aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/sfc/io.h
diff options
context:
space:
mode:
authorBen Hutchings <bhutchings@solarflare.com>2010-12-06 17:55:00 -0500
committerBen Hutchings <bhutchings@solarflare.com>2010-12-06 17:55:00 -0500
commit9f2f6cd07a09bc0af1f2950189e426569561d1e6 (patch)
tree366f7284f2362a413ddde7bf9f01cfd5f4e7fab4 /drivers/net/sfc/io.h
parent51c56f40ef41ca780ff001d59727eda03fa39374 (diff)
sfc: Expand/correct comments on collector behaviour and function usage
Document exactly which registers and functions have special behaviour, and why races on writes to descriptor pointers are safe. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Diffstat (limited to 'drivers/net/sfc/io.h')
-rw-r--r--drivers/net/sfc/io.h98
1 files changed, 49 insertions, 49 deletions
diff --git a/drivers/net/sfc/io.h b/drivers/net/sfc/io.h
index 85a99fe87437..0764e84ecc41 100644
--- a/drivers/net/sfc/io.h
+++ b/drivers/net/sfc/io.h
@@ -22,28 +22,39 @@
22 * 22 *
23 * Notes on locking strategy: 23 * Notes on locking strategy:
24 * 24 *
25 * Most NIC registers require 16-byte (or 8-byte, for SRAM) atomic writes 25 * Most CSRs are 128-bit (oword) and therefore cannot be read or
26 * which necessitates locking. 26 * written atomically. Access from the host is buffered by the Bus
27 * Under normal operation few writes to NIC registers are made and these 27 * Interface Unit (BIU). Whenever the host reads from the lowest
28 * registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and TX_DESC_UPD_REG) are special 28 * address of such a register, or from the address of a different such
29 * cased to allow 4-byte (hence lockless) accesses. 29 * register, the BIU latches the register's value. Subsequent reads
30 * from higher addresses of the same register will read the latched
31 * value. Whenever the host writes part of such a register, the BIU
32 * collects the written value and does not write to the underlying
33 * register until all 4 dwords have been written. A similar buffering
34 * scheme applies to host access to the NIC's 64-bit SRAM.
30 * 35 *
31 * It *is* safe to write to these 4-byte registers in the middle of an 36 * Access to different CSRs and 64-bit SRAM words must be serialised,
32 * access to an 8-byte or 16-byte register. We therefore use a 37 * since interleaved access can result in lost writes or lost
33 * spinlock to protect accesses to the larger registers, but no locks 38 * information from read-to-clear fields. We use efx_nic::biu_lock
34 * for the 4-byte registers. 39 * for this. (We could use separate locks for read and write, but
40 * this is not normally a performance bottleneck.)
35 * 41 *
36 * A write barrier is needed to ensure that DW3 is written after DW0/1/2 42 * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
37 * due to the way the 16byte registers are "collected" in the BIU. 43 * 128-bit but are special-cased in the BIU to avoid the need for
44 * locking in the host:
38 * 45 *
39 * We also lock when carrying out reads, to ensure consistency of the 46 * - They are write-only.
40 * data (made possible since the BIU reads all 128 bits into a cache). 47 * - The semantics of writing to these registers are such that
41 * Reads are very rare, so this isn't a significant performance 48 * replacing the low 96 bits with zero does not affect functionality.
42 * impact. (Most data transferred from NIC to host is DMAed directly 49 * - If the host writes to the last dword address of such a register
43 * into host memory). 50 * (i.e. the high 32 bits) the underlying register will always be
44 * 51 * written. If the collector does not hold values for the low 96
45 * I/O BAR access uses locks for both reads and writes (but is only provided 52 * bits of the register, they will be written as zero. Writing to
46 * for testing purposes). 53 * the last qword does not have this effect and must not be done.
54 * - If the host writes to the address of any other part of such a
55 * register while the collector already holds values for some other
56 * register, the write is discarded and the collector maintains its
57 * current state.
47 */ 58 */
48 59
49#if BITS_PER_LONG == 64 60#if BITS_PER_LONG == 64
@@ -72,7 +83,7 @@ static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
72 return (__force __le32)__raw_readl(efx->membase + reg); 83 return (__force __le32)__raw_readl(efx->membase + reg);
73} 84}
74 85
75/* Writes to a normal 16-byte Efx register, locking as appropriate. */ 86/* Write a normal 128-bit CSR, locking as appropriate. */
76static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value, 87static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
77 unsigned int reg) 88 unsigned int reg)
78{ 89{
@@ -98,8 +109,7 @@ static inline void efx_writeo(struct efx_nic *efx, efx_oword_t *value,
98 spin_unlock_irqrestore(&efx->biu_lock, flags); 109 spin_unlock_irqrestore(&efx->biu_lock, flags);
99} 110}
100 111
101/* Write an 8-byte NIC SRAM entry through the supplied mapping, 112/* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
102 * locking as appropriate. */
103static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase, 113static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
104 efx_qword_t *value, unsigned int index) 114 efx_qword_t *value, unsigned int index)
105{ 115{
@@ -122,29 +132,19 @@ static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
122 spin_unlock_irqrestore(&efx->biu_lock, flags); 132 spin_unlock_irqrestore(&efx->biu_lock, flags);
123} 133}
124 134
125/* Write dword to NIC register that allows partial writes 135/* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
126 *
127 * Some registers (EVQ_RPTR_REG, RX_DESC_UPD_REG and
128 * TX_DESC_UPD_REG) can be written to as a single dword. This allows
129 * for lockless writes.
130 */
131static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value, 136static inline void efx_writed(struct efx_nic *efx, efx_dword_t *value,
132 unsigned int reg) 137 unsigned int reg)
133{ 138{
134 netif_vdbg(efx, hw, efx->net_dev, 139 netif_vdbg(efx, hw, efx->net_dev,
135 "writing partial register %x with "EFX_DWORD_FMT"\n", 140 "writing register %x with "EFX_DWORD_FMT"\n",
136 reg, EFX_DWORD_VAL(*value)); 141 reg, EFX_DWORD_VAL(*value));
137 142
138 /* No lock required */ 143 /* No lock required */
139 _efx_writed(efx, value->u32[0], reg); 144 _efx_writed(efx, value->u32[0], reg);
140} 145}
141 146
142/* Read from a NIC register 147/* Read a 128-bit CSR, locking as appropriate. */
143 *
144 * This reads an entire 16-byte register in one go, locking as
145 * appropriate. It is essential to read the first dword first, as this
146 * prompts the NIC to load the current value into the shadow register.
147 */
148static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value, 148static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
149 unsigned int reg) 149 unsigned int reg)
150{ 150{
@@ -163,8 +163,7 @@ static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
163 EFX_OWORD_VAL(*value)); 163 EFX_OWORD_VAL(*value));
164} 164}
165 165
166/* Read an 8-byte SRAM entry through supplied mapping, 166/* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
167 * locking as appropriate. */
168static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase, 167static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
169 efx_qword_t *value, unsigned int index) 168 efx_qword_t *value, unsigned int index)
170{ 169{
@@ -186,7 +185,7 @@ static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
186 addr, EFX_QWORD_VAL(*value)); 185 addr, EFX_QWORD_VAL(*value));
187} 186}
188 187
189/* Read dword from register that allows partial writes (sic) */ 188/* Read a 32-bit CSR or SRAM */
190static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value, 189static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
191 unsigned int reg) 190 unsigned int reg)
192{ 191{
@@ -196,28 +195,28 @@ static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
196 reg, EFX_DWORD_VAL(*value)); 195 reg, EFX_DWORD_VAL(*value));
197} 196}
198 197
199/* Write to a register forming part of a table */ 198/* Write a 128-bit CSR forming part of a table */
200static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value, 199static inline void efx_writeo_table(struct efx_nic *efx, efx_oword_t *value,
201 unsigned int reg, unsigned int index) 200 unsigned int reg, unsigned int index)
202{ 201{
203 efx_writeo(efx, value, reg + index * sizeof(efx_oword_t)); 202 efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
204} 203}
205 204
206/* Read to a register forming part of a table */ 205/* Read a 128-bit CSR forming part of a table */
207static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value, 206static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
208 unsigned int reg, unsigned int index) 207 unsigned int reg, unsigned int index)
209{ 208{
210 efx_reado(efx, value, reg + index * sizeof(efx_oword_t)); 209 efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
211} 210}
212 211
213/* Write to a dword register forming part of a table */ 212/* Write a 32-bit CSR forming part of a table, or 32-bit SRAM */
214static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value, 213static inline void efx_writed_table(struct efx_nic *efx, efx_dword_t *value,
215 unsigned int reg, unsigned int index) 214 unsigned int reg, unsigned int index)
216{ 215{
217 efx_writed(efx, value, reg + index * sizeof(efx_oword_t)); 216 efx_writed(efx, value, reg + index * sizeof(efx_oword_t));
218} 217}
219 218
220/* Read from a dword register forming part of a table */ 219/* Read a 32-bit CSR forming part of a table, or 32-bit SRAM */
221static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value, 220static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
222 unsigned int reg, unsigned int index) 221 unsigned int reg, unsigned int index)
223{ 222{
@@ -231,25 +230,26 @@ static inline void efx_readd_table(struct efx_nic *efx, efx_dword_t *value,
231#define EFX_PAGED_REG(page, reg) \ 230#define EFX_PAGED_REG(page, reg) \
232 ((page) * EFX_PAGE_BLOCK_SIZE + (reg)) 231 ((page) * EFX_PAGE_BLOCK_SIZE + (reg))
233 232
234/* As for efx_writeo(), but for a page-mapped register. */ 233/* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
235static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value, 234static inline void efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
236 unsigned int reg, unsigned int page) 235 unsigned int reg, unsigned int page)
237{ 236{
238 efx_writeo(efx, value, EFX_PAGED_REG(page, reg)); 237 efx_writeo(efx, value, EFX_PAGED_REG(page, reg));
239} 238}
240 239
241/* As for efx_writed(), but for a page-mapped register. */ 240/* Write a page-mapped 32-bit CSR (EVQ_RPTR or the high bits of
241 * RX_DESC_UPD or TX_DESC_UPD)
242 */
242static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value, 243static inline void efx_writed_page(struct efx_nic *efx, efx_dword_t *value,
243 unsigned int reg, unsigned int page) 244 unsigned int reg, unsigned int page)
244{ 245{
245 efx_writed(efx, value, EFX_PAGED_REG(page, reg)); 246 efx_writed(efx, value, EFX_PAGED_REG(page, reg));
246} 247}
247 248
248/* Write dword to page-mapped register with an extra lock. 249/* Write TIMER_COMMAND. This is a page-mapped 32-bit CSR, but a bug
249 * 250 * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
250 * As for efx_writed_page(), but for a register that suffers from 251 * collector register.
251 * SFC bug 3181. Take out a lock so the BIU collector cannot be 252 */
252 * confused. */
253static inline void efx_writed_page_locked(struct efx_nic *efx, 253static inline void efx_writed_page_locked(struct efx_nic *efx,
254 efx_dword_t *value, 254 efx_dword_t *value,
255 unsigned int reg, 255 unsigned int reg,