diff options
author | Ben Hutchings <bhutchings@solarflare.com> | 2008-04-27 07:55:59 -0400 |
---|---|---|
committer | Jeff Garzik <jgarzik@redhat.com> | 2008-04-29 01:42:43 -0400 |
commit | 8ceee660aacb29721e26f08e336c58dc4847d1bd (patch) | |
tree | 158122642e6f21fe85d072c50d6185a0d0cf6834 /drivers/net/sfc/falcon.c | |
parent | 358c12953b88c5a06a57c33eb27c753b2e7934d1 (diff) |
New driver "sfc" for Solarstorm SFC4000 controller.
The driver supports the 10Xpress PHY and XFP modules on our reference
designs SFE4001 and SFE4002 and the SMC models SMC10GPCIe-XFP and
SMC10GPCIe-10BT.
Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
Diffstat (limited to 'drivers/net/sfc/falcon.c')
-rw-r--r-- | drivers/net/sfc/falcon.c | 2722 |
1 files changed, 2722 insertions, 0 deletions
diff --git a/drivers/net/sfc/falcon.c b/drivers/net/sfc/falcon.c new file mode 100644 index 000000000000..46db549ce580 --- /dev/null +++ b/drivers/net/sfc/falcon.c | |||
@@ -0,0 +1,2722 @@ | |||
1 | /**************************************************************************** | ||
2 | * Driver for Solarflare Solarstorm network controllers and boards | ||
3 | * Copyright 2005-2006 Fen Systems Ltd. | ||
4 | * Copyright 2006-2008 Solarflare Communications Inc. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License version 2 as published | ||
8 | * by the Free Software Foundation, incorporated herein by reference. | ||
9 | */ | ||
10 | |||
11 | #include <linux/bitops.h> | ||
12 | #include <linux/delay.h> | ||
13 | #include <linux/pci.h> | ||
14 | #include <linux/module.h> | ||
15 | #include <linux/seq_file.h> | ||
16 | #include "net_driver.h" | ||
17 | #include "bitfield.h" | ||
18 | #include "efx.h" | ||
19 | #include "mac.h" | ||
20 | #include "gmii.h" | ||
21 | #include "spi.h" | ||
22 | #include "falcon.h" | ||
23 | #include "falcon_hwdefs.h" | ||
24 | #include "falcon_io.h" | ||
25 | #include "mdio_10g.h" | ||
26 | #include "phy.h" | ||
27 | #include "boards.h" | ||
28 | #include "workarounds.h" | ||
29 | |||
30 | /* Falcon hardware control. | ||
31 | * Falcon is the internal codename for the SFC4000 controller that is | ||
32 | * present in SFE400X evaluation boards | ||
33 | */ | ||
34 | |||
35 | /** | ||
36 | * struct falcon_nic_data - Falcon NIC state | ||
37 | * @next_buffer_table: First available buffer table id | ||
38 | * @pci_dev2: The secondary PCI device if present | ||
39 | */ | ||
40 | struct falcon_nic_data { | ||
41 | unsigned next_buffer_table; | ||
42 | struct pci_dev *pci_dev2; | ||
43 | }; | ||
44 | |||
45 | /************************************************************************** | ||
46 | * | ||
47 | * Configurable values | ||
48 | * | ||
49 | ************************************************************************** | ||
50 | */ | ||
51 | |||
52 | static int disable_dma_stats; | ||
53 | |||
54 | /* This is set to 16 for a good reason. In summary, if larger than | ||
55 | * 16, the descriptor cache holds more than a default socket | ||
56 | * buffer's worth of packets (for UDP we can only have at most one | ||
57 | * socket buffer's worth outstanding). This combined with the fact | ||
58 | * that we only get 1 TX event per descriptor cache means the NIC | ||
59 | * goes idle. | ||
60 | */ | ||
61 | #define TX_DC_ENTRIES 16 | ||
62 | #define TX_DC_ENTRIES_ORDER 0 | ||
63 | #define TX_DC_BASE 0x130000 | ||
64 | |||
65 | #define RX_DC_ENTRIES 64 | ||
66 | #define RX_DC_ENTRIES_ORDER 2 | ||
67 | #define RX_DC_BASE 0x100000 | ||
68 | |||
69 | /* RX FIFO XOFF watermark | ||
70 | * | ||
71 | * When the amount of the RX FIFO increases used increases past this | ||
72 | * watermark send XOFF. Only used if RX flow control is enabled (ethtool -A) | ||
73 | * This also has an effect on RX/TX arbitration | ||
74 | */ | ||
75 | static int rx_xoff_thresh_bytes = -1; | ||
76 | module_param(rx_xoff_thresh_bytes, int, 0644); | ||
77 | MODULE_PARM_DESC(rx_xoff_thresh_bytes, "RX fifo XOFF threshold"); | ||
78 | |||
79 | /* RX FIFO XON watermark | ||
80 | * | ||
81 | * When the amount of the RX FIFO used decreases below this | ||
82 | * watermark send XON. Only used if TX flow control is enabled (ethtool -A) | ||
83 | * This also has an effect on RX/TX arbitration | ||
84 | */ | ||
85 | static int rx_xon_thresh_bytes = -1; | ||
86 | module_param(rx_xon_thresh_bytes, int, 0644); | ||
87 | MODULE_PARM_DESC(rx_xon_thresh_bytes, "RX fifo XON threshold"); | ||
88 | |||
89 | /* TX descriptor ring size - min 512 max 4k */ | ||
90 | #define FALCON_TXD_RING_ORDER TX_DESCQ_SIZE_1K | ||
91 | #define FALCON_TXD_RING_SIZE 1024 | ||
92 | #define FALCON_TXD_RING_MASK (FALCON_TXD_RING_SIZE - 1) | ||
93 | |||
94 | /* RX descriptor ring size - min 512 max 4k */ | ||
95 | #define FALCON_RXD_RING_ORDER RX_DESCQ_SIZE_1K | ||
96 | #define FALCON_RXD_RING_SIZE 1024 | ||
97 | #define FALCON_RXD_RING_MASK (FALCON_RXD_RING_SIZE - 1) | ||
98 | |||
99 | /* Event queue size - max 32k */ | ||
100 | #define FALCON_EVQ_ORDER EVQ_SIZE_4K | ||
101 | #define FALCON_EVQ_SIZE 4096 | ||
102 | #define FALCON_EVQ_MASK (FALCON_EVQ_SIZE - 1) | ||
103 | |||
104 | /* Max number of internal errors. After this resets will not be performed */ | ||
105 | #define FALCON_MAX_INT_ERRORS 4 | ||
106 | |||
107 | /* Maximum period that we wait for flush events. If the flush event | ||
108 | * doesn't arrive in this period of time then we check if the queue | ||
109 | * was disabled anyway. */ | ||
110 | #define FALCON_FLUSH_TIMEOUT 10 /* 10ms */ | ||
111 | |||
112 | /************************************************************************** | ||
113 | * | ||
114 | * Falcon constants | ||
115 | * | ||
116 | ************************************************************************** | ||
117 | */ | ||
118 | |||
119 | /* DMA address mask (up to 46-bit, avoiding compiler warnings) | ||
120 | * | ||
121 | * Note that it is possible to have a platform with 64-bit longs and | ||
122 | * 32-bit DMA addresses, or vice versa. EFX_DMA_MASK takes care of the | ||
123 | * platform DMA mask. | ||
124 | */ | ||
125 | #if BITS_PER_LONG == 64 | ||
126 | #define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffUL) | ||
127 | #else | ||
128 | #define FALCON_DMA_MASK EFX_DMA_MASK(0x00003fffffffffffULL) | ||
129 | #endif | ||
130 | |||
131 | /* TX DMA length mask (13-bit) */ | ||
132 | #define FALCON_TX_DMA_MASK (4096 - 1) | ||
133 | |||
134 | /* Size and alignment of special buffers (4KB) */ | ||
135 | #define FALCON_BUF_SIZE 4096 | ||
136 | |||
137 | /* Dummy SRAM size code */ | ||
138 | #define SRM_NB_BSZ_ONCHIP_ONLY (-1) | ||
139 | |||
140 | /* Be nice if these (or equiv.) were in linux/pci_regs.h, but they're not. */ | ||
141 | #define PCI_EXP_DEVCAP_PWR_VAL_LBN 18 | ||
142 | #define PCI_EXP_DEVCAP_PWR_SCL_LBN 26 | ||
143 | #define PCI_EXP_DEVCTL_PAYLOAD_LBN 5 | ||
144 | #define PCI_EXP_LNKSTA_LNK_WID 0x3f0 | ||
145 | #define PCI_EXP_LNKSTA_LNK_WID_LBN 4 | ||
146 | |||
147 | #define FALCON_IS_DUAL_FUNC(efx) \ | ||
148 | (FALCON_REV(efx) < FALCON_REV_B0) | ||
149 | |||
150 | /************************************************************************** | ||
151 | * | ||
152 | * Falcon hardware access | ||
153 | * | ||
154 | **************************************************************************/ | ||
155 | |||
156 | /* Read the current event from the event queue */ | ||
157 | static inline efx_qword_t *falcon_event(struct efx_channel *channel, | ||
158 | unsigned int index) | ||
159 | { | ||
160 | return (((efx_qword_t *) (channel->eventq.addr)) + index); | ||
161 | } | ||
162 | |||
163 | /* See if an event is present | ||
164 | * | ||
165 | * We check both the high and low dword of the event for all ones. We | ||
166 | * wrote all ones when we cleared the event, and no valid event can | ||
167 | * have all ones in either its high or low dwords. This approach is | ||
168 | * robust against reordering. | ||
169 | * | ||
170 | * Note that using a single 64-bit comparison is incorrect; even | ||
171 | * though the CPU read will be atomic, the DMA write may not be. | ||
172 | */ | ||
173 | static inline int falcon_event_present(efx_qword_t *event) | ||
174 | { | ||
175 | return (!(EFX_DWORD_IS_ALL_ONES(event->dword[0]) | | ||
176 | EFX_DWORD_IS_ALL_ONES(event->dword[1]))); | ||
177 | } | ||
178 | |||
179 | /************************************************************************** | ||
180 | * | ||
181 | * I2C bus - this is a bit-bashing interface using GPIO pins | ||
182 | * Note that it uses the output enables to tristate the outputs | ||
183 | * SDA is the data pin and SCL is the clock | ||
184 | * | ||
185 | ************************************************************************** | ||
186 | */ | ||
187 | static void falcon_setsdascl(struct efx_i2c_interface *i2c) | ||
188 | { | ||
189 | efx_oword_t reg; | ||
190 | |||
191 | falcon_read(i2c->efx, ®, GPIO_CTL_REG_KER); | ||
192 | EFX_SET_OWORD_FIELD(reg, GPIO0_OEN, (i2c->scl ? 0 : 1)); | ||
193 | EFX_SET_OWORD_FIELD(reg, GPIO3_OEN, (i2c->sda ? 0 : 1)); | ||
194 | falcon_write(i2c->efx, ®, GPIO_CTL_REG_KER); | ||
195 | } | ||
196 | |||
197 | static int falcon_getsda(struct efx_i2c_interface *i2c) | ||
198 | { | ||
199 | efx_oword_t reg; | ||
200 | |||
201 | falcon_read(i2c->efx, ®, GPIO_CTL_REG_KER); | ||
202 | return EFX_OWORD_FIELD(reg, GPIO3_IN); | ||
203 | } | ||
204 | |||
205 | static int falcon_getscl(struct efx_i2c_interface *i2c) | ||
206 | { | ||
207 | efx_oword_t reg; | ||
208 | |||
209 | falcon_read(i2c->efx, ®, GPIO_CTL_REG_KER); | ||
210 | return EFX_DWORD_FIELD(reg, GPIO0_IN); | ||
211 | } | ||
212 | |||
213 | static struct efx_i2c_bit_operations falcon_i2c_bit_operations = { | ||
214 | .setsda = falcon_setsdascl, | ||
215 | .setscl = falcon_setsdascl, | ||
216 | .getsda = falcon_getsda, | ||
217 | .getscl = falcon_getscl, | ||
218 | .udelay = 100, | ||
219 | .mdelay = 10, | ||
220 | }; | ||
221 | |||
222 | /************************************************************************** | ||
223 | * | ||
224 | * Falcon special buffer handling | ||
225 | * Special buffers are used for event queues and the TX and RX | ||
226 | * descriptor rings. | ||
227 | * | ||
228 | *************************************************************************/ | ||
229 | |||
230 | /* | ||
231 | * Initialise a Falcon special buffer | ||
232 | * | ||
233 | * This will define a buffer (previously allocated via | ||
234 | * falcon_alloc_special_buffer()) in Falcon's buffer table, allowing | ||
235 | * it to be used for event queues, descriptor rings etc. | ||
236 | */ | ||
237 | static int | ||
238 | falcon_init_special_buffer(struct efx_nic *efx, | ||
239 | struct efx_special_buffer *buffer) | ||
240 | { | ||
241 | efx_qword_t buf_desc; | ||
242 | int index; | ||
243 | dma_addr_t dma_addr; | ||
244 | int i; | ||
245 | |||
246 | EFX_BUG_ON_PARANOID(!buffer->addr); | ||
247 | |||
248 | /* Write buffer descriptors to NIC */ | ||
249 | for (i = 0; i < buffer->entries; i++) { | ||
250 | index = buffer->index + i; | ||
251 | dma_addr = buffer->dma_addr + (i * 4096); | ||
252 | EFX_LOG(efx, "mapping special buffer %d at %llx\n", | ||
253 | index, (unsigned long long)dma_addr); | ||
254 | EFX_POPULATE_QWORD_4(buf_desc, | ||
255 | IP_DAT_BUF_SIZE, IP_DAT_BUF_SIZE_4K, | ||
256 | BUF_ADR_REGION, 0, | ||
257 | BUF_ADR_FBUF, (dma_addr >> 12), | ||
258 | BUF_OWNER_ID_FBUF, 0); | ||
259 | falcon_write_sram(efx, &buf_desc, index); | ||
260 | } | ||
261 | |||
262 | return 0; | ||
263 | } | ||
264 | |||
265 | /* Unmaps a buffer from Falcon and clears the buffer table entries */ | ||
266 | static void | ||
267 | falcon_fini_special_buffer(struct efx_nic *efx, | ||
268 | struct efx_special_buffer *buffer) | ||
269 | { | ||
270 | efx_oword_t buf_tbl_upd; | ||
271 | unsigned int start = buffer->index; | ||
272 | unsigned int end = (buffer->index + buffer->entries - 1); | ||
273 | |||
274 | if (!buffer->entries) | ||
275 | return; | ||
276 | |||
277 | EFX_LOG(efx, "unmapping special buffers %d-%d\n", | ||
278 | buffer->index, buffer->index + buffer->entries - 1); | ||
279 | |||
280 | EFX_POPULATE_OWORD_4(buf_tbl_upd, | ||
281 | BUF_UPD_CMD, 0, | ||
282 | BUF_CLR_CMD, 1, | ||
283 | BUF_CLR_END_ID, end, | ||
284 | BUF_CLR_START_ID, start); | ||
285 | falcon_write(efx, &buf_tbl_upd, BUF_TBL_UPD_REG_KER); | ||
286 | } | ||
287 | |||
288 | /* | ||
289 | * Allocate a new Falcon special buffer | ||
290 | * | ||
291 | * This allocates memory for a new buffer, clears it and allocates a | ||
292 | * new buffer ID range. It does not write into Falcon's buffer table. | ||
293 | * | ||
294 | * This call will allocate 4KB buffers, since Falcon can't use 8KB | ||
295 | * buffers for event queues and descriptor rings. | ||
296 | */ | ||
297 | static int falcon_alloc_special_buffer(struct efx_nic *efx, | ||
298 | struct efx_special_buffer *buffer, | ||
299 | unsigned int len) | ||
300 | { | ||
301 | struct falcon_nic_data *nic_data = efx->nic_data; | ||
302 | |||
303 | len = ALIGN(len, FALCON_BUF_SIZE); | ||
304 | |||
305 | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, | ||
306 | &buffer->dma_addr); | ||
307 | if (!buffer->addr) | ||
308 | return -ENOMEM; | ||
309 | buffer->len = len; | ||
310 | buffer->entries = len / FALCON_BUF_SIZE; | ||
311 | BUG_ON(buffer->dma_addr & (FALCON_BUF_SIZE - 1)); | ||
312 | |||
313 | /* All zeros is a potentially valid event so memset to 0xff */ | ||
314 | memset(buffer->addr, 0xff, len); | ||
315 | |||
316 | /* Select new buffer ID */ | ||
317 | buffer->index = nic_data->next_buffer_table; | ||
318 | nic_data->next_buffer_table += buffer->entries; | ||
319 | |||
320 | EFX_LOG(efx, "allocating special buffers %d-%d at %llx+%x " | ||
321 | "(virt %p phys %lx)\n", buffer->index, | ||
322 | buffer->index + buffer->entries - 1, | ||
323 | (unsigned long long)buffer->dma_addr, len, | ||
324 | buffer->addr, virt_to_phys(buffer->addr)); | ||
325 | |||
326 | return 0; | ||
327 | } | ||
328 | |||
329 | static void falcon_free_special_buffer(struct efx_nic *efx, | ||
330 | struct efx_special_buffer *buffer) | ||
331 | { | ||
332 | if (!buffer->addr) | ||
333 | return; | ||
334 | |||
335 | EFX_LOG(efx, "deallocating special buffers %d-%d at %llx+%x " | ||
336 | "(virt %p phys %lx)\n", buffer->index, | ||
337 | buffer->index + buffer->entries - 1, | ||
338 | (unsigned long long)buffer->dma_addr, buffer->len, | ||
339 | buffer->addr, virt_to_phys(buffer->addr)); | ||
340 | |||
341 | pci_free_consistent(efx->pci_dev, buffer->len, buffer->addr, | ||
342 | buffer->dma_addr); | ||
343 | buffer->addr = NULL; | ||
344 | buffer->entries = 0; | ||
345 | } | ||
346 | |||
347 | /************************************************************************** | ||
348 | * | ||
349 | * Falcon generic buffer handling | ||
350 | * These buffers are used for interrupt status and MAC stats | ||
351 | * | ||
352 | **************************************************************************/ | ||
353 | |||
354 | static int falcon_alloc_buffer(struct efx_nic *efx, | ||
355 | struct efx_buffer *buffer, unsigned int len) | ||
356 | { | ||
357 | buffer->addr = pci_alloc_consistent(efx->pci_dev, len, | ||
358 | &buffer->dma_addr); | ||
359 | if (!buffer->addr) | ||
360 | return -ENOMEM; | ||
361 | buffer->len = len; | ||
362 | memset(buffer->addr, 0, len); | ||
363 | return 0; | ||
364 | } | ||
365 | |||
366 | static void falcon_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer) | ||
367 | { | ||
368 | if (buffer->addr) { | ||
369 | pci_free_consistent(efx->pci_dev, buffer->len, | ||
370 | buffer->addr, buffer->dma_addr); | ||
371 | buffer->addr = NULL; | ||
372 | } | ||
373 | } | ||
374 | |||
375 | /************************************************************************** | ||
376 | * | ||
377 | * Falcon TX path | ||
378 | * | ||
379 | **************************************************************************/ | ||
380 | |||
381 | /* Returns a pointer to the specified transmit descriptor in the TX | ||
382 | * descriptor queue belonging to the specified channel. | ||
383 | */ | ||
384 | static inline efx_qword_t *falcon_tx_desc(struct efx_tx_queue *tx_queue, | ||
385 | unsigned int index) | ||
386 | { | ||
387 | return (((efx_qword_t *) (tx_queue->txd.addr)) + index); | ||
388 | } | ||
389 | |||
390 | /* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */ | ||
391 | static inline void falcon_notify_tx_desc(struct efx_tx_queue *tx_queue) | ||
392 | { | ||
393 | unsigned write_ptr; | ||
394 | efx_dword_t reg; | ||
395 | |||
396 | write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK; | ||
397 | EFX_POPULATE_DWORD_1(reg, TX_DESC_WPTR_DWORD, write_ptr); | ||
398 | falcon_writel_page(tx_queue->efx, ®, | ||
399 | TX_DESC_UPD_REG_KER_DWORD, tx_queue->queue); | ||
400 | } | ||
401 | |||
402 | |||
403 | /* For each entry inserted into the software descriptor ring, create a | ||
404 | * descriptor in the hardware TX descriptor ring (in host memory), and | ||
405 | * write a doorbell. | ||
406 | */ | ||
407 | void falcon_push_buffers(struct efx_tx_queue *tx_queue) | ||
408 | { | ||
409 | |||
410 | struct efx_tx_buffer *buffer; | ||
411 | efx_qword_t *txd; | ||
412 | unsigned write_ptr; | ||
413 | |||
414 | BUG_ON(tx_queue->write_count == tx_queue->insert_count); | ||
415 | |||
416 | do { | ||
417 | write_ptr = tx_queue->write_count & FALCON_TXD_RING_MASK; | ||
418 | buffer = &tx_queue->buffer[write_ptr]; | ||
419 | txd = falcon_tx_desc(tx_queue, write_ptr); | ||
420 | ++tx_queue->write_count; | ||
421 | |||
422 | /* Create TX descriptor ring entry */ | ||
423 | EFX_POPULATE_QWORD_5(*txd, | ||
424 | TX_KER_PORT, 0, | ||
425 | TX_KER_CONT, buffer->continuation, | ||
426 | TX_KER_BYTE_CNT, buffer->len, | ||
427 | TX_KER_BUF_REGION, 0, | ||
428 | TX_KER_BUF_ADR, buffer->dma_addr); | ||
429 | } while (tx_queue->write_count != tx_queue->insert_count); | ||
430 | |||
431 | wmb(); /* Ensure descriptors are written before they are fetched */ | ||
432 | falcon_notify_tx_desc(tx_queue); | ||
433 | } | ||
434 | |||
435 | /* Allocate hardware resources for a TX queue */ | ||
436 | int falcon_probe_tx(struct efx_tx_queue *tx_queue) | ||
437 | { | ||
438 | struct efx_nic *efx = tx_queue->efx; | ||
439 | return falcon_alloc_special_buffer(efx, &tx_queue->txd, | ||
440 | FALCON_TXD_RING_SIZE * | ||
441 | sizeof(efx_qword_t)); | ||
442 | } | ||
443 | |||
444 | int falcon_init_tx(struct efx_tx_queue *tx_queue) | ||
445 | { | ||
446 | efx_oword_t tx_desc_ptr; | ||
447 | struct efx_nic *efx = tx_queue->efx; | ||
448 | int rc; | ||
449 | |||
450 | /* Pin TX descriptor ring */ | ||
451 | rc = falcon_init_special_buffer(efx, &tx_queue->txd); | ||
452 | if (rc) | ||
453 | return rc; | ||
454 | |||
455 | /* Push TX descriptor ring to card */ | ||
456 | EFX_POPULATE_OWORD_10(tx_desc_ptr, | ||
457 | TX_DESCQ_EN, 1, | ||
458 | TX_ISCSI_DDIG_EN, 0, | ||
459 | TX_ISCSI_HDIG_EN, 0, | ||
460 | TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index, | ||
461 | TX_DESCQ_EVQ_ID, tx_queue->channel->evqnum, | ||
462 | TX_DESCQ_OWNER_ID, 0, | ||
463 | TX_DESCQ_LABEL, tx_queue->queue, | ||
464 | TX_DESCQ_SIZE, FALCON_TXD_RING_ORDER, | ||
465 | TX_DESCQ_TYPE, 0, | ||
466 | TX_NON_IP_DROP_DIS_B0, 1); | ||
467 | |||
468 | if (FALCON_REV(efx) >= FALCON_REV_B0) { | ||
469 | int csum = !(efx->net_dev->features & NETIF_F_IP_CSUM); | ||
470 | EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_IP_CHKSM_DIS_B0, csum); | ||
471 | EFX_SET_OWORD_FIELD(tx_desc_ptr, TX_TCP_CHKSM_DIS_B0, csum); | ||
472 | } | ||
473 | |||
474 | falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, | ||
475 | tx_queue->queue); | ||
476 | |||
477 | if (FALCON_REV(efx) < FALCON_REV_B0) { | ||
478 | efx_oword_t reg; | ||
479 | |||
480 | BUG_ON(tx_queue->queue >= 128); /* HW limit */ | ||
481 | |||
482 | falcon_read(efx, ®, TX_CHKSM_CFG_REG_KER_A1); | ||
483 | if (efx->net_dev->features & NETIF_F_IP_CSUM) | ||
484 | clear_bit_le(tx_queue->queue, (void *)®); | ||
485 | else | ||
486 | set_bit_le(tx_queue->queue, (void *)®); | ||
487 | falcon_write(efx, ®, TX_CHKSM_CFG_REG_KER_A1); | ||
488 | } | ||
489 | |||
490 | return 0; | ||
491 | } | ||
492 | |||
493 | static int falcon_flush_tx_queue(struct efx_tx_queue *tx_queue) | ||
494 | { | ||
495 | struct efx_nic *efx = tx_queue->efx; | ||
496 | struct efx_channel *channel = &efx->channel[0]; | ||
497 | efx_oword_t tx_flush_descq; | ||
498 | unsigned int read_ptr, i; | ||
499 | |||
500 | /* Post a flush command */ | ||
501 | EFX_POPULATE_OWORD_2(tx_flush_descq, | ||
502 | TX_FLUSH_DESCQ_CMD, 1, | ||
503 | TX_FLUSH_DESCQ, tx_queue->queue); | ||
504 | falcon_write(efx, &tx_flush_descq, TX_FLUSH_DESCQ_REG_KER); | ||
505 | msleep(FALCON_FLUSH_TIMEOUT); | ||
506 | |||
507 | if (EFX_WORKAROUND_7803(efx)) | ||
508 | return 0; | ||
509 | |||
510 | /* Look for a flush completed event */ | ||
511 | read_ptr = channel->eventq_read_ptr; | ||
512 | for (i = 0; i < FALCON_EVQ_SIZE; ++i) { | ||
513 | efx_qword_t *event = falcon_event(channel, read_ptr); | ||
514 | int ev_code, ev_sub_code, ev_queue; | ||
515 | if (!falcon_event_present(event)) | ||
516 | break; | ||
517 | |||
518 | ev_code = EFX_QWORD_FIELD(*event, EV_CODE); | ||
519 | ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE); | ||
520 | ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_TX_DESCQ_ID); | ||
521 | if ((ev_sub_code == TX_DESCQ_FLS_DONE_EV_DECODE) && | ||
522 | (ev_queue == tx_queue->queue)) { | ||
523 | EFX_LOG(efx, "tx queue %d flush command succesful\n", | ||
524 | tx_queue->queue); | ||
525 | return 0; | ||
526 | } | ||
527 | |||
528 | read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK; | ||
529 | } | ||
530 | |||
531 | if (EFX_WORKAROUND_11557(efx)) { | ||
532 | efx_oword_t reg; | ||
533 | int enabled; | ||
534 | |||
535 | falcon_read_table(efx, ®, efx->type->txd_ptr_tbl_base, | ||
536 | tx_queue->queue); | ||
537 | enabled = EFX_OWORD_FIELD(reg, TX_DESCQ_EN); | ||
538 | if (!enabled) { | ||
539 | EFX_LOG(efx, "tx queue %d disabled without a " | ||
540 | "flush event seen\n", tx_queue->queue); | ||
541 | return 0; | ||
542 | } | ||
543 | } | ||
544 | |||
545 | EFX_ERR(efx, "tx queue %d flush command timed out\n", tx_queue->queue); | ||
546 | return -ETIMEDOUT; | ||
547 | } | ||
548 | |||
549 | void falcon_fini_tx(struct efx_tx_queue *tx_queue) | ||
550 | { | ||
551 | struct efx_nic *efx = tx_queue->efx; | ||
552 | efx_oword_t tx_desc_ptr; | ||
553 | |||
554 | /* Stop the hardware using the queue */ | ||
555 | if (falcon_flush_tx_queue(tx_queue)) | ||
556 | EFX_ERR(efx, "failed to flush tx queue %d\n", tx_queue->queue); | ||
557 | |||
558 | /* Remove TX descriptor ring from card */ | ||
559 | EFX_ZERO_OWORD(tx_desc_ptr); | ||
560 | falcon_write_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base, | ||
561 | tx_queue->queue); | ||
562 | |||
563 | /* Unpin TX descriptor ring */ | ||
564 | falcon_fini_special_buffer(efx, &tx_queue->txd); | ||
565 | } | ||
566 | |||
567 | /* Free buffers backing TX queue */ | ||
568 | void falcon_remove_tx(struct efx_tx_queue *tx_queue) | ||
569 | { | ||
570 | falcon_free_special_buffer(tx_queue->efx, &tx_queue->txd); | ||
571 | } | ||
572 | |||
573 | /************************************************************************** | ||
574 | * | ||
575 | * Falcon RX path | ||
576 | * | ||
577 | **************************************************************************/ | ||
578 | |||
579 | /* Returns a pointer to the specified descriptor in the RX descriptor queue */ | ||
580 | static inline efx_qword_t *falcon_rx_desc(struct efx_rx_queue *rx_queue, | ||
581 | unsigned int index) | ||
582 | { | ||
583 | return (((efx_qword_t *) (rx_queue->rxd.addr)) + index); | ||
584 | } | ||
585 | |||
586 | /* This creates an entry in the RX descriptor queue */ | ||
587 | static inline void falcon_build_rx_desc(struct efx_rx_queue *rx_queue, | ||
588 | unsigned index) | ||
589 | { | ||
590 | struct efx_rx_buffer *rx_buf; | ||
591 | efx_qword_t *rxd; | ||
592 | |||
593 | rxd = falcon_rx_desc(rx_queue, index); | ||
594 | rx_buf = efx_rx_buffer(rx_queue, index); | ||
595 | EFX_POPULATE_QWORD_3(*rxd, | ||
596 | RX_KER_BUF_SIZE, | ||
597 | rx_buf->len - | ||
598 | rx_queue->efx->type->rx_buffer_padding, | ||
599 | RX_KER_BUF_REGION, 0, | ||
600 | RX_KER_BUF_ADR, rx_buf->dma_addr); | ||
601 | } | ||
602 | |||
603 | /* This writes to the RX_DESC_WPTR register for the specified receive | ||
604 | * descriptor ring. | ||
605 | */ | ||
606 | void falcon_notify_rx_desc(struct efx_rx_queue *rx_queue) | ||
607 | { | ||
608 | efx_dword_t reg; | ||
609 | unsigned write_ptr; | ||
610 | |||
611 | while (rx_queue->notified_count != rx_queue->added_count) { | ||
612 | falcon_build_rx_desc(rx_queue, | ||
613 | rx_queue->notified_count & | ||
614 | FALCON_RXD_RING_MASK); | ||
615 | ++rx_queue->notified_count; | ||
616 | } | ||
617 | |||
618 | wmb(); | ||
619 | write_ptr = rx_queue->added_count & FALCON_RXD_RING_MASK; | ||
620 | EFX_POPULATE_DWORD_1(reg, RX_DESC_WPTR_DWORD, write_ptr); | ||
621 | falcon_writel_page(rx_queue->efx, ®, | ||
622 | RX_DESC_UPD_REG_KER_DWORD, rx_queue->queue); | ||
623 | } | ||
624 | |||
625 | int falcon_probe_rx(struct efx_rx_queue *rx_queue) | ||
626 | { | ||
627 | struct efx_nic *efx = rx_queue->efx; | ||
628 | return falcon_alloc_special_buffer(efx, &rx_queue->rxd, | ||
629 | FALCON_RXD_RING_SIZE * | ||
630 | sizeof(efx_qword_t)); | ||
631 | } | ||
632 | |||
633 | int falcon_init_rx(struct efx_rx_queue *rx_queue) | ||
634 | { | ||
635 | efx_oword_t rx_desc_ptr; | ||
636 | struct efx_nic *efx = rx_queue->efx; | ||
637 | int rc; | ||
638 | int is_b0 = FALCON_REV(efx) >= FALCON_REV_B0; | ||
639 | int iscsi_digest_en = is_b0; | ||
640 | |||
641 | EFX_LOG(efx, "RX queue %d ring in special buffers %d-%d\n", | ||
642 | rx_queue->queue, rx_queue->rxd.index, | ||
643 | rx_queue->rxd.index + rx_queue->rxd.entries - 1); | ||
644 | |||
645 | /* Pin RX descriptor ring */ | ||
646 | rc = falcon_init_special_buffer(efx, &rx_queue->rxd); | ||
647 | if (rc) | ||
648 | return rc; | ||
649 | |||
650 | /* Push RX descriptor ring to card */ | ||
651 | EFX_POPULATE_OWORD_10(rx_desc_ptr, | ||
652 | RX_ISCSI_DDIG_EN, iscsi_digest_en, | ||
653 | RX_ISCSI_HDIG_EN, iscsi_digest_en, | ||
654 | RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index, | ||
655 | RX_DESCQ_EVQ_ID, rx_queue->channel->evqnum, | ||
656 | RX_DESCQ_OWNER_ID, 0, | ||
657 | RX_DESCQ_LABEL, rx_queue->queue, | ||
658 | RX_DESCQ_SIZE, FALCON_RXD_RING_ORDER, | ||
659 | RX_DESCQ_TYPE, 0 /* kernel queue */ , | ||
660 | /* For >=B0 this is scatter so disable */ | ||
661 | RX_DESCQ_JUMBO, !is_b0, | ||
662 | RX_DESCQ_EN, 1); | ||
663 | falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | ||
664 | rx_queue->queue); | ||
665 | return 0; | ||
666 | } | ||
667 | |||
668 | static int falcon_flush_rx_queue(struct efx_rx_queue *rx_queue) | ||
669 | { | ||
670 | struct efx_nic *efx = rx_queue->efx; | ||
671 | struct efx_channel *channel = &efx->channel[0]; | ||
672 | unsigned int read_ptr, i; | ||
673 | efx_oword_t rx_flush_descq; | ||
674 | |||
675 | /* Post a flush command */ | ||
676 | EFX_POPULATE_OWORD_2(rx_flush_descq, | ||
677 | RX_FLUSH_DESCQ_CMD, 1, | ||
678 | RX_FLUSH_DESCQ, rx_queue->queue); | ||
679 | falcon_write(efx, &rx_flush_descq, RX_FLUSH_DESCQ_REG_KER); | ||
680 | msleep(FALCON_FLUSH_TIMEOUT); | ||
681 | |||
682 | if (EFX_WORKAROUND_7803(efx)) | ||
683 | return 0; | ||
684 | |||
685 | /* Look for a flush completed event */ | ||
686 | read_ptr = channel->eventq_read_ptr; | ||
687 | for (i = 0; i < FALCON_EVQ_SIZE; ++i) { | ||
688 | efx_qword_t *event = falcon_event(channel, read_ptr); | ||
689 | int ev_code, ev_sub_code, ev_queue, ev_failed; | ||
690 | if (!falcon_event_present(event)) | ||
691 | break; | ||
692 | |||
693 | ev_code = EFX_QWORD_FIELD(*event, EV_CODE); | ||
694 | ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE); | ||
695 | ev_queue = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_DESCQ_ID); | ||
696 | ev_failed = EFX_QWORD_FIELD(*event, DRIVER_EV_RX_FLUSH_FAIL); | ||
697 | |||
698 | if ((ev_sub_code == RX_DESCQ_FLS_DONE_EV_DECODE) && | ||
699 | (ev_queue == rx_queue->queue)) { | ||
700 | if (ev_failed) { | ||
701 | EFX_INFO(efx, "rx queue %d flush command " | ||
702 | "failed\n", rx_queue->queue); | ||
703 | return -EAGAIN; | ||
704 | } else { | ||
705 | EFX_LOG(efx, "rx queue %d flush command " | ||
706 | "succesful\n", rx_queue->queue); | ||
707 | return 0; | ||
708 | } | ||
709 | } | ||
710 | |||
711 | read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK; | ||
712 | } | ||
713 | |||
714 | if (EFX_WORKAROUND_11557(efx)) { | ||
715 | efx_oword_t reg; | ||
716 | int enabled; | ||
717 | |||
718 | falcon_read_table(efx, ®, efx->type->rxd_ptr_tbl_base, | ||
719 | rx_queue->queue); | ||
720 | enabled = EFX_OWORD_FIELD(reg, RX_DESCQ_EN); | ||
721 | if (!enabled) { | ||
722 | EFX_LOG(efx, "rx queue %d disabled without a " | ||
723 | "flush event seen\n", rx_queue->queue); | ||
724 | return 0; | ||
725 | } | ||
726 | } | ||
727 | |||
728 | EFX_ERR(efx, "rx queue %d flush command timed out\n", rx_queue->queue); | ||
729 | return -ETIMEDOUT; | ||
730 | } | ||
731 | |||
732 | void falcon_fini_rx(struct efx_rx_queue *rx_queue) | ||
733 | { | ||
734 | efx_oword_t rx_desc_ptr; | ||
735 | struct efx_nic *efx = rx_queue->efx; | ||
736 | int i, rc; | ||
737 | |||
738 | /* Try and flush the rx queue. This may need to be repeated */ | ||
739 | for (i = 0; i < 5; i++) { | ||
740 | rc = falcon_flush_rx_queue(rx_queue); | ||
741 | if (rc == -EAGAIN) | ||
742 | continue; | ||
743 | break; | ||
744 | } | ||
745 | if (rc) | ||
746 | EFX_ERR(efx, "failed to flush rx queue %d\n", rx_queue->queue); | ||
747 | |||
748 | /* Remove RX descriptor ring from card */ | ||
749 | EFX_ZERO_OWORD(rx_desc_ptr); | ||
750 | falcon_write_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base, | ||
751 | rx_queue->queue); | ||
752 | |||
753 | /* Unpin RX descriptor ring */ | ||
754 | falcon_fini_special_buffer(efx, &rx_queue->rxd); | ||
755 | } | ||
756 | |||
757 | /* Free buffers backing RX queue */ | ||
758 | void falcon_remove_rx(struct efx_rx_queue *rx_queue) | ||
759 | { | ||
760 | falcon_free_special_buffer(rx_queue->efx, &rx_queue->rxd); | ||
761 | } | ||
762 | |||
763 | /************************************************************************** | ||
764 | * | ||
765 | * Falcon event queue processing | ||
766 | * Event queues are processed by per-channel tasklets. | ||
767 | * | ||
768 | **************************************************************************/ | ||
769 | |||
770 | /* Update a channel's event queue's read pointer (RPTR) register | ||
771 | * | ||
772 | * This writes the EVQ_RPTR_REG register for the specified channel's | ||
773 | * event queue. | ||
774 | * | ||
775 | * Note that EVQ_RPTR_REG contains the index of the "last read" event, | ||
776 | * whereas channel->eventq_read_ptr contains the index of the "next to | ||
777 | * read" event. | ||
778 | */ | ||
779 | void falcon_eventq_read_ack(struct efx_channel *channel) | ||
780 | { | ||
781 | efx_dword_t reg; | ||
782 | struct efx_nic *efx = channel->efx; | ||
783 | |||
784 | EFX_POPULATE_DWORD_1(reg, EVQ_RPTR_DWORD, channel->eventq_read_ptr); | ||
785 | falcon_writel_table(efx, ®, efx->type->evq_rptr_tbl_base, | ||
786 | channel->evqnum); | ||
787 | } | ||
788 | |||
789 | /* Use HW to insert a SW defined event */ | ||
790 | void falcon_generate_event(struct efx_channel *channel, efx_qword_t *event) | ||
791 | { | ||
792 | efx_oword_t drv_ev_reg; | ||
793 | |||
794 | EFX_POPULATE_OWORD_2(drv_ev_reg, | ||
795 | DRV_EV_QID, channel->evqnum, | ||
796 | DRV_EV_DATA, | ||
797 | EFX_QWORD_FIELD64(*event, WHOLE_EVENT)); | ||
798 | falcon_write(channel->efx, &drv_ev_reg, DRV_EV_REG_KER); | ||
799 | } | ||
800 | |||
801 | /* Handle a transmit completion event | ||
802 | * | ||
803 | * Falcon batches TX completion events; the message we receive is of | ||
804 | * the form "complete all TX events up to this index". | ||
805 | */ | ||
806 | static inline void falcon_handle_tx_event(struct efx_channel *channel, | ||
807 | efx_qword_t *event) | ||
808 | { | ||
809 | unsigned int tx_ev_desc_ptr; | ||
810 | unsigned int tx_ev_q_label; | ||
811 | struct efx_tx_queue *tx_queue; | ||
812 | struct efx_nic *efx = channel->efx; | ||
813 | |||
814 | if (likely(EFX_QWORD_FIELD(*event, TX_EV_COMP))) { | ||
815 | /* Transmit completion */ | ||
816 | tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, TX_EV_DESC_PTR); | ||
817 | tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL); | ||
818 | tx_queue = &efx->tx_queue[tx_ev_q_label]; | ||
819 | efx_xmit_done(tx_queue, tx_ev_desc_ptr); | ||
820 | } else if (EFX_QWORD_FIELD(*event, TX_EV_WQ_FF_FULL)) { | ||
821 | /* Rewrite the FIFO write pointer */ | ||
822 | tx_ev_q_label = EFX_QWORD_FIELD(*event, TX_EV_Q_LABEL); | ||
823 | tx_queue = &efx->tx_queue[tx_ev_q_label]; | ||
824 | |||
825 | if (NET_DEV_REGISTERED(efx)) | ||
826 | netif_tx_lock(efx->net_dev); | ||
827 | falcon_notify_tx_desc(tx_queue); | ||
828 | if (NET_DEV_REGISTERED(efx)) | ||
829 | netif_tx_unlock(efx->net_dev); | ||
830 | } else if (EFX_QWORD_FIELD(*event, TX_EV_PKT_ERR) && | ||
831 | EFX_WORKAROUND_10727(efx)) { | ||
832 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); | ||
833 | } else { | ||
834 | EFX_ERR(efx, "channel %d unexpected TX event " | ||
835 | EFX_QWORD_FMT"\n", channel->channel, | ||
836 | EFX_QWORD_VAL(*event)); | ||
837 | } | ||
838 | } | ||
839 | |||
840 | /* Check received packet's destination MAC address. */ | ||
841 | static int check_dest_mac(struct efx_rx_queue *rx_queue, | ||
842 | const efx_qword_t *event) | ||
843 | { | ||
844 | struct efx_rx_buffer *rx_buf; | ||
845 | struct efx_nic *efx = rx_queue->efx; | ||
846 | int rx_ev_desc_ptr; | ||
847 | struct ethhdr *eh; | ||
848 | |||
849 | if (efx->promiscuous) | ||
850 | return 1; | ||
851 | |||
852 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR); | ||
853 | rx_buf = efx_rx_buffer(rx_queue, rx_ev_desc_ptr); | ||
854 | eh = (struct ethhdr *)rx_buf->data; | ||
855 | if (memcmp(eh->h_dest, efx->net_dev->dev_addr, ETH_ALEN)) | ||
856 | return 0; | ||
857 | return 1; | ||
858 | } | ||
859 | |||
860 | /* Detect errors included in the rx_evt_pkt_ok bit. */ | ||
861 | static void falcon_handle_rx_not_ok(struct efx_rx_queue *rx_queue, | ||
862 | const efx_qword_t *event, | ||
863 | unsigned *rx_ev_pkt_ok, | ||
864 | int *discard, int byte_count) | ||
865 | { | ||
866 | struct efx_nic *efx = rx_queue->efx; | ||
867 | unsigned rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err; | ||
868 | unsigned rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err; | ||
869 | unsigned rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc; | ||
870 | unsigned rx_ev_pkt_type, rx_ev_other_err, rx_ev_pause_frm; | ||
871 | unsigned rx_ev_ip_frag_err, rx_ev_hdr_type, rx_ev_mcast_pkt; | ||
872 | int snap, non_ip; | ||
873 | |||
874 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE); | ||
875 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT); | ||
876 | rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, RX_EV_TOBE_DISC); | ||
877 | rx_ev_pkt_type = EFX_QWORD_FIELD(*event, RX_EV_PKT_TYPE); | ||
878 | rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event, | ||
879 | RX_EV_BUF_OWNER_ID_ERR); | ||
880 | rx_ev_ip_frag_err = EFX_QWORD_FIELD(*event, RX_EV_IF_FRAG_ERR); | ||
881 | rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event, | ||
882 | RX_EV_IP_HDR_CHKSUM_ERR); | ||
883 | rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event, | ||
884 | RX_EV_TCP_UDP_CHKSUM_ERR); | ||
885 | rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, RX_EV_ETH_CRC_ERR); | ||
886 | rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, RX_EV_FRM_TRUNC); | ||
887 | rx_ev_drib_nib = ((FALCON_REV(efx) >= FALCON_REV_B0) ? | ||
888 | 0 : EFX_QWORD_FIELD(*event, RX_EV_DRIB_NIB)); | ||
889 | rx_ev_pause_frm = EFX_QWORD_FIELD(*event, RX_EV_PAUSE_FRM_ERR); | ||
890 | |||
891 | /* Every error apart from tobe_disc and pause_frm */ | ||
892 | rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err | | ||
893 | rx_ev_buf_owner_id_err | rx_ev_eth_crc_err | | ||
894 | rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err); | ||
895 | |||
896 | snap = (rx_ev_pkt_type == RX_EV_PKT_TYPE_LLC_DECODE) || | ||
897 | (rx_ev_pkt_type == RX_EV_PKT_TYPE_VLAN_LLC_DECODE); | ||
898 | non_ip = (rx_ev_hdr_type == RX_EV_HDR_TYPE_NON_IP_DECODE); | ||
899 | |||
900 | /* SFC bug 5475/8970: The Falcon XMAC incorrectly calculates the | ||
901 | * length field of an LLC frame, which sets TOBE_DISC. We could set | ||
902 | * PASS_LEN_ERR, but we want the MAC to filter out short frames (to | ||
903 | * protect the RX block). | ||
904 | * | ||
905 | * bug5475 - LLC/SNAP: Falcon identifies SNAP packets. | ||
906 | * bug8970 - LLC/noSNAP: Falcon does not provide an LLC flag. | ||
907 | * LLC can't encapsulate IP, so by definition | ||
908 | * these packets are NON_IP. | ||
909 | * | ||
910 | * Unicast mismatch will also cause TOBE_DISC, so the driver needs | ||
911 | * to check this. | ||
912 | */ | ||
913 | if (EFX_WORKAROUND_5475(efx) && rx_ev_tobe_disc && (snap || non_ip)) { | ||
914 | /* If all the other flags are zero then we can state the | ||
915 | * entire packet is ok, which will flag to the kernel not | ||
916 | * to recalculate checksums. | ||
917 | */ | ||
918 | if (!(non_ip | rx_ev_other_err | rx_ev_pause_frm)) | ||
919 | *rx_ev_pkt_ok = 1; | ||
920 | |||
921 | rx_ev_tobe_disc = 0; | ||
922 | |||
923 | /* TOBE_DISC is set for unicast mismatch. But given that | ||
924 | * we can't trust TOBE_DISC here, we must validate the dest | ||
925 | * MAC address ourselves. | ||
926 | */ | ||
927 | if (!rx_ev_mcast_pkt && !check_dest_mac(rx_queue, event)) | ||
928 | rx_ev_tobe_disc = 1; | ||
929 | } | ||
930 | |||
931 | /* Count errors that are not in MAC stats. */ | ||
932 | if (rx_ev_frm_trunc) | ||
933 | ++rx_queue->channel->n_rx_frm_trunc; | ||
934 | else if (rx_ev_tobe_disc) | ||
935 | ++rx_queue->channel->n_rx_tobe_disc; | ||
936 | else if (rx_ev_ip_hdr_chksum_err) | ||
937 | ++rx_queue->channel->n_rx_ip_hdr_chksum_err; | ||
938 | else if (rx_ev_tcp_udp_chksum_err) | ||
939 | ++rx_queue->channel->n_rx_tcp_udp_chksum_err; | ||
940 | if (rx_ev_ip_frag_err) | ||
941 | ++rx_queue->channel->n_rx_ip_frag_err; | ||
942 | |||
943 | /* The frame must be discarded if any of these are true. */ | ||
944 | *discard = (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib | | ||
945 | rx_ev_tobe_disc | rx_ev_pause_frm); | ||
946 | |||
947 | /* TOBE_DISC is expected on unicast mismatches; don't print out an | ||
948 | * error message. FRM_TRUNC indicates RXDP dropped the packet due | ||
949 | * to a FIFO overflow. | ||
950 | */ | ||
951 | #ifdef EFX_ENABLE_DEBUG | ||
952 | if (rx_ev_other_err) { | ||
953 | EFX_INFO_RL(efx, " RX queue %d unexpected RX event " | ||
954 | EFX_QWORD_FMT "%s%s%s%s%s%s%s%s%s\n", | ||
955 | rx_queue->queue, EFX_QWORD_VAL(*event), | ||
956 | rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "", | ||
957 | rx_ev_ip_hdr_chksum_err ? | ||
958 | " [IP_HDR_CHKSUM_ERR]" : "", | ||
959 | rx_ev_tcp_udp_chksum_err ? | ||
960 | " [TCP_UDP_CHKSUM_ERR]" : "", | ||
961 | rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "", | ||
962 | rx_ev_frm_trunc ? " [FRM_TRUNC]" : "", | ||
963 | rx_ev_drib_nib ? " [DRIB_NIB]" : "", | ||
964 | rx_ev_tobe_disc ? " [TOBE_DISC]" : "", | ||
965 | rx_ev_pause_frm ? " [PAUSE]" : "", | ||
966 | snap ? " [SNAP/LLC]" : ""); | ||
967 | } | ||
968 | #endif | ||
969 | |||
970 | if (unlikely(rx_ev_eth_crc_err && EFX_WORKAROUND_10750(efx) && | ||
971 | efx->phy_type == PHY_TYPE_10XPRESS)) | ||
972 | tenxpress_crc_err(efx); | ||
973 | } | ||
974 | |||
975 | /* Handle receive events that are not in-order. */ | ||
976 | static void falcon_handle_rx_bad_index(struct efx_rx_queue *rx_queue, | ||
977 | unsigned index) | ||
978 | { | ||
979 | struct efx_nic *efx = rx_queue->efx; | ||
980 | unsigned expected, dropped; | ||
981 | |||
982 | expected = rx_queue->removed_count & FALCON_RXD_RING_MASK; | ||
983 | dropped = ((index + FALCON_RXD_RING_SIZE - expected) & | ||
984 | FALCON_RXD_RING_MASK); | ||
985 | EFX_INFO(efx, "dropped %d events (index=%d expected=%d)\n", | ||
986 | dropped, index, expected); | ||
987 | |||
988 | efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ? | ||
989 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); | ||
990 | } | ||
991 | |||
992 | /* Handle a packet received event | ||
993 | * | ||
994 | * Falcon silicon gives a "discard" flag if it's a unicast packet with the | ||
995 | * wrong destination address | ||
996 | * Also "is multicast" and "matches multicast filter" flags can be used to | ||
997 | * discard non-matching multicast packets. | ||
998 | */ | ||
999 | static inline int falcon_handle_rx_event(struct efx_channel *channel, | ||
1000 | const efx_qword_t *event) | ||
1001 | { | ||
1002 | unsigned int rx_ev_q_label, rx_ev_desc_ptr, rx_ev_byte_cnt; | ||
1003 | unsigned int rx_ev_pkt_ok, rx_ev_hdr_type, rx_ev_mcast_pkt; | ||
1004 | unsigned expected_ptr; | ||
1005 | int discard = 0, checksummed; | ||
1006 | struct efx_rx_queue *rx_queue; | ||
1007 | struct efx_nic *efx = channel->efx; | ||
1008 | |||
1009 | /* Basic packet information */ | ||
1010 | rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, RX_EV_BYTE_CNT); | ||
1011 | rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, RX_EV_PKT_OK); | ||
1012 | rx_ev_hdr_type = EFX_QWORD_FIELD(*event, RX_EV_HDR_TYPE); | ||
1013 | WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_JUMBO_CONT)); | ||
1014 | WARN_ON(EFX_QWORD_FIELD(*event, RX_EV_SOP) != 1); | ||
1015 | |||
1016 | rx_ev_q_label = EFX_QWORD_FIELD(*event, RX_EV_Q_LABEL); | ||
1017 | rx_queue = &efx->rx_queue[rx_ev_q_label]; | ||
1018 | |||
1019 | rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, RX_EV_DESC_PTR); | ||
1020 | expected_ptr = rx_queue->removed_count & FALCON_RXD_RING_MASK; | ||
1021 | if (unlikely(rx_ev_desc_ptr != expected_ptr)) { | ||
1022 | falcon_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr); | ||
1023 | return rx_ev_q_label; | ||
1024 | } | ||
1025 | |||
1026 | if (likely(rx_ev_pkt_ok)) { | ||
1027 | /* If packet is marked as OK and packet type is TCP/IPv4 or | ||
1028 | * UDP/IPv4, then we can rely on the hardware checksum. | ||
1029 | */ | ||
1030 | checksummed = RX_EV_HDR_TYPE_HAS_CHECKSUMS(rx_ev_hdr_type); | ||
1031 | } else { | ||
1032 | falcon_handle_rx_not_ok(rx_queue, event, &rx_ev_pkt_ok, | ||
1033 | &discard, rx_ev_byte_cnt); | ||
1034 | checksummed = 0; | ||
1035 | } | ||
1036 | |||
1037 | /* Detect multicast packets that didn't match the filter */ | ||
1038 | rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, RX_EV_MCAST_PKT); | ||
1039 | if (rx_ev_mcast_pkt) { | ||
1040 | unsigned int rx_ev_mcast_hash_match = | ||
1041 | EFX_QWORD_FIELD(*event, RX_EV_MCAST_HASH_MATCH); | ||
1042 | |||
1043 | if (unlikely(!rx_ev_mcast_hash_match)) | ||
1044 | discard = 1; | ||
1045 | } | ||
1046 | |||
1047 | /* Handle received packet */ | ||
1048 | efx_rx_packet(rx_queue, rx_ev_desc_ptr, rx_ev_byte_cnt, | ||
1049 | checksummed, discard); | ||
1050 | |||
1051 | return rx_ev_q_label; | ||
1052 | } | ||
1053 | |||
1054 | /* Global events are basically PHY events */ | ||
1055 | static void falcon_handle_global_event(struct efx_channel *channel, | ||
1056 | efx_qword_t *event) | ||
1057 | { | ||
1058 | struct efx_nic *efx = channel->efx; | ||
1059 | int is_phy_event = 0, handled = 0; | ||
1060 | |||
1061 | /* Check for interrupt on either port. Some boards have a | ||
1062 | * single PHY wired to the interrupt line for port 1. */ | ||
1063 | if (EFX_QWORD_FIELD(*event, G_PHY0_INTR) || | ||
1064 | EFX_QWORD_FIELD(*event, G_PHY1_INTR) || | ||
1065 | EFX_QWORD_FIELD(*event, XG_PHY_INTR)) | ||
1066 | is_phy_event = 1; | ||
1067 | |||
1068 | if ((FALCON_REV(efx) >= FALCON_REV_B0) && | ||
1069 | EFX_OWORD_FIELD(*event, XG_MNT_INTR_B0)) | ||
1070 | is_phy_event = 1; | ||
1071 | |||
1072 | if (is_phy_event) { | ||
1073 | efx->phy_op->clear_interrupt(efx); | ||
1074 | queue_work(efx->workqueue, &efx->reconfigure_work); | ||
1075 | handled = 1; | ||
1076 | } | ||
1077 | |||
1078 | if (EFX_QWORD_FIELD_VER(efx, *event, RX_RECOVERY)) { | ||
1079 | EFX_ERR(efx, "channel %d seen global RX_RESET " | ||
1080 | "event. Resetting.\n", channel->channel); | ||
1081 | |||
1082 | atomic_inc(&efx->rx_reset); | ||
1083 | efx_schedule_reset(efx, EFX_WORKAROUND_6555(efx) ? | ||
1084 | RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE); | ||
1085 | handled = 1; | ||
1086 | } | ||
1087 | |||
1088 | if (!handled) | ||
1089 | EFX_ERR(efx, "channel %d unknown global event " | ||
1090 | EFX_QWORD_FMT "\n", channel->channel, | ||
1091 | EFX_QWORD_VAL(*event)); | ||
1092 | } | ||
1093 | |||
1094 | static void falcon_handle_driver_event(struct efx_channel *channel, | ||
1095 | efx_qword_t *event) | ||
1096 | { | ||
1097 | struct efx_nic *efx = channel->efx; | ||
1098 | unsigned int ev_sub_code; | ||
1099 | unsigned int ev_sub_data; | ||
1100 | |||
1101 | ev_sub_code = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_CODE); | ||
1102 | ev_sub_data = EFX_QWORD_FIELD(*event, DRIVER_EV_SUB_DATA); | ||
1103 | |||
1104 | switch (ev_sub_code) { | ||
1105 | case TX_DESCQ_FLS_DONE_EV_DECODE: | ||
1106 | EFX_TRACE(efx, "channel %d TXQ %d flushed\n", | ||
1107 | channel->channel, ev_sub_data); | ||
1108 | break; | ||
1109 | case RX_DESCQ_FLS_DONE_EV_DECODE: | ||
1110 | EFX_TRACE(efx, "channel %d RXQ %d flushed\n", | ||
1111 | channel->channel, ev_sub_data); | ||
1112 | break; | ||
1113 | case EVQ_INIT_DONE_EV_DECODE: | ||
1114 | EFX_LOG(efx, "channel %d EVQ %d initialised\n", | ||
1115 | channel->channel, ev_sub_data); | ||
1116 | break; | ||
1117 | case SRM_UPD_DONE_EV_DECODE: | ||
1118 | EFX_TRACE(efx, "channel %d SRAM update done\n", | ||
1119 | channel->channel); | ||
1120 | break; | ||
1121 | case WAKE_UP_EV_DECODE: | ||
1122 | EFX_TRACE(efx, "channel %d RXQ %d wakeup event\n", | ||
1123 | channel->channel, ev_sub_data); | ||
1124 | break; | ||
1125 | case TIMER_EV_DECODE: | ||
1126 | EFX_TRACE(efx, "channel %d RX queue %d timer expired\n", | ||
1127 | channel->channel, ev_sub_data); | ||
1128 | break; | ||
1129 | case RX_RECOVERY_EV_DECODE: | ||
1130 | EFX_ERR(efx, "channel %d seen DRIVER RX_RESET event. " | ||
1131 | "Resetting.\n", channel->channel); | ||
1132 | efx_schedule_reset(efx, | ||
1133 | EFX_WORKAROUND_6555(efx) ? | ||
1134 | RESET_TYPE_RX_RECOVERY : | ||
1135 | RESET_TYPE_DISABLE); | ||
1136 | break; | ||
1137 | case RX_DSC_ERROR_EV_DECODE: | ||
1138 | EFX_ERR(efx, "RX DMA Q %d reports descriptor fetch error." | ||
1139 | " RX Q %d is disabled.\n", ev_sub_data, ev_sub_data); | ||
1140 | efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH); | ||
1141 | break; | ||
1142 | case TX_DSC_ERROR_EV_DECODE: | ||
1143 | EFX_ERR(efx, "TX DMA Q %d reports descriptor fetch error." | ||
1144 | " TX Q %d is disabled.\n", ev_sub_data, ev_sub_data); | ||
1145 | efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH); | ||
1146 | break; | ||
1147 | default: | ||
1148 | EFX_TRACE(efx, "channel %d unknown driver event code %d " | ||
1149 | "data %04x\n", channel->channel, ev_sub_code, | ||
1150 | ev_sub_data); | ||
1151 | break; | ||
1152 | } | ||
1153 | } | ||
1154 | |||
1155 | int falcon_process_eventq(struct efx_channel *channel, int *rx_quota) | ||
1156 | { | ||
1157 | unsigned int read_ptr; | ||
1158 | efx_qword_t event, *p_event; | ||
1159 | int ev_code; | ||
1160 | int rxq; | ||
1161 | int rxdmaqs = 0; | ||
1162 | |||
1163 | read_ptr = channel->eventq_read_ptr; | ||
1164 | |||
1165 | do { | ||
1166 | p_event = falcon_event(channel, read_ptr); | ||
1167 | event = *p_event; | ||
1168 | |||
1169 | if (!falcon_event_present(&event)) | ||
1170 | /* End of events */ | ||
1171 | break; | ||
1172 | |||
1173 | EFX_TRACE(channel->efx, "channel %d event is "EFX_QWORD_FMT"\n", | ||
1174 | channel->channel, EFX_QWORD_VAL(event)); | ||
1175 | |||
1176 | /* Clear this event by marking it all ones */ | ||
1177 | EFX_SET_QWORD(*p_event); | ||
1178 | |||
1179 | ev_code = EFX_QWORD_FIELD(event, EV_CODE); | ||
1180 | |||
1181 | switch (ev_code) { | ||
1182 | case RX_IP_EV_DECODE: | ||
1183 | rxq = falcon_handle_rx_event(channel, &event); | ||
1184 | rxdmaqs |= (1 << rxq); | ||
1185 | (*rx_quota)--; | ||
1186 | break; | ||
1187 | case TX_IP_EV_DECODE: | ||
1188 | falcon_handle_tx_event(channel, &event); | ||
1189 | break; | ||
1190 | case DRV_GEN_EV_DECODE: | ||
1191 | channel->eventq_magic | ||
1192 | = EFX_QWORD_FIELD(event, EVQ_MAGIC); | ||
1193 | EFX_LOG(channel->efx, "channel %d received generated " | ||
1194 | "event "EFX_QWORD_FMT"\n", channel->channel, | ||
1195 | EFX_QWORD_VAL(event)); | ||
1196 | break; | ||
1197 | case GLOBAL_EV_DECODE: | ||
1198 | falcon_handle_global_event(channel, &event); | ||
1199 | break; | ||
1200 | case DRIVER_EV_DECODE: | ||
1201 | falcon_handle_driver_event(channel, &event); | ||
1202 | break; | ||
1203 | default: | ||
1204 | EFX_ERR(channel->efx, "channel %d unknown event type %d" | ||
1205 | " (data " EFX_QWORD_FMT ")\n", channel->channel, | ||
1206 | ev_code, EFX_QWORD_VAL(event)); | ||
1207 | } | ||
1208 | |||
1209 | /* Increment read pointer */ | ||
1210 | read_ptr = (read_ptr + 1) & FALCON_EVQ_MASK; | ||
1211 | |||
1212 | } while (*rx_quota); | ||
1213 | |||
1214 | channel->eventq_read_ptr = read_ptr; | ||
1215 | return rxdmaqs; | ||
1216 | } | ||
1217 | |||
1218 | void falcon_set_int_moderation(struct efx_channel *channel) | ||
1219 | { | ||
1220 | efx_dword_t timer_cmd; | ||
1221 | struct efx_nic *efx = channel->efx; | ||
1222 | |||
1223 | /* Set timer register */ | ||
1224 | if (channel->irq_moderation) { | ||
1225 | /* Round to resolution supported by hardware. The value we | ||
1226 | * program is based at 0. So actual interrupt moderation | ||
1227 | * achieved is ((x + 1) * res). | ||
1228 | */ | ||
1229 | unsigned int res = 5; | ||
1230 | channel->irq_moderation -= (channel->irq_moderation % res); | ||
1231 | if (channel->irq_moderation < res) | ||
1232 | channel->irq_moderation = res; | ||
1233 | EFX_POPULATE_DWORD_2(timer_cmd, | ||
1234 | TIMER_MODE, TIMER_MODE_INT_HLDOFF, | ||
1235 | TIMER_VAL, | ||
1236 | (channel->irq_moderation / res) - 1); | ||
1237 | } else { | ||
1238 | EFX_POPULATE_DWORD_2(timer_cmd, | ||
1239 | TIMER_MODE, TIMER_MODE_DIS, | ||
1240 | TIMER_VAL, 0); | ||
1241 | } | ||
1242 | falcon_writel_page_locked(efx, &timer_cmd, TIMER_CMD_REG_KER, | ||
1243 | channel->evqnum); | ||
1244 | |||
1245 | } | ||
1246 | |||
1247 | /* Allocate buffer table entries for event queue */ | ||
1248 | int falcon_probe_eventq(struct efx_channel *channel) | ||
1249 | { | ||
1250 | struct efx_nic *efx = channel->efx; | ||
1251 | unsigned int evq_size; | ||
1252 | |||
1253 | evq_size = FALCON_EVQ_SIZE * sizeof(efx_qword_t); | ||
1254 | return falcon_alloc_special_buffer(efx, &channel->eventq, evq_size); | ||
1255 | } | ||
1256 | |||
1257 | int falcon_init_eventq(struct efx_channel *channel) | ||
1258 | { | ||
1259 | efx_oword_t evq_ptr; | ||
1260 | struct efx_nic *efx = channel->efx; | ||
1261 | int rc; | ||
1262 | |||
1263 | EFX_LOG(efx, "channel %d event queue in special buffers %d-%d\n", | ||
1264 | channel->channel, channel->eventq.index, | ||
1265 | channel->eventq.index + channel->eventq.entries - 1); | ||
1266 | |||
1267 | /* Pin event queue buffer */ | ||
1268 | rc = falcon_init_special_buffer(efx, &channel->eventq); | ||
1269 | if (rc) | ||
1270 | return rc; | ||
1271 | |||
1272 | /* Fill event queue with all ones (i.e. empty events) */ | ||
1273 | memset(channel->eventq.addr, 0xff, channel->eventq.len); | ||
1274 | |||
1275 | /* Push event queue to card */ | ||
1276 | EFX_POPULATE_OWORD_3(evq_ptr, | ||
1277 | EVQ_EN, 1, | ||
1278 | EVQ_SIZE, FALCON_EVQ_ORDER, | ||
1279 | EVQ_BUF_BASE_ID, channel->eventq.index); | ||
1280 | falcon_write_table(efx, &evq_ptr, efx->type->evq_ptr_tbl_base, | ||
1281 | channel->evqnum); | ||
1282 | |||
1283 | falcon_set_int_moderation(channel); | ||
1284 | |||
1285 | return 0; | ||
1286 | } | ||
1287 | |||
1288 | void falcon_fini_eventq(struct efx_channel *channel) | ||
1289 | { | ||
1290 | efx_oword_t eventq_ptr; | ||
1291 | struct efx_nic *efx = channel->efx; | ||
1292 | |||
1293 | /* Remove event queue from card */ | ||
1294 | EFX_ZERO_OWORD(eventq_ptr); | ||
1295 | falcon_write_table(efx, &eventq_ptr, efx->type->evq_ptr_tbl_base, | ||
1296 | channel->evqnum); | ||
1297 | |||
1298 | /* Unpin event queue */ | ||
1299 | falcon_fini_special_buffer(efx, &channel->eventq); | ||
1300 | } | ||
1301 | |||
1302 | /* Free buffers backing event queue */ | ||
1303 | void falcon_remove_eventq(struct efx_channel *channel) | ||
1304 | { | ||
1305 | falcon_free_special_buffer(channel->efx, &channel->eventq); | ||
1306 | } | ||
1307 | |||
1308 | |||
1309 | /* Generates a test event on the event queue. A subsequent call to | ||
1310 | * process_eventq() should pick up the event and place the value of | ||
1311 | * "magic" into channel->eventq_magic; | ||
1312 | */ | ||
1313 | void falcon_generate_test_event(struct efx_channel *channel, unsigned int magic) | ||
1314 | { | ||
1315 | efx_qword_t test_event; | ||
1316 | |||
1317 | EFX_POPULATE_QWORD_2(test_event, | ||
1318 | EV_CODE, DRV_GEN_EV_DECODE, | ||
1319 | EVQ_MAGIC, magic); | ||
1320 | falcon_generate_event(channel, &test_event); | ||
1321 | } | ||
1322 | |||
1323 | |||
1324 | /************************************************************************** | ||
1325 | * | ||
1326 | * Falcon hardware interrupts | ||
1327 | * The hardware interrupt handler does very little work; all the event | ||
1328 | * queue processing is carried out by per-channel tasklets. | ||
1329 | * | ||
1330 | **************************************************************************/ | ||
1331 | |||
1332 | /* Enable/disable/generate Falcon interrupts */ | ||
1333 | static inline void falcon_interrupts(struct efx_nic *efx, int enabled, | ||
1334 | int force) | ||
1335 | { | ||
1336 | efx_oword_t int_en_reg_ker; | ||
1337 | |||
1338 | EFX_POPULATE_OWORD_2(int_en_reg_ker, | ||
1339 | KER_INT_KER, force, | ||
1340 | DRV_INT_EN_KER, enabled); | ||
1341 | falcon_write(efx, &int_en_reg_ker, INT_EN_REG_KER); | ||
1342 | } | ||
1343 | |||
1344 | void falcon_enable_interrupts(struct efx_nic *efx) | ||
1345 | { | ||
1346 | efx_oword_t int_adr_reg_ker; | ||
1347 | struct efx_channel *channel; | ||
1348 | |||
1349 | EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr)); | ||
1350 | wmb(); /* Ensure interrupt vector is clear before interrupts enabled */ | ||
1351 | |||
1352 | /* Program address */ | ||
1353 | EFX_POPULATE_OWORD_2(int_adr_reg_ker, | ||
1354 | NORM_INT_VEC_DIS_KER, EFX_INT_MODE_USE_MSI(efx), | ||
1355 | INT_ADR_KER, efx->irq_status.dma_addr); | ||
1356 | falcon_write(efx, &int_adr_reg_ker, INT_ADR_REG_KER); | ||
1357 | |||
1358 | /* Enable interrupts */ | ||
1359 | falcon_interrupts(efx, 1, 0); | ||
1360 | |||
1361 | /* Force processing of all the channels to get the EVQ RPTRs up to | ||
1362 | date */ | ||
1363 | efx_for_each_channel_with_interrupt(channel, efx) | ||
1364 | efx_schedule_channel(channel); | ||
1365 | } | ||
1366 | |||
1367 | void falcon_disable_interrupts(struct efx_nic *efx) | ||
1368 | { | ||
1369 | /* Disable interrupts */ | ||
1370 | falcon_interrupts(efx, 0, 0); | ||
1371 | } | ||
1372 | |||
1373 | /* Generate a Falcon test interrupt | ||
1374 | * Interrupt must already have been enabled, otherwise nasty things | ||
1375 | * may happen. | ||
1376 | */ | ||
1377 | void falcon_generate_interrupt(struct efx_nic *efx) | ||
1378 | { | ||
1379 | falcon_interrupts(efx, 1, 1); | ||
1380 | } | ||
1381 | |||
1382 | /* Acknowledge a legacy interrupt from Falcon | ||
1383 | * | ||
1384 | * This acknowledges a legacy (not MSI) interrupt via INT_ACK_KER_REG. | ||
1385 | * | ||
1386 | * Due to SFC bug 3706 (silicon revision <=A1) reads can be duplicated in the | ||
1387 | * BIU. Interrupt acknowledge is read sensitive so must write instead | ||
1388 | * (then read to ensure the BIU collector is flushed) | ||
1389 | * | ||
1390 | * NB most hardware supports MSI interrupts | ||
1391 | */ | ||
1392 | static inline void falcon_irq_ack_a1(struct efx_nic *efx) | ||
1393 | { | ||
1394 | efx_dword_t reg; | ||
1395 | |||
1396 | EFX_POPULATE_DWORD_1(reg, INT_ACK_DUMMY_DATA, 0xb7eb7e); | ||
1397 | falcon_writel(efx, ®, INT_ACK_REG_KER_A1); | ||
1398 | falcon_readl(efx, ®, WORK_AROUND_BROKEN_PCI_READS_REG_KER_A1); | ||
1399 | } | ||
1400 | |||
1401 | /* Process a fatal interrupt | ||
1402 | * Disable bus mastering ASAP and schedule a reset | ||
1403 | */ | ||
1404 | static irqreturn_t falcon_fatal_interrupt(struct efx_nic *efx) | ||
1405 | { | ||
1406 | struct falcon_nic_data *nic_data = efx->nic_data; | ||
1407 | efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr; | ||
1408 | efx_oword_t fatal_intr; | ||
1409 | int error, mem_perr; | ||
1410 | static int n_int_errors; | ||
1411 | |||
1412 | falcon_read(efx, &fatal_intr, FATAL_INTR_REG_KER); | ||
1413 | error = EFX_OWORD_FIELD(fatal_intr, INT_KER_ERROR); | ||
1414 | |||
1415 | EFX_ERR(efx, "SYSTEM ERROR " EFX_OWORD_FMT " status " | ||
1416 | EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker), | ||
1417 | EFX_OWORD_VAL(fatal_intr), | ||
1418 | error ? "disabling bus mastering" : "no recognised error"); | ||
1419 | if (error == 0) | ||
1420 | goto out; | ||
1421 | |||
1422 | /* If this is a memory parity error dump which blocks are offending */ | ||
1423 | mem_perr = EFX_OWORD_FIELD(fatal_intr, MEM_PERR_INT_KER); | ||
1424 | if (mem_perr) { | ||
1425 | efx_oword_t reg; | ||
1426 | falcon_read(efx, ®, MEM_STAT_REG_KER); | ||
1427 | EFX_ERR(efx, "SYSTEM ERROR: memory parity error " | ||
1428 | EFX_OWORD_FMT "\n", EFX_OWORD_VAL(reg)); | ||
1429 | } | ||
1430 | |||
1431 | /* Disable DMA bus mastering on both devices */ | ||
1432 | pci_disable_device(efx->pci_dev); | ||
1433 | if (FALCON_IS_DUAL_FUNC(efx)) | ||
1434 | pci_disable_device(nic_data->pci_dev2); | ||
1435 | |||
1436 | if (++n_int_errors < FALCON_MAX_INT_ERRORS) { | ||
1437 | EFX_ERR(efx, "SYSTEM ERROR - reset scheduled\n"); | ||
1438 | efx_schedule_reset(efx, RESET_TYPE_INT_ERROR); | ||
1439 | } else { | ||
1440 | EFX_ERR(efx, "SYSTEM ERROR - max number of errors seen." | ||
1441 | "NIC will be disabled\n"); | ||
1442 | efx_schedule_reset(efx, RESET_TYPE_DISABLE); | ||
1443 | } | ||
1444 | out: | ||
1445 | return IRQ_HANDLED; | ||
1446 | } | ||
1447 | |||
1448 | /* Handle a legacy interrupt from Falcon | ||
1449 | * Acknowledges the interrupt and schedule event queue processing. | ||
1450 | */ | ||
1451 | static irqreturn_t falcon_legacy_interrupt_b0(int irq, void *dev_id) | ||
1452 | { | ||
1453 | struct efx_nic *efx = (struct efx_nic *)dev_id; | ||
1454 | efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr; | ||
1455 | struct efx_channel *channel; | ||
1456 | efx_dword_t reg; | ||
1457 | u32 queues; | ||
1458 | int syserr; | ||
1459 | |||
1460 | /* Read the ISR which also ACKs the interrupts */ | ||
1461 | falcon_readl(efx, ®, INT_ISR0_B0); | ||
1462 | queues = EFX_EXTRACT_DWORD(reg, 0, 31); | ||
1463 | |||
1464 | /* Check to see if we have a serious error condition */ | ||
1465 | syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); | ||
1466 | if (unlikely(syserr)) | ||
1467 | return falcon_fatal_interrupt(efx); | ||
1468 | |||
1469 | if (queues == 0) | ||
1470 | return IRQ_NONE; | ||
1471 | |||
1472 | efx->last_irq_cpu = raw_smp_processor_id(); | ||
1473 | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n", | ||
1474 | irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg)); | ||
1475 | |||
1476 | /* Schedule processing of any interrupting queues */ | ||
1477 | channel = &efx->channel[0]; | ||
1478 | while (queues) { | ||
1479 | if (queues & 0x01) | ||
1480 | efx_schedule_channel(channel); | ||
1481 | channel++; | ||
1482 | queues >>= 1; | ||
1483 | } | ||
1484 | |||
1485 | return IRQ_HANDLED; | ||
1486 | } | ||
1487 | |||
1488 | |||
1489 | static irqreturn_t falcon_legacy_interrupt_a1(int irq, void *dev_id) | ||
1490 | { | ||
1491 | struct efx_nic *efx = (struct efx_nic *)dev_id; | ||
1492 | efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr; | ||
1493 | struct efx_channel *channel; | ||
1494 | int syserr; | ||
1495 | int queues; | ||
1496 | |||
1497 | /* Check to see if this is our interrupt. If it isn't, we | ||
1498 | * exit without having touched the hardware. | ||
1499 | */ | ||
1500 | if (unlikely(EFX_OWORD_IS_ZERO(*int_ker))) { | ||
1501 | EFX_TRACE(efx, "IRQ %d on CPU %d not for me\n", irq, | ||
1502 | raw_smp_processor_id()); | ||
1503 | return IRQ_NONE; | ||
1504 | } | ||
1505 | efx->last_irq_cpu = raw_smp_processor_id(); | ||
1506 | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", | ||
1507 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); | ||
1508 | |||
1509 | /* Check to see if we have a serious error condition */ | ||
1510 | syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); | ||
1511 | if (unlikely(syserr)) | ||
1512 | return falcon_fatal_interrupt(efx); | ||
1513 | |||
1514 | /* Determine interrupting queues, clear interrupt status | ||
1515 | * register and acknowledge the device interrupt. | ||
1516 | */ | ||
1517 | BUILD_BUG_ON(INT_EVQS_WIDTH > EFX_MAX_CHANNELS); | ||
1518 | queues = EFX_OWORD_FIELD(*int_ker, INT_EVQS); | ||
1519 | EFX_ZERO_OWORD(*int_ker); | ||
1520 | wmb(); /* Ensure the vector is cleared before interrupt ack */ | ||
1521 | falcon_irq_ack_a1(efx); | ||
1522 | |||
1523 | /* Schedule processing of any interrupting queues */ | ||
1524 | channel = &efx->channel[0]; | ||
1525 | while (queues) { | ||
1526 | if (queues & 0x01) | ||
1527 | efx_schedule_channel(channel); | ||
1528 | channel++; | ||
1529 | queues >>= 1; | ||
1530 | } | ||
1531 | |||
1532 | return IRQ_HANDLED; | ||
1533 | } | ||
1534 | |||
1535 | /* Handle an MSI interrupt from Falcon | ||
1536 | * | ||
1537 | * Handle an MSI hardware interrupt. This routine schedules event | ||
1538 | * queue processing. No interrupt acknowledgement cycle is necessary. | ||
1539 | * Also, we never need to check that the interrupt is for us, since | ||
1540 | * MSI interrupts cannot be shared. | ||
1541 | */ | ||
1542 | static irqreturn_t falcon_msi_interrupt(int irq, void *dev_id) | ||
1543 | { | ||
1544 | struct efx_channel *channel = (struct efx_channel *)dev_id; | ||
1545 | struct efx_nic *efx = channel->efx; | ||
1546 | efx_oword_t *int_ker = (efx_oword_t *) efx->irq_status.addr; | ||
1547 | int syserr; | ||
1548 | |||
1549 | efx->last_irq_cpu = raw_smp_processor_id(); | ||
1550 | EFX_TRACE(efx, "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n", | ||
1551 | irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker)); | ||
1552 | |||
1553 | /* Check to see if we have a serious error condition */ | ||
1554 | syserr = EFX_OWORD_FIELD(*int_ker, FATAL_INT); | ||
1555 | if (unlikely(syserr)) | ||
1556 | return falcon_fatal_interrupt(efx); | ||
1557 | |||
1558 | /* Schedule processing of the channel */ | ||
1559 | efx_schedule_channel(channel); | ||
1560 | |||
1561 | return IRQ_HANDLED; | ||
1562 | } | ||
1563 | |||
1564 | |||
1565 | /* Setup RSS indirection table. | ||
1566 | * This maps from the hash value of the packet to RXQ | ||
1567 | */ | ||
1568 | static void falcon_setup_rss_indir_table(struct efx_nic *efx) | ||
1569 | { | ||
1570 | int i = 0; | ||
1571 | unsigned long offset; | ||
1572 | efx_dword_t dword; | ||
1573 | |||
1574 | if (FALCON_REV(efx) < FALCON_REV_B0) | ||
1575 | return; | ||
1576 | |||
1577 | for (offset = RX_RSS_INDIR_TBL_B0; | ||
1578 | offset < RX_RSS_INDIR_TBL_B0 + 0x800; | ||
1579 | offset += 0x10) { | ||
1580 | EFX_POPULATE_DWORD_1(dword, RX_RSS_INDIR_ENT_B0, | ||
1581 | i % efx->rss_queues); | ||
1582 | falcon_writel(efx, &dword, offset); | ||
1583 | i++; | ||
1584 | } | ||
1585 | } | ||
1586 | |||
1587 | /* Hook interrupt handler(s) | ||
1588 | * Try MSI and then legacy interrupts. | ||
1589 | */ | ||
1590 | int falcon_init_interrupt(struct efx_nic *efx) | ||
1591 | { | ||
1592 | struct efx_channel *channel; | ||
1593 | int rc; | ||
1594 | |||
1595 | if (!EFX_INT_MODE_USE_MSI(efx)) { | ||
1596 | irq_handler_t handler; | ||
1597 | if (FALCON_REV(efx) >= FALCON_REV_B0) | ||
1598 | handler = falcon_legacy_interrupt_b0; | ||
1599 | else | ||
1600 | handler = falcon_legacy_interrupt_a1; | ||
1601 | |||
1602 | rc = request_irq(efx->legacy_irq, handler, IRQF_SHARED, | ||
1603 | efx->name, efx); | ||
1604 | if (rc) { | ||
1605 | EFX_ERR(efx, "failed to hook legacy IRQ %d\n", | ||
1606 | efx->pci_dev->irq); | ||
1607 | goto fail1; | ||
1608 | } | ||
1609 | return 0; | ||
1610 | } | ||
1611 | |||
1612 | /* Hook MSI or MSI-X interrupt */ | ||
1613 | efx_for_each_channel_with_interrupt(channel, efx) { | ||
1614 | rc = request_irq(channel->irq, falcon_msi_interrupt, | ||
1615 | IRQF_PROBE_SHARED, /* Not shared */ | ||
1616 | efx->name, channel); | ||
1617 | if (rc) { | ||
1618 | EFX_ERR(efx, "failed to hook IRQ %d\n", channel->irq); | ||
1619 | goto fail2; | ||
1620 | } | ||
1621 | } | ||
1622 | |||
1623 | return 0; | ||
1624 | |||
1625 | fail2: | ||
1626 | efx_for_each_channel_with_interrupt(channel, efx) | ||
1627 | free_irq(channel->irq, channel); | ||
1628 | fail1: | ||
1629 | return rc; | ||
1630 | } | ||
1631 | |||
1632 | void falcon_fini_interrupt(struct efx_nic *efx) | ||
1633 | { | ||
1634 | struct efx_channel *channel; | ||
1635 | efx_oword_t reg; | ||
1636 | |||
1637 | /* Disable MSI/MSI-X interrupts */ | ||
1638 | efx_for_each_channel_with_interrupt(channel, efx) | ||
1639 | if (channel->irq) | ||
1640 | free_irq(channel->irq, channel); | ||
1641 | |||
1642 | /* ACK legacy interrupt */ | ||
1643 | if (FALCON_REV(efx) >= FALCON_REV_B0) | ||
1644 | falcon_read(efx, ®, INT_ISR0_B0); | ||
1645 | else | ||
1646 | falcon_irq_ack_a1(efx); | ||
1647 | |||
1648 | /* Disable legacy interrupt */ | ||
1649 | if (efx->legacy_irq) | ||
1650 | free_irq(efx->legacy_irq, efx); | ||
1651 | } | ||
1652 | |||
1653 | /************************************************************************** | ||
1654 | * | ||
1655 | * EEPROM/flash | ||
1656 | * | ||
1657 | ************************************************************************** | ||
1658 | */ | ||
1659 | |||
1660 | #define FALCON_SPI_MAX_LEN sizeof(efx_oword_t) | ||
1661 | |||
1662 | /* Wait for SPI command completion */ | ||
1663 | static int falcon_spi_wait(struct efx_nic *efx) | ||
1664 | { | ||
1665 | efx_oword_t reg; | ||
1666 | int cmd_en, timer_active; | ||
1667 | int count; | ||
1668 | |||
1669 | count = 0; | ||
1670 | do { | ||
1671 | falcon_read(efx, ®, EE_SPI_HCMD_REG_KER); | ||
1672 | cmd_en = EFX_OWORD_FIELD(reg, EE_SPI_HCMD_CMD_EN); | ||
1673 | timer_active = EFX_OWORD_FIELD(reg, EE_WR_TIMER_ACTIVE); | ||
1674 | if (!cmd_en && !timer_active) | ||
1675 | return 0; | ||
1676 | udelay(10); | ||
1677 | } while (++count < 10000); /* wait upto 100msec */ | ||
1678 | EFX_ERR(efx, "timed out waiting for SPI\n"); | ||
1679 | return -ETIMEDOUT; | ||
1680 | } | ||
1681 | |||
1682 | static int | ||
1683 | falcon_spi_read(struct efx_nic *efx, int device_id, unsigned int command, | ||
1684 | unsigned int address, unsigned int addr_len, | ||
1685 | void *data, unsigned int len) | ||
1686 | { | ||
1687 | efx_oword_t reg; | ||
1688 | int rc; | ||
1689 | |||
1690 | BUG_ON(len > FALCON_SPI_MAX_LEN); | ||
1691 | |||
1692 | /* Check SPI not currently being accessed */ | ||
1693 | rc = falcon_spi_wait(efx); | ||
1694 | if (rc) | ||
1695 | return rc; | ||
1696 | |||
1697 | /* Program address register */ | ||
1698 | EFX_POPULATE_OWORD_1(reg, EE_SPI_HADR_ADR, address); | ||
1699 | falcon_write(efx, ®, EE_SPI_HADR_REG_KER); | ||
1700 | |||
1701 | /* Issue read command */ | ||
1702 | EFX_POPULATE_OWORD_7(reg, | ||
1703 | EE_SPI_HCMD_CMD_EN, 1, | ||
1704 | EE_SPI_HCMD_SF_SEL, device_id, | ||
1705 | EE_SPI_HCMD_DABCNT, len, | ||
1706 | EE_SPI_HCMD_READ, EE_SPI_READ, | ||
1707 | EE_SPI_HCMD_DUBCNT, 0, | ||
1708 | EE_SPI_HCMD_ADBCNT, addr_len, | ||
1709 | EE_SPI_HCMD_ENC, command); | ||
1710 | falcon_write(efx, ®, EE_SPI_HCMD_REG_KER); | ||
1711 | |||
1712 | /* Wait for read to complete */ | ||
1713 | rc = falcon_spi_wait(efx); | ||
1714 | if (rc) | ||
1715 | return rc; | ||
1716 | |||
1717 | /* Read data */ | ||
1718 | falcon_read(efx, ®, EE_SPI_HDATA_REG_KER); | ||
1719 | memcpy(data, ®, len); | ||
1720 | return 0; | ||
1721 | } | ||
1722 | |||
1723 | /************************************************************************** | ||
1724 | * | ||
1725 | * MAC wrapper | ||
1726 | * | ||
1727 | ************************************************************************** | ||
1728 | */ | ||
1729 | void falcon_drain_tx_fifo(struct efx_nic *efx) | ||
1730 | { | ||
1731 | efx_oword_t temp; | ||
1732 | int count; | ||
1733 | |||
1734 | if (FALCON_REV(efx) < FALCON_REV_B0) | ||
1735 | return; | ||
1736 | |||
1737 | falcon_read(efx, &temp, MAC0_CTRL_REG_KER); | ||
1738 | /* There is no point in draining more than once */ | ||
1739 | if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0)) | ||
1740 | return; | ||
1741 | |||
1742 | /* MAC stats will fail whilst the TX fifo is draining. Serialise | ||
1743 | * the drain sequence with the statistics fetch */ | ||
1744 | spin_lock(&efx->stats_lock); | ||
1745 | |||
1746 | EFX_SET_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0, 1); | ||
1747 | falcon_write(efx, &temp, MAC0_CTRL_REG_KER); | ||
1748 | |||
1749 | /* Reset the MAC and EM block. */ | ||
1750 | falcon_read(efx, &temp, GLB_CTL_REG_KER); | ||
1751 | EFX_SET_OWORD_FIELD(temp, RST_XGTX, 1); | ||
1752 | EFX_SET_OWORD_FIELD(temp, RST_XGRX, 1); | ||
1753 | EFX_SET_OWORD_FIELD(temp, RST_EM, 1); | ||
1754 | falcon_write(efx, &temp, GLB_CTL_REG_KER); | ||
1755 | |||
1756 | count = 0; | ||
1757 | while (1) { | ||
1758 | falcon_read(efx, &temp, GLB_CTL_REG_KER); | ||
1759 | if (!EFX_OWORD_FIELD(temp, RST_XGTX) && | ||
1760 | !EFX_OWORD_FIELD(temp, RST_XGRX) && | ||
1761 | !EFX_OWORD_FIELD(temp, RST_EM)) { | ||
1762 | EFX_LOG(efx, "Completed MAC reset after %d loops\n", | ||
1763 | count); | ||
1764 | break; | ||
1765 | } | ||
1766 | if (count > 20) { | ||
1767 | EFX_ERR(efx, "MAC reset failed\n"); | ||
1768 | break; | ||
1769 | } | ||
1770 | count++; | ||
1771 | udelay(10); | ||
1772 | } | ||
1773 | |||
1774 | spin_unlock(&efx->stats_lock); | ||
1775 | |||
1776 | /* If we've reset the EM block and the link is up, then | ||
1777 | * we'll have to kick the XAUI link so the PHY can recover */ | ||
1778 | if (efx->link_up && EFX_WORKAROUND_5147(efx)) | ||
1779 | falcon_reset_xaui(efx); | ||
1780 | } | ||
1781 | |||
1782 | void falcon_deconfigure_mac_wrapper(struct efx_nic *efx) | ||
1783 | { | ||
1784 | efx_oword_t temp; | ||
1785 | |||
1786 | if (FALCON_REV(efx) < FALCON_REV_B0) | ||
1787 | return; | ||
1788 | |||
1789 | /* Isolate the MAC -> RX */ | ||
1790 | falcon_read(efx, &temp, RX_CFG_REG_KER); | ||
1791 | EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 0); | ||
1792 | falcon_write(efx, &temp, RX_CFG_REG_KER); | ||
1793 | |||
1794 | if (!efx->link_up) | ||
1795 | falcon_drain_tx_fifo(efx); | ||
1796 | } | ||
1797 | |||
1798 | void falcon_reconfigure_mac_wrapper(struct efx_nic *efx) | ||
1799 | { | ||
1800 | efx_oword_t reg; | ||
1801 | int link_speed; | ||
1802 | unsigned int tx_fc; | ||
1803 | |||
1804 | if (efx->link_options & GM_LPA_10000) | ||
1805 | link_speed = 0x3; | ||
1806 | else if (efx->link_options & GM_LPA_1000) | ||
1807 | link_speed = 0x2; | ||
1808 | else if (efx->link_options & GM_LPA_100) | ||
1809 | link_speed = 0x1; | ||
1810 | else | ||
1811 | link_speed = 0x0; | ||
1812 | /* MAC_LINK_STATUS controls MAC backpressure but doesn't work | ||
1813 | * as advertised. Disable to ensure packets are not | ||
1814 | * indefinitely held and TX queue can be flushed at any point | ||
1815 | * while the link is down. */ | ||
1816 | EFX_POPULATE_OWORD_5(reg, | ||
1817 | MAC_XOFF_VAL, 0xffff /* max pause time */, | ||
1818 | MAC_BCAD_ACPT, 1, | ||
1819 | MAC_UC_PROM, efx->promiscuous, | ||
1820 | MAC_LINK_STATUS, 1, /* always set */ | ||
1821 | MAC_SPEED, link_speed); | ||
1822 | /* On B0, MAC backpressure can be disabled and packets get | ||
1823 | * discarded. */ | ||
1824 | if (FALCON_REV(efx) >= FALCON_REV_B0) { | ||
1825 | EFX_SET_OWORD_FIELD(reg, TXFIFO_DRAIN_EN_B0, | ||
1826 | !efx->link_up); | ||
1827 | } | ||
1828 | |||
1829 | falcon_write(efx, ®, MAC0_CTRL_REG_KER); | ||
1830 | |||
1831 | /* Restore the multicast hash registers. */ | ||
1832 | falcon_set_multicast_hash(efx); | ||
1833 | |||
1834 | /* Transmission of pause frames when RX crosses the threshold is | ||
1835 | * covered by RX_XOFF_MAC_EN and XM_TX_CFG_REG:XM_FCNTL. | ||
1836 | * Action on receipt of pause frames is controller by XM_DIS_FCNTL */ | ||
1837 | tx_fc = (efx->flow_control & EFX_FC_TX) ? 1 : 0; | ||
1838 | falcon_read(efx, ®, RX_CFG_REG_KER); | ||
1839 | EFX_SET_OWORD_FIELD_VER(efx, reg, RX_XOFF_MAC_EN, tx_fc); | ||
1840 | |||
1841 | /* Unisolate the MAC -> RX */ | ||
1842 | if (FALCON_REV(efx) >= FALCON_REV_B0) | ||
1843 | EFX_SET_OWORD_FIELD(reg, RX_INGR_EN_B0, 1); | ||
1844 | falcon_write(efx, ®, RX_CFG_REG_KER); | ||
1845 | } | ||
1846 | |||
1847 | int falcon_dma_stats(struct efx_nic *efx, unsigned int done_offset) | ||
1848 | { | ||
1849 | efx_oword_t reg; | ||
1850 | u32 *dma_done; | ||
1851 | int i; | ||
1852 | |||
1853 | if (disable_dma_stats) | ||
1854 | return 0; | ||
1855 | |||
1856 | /* Statistics fetch will fail if the MAC is in TX drain */ | ||
1857 | if (FALCON_REV(efx) >= FALCON_REV_B0) { | ||
1858 | efx_oword_t temp; | ||
1859 | falcon_read(efx, &temp, MAC0_CTRL_REG_KER); | ||
1860 | if (EFX_OWORD_FIELD(temp, TXFIFO_DRAIN_EN_B0)) | ||
1861 | return 0; | ||
1862 | } | ||
1863 | |||
1864 | dma_done = (efx->stats_buffer.addr + done_offset); | ||
1865 | *dma_done = FALCON_STATS_NOT_DONE; | ||
1866 | wmb(); /* ensure done flag is clear */ | ||
1867 | |||
1868 | /* Initiate DMA transfer of stats */ | ||
1869 | EFX_POPULATE_OWORD_2(reg, | ||
1870 | MAC_STAT_DMA_CMD, 1, | ||
1871 | MAC_STAT_DMA_ADR, | ||
1872 | efx->stats_buffer.dma_addr); | ||
1873 | falcon_write(efx, ®, MAC0_STAT_DMA_REG_KER); | ||
1874 | |||
1875 | /* Wait for transfer to complete */ | ||
1876 | for (i = 0; i < 400; i++) { | ||
1877 | if (*(volatile u32 *)dma_done == FALCON_STATS_DONE) | ||
1878 | return 0; | ||
1879 | udelay(10); | ||
1880 | } | ||
1881 | |||
1882 | EFX_ERR(efx, "timed out waiting for statistics\n"); | ||
1883 | return -ETIMEDOUT; | ||
1884 | } | ||
1885 | |||
1886 | /************************************************************************** | ||
1887 | * | ||
1888 | * PHY access via GMII | ||
1889 | * | ||
1890 | ************************************************************************** | ||
1891 | */ | ||
1892 | |||
1893 | /* Use the top bit of the MII PHY id to indicate the PHY type | ||
1894 | * (1G/10G), with the remaining bits as the actual PHY id. | ||
1895 | * | ||
1896 | * This allows us to avoid leaking information from the mii_if_info | ||
1897 | * structure into other data structures. | ||
1898 | */ | ||
1899 | #define FALCON_PHY_ID_ID_WIDTH EFX_WIDTH(MD_PRT_DEV_ADR) | ||
1900 | #define FALCON_PHY_ID_ID_MASK ((1 << FALCON_PHY_ID_ID_WIDTH) - 1) | ||
1901 | #define FALCON_PHY_ID_WIDTH (FALCON_PHY_ID_ID_WIDTH + 1) | ||
1902 | #define FALCON_PHY_ID_MASK ((1 << FALCON_PHY_ID_WIDTH) - 1) | ||
1903 | #define FALCON_PHY_ID_10G (1 << (FALCON_PHY_ID_WIDTH - 1)) | ||
1904 | |||
1905 | |||
1906 | /* Packing the clause 45 port and device fields into a single value */ | ||
1907 | #define MD_PRT_ADR_COMP_LBN (MD_PRT_ADR_LBN - MD_DEV_ADR_LBN) | ||
1908 | #define MD_PRT_ADR_COMP_WIDTH MD_PRT_ADR_WIDTH | ||
1909 | #define MD_DEV_ADR_COMP_LBN 0 | ||
1910 | #define MD_DEV_ADR_COMP_WIDTH MD_DEV_ADR_WIDTH | ||
1911 | |||
1912 | |||
1913 | /* Wait for GMII access to complete */ | ||
1914 | static int falcon_gmii_wait(struct efx_nic *efx) | ||
1915 | { | ||
1916 | efx_dword_t md_stat; | ||
1917 | int count; | ||
1918 | |||
1919 | for (count = 0; count < 1000; count++) { /* wait upto 10ms */ | ||
1920 | falcon_readl(efx, &md_stat, MD_STAT_REG_KER); | ||
1921 | if (EFX_DWORD_FIELD(md_stat, MD_BSY) == 0) { | ||
1922 | if (EFX_DWORD_FIELD(md_stat, MD_LNFL) != 0 || | ||
1923 | EFX_DWORD_FIELD(md_stat, MD_BSERR) != 0) { | ||
1924 | EFX_ERR(efx, "error from GMII access " | ||
1925 | EFX_DWORD_FMT"\n", | ||
1926 | EFX_DWORD_VAL(md_stat)); | ||
1927 | return -EIO; | ||
1928 | } | ||
1929 | return 0; | ||
1930 | } | ||
1931 | udelay(10); | ||
1932 | } | ||
1933 | EFX_ERR(efx, "timed out waiting for GMII\n"); | ||
1934 | return -ETIMEDOUT; | ||
1935 | } | ||
1936 | |||
1937 | /* Writes a GMII register of a PHY connected to Falcon using MDIO. */ | ||
1938 | static void falcon_mdio_write(struct net_device *net_dev, int phy_id, | ||
1939 | int addr, int value) | ||
1940 | { | ||
1941 | struct efx_nic *efx = (struct efx_nic *)net_dev->priv; | ||
1942 | unsigned int phy_id2 = phy_id & FALCON_PHY_ID_ID_MASK; | ||
1943 | efx_oword_t reg; | ||
1944 | |||
1945 | /* The 'generic' prt/dev packing in mdio_10g.h is conveniently | ||
1946 | * chosen so that the only current user, Falcon, can take the | ||
1947 | * packed value and use them directly. | ||
1948 | * Fail to build if this assumption is broken. | ||
1949 | */ | ||
1950 | BUILD_BUG_ON(FALCON_PHY_ID_10G != MDIO45_XPRT_ID_IS10G); | ||
1951 | BUILD_BUG_ON(FALCON_PHY_ID_ID_WIDTH != MDIO45_PRT_DEV_WIDTH); | ||
1952 | BUILD_BUG_ON(MD_PRT_ADR_COMP_LBN != MDIO45_PRT_ID_COMP_LBN); | ||
1953 | BUILD_BUG_ON(MD_DEV_ADR_COMP_LBN != MDIO45_DEV_ID_COMP_LBN); | ||
1954 | |||
1955 | if (phy_id2 == PHY_ADDR_INVALID) | ||
1956 | return; | ||
1957 | |||
1958 | /* See falcon_mdio_read for an explanation. */ | ||
1959 | if (!(phy_id & FALCON_PHY_ID_10G)) { | ||
1960 | int mmd = ffs(efx->phy_op->mmds) - 1; | ||
1961 | EFX_TRACE(efx, "Fixing erroneous clause22 write\n"); | ||
1962 | phy_id2 = mdio_clause45_pack(phy_id2, mmd) | ||
1963 | & FALCON_PHY_ID_ID_MASK; | ||
1964 | } | ||
1965 | |||
1966 | EFX_REGDUMP(efx, "writing GMII %d register %02x with %04x\n", phy_id, | ||
1967 | addr, value); | ||
1968 | |||
1969 | spin_lock_bh(&efx->phy_lock); | ||
1970 | |||
1971 | /* Check MII not currently being accessed */ | ||
1972 | if (falcon_gmii_wait(efx) != 0) | ||
1973 | goto out; | ||
1974 | |||
1975 | /* Write the address/ID register */ | ||
1976 | EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr); | ||
1977 | falcon_write(efx, ®, MD_PHY_ADR_REG_KER); | ||
1978 | |||
1979 | EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_id2); | ||
1980 | falcon_write(efx, ®, MD_ID_REG_KER); | ||
1981 | |||
1982 | /* Write data */ | ||
1983 | EFX_POPULATE_OWORD_1(reg, MD_TXD, value); | ||
1984 | falcon_write(efx, ®, MD_TXD_REG_KER); | ||
1985 | |||
1986 | EFX_POPULATE_OWORD_2(reg, | ||
1987 | MD_WRC, 1, | ||
1988 | MD_GC, 0); | ||
1989 | falcon_write(efx, ®, MD_CS_REG_KER); | ||
1990 | |||
1991 | /* Wait for data to be written */ | ||
1992 | if (falcon_gmii_wait(efx) != 0) { | ||
1993 | /* Abort the write operation */ | ||
1994 | EFX_POPULATE_OWORD_2(reg, | ||
1995 | MD_WRC, 0, | ||
1996 | MD_GC, 1); | ||
1997 | falcon_write(efx, ®, MD_CS_REG_KER); | ||
1998 | udelay(10); | ||
1999 | } | ||
2000 | |||
2001 | out: | ||
2002 | spin_unlock_bh(&efx->phy_lock); | ||
2003 | } | ||
2004 | |||
2005 | /* Reads a GMII register from a PHY connected to Falcon. If no value | ||
2006 | * could be read, -1 will be returned. */ | ||
2007 | static int falcon_mdio_read(struct net_device *net_dev, int phy_id, int addr) | ||
2008 | { | ||
2009 | struct efx_nic *efx = (struct efx_nic *)net_dev->priv; | ||
2010 | unsigned int phy_addr = phy_id & FALCON_PHY_ID_ID_MASK; | ||
2011 | efx_oword_t reg; | ||
2012 | int value = -1; | ||
2013 | |||
2014 | if (phy_addr == PHY_ADDR_INVALID) | ||
2015 | return -1; | ||
2016 | |||
2017 | /* Our PHY code knows whether it needs to talk clause 22(1G) or 45(10G) | ||
2018 | * but the generic Linux code does not make any distinction or have | ||
2019 | * any state for this. | ||
2020 | * We spot the case where someone tried to talk 22 to a 45 PHY and | ||
2021 | * redirect the request to the lowest numbered MMD as a clause45 | ||
2022 | * request. This is enough to allow simple queries like id and link | ||
2023 | * state to succeed. TODO: We may need to do more in future. | ||
2024 | */ | ||
2025 | if (!(phy_id & FALCON_PHY_ID_10G)) { | ||
2026 | int mmd = ffs(efx->phy_op->mmds) - 1; | ||
2027 | EFX_TRACE(efx, "Fixing erroneous clause22 read\n"); | ||
2028 | phy_addr = mdio_clause45_pack(phy_addr, mmd) | ||
2029 | & FALCON_PHY_ID_ID_MASK; | ||
2030 | } | ||
2031 | |||
2032 | spin_lock_bh(&efx->phy_lock); | ||
2033 | |||
2034 | /* Check MII not currently being accessed */ | ||
2035 | if (falcon_gmii_wait(efx) != 0) | ||
2036 | goto out; | ||
2037 | |||
2038 | EFX_POPULATE_OWORD_1(reg, MD_PHY_ADR, addr); | ||
2039 | falcon_write(efx, ®, MD_PHY_ADR_REG_KER); | ||
2040 | |||
2041 | EFX_POPULATE_OWORD_1(reg, MD_PRT_DEV_ADR, phy_addr); | ||
2042 | falcon_write(efx, ®, MD_ID_REG_KER); | ||
2043 | |||
2044 | /* Request data to be read */ | ||
2045 | EFX_POPULATE_OWORD_2(reg, MD_RDC, 1, MD_GC, 0); | ||
2046 | falcon_write(efx, ®, MD_CS_REG_KER); | ||
2047 | |||
2048 | /* Wait for data to become available */ | ||
2049 | value = falcon_gmii_wait(efx); | ||
2050 | if (value == 0) { | ||
2051 | falcon_read(efx, ®, MD_RXD_REG_KER); | ||
2052 | value = EFX_OWORD_FIELD(reg, MD_RXD); | ||
2053 | EFX_REGDUMP(efx, "read from GMII %d register %02x, got %04x\n", | ||
2054 | phy_id, addr, value); | ||
2055 | } else { | ||
2056 | /* Abort the read operation */ | ||
2057 | EFX_POPULATE_OWORD_2(reg, | ||
2058 | MD_RIC, 0, | ||
2059 | MD_GC, 1); | ||
2060 | falcon_write(efx, ®, MD_CS_REG_KER); | ||
2061 | |||
2062 | EFX_LOG(efx, "read from GMII 0x%x register %02x, got " | ||
2063 | "error %d\n", phy_id, addr, value); | ||
2064 | } | ||
2065 | |||
2066 | out: | ||
2067 | spin_unlock_bh(&efx->phy_lock); | ||
2068 | |||
2069 | return value; | ||
2070 | } | ||
2071 | |||
2072 | static void falcon_init_mdio(struct mii_if_info *gmii) | ||
2073 | { | ||
2074 | gmii->mdio_read = falcon_mdio_read; | ||
2075 | gmii->mdio_write = falcon_mdio_write; | ||
2076 | gmii->phy_id_mask = FALCON_PHY_ID_MASK; | ||
2077 | gmii->reg_num_mask = ((1 << EFX_WIDTH(MD_PHY_ADR)) - 1); | ||
2078 | } | ||
2079 | |||
2080 | static int falcon_probe_phy(struct efx_nic *efx) | ||
2081 | { | ||
2082 | switch (efx->phy_type) { | ||
2083 | case PHY_TYPE_10XPRESS: | ||
2084 | efx->phy_op = &falcon_tenxpress_phy_ops; | ||
2085 | break; | ||
2086 | case PHY_TYPE_XFP: | ||
2087 | efx->phy_op = &falcon_xfp_phy_ops; | ||
2088 | break; | ||
2089 | default: | ||
2090 | EFX_ERR(efx, "Unknown PHY type %d\n", | ||
2091 | efx->phy_type); | ||
2092 | return -1; | ||
2093 | } | ||
2094 | return 0; | ||
2095 | } | ||
2096 | |||
2097 | /* This call is responsible for hooking in the MAC and PHY operations */ | ||
2098 | int falcon_probe_port(struct efx_nic *efx) | ||
2099 | { | ||
2100 | int rc; | ||
2101 | |||
2102 | /* Hook in PHY operations table */ | ||
2103 | rc = falcon_probe_phy(efx); | ||
2104 | if (rc) | ||
2105 | return rc; | ||
2106 | |||
2107 | /* Set up GMII structure for PHY */ | ||
2108 | efx->mii.supports_gmii = 1; | ||
2109 | falcon_init_mdio(&efx->mii); | ||
2110 | |||
2111 | /* Hardware flow ctrl. FalconA RX FIFO too small for pause generation */ | ||
2112 | if (FALCON_REV(efx) >= FALCON_REV_B0) | ||
2113 | efx->flow_control = EFX_FC_RX | EFX_FC_TX; | ||
2114 | else | ||
2115 | efx->flow_control = EFX_FC_RX; | ||
2116 | |||
2117 | /* Allocate buffer for stats */ | ||
2118 | rc = falcon_alloc_buffer(efx, &efx->stats_buffer, | ||
2119 | FALCON_MAC_STATS_SIZE); | ||
2120 | if (rc) | ||
2121 | return rc; | ||
2122 | EFX_LOG(efx, "stats buffer at %llx (virt %p phys %lx)\n", | ||
2123 | (unsigned long long)efx->stats_buffer.dma_addr, | ||
2124 | efx->stats_buffer.addr, | ||
2125 | virt_to_phys(efx->stats_buffer.addr)); | ||
2126 | |||
2127 | return 0; | ||
2128 | } | ||
2129 | |||
2130 | void falcon_remove_port(struct efx_nic *efx) | ||
2131 | { | ||
2132 | falcon_free_buffer(efx, &efx->stats_buffer); | ||
2133 | } | ||
2134 | |||
2135 | /************************************************************************** | ||
2136 | * | ||
2137 | * Multicast filtering | ||
2138 | * | ||
2139 | ************************************************************************** | ||
2140 | */ | ||
2141 | |||
2142 | void falcon_set_multicast_hash(struct efx_nic *efx) | ||
2143 | { | ||
2144 | union efx_multicast_hash *mc_hash = &efx->multicast_hash; | ||
2145 | |||
2146 | /* Broadcast packets go through the multicast hash filter. | ||
2147 | * ether_crc_le() of the broadcast address is 0xbe2612ff | ||
2148 | * so we always add bit 0xff to the mask. | ||
2149 | */ | ||
2150 | set_bit_le(0xff, mc_hash->byte); | ||
2151 | |||
2152 | falcon_write(efx, &mc_hash->oword[0], MAC_MCAST_HASH_REG0_KER); | ||
2153 | falcon_write(efx, &mc_hash->oword[1], MAC_MCAST_HASH_REG1_KER); | ||
2154 | } | ||
2155 | |||
2156 | /************************************************************************** | ||
2157 | * | ||
2158 | * Device reset | ||
2159 | * | ||
2160 | ************************************************************************** | ||
2161 | */ | ||
2162 | |||
2163 | /* Resets NIC to known state. This routine must be called in process | ||
2164 | * context and is allowed to sleep. */ | ||
2165 | int falcon_reset_hw(struct efx_nic *efx, enum reset_type method) | ||
2166 | { | ||
2167 | struct falcon_nic_data *nic_data = efx->nic_data; | ||
2168 | efx_oword_t glb_ctl_reg_ker; | ||
2169 | int rc; | ||
2170 | |||
2171 | EFX_LOG(efx, "performing hardware reset (%d)\n", method); | ||
2172 | |||
2173 | /* Initiate device reset */ | ||
2174 | if (method == RESET_TYPE_WORLD) { | ||
2175 | rc = pci_save_state(efx->pci_dev); | ||
2176 | if (rc) { | ||
2177 | EFX_ERR(efx, "failed to backup PCI state of primary " | ||
2178 | "function prior to hardware reset\n"); | ||
2179 | goto fail1; | ||
2180 | } | ||
2181 | if (FALCON_IS_DUAL_FUNC(efx)) { | ||
2182 | rc = pci_save_state(nic_data->pci_dev2); | ||
2183 | if (rc) { | ||
2184 | EFX_ERR(efx, "failed to backup PCI state of " | ||
2185 | "secondary function prior to " | ||
2186 | "hardware reset\n"); | ||
2187 | goto fail2; | ||
2188 | } | ||
2189 | } | ||
2190 | |||
2191 | EFX_POPULATE_OWORD_2(glb_ctl_reg_ker, | ||
2192 | EXT_PHY_RST_DUR, 0x7, | ||
2193 | SWRST, 1); | ||
2194 | } else { | ||
2195 | int reset_phy = (method == RESET_TYPE_INVISIBLE ? | ||
2196 | EXCLUDE_FROM_RESET : 0); | ||
2197 | |||
2198 | EFX_POPULATE_OWORD_7(glb_ctl_reg_ker, | ||
2199 | EXT_PHY_RST_CTL, reset_phy, | ||
2200 | PCIE_CORE_RST_CTL, EXCLUDE_FROM_RESET, | ||
2201 | PCIE_NSTCK_RST_CTL, EXCLUDE_FROM_RESET, | ||
2202 | PCIE_SD_RST_CTL, EXCLUDE_FROM_RESET, | ||
2203 | EE_RST_CTL, EXCLUDE_FROM_RESET, | ||
2204 | EXT_PHY_RST_DUR, 0x7 /* 10ms */, | ||
2205 | SWRST, 1); | ||
2206 | } | ||
2207 | falcon_write(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER); | ||
2208 | |||
2209 | EFX_LOG(efx, "waiting for hardware reset\n"); | ||
2210 | schedule_timeout_uninterruptible(HZ / 20); | ||
2211 | |||
2212 | /* Restore PCI configuration if needed */ | ||
2213 | if (method == RESET_TYPE_WORLD) { | ||
2214 | if (FALCON_IS_DUAL_FUNC(efx)) { | ||
2215 | rc = pci_restore_state(nic_data->pci_dev2); | ||
2216 | if (rc) { | ||
2217 | EFX_ERR(efx, "failed to restore PCI config for " | ||
2218 | "the secondary function\n"); | ||
2219 | goto fail3; | ||
2220 | } | ||
2221 | } | ||
2222 | rc = pci_restore_state(efx->pci_dev); | ||
2223 | if (rc) { | ||
2224 | EFX_ERR(efx, "failed to restore PCI config for the " | ||
2225 | "primary function\n"); | ||
2226 | goto fail4; | ||
2227 | } | ||
2228 | EFX_LOG(efx, "successfully restored PCI config\n"); | ||
2229 | } | ||
2230 | |||
2231 | /* Assert that reset complete */ | ||
2232 | falcon_read(efx, &glb_ctl_reg_ker, GLB_CTL_REG_KER); | ||
2233 | if (EFX_OWORD_FIELD(glb_ctl_reg_ker, SWRST) != 0) { | ||
2234 | rc = -ETIMEDOUT; | ||
2235 | EFX_ERR(efx, "timed out waiting for hardware reset\n"); | ||
2236 | goto fail5; | ||
2237 | } | ||
2238 | EFX_LOG(efx, "hardware reset complete\n"); | ||
2239 | |||
2240 | return 0; | ||
2241 | |||
2242 | /* pci_save_state() and pci_restore_state() MUST be called in pairs */ | ||
2243 | fail2: | ||
2244 | fail3: | ||
2245 | pci_restore_state(efx->pci_dev); | ||
2246 | fail1: | ||
2247 | fail4: | ||
2248 | fail5: | ||
2249 | return rc; | ||
2250 | } | ||
2251 | |||
2252 | /* Zeroes out the SRAM contents. This routine must be called in | ||
2253 | * process context and is allowed to sleep. | ||
2254 | */ | ||
2255 | static int falcon_reset_sram(struct efx_nic *efx) | ||
2256 | { | ||
2257 | efx_oword_t srm_cfg_reg_ker, gpio_cfg_reg_ker; | ||
2258 | int count; | ||
2259 | |||
2260 | /* Set the SRAM wake/sleep GPIO appropriately. */ | ||
2261 | falcon_read(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER); | ||
2262 | EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OEN, 1); | ||
2263 | EFX_SET_OWORD_FIELD(gpio_cfg_reg_ker, GPIO1_OUT, 1); | ||
2264 | falcon_write(efx, &gpio_cfg_reg_ker, GPIO_CTL_REG_KER); | ||
2265 | |||
2266 | /* Initiate SRAM reset */ | ||
2267 | EFX_POPULATE_OWORD_2(srm_cfg_reg_ker, | ||
2268 | SRAM_OOB_BT_INIT_EN, 1, | ||
2269 | SRM_NUM_BANKS_AND_BANK_SIZE, 0); | ||
2270 | falcon_write(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER); | ||
2271 | |||
2272 | /* Wait for SRAM reset to complete */ | ||
2273 | count = 0; | ||
2274 | do { | ||
2275 | EFX_LOG(efx, "waiting for SRAM reset (attempt %d)...\n", count); | ||
2276 | |||
2277 | /* SRAM reset is slow; expect around 16ms */ | ||
2278 | schedule_timeout_uninterruptible(HZ / 50); | ||
2279 | |||
2280 | /* Check for reset complete */ | ||
2281 | falcon_read(efx, &srm_cfg_reg_ker, SRM_CFG_REG_KER); | ||
2282 | if (!EFX_OWORD_FIELD(srm_cfg_reg_ker, SRAM_OOB_BT_INIT_EN)) { | ||
2283 | EFX_LOG(efx, "SRAM reset complete\n"); | ||
2284 | |||
2285 | return 0; | ||
2286 | } | ||
2287 | } while (++count < 20); /* wait upto 0.4 sec */ | ||
2288 | |||
2289 | EFX_ERR(efx, "timed out waiting for SRAM reset\n"); | ||
2290 | return -ETIMEDOUT; | ||
2291 | } | ||
2292 | |||
2293 | /* Extract non-volatile configuration */ | ||
2294 | static int falcon_probe_nvconfig(struct efx_nic *efx) | ||
2295 | { | ||
2296 | struct falcon_nvconfig *nvconfig; | ||
2297 | efx_oword_t nic_stat; | ||
2298 | int device_id; | ||
2299 | unsigned addr_len; | ||
2300 | size_t offset, len; | ||
2301 | int magic_num, struct_ver, board_rev; | ||
2302 | int rc; | ||
2303 | |||
2304 | /* Find the boot device. */ | ||
2305 | falcon_read(efx, &nic_stat, NIC_STAT_REG); | ||
2306 | if (EFX_OWORD_FIELD(nic_stat, SF_PRST)) { | ||
2307 | device_id = EE_SPI_FLASH; | ||
2308 | addr_len = 3; | ||
2309 | } else if (EFX_OWORD_FIELD(nic_stat, EE_PRST)) { | ||
2310 | device_id = EE_SPI_EEPROM; | ||
2311 | addr_len = 2; | ||
2312 | } else { | ||
2313 | return -ENODEV; | ||
2314 | } | ||
2315 | |||
2316 | nvconfig = kmalloc(sizeof(*nvconfig), GFP_KERNEL); | ||
2317 | |||
2318 | /* Read the whole configuration structure into memory. */ | ||
2319 | for (offset = 0; offset < sizeof(*nvconfig); offset += len) { | ||
2320 | len = min(sizeof(*nvconfig) - offset, | ||
2321 | (size_t) FALCON_SPI_MAX_LEN); | ||
2322 | rc = falcon_spi_read(efx, device_id, SPI_READ, | ||
2323 | NVCONFIG_BASE + offset, addr_len, | ||
2324 | (char *)nvconfig + offset, len); | ||
2325 | if (rc) | ||
2326 | goto out; | ||
2327 | } | ||
2328 | |||
2329 | /* Read the MAC addresses */ | ||
2330 | memcpy(efx->mac_address, nvconfig->mac_address[0], ETH_ALEN); | ||
2331 | |||
2332 | /* Read the board configuration. */ | ||
2333 | magic_num = le16_to_cpu(nvconfig->board_magic_num); | ||
2334 | struct_ver = le16_to_cpu(nvconfig->board_struct_ver); | ||
2335 | |||
2336 | if (magic_num != NVCONFIG_BOARD_MAGIC_NUM || struct_ver < 2) { | ||
2337 | EFX_ERR(efx, "Non volatile memory bad magic=%x ver=%x " | ||
2338 | "therefore using defaults\n", magic_num, struct_ver); | ||
2339 | efx->phy_type = PHY_TYPE_NONE; | ||
2340 | efx->mii.phy_id = PHY_ADDR_INVALID; | ||
2341 | board_rev = 0; | ||
2342 | } else { | ||
2343 | struct falcon_nvconfig_board_v2 *v2 = &nvconfig->board_v2; | ||
2344 | |||
2345 | efx->phy_type = v2->port0_phy_type; | ||
2346 | efx->mii.phy_id = v2->port0_phy_addr; | ||
2347 | board_rev = le16_to_cpu(v2->board_revision); | ||
2348 | } | ||
2349 | |||
2350 | EFX_LOG(efx, "PHY is %d phy_id %d\n", efx->phy_type, efx->mii.phy_id); | ||
2351 | |||
2352 | efx_set_board_info(efx, board_rev); | ||
2353 | |||
2354 | out: | ||
2355 | kfree(nvconfig); | ||
2356 | return rc; | ||
2357 | } | ||
2358 | |||
2359 | /* Probe the NIC variant (revision, ASIC vs FPGA, function count, port | ||
2360 | * count, port speed). Set workaround and feature flags accordingly. | ||
2361 | */ | ||
2362 | static int falcon_probe_nic_variant(struct efx_nic *efx) | ||
2363 | { | ||
2364 | efx_oword_t altera_build; | ||
2365 | |||
2366 | falcon_read(efx, &altera_build, ALTERA_BUILD_REG_KER); | ||
2367 | if (EFX_OWORD_FIELD(altera_build, VER_ALL)) { | ||
2368 | EFX_ERR(efx, "Falcon FPGA not supported\n"); | ||
2369 | return -ENODEV; | ||
2370 | } | ||
2371 | |||
2372 | switch (FALCON_REV(efx)) { | ||
2373 | case FALCON_REV_A0: | ||
2374 | case 0xff: | ||
2375 | EFX_ERR(efx, "Falcon rev A0 not supported\n"); | ||
2376 | return -ENODEV; | ||
2377 | |||
2378 | case FALCON_REV_A1:{ | ||
2379 | efx_oword_t nic_stat; | ||
2380 | |||
2381 | falcon_read(efx, &nic_stat, NIC_STAT_REG); | ||
2382 | |||
2383 | if (EFX_OWORD_FIELD(nic_stat, STRAP_PCIE) == 0) { | ||
2384 | EFX_ERR(efx, "Falcon rev A1 PCI-X not supported\n"); | ||
2385 | return -ENODEV; | ||
2386 | } | ||
2387 | if (!EFX_OWORD_FIELD(nic_stat, STRAP_10G)) { | ||
2388 | EFX_ERR(efx, "1G mode not supported\n"); | ||
2389 | return -ENODEV; | ||
2390 | } | ||
2391 | break; | ||
2392 | } | ||
2393 | |||
2394 | case FALCON_REV_B0: | ||
2395 | break; | ||
2396 | |||
2397 | default: | ||
2398 | EFX_ERR(efx, "Unknown Falcon rev %d\n", FALCON_REV(efx)); | ||
2399 | return -ENODEV; | ||
2400 | } | ||
2401 | |||
2402 | return 0; | ||
2403 | } | ||
2404 | |||
2405 | int falcon_probe_nic(struct efx_nic *efx) | ||
2406 | { | ||
2407 | struct falcon_nic_data *nic_data; | ||
2408 | int rc; | ||
2409 | |||
2410 | /* Initialise I2C interface state */ | ||
2411 | efx->i2c.efx = efx; | ||
2412 | efx->i2c.op = &falcon_i2c_bit_operations; | ||
2413 | efx->i2c.sda = 1; | ||
2414 | efx->i2c.scl = 1; | ||
2415 | |||
2416 | /* Allocate storage for hardware specific data */ | ||
2417 | nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL); | ||
2418 | efx->nic_data = (void *) nic_data; | ||
2419 | |||
2420 | /* Determine number of ports etc. */ | ||
2421 | rc = falcon_probe_nic_variant(efx); | ||
2422 | if (rc) | ||
2423 | goto fail1; | ||
2424 | |||
2425 | /* Probe secondary function if expected */ | ||
2426 | if (FALCON_IS_DUAL_FUNC(efx)) { | ||
2427 | struct pci_dev *dev = pci_dev_get(efx->pci_dev); | ||
2428 | |||
2429 | while ((dev = pci_get_device(EFX_VENDID_SFC, FALCON_A_S_DEVID, | ||
2430 | dev))) { | ||
2431 | if (dev->bus == efx->pci_dev->bus && | ||
2432 | dev->devfn == efx->pci_dev->devfn + 1) { | ||
2433 | nic_data->pci_dev2 = dev; | ||
2434 | break; | ||
2435 | } | ||
2436 | } | ||
2437 | if (!nic_data->pci_dev2) { | ||
2438 | EFX_ERR(efx, "failed to find secondary function\n"); | ||
2439 | rc = -ENODEV; | ||
2440 | goto fail2; | ||
2441 | } | ||
2442 | } | ||
2443 | |||
2444 | /* Now we can reset the NIC */ | ||
2445 | rc = falcon_reset_hw(efx, RESET_TYPE_ALL); | ||
2446 | if (rc) { | ||
2447 | EFX_ERR(efx, "failed to reset NIC\n"); | ||
2448 | goto fail3; | ||
2449 | } | ||
2450 | |||
2451 | /* Allocate memory for INT_KER */ | ||
2452 | rc = falcon_alloc_buffer(efx, &efx->irq_status, sizeof(efx_oword_t)); | ||
2453 | if (rc) | ||
2454 | goto fail4; | ||
2455 | BUG_ON(efx->irq_status.dma_addr & 0x0f); | ||
2456 | |||
2457 | EFX_LOG(efx, "INT_KER at %llx (virt %p phys %lx)\n", | ||
2458 | (unsigned long long)efx->irq_status.dma_addr, | ||
2459 | efx->irq_status.addr, virt_to_phys(efx->irq_status.addr)); | ||
2460 | |||
2461 | /* Read in the non-volatile configuration */ | ||
2462 | rc = falcon_probe_nvconfig(efx); | ||
2463 | if (rc) | ||
2464 | goto fail5; | ||
2465 | |||
2466 | return 0; | ||
2467 | |||
2468 | fail5: | ||
2469 | falcon_free_buffer(efx, &efx->irq_status); | ||
2470 | fail4: | ||
2471 | /* fall-thru */ | ||
2472 | fail3: | ||
2473 | if (nic_data->pci_dev2) { | ||
2474 | pci_dev_put(nic_data->pci_dev2); | ||
2475 | nic_data->pci_dev2 = NULL; | ||
2476 | } | ||
2477 | fail2: | ||
2478 | /* fall-thru */ | ||
2479 | fail1: | ||
2480 | kfree(efx->nic_data); | ||
2481 | return rc; | ||
2482 | } | ||
2483 | |||
2484 | /* This call performs hardware-specific global initialisation, such as | ||
2485 | * defining the descriptor cache sizes and number of RSS channels. | ||
2486 | * It does not set up any buffers, descriptor rings or event queues. | ||
2487 | */ | ||
2488 | int falcon_init_nic(struct efx_nic *efx) | ||
2489 | { | ||
2490 | struct falcon_nic_data *data; | ||
2491 | efx_oword_t temp; | ||
2492 | unsigned thresh; | ||
2493 | int rc; | ||
2494 | |||
2495 | data = (struct falcon_nic_data *)efx->nic_data; | ||
2496 | |||
2497 | /* Set up the address region register. This is only needed | ||
2498 | * for the B0 FPGA, but since we are just pushing in the | ||
2499 | * reset defaults this may as well be unconditional. */ | ||
2500 | EFX_POPULATE_OWORD_4(temp, ADR_REGION0, 0, | ||
2501 | ADR_REGION1, (1 << 16), | ||
2502 | ADR_REGION2, (2 << 16), | ||
2503 | ADR_REGION3, (3 << 16)); | ||
2504 | falcon_write(efx, &temp, ADR_REGION_REG_KER); | ||
2505 | |||
2506 | /* Use on-chip SRAM */ | ||
2507 | falcon_read(efx, &temp, NIC_STAT_REG); | ||
2508 | EFX_SET_OWORD_FIELD(temp, ONCHIP_SRAM, 1); | ||
2509 | falcon_write(efx, &temp, NIC_STAT_REG); | ||
2510 | |||
2511 | /* Set buffer table mode */ | ||
2512 | EFX_POPULATE_OWORD_1(temp, BUF_TBL_MODE, BUF_TBL_MODE_FULL); | ||
2513 | falcon_write(efx, &temp, BUF_TBL_CFG_REG_KER); | ||
2514 | |||
2515 | rc = falcon_reset_sram(efx); | ||
2516 | if (rc) | ||
2517 | return rc; | ||
2518 | |||
2519 | /* Set positions of descriptor caches in SRAM. */ | ||
2520 | EFX_POPULATE_OWORD_1(temp, SRM_TX_DC_BASE_ADR, TX_DC_BASE / 8); | ||
2521 | falcon_write(efx, &temp, SRM_TX_DC_CFG_REG_KER); | ||
2522 | EFX_POPULATE_OWORD_1(temp, SRM_RX_DC_BASE_ADR, RX_DC_BASE / 8); | ||
2523 | falcon_write(efx, &temp, SRM_RX_DC_CFG_REG_KER); | ||
2524 | |||
2525 | /* Set TX descriptor cache size. */ | ||
2526 | BUILD_BUG_ON(TX_DC_ENTRIES != (16 << TX_DC_ENTRIES_ORDER)); | ||
2527 | EFX_POPULATE_OWORD_1(temp, TX_DC_SIZE, TX_DC_ENTRIES_ORDER); | ||
2528 | falcon_write(efx, &temp, TX_DC_CFG_REG_KER); | ||
2529 | |||
2530 | /* Set RX descriptor cache size. Set low watermark to size-8, as | ||
2531 | * this allows most efficient prefetching. | ||
2532 | */ | ||
2533 | BUILD_BUG_ON(RX_DC_ENTRIES != (16 << RX_DC_ENTRIES_ORDER)); | ||
2534 | EFX_POPULATE_OWORD_1(temp, RX_DC_SIZE, RX_DC_ENTRIES_ORDER); | ||
2535 | falcon_write(efx, &temp, RX_DC_CFG_REG_KER); | ||
2536 | EFX_POPULATE_OWORD_1(temp, RX_DC_PF_LWM, RX_DC_ENTRIES - 8); | ||
2537 | falcon_write(efx, &temp, RX_DC_PF_WM_REG_KER); | ||
2538 | |||
2539 | /* Clear the parity enables on the TX data fifos as | ||
2540 | * they produce false parity errors because of timing issues | ||
2541 | */ | ||
2542 | if (EFX_WORKAROUND_5129(efx)) { | ||
2543 | falcon_read(efx, &temp, SPARE_REG_KER); | ||
2544 | EFX_SET_OWORD_FIELD(temp, MEM_PERR_EN_TX_DATA, 0); | ||
2545 | falcon_write(efx, &temp, SPARE_REG_KER); | ||
2546 | } | ||
2547 | |||
2548 | /* Enable all the genuinely fatal interrupts. (They are still | ||
2549 | * masked by the overall interrupt mask, controlled by | ||
2550 | * falcon_interrupts()). | ||
2551 | * | ||
2552 | * Note: All other fatal interrupts are enabled | ||
2553 | */ | ||
2554 | EFX_POPULATE_OWORD_3(temp, | ||
2555 | ILL_ADR_INT_KER_EN, 1, | ||
2556 | RBUF_OWN_INT_KER_EN, 1, | ||
2557 | TBUF_OWN_INT_KER_EN, 1); | ||
2558 | EFX_INVERT_OWORD(temp); | ||
2559 | falcon_write(efx, &temp, FATAL_INTR_REG_KER); | ||
2560 | |||
2561 | /* Set number of RSS queues for receive path. */ | ||
2562 | falcon_read(efx, &temp, RX_FILTER_CTL_REG); | ||
2563 | if (FALCON_REV(efx) >= FALCON_REV_B0) | ||
2564 | EFX_SET_OWORD_FIELD(temp, NUM_KER, 0); | ||
2565 | else | ||
2566 | EFX_SET_OWORD_FIELD(temp, NUM_KER, efx->rss_queues - 1); | ||
2567 | if (EFX_WORKAROUND_7244(efx)) { | ||
2568 | EFX_SET_OWORD_FIELD(temp, UDP_FULL_SRCH_LIMIT, 8); | ||
2569 | EFX_SET_OWORD_FIELD(temp, UDP_WILD_SRCH_LIMIT, 8); | ||
2570 | EFX_SET_OWORD_FIELD(temp, TCP_FULL_SRCH_LIMIT, 8); | ||
2571 | EFX_SET_OWORD_FIELD(temp, TCP_WILD_SRCH_LIMIT, 8); | ||
2572 | } | ||
2573 | falcon_write(efx, &temp, RX_FILTER_CTL_REG); | ||
2574 | |||
2575 | falcon_setup_rss_indir_table(efx); | ||
2576 | |||
2577 | /* Setup RX. Wait for descriptor is broken and must | ||
2578 | * be disabled. RXDP recovery shouldn't be needed, but is. | ||
2579 | */ | ||
2580 | falcon_read(efx, &temp, RX_SELF_RST_REG_KER); | ||
2581 | EFX_SET_OWORD_FIELD(temp, RX_NODESC_WAIT_DIS, 1); | ||
2582 | EFX_SET_OWORD_FIELD(temp, RX_RECOVERY_EN, 1); | ||
2583 | if (EFX_WORKAROUND_5583(efx)) | ||
2584 | EFX_SET_OWORD_FIELD(temp, RX_ISCSI_DIS, 1); | ||
2585 | falcon_write(efx, &temp, RX_SELF_RST_REG_KER); | ||
2586 | |||
2587 | /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be | ||
2588 | * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q. | ||
2589 | */ | ||
2590 | falcon_read(efx, &temp, TX_CFG2_REG_KER); | ||
2591 | EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER, 0xfe); | ||
2592 | EFX_SET_OWORD_FIELD(temp, TX_RX_SPACER_EN, 1); | ||
2593 | EFX_SET_OWORD_FIELD(temp, TX_ONE_PKT_PER_Q, 1); | ||
2594 | EFX_SET_OWORD_FIELD(temp, TX_CSR_PUSH_EN, 0); | ||
2595 | EFX_SET_OWORD_FIELD(temp, TX_DIS_NON_IP_EV, 1); | ||
2596 | /* Enable SW_EV to inherit in char driver - assume harmless here */ | ||
2597 | EFX_SET_OWORD_FIELD(temp, TX_SW_EV_EN, 1); | ||
2598 | /* Prefetch threshold 2 => fetch when descriptor cache half empty */ | ||
2599 | EFX_SET_OWORD_FIELD(temp, TX_PREF_THRESHOLD, 2); | ||
2600 | /* Squash TX of packets of 16 bytes or less */ | ||
2601 | if (FALCON_REV(efx) >= FALCON_REV_B0 && EFX_WORKAROUND_9141(efx)) | ||
2602 | EFX_SET_OWORD_FIELD(temp, TX_FLUSH_MIN_LEN_EN_B0, 1); | ||
2603 | falcon_write(efx, &temp, TX_CFG2_REG_KER); | ||
2604 | |||
2605 | /* Do not enable TX_NO_EOP_DISC_EN, since it limits packets to 16 | ||
2606 | * descriptors (which is bad). | ||
2607 | */ | ||
2608 | falcon_read(efx, &temp, TX_CFG_REG_KER); | ||
2609 | EFX_SET_OWORD_FIELD(temp, TX_NO_EOP_DISC_EN, 0); | ||
2610 | falcon_write(efx, &temp, TX_CFG_REG_KER); | ||
2611 | |||
2612 | /* RX config */ | ||
2613 | falcon_read(efx, &temp, RX_CFG_REG_KER); | ||
2614 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_DESC_PUSH_EN, 0); | ||
2615 | if (EFX_WORKAROUND_7575(efx)) | ||
2616 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_USR_BUF_SIZE, | ||
2617 | (3 * 4096) / 32); | ||
2618 | if (FALCON_REV(efx) >= FALCON_REV_B0) | ||
2619 | EFX_SET_OWORD_FIELD(temp, RX_INGR_EN_B0, 1); | ||
2620 | |||
2621 | /* RX FIFO flow control thresholds */ | ||
2622 | thresh = ((rx_xon_thresh_bytes >= 0) ? | ||
2623 | rx_xon_thresh_bytes : efx->type->rx_xon_thresh); | ||
2624 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_MAC_TH, thresh / 256); | ||
2625 | thresh = ((rx_xoff_thresh_bytes >= 0) ? | ||
2626 | rx_xoff_thresh_bytes : efx->type->rx_xoff_thresh); | ||
2627 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_MAC_TH, thresh / 256); | ||
2628 | /* RX control FIFO thresholds [32 entries] */ | ||
2629 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XON_TX_TH, 25); | ||
2630 | EFX_SET_OWORD_FIELD_VER(efx, temp, RX_XOFF_TX_TH, 20); | ||
2631 | falcon_write(efx, &temp, RX_CFG_REG_KER); | ||
2632 | |||
2633 | /* Set destination of both TX and RX Flush events */ | ||
2634 | if (FALCON_REV(efx) >= FALCON_REV_B0) { | ||
2635 | EFX_POPULATE_OWORD_1(temp, FLS_EVQ_ID, 0); | ||
2636 | falcon_write(efx, &temp, DP_CTRL_REG); | ||
2637 | } | ||
2638 | |||
2639 | return 0; | ||
2640 | } | ||
2641 | |||
2642 | void falcon_remove_nic(struct efx_nic *efx) | ||
2643 | { | ||
2644 | struct falcon_nic_data *nic_data = efx->nic_data; | ||
2645 | |||
2646 | falcon_free_buffer(efx, &efx->irq_status); | ||
2647 | |||
2648 | (void) falcon_reset_hw(efx, RESET_TYPE_ALL); | ||
2649 | |||
2650 | /* Release the second function after the reset */ | ||
2651 | if (nic_data->pci_dev2) { | ||
2652 | pci_dev_put(nic_data->pci_dev2); | ||
2653 | nic_data->pci_dev2 = NULL; | ||
2654 | } | ||
2655 | |||
2656 | /* Tear down the private nic state */ | ||
2657 | kfree(efx->nic_data); | ||
2658 | efx->nic_data = NULL; | ||
2659 | } | ||
2660 | |||
2661 | void falcon_update_nic_stats(struct efx_nic *efx) | ||
2662 | { | ||
2663 | efx_oword_t cnt; | ||
2664 | |||
2665 | falcon_read(efx, &cnt, RX_NODESC_DROP_REG_KER); | ||
2666 | efx->n_rx_nodesc_drop_cnt += EFX_OWORD_FIELD(cnt, RX_NODESC_DROP_CNT); | ||
2667 | } | ||
2668 | |||
2669 | /************************************************************************** | ||
2670 | * | ||
2671 | * Revision-dependent attributes used by efx.c | ||
2672 | * | ||
2673 | ************************************************************************** | ||
2674 | */ | ||
2675 | |||
2676 | struct efx_nic_type falcon_a_nic_type = { | ||
2677 | .mem_bar = 2, | ||
2678 | .mem_map_size = 0x20000, | ||
2679 | .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_A1, | ||
2680 | .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_A1, | ||
2681 | .buf_tbl_base = BUF_TBL_KER_A1, | ||
2682 | .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_A1, | ||
2683 | .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_A1, | ||
2684 | .txd_ring_mask = FALCON_TXD_RING_MASK, | ||
2685 | .rxd_ring_mask = FALCON_RXD_RING_MASK, | ||
2686 | .evq_size = FALCON_EVQ_SIZE, | ||
2687 | .max_dma_mask = FALCON_DMA_MASK, | ||
2688 | .tx_dma_mask = FALCON_TX_DMA_MASK, | ||
2689 | .bug5391_mask = 0xf, | ||
2690 | .rx_xoff_thresh = 2048, | ||
2691 | .rx_xon_thresh = 512, | ||
2692 | .rx_buffer_padding = 0x24, | ||
2693 | .max_interrupt_mode = EFX_INT_MODE_MSI, | ||
2694 | .phys_addr_channels = 4, | ||
2695 | }; | ||
2696 | |||
2697 | struct efx_nic_type falcon_b_nic_type = { | ||
2698 | .mem_bar = 2, | ||
2699 | /* Map everything up to and including the RSS indirection | ||
2700 | * table. Don't map MSI-X table, MSI-X PBA since Linux | ||
2701 | * requires that they not be mapped. */ | ||
2702 | .mem_map_size = RX_RSS_INDIR_TBL_B0 + 0x800, | ||
2703 | .txd_ptr_tbl_base = TX_DESC_PTR_TBL_KER_B0, | ||
2704 | .rxd_ptr_tbl_base = RX_DESC_PTR_TBL_KER_B0, | ||
2705 | .buf_tbl_base = BUF_TBL_KER_B0, | ||
2706 | .evq_ptr_tbl_base = EVQ_PTR_TBL_KER_B0, | ||
2707 | .evq_rptr_tbl_base = EVQ_RPTR_REG_KER_B0, | ||
2708 | .txd_ring_mask = FALCON_TXD_RING_MASK, | ||
2709 | .rxd_ring_mask = FALCON_RXD_RING_MASK, | ||
2710 | .evq_size = FALCON_EVQ_SIZE, | ||
2711 | .max_dma_mask = FALCON_DMA_MASK, | ||
2712 | .tx_dma_mask = FALCON_TX_DMA_MASK, | ||
2713 | .bug5391_mask = 0, | ||
2714 | .rx_xoff_thresh = 54272, /* ~80Kb - 3*max MTU */ | ||
2715 | .rx_xon_thresh = 27648, /* ~3*max MTU */ | ||
2716 | .rx_buffer_padding = 0, | ||
2717 | .max_interrupt_mode = EFX_INT_MODE_MSIX, | ||
2718 | .phys_addr_channels = 32, /* Hardware limit is 64, but the legacy | ||
2719 | * interrupt handler only supports 32 | ||
2720 | * channels */ | ||
2721 | }; | ||
2722 | |||