg_buf: pointer to the message bytes
189 * @msg_len: length of the buffer
190 * @genl_info: passed by the generic netlink layer
191 *
192 * The WiMAX stack will call this function when a message was received
193 * from user space.
194 *
195 * For the i2400m, this is an L3L4 message, as specified in
196 * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
197 * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
198 * coded in Little Endian.
199 *
200 * This function just verifies that the header declaration and the
201 * payload are consistent and then deals with it, either forwarding it
202 * to the device or procesing it locally.
203 *
204 * In the i2400m, messages are basically commands that will carry an
205 * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
206 * user space. The rx.c code might intercept the response and use it
207 * to update the driver's state, but then it will pass it on so it can
208 * be relayed back to user space.
209 *
210 * Note that asynchronous events from the device are processed and
211 * sent to user space in rx.c.
212 */
213static
214int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
215 const char *pipe_name,
216 const void *msg_buf, size_t msg_len,
217 const struct genl_info *genl_info)
218{
219 int result;
220 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
221 struct device *dev = i2400m_dev(i2400m);
222 struct sk_buff *ack_skb;
223
224 d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
225 "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
226 msg_buf, msg_len, genl_info);
227 ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
228 result = PTR_ERR(ack_skb);
229 if (IS_ERR(ack_skb))
230 goto error_msg_to_dev;
231 if (unlikely(i2400m->trace_msg_from_user))
232 wimax_msg(&i2400m->wimax_dev, "trace",
233 msg_buf, msg_len, GFP_KERNEL);
234 result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
235error_msg_to_dev:
236 d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
237 "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
238 genl_info, result);
239 return result;
240}
241
242
243/*
244 * Context to wait for a reset to finalize
245 */
246struct i2400m_reset_ctx {
247 struct completion completion;
248 int result;
249};
250
251
252/*
253 * WiMAX stack operation: reset a device
254 *
255 * @wimax_dev: device descriptor
256 *
257 * See the documentation for wimax_reset() and wimax_dev->op_reset for
258 * the requirements of this function. The WiMAX stack guarantees
259 * serialization on calls to this function.
260 *
261 * Do a warm reset on the device; if it fails, resort to a cold reset
262 * and return -ENODEV. On successful warm reset, we need to block
263 * until it is complete.
264 *
265 * The bus-driver implementation of reset takes care of falling back
266 * to cold reset if warm fails.
267 */
268static
269int i2400m_op_reset(struct wimax_dev *wimax_dev)
270{
271 int result;
272 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
273 struct device *dev = i2400m_dev(i2400m);
274 struct i2400m_reset_ctx ctx = {
275 .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
276 .result = 0,
277 };
278
279 d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
280 mutex_lock(&i2400m->init_mutex);
281 i2400m->reset_ctx = &ctx;
282 mutex_unlock(&i2400m->init_mutex);
283 result = i2400m->bus_reset(i2400m, I2400M_RT_WARM);
284 if (result < 0)
285 goto out;
286 result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
287 if (result == 0)
288 result = -ETIMEDOUT;
289 else if (result > 0)
290 result = ctx.result;
291 /* if result < 0, pass it on */
292 mutex_lock(&i2400m->init_mutex);
293 i2400m->reset_ctx = NULL;
294 mutex_unlock(&i2400m->init_mutex);
295out:
296 d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
297 return result;
298}
299
300
301/*
302 * Check the MAC address we got from boot mode is ok
303 *
304 * @i2400m: device descriptor
305 *
306 * Returns: 0 if ok, < 0 errno code on error.
307 */
308static
309int i2400m_check_mac_addr(struct i2400m *i2400m)
310{
311 int result;
312 struct device *dev = i2400m_dev(i2400m);
313 struct sk_buff *skb;
314 const struct i2400m_tlv_detailed_device_info *ddi;
315 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
316 const unsigned char zeromac[ETH_ALEN] = { 0 };
317
318 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
319 skb = i2400m_get_device_info(i2400m);
320 if (IS_ERR(skb)) {
321 result = PTR_ERR(skb);
322 dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
323 result);
324 goto error;
325 }
326 /* Extract MAC addresss */
327 ddi = (void *) skb->data;
328 BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
329 d_printf(2, dev, "GET DEVICE INFO: mac addr "
330 "%02x:%02x:%02x:%02x:%02x:%02x\n",
331 ddi->mac_address[0], ddi->mac_address[1],
332 ddi->mac_address[2], ddi->mac_address[3],
333 ddi->mac_address[4], ddi->mac_address[5]);
334 if (!memcmp(net_dev->perm_addr, ddi->mac_address,
335 sizeof(ddi->mac_address)))
336 goto ok;
337 dev_warn(dev, "warning: device reports a different MAC address "
338 "to that of boot mode's\n");
339 dev_warn(dev, "device reports %02x:%02x:%02x:%02x:%02x:%02x\n",
340 ddi->mac_address[0], ddi->mac_address[1],
341 ddi->mac_address[2], ddi->mac_address[3],
342 ddi->mac_address[4], ddi->mac_address[5]);
343 dev_warn(dev, "boot mode reported %02x:%02x:%02x:%02x:%02x:%02x\n",
344 net_dev->perm_addr[0], net_dev->perm_addr[1],
345 net_dev->perm_addr[2], net_dev->perm_addr[3],
346 net_dev->perm_addr[4], net_dev->perm_addr[5]);
347 if (!memcmp(zeromac, ddi->mac_address, sizeof(zeromac)))
348 dev_err(dev, "device reports an invalid MAC address, "
349 "not updating\n");
350 else {
351 dev_warn(dev, "updating MAC address\n");
352 net_dev->addr_len = ETH_ALEN;
353 memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
354 memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
355 }
356ok:
357 result = 0;
358 kfree_skb(skb);
359error:
360 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
361 return result;
362}
363
364
365/**
366 * __i2400m_dev_start - Bring up driver communication with the device
367 *
368 * @i2400m: device descriptor
369 * @flags: boot mode flags
370 *
371 * Returns: 0 if ok, < 0 errno code on error.
372 *
373 * Uploads firmware and brings up all the resources needed to be able
374 * to communicate with the device.
375 *
376 * TX needs to be setup before the bus-specific code (otherwise on
377 * shutdown, the bus-tx code could try to access it).
378 */
379static
380int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
381{
382 int result;
383 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
384 struct net_device *net_dev = wimax_dev->net_dev;
385 struct device *dev = i2400m_dev(i2400m);
386 int times = 3;
387
388 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
389retry:
390 result = i2400m_dev_bootstrap(i2400m, flags);
391 if (result < 0) {
392 dev_err(dev, "cannot bootstrap device: %d\n", result);
393 goto error_bootstrap;
394 }
395 result = i2400m_tx_setup(i2400m);
396 if (result < 0)
397 goto error_tx_setup;
398 result = i2400m->bus_dev_start(i2400m);
399 if (result < 0)
400 goto error_bus_dev_start;
401 i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
402 if (i2400m->work_queue == NULL) {
403 result = -ENOMEM;
404 dev_err(dev, "cannot create workqueue\n");
405 goto error_create_workqueue;
406 }
407 /* At this point is ok to send commands to the device */
408 result = i2400m_check_mac_addr(i2400m);
409 if (result < 0)
410 goto error_check_mac_addr;
411 i2400m->ready = 1;
412 wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
413 result = i2400m_dev_initialize(i2400m);
414 if (result < 0)
415 goto error_dev_initialize;
416 /* At this point, reports will come for the device and set it
417 * to the right state if it is different than UNINITIALIZED */
418 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
419 net_dev, i2400m, result);
420 return result;
421
422error_dev_initialize:
423error_check_mac_addr:
424 destroy_workqueue(i2400m->work_queue);
425error_create_workqueue:
426 i2400m->bus_dev_stop(i2400m);
427error_bus_dev_start:
428 i2400m_tx_release(i2400m);
429error_tx_setup:
430error_bootstrap:
431 if (result == -ERESTARTSYS && times-- > 0) {
432 flags = I2400M_BRI_SOFT;
433 goto retry;
434 }
435 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
436 net_dev, i2400m, result);
437 return result;
438}
439
440
441static
442int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
443{
444 int result;
445 mutex_lock(&i2400m->init_mutex); /* Well, start the device */
446 result = __i2400m_dev_start(i2400m, bm_flags);
447 if (result >= 0)
448 i2400m->updown = 1;
449 mutex_unlock(&i2400m->init_mutex);
450 return result;
451}
452
453
454/**
455 * i2400m_dev_stop - Tear down driver communication with the device
456 *
457 * @i2400m: device descriptor
458 *
459 * Returns: 0 if ok, < 0 errno code on error.
460 *
461 * Releases all the resources allocated to communicate with the device.
462 */
463static
464void __i2400m_dev_stop(struct i2400m *i2400m)
465{
466 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
467 struct device *dev = i2400m_dev(i2400m);
468
469 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
470 wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
471 i2400m_dev_shutdown(i2400m);
472 i2400m->ready = 0;
473 destroy_workqueue(i2400m->work_queue);
474 i2400m->bus_dev_stop(i2400m);
475 i2400m_tx_release(i2400m);
476 wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
477 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
478}
479
480
481/*
482 * Watch out -- we only need to stop if there is a need for it. The
483 * device could have reset itself and failed to come up again (see
484 * _i2400m_dev_reset_handle()).
485 */
486static
487void i2400m_dev_stop(struct i2400m *i2400m)
488{
489 mutex_lock(&i2400m->init_mutex);
490 if (i2400m->updown) {
491 __i2400m_dev_stop(i2400m);
492 i2400m->updown = 0;
493 }
494 mutex_unlock(&i2400m->init_mutex);
495}
496
497
498/*
499 * The device has rebooted; fix up the device and the driver
500 *
501 * Tear down the driver communication with the device, reload the
502 * firmware and reinitialize the communication with the device.
503 *
504 * If someone calls a reset when the device's firmware is down, in
505 * theory we won't see it because we are not listening. However, just
506 * in case, leave the code to handle it.
507 *
508 * If there is a reset context, use it; this means someone is waiting
509 * for us to tell him when the reset operation is complete and the
510 * device is ready to rock again.
511 *
512 * NOTE: if we are in the process of bringing up or down the
513 * communication with the device [running i2400m_dev_start() or
514 * _stop()], don't do anything, let it fail and handle it.
515 *
516 * This function is ran always in a thread context
517 */
518static
519void __i2400m_dev_reset_handle(struct work_struct *ws)
520{
521 int result;
522 struct i2400m_work *iw = container_of(ws, struct i2400m_work, ws);
523 struct i2400m *i2400m = iw->i2400m;
524 struct device *dev = i2400m_dev(i2400m);
525 enum wimax_st wimax_state;
526 struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
527
528 d_fnstart(3, dev, "(ws %p i2400m %p)\n", ws, i2400m);
529 result = 0;
530 if (mutex_trylock(&i2400m->init_mutex) == 0) {
531 /* We are still in i2400m_dev_start() [let it fail] or
532 * i2400m_dev_stop() [we are shutting down anyway, so
533 * ignore it] or we are resetting somewhere else. */
534 dev_err(dev, "device rebooted\n");
535 i2400m_msg_to_dev_cancel_wait(i2400m, -ERESTARTSYS);
536 complete(&i2400m->msg_completion);
537 goto out;
538 }
539 wimax_state = wimax_state_get(&i2400m->wimax_dev);
540 if (wimax_state < WIMAX_ST_UNINITIALIZED) {
541 dev_info(dev, "device rebooted: it is down, ignoring\n");
542 goto out_unlock; /* ifconfig up/down wasn't called */
543 }
544 dev_err(dev, "device rebooted: reinitializing driver\n");
545 __i2400m_dev_stop(i2400m);
546 i2400m->updown = 0;
547 result = __i2400m_dev_start(i2400m,
548 I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
549 if (result < 0) {
550 dev_err(dev, "device reboot: cannot start the device: %d\n",
551 result);
552 result = i2400m->bus_reset(i2400m, I2400M_RT_BUS);
553 if (result >= 0)
554 result = -ENODEV;
555 } else
556 i2400m->updown = 1;
557out_unlock:
558 if (i2400m->reset_ctx) {
559 ctx->result = result;
560 complete(&ctx->completion);
561 }
562 mutex_unlock(&i2400m->init_mutex);
563out:
564 i2400m_put(i2400m);
565 kfree(iw);
566 d_fnend(3, dev, "(ws %p i2400m %p) = void\n", ws, i2400m);
567 return;
568}
569
570
571/**
572 * i2400m_dev_reset_handle - Handle a device's reset in a thread context
573 *
574 * Schedule a device reset handling out on a thread context, so it
575 * is safe to call from atomic context. We can't use the i2400m's
576 * queue as we are going to destroy it and reinitialize it as part of
577 * the driver bringup/bringup process.
578 *
579 * See __i2400m_dev_reset_handle() for details; that takes care of
580 * reinitializing the driver to handle the reset, calling into the
581 * bus-specific functions ops as needed.
582 */
583int i2400m_dev_reset_handle(struct i2400m *i2400m)
584{
585 return i2400m_schedule_work(i2400m, __i2400m_dev_reset_handle,
586 GFP_ATOMIC);
587}
588EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
589
590
591/**
592 * i2400m_setup - bus-generic setup function for the i2400m device
593 *
594 * @i2400m: device descriptor (bus-specific parts have been initialized)
595 *
596 * Returns: 0 if ok, < 0 errno code on error.
597 *
598 * Initializes the bus-generic parts of the i2400m driver; the
599 * bus-specific parts have been initialized, function pointers filled
600 * out by the bus-specific probe function.
601 *
602 * As well, this registers the WiMAX and net device nodes. Once this
603 * function returns, the device is operative and has to be ready to
604 * receive and send network traffic and WiMAX control operations.
605 */
606int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
607{
608 int result = -ENODEV;
609 struct device *dev = i2400m_dev(i2400m);
610 struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
611 struct net_device *net_dev = i2400m->wimax_dev.net_dev;
612
613 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
614
615 snprintf(wimax_dev->name, sizeof(wimax_dev->name),
616 "i2400m-%s:%s", dev->bus->name, dev->bus_id);
617
618 i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
619 if (i2400m->bm_cmd_buf == NULL) {
620 dev_err(dev, "cannot allocate USB command buffer\n");
621 goto error_bm_cmd_kzalloc;
622 }
623 i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
624 if (i2400m->bm_ack_buf == NULL) {
625 dev_err(dev, "cannot allocate USB ack buffer\n");
626 goto error_bm_ack_buf_kzalloc;
627 }
628 result = i2400m_bootrom_init(i2400m, bm_flags);
629 if (result < 0) {
630 dev_err(dev, "read mac addr: bootrom init "
631 "failed: %d\n", result);
632 goto error_bootrom_init;
633 }
634 result = i2400m_read_mac_addr(i2400m);
635 if (result < 0)
636 goto error_read_mac_addr;
637
638 result = register_netdev(net_dev); /* Okey dokey, bring it up */
639 if (result < 0) {
640 dev_err(dev, "cannot register i2400m network device: %d\n",
641 result);
642 goto error_register_netdev;
643 }
644 netif_carrier_off(net_dev);
645
646 result = i2400m_dev_start(i2400m, bm_flags);
647 if (result < 0)
648 goto error_dev_start;
649
650 i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
651 i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
652 i2400m->wimax_dev.op_reset = i2400m_op_reset;
653 result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
654 if (result < 0)
655 goto error_wimax_dev_add;
656 /* User space needs to do some init stuff */
657 wimax_state_change(wimax_dev, WIMAX_ST_UNINITIALIZED);
658
659 /* Now setup all that requires a registered net and wimax device. */
660 result = i2400m_debugfs_add(i2400m);
661 if (result < 0) {
662 dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
663 goto error_debugfs_setup;
664 }
665 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
666 return result;
667
668error_debugfs_setup:
669 wimax_dev_rm(&i2400m->wimax_dev);
670error_wimax_dev_add:
671 i2400m_dev_stop(i2400m);
672error_dev_start:
673 unregister_netdev(net_dev);
674error_register_netdev:
675error_read_mac_addr:
676error_bootrom_init:
677 kfree(i2400m->bm_ack_buf);
678error_bm_ack_buf_kzalloc:
679 kfree(i2400m->bm_cmd_buf);
680error_bm_cmd_kzalloc:
681 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
682 return result;
683}
684EXPORT_SYMBOL_GPL(i2400m_setup);
685
686
687/**
688 * i2400m_release - release the bus-generic driver resources
689 *
690 * Sends a disconnect message and undoes any setup done by i2400m_setup()
691 */
692void i2400m_release(struct i2400m *i2400m)
693{
694 struct device *dev = i2400m_dev(i2400m);
695
696 d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
697 netif_stop_queue(i2400m->wimax_dev.net_dev);
698
699 i2400m_debugfs_rm(i2400m);
700 wimax_dev_rm(&i2400m->wimax_dev);
701 i2400m_dev_stop(i2400m);
702 unregister_netdev(i2400m->wimax_dev.net_dev);
703 kfree(i2400m->bm_ack_buf);
704 kfree(i2400m->bm_cmd_buf);
705 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
706}
707EXPORT_SYMBOL_GPL(i2400m_release);
708
709
710static
711int __init i2400m_driver_init(void)
712{
713 return 0;
714}
715module_init(i2400m_driver_init);
716
717static
718void __exit i2400m_driver_exit(void)
719{
720 /* for scheds i2400m_dev_reset_handle() */
721 flush_scheduled_work();
722 return;
723}
724module_exit(i2400m_driver_exit);
725
726MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
727MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
728MODULE_LICENSE("GPL");
diff --git a/drivers/net/wimax/i2400m/op-rfkill.c b/drivers/net/wimax/i2400m/op-rfkill.c
new file mode 100644
index 000000000000..487ec58cea46
--- /dev/null
+++ b/drivers/net/wimax/i2400m/op-rfkill.c
@@ -0,0 +1,207 @@
1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Implement backend for the WiMAX stack rfkill support
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 *
23 *
24 * The WiMAX kernel stack integrates into RF-Kill and keeps the
25 * switches's status. We just need to:
26 *
27 * - report changes in the HW RF Kill switch [with
28 * wimax_rfkill_{sw,hw}_report(), which happens when we detect those
29 * indications coming through hardware reports]. We also do it on
30 * initialization to let the stack know the intial HW state.
31 *
32 * - implement indications from the stack to change the SW RF Kill
33 * switch (coming from sysfs, the wimax stack or user space).
34 */
35#include "i2400m.h"
36#include <linux/wimax/i2400m.h>
37
38
39
40#define D_SUBMODULE rfkill
41#include "debug-levels.h"
42
43/*
44 * Return true if the i2400m radio is in the requested wimax_rf_state state
45 *
46 */
47static
48int i2400m_radio_is(struct i2400m *i2400m, enum wimax_rf_state state)
49{
50 if (state == WIMAX_RF_OFF)
51 return i2400m->state == I2400M_SS_RF_OFF
52 || i2400m->state == I2400M_SS_RF_SHUTDOWN;
53 else if (state == WIMAX_RF_ON)
54 /* state == WIMAX_RF_ON */
55 return i2400m->state != I2400M_SS_RF_OFF
56 && i2400m->state != I2400M_SS_RF_SHUTDOWN;
57 else
58 BUG();
59}
60
61
62/*
63 * WiMAX stack operation: implement SW RFKill toggling
64 *
65 * @wimax_dev: device descriptor
66 * @skb: skb where the message has been received; skb->data is
67 * expected to point to the message payload.
68 * @genl_info: passed by the generic netlink layer
69 *
70 * Generic Netlink will call this function when a message is sent from
71 * userspace to change the software RF-Kill switch status.
72 *
73 * This function will set the device's sofware RF-Kill switch state to
74 * match what is requested.
75 *
76 * NOTE: the i2400m has a strict state machine; we can only set the
77 * RF-Kill switch when it is on, the HW RF-Kill is on and the
78 * device is initialized. So we ignore errors steaming from not
79 * being in the right state (-EILSEQ).
80 */
81int i2400m_op_rfkill_sw_toggle(struct wimax_dev *wimax_dev,
82 enum wimax_rf_state state)
83{
84 int result;
85 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
86 struct device *dev = i2400m_dev(i2400m);
87 struct sk_buff *ack_skb;
88 struct {
89 struct i2400m_l3l4_hdr hdr;
90 struct i2400m_tlv_rf_operation sw_rf;
91 } __attribute__((packed)) *cmd;
92 char strerr[32];
93
94 d_fnstart(4, dev, "(wimax_dev %p state %d)\n", wimax_dev, state);
95
96 result = -ENOMEM;
97 cmd = kzalloc(sizeof(*cmd), GFP_KERNEL);
98 if (cmd == NULL)
99 goto error_alloc;
100 cmd->hdr.type = cpu_to_le16(I2400M_MT_CMD_RF_CONTROL);
101 cmd->hdr.length = sizeof(cmd->sw_rf);
102 cmd->hdr.version = cpu_to_le16(I2400M_L3L4_VERSION);
103 cmd->sw_rf.hdr.type = cpu_to_le16(I2400M_TLV_RF_OPERATION);
104 cmd->sw_rf.hdr.length = cpu_to_le16(sizeof(cmd->sw_rf.status));
105 switch (state) {
106 case WIMAX_RF_OFF: /* RFKILL ON, radio OFF */
107 cmd->sw_rf.status = cpu_to_le32(2);
108 break;
109 case WIMAX_RF_ON: /* RFKILL OFF, radio ON */
110 cmd->sw_rf.status = cpu_to_le32(1);
111 break;
112 default:
113 BUG();
114 }
115
116 ack_skb = i2400m_msg_to_dev(i2400m, cmd, sizeof(*cmd));
117 result = PTR_ERR(ack_skb);
118 if (IS_ERR(ack_skb)) {
119 dev_err(dev, "Failed to issue 'RF Control' command: %d\n",
120 result);
121 goto error_msg_to_dev;
122 }
123 result = i2400m_msg_check_status(wimax_msg_data(ack_skb),
124 strerr, sizeof(strerr));
125 if (result < 0) {
126 dev_err(dev, "'RF Control' (0x%04x) command failed: %d - %s\n",
127 I2400M_MT_CMD_RF_CONTROL, result, strerr);
128 goto error_cmd;
129 }
130
131 /* Now we wait for the state to change to RADIO_OFF or RADIO_ON */
132 result = wait_event_timeout(
133 i2400m->state_wq, i2400m_radio_is(i2400m, state),
134 5 * HZ);
135 if (result == 0)
136 result = -ETIMEDOUT;
137 if (result < 0)
138 dev_err(dev, "Error waiting for device to toggle RF state: "
139 "%d\n", result);
140 result = 0;
141error_cmd:
142 kfree_skb(ack_skb);
143error_msg_to_dev:
144error_alloc:
145 d_fnend(4, dev, "(wimax_dev %p state %d) = %d\n",
146 wimax_dev, state, result);
147 return result;
148}
149
150
151/*
152 * Inform the WiMAX stack of changes in the RF Kill switches reported
153 * by the device
154 *
155 * @i2400m: device descriptor
156 * @rfss: TLV for RF Switches status; already validated
157 *
158 * NOTE: the reports on RF switch status cannot be trusted
159 * or used until the device is in a state of RADIO_OFF
160 * or greater.
161 */
162void i2400m_report_tlv_rf_switches_status(
163 struct i2400m *i2400m,
164 const struct i2400m_tlv_rf_switches_status *rfss)
165{
166 struct device *dev = i2400m_dev(i2400m);
167 enum i2400m_rf_switch_status hw, sw;
168 enum wimax_st wimax_state;
169
170 sw = le32_to_cpu(rfss->sw_rf_switch);
171 hw = le32_to_cpu(rfss->hw_rf_switch);
172
173 d_fnstart(3, dev, "(i2400m %p rfss %p [hw %u sw %u])\n",
174 i2400m, rfss, hw, sw);
175 /* We only process rw switch evens when the device has been
176 * fully initialized */
177 wimax_state = wimax_state_get(&i2400m->wimax_dev);
178 if (wimax_state < WIMAX_ST_RADIO_OFF) {
179 d_printf(3, dev, "ignoring RF switches report, state %u\n",
180 wimax_state);
181 goto out;
182 }
183 switch (sw) {
184 case I2400M_RF_SWITCH_ON: /* RF Kill disabled (radio on) */
185 wimax_report_rfkill_sw(&i2400m->wimax_dev, WIMAX_RF_ON);
186 break;
187 case I2400M_RF_SWITCH_OFF: /* RF Kill enabled (radio off) */
188 wimax_report_rfkill_sw(&i2400m->wimax_dev, WIMAX_RF_OFF);
189 break;
190 default:
191 dev_err(dev, "HW BUG? Unknown RF SW state 0x%x\n", sw);
192 }
193
194 switch (hw) {
195 case I2400M_RF_SWITCH_ON: /* RF Kill disabled (radio on) */
196 wimax_report_rfkill_hw(&i2400m->wimax_dev, WIMAX_RF_ON);
197 break;
198 case I2400M_RF_SWITCH_OFF: /* RF Kill enabled (radio off) */
199 wimax_report_rfkill_hw(&i2400m->wimax_dev, WIMAX_RF_OFF);
200 break;
201 default:
202 dev_err(dev, "HW BUG? Unknown RF HW state 0x%x\n", hw);
203 }
204out:
205 d_fnend(3, dev, "(i2400m %p rfss %p [hw %u sw %u]) = void\n",
206 i2400m, rfss, hw, sw);
207}