aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/s2io.h
diff options
context:
space:
mode:
authorRavinandan Arakali <Ravinandan.Arakali@neterion.com>2006-01-25 14:53:07 -0500
committerJeff Garzik <jgarzik@pobox.com>2006-01-27 10:34:38 -0500
commit7d3d0439f574a4857c97b3ad2e63b082b7382d7e (patch)
tree320e1024829ee4939f9d66d5bcddcdb43258cbcb /drivers/net/s2io.h
parentefd51b5c6798d103e3aa683464aebb2019b62119 (diff)
[PATCH] S2io: Large Receive Offload (LRO) feature(v2) for Neterion (s2io) 10GbE Xframe PCI-X and PCI-E NICs
Hi, Below is a patch for the Large Receive Offload feature. Please review and let us know your comments. LRO algorithm was described in an OLS 2005 presentation, located at ftp.s2io.com user: linuxdocs password: HALdocs The same ftp site has Programming Manual for Xframe-I ASIC. LRO feature is supported on Neterion Xframe-I, Xframe-II and Xframe-Express 10GbE NICs. Brief description: The Large Receive Offload(LRO) feature is a stateless offload that is complementary to TSO feature but on the receive path. The idea is to combine and collapse(upto 64K maximum) in the driver, in-sequence TCP packets belonging to the same session. It is mainly designed to improve 1500 mtu receive performance, since Jumbo frame performance is already close to 10GbE line rate. Some performance numbers are attached below. Implementation details: 1. Handle packet chains from multiple sessions(current default MAX_LRO_SESSSIONS=32). 2. Examine each packet for eligiblity to aggregate. A packet is considered eligible if it meets all the below criteria. a. It is a TCP/IP packet and L2 type is not LLC or SNAP. b. The packet has no checksum errors(L3 and L4). c. There are no IP options. The only TCP option supported is timestamps. d. Search and locate the LRO object corresponding to this socket and ensure packet is in TCP sequence. e. It's not a special packet(SYN, FIN, RST, URG, PSH etc. flags are not set). f. TCP payload is non-zero(It's not a pure ACK). g. It's not an IP-fragmented packet. 3. If a packet is found eligible, the LRO object is updated with information such as next sequence number expected, current length of aggregated packet and so on. If not eligible or max packets reached, update IP and TCP headers of first packet in the chain and pass it up to stack. 4. The frag_list in skb structure is used to chain packets into one large packet. Kernel changes required: None Performance results: Main focus of the initial testing was on 1500 mtu receiver, since this is a bottleneck not covered by the existing stateless offloads. There are couple disclaimers about the performance results below: 1. Your mileage will vary!!!! We initially concentrated on couple pci-x 2.0 platforms that are powerful enough to push 10 GbE NIC and do not have bottlenecks other than cpu%; testing on other platforms is still in progress. On some lower end systems we are seeing lower gains. 2. Current LRO implementation is still (for the most part) software based, and therefore performance potential of the feature is far from being realized. Full hw implementation of LRO is expected in the next version of Xframe ASIC. Performance delta(with MTU=1500) going from LRO disabled to enabled: IBM 2-way Xeon (x366) : 3.5 to 7.1 Gbps 2-way Opteron : 4.5 to 6.1 Gbps Signed-off-by: Ravinandan Arakali <ravinandan.arakali@neterion.com> Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
Diffstat (limited to 'drivers/net/s2io.h')
-rw-r--r--drivers/net/s2io.h38
1 files changed, 38 insertions, 0 deletions
diff --git a/drivers/net/s2io.h b/drivers/net/s2io.h
index 852a6a899d07..65cc59ac71f0 100644
--- a/drivers/net/s2io.h
+++ b/drivers/net/s2io.h
@@ -78,6 +78,13 @@ int debug_level = ERR_DBG; /* Default level. */
78typedef struct { 78typedef struct {
79 unsigned long long single_ecc_errs; 79 unsigned long long single_ecc_errs;
80 unsigned long long double_ecc_errs; 80 unsigned long long double_ecc_errs;
81 /* LRO statistics */
82 unsigned long long clubbed_frms_cnt;
83 unsigned long long sending_both;
84 unsigned long long outof_sequence_pkts;
85 unsigned long long flush_max_pkts;
86 unsigned long long sum_avg_pkts_aggregated;
87 unsigned long long num_aggregations;
81} swStat_t; 88} swStat_t;
82 89
83/* The statistics block of Xena */ 90/* The statistics block of Xena */
@@ -680,6 +687,24 @@ struct msix_info_st {
680 u64 data; 687 u64 data;
681}; 688};
682 689
690/* Data structure to represent a LRO session */
691typedef struct lro {
692 struct sk_buff *parent;
693 u8 *l2h;
694 struct iphdr *iph;
695 struct tcphdr *tcph;
696 u32 tcp_next_seq;
697 u32 tcp_ack;
698 int total_len;
699 int frags_len;
700 int sg_num;
701 int in_use;
702 u16 window;
703 u32 cur_tsval;
704 u32 cur_tsecr;
705 u8 saw_ts;
706}lro_t;
707
683/* Structure representing one instance of the NIC */ 708/* Structure representing one instance of the NIC */
684struct s2io_nic { 709struct s2io_nic {
685 int rxd_mode; 710 int rxd_mode;
@@ -784,6 +809,13 @@ struct s2io_nic {
784#define XFRAME_II_DEVICE 2 809#define XFRAME_II_DEVICE 2
785 u8 device_type; 810 u8 device_type;
786 811
812#define MAX_LRO_SESSIONS 32
813 lro_t lro0_n[MAX_LRO_SESSIONS];
814 unsigned long clubbed_frms_cnt;
815 unsigned long sending_both;
816 u8 lro;
817 u16 lro_max_aggr_per_sess;
818
787#define INTA 0 819#define INTA 0
788#define MSI 1 820#define MSI 1
789#define MSI_X 2 821#define MSI_X 2
@@ -940,4 +972,10 @@ static void s2io_card_down(nic_t *nic);
940static int s2io_card_up(nic_t *nic); 972static int s2io_card_up(nic_t *nic);
941int get_xena_rev_id(struct pci_dev *pdev); 973int get_xena_rev_id(struct pci_dev *pdev);
942void restore_xmsi_data(nic_t *nic); 974void restore_xmsi_data(nic_t *nic);
975
976static int s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, lro_t **lro, RxD_t *rxdp, nic_t *sp);
977static void clear_lro_session(lro_t *lro);
978static void queue_rx_frame(struct sk_buff *skb);
979static void update_L3L4_header(nic_t *sp, lro_t *lro);
980static void lro_append_pkt(nic_t *sp, lro_t *lro, struct sk_buff *skb, u32 tcp_len);
943#endif /* _S2IO_H */ 981#endif /* _S2IO_H */