aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/sfc/bitfield.h
diff options
context:
space:
mode:
authorBen Hutchings <bhutchings@solarflare.com>2008-04-27 07:55:59 -0400
committerJeff Garzik <jgarzik@redhat.com>2008-04-29 01:42:43 -0400
commit8ceee660aacb29721e26f08e336c58dc4847d1bd (patch)
tree158122642e6f21fe85d072c50d6185a0d0cf6834 /drivers/net/sfc/bitfield.h
parent358c12953b88c5a06a57c33eb27c753b2e7934d1 (diff)
New driver "sfc" for Solarstorm SFC4000 controller.
The driver supports the 10Xpress PHY and XFP modules on our reference designs SFE4001 and SFE4002 and the SMC models SMC10GPCIe-XFP and SMC10GPCIe-10BT. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com> Signed-off-by: Jeff Garzik <jgarzik@redhat.com>
Diffstat (limited to 'drivers/net/sfc/bitfield.h')
-rw-r--r--drivers/net/sfc/bitfield.h508
1 files changed, 508 insertions, 0 deletions
diff --git a/drivers/net/sfc/bitfield.h b/drivers/net/sfc/bitfield.h
new file mode 100644
index 000000000000..2806201644cc
--- /dev/null
+++ b/drivers/net/sfc/bitfield.h
@@ -0,0 +1,508 @@
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#ifndef EFX_BITFIELD_H
12#define EFX_BITFIELD_H
13
14/*
15 * Efx bitfield access
16 *
17 * Efx NICs make extensive use of bitfields up to 128 bits
18 * wide. Since there is no native 128-bit datatype on most systems,
19 * and since 64-bit datatypes are inefficient on 32-bit systems and
20 * vice versa, we wrap accesses in a way that uses the most efficient
21 * datatype.
22 *
23 * The NICs are PCI devices and therefore little-endian. Since most
24 * of the quantities that we deal with are DMAed to/from host memory,
25 * we define our datatypes (efx_oword_t, efx_qword_t and
26 * efx_dword_t) to be little-endian.
27 */
28
29/* Lowest bit numbers and widths */
30#define EFX_DUMMY_FIELD_LBN 0
31#define EFX_DUMMY_FIELD_WIDTH 0
32#define EFX_DWORD_0_LBN 0
33#define EFX_DWORD_0_WIDTH 32
34#define EFX_DWORD_1_LBN 32
35#define EFX_DWORD_1_WIDTH 32
36#define EFX_DWORD_2_LBN 64
37#define EFX_DWORD_2_WIDTH 32
38#define EFX_DWORD_3_LBN 96
39#define EFX_DWORD_3_WIDTH 32
40
41/* Specified attribute (e.g. LBN) of the specified field */
42#define EFX_VAL(field, attribute) field ## _ ## attribute
43/* Low bit number of the specified field */
44#define EFX_LOW_BIT(field) EFX_VAL(field, LBN)
45/* Bit width of the specified field */
46#define EFX_WIDTH(field) EFX_VAL(field, WIDTH)
47/* High bit number of the specified field */
48#define EFX_HIGH_BIT(field) (EFX_LOW_BIT(field) + EFX_WIDTH(field) - 1)
49/* Mask equal in width to the specified field.
50 *
51 * For example, a field with width 5 would have a mask of 0x1f.
52 *
53 * The maximum width mask that can be generated is 64 bits.
54 */
55#define EFX_MASK64(field) \
56 (EFX_WIDTH(field) == 64 ? ~((u64) 0) : \
57 (((((u64) 1) << EFX_WIDTH(field))) - 1))
58
59/* Mask equal in width to the specified field.
60 *
61 * For example, a field with width 5 would have a mask of 0x1f.
62 *
63 * The maximum width mask that can be generated is 32 bits. Use
64 * EFX_MASK64 for higher width fields.
65 */
66#define EFX_MASK32(field) \
67 (EFX_WIDTH(field) == 32 ? ~((u32) 0) : \
68 (((((u32) 1) << EFX_WIDTH(field))) - 1))
69
70/* A doubleword (i.e. 4 byte) datatype - little-endian in HW */
71typedef union efx_dword {
72 __le32 u32[1];
73} efx_dword_t;
74
75/* A quadword (i.e. 8 byte) datatype - little-endian in HW */
76typedef union efx_qword {
77 __le64 u64[1];
78 __le32 u32[2];
79 efx_dword_t dword[2];
80} efx_qword_t;
81
82/* An octword (eight-word, i.e. 16 byte) datatype - little-endian in HW */
83typedef union efx_oword {
84 __le64 u64[2];
85 efx_qword_t qword[2];
86 __le32 u32[4];
87 efx_dword_t dword[4];
88} efx_oword_t;
89
90/* Format string and value expanders for printk */
91#define EFX_DWORD_FMT "%08x"
92#define EFX_QWORD_FMT "%08x:%08x"
93#define EFX_OWORD_FMT "%08x:%08x:%08x:%08x"
94#define EFX_DWORD_VAL(dword) \
95 ((unsigned int) le32_to_cpu((dword).u32[0]))
96#define EFX_QWORD_VAL(qword) \
97 ((unsigned int) le32_to_cpu((qword).u32[1])), \
98 ((unsigned int) le32_to_cpu((qword).u32[0]))
99#define EFX_OWORD_VAL(oword) \
100 ((unsigned int) le32_to_cpu((oword).u32[3])), \
101 ((unsigned int) le32_to_cpu((oword).u32[2])), \
102 ((unsigned int) le32_to_cpu((oword).u32[1])), \
103 ((unsigned int) le32_to_cpu((oword).u32[0]))
104
105/*
106 * Extract bit field portion [low,high) from the native-endian element
107 * which contains bits [min,max).
108 *
109 * For example, suppose "element" represents the high 32 bits of a
110 * 64-bit value, and we wish to extract the bits belonging to the bit
111 * field occupying bits 28-45 of this 64-bit value.
112 *
113 * Then EFX_EXTRACT ( element, 32, 63, 28, 45 ) would give
114 *
115 * ( element ) << 4
116 *
117 * The result will contain the relevant bits filled in in the range
118 * [0,high-low), with garbage in bits [high-low+1,...).
119 */
120#define EFX_EXTRACT_NATIVE(native_element, min, max, low, high) \
121 (((low > max) || (high < min)) ? 0 : \
122 ((low > min) ? \
123 ((native_element) >> (low - min)) : \
124 ((native_element) << (min - low))))
125
126/*
127 * Extract bit field portion [low,high) from the 64-bit little-endian
128 * element which contains bits [min,max)
129 */
130#define EFX_EXTRACT64(element, min, max, low, high) \
131 EFX_EXTRACT_NATIVE(le64_to_cpu(element), min, max, low, high)
132
133/*
134 * Extract bit field portion [low,high) from the 32-bit little-endian
135 * element which contains bits [min,max)
136 */
137#define EFX_EXTRACT32(element, min, max, low, high) \
138 EFX_EXTRACT_NATIVE(le32_to_cpu(element), min, max, low, high)
139
140#define EFX_EXTRACT_OWORD64(oword, low, high) \
141 (EFX_EXTRACT64((oword).u64[0], 0, 63, low, high) | \
142 EFX_EXTRACT64((oword).u64[1], 64, 127, low, high))
143
144#define EFX_EXTRACT_QWORD64(qword, low, high) \
145 EFX_EXTRACT64((qword).u64[0], 0, 63, low, high)
146
147#define EFX_EXTRACT_OWORD32(oword, low, high) \
148 (EFX_EXTRACT32((oword).u32[0], 0, 31, low, high) | \
149 EFX_EXTRACT32((oword).u32[1], 32, 63, low, high) | \
150 EFX_EXTRACT32((oword).u32[2], 64, 95, low, high) | \
151 EFX_EXTRACT32((oword).u32[3], 96, 127, low, high))
152
153#define EFX_EXTRACT_QWORD32(qword, low, high) \
154 (EFX_EXTRACT32((qword).u32[0], 0, 31, low, high) | \
155 EFX_EXTRACT32((qword).u32[1], 32, 63, low, high))
156
157#define EFX_EXTRACT_DWORD(dword, low, high) \
158 EFX_EXTRACT32((dword).u32[0], 0, 31, low, high)
159
160#define EFX_OWORD_FIELD64(oword, field) \
161 (EFX_EXTRACT_OWORD64(oword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
162 & EFX_MASK64(field))
163
164#define EFX_QWORD_FIELD64(qword, field) \
165 (EFX_EXTRACT_QWORD64(qword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
166 & EFX_MASK64(field))
167
168#define EFX_OWORD_FIELD32(oword, field) \
169 (EFX_EXTRACT_OWORD32(oword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
170 & EFX_MASK32(field))
171
172#define EFX_QWORD_FIELD32(qword, field) \
173 (EFX_EXTRACT_QWORD32(qword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
174 & EFX_MASK32(field))
175
176#define EFX_DWORD_FIELD(dword, field) \
177 (EFX_EXTRACT_DWORD(dword, EFX_LOW_BIT(field), EFX_HIGH_BIT(field)) \
178 & EFX_MASK32(field))
179
180#define EFX_OWORD_IS_ZERO64(oword) \
181 (((oword).u64[0] | (oword).u64[1]) == (__force __le64) 0)
182
183#define EFX_QWORD_IS_ZERO64(qword) \
184 (((qword).u64[0]) == (__force __le64) 0)
185
186#define EFX_OWORD_IS_ZERO32(oword) \
187 (((oword).u32[0] | (oword).u32[1] | (oword).u32[2] | (oword).u32[3]) \
188 == (__force __le32) 0)
189
190#define EFX_QWORD_IS_ZERO32(qword) \
191 (((qword).u32[0] | (qword).u32[1]) == (__force __le32) 0)
192
193#define EFX_DWORD_IS_ZERO(dword) \
194 (((dword).u32[0]) == (__force __le32) 0)
195
196#define EFX_OWORD_IS_ALL_ONES64(oword) \
197 (((oword).u64[0] & (oword).u64[1]) == ~((__force __le64) 0))
198
199#define EFX_QWORD_IS_ALL_ONES64(qword) \
200 ((qword).u64[0] == ~((__force __le64) 0))
201
202#define EFX_OWORD_IS_ALL_ONES32(oword) \
203 (((oword).u32[0] & (oword).u32[1] & (oword).u32[2] & (oword).u32[3]) \
204 == ~((__force __le32) 0))
205
206#define EFX_QWORD_IS_ALL_ONES32(qword) \
207 (((qword).u32[0] & (qword).u32[1]) == ~((__force __le32) 0))
208
209#define EFX_DWORD_IS_ALL_ONES(dword) \
210 ((dword).u32[0] == ~((__force __le32) 0))
211
212#if BITS_PER_LONG == 64
213#define EFX_OWORD_FIELD EFX_OWORD_FIELD64
214#define EFX_QWORD_FIELD EFX_QWORD_FIELD64
215#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO64
216#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO64
217#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES64
218#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES64
219#else
220#define EFX_OWORD_FIELD EFX_OWORD_FIELD32
221#define EFX_QWORD_FIELD EFX_QWORD_FIELD32
222#define EFX_OWORD_IS_ZERO EFX_OWORD_IS_ZERO32
223#define EFX_QWORD_IS_ZERO EFX_QWORD_IS_ZERO32
224#define EFX_OWORD_IS_ALL_ONES EFX_OWORD_IS_ALL_ONES32
225#define EFX_QWORD_IS_ALL_ONES EFX_QWORD_IS_ALL_ONES32
226#endif
227
228/*
229 * Construct bit field portion
230 *
231 * Creates the portion of the bit field [low,high) that lies within
232 * the range [min,max).
233 */
234#define EFX_INSERT_NATIVE64(min, max, low, high, value) \
235 (((low > max) || (high < min)) ? 0 : \
236 ((low > min) ? \
237 (((u64) (value)) << (low - min)) : \
238 (((u64) (value)) >> (min - low))))
239
240#define EFX_INSERT_NATIVE32(min, max, low, high, value) \
241 (((low > max) || (high < min)) ? 0 : \
242 ((low > min) ? \
243 (((u32) (value)) << (low - min)) : \
244 (((u32) (value)) >> (min - low))))
245
246#define EFX_INSERT_NATIVE(min, max, low, high, value) \
247 ((((max - min) >= 32) || ((high - low) >= 32)) ? \
248 EFX_INSERT_NATIVE64(min, max, low, high, value) : \
249 EFX_INSERT_NATIVE32(min, max, low, high, value))
250
251/*
252 * Construct bit field portion
253 *
254 * Creates the portion of the named bit field that lies within the
255 * range [min,max).
256 */
257#define EFX_INSERT_FIELD_NATIVE(min, max, field, value) \
258 EFX_INSERT_NATIVE(min, max, EFX_LOW_BIT(field), \
259 EFX_HIGH_BIT(field), value)
260
261/*
262 * Construct bit field
263 *
264 * Creates the portion of the named bit fields that lie within the
265 * range [min,max).
266 */
267#define EFX_INSERT_FIELDS_NATIVE(min, max, \
268 field1, value1, \
269 field2, value2, \
270 field3, value3, \
271 field4, value4, \
272 field5, value5, \
273 field6, value6, \
274 field7, value7, \
275 field8, value8, \
276 field9, value9, \
277 field10, value10) \
278 (EFX_INSERT_FIELD_NATIVE((min), (max), field1, (value1)) | \
279 EFX_INSERT_FIELD_NATIVE((min), (max), field2, (value2)) | \
280 EFX_INSERT_FIELD_NATIVE((min), (max), field3, (value3)) | \
281 EFX_INSERT_FIELD_NATIVE((min), (max), field4, (value4)) | \
282 EFX_INSERT_FIELD_NATIVE((min), (max), field5, (value5)) | \
283 EFX_INSERT_FIELD_NATIVE((min), (max), field6, (value6)) | \
284 EFX_INSERT_FIELD_NATIVE((min), (max), field7, (value7)) | \
285 EFX_INSERT_FIELD_NATIVE((min), (max), field8, (value8)) | \
286 EFX_INSERT_FIELD_NATIVE((min), (max), field9, (value9)) | \
287 EFX_INSERT_FIELD_NATIVE((min), (max), field10, (value10)))
288
289#define EFX_INSERT_FIELDS64(...) \
290 cpu_to_le64(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
291
292#define EFX_INSERT_FIELDS32(...) \
293 cpu_to_le32(EFX_INSERT_FIELDS_NATIVE(__VA_ARGS__))
294
295#define EFX_POPULATE_OWORD64(oword, ...) do { \
296 (oword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
297 (oword).u64[1] = EFX_INSERT_FIELDS64(64, 127, __VA_ARGS__); \
298 } while (0)
299
300#define EFX_POPULATE_QWORD64(qword, ...) do { \
301 (qword).u64[0] = EFX_INSERT_FIELDS64(0, 63, __VA_ARGS__); \
302 } while (0)
303
304#define EFX_POPULATE_OWORD32(oword, ...) do { \
305 (oword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
306 (oword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
307 (oword).u32[2] = EFX_INSERT_FIELDS32(64, 95, __VA_ARGS__); \
308 (oword).u32[3] = EFX_INSERT_FIELDS32(96, 127, __VA_ARGS__); \
309 } while (0)
310
311#define EFX_POPULATE_QWORD32(qword, ...) do { \
312 (qword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
313 (qword).u32[1] = EFX_INSERT_FIELDS32(32, 63, __VA_ARGS__); \
314 } while (0)
315
316#define EFX_POPULATE_DWORD(dword, ...) do { \
317 (dword).u32[0] = EFX_INSERT_FIELDS32(0, 31, __VA_ARGS__); \
318 } while (0)
319
320#if BITS_PER_LONG == 64
321#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD64
322#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD64
323#else
324#define EFX_POPULATE_OWORD EFX_POPULATE_OWORD32
325#define EFX_POPULATE_QWORD EFX_POPULATE_QWORD32
326#endif
327
328/* Populate an octword field with various numbers of arguments */
329#define EFX_POPULATE_OWORD_10 EFX_POPULATE_OWORD
330#define EFX_POPULATE_OWORD_9(oword, ...) \
331 EFX_POPULATE_OWORD_10(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
332#define EFX_POPULATE_OWORD_8(oword, ...) \
333 EFX_POPULATE_OWORD_9(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
334#define EFX_POPULATE_OWORD_7(oword, ...) \
335 EFX_POPULATE_OWORD_8(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
336#define EFX_POPULATE_OWORD_6(oword, ...) \
337 EFX_POPULATE_OWORD_7(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
338#define EFX_POPULATE_OWORD_5(oword, ...) \
339 EFX_POPULATE_OWORD_6(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
340#define EFX_POPULATE_OWORD_4(oword, ...) \
341 EFX_POPULATE_OWORD_5(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
342#define EFX_POPULATE_OWORD_3(oword, ...) \
343 EFX_POPULATE_OWORD_4(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
344#define EFX_POPULATE_OWORD_2(oword, ...) \
345 EFX_POPULATE_OWORD_3(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
346#define EFX_POPULATE_OWORD_1(oword, ...) \
347 EFX_POPULATE_OWORD_2(oword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
348#define EFX_ZERO_OWORD(oword) \
349 EFX_POPULATE_OWORD_1(oword, EFX_DUMMY_FIELD, 0)
350#define EFX_SET_OWORD(oword) \
351 EFX_POPULATE_OWORD_4(oword, \
352 EFX_DWORD_0, 0xffffffff, \
353 EFX_DWORD_1, 0xffffffff, \
354 EFX_DWORD_2, 0xffffffff, \
355 EFX_DWORD_3, 0xffffffff)
356
357/* Populate a quadword field with various numbers of arguments */
358#define EFX_POPULATE_QWORD_10 EFX_POPULATE_QWORD
359#define EFX_POPULATE_QWORD_9(qword, ...) \
360 EFX_POPULATE_QWORD_10(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
361#define EFX_POPULATE_QWORD_8(qword, ...) \
362 EFX_POPULATE_QWORD_9(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
363#define EFX_POPULATE_QWORD_7(qword, ...) \
364 EFX_POPULATE_QWORD_8(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
365#define EFX_POPULATE_QWORD_6(qword, ...) \
366 EFX_POPULATE_QWORD_7(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
367#define EFX_POPULATE_QWORD_5(qword, ...) \
368 EFX_POPULATE_QWORD_6(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
369#define EFX_POPULATE_QWORD_4(qword, ...) \
370 EFX_POPULATE_QWORD_5(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
371#define EFX_POPULATE_QWORD_3(qword, ...) \
372 EFX_POPULATE_QWORD_4(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
373#define EFX_POPULATE_QWORD_2(qword, ...) \
374 EFX_POPULATE_QWORD_3(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
375#define EFX_POPULATE_QWORD_1(qword, ...) \
376 EFX_POPULATE_QWORD_2(qword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
377#define EFX_ZERO_QWORD(qword) \
378 EFX_POPULATE_QWORD_1(qword, EFX_DUMMY_FIELD, 0)
379#define EFX_SET_QWORD(qword) \
380 EFX_POPULATE_QWORD_2(qword, \
381 EFX_DWORD_0, 0xffffffff, \
382 EFX_DWORD_1, 0xffffffff)
383
384/* Populate a dword field with various numbers of arguments */
385#define EFX_POPULATE_DWORD_10 EFX_POPULATE_DWORD
386#define EFX_POPULATE_DWORD_9(dword, ...) \
387 EFX_POPULATE_DWORD_10(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
388#define EFX_POPULATE_DWORD_8(dword, ...) \
389 EFX_POPULATE_DWORD_9(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
390#define EFX_POPULATE_DWORD_7(dword, ...) \
391 EFX_POPULATE_DWORD_8(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
392#define EFX_POPULATE_DWORD_6(dword, ...) \
393 EFX_POPULATE_DWORD_7(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
394#define EFX_POPULATE_DWORD_5(dword, ...) \
395 EFX_POPULATE_DWORD_6(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
396#define EFX_POPULATE_DWORD_4(dword, ...) \
397 EFX_POPULATE_DWORD_5(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
398#define EFX_POPULATE_DWORD_3(dword, ...) \
399 EFX_POPULATE_DWORD_4(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
400#define EFX_POPULATE_DWORD_2(dword, ...) \
401 EFX_POPULATE_DWORD_3(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
402#define EFX_POPULATE_DWORD_1(dword, ...) \
403 EFX_POPULATE_DWORD_2(dword, EFX_DUMMY_FIELD, 0, __VA_ARGS__)
404#define EFX_ZERO_DWORD(dword) \
405 EFX_POPULATE_DWORD_1(dword, EFX_DUMMY_FIELD, 0)
406#define EFX_SET_DWORD(dword) \
407 EFX_POPULATE_DWORD_1(dword, EFX_DWORD_0, 0xffffffff)
408
409/*
410 * Modify a named field within an already-populated structure. Used
411 * for read-modify-write operations.
412 *
413 */
414
415#define EFX_INVERT_OWORD(oword) do { \
416 (oword).u64[0] = ~((oword).u64[0]); \
417 (oword).u64[1] = ~((oword).u64[1]); \
418 } while (0)
419
420#define EFX_INSERT_FIELD64(...) \
421 cpu_to_le64(EFX_INSERT_FIELD_NATIVE(__VA_ARGS__))
422
423#define EFX_INSERT_FIELD32(...) \
424 cpu_to_le32(EFX_INSERT_FIELD_NATIVE(__VA_ARGS__))
425
426#define EFX_INPLACE_MASK64(min, max, field) \
427 EFX_INSERT_FIELD64(min, max, field, EFX_MASK64(field))
428
429#define EFX_INPLACE_MASK32(min, max, field) \
430 EFX_INSERT_FIELD32(min, max, field, EFX_MASK32(field))
431
432#define EFX_SET_OWORD_FIELD64(oword, field, value) do { \
433 (oword).u64[0] = (((oword).u64[0] \
434 & ~EFX_INPLACE_MASK64(0, 63, field)) \
435 | EFX_INSERT_FIELD64(0, 63, field, value)); \
436 (oword).u64[1] = (((oword).u64[1] \
437 & ~EFX_INPLACE_MASK64(64, 127, field)) \
438 | EFX_INSERT_FIELD64(64, 127, field, value)); \
439 } while (0)
440
441#define EFX_SET_QWORD_FIELD64(qword, field, value) do { \
442 (qword).u64[0] = (((qword).u64[0] \
443 & ~EFX_INPLACE_MASK64(0, 63, field)) \
444 | EFX_INSERT_FIELD64(0, 63, field, value)); \
445 } while (0)
446
447#define EFX_SET_OWORD_FIELD32(oword, field, value) do { \
448 (oword).u32[0] = (((oword).u32[0] \
449 & ~EFX_INPLACE_MASK32(0, 31, field)) \
450 | EFX_INSERT_FIELD32(0, 31, field, value)); \
451 (oword).u32[1] = (((oword).u32[1] \
452 & ~EFX_INPLACE_MASK32(32, 63, field)) \
453 | EFX_INSERT_FIELD32(32, 63, field, value)); \
454 (oword).u32[2] = (((oword).u32[2] \
455 & ~EFX_INPLACE_MASK32(64, 95, field)) \
456 | EFX_INSERT_FIELD32(64, 95, field, value)); \
457 (oword).u32[3] = (((oword).u32[3] \
458 & ~EFX_INPLACE_MASK32(96, 127, field)) \
459 | EFX_INSERT_FIELD32(96, 127, field, value)); \
460 } while (0)
461
462#define EFX_SET_QWORD_FIELD32(qword, field, value) do { \
463 (qword).u32[0] = (((qword).u32[0] \
464 & ~EFX_INPLACE_MASK32(0, 31, field)) \
465 | EFX_INSERT_FIELD32(0, 31, field, value)); \
466 (qword).u32[1] = (((qword).u32[1] \
467 & ~EFX_INPLACE_MASK32(32, 63, field)) \
468 | EFX_INSERT_FIELD32(32, 63, field, value)); \
469 } while (0)
470
471#define EFX_SET_DWORD_FIELD(dword, field, value) do { \
472 (dword).u32[0] = (((dword).u32[0] \
473 & ~EFX_INPLACE_MASK32(0, 31, field)) \
474 | EFX_INSERT_FIELD32(0, 31, field, value)); \
475 } while (0)
476
477#if BITS_PER_LONG == 64
478#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD64
479#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD64
480#else
481#define EFX_SET_OWORD_FIELD EFX_SET_OWORD_FIELD32
482#define EFX_SET_QWORD_FIELD EFX_SET_QWORD_FIELD32
483#endif
484
485#define EFX_SET_OWORD_FIELD_VER(efx, oword, field, value) do { \
486 if (FALCON_REV(efx) >= FALCON_REV_B0) { \
487 EFX_SET_OWORD_FIELD((oword), field##_B0, (value)); \
488 } else { \
489 EFX_SET_OWORD_FIELD((oword), field##_A1, (value)); \
490 } \
491} while (0)
492
493#define EFX_QWORD_FIELD_VER(efx, qword, field) \
494 (FALCON_REV(efx) >= FALCON_REV_B0 ? \
495 EFX_QWORD_FIELD((qword), field##_B0) : \
496 EFX_QWORD_FIELD((qword), field##_A1))
497
498/* Used to avoid compiler warnings about shift range exceeding width
499 * of the data types when dma_addr_t is only 32 bits wide.
500 */
501#define DMA_ADDR_T_WIDTH (8 * sizeof(dma_addr_t))
502#define EFX_DMA_TYPE_WIDTH(width) \
503 (((width) < DMA_ADDR_T_WIDTH) ? (width) : DMA_ADDR_T_WIDTH)
504#define EFX_DMA_MAX_MASK ((DMA_ADDR_T_WIDTH == 64) ? \
505 ~((u64) 0) : ~((u32) 0))
506#define EFX_DMA_MASK(mask) ((mask) & EFX_DMA_MAX_MASK)
507
508#endif /* EFX_BITFIELD_H */