aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/skge.c
diff options
context:
space:
mode:
authorStephen Hemminger <shemminger@osdl.org>2005-05-12 20:14:36 -0400
committerJeff Garzik <jgarzik@pobox.com>2005-05-12 20:14:36 -0400
commitbaef58b1b09ac0e9339e021144b921560482c8bd (patch)
treeb3375c3b188a01734b681fdd4e2aa27cd64ef176 /drivers/net/skge.c
parent88d7bd8cb9eb8d64bf7997600b0d64f7834047c5 (diff)
[netdrvr] new driver skge, for SysKonnect cards
Diffstat (limited to 'drivers/net/skge.c')
-rw-r--r--drivers/net/skge.c3385
1 files changed, 3385 insertions, 0 deletions
diff --git a/drivers/net/skge.c b/drivers/net/skge.c
new file mode 100644
index 000000000000..11e158346acb
--- /dev/null
+++ b/drivers/net/skge.c
@@ -0,0 +1,3385 @@
1/*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
5 *
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
9 *
10 * Copyright (C) 2004, Stephen Hemminger <shemminger@osdl.org>
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25 */
26
27#include <linux/config.h>
28#include <linux/kernel.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/ethtool.h>
34#include <linux/pci.h>
35#include <linux/if_vlan.h>
36#include <linux/ip.h>
37#include <linux/delay.h>
38#include <linux/crc32.h>
39#include <asm/irq.h>
40
41#include "skge.h"
42
43#define DRV_NAME "skge"
44#define DRV_VERSION "0.6"
45#define PFX DRV_NAME " "
46
47#define DEFAULT_TX_RING_SIZE 128
48#define DEFAULT_RX_RING_SIZE 512
49#define MAX_TX_RING_SIZE 1024
50#define MAX_RX_RING_SIZE 4096
51#define PHY_RETRIES 1000
52#define ETH_JUMBO_MTU 9000
53#define TX_WATCHDOG (5 * HZ)
54#define NAPI_WEIGHT 64
55#define BLINK_HZ (HZ/4)
56#define LINK_POLL_HZ (HZ/10)
57
58MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
59MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
60MODULE_LICENSE("GPL");
61MODULE_VERSION(DRV_VERSION);
62
63static const u32 default_msg
64 = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
65 | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
66
67static int debug = -1; /* defaults above */
68module_param(debug, int, 0);
69MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
70
71static const struct pci_device_id skge_id_table[] = {
72 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940,
73 PCI_ANY_ID, PCI_ANY_ID },
74 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B,
75 PCI_ANY_ID, PCI_ANY_ID },
76 { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE,
77 PCI_ANY_ID, PCI_ANY_ID },
78 { PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU,
79 PCI_ANY_ID, PCI_ANY_ID },
80 { PCI_VENDOR_ID_SYSKONNECT, 0x9E00, /* SK-9Exx */
81 PCI_ANY_ID, PCI_ANY_ID },
82 { PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T,
83 PCI_ANY_ID, PCI_ANY_ID },
84 { PCI_VENDOR_ID_MARVELL, 0x4320, /* Gigabit Ethernet Controller */
85 PCI_ANY_ID, PCI_ANY_ID },
86 { PCI_VENDOR_ID_MARVELL, 0x5005, /* Marvell (11ab), Belkin */
87 PCI_ANY_ID, PCI_ANY_ID },
88 { PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD,
89 PCI_ANY_ID, PCI_ANY_ID },
90 { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1032,
91 PCI_ANY_ID, PCI_ANY_ID },
92 { PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064,
93 PCI_ANY_ID, PCI_ANY_ID },
94 { 0 }
95};
96MODULE_DEVICE_TABLE(pci, skge_id_table);
97
98static int skge_up(struct net_device *dev);
99static int skge_down(struct net_device *dev);
100static void skge_tx_clean(struct skge_port *skge);
101static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
102static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
103static void genesis_get_stats(struct skge_port *skge, u64 *data);
104static void yukon_get_stats(struct skge_port *skge, u64 *data);
105static void yukon_init(struct skge_hw *hw, int port);
106static void yukon_reset(struct skge_hw *hw, int port);
107static void genesis_mac_init(struct skge_hw *hw, int port);
108static void genesis_reset(struct skge_hw *hw, int port);
109
110static const int txqaddr[] = { Q_XA1, Q_XA2 };
111static const int rxqaddr[] = { Q_R1, Q_R2 };
112static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
113static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
114
115/* Don't need to look at whole 16K.
116 * last interesting register is descriptor poll timer.
117 */
118#define SKGE_REGS_LEN (29*128)
119
120static int skge_get_regs_len(struct net_device *dev)
121{
122 return SKGE_REGS_LEN;
123}
124
125/*
126 * Returns copy of control register region
127 * I/O region is divided into banks and certain regions are unreadable
128 */
129static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
130 void *p)
131{
132 const struct skge_port *skge = netdev_priv(dev);
133 unsigned long offs;
134 const void __iomem *io = skge->hw->regs;
135 static const unsigned long bankmap
136 = (1<<0) | (1<<2) | (1<<8) | (1<<9)
137 | (1<<12) | (1<<13) | (1<<14) | (1<<15) | (1<<16)
138 | (1<<17) | (1<<20) | (1<<21) | (1<<22) | (1<<23)
139 | (1<<24) | (1<<25) | (1<<26) | (1<<27) | (1<<28);
140
141 regs->version = 1;
142 for (offs = 0; offs < regs->len; offs += 128) {
143 u32 len = min_t(u32, 128, regs->len - offs);
144
145 if (bankmap & (1<<(offs/128)))
146 memcpy_fromio(p + offs, io + offs, len);
147 else
148 memset(p + offs, 0, len);
149 }
150}
151
152/* Wake on Lan only supported on Yukon chps with rev 1 or above */
153static int wol_supported(const struct skge_hw *hw)
154{
155 return !((hw->chip_id == CHIP_ID_GENESIS ||
156 (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)));
157}
158
159static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
160{
161 struct skge_port *skge = netdev_priv(dev);
162
163 wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
164 wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
165}
166
167static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
168{
169 struct skge_port *skge = netdev_priv(dev);
170 struct skge_hw *hw = skge->hw;
171
172 if(wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
173 return -EOPNOTSUPP;
174
175 if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
176 return -EOPNOTSUPP;
177
178 skge->wol = wol->wolopts == WAKE_MAGIC;
179
180 if (skge->wol) {
181 memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
182
183 skge_write16(hw, WOL_CTRL_STAT,
184 WOL_CTL_ENA_PME_ON_MAGIC_PKT |
185 WOL_CTL_ENA_MAGIC_PKT_UNIT);
186 } else
187 skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
188
189 return 0;
190}
191
192
193static int skge_get_settings(struct net_device *dev,
194 struct ethtool_cmd *ecmd)
195{
196 struct skge_port *skge = netdev_priv(dev);
197 struct skge_hw *hw = skge->hw;
198
199 ecmd->transceiver = XCVR_INTERNAL;
200
201 if (iscopper(hw)) {
202 if (hw->chip_id == CHIP_ID_GENESIS)
203 ecmd->supported = SUPPORTED_1000baseT_Full
204 | SUPPORTED_1000baseT_Half
205 | SUPPORTED_Autoneg | SUPPORTED_TP;
206 else {
207 ecmd->supported = SUPPORTED_10baseT_Half
208 | SUPPORTED_10baseT_Full
209 | SUPPORTED_100baseT_Half
210 | SUPPORTED_100baseT_Full
211 | SUPPORTED_1000baseT_Half
212 | SUPPORTED_1000baseT_Full
213 | SUPPORTED_Autoneg| SUPPORTED_TP;
214
215 if (hw->chip_id == CHIP_ID_YUKON)
216 ecmd->supported &= ~SUPPORTED_1000baseT_Half;
217
218 else if (hw->chip_id == CHIP_ID_YUKON_FE)
219 ecmd->supported &= ~(SUPPORTED_1000baseT_Half
220 | SUPPORTED_1000baseT_Full);
221 }
222
223 ecmd->port = PORT_TP;
224 ecmd->phy_address = hw->phy_addr;
225 } else {
226 ecmd->supported = SUPPORTED_1000baseT_Full
227 | SUPPORTED_FIBRE
228 | SUPPORTED_Autoneg;
229
230 ecmd->port = PORT_FIBRE;
231 }
232
233 ecmd->advertising = skge->advertising;
234 ecmd->autoneg = skge->autoneg;
235 ecmd->speed = skge->speed;
236 ecmd->duplex = skge->duplex;
237 return 0;
238}
239
240static u32 skge_modes(const struct skge_hw *hw)
241{
242 u32 modes = ADVERTISED_Autoneg
243 | ADVERTISED_1000baseT_Full | ADVERTISED_1000baseT_Half
244 | ADVERTISED_100baseT_Full | ADVERTISED_100baseT_Half
245 | ADVERTISED_10baseT_Full | ADVERTISED_10baseT_Half;
246
247 if (iscopper(hw)) {
248 modes |= ADVERTISED_TP;
249 switch(hw->chip_id) {
250 case CHIP_ID_GENESIS:
251 modes &= ~(ADVERTISED_100baseT_Full
252 | ADVERTISED_100baseT_Half
253 | ADVERTISED_10baseT_Full
254 | ADVERTISED_10baseT_Half);
255 break;
256
257 case CHIP_ID_YUKON:
258 modes &= ~ADVERTISED_1000baseT_Half;
259 break;
260
261 case CHIP_ID_YUKON_FE:
262 modes &= ~(ADVERTISED_1000baseT_Half|ADVERTISED_1000baseT_Full);
263 break;
264 }
265 } else {
266 modes |= ADVERTISED_FIBRE;
267 modes &= ~ADVERTISED_1000baseT_Half;
268 }
269 return modes;
270}
271
272static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
273{
274 struct skge_port *skge = netdev_priv(dev);
275 const struct skge_hw *hw = skge->hw;
276
277 if (ecmd->autoneg == AUTONEG_ENABLE) {
278 if (ecmd->advertising & skge_modes(hw))
279 return -EINVAL;
280 } else {
281 switch(ecmd->speed) {
282 case SPEED_1000:
283 if (hw->chip_id == CHIP_ID_YUKON_FE)
284 return -EINVAL;
285 break;
286 case SPEED_100:
287 case SPEED_10:
288 if (iscopper(hw) || hw->chip_id == CHIP_ID_GENESIS)
289 return -EINVAL;
290 break;
291 default:
292 return -EINVAL;
293 }
294 }
295
296 skge->autoneg = ecmd->autoneg;
297 skge->speed = ecmd->speed;
298 skge->duplex = ecmd->duplex;
299 skge->advertising = ecmd->advertising;
300
301 if (netif_running(dev)) {
302 skge_down(dev);
303 skge_up(dev);
304 }
305 return (0);
306}
307
308static void skge_get_drvinfo(struct net_device *dev,
309 struct ethtool_drvinfo *info)
310{
311 struct skge_port *skge = netdev_priv(dev);
312
313 strcpy(info->driver, DRV_NAME);
314 strcpy(info->version, DRV_VERSION);
315 strcpy(info->fw_version, "N/A");
316 strcpy(info->bus_info, pci_name(skge->hw->pdev));
317}
318
319static const struct skge_stat {
320 char name[ETH_GSTRING_LEN];
321 u16 xmac_offset;
322 u16 gma_offset;
323} skge_stats[] = {
324 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
325 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
326
327 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
328 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
329 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
330 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
331 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
332 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
333 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
334 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
335
336 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
337 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
338 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
339 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
340 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
341 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
342
343 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
344 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
345 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
346 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
347 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
348};
349
350static int skge_get_stats_count(struct net_device *dev)
351{
352 return ARRAY_SIZE(skge_stats);
353}
354
355static void skge_get_ethtool_stats(struct net_device *dev,
356 struct ethtool_stats *stats, u64 *data)
357{
358 struct skge_port *skge = netdev_priv(dev);
359
360 if (skge->hw->chip_id == CHIP_ID_GENESIS)
361 genesis_get_stats(skge, data);
362 else
363 yukon_get_stats(skge, data);
364}
365
366/* Use hardware MIB variables for critical path statistics and
367 * transmit feedback not reported at interrupt.
368 * Other errors are accounted for in interrupt handler.
369 */
370static struct net_device_stats *skge_get_stats(struct net_device *dev)
371{
372 struct skge_port *skge = netdev_priv(dev);
373 u64 data[ARRAY_SIZE(skge_stats)];
374
375 if (skge->hw->chip_id == CHIP_ID_GENESIS)
376 genesis_get_stats(skge, data);
377 else
378 yukon_get_stats(skge, data);
379
380 skge->net_stats.tx_bytes = data[0];
381 skge->net_stats.rx_bytes = data[1];
382 skge->net_stats.tx_packets = data[2] + data[4] + data[6];
383 skge->net_stats.rx_packets = data[3] + data[5] + data[7];
384 skge->net_stats.multicast = data[5] + data[7];
385 skge->net_stats.collisions = data[10];
386 skge->net_stats.tx_aborted_errors = data[12];
387
388 return &skge->net_stats;
389}
390
391static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
392{
393 int i;
394
395 switch(stringset) {
396 case ETH_SS_STATS:
397 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
398 memcpy(data + i * ETH_GSTRING_LEN,
399 skge_stats[i].name, ETH_GSTRING_LEN);
400 break;
401 }
402}
403
404static void skge_get_ring_param(struct net_device *dev,
405 struct ethtool_ringparam *p)
406{
407 struct skge_port *skge = netdev_priv(dev);
408
409 p->rx_max_pending = MAX_RX_RING_SIZE;
410 p->tx_max_pending = MAX_TX_RING_SIZE;
411 p->rx_mini_max_pending = 0;
412 p->rx_jumbo_max_pending = 0;
413
414 p->rx_pending = skge->rx_ring.count;
415 p->tx_pending = skge->tx_ring.count;
416 p->rx_mini_pending = 0;
417 p->rx_jumbo_pending = 0;
418}
419
420static int skge_set_ring_param(struct net_device *dev,
421 struct ethtool_ringparam *p)
422{
423 struct skge_port *skge = netdev_priv(dev);
424
425 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
426 p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
427 return -EINVAL;
428
429 skge->rx_ring.count = p->rx_pending;
430 skge->tx_ring.count = p->tx_pending;
431
432 if (netif_running(dev)) {
433 skge_down(dev);
434 skge_up(dev);
435 }
436
437 return 0;
438}
439
440static u32 skge_get_msglevel(struct net_device *netdev)
441{
442 struct skge_port *skge = netdev_priv(netdev);
443 return skge->msg_enable;
444}
445
446static void skge_set_msglevel(struct net_device *netdev, u32 value)
447{
448 struct skge_port *skge = netdev_priv(netdev);
449 skge->msg_enable = value;
450}
451
452static int skge_nway_reset(struct net_device *dev)
453{
454 struct skge_port *skge = netdev_priv(dev);
455 struct skge_hw *hw = skge->hw;
456 int port = skge->port;
457
458 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
459 return -EINVAL;
460
461 spin_lock_bh(&hw->phy_lock);
462 if (hw->chip_id == CHIP_ID_GENESIS) {
463 genesis_reset(hw, port);
464 genesis_mac_init(hw, port);
465 } else {
466 yukon_reset(hw, port);
467 yukon_init(hw, port);
468 }
469 spin_unlock_bh(&hw->phy_lock);
470 return 0;
471}
472
473static int skge_set_sg(struct net_device *dev, u32 data)
474{
475 struct skge_port *skge = netdev_priv(dev);
476 struct skge_hw *hw = skge->hw;
477
478 if (hw->chip_id == CHIP_ID_GENESIS && data)
479 return -EOPNOTSUPP;
480 return ethtool_op_set_sg(dev, data);
481}
482
483static int skge_set_tx_csum(struct net_device *dev, u32 data)
484{
485 struct skge_port *skge = netdev_priv(dev);
486 struct skge_hw *hw = skge->hw;
487
488 if (hw->chip_id == CHIP_ID_GENESIS && data)
489 return -EOPNOTSUPP;
490
491 return ethtool_op_set_tx_csum(dev, data);
492}
493
494static u32 skge_get_rx_csum(struct net_device *dev)
495{
496 struct skge_port *skge = netdev_priv(dev);
497
498 return skge->rx_csum;
499}
500
501/* Only Yukon supports checksum offload. */
502static int skge_set_rx_csum(struct net_device *dev, u32 data)
503{
504 struct skge_port *skge = netdev_priv(dev);
505
506 if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
507 return -EOPNOTSUPP;
508
509 skge->rx_csum = data;
510 return 0;
511}
512
513/* Only Yukon II supports TSO (not implemented yet) */
514static int skge_set_tso(struct net_device *dev, u32 data)
515{
516 if (data)
517 return -EOPNOTSUPP;
518 return 0;
519}
520
521static void skge_get_pauseparam(struct net_device *dev,
522 struct ethtool_pauseparam *ecmd)
523{
524 struct skge_port *skge = netdev_priv(dev);
525
526 ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
527 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
528 ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
529 || (skge->flow_control == FLOW_MODE_SYMMETRIC);
530
531 ecmd->autoneg = skge->autoneg;
532}
533
534static int skge_set_pauseparam(struct net_device *dev,
535 struct ethtool_pauseparam *ecmd)
536{
537 struct skge_port *skge = netdev_priv(dev);
538
539 skge->autoneg = ecmd->autoneg;
540 if (ecmd->rx_pause && ecmd->tx_pause)
541 skge->flow_control = FLOW_MODE_SYMMETRIC;
542 else if(ecmd->rx_pause && !ecmd->tx_pause)
543 skge->flow_control = FLOW_MODE_REM_SEND;
544 else if(!ecmd->rx_pause && ecmd->tx_pause)
545 skge->flow_control = FLOW_MODE_LOC_SEND;
546 else
547 skge->flow_control = FLOW_MODE_NONE;
548
549 if (netif_running(dev)) {
550 skge_down(dev);
551 skge_up(dev);
552 }
553 return 0;
554}
555
556/* Chip internal frequency for clock calculations */
557static inline u32 hwkhz(const struct skge_hw *hw)
558{
559 if (hw->chip_id == CHIP_ID_GENESIS)
560 return 53215; /* or: 53.125 MHz */
561 else if (hw->chip_id == CHIP_ID_YUKON_EC)
562 return 125000; /* or: 125.000 MHz */
563 else
564 return 78215; /* or: 78.125 MHz */
565}
566
567/* Chip hz to microseconds */
568static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
569{
570 return (ticks * 1000) / hwkhz(hw);
571}
572
573/* Microseconds to chip hz */
574static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
575{
576 return hwkhz(hw) * usec / 1000;
577}
578
579static int skge_get_coalesce(struct net_device *dev,
580 struct ethtool_coalesce *ecmd)
581{
582 struct skge_port *skge = netdev_priv(dev);
583 struct skge_hw *hw = skge->hw;
584 int port = skge->port;
585
586 ecmd->rx_coalesce_usecs = 0;
587 ecmd->tx_coalesce_usecs = 0;
588
589 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
590 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
591 u32 msk = skge_read32(hw, B2_IRQM_MSK);
592
593 if (msk & rxirqmask[port])
594 ecmd->rx_coalesce_usecs = delay;
595 if (msk & txirqmask[port])
596 ecmd->tx_coalesce_usecs = delay;
597 }
598
599 return 0;
600}
601
602/* Note: interrupt timer is per board, but can turn on/off per port */
603static int skge_set_coalesce(struct net_device *dev,
604 struct ethtool_coalesce *ecmd)
605{
606 struct skge_port *skge = netdev_priv(dev);
607 struct skge_hw *hw = skge->hw;
608 int port = skge->port;
609 u32 msk = skge_read32(hw, B2_IRQM_MSK);
610 u32 delay = 25;
611
612 if (ecmd->rx_coalesce_usecs == 0)
613 msk &= ~rxirqmask[port];
614 else if (ecmd->rx_coalesce_usecs < 25 ||
615 ecmd->rx_coalesce_usecs > 33333)
616 return -EINVAL;
617 else {
618 msk |= rxirqmask[port];
619 delay = ecmd->rx_coalesce_usecs;
620 }
621
622 if (ecmd->tx_coalesce_usecs == 0)
623 msk &= ~txirqmask[port];
624 else if (ecmd->tx_coalesce_usecs < 25 ||
625 ecmd->tx_coalesce_usecs > 33333)
626 return -EINVAL;
627 else {
628 msk |= txirqmask[port];
629 delay = min(delay, ecmd->rx_coalesce_usecs);
630 }
631
632 skge_write32(hw, B2_IRQM_MSK, msk);
633 if (msk == 0)
634 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
635 else {
636 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
637 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
638 }
639 return 0;
640}
641
642static void skge_led_on(struct skge_hw *hw, int port)
643{
644 if (hw->chip_id == CHIP_ID_GENESIS) {
645 skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
646 skge_write8(hw, B0_LED, LED_STAT_ON);
647
648 skge_write8(hw, SKGEMAC_REG(port, RX_LED_TST), LED_T_ON);
649 skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 100);
650 skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
651
652 switch (hw->phy_type) {
653 case SK_PHY_BCOM:
654 skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
655 PHY_B_PEC_LED_ON);
656 break;
657 case SK_PHY_LONE:
658 skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
659 0x0800);
660 break;
661 default:
662 skge_write8(hw, SKGEMAC_REG(port, TX_LED_TST), LED_T_ON);
663 skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 100);
664 skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
665 }
666 } else {
667 skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
668 skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
669 PHY_M_LED_MO_DUP(MO_LED_ON) |
670 PHY_M_LED_MO_10(MO_LED_ON) |
671 PHY_M_LED_MO_100(MO_LED_ON) |
672 PHY_M_LED_MO_1000(MO_LED_ON) |
673 PHY_M_LED_MO_RX(MO_LED_ON));
674 }
675}
676
677static void skge_led_off(struct skge_hw *hw, int port)
678{
679 if (hw->chip_id == CHIP_ID_GENESIS) {
680 skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_OFF);
681 skge_write8(hw, B0_LED, LED_STAT_OFF);
682
683 skge_write32(hw, SKGEMAC_REG(port, RX_LED_VAL), 0);
684 skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_T_OFF);
685
686 switch (hw->phy_type) {
687 case SK_PHY_BCOM:
688 skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL,
689 PHY_B_PEC_LED_OFF);
690 break;
691 case SK_PHY_LONE:
692 skge_xm_phy_write(hw, port, PHY_LONE_LED_CFG,
693 PHY_L_LC_LEDT);
694 break;
695 default:
696 skge_write32(hw, SKGEMAC_REG(port, TX_LED_VAL), 0);
697 skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_T_OFF);
698 }
699 } else {
700 skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
701 skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER,
702 PHY_M_LED_MO_DUP(MO_LED_OFF) |
703 PHY_M_LED_MO_10(MO_LED_OFF) |
704 PHY_M_LED_MO_100(MO_LED_OFF) |
705 PHY_M_LED_MO_1000(MO_LED_OFF) |
706 PHY_M_LED_MO_RX(MO_LED_OFF));
707 }
708}
709
710static void skge_blink_timer(unsigned long data)
711{
712 struct skge_port *skge = (struct skge_port *) data;
713 struct skge_hw *hw = skge->hw;
714 unsigned long flags;
715
716 spin_lock_irqsave(&hw->phy_lock, flags);
717 if (skge->blink_on)
718 skge_led_on(hw, skge->port);
719 else
720 skge_led_off(hw, skge->port);
721 spin_unlock_irqrestore(&hw->phy_lock, flags);
722
723 skge->blink_on = !skge->blink_on;
724 mod_timer(&skge->led_blink, jiffies + BLINK_HZ);
725}
726
727/* blink LED's for finding board */
728static int skge_phys_id(struct net_device *dev, u32 data)
729{
730 struct skge_port *skge = netdev_priv(dev);
731
732 if(!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
733 data = (u32)(MAX_SCHEDULE_TIMEOUT / HZ);
734
735 /* start blinking */
736 skge->blink_on = 1;
737 mod_timer(&skge->led_blink, jiffies+1);
738
739 msleep_interruptible(data * 1000);
740 del_timer_sync(&skge->led_blink);
741
742 skge_led_off(skge->hw, skge->port);
743
744 return 0;
745}
746
747static struct ethtool_ops skge_ethtool_ops = {
748 .get_settings = skge_get_settings,
749 .set_settings = skge_set_settings,
750 .get_drvinfo = skge_get_drvinfo,
751 .get_regs_len = skge_get_regs_len,
752 .get_regs = skge_get_regs,
753 .get_wol = skge_get_wol,
754 .set_wol = skge_set_wol,
755 .get_msglevel = skge_get_msglevel,
756 .set_msglevel = skge_set_msglevel,
757 .nway_reset = skge_nway_reset,
758 .get_link = ethtool_op_get_link,
759 .get_ringparam = skge_get_ring_param,
760 .set_ringparam = skge_set_ring_param,
761 .get_pauseparam = skge_get_pauseparam,
762 .set_pauseparam = skge_set_pauseparam,
763 .get_coalesce = skge_get_coalesce,
764 .set_coalesce = skge_set_coalesce,
765 .get_tso = ethtool_op_get_tso,
766 .set_tso = skge_set_tso,
767 .get_sg = ethtool_op_get_sg,
768 .set_sg = skge_set_sg,
769 .get_tx_csum = ethtool_op_get_tx_csum,
770 .set_tx_csum = skge_set_tx_csum,
771 .get_rx_csum = skge_get_rx_csum,
772 .set_rx_csum = skge_set_rx_csum,
773 .get_strings = skge_get_strings,
774 .phys_id = skge_phys_id,
775 .get_stats_count = skge_get_stats_count,
776 .get_ethtool_stats = skge_get_ethtool_stats,
777};
778
779/*
780 * Allocate ring elements and chain them together
781 * One-to-one association of board descriptors with ring elements
782 */
783static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
784{
785 struct skge_tx_desc *d;
786 struct skge_element *e;
787 int i;
788
789 ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
790 if (!ring->start)
791 return -ENOMEM;
792
793 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
794 e->desc = d;
795 if (i == ring->count - 1) {
796 e->next = ring->start;
797 d->next_offset = base;
798 } else {
799 e->next = e + 1;
800 d->next_offset = base + (i+1) * sizeof(*d);
801 }
802 }
803 ring->to_use = ring->to_clean = ring->start;
804
805 return 0;
806}
807
808/* Setup buffer for receiving */
809static inline int skge_rx_alloc(struct skge_port *skge,
810 struct skge_element *e)
811{
812 unsigned long bufsize = skge->netdev->mtu + ETH_HLEN; /* VLAN? */
813 struct skge_rx_desc *rd = e->desc;
814 struct sk_buff *skb;
815 u64 map;
816
817 skb = dev_alloc_skb(bufsize + NET_IP_ALIGN);
818 if (unlikely(!skb)) {
819 printk(KERN_DEBUG PFX "%s: out of memory for receive\n",
820 skge->netdev->name);
821 return -ENOMEM;
822 }
823
824 skb->dev = skge->netdev;
825 skb_reserve(skb, NET_IP_ALIGN);
826
827 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
828 PCI_DMA_FROMDEVICE);
829
830 rd->dma_lo = map;
831 rd->dma_hi = map >> 32;
832 e->skb = skb;
833 rd->csum1_start = ETH_HLEN;
834 rd->csum2_start = ETH_HLEN;
835 rd->csum1 = 0;
836 rd->csum2 = 0;
837
838 wmb();
839
840 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
841 pci_unmap_addr_set(e, mapaddr, map);
842 pci_unmap_len_set(e, maplen, bufsize);
843 return 0;
844}
845
846/* Free all unused buffers in receive ring, assumes receiver stopped */
847static void skge_rx_clean(struct skge_port *skge)
848{
849 struct skge_hw *hw = skge->hw;
850 struct skge_ring *ring = &skge->rx_ring;
851 struct skge_element *e;
852
853 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
854 struct skge_rx_desc *rd = e->desc;
855 rd->control = 0;
856
857 pci_unmap_single(hw->pdev,
858 pci_unmap_addr(e, mapaddr),
859 pci_unmap_len(e, maplen),
860 PCI_DMA_FROMDEVICE);
861 dev_kfree_skb(e->skb);
862 e->skb = NULL;
863 }
864 ring->to_clean = e;
865}
866
867/* Allocate buffers for receive ring
868 * For receive: to_use is refill location
869 * to_clean is next received frame.
870 *
871 * if (to_use == to_clean)
872 * then ring all frames in ring need buffers
873 * if (to_use->next == to_clean)
874 * then ring all frames in ring have buffers
875 */
876static int skge_rx_fill(struct skge_port *skge)
877{
878 struct skge_ring *ring = &skge->rx_ring;
879 struct skge_element *e;
880 int ret = 0;
881
882 for (e = ring->to_use; e->next != ring->to_clean; e = e->next) {
883 if (skge_rx_alloc(skge, e)) {
884 ret = 1;
885 break;
886 }
887
888 }
889 ring->to_use = e;
890
891 return ret;
892}
893
894static void skge_link_up(struct skge_port *skge)
895{
896 netif_carrier_on(skge->netdev);
897 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
898 netif_wake_queue(skge->netdev);
899
900 if (netif_msg_link(skge))
901 printk(KERN_INFO PFX
902 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
903 skge->netdev->name, skge->speed,
904 skge->duplex == DUPLEX_FULL ? "full" : "half",
905 (skge->flow_control == FLOW_MODE_NONE) ? "none" :
906 (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
907 (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
908 (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
909 "unknown");
910}
911
912static void skge_link_down(struct skge_port *skge)
913{
914 netif_carrier_off(skge->netdev);
915 netif_stop_queue(skge->netdev);
916
917 if (netif_msg_link(skge))
918 printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
919}
920
921static u16 skge_xm_phy_read(struct skge_hw *hw, int port, u16 reg)
922{
923 int i;
924 u16 v;
925
926 skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
927 v = skge_xm_read16(hw, port, XM_PHY_DATA);
928 if (hw->phy_type != SK_PHY_XMAC) {
929 for (i = 0; i < PHY_RETRIES; i++) {
930 udelay(1);
931 if (skge_xm_read16(hw, port, XM_MMU_CMD)
932 & XM_MMU_PHY_RDY)
933 goto ready;
934 }
935
936 printk(KERN_WARNING PFX "%s: phy read timed out\n",
937 hw->dev[port]->name);
938 return 0;
939 ready:
940 v = skge_xm_read16(hw, port, XM_PHY_DATA);
941 }
942
943 return v;
944}
945
946static void skge_xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
947{
948 int i;
949
950 skge_xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
951 for (i = 0; i < PHY_RETRIES; i++) {
952 if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
953 goto ready;
954 cpu_relax();
955 }
956 printk(KERN_WARNING PFX "%s: phy write failed to come ready\n",
957 hw->dev[port]->name);
958
959
960 ready:
961 skge_xm_write16(hw, port, XM_PHY_DATA, val);
962 for (i = 0; i < PHY_RETRIES; i++) {
963 udelay(1);
964 if (!(skge_xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
965 return;
966 }
967 printk(KERN_WARNING PFX "%s: phy write timed out\n",
968 hw->dev[port]->name);
969}
970
971static void genesis_init(struct skge_hw *hw)
972{
973 /* set blink source counter */
974 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
975 skge_write8(hw, B2_BSC_CTRL, BSC_START);
976
977 /* configure mac arbiter */
978 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
979
980 /* configure mac arbiter timeout values */
981 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
982 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
983 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
984 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
985
986 skge_write8(hw, B3_MA_RCINI_RX1, 0);
987 skge_write8(hw, B3_MA_RCINI_RX2, 0);
988 skge_write8(hw, B3_MA_RCINI_TX1, 0);
989 skge_write8(hw, B3_MA_RCINI_TX2, 0);
990
991 /* configure packet arbiter timeout */
992 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
993 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
994 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
995 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
996 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
997}
998
999static void genesis_reset(struct skge_hw *hw, int port)
1000{
1001 int i;
1002 u64 zero = 0;
1003
1004 /* reset the statistics module */
1005 skge_xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1006 skge_xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
1007 skge_xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1008 skge_xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1009 skge_xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1010
1011 /* disable all PHY IRQs */
1012 if (hw->phy_type == SK_PHY_BCOM)
1013 skge_xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1014
1015 skge_xm_outhash(hw, port, XM_HSM, (u8 *) &zero);
1016 for (i = 0; i < 15; i++)
1017 skge_xm_outaddr(hw, port, XM_EXM(i), (u8 *) &zero);
1018 skge_xm_outhash(hw, port, XM_SRC_CHK, (u8 *) &zero);
1019}
1020
1021
1022static void genesis_mac_init(struct skge_hw *hw, int port)
1023{
1024 struct skge_port *skge = netdev_priv(hw->dev[port]);
1025 int i;
1026 u32 r;
1027 u16 id1;
1028 u16 ctrl1, ctrl2, ctrl3, ctrl4, ctrl5;
1029
1030 /* magic workaround patterns for Broadcom */
1031 static const struct {
1032 u16 reg;
1033 u16 val;
1034 } A1hack[] = {
1035 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1036 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1037 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1038 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1039 }, C0hack[] = {
1040 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1041 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1042 };
1043
1044
1045 /* initialize Rx, Tx and Link LED */
1046 skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_ON);
1047 skge_write8(hw, SKGEMAC_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
1048
1049 skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_START);
1050 skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_START);
1051
1052 /* Unreset the XMAC. */
1053 skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1054
1055 /*
1056 * Perform additional initialization for external PHYs,
1057 * namely for the 1000baseTX cards that use the XMAC's
1058 * GMII mode.
1059 */
1060 spin_lock_bh(&hw->phy_lock);
1061 if (hw->phy_type != SK_PHY_XMAC) {
1062 /* Take PHY out of reset. */
1063 r = skge_read32(hw, B2_GP_IO);
1064 if (port == 0)
1065 r |= GP_DIR_0|GP_IO_0;
1066 else
1067 r |= GP_DIR_2|GP_IO_2;
1068
1069 skge_write32(hw, B2_GP_IO, r);
1070 skge_read32(hw, B2_GP_IO);
1071
1072 /* Enable GMII mode on the XMAC. */
1073 skge_xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1074
1075 id1 = skge_xm_phy_read(hw, port, PHY_XMAC_ID1);
1076
1077 /* Optimize MDIO transfer by suppressing preamble. */
1078 skge_xm_write16(hw, port, XM_MMU_CMD,
1079 skge_xm_read16(hw, port, XM_MMU_CMD)
1080 | XM_MMU_NO_PRE);
1081
1082 if (id1 == PHY_BCOM_ID1_C0) {
1083 /*
1084 * Workaround BCOM Errata for the C0 type.
1085 * Write magic patterns to reserved registers.
1086 */
1087 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1088 skge_xm_phy_write(hw, port,
1089 C0hack[i].reg, C0hack[i].val);
1090
1091 } else if (id1 == PHY_BCOM_ID1_A1) {
1092 /*
1093 * Workaround BCOM Errata for the A1 type.
1094 * Write magic patterns to reserved registers.
1095 */
1096 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1097 skge_xm_phy_write(hw, port,
1098 A1hack[i].reg, A1hack[i].val);
1099 }
1100
1101 /*
1102 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1103 * Disable Power Management after reset.
1104 */
1105 r = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1106 skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r | PHY_B_AC_DIS_PM);
1107 }
1108
1109 /* Dummy read */
1110 skge_xm_read16(hw, port, XM_ISRC);
1111
1112 r = skge_xm_read32(hw, port, XM_MODE);
1113 skge_xm_write32(hw, port, XM_MODE, r|XM_MD_CSA);
1114
1115 /* We don't need the FCS appended to the packet. */
1116 r = skge_xm_read16(hw, port, XM_RX_CMD);
1117 skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_STRIP_FCS);
1118
1119 /* We want short frames padded to 60 bytes. */
1120 r = skge_xm_read16(hw, port, XM_TX_CMD);
1121 skge_xm_write16(hw, port, XM_TX_CMD, r | XM_TX_AUTO_PAD);
1122
1123 /*
1124 * Enable the reception of all error frames. This is is
1125 * a necessary evil due to the design of the XMAC. The
1126 * XMAC's receive FIFO is only 8K in size, however jumbo
1127 * frames can be up to 9000 bytes in length. When bad
1128 * frame filtering is enabled, the XMAC's RX FIFO operates
1129 * in 'store and forward' mode. For this to work, the
1130 * entire frame has to fit into the FIFO, but that means
1131 * that jumbo frames larger than 8192 bytes will be
1132 * truncated. Disabling all bad frame filtering causes
1133 * the RX FIFO to operate in streaming mode, in which
1134 * case the XMAC will start transfering frames out of the
1135 * RX FIFO as soon as the FIFO threshold is reached.
1136 */
1137 r = skge_xm_read32(hw, port, XM_MODE);
1138 skge_xm_write32(hw, port, XM_MODE,
1139 XM_MD_RX_CRCE|XM_MD_RX_LONG|XM_MD_RX_RUNT|
1140 XM_MD_RX_ERR|XM_MD_RX_IRLE);
1141
1142 skge_xm_outaddr(hw, port, XM_SA, hw->dev[port]->dev_addr);
1143 skge_xm_outaddr(hw, port, XM_EXM(0), hw->dev[port]->dev_addr);
1144
1145 /*
1146 * Bump up the transmit threshold. This helps hold off transmit
1147 * underruns when we're blasting traffic from both ports at once.
1148 */
1149 skge_xm_write16(hw, port, XM_TX_THR, 512);
1150
1151 /* Configure MAC arbiter */
1152 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1153
1154 /* configure timeout values */
1155 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1156 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1157 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1158 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1159
1160 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1161 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1162 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1163 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1164
1165 /* Configure Rx MAC FIFO */
1166 skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1167 skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1168 skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1169
1170 /* Configure Tx MAC FIFO */
1171 skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1172 skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1173 skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1174
1175 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1176 /* Enable frame flushing if jumbo frames used */
1177 skge_write16(hw, SKGEMAC_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
1178 } else {
1179 /* enable timeout timers if normal frames */
1180 skge_write16(hw, B3_PA_CTRL,
1181 port == 0 ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1182 }
1183
1184
1185 r = skge_xm_read16(hw, port, XM_RX_CMD);
1186 if (hw->dev[port]->mtu > ETH_DATA_LEN)
1187 skge_xm_write16(hw, port, XM_RX_CMD, r | XM_RX_BIG_PK_OK);
1188 else
1189 skge_xm_write16(hw, port, XM_RX_CMD, r & ~(XM_RX_BIG_PK_OK));
1190
1191 switch (hw->phy_type) {
1192 case SK_PHY_XMAC:
1193 if (skge->autoneg == AUTONEG_ENABLE) {
1194 ctrl1 = PHY_X_AN_FD | PHY_X_AN_HD;
1195
1196 switch (skge->flow_control) {
1197 case FLOW_MODE_NONE:
1198 ctrl1 |= PHY_X_P_NO_PAUSE;
1199 break;
1200 case FLOW_MODE_LOC_SEND:
1201 ctrl1 |= PHY_X_P_ASYM_MD;
1202 break;
1203 case FLOW_MODE_SYMMETRIC:
1204 ctrl1 |= PHY_X_P_SYM_MD;
1205 break;
1206 case FLOW_MODE_REM_SEND:
1207 ctrl1 |= PHY_X_P_BOTH_MD;
1208 break;
1209 }
1210
1211 skge_xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl1);
1212 ctrl2 = PHY_CT_ANE | PHY_CT_RE_CFG;
1213 } else {
1214 ctrl2 = 0;
1215 if (skge->duplex == DUPLEX_FULL)
1216 ctrl2 |= PHY_CT_DUP_MD;
1217 }
1218
1219 skge_xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl2);
1220 break;
1221
1222 case SK_PHY_BCOM:
1223 ctrl1 = PHY_CT_SP1000;
1224 ctrl2 = 0;
1225 ctrl3 = PHY_SEL_TYPE;
1226 ctrl4 = PHY_B_PEC_EN_LTR;
1227 ctrl5 = PHY_B_AC_TX_TST;
1228
1229 if (skge->autoneg == AUTONEG_ENABLE) {
1230 /*
1231 * Workaround BCOM Errata #1 for the C5 type.
1232 * 1000Base-T Link Acquisition Failure in Slave Mode
1233 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1234 */
1235 ctrl2 |= PHY_B_1000C_RD;
1236 if (skge->advertising & ADVERTISED_1000baseT_Half)
1237 ctrl2 |= PHY_B_1000C_AHD;
1238 if (skge->advertising & ADVERTISED_1000baseT_Full)
1239 ctrl2 |= PHY_B_1000C_AFD;
1240
1241 /* Set Flow-control capabilities */
1242 switch (skge->flow_control) {
1243 case FLOW_MODE_NONE:
1244 ctrl3 |= PHY_B_P_NO_PAUSE;
1245 break;
1246 case FLOW_MODE_LOC_SEND:
1247 ctrl3 |= PHY_B_P_ASYM_MD;
1248 break;
1249 case FLOW_MODE_SYMMETRIC:
1250 ctrl3 |= PHY_B_P_SYM_MD;
1251 break;
1252 case FLOW_MODE_REM_SEND:
1253 ctrl3 |= PHY_B_P_BOTH_MD;
1254 break;
1255 }
1256
1257 /* Restart Auto-negotiation */
1258 ctrl1 |= PHY_CT_ANE | PHY_CT_RE_CFG;
1259 } else {
1260 if (skge->duplex == DUPLEX_FULL)
1261 ctrl1 |= PHY_CT_DUP_MD;
1262
1263 ctrl2 |= PHY_B_1000C_MSE; /* set it to Slave */
1264 }
1265
1266 skge_xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, ctrl2);
1267 skge_xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV, ctrl3);
1268
1269 if (skge->netdev->mtu > ETH_DATA_LEN) {
1270 ctrl4 |= PHY_B_PEC_HIGH_LA;
1271 ctrl5 |= PHY_B_AC_LONG_PACK;
1272
1273 skge_xm_phy_write(hw, port,PHY_BCOM_AUX_CTRL, ctrl5);
1274 }
1275
1276 skge_xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ctrl4);
1277 skge_xm_phy_write(hw, port, PHY_BCOM_CTRL, ctrl1);
1278 break;
1279 }
1280 spin_unlock_bh(&hw->phy_lock);
1281
1282 /* Clear MIB counters */
1283 skge_xm_write16(hw, port, XM_STAT_CMD,
1284 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1285 /* Clear two times according to Errata #3 */
1286 skge_xm_write16(hw, port, XM_STAT_CMD,
1287 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1288
1289 /* Start polling for link status */
1290 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1291}
1292
1293static void genesis_stop(struct skge_port *skge)
1294{
1295 struct skge_hw *hw = skge->hw;
1296 int port = skge->port;
1297
1298 /* Clear Tx packet arbiter timeout IRQ */
1299 skge_write16(hw, B3_PA_CTRL,
1300 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1301
1302 /*
1303 * If the transfer stucks at the MAC the STOP command will not
1304 * terminate if we don't flush the XMAC's transmit FIFO !
1305 */
1306 skge_xm_write32(hw, port, XM_MODE,
1307 skge_xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
1308
1309
1310 /* Reset the MAC */
1311 skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1312
1313 /* For external PHYs there must be special handling */
1314 if (hw->phy_type != SK_PHY_XMAC) {
1315 u32 reg = skge_read32(hw, B2_GP_IO);
1316
1317 if (port == 0) {
1318 reg |= GP_DIR_0;
1319 reg &= ~GP_IO_0;
1320 } else {
1321 reg |= GP_DIR_2;
1322 reg &= ~GP_IO_2;
1323 }
1324 skge_write32(hw, B2_GP_IO, reg);
1325 skge_read32(hw, B2_GP_IO);
1326 }
1327
1328 skge_xm_write16(hw, port, XM_MMU_CMD,
1329 skge_xm_read16(hw, port, XM_MMU_CMD)
1330 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1331
1332 skge_xm_read16(hw, port, XM_MMU_CMD);
1333}
1334
1335
1336static void genesis_get_stats(struct skge_port *skge, u64 *data)
1337{
1338 struct skge_hw *hw = skge->hw;
1339 int port = skge->port;
1340 int i;
1341 unsigned long timeout = jiffies + HZ;
1342
1343 skge_xm_write16(hw, port,
1344 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1345
1346 /* wait for update to complete */
1347 while (skge_xm_read16(hw, port, XM_STAT_CMD)
1348 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1349 if (time_after(jiffies, timeout))
1350 break;
1351 udelay(10);
1352 }
1353
1354 /* special case for 64 bit octet counter */
1355 data[0] = (u64) skge_xm_read32(hw, port, XM_TXO_OK_HI) << 32
1356 | skge_xm_read32(hw, port, XM_TXO_OK_LO);
1357 data[1] = (u64) skge_xm_read32(hw, port, XM_RXO_OK_HI) << 32
1358 | skge_xm_read32(hw, port, XM_RXO_OK_LO);
1359
1360 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1361 data[i] = skge_xm_read32(hw, port, skge_stats[i].xmac_offset);
1362}
1363
1364static void genesis_mac_intr(struct skge_hw *hw, int port)
1365{
1366 struct skge_port *skge = netdev_priv(hw->dev[port]);
1367 u16 status = skge_xm_read16(hw, port, XM_ISRC);
1368
1369 pr_debug("genesis_intr status %x\n", status);
1370 if (hw->phy_type == SK_PHY_XMAC) {
1371 /* LInk down, start polling for state change */
1372 if (status & XM_IS_INP_ASS) {
1373 skge_xm_write16(hw, port, XM_IMSK,
1374 skge_xm_read16(hw, port, XM_IMSK) | XM_IS_INP_ASS);
1375 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1376 }
1377 else if (status & XM_IS_AND)
1378 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1379 }
1380
1381 if (status & XM_IS_TXF_UR) {
1382 skge_xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1383 ++skge->net_stats.tx_fifo_errors;
1384 }
1385 if (status & XM_IS_RXF_OV) {
1386 skge_xm_write32(hw, port, XM_MODE, XM_MD_FRF);
1387 ++skge->net_stats.rx_fifo_errors;
1388 }
1389}
1390
1391static void skge_gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1392{
1393 int i;
1394
1395 skge_gma_write16(hw, port, GM_SMI_DATA, val);
1396 skge_gma_write16(hw, port, GM_SMI_CTRL,
1397 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1398 for (i = 0; i < PHY_RETRIES; i++) {
1399 udelay(1);
1400
1401 if (!(skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1402 break;
1403 }
1404}
1405
1406static u16 skge_gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1407{
1408 int i;
1409
1410 skge_gma_write16(hw, port, GM_SMI_CTRL,
1411 GM_SMI_CT_PHY_AD(hw->phy_addr)
1412 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1413
1414 for (i = 0; i < PHY_RETRIES; i++) {
1415 udelay(1);
1416 if (skge_gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1417 goto ready;
1418 }
1419
1420 printk(KERN_WARNING PFX "%s: phy read timeout\n",
1421 hw->dev[port]->name);
1422 return 0;
1423 ready:
1424 return skge_gma_read16(hw, port, GM_SMI_DATA);
1425}
1426
1427static void genesis_link_down(struct skge_port *skge)
1428{
1429 struct skge_hw *hw = skge->hw;
1430 int port = skge->port;
1431
1432 pr_debug("genesis_link_down\n");
1433
1434 skge_xm_write16(hw, port, XM_MMU_CMD,
1435 skge_xm_read16(hw, port, XM_MMU_CMD)
1436 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1437
1438 /* dummy read to ensure writing */
1439 (void) skge_xm_read16(hw, port, XM_MMU_CMD);
1440
1441 skge_link_down(skge);
1442}
1443
1444static void genesis_link_up(struct skge_port *skge)
1445{
1446 struct skge_hw *hw = skge->hw;
1447 int port = skge->port;
1448 u16 cmd;
1449 u32 mode, msk;
1450
1451 pr_debug("genesis_link_up\n");
1452 cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
1453
1454 /*
1455 * enabling pause frame reception is required for 1000BT
1456 * because the XMAC is not reset if the link is going down
1457 */
1458 if (skge->flow_control == FLOW_MODE_NONE ||
1459 skge->flow_control == FLOW_MODE_LOC_SEND)
1460 cmd |= XM_MMU_IGN_PF;
1461 else
1462 /* Enable Pause Frame Reception */
1463 cmd &= ~XM_MMU_IGN_PF;
1464
1465 skge_xm_write16(hw, port, XM_MMU_CMD, cmd);
1466
1467 mode = skge_xm_read32(hw, port, XM_MODE);
1468 if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
1469 skge->flow_control == FLOW_MODE_LOC_SEND) {
1470 /*
1471 * Configure Pause Frame Generation
1472 * Use internal and external Pause Frame Generation.
1473 * Sending pause frames is edge triggered.
1474 * Send a Pause frame with the maximum pause time if
1475 * internal oder external FIFO full condition occurs.
1476 * Send a zero pause time frame to re-start transmission.
1477 */
1478 /* XM_PAUSE_DA = '010000C28001' (default) */
1479 /* XM_MAC_PTIME = 0xffff (maximum) */
1480 /* remember this value is defined in big endian (!) */
1481 skge_xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1482
1483 mode |= XM_PAUSE_MODE;
1484 skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1485 } else {
1486 /*
1487 * disable pause frame generation is required for 1000BT
1488 * because the XMAC is not reset if the link is going down
1489 */
1490 /* Disable Pause Mode in Mode Register */
1491 mode &= ~XM_PAUSE_MODE;
1492
1493 skge_write16(hw, SKGEMAC_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1494 }
1495
1496 skge_xm_write32(hw, port, XM_MODE, mode);
1497
1498 msk = XM_DEF_MSK;
1499 if (hw->phy_type != SK_PHY_XMAC)
1500 msk |= XM_IS_INP_ASS; /* disable GP0 interrupt bit */
1501
1502 skge_xm_write16(hw, port, XM_IMSK, msk);
1503 skge_xm_read16(hw, port, XM_ISRC);
1504
1505 /* get MMU Command Reg. */
1506 cmd = skge_xm_read16(hw, port, XM_MMU_CMD);
1507 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1508 cmd |= XM_MMU_GMII_FD;
1509
1510 if (hw->phy_type == SK_PHY_BCOM) {
1511 /*
1512 * Workaround BCOM Errata (#10523) for all BCom Phys
1513 * Enable Power Management after link up
1514 */
1515 skge_xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1516 skge_xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1517 & ~PHY_B_AC_DIS_PM);
1518 skge_xm_phy_write(hw, port, PHY_BCOM_INT_MASK,
1519 PHY_B_DEF_MSK);
1520 }
1521
1522 /* enable Rx/Tx */
1523 skge_xm_write16(hw, port, XM_MMU_CMD,
1524 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1525 skge_link_up(skge);
1526}
1527
1528
1529static void genesis_bcom_intr(struct skge_port *skge)
1530{
1531 struct skge_hw *hw = skge->hw;
1532 int port = skge->port;
1533 u16 stat = skge_xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1534
1535 pr_debug("genesis_bcom intr stat=%x\n", stat);
1536
1537 /* Workaround BCom Errata:
1538 * enable and disable loopback mode if "NO HCD" occurs.
1539 */
1540 if (stat & PHY_B_IS_NO_HDCL) {
1541 u16 ctrl = skge_xm_phy_read(hw, port, PHY_BCOM_CTRL);
1542 skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
1543 ctrl | PHY_CT_LOOP);
1544 skge_xm_phy_write(hw, port, PHY_BCOM_CTRL,
1545 ctrl & ~PHY_CT_LOOP);
1546 }
1547
1548 stat = skge_xm_phy_read(hw, port, PHY_BCOM_STAT);
1549 if (stat & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE)) {
1550 u16 aux = skge_xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1551 if ( !(aux & PHY_B_AS_LS) && netif_carrier_ok(skge->netdev))
1552 genesis_link_down(skge);
1553
1554 else if (stat & PHY_B_IS_LST_CHANGE) {
1555 if (aux & PHY_B_AS_AN_C) {
1556 switch (aux & PHY_B_AS_AN_RES_MSK) {
1557 case PHY_B_RES_1000FD:
1558 skge->duplex = DUPLEX_FULL;
1559 break;
1560 case PHY_B_RES_1000HD:
1561 skge->duplex = DUPLEX_HALF;
1562 break;
1563 }
1564
1565 switch (aux & PHY_B_AS_PAUSE_MSK) {
1566 case PHY_B_AS_PAUSE_MSK:
1567 skge->flow_control = FLOW_MODE_SYMMETRIC;
1568 break;
1569 case PHY_B_AS_PRR:
1570 skge->flow_control = FLOW_MODE_REM_SEND;
1571 break;
1572 case PHY_B_AS_PRT:
1573 skge->flow_control = FLOW_MODE_LOC_SEND;
1574 break;
1575 default:
1576 skge->flow_control = FLOW_MODE_NONE;
1577 }
1578 skge->speed = SPEED_1000;
1579 }
1580 genesis_link_up(skge);
1581 }
1582 else
1583 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1584 }
1585}
1586
1587/* Perodic poll of phy status to check for link transistion */
1588static void skge_link_timer(unsigned long __arg)
1589{
1590 struct skge_port *skge = (struct skge_port *) __arg;
1591 struct skge_hw *hw = skge->hw;
1592 int port = skge->port;
1593
1594 if (hw->chip_id != CHIP_ID_GENESIS || !netif_running(skge->netdev))
1595 return;
1596
1597 spin_lock_bh(&hw->phy_lock);
1598 if (hw->phy_type == SK_PHY_BCOM)
1599 genesis_bcom_intr(skge);
1600 else {
1601 int i;
1602 for (i = 0; i < 3; i++)
1603 if (skge_xm_read16(hw, port, XM_ISRC) & XM_IS_INP_ASS)
1604 break;
1605
1606 if (i == 3)
1607 mod_timer(&skge->link_check, jiffies + LINK_POLL_HZ);
1608 else
1609 genesis_link_up(skge);
1610 }
1611 spin_unlock_bh(&hw->phy_lock);
1612}
1613
1614/* Marvell Phy Initailization */
1615static void yukon_init(struct skge_hw *hw, int port)
1616{
1617 struct skge_port *skge = netdev_priv(hw->dev[port]);
1618 u16 ctrl, ct1000, adv;
1619 u16 ledctrl, ledover;
1620
1621 pr_debug("yukon_init\n");
1622 if (skge->autoneg == AUTONEG_ENABLE) {
1623 u16 ectrl = skge_gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1624
1625 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1626 PHY_M_EC_MAC_S_MSK);
1627 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1628
1629 /* on PHY 88E1111 there is a change for downshift control */
1630 if (hw->chip_id == CHIP_ID_YUKON_EC)
1631 ectrl |= PHY_M_EC_M_DSC_2(0) | PHY_M_EC_DOWN_S_ENA;
1632 else
1633 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1634
1635 skge_gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1636 }
1637
1638 ctrl = skge_gm_phy_read(hw, port, PHY_MARV_CTRL);
1639 if (skge->autoneg == AUTONEG_DISABLE)
1640 ctrl &= ~PHY_CT_ANE;
1641
1642 ctrl |= PHY_CT_RESET;
1643 skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1644
1645 ctrl = 0;
1646 ct1000 = 0;
1647 adv = PHY_SEL_TYPE;
1648
1649 if (skge->autoneg == AUTONEG_ENABLE) {
1650 if (iscopper(hw)) {
1651 if (skge->advertising & ADVERTISED_1000baseT_Full)
1652 ct1000 |= PHY_M_1000C_AFD;
1653 if (skge->advertising & ADVERTISED_1000baseT_Half)
1654 ct1000 |= PHY_M_1000C_AHD;
1655 if (skge->advertising & ADVERTISED_100baseT_Full)
1656 adv |= PHY_M_AN_100_FD;
1657 if (skge->advertising & ADVERTISED_100baseT_Half)
1658 adv |= PHY_M_AN_100_HD;
1659 if (skge->advertising & ADVERTISED_10baseT_Full)
1660 adv |= PHY_M_AN_10_FD;
1661 if (skge->advertising & ADVERTISED_10baseT_Half)
1662 adv |= PHY_M_AN_10_HD;
1663
1664 /* Set Flow-control capabilities */
1665 switch (skge->flow_control) {
1666 case FLOW_MODE_NONE:
1667 adv |= PHY_B_P_NO_PAUSE;
1668 break;
1669 case FLOW_MODE_LOC_SEND:
1670 adv |= PHY_B_P_ASYM_MD;
1671 break;
1672 case FLOW_MODE_SYMMETRIC:
1673 adv |= PHY_B_P_SYM_MD;
1674 break;
1675 case FLOW_MODE_REM_SEND:
1676 adv |= PHY_B_P_BOTH_MD;
1677 break;
1678 }
1679 } else { /* special defines for FIBER (88E1011S only) */
1680 adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
1681
1682 /* Set Flow-control capabilities */
1683 switch (skge->flow_control) {
1684 case FLOW_MODE_NONE:
1685 adv |= PHY_M_P_NO_PAUSE_X;
1686 break;
1687 case FLOW_MODE_LOC_SEND:
1688 adv |= PHY_M_P_ASYM_MD_X;
1689 break;
1690 case FLOW_MODE_SYMMETRIC:
1691 adv |= PHY_M_P_SYM_MD_X;
1692 break;
1693 case FLOW_MODE_REM_SEND:
1694 adv |= PHY_M_P_BOTH_MD_X;
1695 break;
1696 }
1697 }
1698 /* Restart Auto-negotiation */
1699 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1700 } else {
1701 /* forced speed/duplex settings */
1702 ct1000 = PHY_M_1000C_MSE;
1703
1704 if (skge->duplex == DUPLEX_FULL)
1705 ctrl |= PHY_CT_DUP_MD;
1706
1707 switch (skge->speed) {
1708 case SPEED_1000:
1709 ctrl |= PHY_CT_SP1000;
1710 break;
1711 case SPEED_100:
1712 ctrl |= PHY_CT_SP100;
1713 break;
1714 }
1715
1716 ctrl |= PHY_CT_RESET;
1717 }
1718
1719 if (hw->chip_id != CHIP_ID_YUKON_FE)
1720 skge_gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
1721
1722 skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
1723 skge_gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1724
1725 /* Setup Phy LED's */
1726 ledctrl = PHY_M_LED_PULS_DUR(PULS_170MS);
1727 ledover = 0;
1728
1729 if (hw->chip_id == CHIP_ID_YUKON_FE) {
1730 /* on 88E3082 these bits are at 11..9 (shifted left) */
1731 ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) << 1;
1732
1733 skge_gm_phy_write(hw, port, PHY_MARV_FE_LED_PAR,
1734 ((skge_gm_phy_read(hw, port, PHY_MARV_FE_LED_PAR)
1735
1736 & ~PHY_M_FELP_LED1_MSK)
1737 | PHY_M_FELP_LED1_CTRL(LED_PAR_CTRL_ACT_BL)));
1738 } else {
1739 /* set Tx LED (LED_TX) to blink mode on Rx OR Tx activity */
1740 ledctrl |= PHY_M_LED_BLINK_RT(BLINK_84MS) | PHY_M_LEDC_TX_CTRL;
1741
1742 /* turn off the Rx LED (LED_RX) */
1743 ledover |= PHY_M_LED_MO_RX(MO_LED_OFF);
1744 }
1745
1746 /* disable blink mode (LED_DUPLEX) on collisions */
1747 ctrl |= PHY_M_LEDC_DP_CTRL;
1748 skge_gm_phy_write(hw, port, PHY_MARV_LED_CTRL, ledctrl);
1749
1750 if (skge->autoneg == AUTONEG_DISABLE || skge->speed == SPEED_100) {
1751 /* turn on 100 Mbps LED (LED_LINK100) */
1752 ledover |= PHY_M_LED_MO_100(MO_LED_ON);
1753 }
1754
1755 if (ledover)
1756 skge_gm_phy_write(hw, port, PHY_MARV_LED_OVER, ledover);
1757
1758 /* Enable phy interrupt on autonegotiation complete (or link up) */
1759 if (skge->autoneg == AUTONEG_ENABLE)
1760 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_COMPL);
1761 else
1762 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
1763}
1764
1765static void yukon_reset(struct skge_hw *hw, int port)
1766{
1767 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
1768 skge_gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
1769 skge_gma_write16(hw, port, GM_MC_ADDR_H2, 0);
1770 skge_gma_write16(hw, port, GM_MC_ADDR_H3, 0);
1771 skge_gma_write16(hw, port, GM_MC_ADDR_H4, 0);
1772
1773 skge_gma_write16(hw, port, GM_RX_CTRL,
1774 skge_gma_read16(hw, port, GM_RX_CTRL)
1775 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
1776}
1777
1778static void yukon_mac_init(struct skge_hw *hw, int port)
1779{
1780 struct skge_port *skge = netdev_priv(hw->dev[port]);
1781 int i;
1782 u32 reg;
1783 const u8 *addr = hw->dev[port]->dev_addr;
1784
1785 /* WA code for COMA mode -- set PHY reset */
1786 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1787 chip_rev(hw) == CHIP_REV_YU_LITE_A3)
1788 skge_write32(hw, B2_GP_IO,
1789 (skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9));
1790
1791 /* hard reset */
1792 skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), GPC_RST_SET);
1793 skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_RST_SET);
1794
1795 /* WA code for COMA mode -- clear PHY reset */
1796 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1797 chip_rev(hw) == CHIP_REV_YU_LITE_A3)
1798 skge_write32(hw, B2_GP_IO,
1799 (skge_read32(hw, B2_GP_IO) | GP_DIR_9)
1800 & ~GP_IO_9);
1801
1802 /* Set hardware config mode */
1803 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
1804 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
1805 reg |= iscopper(hw) ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
1806
1807 /* Clear GMC reset */
1808 skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
1809 skge_write32(hw, SKGEMAC_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
1810 skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
1811 if (skge->autoneg == AUTONEG_DISABLE) {
1812 reg = GM_GPCR_AU_ALL_DIS;
1813 skge_gma_write16(hw, port, GM_GP_CTRL,
1814 skge_gma_read16(hw, port, GM_GP_CTRL) | reg);
1815
1816 switch (skge->speed) {
1817 case SPEED_1000:
1818 reg |= GM_GPCR_SPEED_1000;
1819 /* fallthru */
1820 case SPEED_100:
1821 reg |= GM_GPCR_SPEED_100;
1822 }
1823
1824 if (skge->duplex == DUPLEX_FULL)
1825 reg |= GM_GPCR_DUP_FULL;
1826 } else
1827 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
1828 switch (skge->flow_control) {
1829 case FLOW_MODE_NONE:
1830 skge_write32(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
1831 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1832 break;
1833 case FLOW_MODE_LOC_SEND:
1834 /* disable Rx flow-control */
1835 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
1836 }
1837
1838 skge_gma_write16(hw, port, GM_GP_CTRL, reg);
1839 skge_read16(hw, GMAC_IRQ_SRC);
1840
1841 spin_lock_bh(&hw->phy_lock);
1842 yukon_init(hw, port);
1843 spin_unlock_bh(&hw->phy_lock);
1844
1845 /* MIB clear */
1846 reg = skge_gma_read16(hw, port, GM_PHY_ADDR);
1847 skge_gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
1848
1849 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
1850 skge_gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
1851 skge_gma_write16(hw, port, GM_PHY_ADDR, reg);
1852
1853 /* transmit control */
1854 skge_gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
1855
1856 /* receive control reg: unicast + multicast + no FCS */
1857 skge_gma_write16(hw, port, GM_RX_CTRL,
1858 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
1859
1860 /* transmit flow control */
1861 skge_gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
1862
1863 /* transmit parameter */
1864 skge_gma_write16(hw, port, GM_TX_PARAM,
1865 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
1866 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
1867 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
1868
1869 /* serial mode register */
1870 reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
1871 if (hw->dev[port]->mtu > 1500)
1872 reg |= GM_SMOD_JUMBO_ENA;
1873
1874 skge_gma_write16(hw, port, GM_SERIAL_MODE, reg);
1875
1876 /* physical address: used for pause frames */
1877 skge_gm_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
1878 /* virtual address for data */
1879 skge_gm_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
1880
1881 /* enable interrupt mask for counter overflows */
1882 skge_gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
1883 skge_gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
1884 skge_gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
1885
1886 /* Initialize Mac Fifo */
1887
1888 /* Configure Rx MAC FIFO */
1889 skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
1890 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
1891 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1892 chip_rev(hw) == CHIP_REV_YU_LITE_A3)
1893 reg &= ~GMF_RX_F_FL_ON;
1894 skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
1895 skge_write16(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), reg);
1896 skge_write16(hw, SKGEMAC_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF);
1897
1898 /* Configure Tx MAC FIFO */
1899 skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
1900 skge_write16(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
1901}
1902
1903static void yukon_stop(struct skge_port *skge)
1904{
1905 struct skge_hw *hw = skge->hw;
1906 int port = skge->port;
1907
1908 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
1909 chip_rev(hw) == CHIP_REV_YU_LITE_A3) {
1910 skge_write32(hw, B2_GP_IO,
1911 skge_read32(hw, B2_GP_IO) | GP_DIR_9 | GP_IO_9);
1912 }
1913
1914 skge_gma_write16(hw, port, GM_GP_CTRL,
1915 skge_gma_read16(hw, port, GM_GP_CTRL)
1916 & ~(GM_GPCR_RX_ENA|GM_GPCR_RX_ENA));
1917 skge_gma_read16(hw, port, GM_GP_CTRL);
1918
1919 /* set GPHY Control reset */
1920 skge_gma_write32(hw, port, GPHY_CTRL, GPC_RST_SET);
1921 skge_gma_write32(hw, port, GMAC_CTRL, GMC_RST_SET);
1922}
1923
1924static void yukon_get_stats(struct skge_port *skge, u64 *data)
1925{
1926 struct skge_hw *hw = skge->hw;
1927 int port = skge->port;
1928 int i;
1929
1930 data[0] = (u64) skge_gma_read32(hw, port, GM_TXO_OK_HI) << 32
1931 | skge_gma_read32(hw, port, GM_TXO_OK_LO);
1932 data[1] = (u64) skge_gma_read32(hw, port, GM_RXO_OK_HI) << 32
1933 | skge_gma_read32(hw, port, GM_RXO_OK_LO);
1934
1935 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1936 data[i] = skge_gma_read32(hw, port,
1937 skge_stats[i].gma_offset);
1938}
1939
1940static void yukon_mac_intr(struct skge_hw *hw, int port)
1941{
1942 struct skge_port *skge = netdev_priv(hw->dev[port]);
1943 u8 status = skge_read8(hw, SKGEMAC_REG(port, GMAC_IRQ_SRC));
1944
1945 pr_debug("yukon_intr status %x\n", status);
1946 if (status & GM_IS_RX_FF_OR) {
1947 ++skge->net_stats.rx_fifo_errors;
1948 skge_gma_write8(hw, port, RX_GMF_CTRL_T, GMF_CLI_RX_FO);
1949 }
1950 if (status & GM_IS_TX_FF_UR) {
1951 ++skge->net_stats.tx_fifo_errors;
1952 skge_gma_write8(hw, port, TX_GMF_CTRL_T, GMF_CLI_TX_FU);
1953 }
1954
1955}
1956
1957static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
1958{
1959 if (hw->chip_id == CHIP_ID_YUKON_FE)
1960 return (aux & PHY_M_PS_SPEED_100) ? SPEED_100 : SPEED_10;
1961
1962 switch(aux & PHY_M_PS_SPEED_MSK) {
1963 case PHY_M_PS_SPEED_1000:
1964 return SPEED_1000;
1965 case PHY_M_PS_SPEED_100:
1966 return SPEED_100;
1967 default:
1968 return SPEED_10;
1969 }
1970}
1971
1972static void yukon_link_up(struct skge_port *skge)
1973{
1974 struct skge_hw *hw = skge->hw;
1975 int port = skge->port;
1976 u16 reg;
1977
1978 pr_debug("yukon_link_up\n");
1979
1980 /* Enable Transmit FIFO Underrun */
1981 skge_write8(hw, GMAC_IRQ_MSK, GMAC_DEF_MSK);
1982
1983 reg = skge_gma_read16(hw, port, GM_GP_CTRL);
1984 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
1985 reg |= GM_GPCR_DUP_FULL;
1986
1987 /* enable Rx/Tx */
1988 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
1989 skge_gma_write16(hw, port, GM_GP_CTRL, reg);
1990
1991 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_DEF_MSK);
1992 skge_link_up(skge);
1993}
1994
1995static void yukon_link_down(struct skge_port *skge)
1996{
1997 struct skge_hw *hw = skge->hw;
1998 int port = skge->port;
1999
2000 pr_debug("yukon_link_down\n");
2001 skge_gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
2002 skge_gm_phy_write(hw, port, GM_GP_CTRL,
2003 skge_gm_phy_read(hw, port, GM_GP_CTRL)
2004 & ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA));
2005
2006 if (hw->chip_id != CHIP_ID_YUKON_FE &&
2007 skge->flow_control == FLOW_MODE_REM_SEND) {
2008 /* restore Asymmetric Pause bit */
2009 skge_gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
2010 skge_gm_phy_read(hw, port,
2011 PHY_MARV_AUNE_ADV)
2012 | PHY_M_AN_ASP);
2013
2014 }
2015
2016 yukon_reset(hw, port);
2017 skge_link_down(skge);
2018
2019 yukon_init(hw, port);
2020}
2021
2022static void yukon_phy_intr(struct skge_port *skge)
2023{
2024 struct skge_hw *hw = skge->hw;
2025 int port = skge->port;
2026 const char *reason = NULL;
2027 u16 istatus, phystat;
2028
2029 istatus = skge_gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2030 phystat = skge_gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2031 pr_debug("yukon phy intr istat=%x phy_stat=%x\n", istatus, phystat);
2032
2033 if (istatus & PHY_M_IS_AN_COMPL) {
2034 if (skge_gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2035 & PHY_M_AN_RF) {
2036 reason = "remote fault";
2037 goto failed;
2038 }
2039
2040 if (!(hw->chip_id == CHIP_ID_YUKON_FE || hw->chip_id == CHIP_ID_YUKON_EC)
2041 && (skge_gm_phy_read(hw, port, PHY_MARV_1000T_STAT)
2042 & PHY_B_1000S_MSF)) {
2043 reason = "master/slave fault";
2044 goto failed;
2045 }
2046
2047 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2048 reason = "speed/duplex";
2049 goto failed;
2050 }
2051
2052 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2053 ? DUPLEX_FULL : DUPLEX_HALF;
2054 skge->speed = yukon_speed(hw, phystat);
2055
2056 /* Tx & Rx Pause Enabled bits are at 9..8 */
2057 if (hw->chip_id == CHIP_ID_YUKON_XL)
2058 phystat >>= 6;
2059
2060 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2061 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2062 case PHY_M_PS_PAUSE_MSK:
2063 skge->flow_control = FLOW_MODE_SYMMETRIC;
2064 break;
2065 case PHY_M_PS_RX_P_EN:
2066 skge->flow_control = FLOW_MODE_REM_SEND;
2067 break;
2068 case PHY_M_PS_TX_P_EN:
2069 skge->flow_control = FLOW_MODE_LOC_SEND;
2070 break;
2071 default:
2072 skge->flow_control = FLOW_MODE_NONE;
2073 }
2074
2075 if (skge->flow_control == FLOW_MODE_NONE ||
2076 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2077 skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2078 else
2079 skge_write8(hw, SKGEMAC_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2080 yukon_link_up(skge);
2081 return;
2082 }
2083
2084 if (istatus & PHY_M_IS_LSP_CHANGE)
2085 skge->speed = yukon_speed(hw, phystat);
2086
2087 if (istatus & PHY_M_IS_DUP_CHANGE)
2088 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2089 if (istatus & PHY_M_IS_LST_CHANGE) {
2090 if (phystat & PHY_M_PS_LINK_UP)
2091 yukon_link_up(skge);
2092 else
2093 yukon_link_down(skge);
2094 }
2095 return;
2096 failed:
2097 printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
2098 skge->netdev->name, reason);
2099
2100 /* XXX restart autonegotiation? */
2101}
2102
2103static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2104{
2105 u32 end;
2106
2107 start /= 8;
2108 len /= 8;
2109 end = start + len - 1;
2110
2111 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2112 skge_write32(hw, RB_ADDR(q, RB_START), start);
2113 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2114 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2115 skge_write32(hw, RB_ADDR(q, RB_END), end);
2116
2117 if (q == Q_R1 || q == Q_R2) {
2118 /* Set thresholds on receive queue's */
2119 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2120 start + (2*len)/3);
2121 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2122 start + (len/3));
2123 } else {
2124 /* Enable store & forward on Tx queue's because
2125 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2126 */
2127 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2128 }
2129
2130 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2131}
2132
2133/* Setup Bus Memory Interface */
2134static void skge_qset(struct skge_port *skge, u16 q,
2135 const struct skge_element *e)
2136{
2137 struct skge_hw *hw = skge->hw;
2138 u32 watermark = 0x600;
2139 u64 base = skge->dma + (e->desc - skge->mem);
2140
2141 /* optimization to reduce window on 32bit/33mhz */
2142 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2143 watermark /= 2;
2144
2145 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2146 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2147 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2148 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2149}
2150
2151static int skge_up(struct net_device *dev)
2152{
2153 struct skge_port *skge = netdev_priv(dev);
2154 struct skge_hw *hw = skge->hw;
2155 int port = skge->port;
2156 u32 chunk, ram_addr;
2157 size_t rx_size, tx_size;
2158 int err;
2159
2160 if (netif_msg_ifup(skge))
2161 printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
2162
2163 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2164 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2165 skge->mem_size = tx_size + rx_size;
2166 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2167 if (!skge->mem)
2168 return -ENOMEM;
2169
2170 memset(skge->mem, 0, skge->mem_size);
2171
2172 if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
2173 goto free_pci_mem;
2174
2175 if (skge_rx_fill(skge))
2176 goto free_rx_ring;
2177
2178 if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2179 skge->dma + rx_size)))
2180 goto free_rx_ring;
2181
2182 skge->tx_avail = skge->tx_ring.count - 1;
2183
2184 /* Initialze MAC */
2185 if (hw->chip_id == CHIP_ID_GENESIS)
2186 genesis_mac_init(hw, port);
2187 else
2188 yukon_mac_init(hw, port);
2189
2190 /* Configure RAMbuffers */
2191 chunk = hw->ram_size / (isdualport(hw) ? 4 : 2);
2192 ram_addr = hw->ram_offset + 2 * chunk * port;
2193
2194 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2195 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2196
2197 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2198 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2199 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2200
2201 /* Start receiver BMU */
2202 wmb();
2203 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2204
2205 pr_debug("skge_up completed\n");
2206 return 0;
2207
2208 free_rx_ring:
2209 skge_rx_clean(skge);
2210 kfree(skge->rx_ring.start);
2211 free_pci_mem:
2212 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2213
2214 return err;
2215}
2216
2217static int skge_down(struct net_device *dev)
2218{
2219 struct skge_port *skge = netdev_priv(dev);
2220 struct skge_hw *hw = skge->hw;
2221 int port = skge->port;
2222
2223 if (netif_msg_ifdown(skge))
2224 printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
2225
2226 netif_stop_queue(dev);
2227
2228 del_timer_sync(&skge->led_blink);
2229 del_timer_sync(&skge->link_check);
2230
2231 /* Stop transmitter */
2232 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2233 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2234 RB_RST_SET|RB_DIS_OP_MD);
2235
2236 if (hw->chip_id == CHIP_ID_GENESIS)
2237 genesis_stop(skge);
2238 else
2239 yukon_stop(skge);
2240
2241 /* Disable Force Sync bit and Enable Alloc bit */
2242 skge_write8(hw, SKGEMAC_REG(port, TXA_CTRL),
2243 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2244
2245 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2246 skge_write32(hw, SKGEMAC_REG(port, TXA_ITI_INI), 0L);
2247 skge_write32(hw, SKGEMAC_REG(port, TXA_LIM_INI), 0L);
2248
2249 /* Reset PCI FIFO */
2250 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2251 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2252
2253 /* Reset the RAM Buffer async Tx queue */
2254 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2255 /* stop receiver */
2256 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2257 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2258 RB_RST_SET|RB_DIS_OP_MD);
2259 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2260
2261 if (hw->chip_id == CHIP_ID_GENESIS) {
2262 skge_write8(hw, SKGEMAC_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2263 skge_write8(hw, SKGEMAC_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2264 skge_write8(hw, SKGEMAC_REG(port, TX_LED_CTRL), LED_STOP);
2265 skge_write8(hw, SKGEMAC_REG(port, RX_LED_CTRL), LED_STOP);
2266 } else {
2267 skge_write8(hw, SKGEMAC_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2268 skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2269 }
2270
2271 /* turn off led's */
2272 skge_write16(hw, B0_LED, LED_STAT_OFF);
2273
2274 skge_tx_clean(skge);
2275 skge_rx_clean(skge);
2276
2277 kfree(skge->rx_ring.start);
2278 kfree(skge->tx_ring.start);
2279 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2280 return 0;
2281}
2282
2283static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
2284{
2285 struct skge_port *skge = netdev_priv(dev);
2286 struct skge_hw *hw = skge->hw;
2287 struct skge_ring *ring = &skge->tx_ring;
2288 struct skge_element *e;
2289 struct skge_tx_desc *td;
2290 int i;
2291 u32 control, len;
2292 u64 map;
2293 unsigned long flags;
2294
2295 skb = skb_padto(skb, ETH_ZLEN);
2296 if (!skb)
2297 return NETDEV_TX_OK;
2298
2299 local_irq_save(flags);
2300 if (!spin_trylock(&skge->tx_lock)) {
2301 /* Collision - tell upper layer to requeue */
2302 local_irq_restore(flags);
2303 return NETDEV_TX_LOCKED;
2304 }
2305
2306 if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
2307 netif_stop_queue(dev);
2308 spin_unlock_irqrestore(&skge->tx_lock, flags);
2309
2310 printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
2311 dev->name);
2312 return NETDEV_TX_BUSY;
2313 }
2314
2315 e = ring->to_use;
2316 td = e->desc;
2317 e->skb = skb;
2318 len = skb_headlen(skb);
2319 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2320 pci_unmap_addr_set(e, mapaddr, map);
2321 pci_unmap_len_set(e, maplen, len);
2322
2323 td->dma_lo = map;
2324 td->dma_hi = map >> 32;
2325
2326 if (skb->ip_summed == CHECKSUM_HW) {
2327 const struct iphdr *ip
2328 = (const struct iphdr *) (skb->data + ETH_HLEN);
2329 int offset = skb->h.raw - skb->data;
2330
2331 /* This seems backwards, but it is what the sk98lin
2332 * does. Looks like hardware is wrong?
2333 */
2334 if (ip->protocol == IPPROTO_UDP
2335 && chip_rev(hw) == 0 && hw->chip_id == CHIP_ID_YUKON)
2336 control = BMU_TCP_CHECK;
2337 else
2338 control = BMU_UDP_CHECK;
2339
2340 td->csum_offs = 0;
2341 td->csum_start = offset;
2342 td->csum_write = offset + skb->csum;
2343 } else
2344 control = BMU_CHECK;
2345
2346 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2347 control |= BMU_EOF| BMU_IRQ_EOF;
2348 else {
2349 struct skge_tx_desc *tf = td;
2350
2351 control |= BMU_STFWD;
2352 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2353 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2354
2355 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2356 frag->size, PCI_DMA_TODEVICE);
2357
2358 e = e->next;
2359 e->skb = NULL;
2360 tf = e->desc;
2361 tf->dma_lo = map;
2362 tf->dma_hi = (u64) map >> 32;
2363 pci_unmap_addr_set(e, mapaddr, map);
2364 pci_unmap_len_set(e, maplen, frag->size);
2365
2366 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2367 }
2368 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2369 }
2370 /* Make sure all the descriptors written */
2371 wmb();
2372 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2373 wmb();
2374
2375 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2376
2377 if (netif_msg_tx_queued(skge))
2378 printk(KERN_DEBUG "%s: tx queued, slot %d, len %d\n",
2379 dev->name, e - ring->start, skb->len);
2380
2381 ring->to_use = e->next;
2382 skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
2383 if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
2384 pr_debug("%s: transmit queue full\n", dev->name);
2385 netif_stop_queue(dev);
2386 }
2387
2388 dev->trans_start = jiffies;
2389 spin_unlock_irqrestore(&skge->tx_lock, flags);
2390
2391 return NETDEV_TX_OK;
2392}
2393
2394static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
2395{
2396 if (e->skb) {
2397 pci_unmap_single(hw->pdev,
2398 pci_unmap_addr(e, mapaddr),
2399 pci_unmap_len(e, maplen),
2400 PCI_DMA_TODEVICE);
2401 dev_kfree_skb_any(e->skb);
2402 e->skb = NULL;
2403 } else {
2404 pci_unmap_page(hw->pdev,
2405 pci_unmap_addr(e, mapaddr),
2406 pci_unmap_len(e, maplen),
2407 PCI_DMA_TODEVICE);
2408 }
2409}
2410
2411static void skge_tx_clean(struct skge_port *skge)
2412{
2413 struct skge_ring *ring = &skge->tx_ring;
2414 struct skge_element *e;
2415 unsigned long flags;
2416
2417 spin_lock_irqsave(&skge->tx_lock, flags);
2418 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
2419 ++skge->tx_avail;
2420 skge_tx_free(skge->hw, e);
2421 }
2422 ring->to_clean = e;
2423 spin_unlock_irqrestore(&skge->tx_lock, flags);
2424}
2425
2426static void skge_tx_timeout(struct net_device *dev)
2427{
2428 struct skge_port *skge = netdev_priv(dev);
2429
2430 if (netif_msg_timer(skge))
2431 printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
2432
2433 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2434 skge_tx_clean(skge);
2435}
2436
2437static int skge_change_mtu(struct net_device *dev, int new_mtu)
2438{
2439 int err = 0;
2440
2441 if(new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2442 return -EINVAL;
2443
2444 dev->mtu = new_mtu;
2445
2446 if (netif_running(dev)) {
2447 skge_down(dev);
2448 skge_up(dev);
2449 }
2450
2451 return err;
2452}
2453
2454static void genesis_set_multicast(struct net_device *dev)
2455{
2456 struct skge_port *skge = netdev_priv(dev);
2457 struct skge_hw *hw = skge->hw;
2458 int port = skge->port;
2459 int i, count = dev->mc_count;
2460 struct dev_mc_list *list = dev->mc_list;
2461 u32 mode;
2462 u8 filter[8];
2463
2464 mode = skge_xm_read32(hw, port, XM_MODE);
2465 mode |= XM_MD_ENA_HASH;
2466 if (dev->flags & IFF_PROMISC)
2467 mode |= XM_MD_ENA_PROM;
2468 else
2469 mode &= ~XM_MD_ENA_PROM;
2470
2471 if (dev->flags & IFF_ALLMULTI)
2472 memset(filter, 0xff, sizeof(filter));
2473 else {
2474 memset(filter, 0, sizeof(filter));
2475 for(i = 0; list && i < count; i++, list = list->next) {
2476 u32 crc = crc32_le(~0, list->dmi_addr, ETH_ALEN);
2477 u8 bit = 63 - (crc & 63);
2478
2479 filter[bit/8] |= 1 << (bit%8);
2480 }
2481 }
2482
2483 skge_xm_outhash(hw, port, XM_HSM, filter);
2484
2485 skge_xm_write32(hw, port, XM_MODE, mode);
2486}
2487
2488static void yukon_set_multicast(struct net_device *dev)
2489{
2490 struct skge_port *skge = netdev_priv(dev);
2491 struct skge_hw *hw = skge->hw;
2492 int port = skge->port;
2493 struct dev_mc_list *list = dev->mc_list;
2494 u16 reg;
2495 u8 filter[8];
2496
2497 memset(filter, 0, sizeof(filter));
2498
2499 reg = skge_gma_read16(hw, port, GM_RX_CTRL);
2500 reg |= GM_RXCR_UCF_ENA;
2501
2502 if (dev->flags & IFF_PROMISC) /* promiscious */
2503 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2504 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2505 memset(filter, 0xff, sizeof(filter));
2506 else if (dev->mc_count == 0) /* no multicast */
2507 reg &= ~GM_RXCR_MCF_ENA;
2508 else {
2509 int i;
2510 reg |= GM_RXCR_MCF_ENA;
2511
2512 for(i = 0; list && i < dev->mc_count; i++, list = list->next) {
2513 u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
2514 filter[bit/8] |= 1 << (bit%8);
2515 }
2516 }
2517
2518
2519 skge_gma_write16(hw, port, GM_MC_ADDR_H1,
2520 (u16)filter[0] | ((u16)filter[1] << 8));
2521 skge_gma_write16(hw, port, GM_MC_ADDR_H2,
2522 (u16)filter[2] | ((u16)filter[3] << 8));
2523 skge_gma_write16(hw, port, GM_MC_ADDR_H3,
2524 (u16)filter[4] | ((u16)filter[5] << 8));
2525 skge_gma_write16(hw, port, GM_MC_ADDR_H4,
2526 (u16)filter[6] | ((u16)filter[7] << 8));
2527
2528 skge_gma_write16(hw, port, GM_RX_CTRL, reg);
2529}
2530
2531static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2532{
2533 if (hw->chip_id == CHIP_ID_GENESIS)
2534 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2535 else
2536 return (status & GMR_FS_ANY_ERR) ||
2537 (status & GMR_FS_RX_OK) == 0;
2538}
2539
2540static void skge_rx_error(struct skge_port *skge, int slot,
2541 u32 control, u32 status)
2542{
2543 if (netif_msg_rx_err(skge))
2544 printk(KERN_DEBUG PFX "%s: rx err, slot %d control 0x%x status 0x%x\n",
2545 skge->netdev->name, slot, control, status);
2546
2547 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
2548 || (control & BMU_BBC) > skge->netdev->mtu + VLAN_ETH_HLEN)
2549 skge->net_stats.rx_length_errors++;
2550 else {
2551 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
2552 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
2553 skge->net_stats.rx_length_errors++;
2554 if (status & XMR_FS_FRA_ERR)
2555 skge->net_stats.rx_frame_errors++;
2556 if (status & XMR_FS_FCS_ERR)
2557 skge->net_stats.rx_crc_errors++;
2558 } else {
2559 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
2560 skge->net_stats.rx_length_errors++;
2561 if (status & GMR_FS_FRAGMENT)
2562 skge->net_stats.rx_frame_errors++;
2563 if (status & GMR_FS_CRC_ERR)
2564 skge->net_stats.rx_crc_errors++;
2565 }
2566 }
2567}
2568
2569static int skge_poll(struct net_device *dev, int *budget)
2570{
2571 struct skge_port *skge = netdev_priv(dev);
2572 struct skge_hw *hw = skge->hw;
2573 struct skge_ring *ring = &skge->rx_ring;
2574 struct skge_element *e;
2575 unsigned int to_do = min(dev->quota, *budget);
2576 unsigned int work_done = 0;
2577 int done;
2578 static const u32 irqmask[] = { IS_PORT_1, IS_PORT_2 };
2579
2580 for (e = ring->to_clean; e != ring->to_use && work_done < to_do;
2581 e = e->next) {
2582 struct skge_rx_desc *rd = e->desc;
2583 struct sk_buff *skb = e->skb;
2584 u32 control, len, status;
2585
2586 rmb();
2587 control = rd->control;
2588 if (control & BMU_OWN)
2589 break;
2590
2591 len = control & BMU_BBC;
2592 e->skb = NULL;
2593
2594 pci_unmap_single(hw->pdev,
2595 pci_unmap_addr(e, mapaddr),
2596 pci_unmap_len(e, maplen),
2597 PCI_DMA_FROMDEVICE);
2598
2599 status = rd->status;
2600 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF)
2601 || len > dev->mtu + VLAN_ETH_HLEN
2602 || bad_phy_status(hw, status)) {
2603 skge_rx_error(skge, e - ring->start, control, status);
2604 dev_kfree_skb(skb);
2605 continue;
2606 }
2607
2608 if (netif_msg_rx_status(skge))
2609 printk(KERN_DEBUG PFX "%s: rx slot %d status 0x%x len %d\n",
2610 dev->name, e - ring->start, rd->status, len);
2611
2612 skb_put(skb, len);
2613 skb->protocol = eth_type_trans(skb, dev);
2614
2615 if (skge->rx_csum) {
2616 skb->csum = le16_to_cpu(rd->csum2);
2617 skb->ip_summed = CHECKSUM_HW;
2618 }
2619
2620 dev->last_rx = jiffies;
2621 netif_receive_skb(skb);
2622
2623 ++work_done;
2624 }
2625 ring->to_clean = e;
2626
2627 *budget -= work_done;
2628 dev->quota -= work_done;
2629 done = work_done < to_do;
2630
2631 if (skge_rx_fill(skge))
2632 done = 0;
2633
2634 /* restart receiver */
2635 wmb();
2636 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
2637 CSR_START | CSR_IRQ_CL_F);
2638
2639 if (done) {
2640 local_irq_disable();
2641 hw->intr_mask |= irqmask[skge->port];
2642 /* Order is important since data can get interrupted */
2643 skge_write32(hw, B0_IMSK, hw->intr_mask);
2644 __netif_rx_complete(dev);
2645 local_irq_enable();
2646 }
2647
2648 return !done;
2649}
2650
2651static inline void skge_tx_intr(struct net_device *dev)
2652{
2653 struct skge_port *skge = netdev_priv(dev);
2654 struct skge_hw *hw = skge->hw;
2655 struct skge_ring *ring = &skge->tx_ring;
2656 struct skge_element *e;
2657
2658 spin_lock(&skge->tx_lock);
2659 for(e = ring->to_clean; e != ring->to_use; e = e->next) {
2660 struct skge_tx_desc *td = e->desc;
2661 u32 control;
2662
2663 rmb();
2664 control = td->control;
2665 if (control & BMU_OWN)
2666 break;
2667
2668 if (unlikely(netif_msg_tx_done(skge)))
2669 printk(KERN_DEBUG PFX "%s: tx done slot %d status 0x%x\n",
2670 dev->name, e - ring->start, td->status);
2671
2672 skge_tx_free(hw, e);
2673 e->skb = NULL;
2674 ++skge->tx_avail;
2675 }
2676 ring->to_clean = e;
2677 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
2678
2679 if (skge->tx_avail > MAX_SKB_FRAGS + 1)
2680 netif_wake_queue(dev);
2681
2682 spin_unlock(&skge->tx_lock);
2683}
2684
2685static void skge_mac_parity(struct skge_hw *hw, int port)
2686{
2687 printk(KERN_ERR PFX "%s: mac data parity error\n",
2688 hw->dev[port] ? hw->dev[port]->name
2689 : (port == 0 ? "(port A)": "(port B"));
2690
2691 if (hw->chip_id == CHIP_ID_GENESIS)
2692 skge_write16(hw, SKGEMAC_REG(port, TX_MFF_CTRL1),
2693 MFF_CLR_PERR);
2694 else
2695 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
2696 skge_write8(hw, SKGEMAC_REG(port, TX_GMF_CTRL_T),
2697 (hw->chip_id == CHIP_ID_YUKON && chip_rev(hw) == 0)
2698 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
2699}
2700
2701static void skge_pci_clear(struct skge_hw *hw)
2702{
2703 u16 status;
2704
2705 status = skge_read16(hw, SKGEPCI_REG(PCI_STATUS));
2706 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
2707 skge_write16(hw, SKGEPCI_REG(PCI_STATUS),
2708 status | PCI_STATUS_ERROR_BITS);
2709 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
2710}
2711
2712static void skge_mac_intr(struct skge_hw *hw, int port)
2713{
2714 if (hw->chip_id == CHIP_ID_GENESIS)
2715 genesis_mac_intr(hw, port);
2716 else
2717 yukon_mac_intr(hw, port);
2718}
2719
2720/* Handle device specific framing and timeout interrupts */
2721static void skge_error_irq(struct skge_hw *hw)
2722{
2723 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2724
2725 if (hw->chip_id == CHIP_ID_GENESIS) {
2726 /* clear xmac errors */
2727 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
2728 skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL1), MFF_CLR_INSTAT);
2729 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
2730 skge_write16(hw, SKGEMAC_REG(0, RX_MFF_CTRL2), MFF_CLR_INSTAT);
2731 } else {
2732 /* Timestamp (unused) overflow */
2733 if (hwstatus & IS_IRQ_TIST_OV)
2734 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
2735
2736 if (hwstatus & IS_IRQ_SENSOR) {
2737 /* no sensors on 32-bit Yukon */
2738 if (!(skge_read16(hw, B0_CTST) & CS_BUS_SLOT_SZ)) {
2739 printk(KERN_ERR PFX "ignoring bogus sensor interrups\n");
2740 skge_write32(hw, B0_HWE_IMSK,
2741 IS_ERR_MSK & ~IS_IRQ_SENSOR);
2742 } else
2743 printk(KERN_WARNING PFX "sensor interrupt\n");
2744 }
2745
2746
2747 }
2748
2749 if (hwstatus & IS_RAM_RD_PAR) {
2750 printk(KERN_ERR PFX "Ram read data parity error\n");
2751 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
2752 }
2753
2754 if (hwstatus & IS_RAM_WR_PAR) {
2755 printk(KERN_ERR PFX "Ram write data parity error\n");
2756 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
2757 }
2758
2759 if (hwstatus & IS_M1_PAR_ERR)
2760 skge_mac_parity(hw, 0);
2761
2762 if (hwstatus & IS_M2_PAR_ERR)
2763 skge_mac_parity(hw, 1);
2764
2765 if (hwstatus & IS_R1_PAR_ERR)
2766 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
2767
2768 if (hwstatus & IS_R2_PAR_ERR)
2769 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
2770
2771 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
2772 printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
2773 hwstatus);
2774
2775 skge_pci_clear(hw);
2776
2777 hwstatus = skge_read32(hw, B0_HWE_ISRC);
2778 if (hwstatus & IS_IRQ_STAT) {
2779 printk(KERN_WARNING PFX "IRQ status %x: still set ignoring hardware errors\n",
2780 hwstatus);
2781 hw->intr_mask &= ~IS_HW_ERR;
2782 }
2783 }
2784}
2785
2786/*
2787 * Interrrupt from PHY are handled in tasklet (soft irq)
2788 * because accessing phy registers requires spin wait which might
2789 * cause excess interrupt latency.
2790 */
2791static void skge_extirq(unsigned long data)
2792{
2793 struct skge_hw *hw = (struct skge_hw *) data;
2794 int port;
2795
2796 spin_lock(&hw->phy_lock);
2797 for (port = 0; port < 2; port++) {
2798 struct net_device *dev = hw->dev[port];
2799
2800 if (dev && netif_running(dev)) {
2801 struct skge_port *skge = netdev_priv(dev);
2802
2803 if (hw->chip_id != CHIP_ID_GENESIS)
2804 yukon_phy_intr(skge);
2805 else if (hw->phy_type == SK_PHY_BCOM)
2806 genesis_bcom_intr(skge);
2807 }
2808 }
2809 spin_unlock(&hw->phy_lock);
2810
2811 local_irq_disable();
2812 hw->intr_mask |= IS_EXT_REG;
2813 skge_write32(hw, B0_IMSK, hw->intr_mask);
2814 local_irq_enable();
2815}
2816
2817static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
2818{
2819 struct skge_hw *hw = dev_id;
2820 u32 status = skge_read32(hw, B0_SP_ISRC);
2821
2822 if (status == 0 || status == ~0) /* hotplug or shared irq */
2823 return IRQ_NONE;
2824
2825 status &= hw->intr_mask;
2826
2827 if ((status & IS_R1_F) && netif_rx_schedule_prep(hw->dev[0])) {
2828 status &= ~IS_R1_F;
2829 hw->intr_mask &= ~IS_R1_F;
2830 skge_write32(hw, B0_IMSK, hw->intr_mask);
2831 __netif_rx_schedule(hw->dev[0]);
2832 }
2833
2834 if ((status & IS_R2_F) && netif_rx_schedule_prep(hw->dev[1])) {
2835 status &= ~IS_R2_F;
2836 hw->intr_mask &= ~IS_R2_F;
2837 skge_write32(hw, B0_IMSK, hw->intr_mask);
2838 __netif_rx_schedule(hw->dev[1]);
2839 }
2840
2841 if (status & IS_XA1_F)
2842 skge_tx_intr(hw->dev[0]);
2843
2844 if (status & IS_XA2_F)
2845 skge_tx_intr(hw->dev[1]);
2846
2847 if (status & IS_MAC1)
2848 skge_mac_intr(hw, 0);
2849
2850 if (status & IS_MAC2)
2851 skge_mac_intr(hw, 1);
2852
2853 if (status & IS_HW_ERR)
2854 skge_error_irq(hw);
2855
2856 if (status & IS_EXT_REG) {
2857 hw->intr_mask &= ~IS_EXT_REG;
2858 tasklet_schedule(&hw->ext_tasklet);
2859 }
2860
2861 if (status)
2862 skge_write32(hw, B0_IMSK, hw->intr_mask);
2863
2864 return IRQ_HANDLED;
2865}
2866
2867#ifdef CONFIG_NET_POLL_CONTROLLER
2868static void skge_netpoll(struct net_device *dev)
2869{
2870 struct skge_port *skge = netdev_priv(dev);
2871
2872 disable_irq(dev->irq);
2873 skge_intr(dev->irq, skge->hw, NULL);
2874 enable_irq(dev->irq);
2875}
2876#endif
2877
2878static int skge_set_mac_address(struct net_device *dev, void *p)
2879{
2880 struct skge_port *skge = netdev_priv(dev);
2881 struct sockaddr *addr = p;
2882 int err = 0;
2883
2884 if (!is_valid_ether_addr(addr->sa_data))
2885 return -EADDRNOTAVAIL;
2886
2887 skge_down(dev);
2888 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
2889 memcpy_toio(skge->hw->regs + B2_MAC_1 + skge->port*8,
2890 dev->dev_addr, ETH_ALEN);
2891 memcpy_toio(skge->hw->regs + B2_MAC_2 + skge->port*8,
2892 dev->dev_addr, ETH_ALEN);
2893 if (dev->flags & IFF_UP)
2894 err = skge_up(dev);
2895 return err;
2896}
2897
2898static const struct {
2899 u8 id;
2900 const char *name;
2901} skge_chips[] = {
2902 { CHIP_ID_GENESIS, "Genesis" },
2903 { CHIP_ID_YUKON, "Yukon" },
2904 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
2905 { CHIP_ID_YUKON_LP, "Yukon-LP"},
2906 { CHIP_ID_YUKON_XL, "Yukon-2 XL"},
2907 { CHIP_ID_YUKON_EC, "YUKON-2 EC"},
2908 { CHIP_ID_YUKON_FE, "YUKON-2 FE"},
2909};
2910
2911static const char *skge_board_name(const struct skge_hw *hw)
2912{
2913 int i;
2914 static char buf[16];
2915
2916 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
2917 if (skge_chips[i].id == hw->chip_id)
2918 return skge_chips[i].name;
2919
2920 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
2921 return buf;
2922}
2923
2924
2925/*
2926 * Setup the board data structure, but don't bring up
2927 * the port(s)
2928 */
2929static int skge_reset(struct skge_hw *hw)
2930{
2931 u16 ctst;
2932 u8 t8;
2933 int i, ports;
2934
2935 ctst = skge_read16(hw, B0_CTST);
2936
2937 /* do a SW reset */
2938 skge_write8(hw, B0_CTST, CS_RST_SET);
2939 skge_write8(hw, B0_CTST, CS_RST_CLR);
2940
2941 /* clear PCI errors, if any */
2942 skge_pci_clear(hw);
2943
2944 skge_write8(hw, B0_CTST, CS_MRST_CLR);
2945
2946 /* restore CLK_RUN bits (for Yukon-Lite) */
2947 skge_write16(hw, B0_CTST,
2948 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
2949
2950 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
2951 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
2952 hw->pmd_type = skge_read8(hw, B2_PMD_TYP);
2953
2954 switch(hw->chip_id) {
2955 case CHIP_ID_GENESIS:
2956 switch (hw->phy_type) {
2957 case SK_PHY_XMAC:
2958 hw->phy_addr = PHY_ADDR_XMAC;
2959 break;
2960 case SK_PHY_BCOM:
2961 hw->phy_addr = PHY_ADDR_BCOM;
2962 break;
2963 default:
2964 printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
2965 pci_name(hw->pdev), hw->phy_type);
2966 return -EOPNOTSUPP;
2967 }
2968 break;
2969
2970 case CHIP_ID_YUKON:
2971 case CHIP_ID_YUKON_LITE:
2972 case CHIP_ID_YUKON_LP:
2973 if (hw->phy_type < SK_PHY_MARV_COPPER && hw->pmd_type != 'S')
2974 hw->phy_type = SK_PHY_MARV_COPPER;
2975
2976 hw->phy_addr = PHY_ADDR_MARV;
2977 if (!iscopper(hw))
2978 hw->phy_type = SK_PHY_MARV_FIBER;
2979
2980 break;
2981
2982 default:
2983 printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
2984 pci_name(hw->pdev), hw->chip_id);
2985 return -EOPNOTSUPP;
2986 }
2987
2988 hw->mac_cfg = skge_read8(hw, B2_MAC_CFG);
2989 ports = isdualport(hw) ? 2 : 1;
2990
2991 /* read the adapters RAM size */
2992 t8 = skge_read8(hw, B2_E_0);
2993 if (hw->chip_id == CHIP_ID_GENESIS) {
2994 if (t8 == 3) {
2995 /* special case: 4 x 64k x 36, offset = 0x80000 */
2996 hw->ram_size = 0x100000;
2997 hw->ram_offset = 0x80000;
2998 } else
2999 hw->ram_size = t8 * 512;
3000 }
3001 else if (t8 == 0)
3002 hw->ram_size = 0x20000;
3003 else
3004 hw->ram_size = t8 * 4096;
3005
3006 if (hw->chip_id == CHIP_ID_GENESIS)
3007 genesis_init(hw);
3008 else {
3009 /* switch power to VCC (WA for VAUX problem) */
3010 skge_write8(hw, B0_POWER_CTRL,
3011 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3012 for (i = 0; i < ports; i++) {
3013 skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3014 skge_write16(hw, SKGEMAC_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3015 }
3016 }
3017
3018 /* turn off hardware timer (unused) */
3019 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3020 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3021 skge_write8(hw, B0_LED, LED_STAT_ON);
3022
3023 /* enable the Tx Arbiters */
3024 for (i = 0; i < ports; i++)
3025 skge_write8(hw, SKGEMAC_REG(i, TXA_CTRL), TXA_ENA_ARB);
3026
3027 /* Initialize ram interface */
3028 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3029
3030 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3031 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3032 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3033 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3034 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3035 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3036 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3037 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3038 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3039 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3040 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3041 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3042
3043 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3044
3045 /* Set interrupt moderation for Transmit only
3046 * Receive interrupts avoided by NAPI
3047 */
3048 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3049 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3050 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3051
3052 hw->intr_mask = IS_HW_ERR | IS_EXT_REG | IS_PORT_1;
3053 if (isdualport(hw))
3054 hw->intr_mask |= IS_PORT_2;
3055 skge_write32(hw, B0_IMSK, hw->intr_mask);
3056
3057 if (hw->chip_id != CHIP_ID_GENESIS)
3058 skge_write8(hw, GMAC_IRQ_MSK, 0);
3059
3060 spin_lock_bh(&hw->phy_lock);
3061 for (i = 0; i < ports; i++) {
3062 if (hw->chip_id == CHIP_ID_GENESIS)
3063 genesis_reset(hw, i);
3064 else
3065 yukon_reset(hw, i);
3066 }
3067 spin_unlock_bh(&hw->phy_lock);
3068
3069 return 0;
3070}
3071
3072/* Initialize network device */
3073static struct net_device *skge_devinit(struct skge_hw *hw, int port)
3074{
3075 struct skge_port *skge;
3076 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3077
3078 if (!dev) {
3079 printk(KERN_ERR "skge etherdev alloc failed");
3080 return NULL;
3081 }
3082
3083 SET_MODULE_OWNER(dev);
3084 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3085 dev->open = skge_up;
3086 dev->stop = skge_down;
3087 dev->hard_start_xmit = skge_xmit_frame;
3088 dev->get_stats = skge_get_stats;
3089 if (hw->chip_id == CHIP_ID_GENESIS)
3090 dev->set_multicast_list = genesis_set_multicast;
3091 else
3092 dev->set_multicast_list = yukon_set_multicast;
3093
3094 dev->set_mac_address = skge_set_mac_address;
3095 dev->change_mtu = skge_change_mtu;
3096 SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
3097 dev->tx_timeout = skge_tx_timeout;
3098 dev->watchdog_timeo = TX_WATCHDOG;
3099 dev->poll = skge_poll;
3100 dev->weight = NAPI_WEIGHT;
3101#ifdef CONFIG_NET_POLL_CONTROLLER
3102 dev->poll_controller = skge_netpoll;
3103#endif
3104 dev->irq = hw->pdev->irq;
3105 dev->features = NETIF_F_LLTX;
3106
3107 skge = netdev_priv(dev);
3108 skge->netdev = dev;
3109 skge->hw = hw;
3110 skge->msg_enable = netif_msg_init(debug, default_msg);
3111 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3112 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3113
3114 /* Auto speed and flow control */
3115 skge->autoneg = AUTONEG_ENABLE;
3116 skge->flow_control = FLOW_MODE_SYMMETRIC;
3117 skge->duplex = -1;
3118 skge->speed = -1;
3119 skge->advertising = skge_modes(hw);
3120
3121 hw->dev[port] = dev;
3122
3123 skge->port = port;
3124
3125 spin_lock_init(&skge->tx_lock);
3126
3127 init_timer(&skge->link_check);
3128 skge->link_check.function = skge_link_timer;
3129 skge->link_check.data = (unsigned long) skge;
3130
3131 init_timer(&skge->led_blink);
3132 skge->led_blink.function = skge_blink_timer;
3133 skge->led_blink.data = (unsigned long) skge;
3134
3135 if (hw->chip_id != CHIP_ID_GENESIS) {
3136 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3137 skge->rx_csum = 1;
3138 }
3139
3140 /* read the mac address */
3141 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3142
3143 /* device is off until link detection */
3144 netif_carrier_off(dev);
3145 netif_stop_queue(dev);
3146
3147 return dev;
3148}
3149
3150static void __devinit skge_show_addr(struct net_device *dev)
3151{
3152 const struct skge_port *skge = netdev_priv(dev);
3153
3154 if (netif_msg_probe(skge))
3155 printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
3156 dev->name,
3157 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
3158 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
3159}
3160
3161static int __devinit skge_probe(struct pci_dev *pdev,
3162 const struct pci_device_id *ent)
3163{
3164 struct net_device *dev, *dev1;
3165 struct skge_hw *hw;
3166 int err, using_dac = 0;
3167
3168 if ((err = pci_enable_device(pdev))) {
3169 printk(KERN_ERR PFX "%s cannot enable PCI device\n",
3170 pci_name(pdev));
3171 goto err_out;
3172 }
3173
3174 if ((err = pci_request_regions(pdev, DRV_NAME))) {
3175 printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
3176 pci_name(pdev));
3177 goto err_out_disable_pdev;
3178 }
3179
3180 pci_set_master(pdev);
3181
3182 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
3183 using_dac = 1;
3184 else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
3185 printk(KERN_ERR PFX "%s no usable DMA configuration\n",
3186 pci_name(pdev));
3187 goto err_out_free_regions;
3188 }
3189
3190#ifdef __BIG_ENDIAN
3191 /* byte swap decriptors in hardware */
3192 {
3193 u32 reg;
3194
3195 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3196 reg |= PCI_REV_DESC;
3197 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3198 }
3199#endif
3200
3201 err = -ENOMEM;
3202 hw = kmalloc(sizeof(*hw), GFP_KERNEL);
3203 if (!hw) {
3204 printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
3205 pci_name(pdev));
3206 goto err_out_free_regions;
3207 }
3208
3209 memset(hw, 0, sizeof(*hw));
3210 hw->pdev = pdev;
3211 spin_lock_init(&hw->phy_lock);
3212 tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
3213
3214 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3215 if (!hw->regs) {
3216 printk(KERN_ERR PFX "%s: cannot map device registers\n",
3217 pci_name(pdev));
3218 goto err_out_free_hw;
3219 }
3220
3221 if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
3222 printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
3223 pci_name(pdev), pdev->irq);
3224 goto err_out_iounmap;
3225 }
3226 pci_set_drvdata(pdev, hw);
3227
3228 err = skge_reset(hw);
3229 if (err)
3230 goto err_out_free_irq;
3231
3232 printk(KERN_INFO PFX "addr 0x%lx irq %d chip %s rev %d\n",
3233 pci_resource_start(pdev, 0), pdev->irq,
3234 skge_board_name(hw), chip_rev(hw));
3235
3236 if ((dev = skge_devinit(hw, 0)) == NULL)
3237 goto err_out_led_off;
3238
3239 if (using_dac)
3240 dev->features |= NETIF_F_HIGHDMA;
3241
3242 if ((err = register_netdev(dev))) {
3243 printk(KERN_ERR PFX "%s: cannot register net device\n",
3244 pci_name(pdev));
3245 goto err_out_free_netdev;
3246 }
3247
3248 skge_show_addr(dev);
3249
3250 if (isdualport(hw) && (dev1 = skge_devinit(hw, 1))) {
3251 if (using_dac)
3252 dev1->features |= NETIF_F_HIGHDMA;
3253
3254 if (register_netdev(dev1) == 0)
3255 skge_show_addr(dev1);
3256 else {
3257 /* Failure to register second port need not be fatal */
3258 printk(KERN_WARNING PFX "register of second port failed\n");
3259 hw->dev[1] = NULL;
3260 free_netdev(dev1);
3261 }
3262 }
3263
3264 return 0;
3265
3266err_out_free_netdev:
3267 free_netdev(dev);
3268err_out_led_off:
3269 skge_write16(hw, B0_LED, LED_STAT_OFF);
3270err_out_free_irq:
3271 free_irq(pdev->irq, hw);
3272err_out_iounmap:
3273 iounmap(hw->regs);
3274err_out_free_hw:
3275 kfree(hw);
3276err_out_free_regions:
3277 pci_release_regions(pdev);
3278err_out_disable_pdev:
3279 pci_disable_device(pdev);
3280 pci_set_drvdata(pdev, NULL);
3281err_out:
3282 return err;
3283}
3284
3285static void __devexit skge_remove(struct pci_dev *pdev)
3286{
3287 struct skge_hw *hw = pci_get_drvdata(pdev);
3288 struct net_device *dev0, *dev1;
3289
3290 if(!hw)
3291 return;
3292
3293 if ((dev1 = hw->dev[1]))
3294 unregister_netdev(dev1);
3295 dev0 = hw->dev[0];
3296 unregister_netdev(dev0);
3297
3298 tasklet_kill(&hw->ext_tasklet);
3299
3300 free_irq(pdev->irq, hw);
3301 pci_release_regions(pdev);
3302 pci_disable_device(pdev);
3303 if (dev1)
3304 free_netdev(dev1);
3305 free_netdev(dev0);
3306 skge_write16(hw, B0_LED, LED_STAT_OFF);
3307 iounmap(hw->regs);
3308 kfree(hw);
3309 pci_set_drvdata(pdev, NULL);
3310}
3311
3312#ifdef CONFIG_PM
3313static int skge_suspend(struct pci_dev *pdev, u32 state)
3314{
3315 struct skge_hw *hw = pci_get_drvdata(pdev);
3316 int i, wol = 0;
3317
3318 for(i = 0; i < 2; i++) {
3319 struct net_device *dev = hw->dev[i];
3320
3321 if (dev) {
3322 struct skge_port *skge = netdev_priv(dev);
3323 if (netif_running(dev)) {
3324 netif_carrier_off(dev);
3325 skge_down(dev);
3326 }
3327 netif_device_detach(dev);
3328 wol |= skge->wol;
3329 }
3330 }
3331
3332 pci_save_state(pdev);
3333 pci_enable_wake(pdev, state, wol);
3334 pci_disable_device(pdev);
3335 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3336
3337 return 0;
3338}
3339
3340static int skge_resume(struct pci_dev *pdev)
3341{
3342 struct skge_hw *hw = pci_get_drvdata(pdev);
3343 int i;
3344
3345 pci_set_power_state(pdev, PCI_D0);
3346 pci_restore_state(pdev);
3347 pci_enable_wake(pdev, PCI_D0, 0);
3348
3349 skge_reset(hw);
3350
3351 for(i = 0; i < 2; i++) {
3352 struct net_device *dev = hw->dev[i];
3353 if (dev) {
3354 netif_device_attach(dev);
3355 if(netif_running(dev))
3356 skge_up(dev);
3357 }
3358 }
3359 return 0;
3360}
3361#endif
3362
3363static struct pci_driver skge_driver = {
3364 .name = DRV_NAME,
3365 .id_table = skge_id_table,
3366 .probe = skge_probe,
3367 .remove = __devexit_p(skge_remove),
3368#ifdef CONFIG_PM
3369 .suspend = skge_suspend,
3370 .resume = skge_resume,
3371#endif
3372};
3373
3374static int __init skge_init_module(void)
3375{
3376 return pci_module_init(&skge_driver);
3377}
3378
3379static void __exit skge_cleanup_module(void)
3380{
3381 pci_unregister_driver(&skge_driver);
3382}
3383
3384module_init(skge_init_module);
3385module_exit(skge_cleanup_module);