aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/skfp/skfddi.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/skfp/skfddi.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/net/skfp/skfddi.c')
-rw-r--r--drivers/net/skfp/skfddi.c2293
1 files changed, 2293 insertions, 0 deletions
diff --git a/drivers/net/skfp/skfddi.c b/drivers/net/skfp/skfddi.c
new file mode 100644
index 000000000000..c88aad6edd74
--- /dev/null
+++ b/drivers/net/skfp/skfddi.c
@@ -0,0 +1,2293 @@
1/*
2 * File Name:
3 * skfddi.c
4 *
5 * Copyright Information:
6 * Copyright SysKonnect 1998,1999.
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * The information in this file is provided "AS IS" without warranty.
14 *
15 * Abstract:
16 * A Linux device driver supporting the SysKonnect FDDI PCI controller
17 * familie.
18 *
19 * Maintainers:
20 * CG Christoph Goos (cgoos@syskonnect.de)
21 *
22 * Contributors:
23 * DM David S. Miller
24 *
25 * Address all question to:
26 * linux@syskonnect.de
27 *
28 * The technical manual for the adapters is available from SysKonnect's
29 * web pages: www.syskonnect.com
30 * Goto "Support" and search Knowledge Base for "manual".
31 *
32 * Driver Architecture:
33 * The driver architecture is based on the DEC FDDI driver by
34 * Lawrence V. Stefani and several ethernet drivers.
35 * I also used an existing Windows NT miniport driver.
36 * All hardware dependent fuctions are handled by the SysKonnect
37 * Hardware Module.
38 * The only headerfiles that are directly related to this source
39 * are skfddi.c, h/types.h, h/osdef1st.h, h/targetos.h.
40 * The others belong to the SysKonnect FDDI Hardware Module and
41 * should better not be changed.
42 *
43 * Modification History:
44 * Date Name Description
45 * 02-Mar-98 CG Created.
46 *
47 * 10-Mar-99 CG Support for 2.2.x added.
48 * 25-Mar-99 CG Corrected IRQ routing for SMP (APIC)
49 * 26-Oct-99 CG Fixed compilation error on 2.2.13
50 * 12-Nov-99 CG Source code release
51 * 22-Nov-99 CG Included in kernel source.
52 * 07-May-00 DM 64 bit fixes, new dma interface
53 * 31-Jul-03 DB Audit copy_*_user in skfp_ioctl
54 * Daniele Bellucci <bellucda@tiscali.it>
55 * 03-Dec-03 SH Convert to PCI device model
56 *
57 * Compilation options (-Dxxx):
58 * DRIVERDEBUG print lots of messages to log file
59 * DUMPPACKETS print received/transmitted packets to logfile
60 *
61 * Tested cpu architectures:
62 * - i386
63 * - sparc64
64 */
65
66/* Version information string - should be updated prior to */
67/* each new release!!! */
68#define VERSION "2.07"
69
70static const char *boot_msg =
71 "SysKonnect FDDI PCI Adapter driver v" VERSION " for\n"
72 " SK-55xx/SK-58xx adapters (SK-NET FDDI-FP/UP/LP)";
73
74/* Include files */
75
76#include <linux/module.h>
77#include <linux/kernel.h>
78#include <linux/errno.h>
79#include <linux/ioport.h>
80#include <linux/slab.h>
81#include <linux/interrupt.h>
82#include <linux/pci.h>
83#include <linux/netdevice.h>
84#include <linux/fddidevice.h>
85#include <linux/skbuff.h>
86#include <linux/bitops.h>
87
88#include <asm/byteorder.h>
89#include <asm/io.h>
90#include <asm/uaccess.h>
91
92#include "h/types.h"
93#undef ADDR // undo Linux definition
94#include "h/skfbi.h"
95#include "h/fddi.h"
96#include "h/smc.h"
97#include "h/smtstate.h"
98
99
100// Define module-wide (static) routines
101static int skfp_driver_init(struct net_device *dev);
102static int skfp_open(struct net_device *dev);
103static int skfp_close(struct net_device *dev);
104static irqreturn_t skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs);
105static struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev);
106static void skfp_ctl_set_multicast_list(struct net_device *dev);
107static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev);
108static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr);
109static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
110static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev);
111static void send_queued_packets(struct s_smc *smc);
112static void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr);
113static void ResetAdapter(struct s_smc *smc);
114
115
116// Functions needed by the hardware module
117void *mac_drv_get_space(struct s_smc *smc, u_int size);
118void *mac_drv_get_desc_mem(struct s_smc *smc, u_int size);
119unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt);
120unsigned long dma_master(struct s_smc *smc, void *virt, int len, int flag);
121void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr,
122 int flag);
123void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd);
124void llc_restart_tx(struct s_smc *smc);
125void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
126 int frag_count, int len);
127void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
128 int frag_count);
129void mac_drv_fill_rxd(struct s_smc *smc);
130void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
131 int frag_count);
132int mac_drv_rx_init(struct s_smc *smc, int len, int fc, char *look_ahead,
133 int la_len);
134void dump_data(unsigned char *Data, int length);
135
136// External functions from the hardware module
137extern u_int mac_drv_check_space(void);
138extern void read_address(struct s_smc *smc, u_char * mac_addr);
139extern void card_stop(struct s_smc *smc);
140extern int mac_drv_init(struct s_smc *smc);
141extern void hwm_tx_frag(struct s_smc *smc, char far * virt, u_long phys,
142 int len, int frame_status);
143extern int hwm_tx_init(struct s_smc *smc, u_char fc, int frag_count,
144 int frame_len, int frame_status);
145extern int init_smt(struct s_smc *smc, u_char * mac_addr);
146extern void fddi_isr(struct s_smc *smc);
147extern void hwm_rx_frag(struct s_smc *smc, char far * virt, u_long phys,
148 int len, int frame_status);
149extern void mac_drv_rx_mode(struct s_smc *smc, int mode);
150extern void mac_drv_clear_rx_queue(struct s_smc *smc);
151extern void enable_tx_irq(struct s_smc *smc, u_short queue);
152extern void mac_drv_clear_txd(struct s_smc *smc);
153
154static struct pci_device_id skfddi_pci_tbl[] = {
155 { PCI_VENDOR_ID_SK, PCI_DEVICE_ID_SK_FP, PCI_ANY_ID, PCI_ANY_ID, },
156 { } /* Terminating entry */
157};
158MODULE_DEVICE_TABLE(pci, skfddi_pci_tbl);
159MODULE_LICENSE("GPL");
160MODULE_AUTHOR("Mirko Lindner <mlindner@syskonnect.de>");
161
162// Define module-wide (static) variables
163
164static int num_boards; /* total number of adapters configured */
165
166#ifdef DRIVERDEBUG
167#define PRINTK(s, args...) printk(s, ## args)
168#else
169#define PRINTK(s, args...)
170#endif // DRIVERDEBUG
171
172/*
173 * =================
174 * = skfp_init_one =
175 * =================
176 *
177 * Overview:
178 * Probes for supported FDDI PCI controllers
179 *
180 * Returns:
181 * Condition code
182 *
183 * Arguments:
184 * pdev - pointer to PCI device information
185 *
186 * Functional Description:
187 * This is now called by PCI driver registration process
188 * for each board found.
189 *
190 * Return Codes:
191 * 0 - This device (fddi0, fddi1, etc) configured successfully
192 * -ENODEV - No devices present, or no SysKonnect FDDI PCI device
193 * present for this device name
194 *
195 *
196 * Side Effects:
197 * Device structures for FDDI adapters (fddi0, fddi1, etc) are
198 * initialized and the board resources are read and stored in
199 * the device structure.
200 */
201static int skfp_init_one(struct pci_dev *pdev,
202 const struct pci_device_id *ent)
203{
204 struct net_device *dev;
205 struct s_smc *smc; /* board pointer */
206 void __iomem *mem;
207 int err;
208
209 PRINTK(KERN_INFO "entering skfp_init_one\n");
210
211 if (num_boards == 0)
212 printk("%s\n", boot_msg);
213
214 err = pci_enable_device(pdev);
215 if (err)
216 return err;
217
218 err = pci_request_regions(pdev, "skfddi");
219 if (err)
220 goto err_out1;
221
222 pci_set_master(pdev);
223
224#ifdef MEM_MAPPED_IO
225 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
226 printk(KERN_ERR "skfp: region is not an MMIO resource\n");
227 err = -EIO;
228 goto err_out2;
229 }
230
231 mem = ioremap(pci_resource_start(pdev, 0), 0x4000);
232#else
233 if (!(pci_resource_flags(pdev, 1) & IO_RESOURCE_IO)) {
234 printk(KERN_ERR "skfp: region is not PIO resource\n");
235 err = -EIO;
236 goto err_out2;
237 }
238
239 mem = ioport_map(pci_resource_start(pdev, 1), FP_IO_LEN);
240#endif
241 if (!mem) {
242 printk(KERN_ERR "skfp: Unable to map register, "
243 "FDDI adapter will be disabled.\n");
244 err = -EIO;
245 goto err_out2;
246 }
247
248 dev = alloc_fddidev(sizeof(struct s_smc));
249 if (!dev) {
250 printk(KERN_ERR "skfp: Unable to allocate fddi device, "
251 "FDDI adapter will be disabled.\n");
252 err = -ENOMEM;
253 goto err_out3;
254 }
255
256 dev->irq = pdev->irq;
257 dev->get_stats = &skfp_ctl_get_stats;
258 dev->open = &skfp_open;
259 dev->stop = &skfp_close;
260 dev->hard_start_xmit = &skfp_send_pkt;
261 dev->set_multicast_list = &skfp_ctl_set_multicast_list;
262 dev->set_mac_address = &skfp_ctl_set_mac_address;
263 dev->do_ioctl = &skfp_ioctl;
264 dev->header_cache_update = NULL; /* not supported */
265
266 SET_MODULE_OWNER(dev);
267 SET_NETDEV_DEV(dev, &pdev->dev);
268
269 /* Initialize board structure with bus-specific info */
270 smc = netdev_priv(dev);
271 smc->os.dev = dev;
272 smc->os.bus_type = SK_BUS_TYPE_PCI;
273 smc->os.pdev = *pdev;
274 smc->os.QueueSkb = MAX_TX_QUEUE_LEN;
275 smc->os.MaxFrameSize = MAX_FRAME_SIZE;
276 smc->os.dev = dev;
277 smc->hw.slot = -1;
278 smc->hw.iop = mem;
279 smc->os.ResetRequested = FALSE;
280 skb_queue_head_init(&smc->os.SendSkbQueue);
281
282 dev->base_addr = (unsigned long)mem;
283
284 err = skfp_driver_init(dev);
285 if (err)
286 goto err_out4;
287
288 err = register_netdev(dev);
289 if (err)
290 goto err_out5;
291
292 ++num_boards;
293 pci_set_drvdata(pdev, dev);
294
295 if ((pdev->subsystem_device & 0xff00) == 0x5500 ||
296 (pdev->subsystem_device & 0xff00) == 0x5800)
297 printk("%s: SysKonnect FDDI PCI adapter"
298 " found (SK-%04X)\n", dev->name,
299 pdev->subsystem_device);
300 else
301 printk("%s: FDDI PCI adapter found\n", dev->name);
302
303 return 0;
304err_out5:
305 if (smc->os.SharedMemAddr)
306 pci_free_consistent(pdev, smc->os.SharedMemSize,
307 smc->os.SharedMemAddr,
308 smc->os.SharedMemDMA);
309 pci_free_consistent(pdev, MAX_FRAME_SIZE,
310 smc->os.LocalRxBuffer, smc->os.LocalRxBufferDMA);
311err_out4:
312 free_netdev(dev);
313err_out3:
314#ifdef MEM_MAPPED_IO
315 iounmap(mem);
316#else
317 ioport_unmap(mem);
318#endif
319err_out2:
320 pci_release_regions(pdev);
321err_out1:
322 pci_disable_device(pdev);
323 return err;
324}
325
326/*
327 * Called for each adapter board from pci_unregister_driver
328 */
329static void __devexit skfp_remove_one(struct pci_dev *pdev)
330{
331 struct net_device *p = pci_get_drvdata(pdev);
332 struct s_smc *lp = netdev_priv(p);
333
334 unregister_netdev(p);
335
336 if (lp->os.SharedMemAddr) {
337 pci_free_consistent(&lp->os.pdev,
338 lp->os.SharedMemSize,
339 lp->os.SharedMemAddr,
340 lp->os.SharedMemDMA);
341 lp->os.SharedMemAddr = NULL;
342 }
343 if (lp->os.LocalRxBuffer) {
344 pci_free_consistent(&lp->os.pdev,
345 MAX_FRAME_SIZE,
346 lp->os.LocalRxBuffer,
347 lp->os.LocalRxBufferDMA);
348 lp->os.LocalRxBuffer = NULL;
349 }
350#ifdef MEM_MAPPED_IO
351 iounmap(lp->hw.iop);
352#else
353 ioport_unmap(lp->hw.iop);
354#endif
355 pci_release_regions(pdev);
356 free_netdev(p);
357
358 pci_disable_device(pdev);
359 pci_set_drvdata(pdev, NULL);
360}
361
362/*
363 * ====================
364 * = skfp_driver_init =
365 * ====================
366 *
367 * Overview:
368 * Initializes remaining adapter board structure information
369 * and makes sure adapter is in a safe state prior to skfp_open().
370 *
371 * Returns:
372 * Condition code
373 *
374 * Arguments:
375 * dev - pointer to device information
376 *
377 * Functional Description:
378 * This function allocates additional resources such as the host memory
379 * blocks needed by the adapter.
380 * The adapter is also reset. The OS must call skfp_open() to open
381 * the adapter and bring it on-line.
382 *
383 * Return Codes:
384 * 0 - initialization succeeded
385 * -1 - initialization failed
386 */
387static int skfp_driver_init(struct net_device *dev)
388{
389 struct s_smc *smc = netdev_priv(dev);
390 skfddi_priv *bp = &smc->os;
391 int err = -EIO;
392
393 PRINTK(KERN_INFO "entering skfp_driver_init\n");
394
395 // set the io address in private structures
396 bp->base_addr = dev->base_addr;
397
398 // Get the interrupt level from the PCI Configuration Table
399 smc->hw.irq = dev->irq;
400
401 spin_lock_init(&bp->DriverLock);
402
403 // Allocate invalid frame
404 bp->LocalRxBuffer = pci_alloc_consistent(&bp->pdev, MAX_FRAME_SIZE, &bp->LocalRxBufferDMA);
405 if (!bp->LocalRxBuffer) {
406 printk("could not allocate mem for ");
407 printk("LocalRxBuffer: %d byte\n", MAX_FRAME_SIZE);
408 goto fail;
409 }
410
411 // Determine the required size of the 'shared' memory area.
412 bp->SharedMemSize = mac_drv_check_space();
413 PRINTK(KERN_INFO "Memory for HWM: %ld\n", bp->SharedMemSize);
414 if (bp->SharedMemSize > 0) {
415 bp->SharedMemSize += 16; // for descriptor alignment
416
417 bp->SharedMemAddr = pci_alloc_consistent(&bp->pdev,
418 bp->SharedMemSize,
419 &bp->SharedMemDMA);
420 if (!bp->SharedMemSize) {
421 printk("could not allocate mem for ");
422 printk("hardware module: %ld byte\n",
423 bp->SharedMemSize);
424 goto fail;
425 }
426 bp->SharedMemHeap = 0; // Nothing used yet.
427
428 } else {
429 bp->SharedMemAddr = NULL;
430 bp->SharedMemHeap = 0;
431 } // SharedMemSize > 0
432
433 memset(bp->SharedMemAddr, 0, bp->SharedMemSize);
434
435 card_stop(smc); // Reset adapter.
436
437 PRINTK(KERN_INFO "mac_drv_init()..\n");
438 if (mac_drv_init(smc) != 0) {
439 PRINTK(KERN_INFO "mac_drv_init() failed.\n");
440 goto fail;
441 }
442 read_address(smc, NULL);
443 PRINTK(KERN_INFO "HW-Addr: %02x %02x %02x %02x %02x %02x\n",
444 smc->hw.fddi_canon_addr.a[0],
445 smc->hw.fddi_canon_addr.a[1],
446 smc->hw.fddi_canon_addr.a[2],
447 smc->hw.fddi_canon_addr.a[3],
448 smc->hw.fddi_canon_addr.a[4],
449 smc->hw.fddi_canon_addr.a[5]);
450 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
451
452 smt_reset_defaults(smc, 0);
453
454 return (0);
455
456fail:
457 if (bp->SharedMemAddr) {
458 pci_free_consistent(&bp->pdev,
459 bp->SharedMemSize,
460 bp->SharedMemAddr,
461 bp->SharedMemDMA);
462 bp->SharedMemAddr = NULL;
463 }
464 if (bp->LocalRxBuffer) {
465 pci_free_consistent(&bp->pdev, MAX_FRAME_SIZE,
466 bp->LocalRxBuffer, bp->LocalRxBufferDMA);
467 bp->LocalRxBuffer = NULL;
468 }
469 return err;
470} // skfp_driver_init
471
472
473/*
474 * =============
475 * = skfp_open =
476 * =============
477 *
478 * Overview:
479 * Opens the adapter
480 *
481 * Returns:
482 * Condition code
483 *
484 * Arguments:
485 * dev - pointer to device information
486 *
487 * Functional Description:
488 * This function brings the adapter to an operational state.
489 *
490 * Return Codes:
491 * 0 - Adapter was successfully opened
492 * -EAGAIN - Could not register IRQ
493 */
494static int skfp_open(struct net_device *dev)
495{
496 struct s_smc *smc = netdev_priv(dev);
497 int err;
498
499 PRINTK(KERN_INFO "entering skfp_open\n");
500 /* Register IRQ - support shared interrupts by passing device ptr */
501 err = request_irq(dev->irq, (void *) skfp_interrupt, SA_SHIRQ,
502 dev->name, dev);
503 if (err)
504 return err;
505
506 /*
507 * Set current address to factory MAC address
508 *
509 * Note: We've already done this step in skfp_driver_init.
510 * However, it's possible that a user has set a node
511 * address override, then closed and reopened the
512 * adapter. Unless we reset the device address field
513 * now, we'll continue to use the existing modified
514 * address.
515 */
516 read_address(smc, NULL);
517 memcpy(dev->dev_addr, smc->hw.fddi_canon_addr.a, 6);
518
519 init_smt(smc, NULL);
520 smt_online(smc, 1);
521 STI_FBI();
522
523 /* Clear local multicast address tables */
524 mac_clear_multicast(smc);
525
526 /* Disable promiscuous filter settings */
527 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
528
529 netif_start_queue(dev);
530 return (0);
531} // skfp_open
532
533
534/*
535 * ==============
536 * = skfp_close =
537 * ==============
538 *
539 * Overview:
540 * Closes the device/module.
541 *
542 * Returns:
543 * Condition code
544 *
545 * Arguments:
546 * dev - pointer to device information
547 *
548 * Functional Description:
549 * This routine closes the adapter and brings it to a safe state.
550 * The interrupt service routine is deregistered with the OS.
551 * The adapter can be opened again with another call to skfp_open().
552 *
553 * Return Codes:
554 * Always return 0.
555 *
556 * Assumptions:
557 * No further requests for this adapter are made after this routine is
558 * called. skfp_open() can be called to reset and reinitialize the
559 * adapter.
560 */
561static int skfp_close(struct net_device *dev)
562{
563 struct s_smc *smc = netdev_priv(dev);
564 skfddi_priv *bp = &smc->os;
565
566 CLI_FBI();
567 smt_reset_defaults(smc, 1);
568 card_stop(smc);
569 mac_drv_clear_tx_queue(smc);
570 mac_drv_clear_rx_queue(smc);
571
572 netif_stop_queue(dev);
573 /* Deregister (free) IRQ */
574 free_irq(dev->irq, dev);
575
576 skb_queue_purge(&bp->SendSkbQueue);
577 bp->QueueSkb = MAX_TX_QUEUE_LEN;
578
579 return (0);
580} // skfp_close
581
582
583/*
584 * ==================
585 * = skfp_interrupt =
586 * ==================
587 *
588 * Overview:
589 * Interrupt processing routine
590 *
591 * Returns:
592 * None
593 *
594 * Arguments:
595 * irq - interrupt vector
596 * dev_id - pointer to device information
597 * regs - pointer to registers structure
598 *
599 * Functional Description:
600 * This routine calls the interrupt processing routine for this adapter. It
601 * disables and reenables adapter interrupts, as appropriate. We can support
602 * shared interrupts since the incoming dev_id pointer provides our device
603 * structure context. All the real work is done in the hardware module.
604 *
605 * Return Codes:
606 * None
607 *
608 * Assumptions:
609 * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC
610 * on Intel-based systems) is done by the operating system outside this
611 * routine.
612 *
613 * System interrupts are enabled through this call.
614 *
615 * Side Effects:
616 * Interrupts are disabled, then reenabled at the adapter.
617 */
618
619irqreturn_t skfp_interrupt(int irq, void *dev_id, struct pt_regs *regs)
620{
621 struct net_device *dev = (struct net_device *) dev_id;
622 struct s_smc *smc; /* private board structure pointer */
623 skfddi_priv *bp;
624
625 if (dev == NULL) {
626 printk("%s: irq %d for unknown device\n", dev->name, irq);
627 return IRQ_NONE;
628 }
629
630 smc = netdev_priv(dev);
631 bp = &smc->os;
632
633 // IRQs enabled or disabled ?
634 if (inpd(ADDR(B0_IMSK)) == 0) {
635 // IRQs are disabled: must be shared interrupt
636 return IRQ_NONE;
637 }
638 // Note: At this point, IRQs are enabled.
639 if ((inpd(ISR_A) & smc->hw.is_imask) == 0) { // IRQ?
640 // Adapter did not issue an IRQ: must be shared interrupt
641 return IRQ_NONE;
642 }
643 CLI_FBI(); // Disable IRQs from our adapter.
644 spin_lock(&bp->DriverLock);
645
646 // Call interrupt handler in hardware module (HWM).
647 fddi_isr(smc);
648
649 if (smc->os.ResetRequested) {
650 ResetAdapter(smc);
651 smc->os.ResetRequested = FALSE;
652 }
653 spin_unlock(&bp->DriverLock);
654 STI_FBI(); // Enable IRQs from our adapter.
655
656 return IRQ_HANDLED;
657} // skfp_interrupt
658
659
660/*
661 * ======================
662 * = skfp_ctl_get_stats =
663 * ======================
664 *
665 * Overview:
666 * Get statistics for FDDI adapter
667 *
668 * Returns:
669 * Pointer to FDDI statistics structure
670 *
671 * Arguments:
672 * dev - pointer to device information
673 *
674 * Functional Description:
675 * Gets current MIB objects from adapter, then
676 * returns FDDI statistics structure as defined
677 * in if_fddi.h.
678 *
679 * Note: Since the FDDI statistics structure is
680 * still new and the device structure doesn't
681 * have an FDDI-specific get statistics handler,
682 * we'll return the FDDI statistics structure as
683 * a pointer to an Ethernet statistics structure.
684 * That way, at least the first part of the statistics
685 * structure can be decoded properly.
686 * We'll have to pay attention to this routine as the
687 * device structure becomes more mature and LAN media
688 * independent.
689 *
690 */
691struct net_device_stats *skfp_ctl_get_stats(struct net_device *dev)
692{
693 struct s_smc *bp = netdev_priv(dev);
694
695 /* Fill the bp->stats structure with driver-maintained counters */
696
697 bp->os.MacStat.port_bs_flag[0] = 0x1234;
698 bp->os.MacStat.port_bs_flag[1] = 0x5678;
699// goos: need to fill out fddi statistic
700#if 0
701 /* Get FDDI SMT MIB objects */
702
703/* Fill the bp->stats structure with the SMT MIB object values */
704
705 memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id));
706 bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id;
707 bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id;
708 bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id;
709 memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data));
710 bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id;
711 bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct;
712 bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct;
713 bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct;
714 bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths;
715 bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities;
716 bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy;
717 bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy;
718 bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify;
719 bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy;
720 bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration;
721 bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present;
722 bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state;
723 bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state;
724 bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag;
725 bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status;
726 bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag;
727 bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls;
728 bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls;
729 bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions;
730 bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability;
731 bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability;
732 bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths;
733 bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path;
734 memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN);
735 memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN);
736 memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN);
737 memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN);
738 bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test;
739 bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths;
740 bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type;
741 memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN);
742 bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req;
743 bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg;
744 bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max;
745 bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value;
746 bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold;
747 bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio;
748 bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state;
749 bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag;
750 bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag;
751 bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag;
752 bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available;
753 bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present;
754 bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable;
755 bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound;
756 bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound;
757 bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req;
758 memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration));
759 bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0];
760 bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1];
761 bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0];
762 bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1];
763 bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0];
764 bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1];
765 bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0];
766 bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1];
767 bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0];
768 bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1];
769 memcpy(&bp->stats.port_requested_paths[0 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3);
770 memcpy(&bp->stats.port_requested_paths[1 * 3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3);
771 bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0];
772 bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1];
773 bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0];
774 bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1];
775 bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0];
776 bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1];
777 bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0];
778 bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1];
779 bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0];
780 bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1];
781 bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0];
782 bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1];
783 bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0];
784 bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1];
785 bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0];
786 bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1];
787 bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0];
788 bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1];
789 bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0];
790 bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1];
791 bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0];
792 bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1];
793 bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0];
794 bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1];
795 bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0];
796 bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1];
797
798
799 /* Fill the bp->stats structure with the FDDI counter values */
800
801 bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls;
802 bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls;
803 bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls;
804 bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls;
805 bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls;
806 bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls;
807 bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls;
808 bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls;
809 bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls;
810 bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls;
811 bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls;
812
813#endif
814 return ((struct net_device_stats *) &bp->os.MacStat);
815} // ctl_get_stat
816
817
818/*
819 * ==============================
820 * = skfp_ctl_set_multicast_list =
821 * ==============================
822 *
823 * Overview:
824 * Enable/Disable LLC frame promiscuous mode reception
825 * on the adapter and/or update multicast address table.
826 *
827 * Returns:
828 * None
829 *
830 * Arguments:
831 * dev - pointer to device information
832 *
833 * Functional Description:
834 * This function acquires the driver lock and only calls
835 * skfp_ctl_set_multicast_list_wo_lock then.
836 * This routine follows a fairly simple algorithm for setting the
837 * adapter filters and CAM:
838 *
839 * if IFF_PROMISC flag is set
840 * enable promiscuous mode
841 * else
842 * disable promiscuous mode
843 * if number of multicast addresses <= max. multicast number
844 * add mc addresses to adapter table
845 * else
846 * enable promiscuous mode
847 * update adapter filters
848 *
849 * Assumptions:
850 * Multicast addresses are presented in canonical (LSB) format.
851 *
852 * Side Effects:
853 * On-board adapter filters are updated.
854 */
855static void skfp_ctl_set_multicast_list(struct net_device *dev)
856{
857 struct s_smc *smc = netdev_priv(dev);
858 skfddi_priv *bp = &smc->os;
859 unsigned long Flags;
860
861 spin_lock_irqsave(&bp->DriverLock, Flags);
862 skfp_ctl_set_multicast_list_wo_lock(dev);
863 spin_unlock_irqrestore(&bp->DriverLock, Flags);
864 return;
865} // skfp_ctl_set_multicast_list
866
867
868
869static void skfp_ctl_set_multicast_list_wo_lock(struct net_device *dev)
870{
871 struct s_smc *smc = netdev_priv(dev);
872 struct dev_mc_list *dmi; /* ptr to multicast addr entry */
873 int i;
874
875 /* Enable promiscuous mode, if necessary */
876 if (dev->flags & IFF_PROMISC) {
877 mac_drv_rx_mode(smc, RX_ENABLE_PROMISC);
878 PRINTK(KERN_INFO "PROMISCUOUS MODE ENABLED\n");
879 }
880 /* Else, update multicast address table */
881 else {
882 mac_drv_rx_mode(smc, RX_DISABLE_PROMISC);
883 PRINTK(KERN_INFO "PROMISCUOUS MODE DISABLED\n");
884
885 // Reset all MC addresses
886 mac_clear_multicast(smc);
887 mac_drv_rx_mode(smc, RX_DISABLE_ALLMULTI);
888
889 if (dev->flags & IFF_ALLMULTI) {
890 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
891 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
892 } else if (dev->mc_count > 0) {
893 if (dev->mc_count <= FPMAX_MULTICAST) {
894 /* use exact filtering */
895
896 // point to first multicast addr
897 dmi = dev->mc_list;
898
899 for (i = 0; i < dev->mc_count; i++) {
900 mac_add_multicast(smc,
901 (struct fddi_addr *)dmi->dmi_addr,
902 1);
903
904 PRINTK(KERN_INFO "ENABLE MC ADDRESS:");
905 PRINTK(" %02x %02x %02x ",
906 dmi->dmi_addr[0],
907 dmi->dmi_addr[1],
908 dmi->dmi_addr[2]);
909 PRINTK("%02x %02x %02x\n",
910 dmi->dmi_addr[3],
911 dmi->dmi_addr[4],
912 dmi->dmi_addr[5]);
913 dmi = dmi->next;
914 } // for
915
916 } else { // more MC addresses than HW supports
917
918 mac_drv_rx_mode(smc, RX_ENABLE_ALLMULTI);
919 PRINTK(KERN_INFO "ENABLE ALL MC ADDRESSES\n");
920 }
921 } else { // no MC addresses
922
923 PRINTK(KERN_INFO "DISABLE ALL MC ADDRESSES\n");
924 }
925
926 /* Update adapter filters */
927 mac_update_multicast(smc);
928 }
929 return;
930} // skfp_ctl_set_multicast_list_wo_lock
931
932
933/*
934 * ===========================
935 * = skfp_ctl_set_mac_address =
936 * ===========================
937 *
938 * Overview:
939 * set new mac address on adapter and update dev_addr field in device table.
940 *
941 * Returns:
942 * None
943 *
944 * Arguments:
945 * dev - pointer to device information
946 * addr - pointer to sockaddr structure containing unicast address to set
947 *
948 * Assumptions:
949 * The address pointed to by addr->sa_data is a valid unicast
950 * address and is presented in canonical (LSB) format.
951 */
952static int skfp_ctl_set_mac_address(struct net_device *dev, void *addr)
953{
954 struct s_smc *smc = netdev_priv(dev);
955 struct sockaddr *p_sockaddr = (struct sockaddr *) addr;
956 skfddi_priv *bp = &smc->os;
957 unsigned long Flags;
958
959
960 memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN);
961 spin_lock_irqsave(&bp->DriverLock, Flags);
962 ResetAdapter(smc);
963 spin_unlock_irqrestore(&bp->DriverLock, Flags);
964
965 return (0); /* always return zero */
966} // skfp_ctl_set_mac_address
967
968
969/*
970 * ==============
971 * = skfp_ioctl =
972 * ==============
973 *
974 * Overview:
975 *
976 * Perform IOCTL call functions here. Some are privileged operations and the
977 * effective uid is checked in those cases.
978 *
979 * Returns:
980 * status value
981 * 0 - success
982 * other - failure
983 *
984 * Arguments:
985 * dev - pointer to device information
986 * rq - pointer to ioctl request structure
987 * cmd - ?
988 *
989 */
990
991
992static int skfp_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
993{
994 struct s_smc *smc = netdev_priv(dev);
995 skfddi_priv *lp = &smc->os;
996 struct s_skfp_ioctl ioc;
997 int status = 0;
998
999 if (copy_from_user(&ioc, rq->ifr_data, sizeof(struct s_skfp_ioctl)))
1000 return -EFAULT;
1001
1002 switch (ioc.cmd) {
1003 case SKFP_GET_STATS: /* Get the driver statistics */
1004 ioc.len = sizeof(lp->MacStat);
1005 status = copy_to_user(ioc.data, skfp_ctl_get_stats(dev), ioc.len)
1006 ? -EFAULT : 0;
1007 break;
1008 case SKFP_CLR_STATS: /* Zero out the driver statistics */
1009 if (!capable(CAP_NET_ADMIN)) {
1010 memset(&lp->MacStat, 0, sizeof(lp->MacStat));
1011 } else {
1012 status = -EPERM;
1013 }
1014 break;
1015 default:
1016 printk("ioctl for %s: unknow cmd: %04x\n", dev->name, ioc.cmd);
1017 status = -EOPNOTSUPP;
1018
1019 } // switch
1020
1021 return status;
1022} // skfp_ioctl
1023
1024
1025/*
1026 * =====================
1027 * = skfp_send_pkt =
1028 * =====================
1029 *
1030 * Overview:
1031 * Queues a packet for transmission and try to transmit it.
1032 *
1033 * Returns:
1034 * Condition code
1035 *
1036 * Arguments:
1037 * skb - pointer to sk_buff to queue for transmission
1038 * dev - pointer to device information
1039 *
1040 * Functional Description:
1041 * Here we assume that an incoming skb transmit request
1042 * is contained in a single physically contiguous buffer
1043 * in which the virtual address of the start of packet
1044 * (skb->data) can be converted to a physical address
1045 * by using pci_map_single().
1046 *
1047 * We have an internal queue for packets we can not send
1048 * immediately. Packets in this queue can be given to the
1049 * adapter if transmit buffers are freed.
1050 *
1051 * We can't free the skb until after it's been DMA'd
1052 * out by the adapter, so we'll keep it in the driver and
1053 * return it in mac_drv_tx_complete.
1054 *
1055 * Return Codes:
1056 * 0 - driver has queued and/or sent packet
1057 * 1 - caller should requeue the sk_buff for later transmission
1058 *
1059 * Assumptions:
1060 * The entire packet is stored in one physically
1061 * contiguous buffer which is not cached and whose
1062 * 32-bit physical address can be determined.
1063 *
1064 * It's vital that this routine is NOT reentered for the
1065 * same board and that the OS is not in another section of
1066 * code (eg. skfp_interrupt) for the same board on a
1067 * different thread.
1068 *
1069 * Side Effects:
1070 * None
1071 */
1072static int skfp_send_pkt(struct sk_buff *skb, struct net_device *dev)
1073{
1074 struct s_smc *smc = netdev_priv(dev);
1075 skfddi_priv *bp = &smc->os;
1076
1077 PRINTK(KERN_INFO "skfp_send_pkt\n");
1078
1079 /*
1080 * Verify that incoming transmit request is OK
1081 *
1082 * Note: The packet size check is consistent with other
1083 * Linux device drivers, although the correct packet
1084 * size should be verified before calling the
1085 * transmit routine.
1086 */
1087
1088 if (!(skb->len >= FDDI_K_LLC_ZLEN && skb->len <= FDDI_K_LLC_LEN)) {
1089 bp->MacStat.gen.tx_errors++; /* bump error counter */
1090 // dequeue packets from xmt queue and send them
1091 netif_start_queue(dev);
1092 dev_kfree_skb(skb);
1093 return (0); /* return "success" */
1094 }
1095 if (bp->QueueSkb == 0) { // return with tbusy set: queue full
1096
1097 netif_stop_queue(dev);
1098 return 1;
1099 }
1100 bp->QueueSkb--;
1101 skb_queue_tail(&bp->SendSkbQueue, skb);
1102 send_queued_packets(netdev_priv(dev));
1103 if (bp->QueueSkb == 0) {
1104 netif_stop_queue(dev);
1105 }
1106 dev->trans_start = jiffies;
1107 return 0;
1108
1109} // skfp_send_pkt
1110
1111
1112/*
1113 * =======================
1114 * = send_queued_packets =
1115 * =======================
1116 *
1117 * Overview:
1118 * Send packets from the driver queue as long as there are some and
1119 * transmit resources are available.
1120 *
1121 * Returns:
1122 * None
1123 *
1124 * Arguments:
1125 * smc - pointer to smc (adapter) structure
1126 *
1127 * Functional Description:
1128 * Take a packet from queue if there is any. If not, then we are done.
1129 * Check if there are resources to send the packet. If not, requeue it
1130 * and exit.
1131 * Set packet descriptor flags and give packet to adapter.
1132 * Check if any send resources can be freed (we do not use the
1133 * transmit complete interrupt).
1134 */
1135static void send_queued_packets(struct s_smc *smc)
1136{
1137 skfddi_priv *bp = &smc->os;
1138 struct sk_buff *skb;
1139 unsigned char fc;
1140 int queue;
1141 struct s_smt_fp_txd *txd; // Current TxD.
1142 dma_addr_t dma_address;
1143 unsigned long Flags;
1144
1145 int frame_status; // HWM tx frame status.
1146
1147 PRINTK(KERN_INFO "send queued packets\n");
1148 for (;;) {
1149 // send first buffer from queue
1150 skb = skb_dequeue(&bp->SendSkbQueue);
1151
1152 if (!skb) {
1153 PRINTK(KERN_INFO "queue empty\n");
1154 return;
1155 } // queue empty !
1156
1157 spin_lock_irqsave(&bp->DriverLock, Flags);
1158 fc = skb->data[0];
1159 queue = (fc & FC_SYNC_BIT) ? QUEUE_S : QUEUE_A0;
1160#ifdef ESS
1161 // Check if the frame may/must be sent as a synchronous frame.
1162
1163 if ((fc & ~(FC_SYNC_BIT | FC_LLC_PRIOR)) == FC_ASYNC_LLC) {
1164 // It's an LLC frame.
1165 if (!smc->ess.sync_bw_available)
1166 fc &= ~FC_SYNC_BIT; // No bandwidth available.
1167
1168 else { // Bandwidth is available.
1169
1170 if (smc->mib.fddiESSSynchTxMode) {
1171 // Send as sync. frame.
1172 fc |= FC_SYNC_BIT;
1173 }
1174 }
1175 }
1176#endif // ESS
1177 frame_status = hwm_tx_init(smc, fc, 1, skb->len, queue);
1178
1179 if ((frame_status & (LOC_TX | LAN_TX)) == 0) {
1180 // Unable to send the frame.
1181
1182 if ((frame_status & RING_DOWN) != 0) {
1183 // Ring is down.
1184 PRINTK("Tx attempt while ring down.\n");
1185 } else if ((frame_status & OUT_OF_TXD) != 0) {
1186 PRINTK("%s: out of TXDs.\n", bp->dev->name);
1187 } else {
1188 PRINTK("%s: out of transmit resources",
1189 bp->dev->name);
1190 }
1191
1192 // Note: We will retry the operation as soon as
1193 // transmit resources become available.
1194 skb_queue_head(&bp->SendSkbQueue, skb);
1195 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1196 return; // Packet has been queued.
1197
1198 } // if (unable to send frame)
1199
1200 bp->QueueSkb++; // one packet less in local queue
1201
1202 // source address in packet ?
1203 CheckSourceAddress(skb->data, smc->hw.fddi_canon_addr.a);
1204
1205 txd = (struct s_smt_fp_txd *) HWM_GET_CURR_TXD(smc, queue);
1206
1207 dma_address = pci_map_single(&bp->pdev, skb->data,
1208 skb->len, PCI_DMA_TODEVICE);
1209 if (frame_status & LAN_TX) {
1210 txd->txd_os.skb = skb; // save skb
1211 txd->txd_os.dma_addr = dma_address; // save dma mapping
1212 }
1213 hwm_tx_frag(smc, skb->data, dma_address, skb->len,
1214 frame_status | FIRST_FRAG | LAST_FRAG | EN_IRQ_EOF);
1215
1216 if (!(frame_status & LAN_TX)) { // local only frame
1217 pci_unmap_single(&bp->pdev, dma_address,
1218 skb->len, PCI_DMA_TODEVICE);
1219 dev_kfree_skb_irq(skb);
1220 }
1221 spin_unlock_irqrestore(&bp->DriverLock, Flags);
1222 } // for
1223
1224 return; // never reached
1225
1226} // send_queued_packets
1227
1228
1229/************************
1230 *
1231 * CheckSourceAddress
1232 *
1233 * Verify if the source address is set. Insert it if necessary.
1234 *
1235 ************************/
1236void CheckSourceAddress(unsigned char *frame, unsigned char *hw_addr)
1237{
1238 unsigned char SRBit;
1239
1240 if ((((unsigned long) frame[1 + 6]) & ~0x01) != 0) // source routing bit
1241
1242 return;
1243 if ((unsigned short) frame[1 + 10] != 0)
1244 return;
1245 SRBit = frame[1 + 6] & 0x01;
1246 memcpy(&frame[1 + 6], hw_addr, 6);
1247 frame[8] |= SRBit;
1248} // CheckSourceAddress
1249
1250
1251/************************
1252 *
1253 * ResetAdapter
1254 *
1255 * Reset the adapter and bring it back to operational mode.
1256 * Args
1257 * smc - A pointer to the SMT context struct.
1258 * Out
1259 * Nothing.
1260 *
1261 ************************/
1262static void ResetAdapter(struct s_smc *smc)
1263{
1264
1265 PRINTK(KERN_INFO "[fddi: ResetAdapter]\n");
1266
1267 // Stop the adapter.
1268
1269 card_stop(smc); // Stop all activity.
1270
1271 // Clear the transmit and receive descriptor queues.
1272 mac_drv_clear_tx_queue(smc);
1273 mac_drv_clear_rx_queue(smc);
1274
1275 // Restart the adapter.
1276
1277 smt_reset_defaults(smc, 1); // Initialize the SMT module.
1278
1279 init_smt(smc, (smc->os.dev)->dev_addr); // Initialize the hardware.
1280
1281 smt_online(smc, 1); // Insert into the ring again.
1282 STI_FBI();
1283
1284 // Restore original receive mode (multicasts, promiscuous, etc.).
1285 skfp_ctl_set_multicast_list_wo_lock(smc->os.dev);
1286} // ResetAdapter
1287
1288
1289//--------------- functions called by hardware module ----------------
1290
1291/************************
1292 *
1293 * llc_restart_tx
1294 *
1295 * The hardware driver calls this routine when the transmit complete
1296 * interrupt bits (end of frame) for the synchronous or asynchronous
1297 * queue is set.
1298 *
1299 * NOTE The hardware driver calls this function also if no packets are queued.
1300 * The routine must be able to handle this case.
1301 * Args
1302 * smc - A pointer to the SMT context struct.
1303 * Out
1304 * Nothing.
1305 *
1306 ************************/
1307void llc_restart_tx(struct s_smc *smc)
1308{
1309 skfddi_priv *bp = &smc->os;
1310
1311 PRINTK(KERN_INFO "[llc_restart_tx]\n");
1312
1313 // Try to send queued packets
1314 spin_unlock(&bp->DriverLock);
1315 send_queued_packets(smc);
1316 spin_lock(&bp->DriverLock);
1317 netif_start_queue(bp->dev);// system may send again if it was blocked
1318
1319} // llc_restart_tx
1320
1321
1322/************************
1323 *
1324 * mac_drv_get_space
1325 *
1326 * The hardware module calls this function to allocate the memory
1327 * for the SMT MBufs if the define MB_OUTSIDE_SMC is specified.
1328 * Args
1329 * smc - A pointer to the SMT context struct.
1330 *
1331 * size - Size of memory in bytes to allocate.
1332 * Out
1333 * != 0 A pointer to the virtual address of the allocated memory.
1334 * == 0 Allocation error.
1335 *
1336 ************************/
1337void *mac_drv_get_space(struct s_smc *smc, unsigned int size)
1338{
1339 void *virt;
1340
1341 PRINTK(KERN_INFO "mac_drv_get_space (%d bytes), ", size);
1342 virt = (void *) (smc->os.SharedMemAddr + smc->os.SharedMemHeap);
1343
1344 if ((smc->os.SharedMemHeap + size) > smc->os.SharedMemSize) {
1345 printk("Unexpected SMT memory size requested: %d\n", size);
1346 return (NULL);
1347 }
1348 smc->os.SharedMemHeap += size; // Move heap pointer.
1349
1350 PRINTK(KERN_INFO "mac_drv_get_space end\n");
1351 PRINTK(KERN_INFO "virt addr: %lx\n", (ulong) virt);
1352 PRINTK(KERN_INFO "bus addr: %lx\n", (ulong)
1353 (smc->os.SharedMemDMA +
1354 ((char *) virt - (char *)smc->os.SharedMemAddr)));
1355 return (virt);
1356} // mac_drv_get_space
1357
1358
1359/************************
1360 *
1361 * mac_drv_get_desc_mem
1362 *
1363 * This function is called by the hardware dependent module.
1364 * It allocates the memory for the RxD and TxD descriptors.
1365 *
1366 * This memory must be non-cached, non-movable and non-swappable.
1367 * This memory should start at a physical page boundary.
1368 * Args
1369 * smc - A pointer to the SMT context struct.
1370 *
1371 * size - Size of memory in bytes to allocate.
1372 * Out
1373 * != 0 A pointer to the virtual address of the allocated memory.
1374 * == 0 Allocation error.
1375 *
1376 ************************/
1377void *mac_drv_get_desc_mem(struct s_smc *smc, unsigned int size)
1378{
1379
1380 char *virt;
1381
1382 PRINTK(KERN_INFO "mac_drv_get_desc_mem\n");
1383
1384 // Descriptor memory must be aligned on 16-byte boundary.
1385
1386 virt = mac_drv_get_space(smc, size);
1387
1388 size = (u_int) (16 - (((unsigned long) virt) & 15UL));
1389 size = size % 16;
1390
1391 PRINTK("Allocate %u bytes alignment gap ", size);
1392 PRINTK("for descriptor memory.\n");
1393
1394 if (!mac_drv_get_space(smc, size)) {
1395 printk("fddi: Unable to align descriptor memory.\n");
1396 return (NULL);
1397 }
1398 return (virt + size);
1399} // mac_drv_get_desc_mem
1400
1401
1402/************************
1403 *
1404 * mac_drv_virt2phys
1405 *
1406 * Get the physical address of a given virtual address.
1407 * Args
1408 * smc - A pointer to the SMT context struct.
1409 *
1410 * virt - A (virtual) pointer into our 'shared' memory area.
1411 * Out
1412 * Physical address of the given virtual address.
1413 *
1414 ************************/
1415unsigned long mac_drv_virt2phys(struct s_smc *smc, void *virt)
1416{
1417 return (smc->os.SharedMemDMA +
1418 ((char *) virt - (char *)smc->os.SharedMemAddr));
1419} // mac_drv_virt2phys
1420
1421
1422/************************
1423 *
1424 * dma_master
1425 *
1426 * The HWM calls this function, when the driver leads through a DMA
1427 * transfer. If the OS-specific module must prepare the system hardware
1428 * for the DMA transfer, it should do it in this function.
1429 *
1430 * The hardware module calls this dma_master if it wants to send an SMT
1431 * frame. This means that the virt address passed in here is part of
1432 * the 'shared' memory area.
1433 * Args
1434 * smc - A pointer to the SMT context struct.
1435 *
1436 * virt - The virtual address of the data.
1437 *
1438 * len - The length in bytes of the data.
1439 *
1440 * flag - Indicates the transmit direction and the buffer type:
1441 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1442 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1443 * SMT_BUF (0x80) SMT buffer
1444 *
1445 * >> NOTE: SMT_BUF and DMA_RD are always set for PCI. <<
1446 * Out
1447 * Returns the pyhsical address for the DMA transfer.
1448 *
1449 ************************/
1450u_long dma_master(struct s_smc * smc, void *virt, int len, int flag)
1451{
1452 return (smc->os.SharedMemDMA +
1453 ((char *) virt - (char *)smc->os.SharedMemAddr));
1454} // dma_master
1455
1456
1457/************************
1458 *
1459 * dma_complete
1460 *
1461 * The hardware module calls this routine when it has completed a DMA
1462 * transfer. If the operating system dependent module has set up the DMA
1463 * channel via dma_master() (e.g. Windows NT or AIX) it should clean up
1464 * the DMA channel.
1465 * Args
1466 * smc - A pointer to the SMT context struct.
1467 *
1468 * descr - A pointer to a TxD or RxD, respectively.
1469 *
1470 * flag - Indicates the DMA transfer direction / SMT buffer:
1471 * DMA_RD (0x01) system RAM ==> adapter buffer memory
1472 * DMA_WR (0x02) adapter buffer memory ==> system RAM
1473 * SMT_BUF (0x80) SMT buffer (managed by HWM)
1474 * Out
1475 * Nothing.
1476 *
1477 ************************/
1478void dma_complete(struct s_smc *smc, volatile union s_fp_descr *descr, int flag)
1479{
1480 /* For TX buffers, there are two cases. If it is an SMT transmit
1481 * buffer, there is nothing to do since we use consistent memory
1482 * for the 'shared' memory area. The other case is for normal
1483 * transmit packets given to us by the networking stack, and in
1484 * that case we cleanup the PCI DMA mapping in mac_drv_tx_complete
1485 * below.
1486 *
1487 * For RX buffers, we have to unmap dynamic PCI DMA mappings here
1488 * because the hardware module is about to potentially look at
1489 * the contents of the buffer. If we did not call the PCI DMA
1490 * unmap first, the hardware module could read inconsistent data.
1491 */
1492 if (flag & DMA_WR) {
1493 skfddi_priv *bp = &smc->os;
1494 volatile struct s_smt_fp_rxd *r = &descr->r;
1495
1496 /* If SKB is NULL, we used the local buffer. */
1497 if (r->rxd_os.skb && r->rxd_os.dma_addr) {
1498 int MaxFrameSize = bp->MaxFrameSize;
1499
1500 pci_unmap_single(&bp->pdev, r->rxd_os.dma_addr,
1501 MaxFrameSize, PCI_DMA_FROMDEVICE);
1502 r->rxd_os.dma_addr = 0;
1503 }
1504 }
1505} // dma_complete
1506
1507
1508/************************
1509 *
1510 * mac_drv_tx_complete
1511 *
1512 * Transmit of a packet is complete. Release the tx staging buffer.
1513 *
1514 * Args
1515 * smc - A pointer to the SMT context struct.
1516 *
1517 * txd - A pointer to the last TxD which is used by the frame.
1518 * Out
1519 * Returns nothing.
1520 *
1521 ************************/
1522void mac_drv_tx_complete(struct s_smc *smc, volatile struct s_smt_fp_txd *txd)
1523{
1524 struct sk_buff *skb;
1525
1526 PRINTK(KERN_INFO "entering mac_drv_tx_complete\n");
1527 // Check if this TxD points to a skb
1528
1529 if (!(skb = txd->txd_os.skb)) {
1530 PRINTK("TXD with no skb assigned.\n");
1531 return;
1532 }
1533 txd->txd_os.skb = NULL;
1534
1535 // release the DMA mapping
1536 pci_unmap_single(&smc->os.pdev, txd->txd_os.dma_addr,
1537 skb->len, PCI_DMA_TODEVICE);
1538 txd->txd_os.dma_addr = 0;
1539
1540 smc->os.MacStat.gen.tx_packets++; // Count transmitted packets.
1541 smc->os.MacStat.gen.tx_bytes+=skb->len; // Count bytes
1542
1543 // free the skb
1544 dev_kfree_skb_irq(skb);
1545
1546 PRINTK(KERN_INFO "leaving mac_drv_tx_complete\n");
1547} // mac_drv_tx_complete
1548
1549
1550/************************
1551 *
1552 * dump packets to logfile
1553 *
1554 ************************/
1555#ifdef DUMPPACKETS
1556void dump_data(unsigned char *Data, int length)
1557{
1558 int i, j;
1559 unsigned char s[255], sh[10];
1560 if (length > 64) {
1561 length = 64;
1562 }
1563 printk(KERN_INFO "---Packet start---\n");
1564 for (i = 0, j = 0; i < length / 8; i++, j += 8)
1565 printk(KERN_INFO "%02x %02x %02x %02x %02x %02x %02x %02x\n",
1566 Data[j + 0], Data[j + 1], Data[j + 2], Data[j + 3],
1567 Data[j + 4], Data[j + 5], Data[j + 6], Data[j + 7]);
1568 strcpy(s, "");
1569 for (i = 0; i < length % 8; i++) {
1570 sprintf(sh, "%02x ", Data[j + i]);
1571 strcat(s, sh);
1572 }
1573 printk(KERN_INFO "%s\n", s);
1574 printk(KERN_INFO "------------------\n");
1575} // dump_data
1576#else
1577#define dump_data(data,len)
1578#endif // DUMPPACKETS
1579
1580/************************
1581 *
1582 * mac_drv_rx_complete
1583 *
1584 * The hardware module calls this function if an LLC frame is received
1585 * in a receive buffer. Also the SMT, NSA, and directed beacon frames
1586 * from the network will be passed to the LLC layer by this function
1587 * if passing is enabled.
1588 *
1589 * mac_drv_rx_complete forwards the frame to the LLC layer if it should
1590 * be received. It also fills the RxD ring with new receive buffers if
1591 * some can be queued.
1592 * Args
1593 * smc - A pointer to the SMT context struct.
1594 *
1595 * rxd - A pointer to the first RxD which is used by the receive frame.
1596 *
1597 * frag_count - Count of RxDs used by the received frame.
1598 *
1599 * len - Frame length.
1600 * Out
1601 * Nothing.
1602 *
1603 ************************/
1604void mac_drv_rx_complete(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1605 int frag_count, int len)
1606{
1607 skfddi_priv *bp = &smc->os;
1608 struct sk_buff *skb;
1609 unsigned char *virt, *cp;
1610 unsigned short ri;
1611 u_int RifLength;
1612
1613 PRINTK(KERN_INFO "entering mac_drv_rx_complete (len=%d)\n", len);
1614 if (frag_count != 1) { // This is not allowed to happen.
1615
1616 printk("fddi: Multi-fragment receive!\n");
1617 goto RequeueRxd; // Re-use the given RXD(s).
1618
1619 }
1620 skb = rxd->rxd_os.skb;
1621 if (!skb) {
1622 PRINTK(KERN_INFO "No skb in rxd\n");
1623 smc->os.MacStat.gen.rx_errors++;
1624 goto RequeueRxd;
1625 }
1626 virt = skb->data;
1627
1628 // The DMA mapping was released in dma_complete above.
1629
1630 dump_data(skb->data, len);
1631
1632 /*
1633 * FDDI Frame format:
1634 * +-------+-------+-------+------------+--------+------------+
1635 * | FC[1] | DA[6] | SA[6] | RIF[0..18] | LLC[3] | Data[0..n] |
1636 * +-------+-------+-------+------------+--------+------------+
1637 *
1638 * FC = Frame Control
1639 * DA = Destination Address
1640 * SA = Source Address
1641 * RIF = Routing Information Field
1642 * LLC = Logical Link Control
1643 */
1644
1645 // Remove Routing Information Field (RIF), if present.
1646
1647 if ((virt[1 + 6] & FDDI_RII) == 0)
1648 RifLength = 0;
1649 else {
1650 int n;
1651// goos: RIF removal has still to be tested
1652 PRINTK(KERN_INFO "RIF found\n");
1653 // Get RIF length from Routing Control (RC) field.
1654 cp = virt + FDDI_MAC_HDR_LEN; // Point behind MAC header.
1655
1656 ri = ntohs(*((unsigned short *) cp));
1657 RifLength = ri & FDDI_RCF_LEN_MASK;
1658 if (len < (int) (FDDI_MAC_HDR_LEN + RifLength)) {
1659 printk("fddi: Invalid RIF.\n");
1660 goto RequeueRxd; // Discard the frame.
1661
1662 }
1663 virt[1 + 6] &= ~FDDI_RII; // Clear RII bit.
1664 // regions overlap
1665
1666 virt = cp + RifLength;
1667 for (n = FDDI_MAC_HDR_LEN; n; n--)
1668 *--virt = *--cp;
1669 // adjust sbd->data pointer
1670 skb_pull(skb, RifLength);
1671 len -= RifLength;
1672 RifLength = 0;
1673 }
1674
1675 // Count statistics.
1676 smc->os.MacStat.gen.rx_packets++; // Count indicated receive
1677 // packets.
1678 smc->os.MacStat.gen.rx_bytes+=len; // Count bytes.
1679
1680 // virt points to header again
1681 if (virt[1] & 0x01) { // Check group (multicast) bit.
1682
1683 smc->os.MacStat.gen.multicast++;
1684 }
1685
1686 // deliver frame to system
1687 rxd->rxd_os.skb = NULL;
1688 skb_trim(skb, len);
1689 skb->protocol = fddi_type_trans(skb, bp->dev);
1690 skb->dev = bp->dev; /* pass up device pointer */
1691
1692 netif_rx(skb);
1693 bp->dev->last_rx = jiffies;
1694
1695 HWM_RX_CHECK(smc, RX_LOW_WATERMARK);
1696 return;
1697
1698 RequeueRxd:
1699 PRINTK(KERN_INFO "Rx: re-queue RXD.\n");
1700 mac_drv_requeue_rxd(smc, rxd, frag_count);
1701 smc->os.MacStat.gen.rx_errors++; // Count receive packets
1702 // not indicated.
1703
1704} // mac_drv_rx_complete
1705
1706
1707/************************
1708 *
1709 * mac_drv_requeue_rxd
1710 *
1711 * The hardware module calls this function to request the OS-specific
1712 * module to queue the receive buffer(s) represented by the pointer
1713 * to the RxD and the frag_count into the receive queue again. This
1714 * buffer was filled with an invalid frame or an SMT frame.
1715 * Args
1716 * smc - A pointer to the SMT context struct.
1717 *
1718 * rxd - A pointer to the first RxD which is used by the receive frame.
1719 *
1720 * frag_count - Count of RxDs used by the received frame.
1721 * Out
1722 * Nothing.
1723 *
1724 ************************/
1725void mac_drv_requeue_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1726 int frag_count)
1727{
1728 volatile struct s_smt_fp_rxd *next_rxd;
1729 volatile struct s_smt_fp_rxd *src_rxd;
1730 struct sk_buff *skb;
1731 int MaxFrameSize;
1732 unsigned char *v_addr;
1733 dma_addr_t b_addr;
1734
1735 if (frag_count != 1) // This is not allowed to happen.
1736
1737 printk("fddi: Multi-fragment requeue!\n");
1738
1739 MaxFrameSize = smc->os.MaxFrameSize;
1740 src_rxd = rxd;
1741 for (; frag_count > 0; frag_count--) {
1742 next_rxd = src_rxd->rxd_next;
1743 rxd = HWM_GET_CURR_RXD(smc);
1744
1745 skb = src_rxd->rxd_os.skb;
1746 if (skb == NULL) { // this should not happen
1747
1748 PRINTK("Requeue with no skb in rxd!\n");
1749 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1750 if (skb) {
1751 // we got a skb
1752 rxd->rxd_os.skb = skb;
1753 skb_reserve(skb, 3);
1754 skb_put(skb, MaxFrameSize);
1755 v_addr = skb->data;
1756 b_addr = pci_map_single(&smc->os.pdev,
1757 v_addr,
1758 MaxFrameSize,
1759 PCI_DMA_FROMDEVICE);
1760 rxd->rxd_os.dma_addr = b_addr;
1761 } else {
1762 // no skb available, use local buffer
1763 PRINTK("Queueing invalid buffer!\n");
1764 rxd->rxd_os.skb = NULL;
1765 v_addr = smc->os.LocalRxBuffer;
1766 b_addr = smc->os.LocalRxBufferDMA;
1767 }
1768 } else {
1769 // we use skb from old rxd
1770 rxd->rxd_os.skb = skb;
1771 v_addr = skb->data;
1772 b_addr = pci_map_single(&smc->os.pdev,
1773 v_addr,
1774 MaxFrameSize,
1775 PCI_DMA_FROMDEVICE);
1776 rxd->rxd_os.dma_addr = b_addr;
1777 }
1778 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1779 FIRST_FRAG | LAST_FRAG);
1780
1781 src_rxd = next_rxd;
1782 }
1783} // mac_drv_requeue_rxd
1784
1785
1786/************************
1787 *
1788 * mac_drv_fill_rxd
1789 *
1790 * The hardware module calls this function at initialization time
1791 * to fill the RxD ring with receive buffers. It is also called by
1792 * mac_drv_rx_complete if rx_free is large enough to queue some new
1793 * receive buffers into the RxD ring. mac_drv_fill_rxd queues new
1794 * receive buffers as long as enough RxDs and receive buffers are
1795 * available.
1796 * Args
1797 * smc - A pointer to the SMT context struct.
1798 * Out
1799 * Nothing.
1800 *
1801 ************************/
1802void mac_drv_fill_rxd(struct s_smc *smc)
1803{
1804 int MaxFrameSize;
1805 unsigned char *v_addr;
1806 unsigned long b_addr;
1807 struct sk_buff *skb;
1808 volatile struct s_smt_fp_rxd *rxd;
1809
1810 PRINTK(KERN_INFO "entering mac_drv_fill_rxd\n");
1811
1812 // Walk through the list of free receive buffers, passing receive
1813 // buffers to the HWM as long as RXDs are available.
1814
1815 MaxFrameSize = smc->os.MaxFrameSize;
1816 // Check if there is any RXD left.
1817 while (HWM_GET_RX_FREE(smc) > 0) {
1818 PRINTK(KERN_INFO ".\n");
1819
1820 rxd = HWM_GET_CURR_RXD(smc);
1821 skb = alloc_skb(MaxFrameSize + 3, GFP_ATOMIC);
1822 if (skb) {
1823 // we got a skb
1824 skb_reserve(skb, 3);
1825 skb_put(skb, MaxFrameSize);
1826 v_addr = skb->data;
1827 b_addr = pci_map_single(&smc->os.pdev,
1828 v_addr,
1829 MaxFrameSize,
1830 PCI_DMA_FROMDEVICE);
1831 rxd->rxd_os.dma_addr = b_addr;
1832 } else {
1833 // no skb available, use local buffer
1834 // System has run out of buffer memory, but we want to
1835 // keep the receiver running in hope of better times.
1836 // Multiple descriptors may point to this local buffer,
1837 // so data in it must be considered invalid.
1838 PRINTK("Queueing invalid buffer!\n");
1839 v_addr = smc->os.LocalRxBuffer;
1840 b_addr = smc->os.LocalRxBufferDMA;
1841 }
1842
1843 rxd->rxd_os.skb = skb;
1844
1845 // Pass receive buffer to HWM.
1846 hwm_rx_frag(smc, v_addr, b_addr, MaxFrameSize,
1847 FIRST_FRAG | LAST_FRAG);
1848 }
1849 PRINTK(KERN_INFO "leaving mac_drv_fill_rxd\n");
1850} // mac_drv_fill_rxd
1851
1852
1853/************************
1854 *
1855 * mac_drv_clear_rxd
1856 *
1857 * The hardware module calls this function to release unused
1858 * receive buffers.
1859 * Args
1860 * smc - A pointer to the SMT context struct.
1861 *
1862 * rxd - A pointer to the first RxD which is used by the receive buffer.
1863 *
1864 * frag_count - Count of RxDs used by the receive buffer.
1865 * Out
1866 * Nothing.
1867 *
1868 ************************/
1869void mac_drv_clear_rxd(struct s_smc *smc, volatile struct s_smt_fp_rxd *rxd,
1870 int frag_count)
1871{
1872
1873 struct sk_buff *skb;
1874
1875 PRINTK("entering mac_drv_clear_rxd\n");
1876
1877 if (frag_count != 1) // This is not allowed to happen.
1878
1879 printk("fddi: Multi-fragment clear!\n");
1880
1881 for (; frag_count > 0; frag_count--) {
1882 skb = rxd->rxd_os.skb;
1883 if (skb != NULL) {
1884 skfddi_priv *bp = &smc->os;
1885 int MaxFrameSize = bp->MaxFrameSize;
1886
1887 pci_unmap_single(&bp->pdev, rxd->rxd_os.dma_addr,
1888 MaxFrameSize, PCI_DMA_FROMDEVICE);
1889
1890 dev_kfree_skb(skb);
1891 rxd->rxd_os.skb = NULL;
1892 }
1893 rxd = rxd->rxd_next; // Next RXD.
1894
1895 }
1896} // mac_drv_clear_rxd
1897
1898
1899/************************
1900 *
1901 * mac_drv_rx_init
1902 *
1903 * The hardware module calls this routine when an SMT or NSA frame of the
1904 * local SMT should be delivered to the LLC layer.
1905 *
1906 * It is necessary to have this function, because there is no other way to
1907 * copy the contents of SMT MBufs into receive buffers.
1908 *
1909 * mac_drv_rx_init allocates the required target memory for this frame,
1910 * and receives the frame fragment by fragment by calling mac_drv_rx_frag.
1911 * Args
1912 * smc - A pointer to the SMT context struct.
1913 *
1914 * len - The length (in bytes) of the received frame (FC, DA, SA, Data).
1915 *
1916 * fc - The Frame Control field of the received frame.
1917 *
1918 * look_ahead - A pointer to the lookahead data buffer (may be NULL).
1919 *
1920 * la_len - The length of the lookahead data stored in the lookahead
1921 * buffer (may be zero).
1922 * Out
1923 * Always returns zero (0).
1924 *
1925 ************************/
1926int mac_drv_rx_init(struct s_smc *smc, int len, int fc,
1927 char *look_ahead, int la_len)
1928{
1929 struct sk_buff *skb;
1930
1931 PRINTK("entering mac_drv_rx_init(len=%d)\n", len);
1932
1933 // "Received" a SMT or NSA frame of the local SMT.
1934
1935 if (len != la_len || len < FDDI_MAC_HDR_LEN || !look_ahead) {
1936 PRINTK("fddi: Discard invalid local SMT frame\n");
1937 PRINTK(" len=%d, la_len=%d, (ULONG) look_ahead=%08lXh.\n",
1938 len, la_len, (unsigned long) look_ahead);
1939 return (0);
1940 }
1941 skb = alloc_skb(len + 3, GFP_ATOMIC);
1942 if (!skb) {
1943 PRINTK("fddi: Local SMT: skb memory exhausted.\n");
1944 return (0);
1945 }
1946 skb_reserve(skb, 3);
1947 skb_put(skb, len);
1948 memcpy(skb->data, look_ahead, len);
1949
1950 // deliver frame to system
1951 skb->protocol = fddi_type_trans(skb, smc->os.dev);
1952 skb->dev->last_rx = jiffies;
1953 netif_rx(skb);
1954
1955 return (0);
1956} // mac_drv_rx_init
1957
1958
1959/************************
1960 *
1961 * smt_timer_poll
1962 *
1963 * This routine is called periodically by the SMT module to clean up the
1964 * driver.
1965 *
1966 * Return any queued frames back to the upper protocol layers if the ring
1967 * is down.
1968 * Args
1969 * smc - A pointer to the SMT context struct.
1970 * Out
1971 * Nothing.
1972 *
1973 ************************/
1974void smt_timer_poll(struct s_smc *smc)
1975{
1976} // smt_timer_poll
1977
1978
1979/************************
1980 *
1981 * ring_status_indication
1982 *
1983 * This function indicates a change of the ring state.
1984 * Args
1985 * smc - A pointer to the SMT context struct.
1986 *
1987 * status - The current ring status.
1988 * Out
1989 * Nothing.
1990 *
1991 ************************/
1992void ring_status_indication(struct s_smc *smc, u_long status)
1993{
1994 PRINTK("ring_status_indication( ");
1995 if (status & RS_RES15)
1996 PRINTK("RS_RES15 ");
1997 if (status & RS_HARDERROR)
1998 PRINTK("RS_HARDERROR ");
1999 if (status & RS_SOFTERROR)
2000 PRINTK("RS_SOFTERROR ");
2001 if (status & RS_BEACON)
2002 PRINTK("RS_BEACON ");
2003 if (status & RS_PATHTEST)
2004 PRINTK("RS_PATHTEST ");
2005 if (status & RS_SELFTEST)
2006 PRINTK("RS_SELFTEST ");
2007 if (status & RS_RES9)
2008 PRINTK("RS_RES9 ");
2009 if (status & RS_DISCONNECT)
2010 PRINTK("RS_DISCONNECT ");
2011 if (status & RS_RES7)
2012 PRINTK("RS_RES7 ");
2013 if (status & RS_DUPADDR)
2014 PRINTK("RS_DUPADDR ");
2015 if (status & RS_NORINGOP)
2016 PRINTK("RS_NORINGOP ");
2017 if (status & RS_VERSION)
2018 PRINTK("RS_VERSION ");
2019 if (status & RS_STUCKBYPASSS)
2020 PRINTK("RS_STUCKBYPASSS ");
2021 if (status & RS_EVENT)
2022 PRINTK("RS_EVENT ");
2023 if (status & RS_RINGOPCHANGE)
2024 PRINTK("RS_RINGOPCHANGE ");
2025 if (status & RS_RES0)
2026 PRINTK("RS_RES0 ");
2027 PRINTK("]\n");
2028} // ring_status_indication
2029
2030
2031/************************
2032 *
2033 * smt_get_time
2034 *
2035 * Gets the current time from the system.
2036 * Args
2037 * None.
2038 * Out
2039 * The current time in TICKS_PER_SECOND.
2040 *
2041 * TICKS_PER_SECOND has the unit 'count of timer ticks per second'. It is
2042 * defined in "targetos.h". The definition of TICKS_PER_SECOND must comply
2043 * to the time returned by smt_get_time().
2044 *
2045 ************************/
2046unsigned long smt_get_time(void)
2047{
2048 return jiffies;
2049} // smt_get_time
2050
2051
2052/************************
2053 *
2054 * smt_stat_counter
2055 *
2056 * Status counter update (ring_op, fifo full).
2057 * Args
2058 * smc - A pointer to the SMT context struct.
2059 *
2060 * stat - = 0: A ring operational change occurred.
2061 * = 1: The FORMAC FIFO buffer is full / FIFO overflow.
2062 * Out
2063 * Nothing.
2064 *
2065 ************************/
2066void smt_stat_counter(struct s_smc *smc, int stat)
2067{
2068// BOOLEAN RingIsUp ;
2069
2070 PRINTK(KERN_INFO "smt_stat_counter\n");
2071 switch (stat) {
2072 case 0:
2073 PRINTK(KERN_INFO "Ring operational change.\n");
2074 break;
2075 case 1:
2076 PRINTK(KERN_INFO "Receive fifo overflow.\n");
2077 smc->os.MacStat.gen.rx_errors++;
2078 break;
2079 default:
2080 PRINTK(KERN_INFO "Unknown status (%d).\n", stat);
2081 break;
2082 }
2083} // smt_stat_counter
2084
2085
2086/************************
2087 *
2088 * cfm_state_change
2089 *
2090 * Sets CFM state in custom statistics.
2091 * Args
2092 * smc - A pointer to the SMT context struct.
2093 *
2094 * c_state - Possible values are:
2095 *
2096 * EC0_OUT, EC1_IN, EC2_TRACE, EC3_LEAVE, EC4_PATH_TEST,
2097 * EC5_INSERT, EC6_CHECK, EC7_DEINSERT
2098 * Out
2099 * Nothing.
2100 *
2101 ************************/
2102void cfm_state_change(struct s_smc *smc, int c_state)
2103{
2104#ifdef DRIVERDEBUG
2105 char *s;
2106
2107 switch (c_state) {
2108 case SC0_ISOLATED:
2109 s = "SC0_ISOLATED";
2110 break;
2111 case SC1_WRAP_A:
2112 s = "SC1_WRAP_A";
2113 break;
2114 case SC2_WRAP_B:
2115 s = "SC2_WRAP_B";
2116 break;
2117 case SC4_THRU_A:
2118 s = "SC4_THRU_A";
2119 break;
2120 case SC5_THRU_B:
2121 s = "SC5_THRU_B";
2122 break;
2123 case SC7_WRAP_S:
2124 s = "SC7_WRAP_S";
2125 break;
2126 case SC9_C_WRAP_A:
2127 s = "SC9_C_WRAP_A";
2128 break;
2129 case SC10_C_WRAP_B:
2130 s = "SC10_C_WRAP_B";
2131 break;
2132 case SC11_C_WRAP_S:
2133 s = "SC11_C_WRAP_S";
2134 break;
2135 default:
2136 PRINTK(KERN_INFO "cfm_state_change: unknown %d\n", c_state);
2137 return;
2138 }
2139 PRINTK(KERN_INFO "cfm_state_change: %s\n", s);
2140#endif // DRIVERDEBUG
2141} // cfm_state_change
2142
2143
2144/************************
2145 *
2146 * ecm_state_change
2147 *
2148 * Sets ECM state in custom statistics.
2149 * Args
2150 * smc - A pointer to the SMT context struct.
2151 *
2152 * e_state - Possible values are:
2153 *
2154 * SC0_ISOLATED, SC1_WRAP_A (5), SC2_WRAP_B (6), SC4_THRU_A (12),
2155 * SC5_THRU_B (7), SC7_WRAP_S (8)
2156 * Out
2157 * Nothing.
2158 *
2159 ************************/
2160void ecm_state_change(struct s_smc *smc, int e_state)
2161{
2162#ifdef DRIVERDEBUG
2163 char *s;
2164
2165 switch (e_state) {
2166 case EC0_OUT:
2167 s = "EC0_OUT";
2168 break;
2169 case EC1_IN:
2170 s = "EC1_IN";
2171 break;
2172 case EC2_TRACE:
2173 s = "EC2_TRACE";
2174 break;
2175 case EC3_LEAVE:
2176 s = "EC3_LEAVE";
2177 break;
2178 case EC4_PATH_TEST:
2179 s = "EC4_PATH_TEST";
2180 break;
2181 case EC5_INSERT:
2182 s = "EC5_INSERT";
2183 break;
2184 case EC6_CHECK:
2185 s = "EC6_CHECK";
2186 break;
2187 case EC7_DEINSERT:
2188 s = "EC7_DEINSERT";
2189 break;
2190 default:
2191 s = "unknown";
2192 break;
2193 }
2194 PRINTK(KERN_INFO "ecm_state_change: %s\n", s);
2195#endif //DRIVERDEBUG
2196} // ecm_state_change
2197
2198
2199/************************
2200 *
2201 * rmt_state_change
2202 *
2203 * Sets RMT state in custom statistics.
2204 * Args
2205 * smc - A pointer to the SMT context struct.
2206 *
2207 * r_state - Possible values are:
2208 *
2209 * RM0_ISOLATED, RM1_NON_OP, RM2_RING_OP, RM3_DETECT,
2210 * RM4_NON_OP_DUP, RM5_RING_OP_DUP, RM6_DIRECTED, RM7_TRACE
2211 * Out
2212 * Nothing.
2213 *
2214 ************************/
2215void rmt_state_change(struct s_smc *smc, int r_state)
2216{
2217#ifdef DRIVERDEBUG
2218 char *s;
2219
2220 switch (r_state) {
2221 case RM0_ISOLATED:
2222 s = "RM0_ISOLATED";
2223 break;
2224 case RM1_NON_OP:
2225 s = "RM1_NON_OP - not operational";
2226 break;
2227 case RM2_RING_OP:
2228 s = "RM2_RING_OP - ring operational";
2229 break;
2230 case RM3_DETECT:
2231 s = "RM3_DETECT - detect dupl addresses";
2232 break;
2233 case RM4_NON_OP_DUP:
2234 s = "RM4_NON_OP_DUP - dupl. addr detected";
2235 break;
2236 case RM5_RING_OP_DUP:
2237 s = "RM5_RING_OP_DUP - ring oper. with dupl. addr";
2238 break;
2239 case RM6_DIRECTED:
2240 s = "RM6_DIRECTED - sending directed beacons";
2241 break;
2242 case RM7_TRACE:
2243 s = "RM7_TRACE - trace initiated";
2244 break;
2245 default:
2246 s = "unknown";
2247 break;
2248 }
2249 PRINTK(KERN_INFO "[rmt_state_change: %s]\n", s);
2250#endif // DRIVERDEBUG
2251} // rmt_state_change
2252
2253
2254/************************
2255 *
2256 * drv_reset_indication
2257 *
2258 * This function is called by the SMT when it has detected a severe
2259 * hardware problem. The driver should perform a reset on the adapter
2260 * as soon as possible, but not from within this function.
2261 * Args
2262 * smc - A pointer to the SMT context struct.
2263 * Out
2264 * Nothing.
2265 *
2266 ************************/
2267void drv_reset_indication(struct s_smc *smc)
2268{
2269 PRINTK(KERN_INFO "entering drv_reset_indication\n");
2270
2271 smc->os.ResetRequested = TRUE; // Set flag.
2272
2273} // drv_reset_indication
2274
2275static struct pci_driver skfddi_pci_driver = {
2276 .name = "skfddi",
2277 .id_table = skfddi_pci_tbl,
2278 .probe = skfp_init_one,
2279 .remove = __devexit_p(skfp_remove_one),
2280};
2281
2282static int __init skfd_init(void)
2283{
2284 return pci_module_init(&skfddi_pci_driver);
2285}
2286
2287static void __exit skfd_exit(void)
2288{
2289 pci_unregister_driver(&skfddi_pci_driver);
2290}
2291
2292module_init(skfd_init);
2293module_exit(skfd_exit);