diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/s2io.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/s2io.c')
-rw-r--r-- | drivers/net/s2io.c | 4950 |
1 files changed, 4950 insertions, 0 deletions
diff --git a/drivers/net/s2io.c b/drivers/net/s2io.c new file mode 100644 index 000000000000..9c224eba057d --- /dev/null +++ b/drivers/net/s2io.c | |||
@@ -0,0 +1,4950 @@ | |||
1 | /************************************************************************ | ||
2 | * s2io.c: A Linux PCI-X Ethernet driver for S2IO 10GbE Server NIC | ||
3 | * Copyright(c) 2002-2005 Neterion Inc. | ||
4 | |||
5 | * This software may be used and distributed according to the terms of | ||
6 | * the GNU General Public License (GPL), incorporated herein by reference. | ||
7 | * Drivers based on or derived from this code fall under the GPL and must | ||
8 | * retain the authorship, copyright and license notice. This file is not | ||
9 | * a complete program and may only be used when the entire operating | ||
10 | * system is licensed under the GPL. | ||
11 | * See the file COPYING in this distribution for more information. | ||
12 | * | ||
13 | * Credits: | ||
14 | * Jeff Garzik : For pointing out the improper error condition | ||
15 | * check in the s2io_xmit routine and also some | ||
16 | * issues in the Tx watch dog function. Also for | ||
17 | * patiently answering all those innumerable | ||
18 | * questions regaring the 2.6 porting issues. | ||
19 | * Stephen Hemminger : Providing proper 2.6 porting mechanism for some | ||
20 | * macros available only in 2.6 Kernel. | ||
21 | * Francois Romieu : For pointing out all code part that were | ||
22 | * deprecated and also styling related comments. | ||
23 | * Grant Grundler : For helping me get rid of some Architecture | ||
24 | * dependent code. | ||
25 | * Christopher Hellwig : Some more 2.6 specific issues in the driver. | ||
26 | * | ||
27 | * The module loadable parameters that are supported by the driver and a brief | ||
28 | * explaination of all the variables. | ||
29 | * rx_ring_num : This can be used to program the number of receive rings used | ||
30 | * in the driver. | ||
31 | * rx_ring_len: This defines the number of descriptors each ring can have. This | ||
32 | * is also an array of size 8. | ||
33 | * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver. | ||
34 | * tx_fifo_len: This too is an array of 8. Each element defines the number of | ||
35 | * Tx descriptors that can be associated with each corresponding FIFO. | ||
36 | * in PCI Configuration space. | ||
37 | ************************************************************************/ | ||
38 | |||
39 | #include <linux/config.h> | ||
40 | #include <linux/module.h> | ||
41 | #include <linux/types.h> | ||
42 | #include <linux/errno.h> | ||
43 | #include <linux/ioport.h> | ||
44 | #include <linux/pci.h> | ||
45 | #include <linux/kernel.h> | ||
46 | #include <linux/netdevice.h> | ||
47 | #include <linux/etherdevice.h> | ||
48 | #include <linux/skbuff.h> | ||
49 | #include <linux/init.h> | ||
50 | #include <linux/delay.h> | ||
51 | #include <linux/stddef.h> | ||
52 | #include <linux/ioctl.h> | ||
53 | #include <linux/timex.h> | ||
54 | #include <linux/sched.h> | ||
55 | #include <linux/ethtool.h> | ||
56 | #include <linux/version.h> | ||
57 | #include <linux/workqueue.h> | ||
58 | |||
59 | #include <asm/io.h> | ||
60 | #include <asm/system.h> | ||
61 | #include <asm/uaccess.h> | ||
62 | |||
63 | /* local include */ | ||
64 | #include "s2io.h" | ||
65 | #include "s2io-regs.h" | ||
66 | |||
67 | /* S2io Driver name & version. */ | ||
68 | static char s2io_driver_name[] = "s2io"; | ||
69 | static char s2io_driver_version[] = "Version 1.7.7.1"; | ||
70 | |||
71 | /* | ||
72 | * Cards with following subsystem_id have a link state indication | ||
73 | * problem, 600B, 600C, 600D, 640B, 640C and 640D. | ||
74 | * macro below identifies these cards given the subsystem_id. | ||
75 | */ | ||
76 | #define CARDS_WITH_FAULTY_LINK_INDICATORS(subid) \ | ||
77 | (((subid >= 0x600B) && (subid <= 0x600D)) || \ | ||
78 | ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0 | ||
79 | |||
80 | #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \ | ||
81 | ADAPTER_STATUS_RMAC_LOCAL_FAULT))) | ||
82 | #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status)) | ||
83 | #define PANIC 1 | ||
84 | #define LOW 2 | ||
85 | static inline int rx_buffer_level(nic_t * sp, int rxb_size, int ring) | ||
86 | { | ||
87 | int level = 0; | ||
88 | if ((sp->pkt_cnt[ring] - rxb_size) > 16) { | ||
89 | level = LOW; | ||
90 | if ((sp->pkt_cnt[ring] - rxb_size) < MAX_RXDS_PER_BLOCK) { | ||
91 | level = PANIC; | ||
92 | } | ||
93 | } | ||
94 | |||
95 | return level; | ||
96 | } | ||
97 | |||
98 | /* Ethtool related variables and Macros. */ | ||
99 | static char s2io_gstrings[][ETH_GSTRING_LEN] = { | ||
100 | "Register test\t(offline)", | ||
101 | "Eeprom test\t(offline)", | ||
102 | "Link test\t(online)", | ||
103 | "RLDRAM test\t(offline)", | ||
104 | "BIST Test\t(offline)" | ||
105 | }; | ||
106 | |||
107 | static char ethtool_stats_keys[][ETH_GSTRING_LEN] = { | ||
108 | {"tmac_frms"}, | ||
109 | {"tmac_data_octets"}, | ||
110 | {"tmac_drop_frms"}, | ||
111 | {"tmac_mcst_frms"}, | ||
112 | {"tmac_bcst_frms"}, | ||
113 | {"tmac_pause_ctrl_frms"}, | ||
114 | {"tmac_any_err_frms"}, | ||
115 | {"tmac_vld_ip_octets"}, | ||
116 | {"tmac_vld_ip"}, | ||
117 | {"tmac_drop_ip"}, | ||
118 | {"tmac_icmp"}, | ||
119 | {"tmac_rst_tcp"}, | ||
120 | {"tmac_tcp"}, | ||
121 | {"tmac_udp"}, | ||
122 | {"rmac_vld_frms"}, | ||
123 | {"rmac_data_octets"}, | ||
124 | {"rmac_fcs_err_frms"}, | ||
125 | {"rmac_drop_frms"}, | ||
126 | {"rmac_vld_mcst_frms"}, | ||
127 | {"rmac_vld_bcst_frms"}, | ||
128 | {"rmac_in_rng_len_err_frms"}, | ||
129 | {"rmac_long_frms"}, | ||
130 | {"rmac_pause_ctrl_frms"}, | ||
131 | {"rmac_discarded_frms"}, | ||
132 | {"rmac_usized_frms"}, | ||
133 | {"rmac_osized_frms"}, | ||
134 | {"rmac_frag_frms"}, | ||
135 | {"rmac_jabber_frms"}, | ||
136 | {"rmac_ip"}, | ||
137 | {"rmac_ip_octets"}, | ||
138 | {"rmac_hdr_err_ip"}, | ||
139 | {"rmac_drop_ip"}, | ||
140 | {"rmac_icmp"}, | ||
141 | {"rmac_tcp"}, | ||
142 | {"rmac_udp"}, | ||
143 | {"rmac_err_drp_udp"}, | ||
144 | {"rmac_pause_cnt"}, | ||
145 | {"rmac_accepted_ip"}, | ||
146 | {"rmac_err_tcp"}, | ||
147 | }; | ||
148 | |||
149 | #define S2IO_STAT_LEN sizeof(ethtool_stats_keys)/ ETH_GSTRING_LEN | ||
150 | #define S2IO_STAT_STRINGS_LEN S2IO_STAT_LEN * ETH_GSTRING_LEN | ||
151 | |||
152 | #define S2IO_TEST_LEN sizeof(s2io_gstrings) / ETH_GSTRING_LEN | ||
153 | #define S2IO_STRINGS_LEN S2IO_TEST_LEN * ETH_GSTRING_LEN | ||
154 | |||
155 | |||
156 | /* | ||
157 | * Constants to be programmed into the Xena's registers, to configure | ||
158 | * the XAUI. | ||
159 | */ | ||
160 | |||
161 | #define SWITCH_SIGN 0xA5A5A5A5A5A5A5A5ULL | ||
162 | #define END_SIGN 0x0 | ||
163 | |||
164 | static u64 default_mdio_cfg[] = { | ||
165 | /* Reset PMA PLL */ | ||
166 | 0xC001010000000000ULL, 0xC0010100000000E0ULL, | ||
167 | 0xC0010100008000E4ULL, | ||
168 | /* Remove Reset from PMA PLL */ | ||
169 | 0xC001010000000000ULL, 0xC0010100000000E0ULL, | ||
170 | 0xC0010100000000E4ULL, | ||
171 | END_SIGN | ||
172 | }; | ||
173 | |||
174 | static u64 default_dtx_cfg[] = { | ||
175 | 0x8000051500000000ULL, 0x80000515000000E0ULL, | ||
176 | 0x80000515D93500E4ULL, 0x8001051500000000ULL, | ||
177 | 0x80010515000000E0ULL, 0x80010515001E00E4ULL, | ||
178 | 0x8002051500000000ULL, 0x80020515000000E0ULL, | ||
179 | 0x80020515F21000E4ULL, | ||
180 | /* Set PADLOOPBACKN */ | ||
181 | 0x8002051500000000ULL, 0x80020515000000E0ULL, | ||
182 | 0x80020515B20000E4ULL, 0x8003051500000000ULL, | ||
183 | 0x80030515000000E0ULL, 0x80030515B20000E4ULL, | ||
184 | 0x8004051500000000ULL, 0x80040515000000E0ULL, | ||
185 | 0x80040515B20000E4ULL, 0x8005051500000000ULL, | ||
186 | 0x80050515000000E0ULL, 0x80050515B20000E4ULL, | ||
187 | SWITCH_SIGN, | ||
188 | /* Remove PADLOOPBACKN */ | ||
189 | 0x8002051500000000ULL, 0x80020515000000E0ULL, | ||
190 | 0x80020515F20000E4ULL, 0x8003051500000000ULL, | ||
191 | 0x80030515000000E0ULL, 0x80030515F20000E4ULL, | ||
192 | 0x8004051500000000ULL, 0x80040515000000E0ULL, | ||
193 | 0x80040515F20000E4ULL, 0x8005051500000000ULL, | ||
194 | 0x80050515000000E0ULL, 0x80050515F20000E4ULL, | ||
195 | END_SIGN | ||
196 | }; | ||
197 | |||
198 | |||
199 | /* | ||
200 | * Constants for Fixing the MacAddress problem seen mostly on | ||
201 | * Alpha machines. | ||
202 | */ | ||
203 | static u64 fix_mac[] = { | ||
204 | 0x0060000000000000ULL, 0x0060600000000000ULL, | ||
205 | 0x0040600000000000ULL, 0x0000600000000000ULL, | ||
206 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
207 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
208 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
209 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
210 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
211 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
212 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
213 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
214 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
215 | 0x0020600000000000ULL, 0x0060600000000000ULL, | ||
216 | 0x0020600000000000ULL, 0x0000600000000000ULL, | ||
217 | 0x0040600000000000ULL, 0x0060600000000000ULL, | ||
218 | END_SIGN | ||
219 | }; | ||
220 | |||
221 | /* Module Loadable parameters. */ | ||
222 | static unsigned int tx_fifo_num = 1; | ||
223 | static unsigned int tx_fifo_len[MAX_TX_FIFOS] = | ||
224 | {[0 ...(MAX_TX_FIFOS - 1)] = 0 }; | ||
225 | static unsigned int rx_ring_num = 1; | ||
226 | static unsigned int rx_ring_sz[MAX_RX_RINGS] = | ||
227 | {[0 ...(MAX_RX_RINGS - 1)] = 0 }; | ||
228 | static unsigned int Stats_refresh_time = 4; | ||
229 | static unsigned int rmac_pause_time = 65535; | ||
230 | static unsigned int mc_pause_threshold_q0q3 = 187; | ||
231 | static unsigned int mc_pause_threshold_q4q7 = 187; | ||
232 | static unsigned int shared_splits; | ||
233 | static unsigned int tmac_util_period = 5; | ||
234 | static unsigned int rmac_util_period = 5; | ||
235 | #ifndef CONFIG_S2IO_NAPI | ||
236 | static unsigned int indicate_max_pkts; | ||
237 | #endif | ||
238 | |||
239 | /* | ||
240 | * S2IO device table. | ||
241 | * This table lists all the devices that this driver supports. | ||
242 | */ | ||
243 | static struct pci_device_id s2io_tbl[] __devinitdata = { | ||
244 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN, | ||
245 | PCI_ANY_ID, PCI_ANY_ID}, | ||
246 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI, | ||
247 | PCI_ANY_ID, PCI_ANY_ID}, | ||
248 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN, | ||
249 | PCI_ANY_ID, PCI_ANY_ID}, | ||
250 | {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI, | ||
251 | PCI_ANY_ID, PCI_ANY_ID}, | ||
252 | {0,} | ||
253 | }; | ||
254 | |||
255 | MODULE_DEVICE_TABLE(pci, s2io_tbl); | ||
256 | |||
257 | static struct pci_driver s2io_driver = { | ||
258 | .name = "S2IO", | ||
259 | .id_table = s2io_tbl, | ||
260 | .probe = s2io_init_nic, | ||
261 | .remove = __devexit_p(s2io_rem_nic), | ||
262 | }; | ||
263 | |||
264 | /* A simplifier macro used both by init and free shared_mem Fns(). */ | ||
265 | #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each) | ||
266 | |||
267 | /** | ||
268 | * init_shared_mem - Allocation and Initialization of Memory | ||
269 | * @nic: Device private variable. | ||
270 | * Description: The function allocates all the memory areas shared | ||
271 | * between the NIC and the driver. This includes Tx descriptors, | ||
272 | * Rx descriptors and the statistics block. | ||
273 | */ | ||
274 | |||
275 | static int init_shared_mem(struct s2io_nic *nic) | ||
276 | { | ||
277 | u32 size; | ||
278 | void *tmp_v_addr, *tmp_v_addr_next; | ||
279 | dma_addr_t tmp_p_addr, tmp_p_addr_next; | ||
280 | RxD_block_t *pre_rxd_blk = NULL; | ||
281 | int i, j, blk_cnt; | ||
282 | int lst_size, lst_per_page; | ||
283 | struct net_device *dev = nic->dev; | ||
284 | #ifdef CONFIG_2BUFF_MODE | ||
285 | unsigned long tmp; | ||
286 | buffAdd_t *ba; | ||
287 | #endif | ||
288 | |||
289 | mac_info_t *mac_control; | ||
290 | struct config_param *config; | ||
291 | |||
292 | mac_control = &nic->mac_control; | ||
293 | config = &nic->config; | ||
294 | |||
295 | |||
296 | /* Allocation and initialization of TXDLs in FIOFs */ | ||
297 | size = 0; | ||
298 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
299 | size += config->tx_cfg[i].fifo_len; | ||
300 | } | ||
301 | if (size > MAX_AVAILABLE_TXDS) { | ||
302 | DBG_PRINT(ERR_DBG, "%s: Total number of Tx FIFOs ", | ||
303 | dev->name); | ||
304 | DBG_PRINT(ERR_DBG, "exceeds the maximum value "); | ||
305 | DBG_PRINT(ERR_DBG, "that can be used\n"); | ||
306 | return FAILURE; | ||
307 | } | ||
308 | |||
309 | lst_size = (sizeof(TxD_t) * config->max_txds); | ||
310 | lst_per_page = PAGE_SIZE / lst_size; | ||
311 | |||
312 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
313 | int fifo_len = config->tx_cfg[i].fifo_len; | ||
314 | int list_holder_size = fifo_len * sizeof(list_info_hold_t); | ||
315 | nic->list_info[i] = kmalloc(list_holder_size, GFP_KERNEL); | ||
316 | if (!nic->list_info[i]) { | ||
317 | DBG_PRINT(ERR_DBG, | ||
318 | "Malloc failed for list_info\n"); | ||
319 | return -ENOMEM; | ||
320 | } | ||
321 | memset(nic->list_info[i], 0, list_holder_size); | ||
322 | } | ||
323 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
324 | int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, | ||
325 | lst_per_page); | ||
326 | mac_control->tx_curr_put_info[i].offset = 0; | ||
327 | mac_control->tx_curr_put_info[i].fifo_len = | ||
328 | config->tx_cfg[i].fifo_len - 1; | ||
329 | mac_control->tx_curr_get_info[i].offset = 0; | ||
330 | mac_control->tx_curr_get_info[i].fifo_len = | ||
331 | config->tx_cfg[i].fifo_len - 1; | ||
332 | for (j = 0; j < page_num; j++) { | ||
333 | int k = 0; | ||
334 | dma_addr_t tmp_p; | ||
335 | void *tmp_v; | ||
336 | tmp_v = pci_alloc_consistent(nic->pdev, | ||
337 | PAGE_SIZE, &tmp_p); | ||
338 | if (!tmp_v) { | ||
339 | DBG_PRINT(ERR_DBG, | ||
340 | "pci_alloc_consistent "); | ||
341 | DBG_PRINT(ERR_DBG, "failed for TxDL\n"); | ||
342 | return -ENOMEM; | ||
343 | } | ||
344 | while (k < lst_per_page) { | ||
345 | int l = (j * lst_per_page) + k; | ||
346 | if (l == config->tx_cfg[i].fifo_len) | ||
347 | goto end_txd_alloc; | ||
348 | nic->list_info[i][l].list_virt_addr = | ||
349 | tmp_v + (k * lst_size); | ||
350 | nic->list_info[i][l].list_phy_addr = | ||
351 | tmp_p + (k * lst_size); | ||
352 | k++; | ||
353 | } | ||
354 | } | ||
355 | } | ||
356 | end_txd_alloc: | ||
357 | |||
358 | /* Allocation and initialization of RXDs in Rings */ | ||
359 | size = 0; | ||
360 | for (i = 0; i < config->rx_ring_num; i++) { | ||
361 | if (config->rx_cfg[i].num_rxd % (MAX_RXDS_PER_BLOCK + 1)) { | ||
362 | DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name); | ||
363 | DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ", | ||
364 | i); | ||
365 | DBG_PRINT(ERR_DBG, "RxDs per Block"); | ||
366 | return FAILURE; | ||
367 | } | ||
368 | size += config->rx_cfg[i].num_rxd; | ||
369 | nic->block_count[i] = | ||
370 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); | ||
371 | nic->pkt_cnt[i] = | ||
372 | config->rx_cfg[i].num_rxd - nic->block_count[i]; | ||
373 | } | ||
374 | |||
375 | for (i = 0; i < config->rx_ring_num; i++) { | ||
376 | mac_control->rx_curr_get_info[i].block_index = 0; | ||
377 | mac_control->rx_curr_get_info[i].offset = 0; | ||
378 | mac_control->rx_curr_get_info[i].ring_len = | ||
379 | config->rx_cfg[i].num_rxd - 1; | ||
380 | mac_control->rx_curr_put_info[i].block_index = 0; | ||
381 | mac_control->rx_curr_put_info[i].offset = 0; | ||
382 | mac_control->rx_curr_put_info[i].ring_len = | ||
383 | config->rx_cfg[i].num_rxd - 1; | ||
384 | blk_cnt = | ||
385 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); | ||
386 | /* Allocating all the Rx blocks */ | ||
387 | for (j = 0; j < blk_cnt; j++) { | ||
388 | #ifndef CONFIG_2BUFF_MODE | ||
389 | size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); | ||
390 | #else | ||
391 | size = SIZE_OF_BLOCK; | ||
392 | #endif | ||
393 | tmp_v_addr = pci_alloc_consistent(nic->pdev, size, | ||
394 | &tmp_p_addr); | ||
395 | if (tmp_v_addr == NULL) { | ||
396 | /* | ||
397 | * In case of failure, free_shared_mem() | ||
398 | * is called, which should free any | ||
399 | * memory that was alloced till the | ||
400 | * failure happened. | ||
401 | */ | ||
402 | nic->rx_blocks[i][j].block_virt_addr = | ||
403 | tmp_v_addr; | ||
404 | return -ENOMEM; | ||
405 | } | ||
406 | memset(tmp_v_addr, 0, size); | ||
407 | nic->rx_blocks[i][j].block_virt_addr = tmp_v_addr; | ||
408 | nic->rx_blocks[i][j].block_dma_addr = tmp_p_addr; | ||
409 | } | ||
410 | /* Interlinking all Rx Blocks */ | ||
411 | for (j = 0; j < blk_cnt; j++) { | ||
412 | tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; | ||
413 | tmp_v_addr_next = | ||
414 | nic->rx_blocks[i][(j + 1) % | ||
415 | blk_cnt].block_virt_addr; | ||
416 | tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; | ||
417 | tmp_p_addr_next = | ||
418 | nic->rx_blocks[i][(j + 1) % | ||
419 | blk_cnt].block_dma_addr; | ||
420 | |||
421 | pre_rxd_blk = (RxD_block_t *) tmp_v_addr; | ||
422 | pre_rxd_blk->reserved_1 = END_OF_BLOCK; /* last RxD | ||
423 | * marker. | ||
424 | */ | ||
425 | #ifndef CONFIG_2BUFF_MODE | ||
426 | pre_rxd_blk->reserved_2_pNext_RxD_block = | ||
427 | (unsigned long) tmp_v_addr_next; | ||
428 | #endif | ||
429 | pre_rxd_blk->pNext_RxD_Blk_physical = | ||
430 | (u64) tmp_p_addr_next; | ||
431 | } | ||
432 | } | ||
433 | |||
434 | #ifdef CONFIG_2BUFF_MODE | ||
435 | /* | ||
436 | * Allocation of Storages for buffer addresses in 2BUFF mode | ||
437 | * and the buffers as well. | ||
438 | */ | ||
439 | for (i = 0; i < config->rx_ring_num; i++) { | ||
440 | blk_cnt = | ||
441 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); | ||
442 | nic->ba[i] = kmalloc((sizeof(buffAdd_t *) * blk_cnt), | ||
443 | GFP_KERNEL); | ||
444 | if (!nic->ba[i]) | ||
445 | return -ENOMEM; | ||
446 | for (j = 0; j < blk_cnt; j++) { | ||
447 | int k = 0; | ||
448 | nic->ba[i][j] = kmalloc((sizeof(buffAdd_t) * | ||
449 | (MAX_RXDS_PER_BLOCK + 1)), | ||
450 | GFP_KERNEL); | ||
451 | if (!nic->ba[i][j]) | ||
452 | return -ENOMEM; | ||
453 | while (k != MAX_RXDS_PER_BLOCK) { | ||
454 | ba = &nic->ba[i][j][k]; | ||
455 | |||
456 | ba->ba_0_org = kmalloc | ||
457 | (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL); | ||
458 | if (!ba->ba_0_org) | ||
459 | return -ENOMEM; | ||
460 | tmp = (unsigned long) ba->ba_0_org; | ||
461 | tmp += ALIGN_SIZE; | ||
462 | tmp &= ~((unsigned long) ALIGN_SIZE); | ||
463 | ba->ba_0 = (void *) tmp; | ||
464 | |||
465 | ba->ba_1_org = kmalloc | ||
466 | (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL); | ||
467 | if (!ba->ba_1_org) | ||
468 | return -ENOMEM; | ||
469 | tmp = (unsigned long) ba->ba_1_org; | ||
470 | tmp += ALIGN_SIZE; | ||
471 | tmp &= ~((unsigned long) ALIGN_SIZE); | ||
472 | ba->ba_1 = (void *) tmp; | ||
473 | k++; | ||
474 | } | ||
475 | } | ||
476 | } | ||
477 | #endif | ||
478 | |||
479 | /* Allocation and initialization of Statistics block */ | ||
480 | size = sizeof(StatInfo_t); | ||
481 | mac_control->stats_mem = pci_alloc_consistent | ||
482 | (nic->pdev, size, &mac_control->stats_mem_phy); | ||
483 | |||
484 | if (!mac_control->stats_mem) { | ||
485 | /* | ||
486 | * In case of failure, free_shared_mem() is called, which | ||
487 | * should free any memory that was alloced till the | ||
488 | * failure happened. | ||
489 | */ | ||
490 | return -ENOMEM; | ||
491 | } | ||
492 | mac_control->stats_mem_sz = size; | ||
493 | |||
494 | tmp_v_addr = mac_control->stats_mem; | ||
495 | mac_control->stats_info = (StatInfo_t *) tmp_v_addr; | ||
496 | memset(tmp_v_addr, 0, size); | ||
497 | |||
498 | DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name, | ||
499 | (unsigned long long) tmp_p_addr); | ||
500 | |||
501 | return SUCCESS; | ||
502 | } | ||
503 | |||
504 | /** | ||
505 | * free_shared_mem - Free the allocated Memory | ||
506 | * @nic: Device private variable. | ||
507 | * Description: This function is to free all memory locations allocated by | ||
508 | * the init_shared_mem() function and return it to the kernel. | ||
509 | */ | ||
510 | |||
511 | static void free_shared_mem(struct s2io_nic *nic) | ||
512 | { | ||
513 | int i, j, blk_cnt, size; | ||
514 | void *tmp_v_addr; | ||
515 | dma_addr_t tmp_p_addr; | ||
516 | mac_info_t *mac_control; | ||
517 | struct config_param *config; | ||
518 | int lst_size, lst_per_page; | ||
519 | |||
520 | |||
521 | if (!nic) | ||
522 | return; | ||
523 | |||
524 | mac_control = &nic->mac_control; | ||
525 | config = &nic->config; | ||
526 | |||
527 | lst_size = (sizeof(TxD_t) * config->max_txds); | ||
528 | lst_per_page = PAGE_SIZE / lst_size; | ||
529 | |||
530 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
531 | int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len, | ||
532 | lst_per_page); | ||
533 | for (j = 0; j < page_num; j++) { | ||
534 | int mem_blks = (j * lst_per_page); | ||
535 | if (!nic->list_info[i][mem_blks].list_virt_addr) | ||
536 | break; | ||
537 | pci_free_consistent(nic->pdev, PAGE_SIZE, | ||
538 | nic->list_info[i][mem_blks]. | ||
539 | list_virt_addr, | ||
540 | nic->list_info[i][mem_blks]. | ||
541 | list_phy_addr); | ||
542 | } | ||
543 | kfree(nic->list_info[i]); | ||
544 | } | ||
545 | |||
546 | #ifndef CONFIG_2BUFF_MODE | ||
547 | size = (MAX_RXDS_PER_BLOCK + 1) * (sizeof(RxD_t)); | ||
548 | #else | ||
549 | size = SIZE_OF_BLOCK; | ||
550 | #endif | ||
551 | for (i = 0; i < config->rx_ring_num; i++) { | ||
552 | blk_cnt = nic->block_count[i]; | ||
553 | for (j = 0; j < blk_cnt; j++) { | ||
554 | tmp_v_addr = nic->rx_blocks[i][j].block_virt_addr; | ||
555 | tmp_p_addr = nic->rx_blocks[i][j].block_dma_addr; | ||
556 | if (tmp_v_addr == NULL) | ||
557 | break; | ||
558 | pci_free_consistent(nic->pdev, size, | ||
559 | tmp_v_addr, tmp_p_addr); | ||
560 | } | ||
561 | } | ||
562 | |||
563 | #ifdef CONFIG_2BUFF_MODE | ||
564 | /* Freeing buffer storage addresses in 2BUFF mode. */ | ||
565 | for (i = 0; i < config->rx_ring_num; i++) { | ||
566 | blk_cnt = | ||
567 | config->rx_cfg[i].num_rxd / (MAX_RXDS_PER_BLOCK + 1); | ||
568 | if (!nic->ba[i]) | ||
569 | goto end_free; | ||
570 | for (j = 0; j < blk_cnt; j++) { | ||
571 | int k = 0; | ||
572 | if (!nic->ba[i][j]) { | ||
573 | kfree(nic->ba[i]); | ||
574 | goto end_free; | ||
575 | } | ||
576 | while (k != MAX_RXDS_PER_BLOCK) { | ||
577 | buffAdd_t *ba = &nic->ba[i][j][k]; | ||
578 | if (!ba || !ba->ba_0_org || !ba->ba_1_org) | ||
579 | { | ||
580 | kfree(nic->ba[i]); | ||
581 | kfree(nic->ba[i][j]); | ||
582 | if(ba->ba_0_org) | ||
583 | kfree(ba->ba_0_org); | ||
584 | if(ba->ba_1_org) | ||
585 | kfree(ba->ba_1_org); | ||
586 | goto end_free; | ||
587 | } | ||
588 | kfree(ba->ba_0_org); | ||
589 | kfree(ba->ba_1_org); | ||
590 | k++; | ||
591 | } | ||
592 | kfree(nic->ba[i][j]); | ||
593 | } | ||
594 | kfree(nic->ba[i]); | ||
595 | } | ||
596 | end_free: | ||
597 | #endif | ||
598 | |||
599 | if (mac_control->stats_mem) { | ||
600 | pci_free_consistent(nic->pdev, | ||
601 | mac_control->stats_mem_sz, | ||
602 | mac_control->stats_mem, | ||
603 | mac_control->stats_mem_phy); | ||
604 | } | ||
605 | } | ||
606 | |||
607 | /** | ||
608 | * init_nic - Initialization of hardware | ||
609 | * @nic: device peivate variable | ||
610 | * Description: The function sequentially configures every block | ||
611 | * of the H/W from their reset values. | ||
612 | * Return Value: SUCCESS on success and | ||
613 | * '-1' on failure (endian settings incorrect). | ||
614 | */ | ||
615 | |||
616 | static int init_nic(struct s2io_nic *nic) | ||
617 | { | ||
618 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | ||
619 | struct net_device *dev = nic->dev; | ||
620 | register u64 val64 = 0; | ||
621 | void __iomem *add; | ||
622 | u32 time; | ||
623 | int i, j; | ||
624 | mac_info_t *mac_control; | ||
625 | struct config_param *config; | ||
626 | int mdio_cnt = 0, dtx_cnt = 0; | ||
627 | unsigned long long mem_share; | ||
628 | |||
629 | mac_control = &nic->mac_control; | ||
630 | config = &nic->config; | ||
631 | |||
632 | /* Initialize swapper control register */ | ||
633 | if (s2io_set_swapper(nic)) { | ||
634 | DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n"); | ||
635 | return -1; | ||
636 | } | ||
637 | |||
638 | /* Remove XGXS from reset state */ | ||
639 | val64 = 0; | ||
640 | writeq(val64, &bar0->sw_reset); | ||
641 | val64 = readq(&bar0->sw_reset); | ||
642 | msleep(500); | ||
643 | |||
644 | /* Enable Receiving broadcasts */ | ||
645 | add = &bar0->mac_cfg; | ||
646 | val64 = readq(&bar0->mac_cfg); | ||
647 | val64 |= MAC_RMAC_BCAST_ENABLE; | ||
648 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
649 | writel((u32) val64, add); | ||
650 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
651 | writel((u32) (val64 >> 32), (add + 4)); | ||
652 | |||
653 | /* Read registers in all blocks */ | ||
654 | val64 = readq(&bar0->mac_int_mask); | ||
655 | val64 = readq(&bar0->mc_int_mask); | ||
656 | val64 = readq(&bar0->xgxs_int_mask); | ||
657 | |||
658 | /* Set MTU */ | ||
659 | val64 = dev->mtu; | ||
660 | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); | ||
661 | |||
662 | /* | ||
663 | * Configuring the XAUI Interface of Xena. | ||
664 | * *************************************** | ||
665 | * To Configure the Xena's XAUI, one has to write a series | ||
666 | * of 64 bit values into two registers in a particular | ||
667 | * sequence. Hence a macro 'SWITCH_SIGN' has been defined | ||
668 | * which will be defined in the array of configuration values | ||
669 | * (default_dtx_cfg & default_mdio_cfg) at appropriate places | ||
670 | * to switch writing from one regsiter to another. We continue | ||
671 | * writing these values until we encounter the 'END_SIGN' macro. | ||
672 | * For example, After making a series of 21 writes into | ||
673 | * dtx_control register the 'SWITCH_SIGN' appears and hence we | ||
674 | * start writing into mdio_control until we encounter END_SIGN. | ||
675 | */ | ||
676 | while (1) { | ||
677 | dtx_cfg: | ||
678 | while (default_dtx_cfg[dtx_cnt] != END_SIGN) { | ||
679 | if (default_dtx_cfg[dtx_cnt] == SWITCH_SIGN) { | ||
680 | dtx_cnt++; | ||
681 | goto mdio_cfg; | ||
682 | } | ||
683 | SPECIAL_REG_WRITE(default_dtx_cfg[dtx_cnt], | ||
684 | &bar0->dtx_control, UF); | ||
685 | val64 = readq(&bar0->dtx_control); | ||
686 | dtx_cnt++; | ||
687 | } | ||
688 | mdio_cfg: | ||
689 | while (default_mdio_cfg[mdio_cnt] != END_SIGN) { | ||
690 | if (default_mdio_cfg[mdio_cnt] == SWITCH_SIGN) { | ||
691 | mdio_cnt++; | ||
692 | goto dtx_cfg; | ||
693 | } | ||
694 | SPECIAL_REG_WRITE(default_mdio_cfg[mdio_cnt], | ||
695 | &bar0->mdio_control, UF); | ||
696 | val64 = readq(&bar0->mdio_control); | ||
697 | mdio_cnt++; | ||
698 | } | ||
699 | if ((default_dtx_cfg[dtx_cnt] == END_SIGN) && | ||
700 | (default_mdio_cfg[mdio_cnt] == END_SIGN)) { | ||
701 | break; | ||
702 | } else { | ||
703 | goto dtx_cfg; | ||
704 | } | ||
705 | } | ||
706 | |||
707 | /* Tx DMA Initialization */ | ||
708 | val64 = 0; | ||
709 | writeq(val64, &bar0->tx_fifo_partition_0); | ||
710 | writeq(val64, &bar0->tx_fifo_partition_1); | ||
711 | writeq(val64, &bar0->tx_fifo_partition_2); | ||
712 | writeq(val64, &bar0->tx_fifo_partition_3); | ||
713 | |||
714 | |||
715 | for (i = 0, j = 0; i < config->tx_fifo_num; i++) { | ||
716 | val64 |= | ||
717 | vBIT(config->tx_cfg[i].fifo_len - 1, ((i * 32) + 19), | ||
718 | 13) | vBIT(config->tx_cfg[i].fifo_priority, | ||
719 | ((i * 32) + 5), 3); | ||
720 | |||
721 | if (i == (config->tx_fifo_num - 1)) { | ||
722 | if (i % 2 == 0) | ||
723 | i++; | ||
724 | } | ||
725 | |||
726 | switch (i) { | ||
727 | case 1: | ||
728 | writeq(val64, &bar0->tx_fifo_partition_0); | ||
729 | val64 = 0; | ||
730 | break; | ||
731 | case 3: | ||
732 | writeq(val64, &bar0->tx_fifo_partition_1); | ||
733 | val64 = 0; | ||
734 | break; | ||
735 | case 5: | ||
736 | writeq(val64, &bar0->tx_fifo_partition_2); | ||
737 | val64 = 0; | ||
738 | break; | ||
739 | case 7: | ||
740 | writeq(val64, &bar0->tx_fifo_partition_3); | ||
741 | break; | ||
742 | } | ||
743 | } | ||
744 | |||
745 | /* Enable Tx FIFO partition 0. */ | ||
746 | val64 = readq(&bar0->tx_fifo_partition_0); | ||
747 | val64 |= BIT(0); /* To enable the FIFO partition. */ | ||
748 | writeq(val64, &bar0->tx_fifo_partition_0); | ||
749 | |||
750 | val64 = readq(&bar0->tx_fifo_partition_0); | ||
751 | DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n", | ||
752 | &bar0->tx_fifo_partition_0, (unsigned long long) val64); | ||
753 | |||
754 | /* | ||
755 | * Initialization of Tx_PA_CONFIG register to ignore packet | ||
756 | * integrity checking. | ||
757 | */ | ||
758 | val64 = readq(&bar0->tx_pa_cfg); | ||
759 | val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI | | ||
760 | TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR; | ||
761 | writeq(val64, &bar0->tx_pa_cfg); | ||
762 | |||
763 | /* Rx DMA intialization. */ | ||
764 | val64 = 0; | ||
765 | for (i = 0; i < config->rx_ring_num; i++) { | ||
766 | val64 |= | ||
767 | vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)), | ||
768 | 3); | ||
769 | } | ||
770 | writeq(val64, &bar0->rx_queue_priority); | ||
771 | |||
772 | /* | ||
773 | * Allocating equal share of memory to all the | ||
774 | * configured Rings. | ||
775 | */ | ||
776 | val64 = 0; | ||
777 | for (i = 0; i < config->rx_ring_num; i++) { | ||
778 | switch (i) { | ||
779 | case 0: | ||
780 | mem_share = (64 / config->rx_ring_num + | ||
781 | 64 % config->rx_ring_num); | ||
782 | val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share); | ||
783 | continue; | ||
784 | case 1: | ||
785 | mem_share = (64 / config->rx_ring_num); | ||
786 | val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share); | ||
787 | continue; | ||
788 | case 2: | ||
789 | mem_share = (64 / config->rx_ring_num); | ||
790 | val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share); | ||
791 | continue; | ||
792 | case 3: | ||
793 | mem_share = (64 / config->rx_ring_num); | ||
794 | val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share); | ||
795 | continue; | ||
796 | case 4: | ||
797 | mem_share = (64 / config->rx_ring_num); | ||
798 | val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share); | ||
799 | continue; | ||
800 | case 5: | ||
801 | mem_share = (64 / config->rx_ring_num); | ||
802 | val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share); | ||
803 | continue; | ||
804 | case 6: | ||
805 | mem_share = (64 / config->rx_ring_num); | ||
806 | val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share); | ||
807 | continue; | ||
808 | case 7: | ||
809 | mem_share = (64 / config->rx_ring_num); | ||
810 | val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share); | ||
811 | continue; | ||
812 | } | ||
813 | } | ||
814 | writeq(val64, &bar0->rx_queue_cfg); | ||
815 | |||
816 | /* | ||
817 | * Initializing the Tx round robin registers to 0. | ||
818 | * Filling Tx and Rx round robin registers as per the | ||
819 | * number of FIFOs and Rings is still TODO. | ||
820 | */ | ||
821 | writeq(0, &bar0->tx_w_round_robin_0); | ||
822 | writeq(0, &bar0->tx_w_round_robin_1); | ||
823 | writeq(0, &bar0->tx_w_round_robin_2); | ||
824 | writeq(0, &bar0->tx_w_round_robin_3); | ||
825 | writeq(0, &bar0->tx_w_round_robin_4); | ||
826 | |||
827 | /* | ||
828 | * TODO | ||
829 | * Disable Rx steering. Hard coding all packets be steered to | ||
830 | * Queue 0 for now. | ||
831 | */ | ||
832 | val64 = 0x8080808080808080ULL; | ||
833 | writeq(val64, &bar0->rts_qos_steering); | ||
834 | |||
835 | /* UDP Fix */ | ||
836 | val64 = 0; | ||
837 | for (i = 1; i < 8; i++) | ||
838 | writeq(val64, &bar0->rts_frm_len_n[i]); | ||
839 | |||
840 | /* Set rts_frm_len register for fifo 0 */ | ||
841 | writeq(MAC_RTS_FRM_LEN_SET(dev->mtu + 22), | ||
842 | &bar0->rts_frm_len_n[0]); | ||
843 | |||
844 | /* Enable statistics */ | ||
845 | writeq(mac_control->stats_mem_phy, &bar0->stat_addr); | ||
846 | val64 = SET_UPDT_PERIOD(Stats_refresh_time) | | ||
847 | STAT_CFG_STAT_RO | STAT_CFG_STAT_EN; | ||
848 | writeq(val64, &bar0->stat_cfg); | ||
849 | |||
850 | /* | ||
851 | * Initializing the sampling rate for the device to calculate the | ||
852 | * bandwidth utilization. | ||
853 | */ | ||
854 | val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) | | ||
855 | MAC_RX_LINK_UTIL_VAL(rmac_util_period); | ||
856 | writeq(val64, &bar0->mac_link_util); | ||
857 | |||
858 | |||
859 | /* | ||
860 | * Initializing the Transmit and Receive Traffic Interrupt | ||
861 | * Scheme. | ||
862 | */ | ||
863 | /* TTI Initialization. Default Tx timer gets us about | ||
864 | * 250 interrupts per sec. Continuous interrupts are enabled | ||
865 | * by default. | ||
866 | */ | ||
867 | val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078) | | ||
868 | TTI_DATA1_MEM_TX_URNG_A(0xA) | | ||
869 | TTI_DATA1_MEM_TX_URNG_B(0x10) | | ||
870 | TTI_DATA1_MEM_TX_URNG_C(0x30) | TTI_DATA1_MEM_TX_TIMER_AC_EN | | ||
871 | TTI_DATA1_MEM_TX_TIMER_CI_EN; | ||
872 | writeq(val64, &bar0->tti_data1_mem); | ||
873 | |||
874 | val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) | | ||
875 | TTI_DATA2_MEM_TX_UFC_B(0x20) | | ||
876 | TTI_DATA2_MEM_TX_UFC_C(0x40) | TTI_DATA2_MEM_TX_UFC_D(0x80); | ||
877 | writeq(val64, &bar0->tti_data2_mem); | ||
878 | |||
879 | val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD; | ||
880 | writeq(val64, &bar0->tti_command_mem); | ||
881 | |||
882 | /* | ||
883 | * Once the operation completes, the Strobe bit of the command | ||
884 | * register will be reset. We poll for this particular condition | ||
885 | * We wait for a maximum of 500ms for the operation to complete, | ||
886 | * if it's not complete by then we return error. | ||
887 | */ | ||
888 | time = 0; | ||
889 | while (TRUE) { | ||
890 | val64 = readq(&bar0->tti_command_mem); | ||
891 | if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { | ||
892 | break; | ||
893 | } | ||
894 | if (time > 10) { | ||
895 | DBG_PRINT(ERR_DBG, "%s: TTI init Failed\n", | ||
896 | dev->name); | ||
897 | return -1; | ||
898 | } | ||
899 | msleep(50); | ||
900 | time++; | ||
901 | } | ||
902 | |||
903 | /* RTI Initialization */ | ||
904 | val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF) | | ||
905 | RTI_DATA1_MEM_RX_URNG_A(0xA) | | ||
906 | RTI_DATA1_MEM_RX_URNG_B(0x10) | | ||
907 | RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN; | ||
908 | |||
909 | writeq(val64, &bar0->rti_data1_mem); | ||
910 | |||
911 | val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) | | ||
912 | RTI_DATA2_MEM_RX_UFC_B(0x2) | | ||
913 | RTI_DATA2_MEM_RX_UFC_C(0x40) | RTI_DATA2_MEM_RX_UFC_D(0x80); | ||
914 | writeq(val64, &bar0->rti_data2_mem); | ||
915 | |||
916 | val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD; | ||
917 | writeq(val64, &bar0->rti_command_mem); | ||
918 | |||
919 | /* | ||
920 | * Once the operation completes, the Strobe bit of the command | ||
921 | * register will be reset. We poll for this particular condition | ||
922 | * We wait for a maximum of 500ms for the operation to complete, | ||
923 | * if it's not complete by then we return error. | ||
924 | */ | ||
925 | time = 0; | ||
926 | while (TRUE) { | ||
927 | val64 = readq(&bar0->rti_command_mem); | ||
928 | if (!(val64 & TTI_CMD_MEM_STROBE_NEW_CMD)) { | ||
929 | break; | ||
930 | } | ||
931 | if (time > 10) { | ||
932 | DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n", | ||
933 | dev->name); | ||
934 | return -1; | ||
935 | } | ||
936 | time++; | ||
937 | msleep(50); | ||
938 | } | ||
939 | |||
940 | /* | ||
941 | * Initializing proper values as Pause threshold into all | ||
942 | * the 8 Queues on Rx side. | ||
943 | */ | ||
944 | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3); | ||
945 | writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7); | ||
946 | |||
947 | /* Disable RMAC PAD STRIPPING */ | ||
948 | add = &bar0->mac_cfg; | ||
949 | val64 = readq(&bar0->mac_cfg); | ||
950 | val64 &= ~(MAC_CFG_RMAC_STRIP_PAD); | ||
951 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
952 | writel((u32) (val64), add); | ||
953 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
954 | writel((u32) (val64 >> 32), (add + 4)); | ||
955 | val64 = readq(&bar0->mac_cfg); | ||
956 | |||
957 | /* | ||
958 | * Set the time value to be inserted in the pause frame | ||
959 | * generated by xena. | ||
960 | */ | ||
961 | val64 = readq(&bar0->rmac_pause_cfg); | ||
962 | val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff)); | ||
963 | val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time); | ||
964 | writeq(val64, &bar0->rmac_pause_cfg); | ||
965 | |||
966 | /* | ||
967 | * Set the Threshold Limit for Generating the pause frame | ||
968 | * If the amount of data in any Queue exceeds ratio of | ||
969 | * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256 | ||
970 | * pause frame is generated | ||
971 | */ | ||
972 | val64 = 0; | ||
973 | for (i = 0; i < 4; i++) { | ||
974 | val64 |= | ||
975 | (((u64) 0xFF00 | nic->mac_control. | ||
976 | mc_pause_threshold_q0q3) | ||
977 | << (i * 2 * 8)); | ||
978 | } | ||
979 | writeq(val64, &bar0->mc_pause_thresh_q0q3); | ||
980 | |||
981 | val64 = 0; | ||
982 | for (i = 0; i < 4; i++) { | ||
983 | val64 |= | ||
984 | (((u64) 0xFF00 | nic->mac_control. | ||
985 | mc_pause_threshold_q4q7) | ||
986 | << (i * 2 * 8)); | ||
987 | } | ||
988 | writeq(val64, &bar0->mc_pause_thresh_q4q7); | ||
989 | |||
990 | /* | ||
991 | * TxDMA will stop Read request if the number of read split has | ||
992 | * exceeded the limit pointed by shared_splits | ||
993 | */ | ||
994 | val64 = readq(&bar0->pic_control); | ||
995 | val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits); | ||
996 | writeq(val64, &bar0->pic_control); | ||
997 | |||
998 | return SUCCESS; | ||
999 | } | ||
1000 | |||
1001 | /** | ||
1002 | * en_dis_able_nic_intrs - Enable or Disable the interrupts | ||
1003 | * @nic: device private variable, | ||
1004 | * @mask: A mask indicating which Intr block must be modified and, | ||
1005 | * @flag: A flag indicating whether to enable or disable the Intrs. | ||
1006 | * Description: This function will either disable or enable the interrupts | ||
1007 | * depending on the flag argument. The mask argument can be used to | ||
1008 | * enable/disable any Intr block. | ||
1009 | * Return Value: NONE. | ||
1010 | */ | ||
1011 | |||
1012 | static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag) | ||
1013 | { | ||
1014 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | ||
1015 | register u64 val64 = 0, temp64 = 0; | ||
1016 | |||
1017 | /* Top level interrupt classification */ | ||
1018 | /* PIC Interrupts */ | ||
1019 | if ((mask & (TX_PIC_INTR | RX_PIC_INTR))) { | ||
1020 | /* Enable PIC Intrs in the general intr mask register */ | ||
1021 | val64 = TXPIC_INT_M | PIC_RX_INT_M; | ||
1022 | if (flag == ENABLE_INTRS) { | ||
1023 | temp64 = readq(&bar0->general_int_mask); | ||
1024 | temp64 &= ~((u64) val64); | ||
1025 | writeq(temp64, &bar0->general_int_mask); | ||
1026 | /* | ||
1027 | * Disabled all PCIX, Flash, MDIO, IIC and GPIO | ||
1028 | * interrupts for now. | ||
1029 | * TODO | ||
1030 | */ | ||
1031 | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); | ||
1032 | /* | ||
1033 | * No MSI Support is available presently, so TTI and | ||
1034 | * RTI interrupts are also disabled. | ||
1035 | */ | ||
1036 | } else if (flag == DISABLE_INTRS) { | ||
1037 | /* | ||
1038 | * Disable PIC Intrs in the general | ||
1039 | * intr mask register | ||
1040 | */ | ||
1041 | writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask); | ||
1042 | temp64 = readq(&bar0->general_int_mask); | ||
1043 | val64 |= temp64; | ||
1044 | writeq(val64, &bar0->general_int_mask); | ||
1045 | } | ||
1046 | } | ||
1047 | |||
1048 | /* DMA Interrupts */ | ||
1049 | /* Enabling/Disabling Tx DMA interrupts */ | ||
1050 | if (mask & TX_DMA_INTR) { | ||
1051 | /* Enable TxDMA Intrs in the general intr mask register */ | ||
1052 | val64 = TXDMA_INT_M; | ||
1053 | if (flag == ENABLE_INTRS) { | ||
1054 | temp64 = readq(&bar0->general_int_mask); | ||
1055 | temp64 &= ~((u64) val64); | ||
1056 | writeq(temp64, &bar0->general_int_mask); | ||
1057 | /* | ||
1058 | * Keep all interrupts other than PFC interrupt | ||
1059 | * and PCC interrupt disabled in DMA level. | ||
1060 | */ | ||
1061 | val64 = DISABLE_ALL_INTRS & ~(TXDMA_PFC_INT_M | | ||
1062 | TXDMA_PCC_INT_M); | ||
1063 | writeq(val64, &bar0->txdma_int_mask); | ||
1064 | /* | ||
1065 | * Enable only the MISC error 1 interrupt in PFC block | ||
1066 | */ | ||
1067 | val64 = DISABLE_ALL_INTRS & (~PFC_MISC_ERR_1); | ||
1068 | writeq(val64, &bar0->pfc_err_mask); | ||
1069 | /* | ||
1070 | * Enable only the FB_ECC error interrupt in PCC block | ||
1071 | */ | ||
1072 | val64 = DISABLE_ALL_INTRS & (~PCC_FB_ECC_ERR); | ||
1073 | writeq(val64, &bar0->pcc_err_mask); | ||
1074 | } else if (flag == DISABLE_INTRS) { | ||
1075 | /* | ||
1076 | * Disable TxDMA Intrs in the general intr mask | ||
1077 | * register | ||
1078 | */ | ||
1079 | writeq(DISABLE_ALL_INTRS, &bar0->txdma_int_mask); | ||
1080 | writeq(DISABLE_ALL_INTRS, &bar0->pfc_err_mask); | ||
1081 | temp64 = readq(&bar0->general_int_mask); | ||
1082 | val64 |= temp64; | ||
1083 | writeq(val64, &bar0->general_int_mask); | ||
1084 | } | ||
1085 | } | ||
1086 | |||
1087 | /* Enabling/Disabling Rx DMA interrupts */ | ||
1088 | if (mask & RX_DMA_INTR) { | ||
1089 | /* Enable RxDMA Intrs in the general intr mask register */ | ||
1090 | val64 = RXDMA_INT_M; | ||
1091 | if (flag == ENABLE_INTRS) { | ||
1092 | temp64 = readq(&bar0->general_int_mask); | ||
1093 | temp64 &= ~((u64) val64); | ||
1094 | writeq(temp64, &bar0->general_int_mask); | ||
1095 | /* | ||
1096 | * All RxDMA block interrupts are disabled for now | ||
1097 | * TODO | ||
1098 | */ | ||
1099 | writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); | ||
1100 | } else if (flag == DISABLE_INTRS) { | ||
1101 | /* | ||
1102 | * Disable RxDMA Intrs in the general intr mask | ||
1103 | * register | ||
1104 | */ | ||
1105 | writeq(DISABLE_ALL_INTRS, &bar0->rxdma_int_mask); | ||
1106 | temp64 = readq(&bar0->general_int_mask); | ||
1107 | val64 |= temp64; | ||
1108 | writeq(val64, &bar0->general_int_mask); | ||
1109 | } | ||
1110 | } | ||
1111 | |||
1112 | /* MAC Interrupts */ | ||
1113 | /* Enabling/Disabling MAC interrupts */ | ||
1114 | if (mask & (TX_MAC_INTR | RX_MAC_INTR)) { | ||
1115 | val64 = TXMAC_INT_M | RXMAC_INT_M; | ||
1116 | if (flag == ENABLE_INTRS) { | ||
1117 | temp64 = readq(&bar0->general_int_mask); | ||
1118 | temp64 &= ~((u64) val64); | ||
1119 | writeq(temp64, &bar0->general_int_mask); | ||
1120 | /* | ||
1121 | * All MAC block error interrupts are disabled for now | ||
1122 | * except the link status change interrupt. | ||
1123 | * TODO | ||
1124 | */ | ||
1125 | val64 = MAC_INT_STATUS_RMAC_INT; | ||
1126 | temp64 = readq(&bar0->mac_int_mask); | ||
1127 | temp64 &= ~((u64) val64); | ||
1128 | writeq(temp64, &bar0->mac_int_mask); | ||
1129 | |||
1130 | val64 = readq(&bar0->mac_rmac_err_mask); | ||
1131 | val64 &= ~((u64) RMAC_LINK_STATE_CHANGE_INT); | ||
1132 | writeq(val64, &bar0->mac_rmac_err_mask); | ||
1133 | } else if (flag == DISABLE_INTRS) { | ||
1134 | /* | ||
1135 | * Disable MAC Intrs in the general intr mask register | ||
1136 | */ | ||
1137 | writeq(DISABLE_ALL_INTRS, &bar0->mac_int_mask); | ||
1138 | writeq(DISABLE_ALL_INTRS, | ||
1139 | &bar0->mac_rmac_err_mask); | ||
1140 | |||
1141 | temp64 = readq(&bar0->general_int_mask); | ||
1142 | val64 |= temp64; | ||
1143 | writeq(val64, &bar0->general_int_mask); | ||
1144 | } | ||
1145 | } | ||
1146 | |||
1147 | /* XGXS Interrupts */ | ||
1148 | if (mask & (TX_XGXS_INTR | RX_XGXS_INTR)) { | ||
1149 | val64 = TXXGXS_INT_M | RXXGXS_INT_M; | ||
1150 | if (flag == ENABLE_INTRS) { | ||
1151 | temp64 = readq(&bar0->general_int_mask); | ||
1152 | temp64 &= ~((u64) val64); | ||
1153 | writeq(temp64, &bar0->general_int_mask); | ||
1154 | /* | ||
1155 | * All XGXS block error interrupts are disabled for now | ||
1156 | * TODO | ||
1157 | */ | ||
1158 | writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); | ||
1159 | } else if (flag == DISABLE_INTRS) { | ||
1160 | /* | ||
1161 | * Disable MC Intrs in the general intr mask register | ||
1162 | */ | ||
1163 | writeq(DISABLE_ALL_INTRS, &bar0->xgxs_int_mask); | ||
1164 | temp64 = readq(&bar0->general_int_mask); | ||
1165 | val64 |= temp64; | ||
1166 | writeq(val64, &bar0->general_int_mask); | ||
1167 | } | ||
1168 | } | ||
1169 | |||
1170 | /* Memory Controller(MC) interrupts */ | ||
1171 | if (mask & MC_INTR) { | ||
1172 | val64 = MC_INT_M; | ||
1173 | if (flag == ENABLE_INTRS) { | ||
1174 | temp64 = readq(&bar0->general_int_mask); | ||
1175 | temp64 &= ~((u64) val64); | ||
1176 | writeq(temp64, &bar0->general_int_mask); | ||
1177 | /* | ||
1178 | * All MC block error interrupts are disabled for now | ||
1179 | * TODO | ||
1180 | */ | ||
1181 | writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); | ||
1182 | } else if (flag == DISABLE_INTRS) { | ||
1183 | /* | ||
1184 | * Disable MC Intrs in the general intr mask register | ||
1185 | */ | ||
1186 | writeq(DISABLE_ALL_INTRS, &bar0->mc_int_mask); | ||
1187 | temp64 = readq(&bar0->general_int_mask); | ||
1188 | val64 |= temp64; | ||
1189 | writeq(val64, &bar0->general_int_mask); | ||
1190 | } | ||
1191 | } | ||
1192 | |||
1193 | |||
1194 | /* Tx traffic interrupts */ | ||
1195 | if (mask & TX_TRAFFIC_INTR) { | ||
1196 | val64 = TXTRAFFIC_INT_M; | ||
1197 | if (flag == ENABLE_INTRS) { | ||
1198 | temp64 = readq(&bar0->general_int_mask); | ||
1199 | temp64 &= ~((u64) val64); | ||
1200 | writeq(temp64, &bar0->general_int_mask); | ||
1201 | /* | ||
1202 | * Enable all the Tx side interrupts | ||
1203 | * writing 0 Enables all 64 TX interrupt levels | ||
1204 | */ | ||
1205 | writeq(0x0, &bar0->tx_traffic_mask); | ||
1206 | } else if (flag == DISABLE_INTRS) { | ||
1207 | /* | ||
1208 | * Disable Tx Traffic Intrs in the general intr mask | ||
1209 | * register. | ||
1210 | */ | ||
1211 | writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask); | ||
1212 | temp64 = readq(&bar0->general_int_mask); | ||
1213 | val64 |= temp64; | ||
1214 | writeq(val64, &bar0->general_int_mask); | ||
1215 | } | ||
1216 | } | ||
1217 | |||
1218 | /* Rx traffic interrupts */ | ||
1219 | if (mask & RX_TRAFFIC_INTR) { | ||
1220 | val64 = RXTRAFFIC_INT_M; | ||
1221 | if (flag == ENABLE_INTRS) { | ||
1222 | temp64 = readq(&bar0->general_int_mask); | ||
1223 | temp64 &= ~((u64) val64); | ||
1224 | writeq(temp64, &bar0->general_int_mask); | ||
1225 | /* writing 0 Enables all 8 RX interrupt levels */ | ||
1226 | writeq(0x0, &bar0->rx_traffic_mask); | ||
1227 | } else if (flag == DISABLE_INTRS) { | ||
1228 | /* | ||
1229 | * Disable Rx Traffic Intrs in the general intr mask | ||
1230 | * register. | ||
1231 | */ | ||
1232 | writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask); | ||
1233 | temp64 = readq(&bar0->general_int_mask); | ||
1234 | val64 |= temp64; | ||
1235 | writeq(val64, &bar0->general_int_mask); | ||
1236 | } | ||
1237 | } | ||
1238 | } | ||
1239 | |||
1240 | /** | ||
1241 | * verify_xena_quiescence - Checks whether the H/W is ready | ||
1242 | * @val64 : Value read from adapter status register. | ||
1243 | * @flag : indicates if the adapter enable bit was ever written once | ||
1244 | * before. | ||
1245 | * Description: Returns whether the H/W is ready to go or not. Depending | ||
1246 | * on whether adapter enable bit was written or not the comparison | ||
1247 | * differs and the calling function passes the input argument flag to | ||
1248 | * indicate this. | ||
1249 | * Return: 1 If xena is quiescence | ||
1250 | * 0 If Xena is not quiescence | ||
1251 | */ | ||
1252 | |||
1253 | static int verify_xena_quiescence(u64 val64, int flag) | ||
1254 | { | ||
1255 | int ret = 0; | ||
1256 | u64 tmp64 = ~((u64) val64); | ||
1257 | |||
1258 | if (! | ||
1259 | (tmp64 & | ||
1260 | (ADAPTER_STATUS_TDMA_READY | ADAPTER_STATUS_RDMA_READY | | ||
1261 | ADAPTER_STATUS_PFC_READY | ADAPTER_STATUS_TMAC_BUF_EMPTY | | ||
1262 | ADAPTER_STATUS_PIC_QUIESCENT | ADAPTER_STATUS_MC_DRAM_READY | | ||
1263 | ADAPTER_STATUS_MC_QUEUES_READY | ADAPTER_STATUS_M_PLL_LOCK | | ||
1264 | ADAPTER_STATUS_P_PLL_LOCK))) { | ||
1265 | if (flag == FALSE) { | ||
1266 | if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) && | ||
1267 | ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == | ||
1268 | ADAPTER_STATUS_RC_PRC_QUIESCENT)) { | ||
1269 | |||
1270 | ret = 1; | ||
1271 | |||
1272 | } | ||
1273 | } else { | ||
1274 | if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) == | ||
1275 | ADAPTER_STATUS_RMAC_PCC_IDLE) && | ||
1276 | (!(val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) || | ||
1277 | ((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) == | ||
1278 | ADAPTER_STATUS_RC_PRC_QUIESCENT))) { | ||
1279 | |||
1280 | ret = 1; | ||
1281 | |||
1282 | } | ||
1283 | } | ||
1284 | } | ||
1285 | |||
1286 | return ret; | ||
1287 | } | ||
1288 | |||
1289 | /** | ||
1290 | * fix_mac_address - Fix for Mac addr problem on Alpha platforms | ||
1291 | * @sp: Pointer to device specifc structure | ||
1292 | * Description : | ||
1293 | * New procedure to clear mac address reading problems on Alpha platforms | ||
1294 | * | ||
1295 | */ | ||
1296 | |||
1297 | static void fix_mac_address(nic_t * sp) | ||
1298 | { | ||
1299 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
1300 | u64 val64; | ||
1301 | int i = 0; | ||
1302 | |||
1303 | while (fix_mac[i] != END_SIGN) { | ||
1304 | writeq(fix_mac[i++], &bar0->gpio_control); | ||
1305 | val64 = readq(&bar0->gpio_control); | ||
1306 | } | ||
1307 | } | ||
1308 | |||
1309 | /** | ||
1310 | * start_nic - Turns the device on | ||
1311 | * @nic : device private variable. | ||
1312 | * Description: | ||
1313 | * This function actually turns the device on. Before this function is | ||
1314 | * called,all Registers are configured from their reset states | ||
1315 | * and shared memory is allocated but the NIC is still quiescent. On | ||
1316 | * calling this function, the device interrupts are cleared and the NIC is | ||
1317 | * literally switched on by writing into the adapter control register. | ||
1318 | * Return Value: | ||
1319 | * SUCCESS on success and -1 on failure. | ||
1320 | */ | ||
1321 | |||
1322 | static int start_nic(struct s2io_nic *nic) | ||
1323 | { | ||
1324 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | ||
1325 | struct net_device *dev = nic->dev; | ||
1326 | register u64 val64 = 0; | ||
1327 | u16 interruptible, i; | ||
1328 | u16 subid; | ||
1329 | mac_info_t *mac_control; | ||
1330 | struct config_param *config; | ||
1331 | |||
1332 | mac_control = &nic->mac_control; | ||
1333 | config = &nic->config; | ||
1334 | |||
1335 | /* PRC Initialization and configuration */ | ||
1336 | for (i = 0; i < config->rx_ring_num; i++) { | ||
1337 | writeq((u64) nic->rx_blocks[i][0].block_dma_addr, | ||
1338 | &bar0->prc_rxd0_n[i]); | ||
1339 | |||
1340 | val64 = readq(&bar0->prc_ctrl_n[i]); | ||
1341 | #ifndef CONFIG_2BUFF_MODE | ||
1342 | val64 |= PRC_CTRL_RC_ENABLED; | ||
1343 | #else | ||
1344 | val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3; | ||
1345 | #endif | ||
1346 | writeq(val64, &bar0->prc_ctrl_n[i]); | ||
1347 | } | ||
1348 | |||
1349 | #ifdef CONFIG_2BUFF_MODE | ||
1350 | /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */ | ||
1351 | val64 = readq(&bar0->rx_pa_cfg); | ||
1352 | val64 |= RX_PA_CFG_IGNORE_L2_ERR; | ||
1353 | writeq(val64, &bar0->rx_pa_cfg); | ||
1354 | #endif | ||
1355 | |||
1356 | /* | ||
1357 | * Enabling MC-RLDRAM. After enabling the device, we timeout | ||
1358 | * for around 100ms, which is approximately the time required | ||
1359 | * for the device to be ready for operation. | ||
1360 | */ | ||
1361 | val64 = readq(&bar0->mc_rldram_mrs); | ||
1362 | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE; | ||
1363 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | ||
1364 | val64 = readq(&bar0->mc_rldram_mrs); | ||
1365 | |||
1366 | msleep(100); /* Delay by around 100 ms. */ | ||
1367 | |||
1368 | /* Enabling ECC Protection. */ | ||
1369 | val64 = readq(&bar0->adapter_control); | ||
1370 | val64 &= ~ADAPTER_ECC_EN; | ||
1371 | writeq(val64, &bar0->adapter_control); | ||
1372 | |||
1373 | /* | ||
1374 | * Clearing any possible Link state change interrupts that | ||
1375 | * could have popped up just before Enabling the card. | ||
1376 | */ | ||
1377 | val64 = readq(&bar0->mac_rmac_err_reg); | ||
1378 | if (val64) | ||
1379 | writeq(val64, &bar0->mac_rmac_err_reg); | ||
1380 | |||
1381 | /* | ||
1382 | * Verify if the device is ready to be enabled, if so enable | ||
1383 | * it. | ||
1384 | */ | ||
1385 | val64 = readq(&bar0->adapter_status); | ||
1386 | if (!verify_xena_quiescence(val64, nic->device_enabled_once)) { | ||
1387 | DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name); | ||
1388 | DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n", | ||
1389 | (unsigned long long) val64); | ||
1390 | return FAILURE; | ||
1391 | } | ||
1392 | |||
1393 | /* Enable select interrupts */ | ||
1394 | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | | ||
1395 | RX_MAC_INTR; | ||
1396 | en_dis_able_nic_intrs(nic, interruptible, ENABLE_INTRS); | ||
1397 | |||
1398 | /* | ||
1399 | * With some switches, link might be already up at this point. | ||
1400 | * Because of this weird behavior, when we enable laser, | ||
1401 | * we may not get link. We need to handle this. We cannot | ||
1402 | * figure out which switch is misbehaving. So we are forced to | ||
1403 | * make a global change. | ||
1404 | */ | ||
1405 | |||
1406 | /* Enabling Laser. */ | ||
1407 | val64 = readq(&bar0->adapter_control); | ||
1408 | val64 |= ADAPTER_EOI_TX_ON; | ||
1409 | writeq(val64, &bar0->adapter_control); | ||
1410 | |||
1411 | /* SXE-002: Initialize link and activity LED */ | ||
1412 | subid = nic->pdev->subsystem_device; | ||
1413 | if ((subid & 0xFF) >= 0x07) { | ||
1414 | val64 = readq(&bar0->gpio_control); | ||
1415 | val64 |= 0x0000800000000000ULL; | ||
1416 | writeq(val64, &bar0->gpio_control); | ||
1417 | val64 = 0x0411040400000000ULL; | ||
1418 | writeq(val64, (void __iomem *) bar0 + 0x2700); | ||
1419 | } | ||
1420 | |||
1421 | /* | ||
1422 | * Don't see link state interrupts on certain switches, so | ||
1423 | * directly scheduling a link state task from here. | ||
1424 | */ | ||
1425 | schedule_work(&nic->set_link_task); | ||
1426 | |||
1427 | /* | ||
1428 | * Here we are performing soft reset on XGXS to | ||
1429 | * force link down. Since link is already up, we will get | ||
1430 | * link state change interrupt after this reset | ||
1431 | */ | ||
1432 | SPECIAL_REG_WRITE(0x80010515001E0000ULL, &bar0->dtx_control, UF); | ||
1433 | val64 = readq(&bar0->dtx_control); | ||
1434 | udelay(50); | ||
1435 | SPECIAL_REG_WRITE(0x80010515001E00E0ULL, &bar0->dtx_control, UF); | ||
1436 | val64 = readq(&bar0->dtx_control); | ||
1437 | udelay(50); | ||
1438 | SPECIAL_REG_WRITE(0x80070515001F00E4ULL, &bar0->dtx_control, UF); | ||
1439 | val64 = readq(&bar0->dtx_control); | ||
1440 | udelay(50); | ||
1441 | |||
1442 | return SUCCESS; | ||
1443 | } | ||
1444 | |||
1445 | /** | ||
1446 | * free_tx_buffers - Free all queued Tx buffers | ||
1447 | * @nic : device private variable. | ||
1448 | * Description: | ||
1449 | * Free all queued Tx buffers. | ||
1450 | * Return Value: void | ||
1451 | */ | ||
1452 | |||
1453 | static void free_tx_buffers(struct s2io_nic *nic) | ||
1454 | { | ||
1455 | struct net_device *dev = nic->dev; | ||
1456 | struct sk_buff *skb; | ||
1457 | TxD_t *txdp; | ||
1458 | int i, j; | ||
1459 | mac_info_t *mac_control; | ||
1460 | struct config_param *config; | ||
1461 | int cnt = 0; | ||
1462 | |||
1463 | mac_control = &nic->mac_control; | ||
1464 | config = &nic->config; | ||
1465 | |||
1466 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
1467 | for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) { | ||
1468 | txdp = (TxD_t *) nic->list_info[i][j]. | ||
1469 | list_virt_addr; | ||
1470 | skb = | ||
1471 | (struct sk_buff *) ((unsigned long) txdp-> | ||
1472 | Host_Control); | ||
1473 | if (skb == NULL) { | ||
1474 | memset(txdp, 0, sizeof(TxD_t)); | ||
1475 | continue; | ||
1476 | } | ||
1477 | dev_kfree_skb(skb); | ||
1478 | memset(txdp, 0, sizeof(TxD_t)); | ||
1479 | cnt++; | ||
1480 | } | ||
1481 | DBG_PRINT(INTR_DBG, | ||
1482 | "%s:forcibly freeing %d skbs on FIFO%d\n", | ||
1483 | dev->name, cnt, i); | ||
1484 | mac_control->tx_curr_get_info[i].offset = 0; | ||
1485 | mac_control->tx_curr_put_info[i].offset = 0; | ||
1486 | } | ||
1487 | } | ||
1488 | |||
1489 | /** | ||
1490 | * stop_nic - To stop the nic | ||
1491 | * @nic ; device private variable. | ||
1492 | * Description: | ||
1493 | * This function does exactly the opposite of what the start_nic() | ||
1494 | * function does. This function is called to stop the device. | ||
1495 | * Return Value: | ||
1496 | * void. | ||
1497 | */ | ||
1498 | |||
1499 | static void stop_nic(struct s2io_nic *nic) | ||
1500 | { | ||
1501 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | ||
1502 | register u64 val64 = 0; | ||
1503 | u16 interruptible, i; | ||
1504 | mac_info_t *mac_control; | ||
1505 | struct config_param *config; | ||
1506 | |||
1507 | mac_control = &nic->mac_control; | ||
1508 | config = &nic->config; | ||
1509 | |||
1510 | /* Disable all interrupts */ | ||
1511 | interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR | TX_MAC_INTR | | ||
1512 | RX_MAC_INTR; | ||
1513 | en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS); | ||
1514 | |||
1515 | /* Disable PRCs */ | ||
1516 | for (i = 0; i < config->rx_ring_num; i++) { | ||
1517 | val64 = readq(&bar0->prc_ctrl_n[i]); | ||
1518 | val64 &= ~((u64) PRC_CTRL_RC_ENABLED); | ||
1519 | writeq(val64, &bar0->prc_ctrl_n[i]); | ||
1520 | } | ||
1521 | } | ||
1522 | |||
1523 | /** | ||
1524 | * fill_rx_buffers - Allocates the Rx side skbs | ||
1525 | * @nic: device private variable | ||
1526 | * @ring_no: ring number | ||
1527 | * Description: | ||
1528 | * The function allocates Rx side skbs and puts the physical | ||
1529 | * address of these buffers into the RxD buffer pointers, so that the NIC | ||
1530 | * can DMA the received frame into these locations. | ||
1531 | * The NIC supports 3 receive modes, viz | ||
1532 | * 1. single buffer, | ||
1533 | * 2. three buffer and | ||
1534 | * 3. Five buffer modes. | ||
1535 | * Each mode defines how many fragments the received frame will be split | ||
1536 | * up into by the NIC. The frame is split into L3 header, L4 Header, | ||
1537 | * L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself | ||
1538 | * is split into 3 fragments. As of now only single buffer mode is | ||
1539 | * supported. | ||
1540 | * Return Value: | ||
1541 | * SUCCESS on success or an appropriate -ve value on failure. | ||
1542 | */ | ||
1543 | |||
1544 | static int fill_rx_buffers(struct s2io_nic *nic, int ring_no) | ||
1545 | { | ||
1546 | struct net_device *dev = nic->dev; | ||
1547 | struct sk_buff *skb; | ||
1548 | RxD_t *rxdp; | ||
1549 | int off, off1, size, block_no, block_no1; | ||
1550 | int offset, offset1; | ||
1551 | u32 alloc_tab = 0; | ||
1552 | u32 alloc_cnt = nic->pkt_cnt[ring_no] - | ||
1553 | atomic_read(&nic->rx_bufs_left[ring_no]); | ||
1554 | mac_info_t *mac_control; | ||
1555 | struct config_param *config; | ||
1556 | #ifdef CONFIG_2BUFF_MODE | ||
1557 | RxD_t *rxdpnext; | ||
1558 | int nextblk; | ||
1559 | unsigned long tmp; | ||
1560 | buffAdd_t *ba; | ||
1561 | dma_addr_t rxdpphys; | ||
1562 | #endif | ||
1563 | #ifndef CONFIG_S2IO_NAPI | ||
1564 | unsigned long flags; | ||
1565 | #endif | ||
1566 | |||
1567 | mac_control = &nic->mac_control; | ||
1568 | config = &nic->config; | ||
1569 | |||
1570 | size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE + | ||
1571 | HEADER_802_2_SIZE + HEADER_SNAP_SIZE; | ||
1572 | |||
1573 | while (alloc_tab < alloc_cnt) { | ||
1574 | block_no = mac_control->rx_curr_put_info[ring_no]. | ||
1575 | block_index; | ||
1576 | block_no1 = mac_control->rx_curr_get_info[ring_no]. | ||
1577 | block_index; | ||
1578 | off = mac_control->rx_curr_put_info[ring_no].offset; | ||
1579 | off1 = mac_control->rx_curr_get_info[ring_no].offset; | ||
1580 | #ifndef CONFIG_2BUFF_MODE | ||
1581 | offset = block_no * (MAX_RXDS_PER_BLOCK + 1) + off; | ||
1582 | offset1 = block_no1 * (MAX_RXDS_PER_BLOCK + 1) + off1; | ||
1583 | #else | ||
1584 | offset = block_no * (MAX_RXDS_PER_BLOCK) + off; | ||
1585 | offset1 = block_no1 * (MAX_RXDS_PER_BLOCK) + off1; | ||
1586 | #endif | ||
1587 | |||
1588 | rxdp = nic->rx_blocks[ring_no][block_no]. | ||
1589 | block_virt_addr + off; | ||
1590 | if ((offset == offset1) && (rxdp->Host_Control)) { | ||
1591 | DBG_PRINT(INTR_DBG, "%s: Get and Put", dev->name); | ||
1592 | DBG_PRINT(INTR_DBG, " info equated\n"); | ||
1593 | goto end; | ||
1594 | } | ||
1595 | #ifndef CONFIG_2BUFF_MODE | ||
1596 | if (rxdp->Control_1 == END_OF_BLOCK) { | ||
1597 | mac_control->rx_curr_put_info[ring_no]. | ||
1598 | block_index++; | ||
1599 | mac_control->rx_curr_put_info[ring_no]. | ||
1600 | block_index %= nic->block_count[ring_no]; | ||
1601 | block_no = mac_control->rx_curr_put_info | ||
1602 | [ring_no].block_index; | ||
1603 | off++; | ||
1604 | off %= (MAX_RXDS_PER_BLOCK + 1); | ||
1605 | mac_control->rx_curr_put_info[ring_no].offset = | ||
1606 | off; | ||
1607 | rxdp = (RxD_t *) ((unsigned long) rxdp->Control_2); | ||
1608 | DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n", | ||
1609 | dev->name, rxdp); | ||
1610 | } | ||
1611 | #ifndef CONFIG_S2IO_NAPI | ||
1612 | spin_lock_irqsave(&nic->put_lock, flags); | ||
1613 | nic->put_pos[ring_no] = | ||
1614 | (block_no * (MAX_RXDS_PER_BLOCK + 1)) + off; | ||
1615 | spin_unlock_irqrestore(&nic->put_lock, flags); | ||
1616 | #endif | ||
1617 | #else | ||
1618 | if (rxdp->Host_Control == END_OF_BLOCK) { | ||
1619 | mac_control->rx_curr_put_info[ring_no]. | ||
1620 | block_index++; | ||
1621 | mac_control->rx_curr_put_info[ring_no]. | ||
1622 | block_index %= nic->block_count[ring_no]; | ||
1623 | block_no = mac_control->rx_curr_put_info | ||
1624 | [ring_no].block_index; | ||
1625 | off = 0; | ||
1626 | DBG_PRINT(INTR_DBG, "%s: block%d at: 0x%llx\n", | ||
1627 | dev->name, block_no, | ||
1628 | (unsigned long long) rxdp->Control_1); | ||
1629 | mac_control->rx_curr_put_info[ring_no].offset = | ||
1630 | off; | ||
1631 | rxdp = nic->rx_blocks[ring_no][block_no]. | ||
1632 | block_virt_addr; | ||
1633 | } | ||
1634 | #ifndef CONFIG_S2IO_NAPI | ||
1635 | spin_lock_irqsave(&nic->put_lock, flags); | ||
1636 | nic->put_pos[ring_no] = (block_no * | ||
1637 | (MAX_RXDS_PER_BLOCK + 1)) + off; | ||
1638 | spin_unlock_irqrestore(&nic->put_lock, flags); | ||
1639 | #endif | ||
1640 | #endif | ||
1641 | |||
1642 | #ifndef CONFIG_2BUFF_MODE | ||
1643 | if (rxdp->Control_1 & RXD_OWN_XENA) | ||
1644 | #else | ||
1645 | if (rxdp->Control_2 & BIT(0)) | ||
1646 | #endif | ||
1647 | { | ||
1648 | mac_control->rx_curr_put_info[ring_no]. | ||
1649 | offset = off; | ||
1650 | goto end; | ||
1651 | } | ||
1652 | #ifdef CONFIG_2BUFF_MODE | ||
1653 | /* | ||
1654 | * RxDs Spanning cache lines will be replenished only | ||
1655 | * if the succeeding RxD is also owned by Host. It | ||
1656 | * will always be the ((8*i)+3) and ((8*i)+6) | ||
1657 | * descriptors for the 48 byte descriptor. The offending | ||
1658 | * decsriptor is of-course the 3rd descriptor. | ||
1659 | */ | ||
1660 | rxdpphys = nic->rx_blocks[ring_no][block_no]. | ||
1661 | block_dma_addr + (off * sizeof(RxD_t)); | ||
1662 | if (((u64) (rxdpphys)) % 128 > 80) { | ||
1663 | rxdpnext = nic->rx_blocks[ring_no][block_no]. | ||
1664 | block_virt_addr + (off + 1); | ||
1665 | if (rxdpnext->Host_Control == END_OF_BLOCK) { | ||
1666 | nextblk = (block_no + 1) % | ||
1667 | (nic->block_count[ring_no]); | ||
1668 | rxdpnext = nic->rx_blocks[ring_no] | ||
1669 | [nextblk].block_virt_addr; | ||
1670 | } | ||
1671 | if (rxdpnext->Control_2 & BIT(0)) | ||
1672 | goto end; | ||
1673 | } | ||
1674 | #endif | ||
1675 | |||
1676 | #ifndef CONFIG_2BUFF_MODE | ||
1677 | skb = dev_alloc_skb(size + NET_IP_ALIGN); | ||
1678 | #else | ||
1679 | skb = dev_alloc_skb(dev->mtu + ALIGN_SIZE + BUF0_LEN + 4); | ||
1680 | #endif | ||
1681 | if (!skb) { | ||
1682 | DBG_PRINT(ERR_DBG, "%s: Out of ", dev->name); | ||
1683 | DBG_PRINT(ERR_DBG, "memory to allocate SKBs\n"); | ||
1684 | return -ENOMEM; | ||
1685 | } | ||
1686 | #ifndef CONFIG_2BUFF_MODE | ||
1687 | skb_reserve(skb, NET_IP_ALIGN); | ||
1688 | memset(rxdp, 0, sizeof(RxD_t)); | ||
1689 | rxdp->Buffer0_ptr = pci_map_single | ||
1690 | (nic->pdev, skb->data, size, PCI_DMA_FROMDEVICE); | ||
1691 | rxdp->Control_2 &= (~MASK_BUFFER0_SIZE); | ||
1692 | rxdp->Control_2 |= SET_BUFFER0_SIZE(size); | ||
1693 | rxdp->Host_Control = (unsigned long) (skb); | ||
1694 | rxdp->Control_1 |= RXD_OWN_XENA; | ||
1695 | off++; | ||
1696 | off %= (MAX_RXDS_PER_BLOCK + 1); | ||
1697 | mac_control->rx_curr_put_info[ring_no].offset = off; | ||
1698 | #else | ||
1699 | ba = &nic->ba[ring_no][block_no][off]; | ||
1700 | skb_reserve(skb, BUF0_LEN); | ||
1701 | tmp = (unsigned long) skb->data; | ||
1702 | tmp += ALIGN_SIZE; | ||
1703 | tmp &= ~ALIGN_SIZE; | ||
1704 | skb->data = (void *) tmp; | ||
1705 | skb->tail = (void *) tmp; | ||
1706 | |||
1707 | memset(rxdp, 0, sizeof(RxD_t)); | ||
1708 | rxdp->Buffer2_ptr = pci_map_single | ||
1709 | (nic->pdev, skb->data, dev->mtu + BUF0_LEN + 4, | ||
1710 | PCI_DMA_FROMDEVICE); | ||
1711 | rxdp->Buffer0_ptr = | ||
1712 | pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN, | ||
1713 | PCI_DMA_FROMDEVICE); | ||
1714 | rxdp->Buffer1_ptr = | ||
1715 | pci_map_single(nic->pdev, ba->ba_1, BUF1_LEN, | ||
1716 | PCI_DMA_FROMDEVICE); | ||
1717 | |||
1718 | rxdp->Control_2 = SET_BUFFER2_SIZE(dev->mtu + 4); | ||
1719 | rxdp->Control_2 |= SET_BUFFER0_SIZE(BUF0_LEN); | ||
1720 | rxdp->Control_2 |= SET_BUFFER1_SIZE(1); /* dummy. */ | ||
1721 | rxdp->Control_2 |= BIT(0); /* Set Buffer_Empty bit. */ | ||
1722 | rxdp->Host_Control = (u64) ((unsigned long) (skb)); | ||
1723 | rxdp->Control_1 |= RXD_OWN_XENA; | ||
1724 | off++; | ||
1725 | mac_control->rx_curr_put_info[ring_no].offset = off; | ||
1726 | #endif | ||
1727 | atomic_inc(&nic->rx_bufs_left[ring_no]); | ||
1728 | alloc_tab++; | ||
1729 | } | ||
1730 | |||
1731 | end: | ||
1732 | return SUCCESS; | ||
1733 | } | ||
1734 | |||
1735 | /** | ||
1736 | * free_rx_buffers - Frees all Rx buffers | ||
1737 | * @sp: device private variable. | ||
1738 | * Description: | ||
1739 | * This function will free all Rx buffers allocated by host. | ||
1740 | * Return Value: | ||
1741 | * NONE. | ||
1742 | */ | ||
1743 | |||
1744 | static void free_rx_buffers(struct s2io_nic *sp) | ||
1745 | { | ||
1746 | struct net_device *dev = sp->dev; | ||
1747 | int i, j, blk = 0, off, buf_cnt = 0; | ||
1748 | RxD_t *rxdp; | ||
1749 | struct sk_buff *skb; | ||
1750 | mac_info_t *mac_control; | ||
1751 | struct config_param *config; | ||
1752 | #ifdef CONFIG_2BUFF_MODE | ||
1753 | buffAdd_t *ba; | ||
1754 | #endif | ||
1755 | |||
1756 | mac_control = &sp->mac_control; | ||
1757 | config = &sp->config; | ||
1758 | |||
1759 | for (i = 0; i < config->rx_ring_num; i++) { | ||
1760 | for (j = 0, blk = 0; j < config->rx_cfg[i].num_rxd; j++) { | ||
1761 | off = j % (MAX_RXDS_PER_BLOCK + 1); | ||
1762 | rxdp = sp->rx_blocks[i][blk].block_virt_addr + off; | ||
1763 | |||
1764 | #ifndef CONFIG_2BUFF_MODE | ||
1765 | if (rxdp->Control_1 == END_OF_BLOCK) { | ||
1766 | rxdp = | ||
1767 | (RxD_t *) ((unsigned long) rxdp-> | ||
1768 | Control_2); | ||
1769 | j++; | ||
1770 | blk++; | ||
1771 | } | ||
1772 | #else | ||
1773 | if (rxdp->Host_Control == END_OF_BLOCK) { | ||
1774 | blk++; | ||
1775 | continue; | ||
1776 | } | ||
1777 | #endif | ||
1778 | |||
1779 | if (!(rxdp->Control_1 & RXD_OWN_XENA)) { | ||
1780 | memset(rxdp, 0, sizeof(RxD_t)); | ||
1781 | continue; | ||
1782 | } | ||
1783 | |||
1784 | skb = | ||
1785 | (struct sk_buff *) ((unsigned long) rxdp-> | ||
1786 | Host_Control); | ||
1787 | if (skb) { | ||
1788 | #ifndef CONFIG_2BUFF_MODE | ||
1789 | pci_unmap_single(sp->pdev, (dma_addr_t) | ||
1790 | rxdp->Buffer0_ptr, | ||
1791 | dev->mtu + | ||
1792 | HEADER_ETHERNET_II_802_3_SIZE | ||
1793 | + HEADER_802_2_SIZE + | ||
1794 | HEADER_SNAP_SIZE, | ||
1795 | PCI_DMA_FROMDEVICE); | ||
1796 | #else | ||
1797 | ba = &sp->ba[i][blk][off]; | ||
1798 | pci_unmap_single(sp->pdev, (dma_addr_t) | ||
1799 | rxdp->Buffer0_ptr, | ||
1800 | BUF0_LEN, | ||
1801 | PCI_DMA_FROMDEVICE); | ||
1802 | pci_unmap_single(sp->pdev, (dma_addr_t) | ||
1803 | rxdp->Buffer1_ptr, | ||
1804 | BUF1_LEN, | ||
1805 | PCI_DMA_FROMDEVICE); | ||
1806 | pci_unmap_single(sp->pdev, (dma_addr_t) | ||
1807 | rxdp->Buffer2_ptr, | ||
1808 | dev->mtu + BUF0_LEN + 4, | ||
1809 | PCI_DMA_FROMDEVICE); | ||
1810 | #endif | ||
1811 | dev_kfree_skb(skb); | ||
1812 | atomic_dec(&sp->rx_bufs_left[i]); | ||
1813 | buf_cnt++; | ||
1814 | } | ||
1815 | memset(rxdp, 0, sizeof(RxD_t)); | ||
1816 | } | ||
1817 | mac_control->rx_curr_put_info[i].block_index = 0; | ||
1818 | mac_control->rx_curr_get_info[i].block_index = 0; | ||
1819 | mac_control->rx_curr_put_info[i].offset = 0; | ||
1820 | mac_control->rx_curr_get_info[i].offset = 0; | ||
1821 | atomic_set(&sp->rx_bufs_left[i], 0); | ||
1822 | DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n", | ||
1823 | dev->name, buf_cnt, i); | ||
1824 | } | ||
1825 | } | ||
1826 | |||
1827 | /** | ||
1828 | * s2io_poll - Rx interrupt handler for NAPI support | ||
1829 | * @dev : pointer to the device structure. | ||
1830 | * @budget : The number of packets that were budgeted to be processed | ||
1831 | * during one pass through the 'Poll" function. | ||
1832 | * Description: | ||
1833 | * Comes into picture only if NAPI support has been incorporated. It does | ||
1834 | * the same thing that rx_intr_handler does, but not in a interrupt context | ||
1835 | * also It will process only a given number of packets. | ||
1836 | * Return value: | ||
1837 | * 0 on success and 1 if there are No Rx packets to be processed. | ||
1838 | */ | ||
1839 | |||
1840 | #ifdef CONFIG_S2IO_NAPI | ||
1841 | static int s2io_poll(struct net_device *dev, int *budget) | ||
1842 | { | ||
1843 | nic_t *nic = dev->priv; | ||
1844 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | ||
1845 | int pkts_to_process = *budget, pkt_cnt = 0; | ||
1846 | register u64 val64 = 0; | ||
1847 | rx_curr_get_info_t get_info, put_info; | ||
1848 | int i, get_block, put_block, get_offset, put_offset, ring_bufs; | ||
1849 | #ifndef CONFIG_2BUFF_MODE | ||
1850 | u16 val16, cksum; | ||
1851 | #endif | ||
1852 | struct sk_buff *skb; | ||
1853 | RxD_t *rxdp; | ||
1854 | mac_info_t *mac_control; | ||
1855 | struct config_param *config; | ||
1856 | #ifdef CONFIG_2BUFF_MODE | ||
1857 | buffAdd_t *ba; | ||
1858 | #endif | ||
1859 | |||
1860 | mac_control = &nic->mac_control; | ||
1861 | config = &nic->config; | ||
1862 | |||
1863 | if (pkts_to_process > dev->quota) | ||
1864 | pkts_to_process = dev->quota; | ||
1865 | |||
1866 | val64 = readq(&bar0->rx_traffic_int); | ||
1867 | writeq(val64, &bar0->rx_traffic_int); | ||
1868 | |||
1869 | for (i = 0; i < config->rx_ring_num; i++) { | ||
1870 | get_info = mac_control->rx_curr_get_info[i]; | ||
1871 | get_block = get_info.block_index; | ||
1872 | put_info = mac_control->rx_curr_put_info[i]; | ||
1873 | put_block = put_info.block_index; | ||
1874 | ring_bufs = config->rx_cfg[i].num_rxd; | ||
1875 | rxdp = nic->rx_blocks[i][get_block].block_virt_addr + | ||
1876 | get_info.offset; | ||
1877 | #ifndef CONFIG_2BUFF_MODE | ||
1878 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
1879 | get_info.offset; | ||
1880 | put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
1881 | put_info.offset; | ||
1882 | while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && | ||
1883 | (((get_offset + 1) % ring_bufs) != put_offset)) { | ||
1884 | if (--pkts_to_process < 0) { | ||
1885 | goto no_rx; | ||
1886 | } | ||
1887 | if (rxdp->Control_1 == END_OF_BLOCK) { | ||
1888 | rxdp = | ||
1889 | (RxD_t *) ((unsigned long) rxdp-> | ||
1890 | Control_2); | ||
1891 | get_info.offset++; | ||
1892 | get_info.offset %= | ||
1893 | (MAX_RXDS_PER_BLOCK + 1); | ||
1894 | get_block++; | ||
1895 | get_block %= nic->block_count[i]; | ||
1896 | mac_control->rx_curr_get_info[i]. | ||
1897 | offset = get_info.offset; | ||
1898 | mac_control->rx_curr_get_info[i]. | ||
1899 | block_index = get_block; | ||
1900 | continue; | ||
1901 | } | ||
1902 | get_offset = | ||
1903 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
1904 | get_info.offset; | ||
1905 | skb = | ||
1906 | (struct sk_buff *) ((unsigned long) rxdp-> | ||
1907 | Host_Control); | ||
1908 | if (skb == NULL) { | ||
1909 | DBG_PRINT(ERR_DBG, "%s: The skb is ", | ||
1910 | dev->name); | ||
1911 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | ||
1912 | goto no_rx; | ||
1913 | } | ||
1914 | val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); | ||
1915 | val16 = (u16) (val64 >> 48); | ||
1916 | cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); | ||
1917 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
1918 | rxdp->Buffer0_ptr, | ||
1919 | dev->mtu + | ||
1920 | HEADER_ETHERNET_II_802_3_SIZE + | ||
1921 | HEADER_802_2_SIZE + | ||
1922 | HEADER_SNAP_SIZE, | ||
1923 | PCI_DMA_FROMDEVICE); | ||
1924 | rx_osm_handler(nic, val16, rxdp, i); | ||
1925 | pkt_cnt++; | ||
1926 | get_info.offset++; | ||
1927 | get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); | ||
1928 | rxdp = | ||
1929 | nic->rx_blocks[i][get_block].block_virt_addr + | ||
1930 | get_info.offset; | ||
1931 | mac_control->rx_curr_get_info[i].offset = | ||
1932 | get_info.offset; | ||
1933 | } | ||
1934 | #else | ||
1935 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
1936 | get_info.offset; | ||
1937 | put_offset = (put_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
1938 | put_info.offset; | ||
1939 | while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && | ||
1940 | !(rxdp->Control_2 & BIT(0))) && | ||
1941 | (((get_offset + 1) % ring_bufs) != put_offset)) { | ||
1942 | if (--pkts_to_process < 0) { | ||
1943 | goto no_rx; | ||
1944 | } | ||
1945 | skb = (struct sk_buff *) ((unsigned long) | ||
1946 | rxdp->Host_Control); | ||
1947 | if (skb == NULL) { | ||
1948 | DBG_PRINT(ERR_DBG, "%s: The skb is ", | ||
1949 | dev->name); | ||
1950 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | ||
1951 | goto no_rx; | ||
1952 | } | ||
1953 | |||
1954 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
1955 | rxdp->Buffer0_ptr, | ||
1956 | BUF0_LEN, PCI_DMA_FROMDEVICE); | ||
1957 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
1958 | rxdp->Buffer1_ptr, | ||
1959 | BUF1_LEN, PCI_DMA_FROMDEVICE); | ||
1960 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
1961 | rxdp->Buffer2_ptr, | ||
1962 | dev->mtu + BUF0_LEN + 4, | ||
1963 | PCI_DMA_FROMDEVICE); | ||
1964 | ba = &nic->ba[i][get_block][get_info.offset]; | ||
1965 | |||
1966 | rx_osm_handler(nic, rxdp, i, ba); | ||
1967 | |||
1968 | get_info.offset++; | ||
1969 | mac_control->rx_curr_get_info[i].offset = | ||
1970 | get_info.offset; | ||
1971 | rxdp = | ||
1972 | nic->rx_blocks[i][get_block].block_virt_addr + | ||
1973 | get_info.offset; | ||
1974 | |||
1975 | if (get_info.offset && | ||
1976 | (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { | ||
1977 | get_info.offset = 0; | ||
1978 | mac_control->rx_curr_get_info[i]. | ||
1979 | offset = get_info.offset; | ||
1980 | get_block++; | ||
1981 | get_block %= nic->block_count[i]; | ||
1982 | mac_control->rx_curr_get_info[i]. | ||
1983 | block_index = get_block; | ||
1984 | rxdp = | ||
1985 | nic->rx_blocks[i][get_block]. | ||
1986 | block_virt_addr; | ||
1987 | } | ||
1988 | get_offset = | ||
1989 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
1990 | get_info.offset; | ||
1991 | pkt_cnt++; | ||
1992 | } | ||
1993 | #endif | ||
1994 | } | ||
1995 | if (!pkt_cnt) | ||
1996 | pkt_cnt = 1; | ||
1997 | |||
1998 | dev->quota -= pkt_cnt; | ||
1999 | *budget -= pkt_cnt; | ||
2000 | netif_rx_complete(dev); | ||
2001 | |||
2002 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2003 | if (fill_rx_buffers(nic, i) == -ENOMEM) { | ||
2004 | DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); | ||
2005 | DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); | ||
2006 | break; | ||
2007 | } | ||
2008 | } | ||
2009 | /* Re enable the Rx interrupts. */ | ||
2010 | en_dis_able_nic_intrs(nic, RX_TRAFFIC_INTR, ENABLE_INTRS); | ||
2011 | return 0; | ||
2012 | |||
2013 | no_rx: | ||
2014 | dev->quota -= pkt_cnt; | ||
2015 | *budget -= pkt_cnt; | ||
2016 | |||
2017 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2018 | if (fill_rx_buffers(nic, i) == -ENOMEM) { | ||
2019 | DBG_PRINT(ERR_DBG, "%s:Out of memory", dev->name); | ||
2020 | DBG_PRINT(ERR_DBG, " in Rx Poll!!\n"); | ||
2021 | break; | ||
2022 | } | ||
2023 | } | ||
2024 | return 1; | ||
2025 | } | ||
2026 | #else | ||
2027 | /** | ||
2028 | * rx_intr_handler - Rx interrupt handler | ||
2029 | * @nic: device private variable. | ||
2030 | * Description: | ||
2031 | * If the interrupt is because of a received frame or if the | ||
2032 | * receive ring contains fresh as yet un-processed frames,this function is | ||
2033 | * called. It picks out the RxD at which place the last Rx processing had | ||
2034 | * stopped and sends the skb to the OSM's Rx handler and then increments | ||
2035 | * the offset. | ||
2036 | * Return Value: | ||
2037 | * NONE. | ||
2038 | */ | ||
2039 | |||
2040 | static void rx_intr_handler(struct s2io_nic *nic) | ||
2041 | { | ||
2042 | struct net_device *dev = (struct net_device *) nic->dev; | ||
2043 | XENA_dev_config_t *bar0 = (XENA_dev_config_t *) nic->bar0; | ||
2044 | rx_curr_get_info_t get_info, put_info; | ||
2045 | RxD_t *rxdp; | ||
2046 | struct sk_buff *skb; | ||
2047 | #ifndef CONFIG_2BUFF_MODE | ||
2048 | u16 val16, cksum; | ||
2049 | #endif | ||
2050 | register u64 val64 = 0; | ||
2051 | int get_block, get_offset, put_block, put_offset, ring_bufs; | ||
2052 | int i, pkt_cnt = 0; | ||
2053 | mac_info_t *mac_control; | ||
2054 | struct config_param *config; | ||
2055 | #ifdef CONFIG_2BUFF_MODE | ||
2056 | buffAdd_t *ba; | ||
2057 | #endif | ||
2058 | |||
2059 | mac_control = &nic->mac_control; | ||
2060 | config = &nic->config; | ||
2061 | |||
2062 | /* | ||
2063 | * rx_traffic_int reg is an R1 register, hence we read and write back | ||
2064 | * the samevalue in the register to clear it. | ||
2065 | */ | ||
2066 | val64 = readq(&bar0->rx_traffic_int); | ||
2067 | writeq(val64, &bar0->rx_traffic_int); | ||
2068 | |||
2069 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2070 | get_info = mac_control->rx_curr_get_info[i]; | ||
2071 | get_block = get_info.block_index; | ||
2072 | put_info = mac_control->rx_curr_put_info[i]; | ||
2073 | put_block = put_info.block_index; | ||
2074 | ring_bufs = config->rx_cfg[i].num_rxd; | ||
2075 | rxdp = nic->rx_blocks[i][get_block].block_virt_addr + | ||
2076 | get_info.offset; | ||
2077 | #ifndef CONFIG_2BUFF_MODE | ||
2078 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
2079 | get_info.offset; | ||
2080 | spin_lock(&nic->put_lock); | ||
2081 | put_offset = nic->put_pos[i]; | ||
2082 | spin_unlock(&nic->put_lock); | ||
2083 | while ((!(rxdp->Control_1 & RXD_OWN_XENA)) && | ||
2084 | (((get_offset + 1) % ring_bufs) != put_offset)) { | ||
2085 | if (rxdp->Control_1 == END_OF_BLOCK) { | ||
2086 | rxdp = (RxD_t *) ((unsigned long) | ||
2087 | rxdp->Control_2); | ||
2088 | get_info.offset++; | ||
2089 | get_info.offset %= | ||
2090 | (MAX_RXDS_PER_BLOCK + 1); | ||
2091 | get_block++; | ||
2092 | get_block %= nic->block_count[i]; | ||
2093 | mac_control->rx_curr_get_info[i]. | ||
2094 | offset = get_info.offset; | ||
2095 | mac_control->rx_curr_get_info[i]. | ||
2096 | block_index = get_block; | ||
2097 | continue; | ||
2098 | } | ||
2099 | get_offset = | ||
2100 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
2101 | get_info.offset; | ||
2102 | skb = (struct sk_buff *) ((unsigned long) | ||
2103 | rxdp->Host_Control); | ||
2104 | if (skb == NULL) { | ||
2105 | DBG_PRINT(ERR_DBG, "%s: The skb is ", | ||
2106 | dev->name); | ||
2107 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | ||
2108 | return; | ||
2109 | } | ||
2110 | val64 = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); | ||
2111 | val16 = (u16) (val64 >> 48); | ||
2112 | cksum = RXD_GET_L4_CKSUM(rxdp->Control_1); | ||
2113 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
2114 | rxdp->Buffer0_ptr, | ||
2115 | dev->mtu + | ||
2116 | HEADER_ETHERNET_II_802_3_SIZE + | ||
2117 | HEADER_802_2_SIZE + | ||
2118 | HEADER_SNAP_SIZE, | ||
2119 | PCI_DMA_FROMDEVICE); | ||
2120 | rx_osm_handler(nic, val16, rxdp, i); | ||
2121 | get_info.offset++; | ||
2122 | get_info.offset %= (MAX_RXDS_PER_BLOCK + 1); | ||
2123 | rxdp = | ||
2124 | nic->rx_blocks[i][get_block].block_virt_addr + | ||
2125 | get_info.offset; | ||
2126 | mac_control->rx_curr_get_info[i].offset = | ||
2127 | get_info.offset; | ||
2128 | pkt_cnt++; | ||
2129 | if ((indicate_max_pkts) | ||
2130 | && (pkt_cnt > indicate_max_pkts)) | ||
2131 | break; | ||
2132 | } | ||
2133 | #else | ||
2134 | get_offset = (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
2135 | get_info.offset; | ||
2136 | spin_lock(&nic->put_lock); | ||
2137 | put_offset = nic->put_pos[i]; | ||
2138 | spin_unlock(&nic->put_lock); | ||
2139 | while (((!(rxdp->Control_1 & RXD_OWN_XENA)) && | ||
2140 | !(rxdp->Control_2 & BIT(0))) && | ||
2141 | (((get_offset + 1) % ring_bufs) != put_offset)) { | ||
2142 | skb = (struct sk_buff *) ((unsigned long) | ||
2143 | rxdp->Host_Control); | ||
2144 | if (skb == NULL) { | ||
2145 | DBG_PRINT(ERR_DBG, "%s: The skb is ", | ||
2146 | dev->name); | ||
2147 | DBG_PRINT(ERR_DBG, "Null in Rx Intr\n"); | ||
2148 | return; | ||
2149 | } | ||
2150 | |||
2151 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
2152 | rxdp->Buffer0_ptr, | ||
2153 | BUF0_LEN, PCI_DMA_FROMDEVICE); | ||
2154 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
2155 | rxdp->Buffer1_ptr, | ||
2156 | BUF1_LEN, PCI_DMA_FROMDEVICE); | ||
2157 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
2158 | rxdp->Buffer2_ptr, | ||
2159 | dev->mtu + BUF0_LEN + 4, | ||
2160 | PCI_DMA_FROMDEVICE); | ||
2161 | ba = &nic->ba[i][get_block][get_info.offset]; | ||
2162 | |||
2163 | rx_osm_handler(nic, rxdp, i, ba); | ||
2164 | |||
2165 | get_info.offset++; | ||
2166 | mac_control->rx_curr_get_info[i].offset = | ||
2167 | get_info.offset; | ||
2168 | rxdp = | ||
2169 | nic->rx_blocks[i][get_block].block_virt_addr + | ||
2170 | get_info.offset; | ||
2171 | |||
2172 | if (get_info.offset && | ||
2173 | (!(get_info.offset % MAX_RXDS_PER_BLOCK))) { | ||
2174 | get_info.offset = 0; | ||
2175 | mac_control->rx_curr_get_info[i]. | ||
2176 | offset = get_info.offset; | ||
2177 | get_block++; | ||
2178 | get_block %= nic->block_count[i]; | ||
2179 | mac_control->rx_curr_get_info[i]. | ||
2180 | block_index = get_block; | ||
2181 | rxdp = | ||
2182 | nic->rx_blocks[i][get_block]. | ||
2183 | block_virt_addr; | ||
2184 | } | ||
2185 | get_offset = | ||
2186 | (get_block * (MAX_RXDS_PER_BLOCK + 1)) + | ||
2187 | get_info.offset; | ||
2188 | pkt_cnt++; | ||
2189 | if ((indicate_max_pkts) | ||
2190 | && (pkt_cnt > indicate_max_pkts)) | ||
2191 | break; | ||
2192 | } | ||
2193 | #endif | ||
2194 | if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts)) | ||
2195 | break; | ||
2196 | } | ||
2197 | } | ||
2198 | #endif | ||
2199 | /** | ||
2200 | * tx_intr_handler - Transmit interrupt handler | ||
2201 | * @nic : device private variable | ||
2202 | * Description: | ||
2203 | * If an interrupt was raised to indicate DMA complete of the | ||
2204 | * Tx packet, this function is called. It identifies the last TxD | ||
2205 | * whose buffer was freed and frees all skbs whose data have already | ||
2206 | * DMA'ed into the NICs internal memory. | ||
2207 | * Return Value: | ||
2208 | * NONE | ||
2209 | */ | ||
2210 | |||
2211 | static void tx_intr_handler(struct s2io_nic *nic) | ||
2212 | { | ||
2213 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | ||
2214 | struct net_device *dev = (struct net_device *) nic->dev; | ||
2215 | tx_curr_get_info_t get_info, put_info; | ||
2216 | struct sk_buff *skb; | ||
2217 | TxD_t *txdlp; | ||
2218 | register u64 val64 = 0; | ||
2219 | int i; | ||
2220 | u16 j, frg_cnt; | ||
2221 | mac_info_t *mac_control; | ||
2222 | struct config_param *config; | ||
2223 | |||
2224 | mac_control = &nic->mac_control; | ||
2225 | config = &nic->config; | ||
2226 | |||
2227 | /* | ||
2228 | * tx_traffic_int reg is an R1 register, hence we read and write | ||
2229 | * back the samevalue in the register to clear it. | ||
2230 | */ | ||
2231 | val64 = readq(&bar0->tx_traffic_int); | ||
2232 | writeq(val64, &bar0->tx_traffic_int); | ||
2233 | |||
2234 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
2235 | get_info = mac_control->tx_curr_get_info[i]; | ||
2236 | put_info = mac_control->tx_curr_put_info[i]; | ||
2237 | txdlp = (TxD_t *) nic->list_info[i][get_info.offset]. | ||
2238 | list_virt_addr; | ||
2239 | while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) && | ||
2240 | (get_info.offset != put_info.offset) && | ||
2241 | (txdlp->Host_Control)) { | ||
2242 | /* Check for TxD errors */ | ||
2243 | if (txdlp->Control_1 & TXD_T_CODE) { | ||
2244 | unsigned long long err; | ||
2245 | err = txdlp->Control_1 & TXD_T_CODE; | ||
2246 | DBG_PRINT(ERR_DBG, "***TxD error %llx\n", | ||
2247 | err); | ||
2248 | } | ||
2249 | |||
2250 | skb = (struct sk_buff *) ((unsigned long) | ||
2251 | txdlp->Host_Control); | ||
2252 | if (skb == NULL) { | ||
2253 | DBG_PRINT(ERR_DBG, "%s: Null skb ", | ||
2254 | dev->name); | ||
2255 | DBG_PRINT(ERR_DBG, "in Tx Free Intr\n"); | ||
2256 | return; | ||
2257 | } | ||
2258 | nic->tx_pkt_count++; | ||
2259 | |||
2260 | frg_cnt = skb_shinfo(skb)->nr_frags; | ||
2261 | |||
2262 | /* For unfragmented skb */ | ||
2263 | pci_unmap_single(nic->pdev, (dma_addr_t) | ||
2264 | txdlp->Buffer_Pointer, | ||
2265 | skb->len - skb->data_len, | ||
2266 | PCI_DMA_TODEVICE); | ||
2267 | if (frg_cnt) { | ||
2268 | TxD_t *temp = txdlp; | ||
2269 | txdlp++; | ||
2270 | for (j = 0; j < frg_cnt; j++, txdlp++) { | ||
2271 | skb_frag_t *frag = | ||
2272 | &skb_shinfo(skb)->frags[j]; | ||
2273 | pci_unmap_page(nic->pdev, | ||
2274 | (dma_addr_t) | ||
2275 | txdlp-> | ||
2276 | Buffer_Pointer, | ||
2277 | frag->size, | ||
2278 | PCI_DMA_TODEVICE); | ||
2279 | } | ||
2280 | txdlp = temp; | ||
2281 | } | ||
2282 | memset(txdlp, 0, | ||
2283 | (sizeof(TxD_t) * config->max_txds)); | ||
2284 | |||
2285 | /* Updating the statistics block */ | ||
2286 | nic->stats.tx_packets++; | ||
2287 | nic->stats.tx_bytes += skb->len; | ||
2288 | dev_kfree_skb_irq(skb); | ||
2289 | |||
2290 | get_info.offset++; | ||
2291 | get_info.offset %= get_info.fifo_len + 1; | ||
2292 | txdlp = (TxD_t *) nic->list_info[i] | ||
2293 | [get_info.offset].list_virt_addr; | ||
2294 | mac_control->tx_curr_get_info[i].offset = | ||
2295 | get_info.offset; | ||
2296 | } | ||
2297 | } | ||
2298 | |||
2299 | spin_lock(&nic->tx_lock); | ||
2300 | if (netif_queue_stopped(dev)) | ||
2301 | netif_wake_queue(dev); | ||
2302 | spin_unlock(&nic->tx_lock); | ||
2303 | } | ||
2304 | |||
2305 | /** | ||
2306 | * alarm_intr_handler - Alarm Interrrupt handler | ||
2307 | * @nic: device private variable | ||
2308 | * Description: If the interrupt was neither because of Rx packet or Tx | ||
2309 | * complete, this function is called. If the interrupt was to indicate | ||
2310 | * a loss of link, the OSM link status handler is invoked for any other | ||
2311 | * alarm interrupt the block that raised the interrupt is displayed | ||
2312 | * and a H/W reset is issued. | ||
2313 | * Return Value: | ||
2314 | * NONE | ||
2315 | */ | ||
2316 | |||
2317 | static void alarm_intr_handler(struct s2io_nic *nic) | ||
2318 | { | ||
2319 | struct net_device *dev = (struct net_device *) nic->dev; | ||
2320 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | ||
2321 | register u64 val64 = 0, err_reg = 0; | ||
2322 | |||
2323 | /* Handling link status change error Intr */ | ||
2324 | err_reg = readq(&bar0->mac_rmac_err_reg); | ||
2325 | writeq(err_reg, &bar0->mac_rmac_err_reg); | ||
2326 | if (err_reg & RMAC_LINK_STATE_CHANGE_INT) { | ||
2327 | schedule_work(&nic->set_link_task); | ||
2328 | } | ||
2329 | |||
2330 | /* In case of a serious error, the device will be Reset. */ | ||
2331 | val64 = readq(&bar0->serr_source); | ||
2332 | if (val64 & SERR_SOURCE_ANY) { | ||
2333 | DBG_PRINT(ERR_DBG, "%s: Device indicates ", dev->name); | ||
2334 | DBG_PRINT(ERR_DBG, "serious error!!\n"); | ||
2335 | netif_stop_queue(dev); | ||
2336 | schedule_work(&nic->rst_timer_task); | ||
2337 | } | ||
2338 | |||
2339 | /* | ||
2340 | * Also as mentioned in the latest Errata sheets if the PCC_FB_ECC | ||
2341 | * Error occurs, the adapter will be recycled by disabling the | ||
2342 | * adapter enable bit and enabling it again after the device | ||
2343 | * becomes Quiescent. | ||
2344 | */ | ||
2345 | val64 = readq(&bar0->pcc_err_reg); | ||
2346 | writeq(val64, &bar0->pcc_err_reg); | ||
2347 | if (val64 & PCC_FB_ECC_DB_ERR) { | ||
2348 | u64 ac = readq(&bar0->adapter_control); | ||
2349 | ac &= ~(ADAPTER_CNTL_EN); | ||
2350 | writeq(ac, &bar0->adapter_control); | ||
2351 | ac = readq(&bar0->adapter_control); | ||
2352 | schedule_work(&nic->set_link_task); | ||
2353 | } | ||
2354 | |||
2355 | /* Other type of interrupts are not being handled now, TODO */ | ||
2356 | } | ||
2357 | |||
2358 | /** | ||
2359 | * wait_for_cmd_complete - waits for a command to complete. | ||
2360 | * @sp : private member of the device structure, which is a pointer to the | ||
2361 | * s2io_nic structure. | ||
2362 | * Description: Function that waits for a command to Write into RMAC | ||
2363 | * ADDR DATA registers to be completed and returns either success or | ||
2364 | * error depending on whether the command was complete or not. | ||
2365 | * Return value: | ||
2366 | * SUCCESS on success and FAILURE on failure. | ||
2367 | */ | ||
2368 | |||
2369 | static int wait_for_cmd_complete(nic_t * sp) | ||
2370 | { | ||
2371 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
2372 | int ret = FAILURE, cnt = 0; | ||
2373 | u64 val64; | ||
2374 | |||
2375 | while (TRUE) { | ||
2376 | val64 = readq(&bar0->rmac_addr_cmd_mem); | ||
2377 | if (!(val64 & RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING)) { | ||
2378 | ret = SUCCESS; | ||
2379 | break; | ||
2380 | } | ||
2381 | msleep(50); | ||
2382 | if (cnt++ > 10) | ||
2383 | break; | ||
2384 | } | ||
2385 | |||
2386 | return ret; | ||
2387 | } | ||
2388 | |||
2389 | /** | ||
2390 | * s2io_reset - Resets the card. | ||
2391 | * @sp : private member of the device structure. | ||
2392 | * Description: Function to Reset the card. This function then also | ||
2393 | * restores the previously saved PCI configuration space registers as | ||
2394 | * the card reset also resets the configuration space. | ||
2395 | * Return value: | ||
2396 | * void. | ||
2397 | */ | ||
2398 | |||
2399 | static void s2io_reset(nic_t * sp) | ||
2400 | { | ||
2401 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
2402 | u64 val64; | ||
2403 | u16 subid; | ||
2404 | |||
2405 | val64 = SW_RESET_ALL; | ||
2406 | writeq(val64, &bar0->sw_reset); | ||
2407 | |||
2408 | /* | ||
2409 | * At this stage, if the PCI write is indeed completed, the | ||
2410 | * card is reset and so is the PCI Config space of the device. | ||
2411 | * So a read cannot be issued at this stage on any of the | ||
2412 | * registers to ensure the write into "sw_reset" register | ||
2413 | * has gone through. | ||
2414 | * Question: Is there any system call that will explicitly force | ||
2415 | * all the write commands still pending on the bus to be pushed | ||
2416 | * through? | ||
2417 | * As of now I'am just giving a 250ms delay and hoping that the | ||
2418 | * PCI write to sw_reset register is done by this time. | ||
2419 | */ | ||
2420 | msleep(250); | ||
2421 | |||
2422 | /* Restore the PCI state saved during initializarion. */ | ||
2423 | pci_restore_state(sp->pdev); | ||
2424 | s2io_init_pci(sp); | ||
2425 | |||
2426 | msleep(250); | ||
2427 | |||
2428 | /* SXE-002: Configure link and activity LED to turn it off */ | ||
2429 | subid = sp->pdev->subsystem_device; | ||
2430 | if ((subid & 0xFF) >= 0x07) { | ||
2431 | val64 = readq(&bar0->gpio_control); | ||
2432 | val64 |= 0x0000800000000000ULL; | ||
2433 | writeq(val64, &bar0->gpio_control); | ||
2434 | val64 = 0x0411040400000000ULL; | ||
2435 | writeq(val64, (void __iomem *) bar0 + 0x2700); | ||
2436 | } | ||
2437 | |||
2438 | sp->device_enabled_once = FALSE; | ||
2439 | } | ||
2440 | |||
2441 | /** | ||
2442 | * s2io_set_swapper - to set the swapper controle on the card | ||
2443 | * @sp : private member of the device structure, | ||
2444 | * pointer to the s2io_nic structure. | ||
2445 | * Description: Function to set the swapper control on the card | ||
2446 | * correctly depending on the 'endianness' of the system. | ||
2447 | * Return value: | ||
2448 | * SUCCESS on success and FAILURE on failure. | ||
2449 | */ | ||
2450 | |||
2451 | static int s2io_set_swapper(nic_t * sp) | ||
2452 | { | ||
2453 | struct net_device *dev = sp->dev; | ||
2454 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
2455 | u64 val64, valt, valr; | ||
2456 | |||
2457 | /* | ||
2458 | * Set proper endian settings and verify the same by reading | ||
2459 | * the PIF Feed-back register. | ||
2460 | */ | ||
2461 | |||
2462 | val64 = readq(&bar0->pif_rd_swapper_fb); | ||
2463 | if (val64 != 0x0123456789ABCDEFULL) { | ||
2464 | int i = 0; | ||
2465 | u64 value[] = { 0xC30000C3C30000C3ULL, /* FE=1, SE=1 */ | ||
2466 | 0x8100008181000081ULL, /* FE=1, SE=0 */ | ||
2467 | 0x4200004242000042ULL, /* FE=0, SE=1 */ | ||
2468 | 0}; /* FE=0, SE=0 */ | ||
2469 | |||
2470 | while(i<4) { | ||
2471 | writeq(value[i], &bar0->swapper_ctrl); | ||
2472 | val64 = readq(&bar0->pif_rd_swapper_fb); | ||
2473 | if (val64 == 0x0123456789ABCDEFULL) | ||
2474 | break; | ||
2475 | i++; | ||
2476 | } | ||
2477 | if (i == 4) { | ||
2478 | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", | ||
2479 | dev->name); | ||
2480 | DBG_PRINT(ERR_DBG, "feedback read %llx\n", | ||
2481 | (unsigned long long) val64); | ||
2482 | return FAILURE; | ||
2483 | } | ||
2484 | valr = value[i]; | ||
2485 | } else { | ||
2486 | valr = readq(&bar0->swapper_ctrl); | ||
2487 | } | ||
2488 | |||
2489 | valt = 0x0123456789ABCDEFULL; | ||
2490 | writeq(valt, &bar0->xmsi_address); | ||
2491 | val64 = readq(&bar0->xmsi_address); | ||
2492 | |||
2493 | if(val64 != valt) { | ||
2494 | int i = 0; | ||
2495 | u64 value[] = { 0x00C3C30000C3C300ULL, /* FE=1, SE=1 */ | ||
2496 | 0x0081810000818100ULL, /* FE=1, SE=0 */ | ||
2497 | 0x0042420000424200ULL, /* FE=0, SE=1 */ | ||
2498 | 0}; /* FE=0, SE=0 */ | ||
2499 | |||
2500 | while(i<4) { | ||
2501 | writeq((value[i] | valr), &bar0->swapper_ctrl); | ||
2502 | writeq(valt, &bar0->xmsi_address); | ||
2503 | val64 = readq(&bar0->xmsi_address); | ||
2504 | if(val64 == valt) | ||
2505 | break; | ||
2506 | i++; | ||
2507 | } | ||
2508 | if(i == 4) { | ||
2509 | DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr "); | ||
2510 | DBG_PRINT(ERR_DBG, "reads:0x%llx\n",val64); | ||
2511 | return FAILURE; | ||
2512 | } | ||
2513 | } | ||
2514 | val64 = readq(&bar0->swapper_ctrl); | ||
2515 | val64 &= 0xFFFF000000000000ULL; | ||
2516 | |||
2517 | #ifdef __BIG_ENDIAN | ||
2518 | /* | ||
2519 | * The device by default set to a big endian format, so a | ||
2520 | * big endian driver need not set anything. | ||
2521 | */ | ||
2522 | val64 |= (SWAPPER_CTRL_TXP_FE | | ||
2523 | SWAPPER_CTRL_TXP_SE | | ||
2524 | SWAPPER_CTRL_TXD_R_FE | | ||
2525 | SWAPPER_CTRL_TXD_W_FE | | ||
2526 | SWAPPER_CTRL_TXF_R_FE | | ||
2527 | SWAPPER_CTRL_RXD_R_FE | | ||
2528 | SWAPPER_CTRL_RXD_W_FE | | ||
2529 | SWAPPER_CTRL_RXF_W_FE | | ||
2530 | SWAPPER_CTRL_XMSI_FE | | ||
2531 | SWAPPER_CTRL_XMSI_SE | | ||
2532 | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); | ||
2533 | writeq(val64, &bar0->swapper_ctrl); | ||
2534 | #else | ||
2535 | /* | ||
2536 | * Initially we enable all bits to make it accessible by the | ||
2537 | * driver, then we selectively enable only those bits that | ||
2538 | * we want to set. | ||
2539 | */ | ||
2540 | val64 |= (SWAPPER_CTRL_TXP_FE | | ||
2541 | SWAPPER_CTRL_TXP_SE | | ||
2542 | SWAPPER_CTRL_TXD_R_FE | | ||
2543 | SWAPPER_CTRL_TXD_R_SE | | ||
2544 | SWAPPER_CTRL_TXD_W_FE | | ||
2545 | SWAPPER_CTRL_TXD_W_SE | | ||
2546 | SWAPPER_CTRL_TXF_R_FE | | ||
2547 | SWAPPER_CTRL_RXD_R_FE | | ||
2548 | SWAPPER_CTRL_RXD_R_SE | | ||
2549 | SWAPPER_CTRL_RXD_W_FE | | ||
2550 | SWAPPER_CTRL_RXD_W_SE | | ||
2551 | SWAPPER_CTRL_RXF_W_FE | | ||
2552 | SWAPPER_CTRL_XMSI_FE | | ||
2553 | SWAPPER_CTRL_XMSI_SE | | ||
2554 | SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE); | ||
2555 | writeq(val64, &bar0->swapper_ctrl); | ||
2556 | #endif | ||
2557 | val64 = readq(&bar0->swapper_ctrl); | ||
2558 | |||
2559 | /* | ||
2560 | * Verifying if endian settings are accurate by reading a | ||
2561 | * feedback register. | ||
2562 | */ | ||
2563 | val64 = readq(&bar0->pif_rd_swapper_fb); | ||
2564 | if (val64 != 0x0123456789ABCDEFULL) { | ||
2565 | /* Endian settings are incorrect, calls for another dekko. */ | ||
2566 | DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ", | ||
2567 | dev->name); | ||
2568 | DBG_PRINT(ERR_DBG, "feedback read %llx\n", | ||
2569 | (unsigned long long) val64); | ||
2570 | return FAILURE; | ||
2571 | } | ||
2572 | |||
2573 | return SUCCESS; | ||
2574 | } | ||
2575 | |||
2576 | /* ********************************************************* * | ||
2577 | * Functions defined below concern the OS part of the driver * | ||
2578 | * ********************************************************* */ | ||
2579 | |||
2580 | /** | ||
2581 | * s2io_open - open entry point of the driver | ||
2582 | * @dev : pointer to the device structure. | ||
2583 | * Description: | ||
2584 | * This function is the open entry point of the driver. It mainly calls a | ||
2585 | * function to allocate Rx buffers and inserts them into the buffer | ||
2586 | * descriptors and then enables the Rx part of the NIC. | ||
2587 | * Return value: | ||
2588 | * 0 on success and an appropriate (-)ve integer as defined in errno.h | ||
2589 | * file on failure. | ||
2590 | */ | ||
2591 | |||
2592 | static int s2io_open(struct net_device *dev) | ||
2593 | { | ||
2594 | nic_t *sp = dev->priv; | ||
2595 | int err = 0; | ||
2596 | |||
2597 | /* | ||
2598 | * Make sure you have link off by default every time | ||
2599 | * Nic is initialized | ||
2600 | */ | ||
2601 | netif_carrier_off(dev); | ||
2602 | sp->last_link_state = LINK_DOWN; | ||
2603 | |||
2604 | /* Initialize H/W and enable interrupts */ | ||
2605 | if (s2io_card_up(sp)) { | ||
2606 | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", | ||
2607 | dev->name); | ||
2608 | return -ENODEV; | ||
2609 | } | ||
2610 | |||
2611 | /* After proper initialization of H/W, register ISR */ | ||
2612 | err = request_irq((int) sp->irq, s2io_isr, SA_SHIRQ, | ||
2613 | sp->name, dev); | ||
2614 | if (err) { | ||
2615 | s2io_reset(sp); | ||
2616 | DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n", | ||
2617 | dev->name); | ||
2618 | return err; | ||
2619 | } | ||
2620 | |||
2621 | if (s2io_set_mac_addr(dev, dev->dev_addr) == FAILURE) { | ||
2622 | DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n"); | ||
2623 | s2io_reset(sp); | ||
2624 | return -ENODEV; | ||
2625 | } | ||
2626 | |||
2627 | netif_start_queue(dev); | ||
2628 | return 0; | ||
2629 | } | ||
2630 | |||
2631 | /** | ||
2632 | * s2io_close -close entry point of the driver | ||
2633 | * @dev : device pointer. | ||
2634 | * Description: | ||
2635 | * This is the stop entry point of the driver. It needs to undo exactly | ||
2636 | * whatever was done by the open entry point,thus it's usually referred to | ||
2637 | * as the close function.Among other things this function mainly stops the | ||
2638 | * Rx side of the NIC and frees all the Rx buffers in the Rx rings. | ||
2639 | * Return value: | ||
2640 | * 0 on success and an appropriate (-)ve integer as defined in errno.h | ||
2641 | * file on failure. | ||
2642 | */ | ||
2643 | |||
2644 | static int s2io_close(struct net_device *dev) | ||
2645 | { | ||
2646 | nic_t *sp = dev->priv; | ||
2647 | |||
2648 | flush_scheduled_work(); | ||
2649 | netif_stop_queue(dev); | ||
2650 | /* Reset card, kill tasklet and free Tx and Rx buffers. */ | ||
2651 | s2io_card_down(sp); | ||
2652 | |||
2653 | free_irq(dev->irq, dev); | ||
2654 | sp->device_close_flag = TRUE; /* Device is shut down. */ | ||
2655 | return 0; | ||
2656 | } | ||
2657 | |||
2658 | /** | ||
2659 | * s2io_xmit - Tx entry point of te driver | ||
2660 | * @skb : the socket buffer containing the Tx data. | ||
2661 | * @dev : device pointer. | ||
2662 | * Description : | ||
2663 | * This function is the Tx entry point of the driver. S2IO NIC supports | ||
2664 | * certain protocol assist features on Tx side, namely CSO, S/G, LSO. | ||
2665 | * NOTE: when device cant queue the pkt,just the trans_start variable will | ||
2666 | * not be upadted. | ||
2667 | * Return value: | ||
2668 | * 0 on success & 1 on failure. | ||
2669 | */ | ||
2670 | |||
2671 | static int s2io_xmit(struct sk_buff *skb, struct net_device *dev) | ||
2672 | { | ||
2673 | nic_t *sp = dev->priv; | ||
2674 | u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off; | ||
2675 | register u64 val64; | ||
2676 | TxD_t *txdp; | ||
2677 | TxFIFO_element_t __iomem *tx_fifo; | ||
2678 | unsigned long flags; | ||
2679 | #ifdef NETIF_F_TSO | ||
2680 | int mss; | ||
2681 | #endif | ||
2682 | mac_info_t *mac_control; | ||
2683 | struct config_param *config; | ||
2684 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
2685 | |||
2686 | mac_control = &sp->mac_control; | ||
2687 | config = &sp->config; | ||
2688 | |||
2689 | DBG_PRINT(TX_DBG, "%s: In S2IO Tx routine\n", dev->name); | ||
2690 | spin_lock_irqsave(&sp->tx_lock, flags); | ||
2691 | |||
2692 | if (atomic_read(&sp->card_state) == CARD_DOWN) { | ||
2693 | DBG_PRINT(ERR_DBG, "%s: Card going down for reset\n", | ||
2694 | dev->name); | ||
2695 | spin_unlock_irqrestore(&sp->tx_lock, flags); | ||
2696 | return 1; | ||
2697 | } | ||
2698 | |||
2699 | queue = 0; | ||
2700 | put_off = (u16) mac_control->tx_curr_put_info[queue].offset; | ||
2701 | get_off = (u16) mac_control->tx_curr_get_info[queue].offset; | ||
2702 | txdp = (TxD_t *) sp->list_info[queue][put_off].list_virt_addr; | ||
2703 | |||
2704 | queue_len = mac_control->tx_curr_put_info[queue].fifo_len + 1; | ||
2705 | /* Avoid "put" pointer going beyond "get" pointer */ | ||
2706 | if (txdp->Host_Control || (((put_off + 1) % queue_len) == get_off)) { | ||
2707 | DBG_PRINT(ERR_DBG, "Error in xmit, No free TXDs.\n"); | ||
2708 | netif_stop_queue(dev); | ||
2709 | dev_kfree_skb(skb); | ||
2710 | spin_unlock_irqrestore(&sp->tx_lock, flags); | ||
2711 | return 0; | ||
2712 | } | ||
2713 | #ifdef NETIF_F_TSO | ||
2714 | mss = skb_shinfo(skb)->tso_size; | ||
2715 | if (mss) { | ||
2716 | txdp->Control_1 |= TXD_TCP_LSO_EN; | ||
2717 | txdp->Control_1 |= TXD_TCP_LSO_MSS(mss); | ||
2718 | } | ||
2719 | #endif | ||
2720 | |||
2721 | frg_cnt = skb_shinfo(skb)->nr_frags; | ||
2722 | frg_len = skb->len - skb->data_len; | ||
2723 | |||
2724 | txdp->Host_Control = (unsigned long) skb; | ||
2725 | txdp->Buffer_Pointer = pci_map_single | ||
2726 | (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE); | ||
2727 | if (skb->ip_summed == CHECKSUM_HW) { | ||
2728 | txdp->Control_2 |= | ||
2729 | (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN | | ||
2730 | TXD_TX_CKO_UDP_EN); | ||
2731 | } | ||
2732 | |||
2733 | txdp->Control_2 |= config->tx_intr_type; | ||
2734 | |||
2735 | txdp->Control_1 |= (TXD_BUFFER0_SIZE(frg_len) | | ||
2736 | TXD_GATHER_CODE_FIRST); | ||
2737 | txdp->Control_1 |= TXD_LIST_OWN_XENA; | ||
2738 | |||
2739 | /* For fragmented SKB. */ | ||
2740 | for (i = 0; i < frg_cnt; i++) { | ||
2741 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
2742 | txdp++; | ||
2743 | txdp->Buffer_Pointer = (u64) pci_map_page | ||
2744 | (sp->pdev, frag->page, frag->page_offset, | ||
2745 | frag->size, PCI_DMA_TODEVICE); | ||
2746 | txdp->Control_1 |= TXD_BUFFER0_SIZE(frag->size); | ||
2747 | } | ||
2748 | txdp->Control_1 |= TXD_GATHER_CODE_LAST; | ||
2749 | |||
2750 | tx_fifo = mac_control->tx_FIFO_start[queue]; | ||
2751 | val64 = sp->list_info[queue][put_off].list_phy_addr; | ||
2752 | writeq(val64, &tx_fifo->TxDL_Pointer); | ||
2753 | |||
2754 | val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST | | ||
2755 | TX_FIFO_LAST_LIST); | ||
2756 | #ifdef NETIF_F_TSO | ||
2757 | if (mss) | ||
2758 | val64 |= TX_FIFO_SPECIAL_FUNC; | ||
2759 | #endif | ||
2760 | writeq(val64, &tx_fifo->List_Control); | ||
2761 | |||
2762 | /* Perform a PCI read to flush previous writes */ | ||
2763 | val64 = readq(&bar0->general_int_status); | ||
2764 | |||
2765 | put_off++; | ||
2766 | put_off %= mac_control->tx_curr_put_info[queue].fifo_len + 1; | ||
2767 | mac_control->tx_curr_put_info[queue].offset = put_off; | ||
2768 | |||
2769 | /* Avoid "put" pointer going beyond "get" pointer */ | ||
2770 | if (((put_off + 1) % queue_len) == get_off) { | ||
2771 | DBG_PRINT(TX_DBG, | ||
2772 | "No free TxDs for xmit, Put: 0x%x Get:0x%x\n", | ||
2773 | put_off, get_off); | ||
2774 | netif_stop_queue(dev); | ||
2775 | } | ||
2776 | |||
2777 | dev->trans_start = jiffies; | ||
2778 | spin_unlock_irqrestore(&sp->tx_lock, flags); | ||
2779 | |||
2780 | return 0; | ||
2781 | } | ||
2782 | |||
2783 | /** | ||
2784 | * s2io_isr - ISR handler of the device . | ||
2785 | * @irq: the irq of the device. | ||
2786 | * @dev_id: a void pointer to the dev structure of the NIC. | ||
2787 | * @pt_regs: pointer to the registers pushed on the stack. | ||
2788 | * Description: This function is the ISR handler of the device. It | ||
2789 | * identifies the reason for the interrupt and calls the relevant | ||
2790 | * service routines. As a contongency measure, this ISR allocates the | ||
2791 | * recv buffers, if their numbers are below the panic value which is | ||
2792 | * presently set to 25% of the original number of rcv buffers allocated. | ||
2793 | * Return value: | ||
2794 | * IRQ_HANDLED: will be returned if IRQ was handled by this routine | ||
2795 | * IRQ_NONE: will be returned if interrupt is not from our device | ||
2796 | */ | ||
2797 | static irqreturn_t s2io_isr(int irq, void *dev_id, struct pt_regs *regs) | ||
2798 | { | ||
2799 | struct net_device *dev = (struct net_device *) dev_id; | ||
2800 | nic_t *sp = dev->priv; | ||
2801 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
2802 | #ifndef CONFIG_S2IO_NAPI | ||
2803 | int i, ret; | ||
2804 | #endif | ||
2805 | u64 reason = 0; | ||
2806 | mac_info_t *mac_control; | ||
2807 | struct config_param *config; | ||
2808 | |||
2809 | mac_control = &sp->mac_control; | ||
2810 | config = &sp->config; | ||
2811 | |||
2812 | /* | ||
2813 | * Identify the cause for interrupt and call the appropriate | ||
2814 | * interrupt handler. Causes for the interrupt could be; | ||
2815 | * 1. Rx of packet. | ||
2816 | * 2. Tx complete. | ||
2817 | * 3. Link down. | ||
2818 | * 4. Error in any functional blocks of the NIC. | ||
2819 | */ | ||
2820 | reason = readq(&bar0->general_int_status); | ||
2821 | |||
2822 | if (!reason) { | ||
2823 | /* The interrupt was not raised by Xena. */ | ||
2824 | return IRQ_NONE; | ||
2825 | } | ||
2826 | |||
2827 | /* If Intr is because of Tx Traffic */ | ||
2828 | if (reason & GEN_INTR_TXTRAFFIC) { | ||
2829 | tx_intr_handler(sp); | ||
2830 | } | ||
2831 | |||
2832 | /* If Intr is because of an error */ | ||
2833 | if (reason & (GEN_ERROR_INTR)) | ||
2834 | alarm_intr_handler(sp); | ||
2835 | |||
2836 | #ifdef CONFIG_S2IO_NAPI | ||
2837 | if (reason & GEN_INTR_RXTRAFFIC) { | ||
2838 | if (netif_rx_schedule_prep(dev)) { | ||
2839 | en_dis_able_nic_intrs(sp, RX_TRAFFIC_INTR, | ||
2840 | DISABLE_INTRS); | ||
2841 | __netif_rx_schedule(dev); | ||
2842 | } | ||
2843 | } | ||
2844 | #else | ||
2845 | /* If Intr is because of Rx Traffic */ | ||
2846 | if (reason & GEN_INTR_RXTRAFFIC) { | ||
2847 | rx_intr_handler(sp); | ||
2848 | } | ||
2849 | #endif | ||
2850 | |||
2851 | /* | ||
2852 | * If the Rx buffer count is below the panic threshold then | ||
2853 | * reallocate the buffers from the interrupt handler itself, | ||
2854 | * else schedule a tasklet to reallocate the buffers. | ||
2855 | */ | ||
2856 | #ifndef CONFIG_S2IO_NAPI | ||
2857 | for (i = 0; i < config->rx_ring_num; i++) { | ||
2858 | int rxb_size = atomic_read(&sp->rx_bufs_left[i]); | ||
2859 | int level = rx_buffer_level(sp, rxb_size, i); | ||
2860 | |||
2861 | if ((level == PANIC) && (!TASKLET_IN_USE)) { | ||
2862 | DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", dev->name); | ||
2863 | DBG_PRINT(INTR_DBG, "PANIC levels\n"); | ||
2864 | if ((ret = fill_rx_buffers(sp, i)) == -ENOMEM) { | ||
2865 | DBG_PRINT(ERR_DBG, "%s:Out of memory", | ||
2866 | dev->name); | ||
2867 | DBG_PRINT(ERR_DBG, " in ISR!!\n"); | ||
2868 | clear_bit(0, (&sp->tasklet_status)); | ||
2869 | return IRQ_HANDLED; | ||
2870 | } | ||
2871 | clear_bit(0, (&sp->tasklet_status)); | ||
2872 | } else if (level == LOW) { | ||
2873 | tasklet_schedule(&sp->task); | ||
2874 | } | ||
2875 | } | ||
2876 | #endif | ||
2877 | |||
2878 | return IRQ_HANDLED; | ||
2879 | } | ||
2880 | |||
2881 | /** | ||
2882 | * s2io_get_stats - Updates the device statistics structure. | ||
2883 | * @dev : pointer to the device structure. | ||
2884 | * Description: | ||
2885 | * This function updates the device statistics structure in the s2io_nic | ||
2886 | * structure and returns a pointer to the same. | ||
2887 | * Return value: | ||
2888 | * pointer to the updated net_device_stats structure. | ||
2889 | */ | ||
2890 | |||
2891 | static struct net_device_stats *s2io_get_stats(struct net_device *dev) | ||
2892 | { | ||
2893 | nic_t *sp = dev->priv; | ||
2894 | mac_info_t *mac_control; | ||
2895 | struct config_param *config; | ||
2896 | |||
2897 | mac_control = &sp->mac_control; | ||
2898 | config = &sp->config; | ||
2899 | |||
2900 | sp->stats.tx_errors = mac_control->stats_info->tmac_any_err_frms; | ||
2901 | sp->stats.rx_errors = mac_control->stats_info->rmac_drop_frms; | ||
2902 | sp->stats.multicast = mac_control->stats_info->rmac_vld_mcst_frms; | ||
2903 | sp->stats.rx_length_errors = | ||
2904 | mac_control->stats_info->rmac_long_frms; | ||
2905 | |||
2906 | return (&sp->stats); | ||
2907 | } | ||
2908 | |||
2909 | /** | ||
2910 | * s2io_set_multicast - entry point for multicast address enable/disable. | ||
2911 | * @dev : pointer to the device structure | ||
2912 | * Description: | ||
2913 | * This function is a driver entry point which gets called by the kernel | ||
2914 | * whenever multicast addresses must be enabled/disabled. This also gets | ||
2915 | * called to set/reset promiscuous mode. Depending on the deivce flag, we | ||
2916 | * determine, if multicast address must be enabled or if promiscuous mode | ||
2917 | * is to be disabled etc. | ||
2918 | * Return value: | ||
2919 | * void. | ||
2920 | */ | ||
2921 | |||
2922 | static void s2io_set_multicast(struct net_device *dev) | ||
2923 | { | ||
2924 | int i, j, prev_cnt; | ||
2925 | struct dev_mc_list *mclist; | ||
2926 | nic_t *sp = dev->priv; | ||
2927 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
2928 | u64 val64 = 0, multi_mac = 0x010203040506ULL, mask = | ||
2929 | 0xfeffffffffffULL; | ||
2930 | u64 dis_addr = 0xffffffffffffULL, mac_addr = 0; | ||
2931 | void __iomem *add; | ||
2932 | |||
2933 | if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) { | ||
2934 | /* Enable all Multicast addresses */ | ||
2935 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac), | ||
2936 | &bar0->rmac_addr_data0_mem); | ||
2937 | writeq(RMAC_ADDR_DATA1_MEM_MASK(mask), | ||
2938 | &bar0->rmac_addr_data1_mem); | ||
2939 | val64 = RMAC_ADDR_CMD_MEM_WE | | ||
2940 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
2941 | RMAC_ADDR_CMD_MEM_OFFSET(MAC_MC_ALL_MC_ADDR_OFFSET); | ||
2942 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
2943 | /* Wait till command completes */ | ||
2944 | wait_for_cmd_complete(sp); | ||
2945 | |||
2946 | sp->m_cast_flg = 1; | ||
2947 | sp->all_multi_pos = MAC_MC_ALL_MC_ADDR_OFFSET; | ||
2948 | } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) { | ||
2949 | /* Disable all Multicast addresses */ | ||
2950 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), | ||
2951 | &bar0->rmac_addr_data0_mem); | ||
2952 | val64 = RMAC_ADDR_CMD_MEM_WE | | ||
2953 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
2954 | RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos); | ||
2955 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
2956 | /* Wait till command completes */ | ||
2957 | wait_for_cmd_complete(sp); | ||
2958 | |||
2959 | sp->m_cast_flg = 0; | ||
2960 | sp->all_multi_pos = 0; | ||
2961 | } | ||
2962 | |||
2963 | if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) { | ||
2964 | /* Put the NIC into promiscuous mode */ | ||
2965 | add = &bar0->mac_cfg; | ||
2966 | val64 = readq(&bar0->mac_cfg); | ||
2967 | val64 |= MAC_CFG_RMAC_PROM_ENABLE; | ||
2968 | |||
2969 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
2970 | writel((u32) val64, add); | ||
2971 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
2972 | writel((u32) (val64 >> 32), (add + 4)); | ||
2973 | |||
2974 | val64 = readq(&bar0->mac_cfg); | ||
2975 | sp->promisc_flg = 1; | ||
2976 | DBG_PRINT(ERR_DBG, "%s: entered promiscuous mode\n", | ||
2977 | dev->name); | ||
2978 | } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) { | ||
2979 | /* Remove the NIC from promiscuous mode */ | ||
2980 | add = &bar0->mac_cfg; | ||
2981 | val64 = readq(&bar0->mac_cfg); | ||
2982 | val64 &= ~MAC_CFG_RMAC_PROM_ENABLE; | ||
2983 | |||
2984 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
2985 | writel((u32) val64, add); | ||
2986 | writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key); | ||
2987 | writel((u32) (val64 >> 32), (add + 4)); | ||
2988 | |||
2989 | val64 = readq(&bar0->mac_cfg); | ||
2990 | sp->promisc_flg = 0; | ||
2991 | DBG_PRINT(ERR_DBG, "%s: left promiscuous mode\n", | ||
2992 | dev->name); | ||
2993 | } | ||
2994 | |||
2995 | /* Update individual M_CAST address list */ | ||
2996 | if ((!sp->m_cast_flg) && dev->mc_count) { | ||
2997 | if (dev->mc_count > | ||
2998 | (MAX_ADDRS_SUPPORTED - MAC_MC_ADDR_START_OFFSET - 1)) { | ||
2999 | DBG_PRINT(ERR_DBG, "%s: No more Rx filters ", | ||
3000 | dev->name); | ||
3001 | DBG_PRINT(ERR_DBG, "can be added, please enable "); | ||
3002 | DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n"); | ||
3003 | return; | ||
3004 | } | ||
3005 | |||
3006 | prev_cnt = sp->mc_addr_count; | ||
3007 | sp->mc_addr_count = dev->mc_count; | ||
3008 | |||
3009 | /* Clear out the previous list of Mc in the H/W. */ | ||
3010 | for (i = 0; i < prev_cnt; i++) { | ||
3011 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr), | ||
3012 | &bar0->rmac_addr_data0_mem); | ||
3013 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), | ||
3014 | &bar0->rmac_addr_data1_mem); | ||
3015 | val64 = RMAC_ADDR_CMD_MEM_WE | | ||
3016 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
3017 | RMAC_ADDR_CMD_MEM_OFFSET | ||
3018 | (MAC_MC_ADDR_START_OFFSET + i); | ||
3019 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
3020 | |||
3021 | /* Wait for command completes */ | ||
3022 | if (wait_for_cmd_complete(sp)) { | ||
3023 | DBG_PRINT(ERR_DBG, "%s: Adding ", | ||
3024 | dev->name); | ||
3025 | DBG_PRINT(ERR_DBG, "Multicasts failed\n"); | ||
3026 | return; | ||
3027 | } | ||
3028 | } | ||
3029 | |||
3030 | /* Create the new Rx filter list and update the same in H/W. */ | ||
3031 | for (i = 0, mclist = dev->mc_list; i < dev->mc_count; | ||
3032 | i++, mclist = mclist->next) { | ||
3033 | memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr, | ||
3034 | ETH_ALEN); | ||
3035 | for (j = 0; j < ETH_ALEN; j++) { | ||
3036 | mac_addr |= mclist->dmi_addr[j]; | ||
3037 | mac_addr <<= 8; | ||
3038 | } | ||
3039 | mac_addr >>= 8; | ||
3040 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), | ||
3041 | &bar0->rmac_addr_data0_mem); | ||
3042 | writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL), | ||
3043 | &bar0->rmac_addr_data1_mem); | ||
3044 | |||
3045 | val64 = RMAC_ADDR_CMD_MEM_WE | | ||
3046 | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
3047 | RMAC_ADDR_CMD_MEM_OFFSET | ||
3048 | (i + MAC_MC_ADDR_START_OFFSET); | ||
3049 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
3050 | |||
3051 | /* Wait for command completes */ | ||
3052 | if (wait_for_cmd_complete(sp)) { | ||
3053 | DBG_PRINT(ERR_DBG, "%s: Adding ", | ||
3054 | dev->name); | ||
3055 | DBG_PRINT(ERR_DBG, "Multicasts failed\n"); | ||
3056 | return; | ||
3057 | } | ||
3058 | } | ||
3059 | } | ||
3060 | } | ||
3061 | |||
3062 | /** | ||
3063 | * s2io_set_mac_addr - Programs the Xframe mac address | ||
3064 | * @dev : pointer to the device structure. | ||
3065 | * @addr: a uchar pointer to the new mac address which is to be set. | ||
3066 | * Description : This procedure will program the Xframe to receive | ||
3067 | * frames with new Mac Address | ||
3068 | * Return value: SUCCESS on success and an appropriate (-)ve integer | ||
3069 | * as defined in errno.h file on failure. | ||
3070 | */ | ||
3071 | |||
3072 | int s2io_set_mac_addr(struct net_device *dev, u8 * addr) | ||
3073 | { | ||
3074 | nic_t *sp = dev->priv; | ||
3075 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3076 | register u64 val64, mac_addr = 0; | ||
3077 | int i; | ||
3078 | |||
3079 | /* | ||
3080 | * Set the new MAC address as the new unicast filter and reflect this | ||
3081 | * change on the device address registered with the OS. It will be | ||
3082 | * at offset 0. | ||
3083 | */ | ||
3084 | for (i = 0; i < ETH_ALEN; i++) { | ||
3085 | mac_addr <<= 8; | ||
3086 | mac_addr |= addr[i]; | ||
3087 | } | ||
3088 | |||
3089 | writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr), | ||
3090 | &bar0->rmac_addr_data0_mem); | ||
3091 | |||
3092 | val64 = | ||
3093 | RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
3094 | RMAC_ADDR_CMD_MEM_OFFSET(0); | ||
3095 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
3096 | /* Wait till command completes */ | ||
3097 | if (wait_for_cmd_complete(sp)) { | ||
3098 | DBG_PRINT(ERR_DBG, "%s: set_mac_addr failed\n", dev->name); | ||
3099 | return FAILURE; | ||
3100 | } | ||
3101 | |||
3102 | return SUCCESS; | ||
3103 | } | ||
3104 | |||
3105 | /** | ||
3106 | * s2io_ethtool_sset - Sets different link parameters. | ||
3107 | * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. | ||
3108 | * @info: pointer to the structure with parameters given by ethtool to set | ||
3109 | * link information. | ||
3110 | * Description: | ||
3111 | * The function sets different link parameters provided by the user onto | ||
3112 | * the NIC. | ||
3113 | * Return value: | ||
3114 | * 0 on success. | ||
3115 | */ | ||
3116 | |||
3117 | static int s2io_ethtool_sset(struct net_device *dev, | ||
3118 | struct ethtool_cmd *info) | ||
3119 | { | ||
3120 | nic_t *sp = dev->priv; | ||
3121 | if ((info->autoneg == AUTONEG_ENABLE) || | ||
3122 | (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL)) | ||
3123 | return -EINVAL; | ||
3124 | else { | ||
3125 | s2io_close(sp->dev); | ||
3126 | s2io_open(sp->dev); | ||
3127 | } | ||
3128 | |||
3129 | return 0; | ||
3130 | } | ||
3131 | |||
3132 | /** | ||
3133 | * s2io_ethtol_gset - Return link specific information. | ||
3134 | * @sp : private member of the device structure, pointer to the | ||
3135 | * s2io_nic structure. | ||
3136 | * @info : pointer to the structure with parameters given by ethtool | ||
3137 | * to return link information. | ||
3138 | * Description: | ||
3139 | * Returns link specific information like speed, duplex etc.. to ethtool. | ||
3140 | * Return value : | ||
3141 | * return 0 on success. | ||
3142 | */ | ||
3143 | |||
3144 | static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info) | ||
3145 | { | ||
3146 | nic_t *sp = dev->priv; | ||
3147 | info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); | ||
3148 | info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE); | ||
3149 | info->port = PORT_FIBRE; | ||
3150 | /* info->transceiver?? TODO */ | ||
3151 | |||
3152 | if (netif_carrier_ok(sp->dev)) { | ||
3153 | info->speed = 10000; | ||
3154 | info->duplex = DUPLEX_FULL; | ||
3155 | } else { | ||
3156 | info->speed = -1; | ||
3157 | info->duplex = -1; | ||
3158 | } | ||
3159 | |||
3160 | info->autoneg = AUTONEG_DISABLE; | ||
3161 | return 0; | ||
3162 | } | ||
3163 | |||
3164 | /** | ||
3165 | * s2io_ethtool_gdrvinfo - Returns driver specific information. | ||
3166 | * @sp : private member of the device structure, which is a pointer to the | ||
3167 | * s2io_nic structure. | ||
3168 | * @info : pointer to the structure with parameters given by ethtool to | ||
3169 | * return driver information. | ||
3170 | * Description: | ||
3171 | * Returns driver specefic information like name, version etc.. to ethtool. | ||
3172 | * Return value: | ||
3173 | * void | ||
3174 | */ | ||
3175 | |||
3176 | static void s2io_ethtool_gdrvinfo(struct net_device *dev, | ||
3177 | struct ethtool_drvinfo *info) | ||
3178 | { | ||
3179 | nic_t *sp = dev->priv; | ||
3180 | |||
3181 | strncpy(info->driver, s2io_driver_name, sizeof(s2io_driver_name)); | ||
3182 | strncpy(info->version, s2io_driver_version, | ||
3183 | sizeof(s2io_driver_version)); | ||
3184 | strncpy(info->fw_version, "", 32); | ||
3185 | strncpy(info->bus_info, pci_name(sp->pdev), 32); | ||
3186 | info->regdump_len = XENA_REG_SPACE; | ||
3187 | info->eedump_len = XENA_EEPROM_SPACE; | ||
3188 | info->testinfo_len = S2IO_TEST_LEN; | ||
3189 | info->n_stats = S2IO_STAT_LEN; | ||
3190 | } | ||
3191 | |||
3192 | /** | ||
3193 | * s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer. | ||
3194 | * @sp: private member of the device structure, which is a pointer to the | ||
3195 | * s2io_nic structure. | ||
3196 | * @regs : pointer to the structure with parameters given by ethtool for | ||
3197 | * dumping the registers. | ||
3198 | * @reg_space: The input argumnet into which all the registers are dumped. | ||
3199 | * Description: | ||
3200 | * Dumps the entire register space of xFrame NIC into the user given | ||
3201 | * buffer area. | ||
3202 | * Return value : | ||
3203 | * void . | ||
3204 | */ | ||
3205 | |||
3206 | static void s2io_ethtool_gregs(struct net_device *dev, | ||
3207 | struct ethtool_regs *regs, void *space) | ||
3208 | { | ||
3209 | int i; | ||
3210 | u64 reg; | ||
3211 | u8 *reg_space = (u8 *) space; | ||
3212 | nic_t *sp = dev->priv; | ||
3213 | |||
3214 | regs->len = XENA_REG_SPACE; | ||
3215 | regs->version = sp->pdev->subsystem_device; | ||
3216 | |||
3217 | for (i = 0; i < regs->len; i += 8) { | ||
3218 | reg = readq(sp->bar0 + i); | ||
3219 | memcpy((reg_space + i), ®, 8); | ||
3220 | } | ||
3221 | } | ||
3222 | |||
3223 | /** | ||
3224 | * s2io_phy_id - timer function that alternates adapter LED. | ||
3225 | * @data : address of the private member of the device structure, which | ||
3226 | * is a pointer to the s2io_nic structure, provided as an u32. | ||
3227 | * Description: This is actually the timer function that alternates the | ||
3228 | * adapter LED bit of the adapter control bit to set/reset every time on | ||
3229 | * invocation. The timer is set for 1/2 a second, hence tha NIC blinks | ||
3230 | * once every second. | ||
3231 | */ | ||
3232 | static void s2io_phy_id(unsigned long data) | ||
3233 | { | ||
3234 | nic_t *sp = (nic_t *) data; | ||
3235 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3236 | u64 val64 = 0; | ||
3237 | u16 subid; | ||
3238 | |||
3239 | subid = sp->pdev->subsystem_device; | ||
3240 | if ((subid & 0xFF) >= 0x07) { | ||
3241 | val64 = readq(&bar0->gpio_control); | ||
3242 | val64 ^= GPIO_CTRL_GPIO_0; | ||
3243 | writeq(val64, &bar0->gpio_control); | ||
3244 | } else { | ||
3245 | val64 = readq(&bar0->adapter_control); | ||
3246 | val64 ^= ADAPTER_LED_ON; | ||
3247 | writeq(val64, &bar0->adapter_control); | ||
3248 | } | ||
3249 | |||
3250 | mod_timer(&sp->id_timer, jiffies + HZ / 2); | ||
3251 | } | ||
3252 | |||
3253 | /** | ||
3254 | * s2io_ethtool_idnic - To physically identify the nic on the system. | ||
3255 | * @sp : private member of the device structure, which is a pointer to the | ||
3256 | * s2io_nic structure. | ||
3257 | * @id : pointer to the structure with identification parameters given by | ||
3258 | * ethtool. | ||
3259 | * Description: Used to physically identify the NIC on the system. | ||
3260 | * The Link LED will blink for a time specified by the user for | ||
3261 | * identification. | ||
3262 | * NOTE: The Link has to be Up to be able to blink the LED. Hence | ||
3263 | * identification is possible only if it's link is up. | ||
3264 | * Return value: | ||
3265 | * int , returns 0 on success | ||
3266 | */ | ||
3267 | |||
3268 | static int s2io_ethtool_idnic(struct net_device *dev, u32 data) | ||
3269 | { | ||
3270 | u64 val64 = 0, last_gpio_ctrl_val; | ||
3271 | nic_t *sp = dev->priv; | ||
3272 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3273 | u16 subid; | ||
3274 | |||
3275 | subid = sp->pdev->subsystem_device; | ||
3276 | last_gpio_ctrl_val = readq(&bar0->gpio_control); | ||
3277 | if ((subid & 0xFF) < 0x07) { | ||
3278 | val64 = readq(&bar0->adapter_control); | ||
3279 | if (!(val64 & ADAPTER_CNTL_EN)) { | ||
3280 | printk(KERN_ERR | ||
3281 | "Adapter Link down, cannot blink LED\n"); | ||
3282 | return -EFAULT; | ||
3283 | } | ||
3284 | } | ||
3285 | if (sp->id_timer.function == NULL) { | ||
3286 | init_timer(&sp->id_timer); | ||
3287 | sp->id_timer.function = s2io_phy_id; | ||
3288 | sp->id_timer.data = (unsigned long) sp; | ||
3289 | } | ||
3290 | mod_timer(&sp->id_timer, jiffies); | ||
3291 | if (data) | ||
3292 | msleep(data * 1000); | ||
3293 | else | ||
3294 | msleep(0xFFFFFFFF); | ||
3295 | del_timer_sync(&sp->id_timer); | ||
3296 | |||
3297 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { | ||
3298 | writeq(last_gpio_ctrl_val, &bar0->gpio_control); | ||
3299 | last_gpio_ctrl_val = readq(&bar0->gpio_control); | ||
3300 | } | ||
3301 | |||
3302 | return 0; | ||
3303 | } | ||
3304 | |||
3305 | /** | ||
3306 | * s2io_ethtool_getpause_data -Pause frame frame generation and reception. | ||
3307 | * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. | ||
3308 | * @ep : pointer to the structure with pause parameters given by ethtool. | ||
3309 | * Description: | ||
3310 | * Returns the Pause frame generation and reception capability of the NIC. | ||
3311 | * Return value: | ||
3312 | * void | ||
3313 | */ | ||
3314 | static void s2io_ethtool_getpause_data(struct net_device *dev, | ||
3315 | struct ethtool_pauseparam *ep) | ||
3316 | { | ||
3317 | u64 val64; | ||
3318 | nic_t *sp = dev->priv; | ||
3319 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3320 | |||
3321 | val64 = readq(&bar0->rmac_pause_cfg); | ||
3322 | if (val64 & RMAC_PAUSE_GEN_ENABLE) | ||
3323 | ep->tx_pause = TRUE; | ||
3324 | if (val64 & RMAC_PAUSE_RX_ENABLE) | ||
3325 | ep->rx_pause = TRUE; | ||
3326 | ep->autoneg = FALSE; | ||
3327 | } | ||
3328 | |||
3329 | /** | ||
3330 | * s2io_ethtool_setpause_data - set/reset pause frame generation. | ||
3331 | * @sp : private member of the device structure, which is a pointer to the | ||
3332 | * s2io_nic structure. | ||
3333 | * @ep : pointer to the structure with pause parameters given by ethtool. | ||
3334 | * Description: | ||
3335 | * It can be used to set or reset Pause frame generation or reception | ||
3336 | * support of the NIC. | ||
3337 | * Return value: | ||
3338 | * int, returns 0 on Success | ||
3339 | */ | ||
3340 | |||
3341 | static int s2io_ethtool_setpause_data(struct net_device *dev, | ||
3342 | struct ethtool_pauseparam *ep) | ||
3343 | { | ||
3344 | u64 val64; | ||
3345 | nic_t *sp = dev->priv; | ||
3346 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3347 | |||
3348 | val64 = readq(&bar0->rmac_pause_cfg); | ||
3349 | if (ep->tx_pause) | ||
3350 | val64 |= RMAC_PAUSE_GEN_ENABLE; | ||
3351 | else | ||
3352 | val64 &= ~RMAC_PAUSE_GEN_ENABLE; | ||
3353 | if (ep->rx_pause) | ||
3354 | val64 |= RMAC_PAUSE_RX_ENABLE; | ||
3355 | else | ||
3356 | val64 &= ~RMAC_PAUSE_RX_ENABLE; | ||
3357 | writeq(val64, &bar0->rmac_pause_cfg); | ||
3358 | return 0; | ||
3359 | } | ||
3360 | |||
3361 | /** | ||
3362 | * read_eeprom - reads 4 bytes of data from user given offset. | ||
3363 | * @sp : private member of the device structure, which is a pointer to the | ||
3364 | * s2io_nic structure. | ||
3365 | * @off : offset at which the data must be written | ||
3366 | * @data : Its an output parameter where the data read at the given | ||
3367 | * offset is stored. | ||
3368 | * Description: | ||
3369 | * Will read 4 bytes of data from the user given offset and return the | ||
3370 | * read data. | ||
3371 | * NOTE: Will allow to read only part of the EEPROM visible through the | ||
3372 | * I2C bus. | ||
3373 | * Return value: | ||
3374 | * -1 on failure and 0 on success. | ||
3375 | */ | ||
3376 | |||
3377 | #define S2IO_DEV_ID 5 | ||
3378 | static int read_eeprom(nic_t * sp, int off, u32 * data) | ||
3379 | { | ||
3380 | int ret = -1; | ||
3381 | u32 exit_cnt = 0; | ||
3382 | u64 val64; | ||
3383 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3384 | |||
3385 | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | | ||
3386 | I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ | | ||
3387 | I2C_CONTROL_CNTL_START; | ||
3388 | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); | ||
3389 | |||
3390 | while (exit_cnt < 5) { | ||
3391 | val64 = readq(&bar0->i2c_control); | ||
3392 | if (I2C_CONTROL_CNTL_END(val64)) { | ||
3393 | *data = I2C_CONTROL_GET_DATA(val64); | ||
3394 | ret = 0; | ||
3395 | break; | ||
3396 | } | ||
3397 | msleep(50); | ||
3398 | exit_cnt++; | ||
3399 | } | ||
3400 | |||
3401 | return ret; | ||
3402 | } | ||
3403 | |||
3404 | /** | ||
3405 | * write_eeprom - actually writes the relevant part of the data value. | ||
3406 | * @sp : private member of the device structure, which is a pointer to the | ||
3407 | * s2io_nic structure. | ||
3408 | * @off : offset at which the data must be written | ||
3409 | * @data : The data that is to be written | ||
3410 | * @cnt : Number of bytes of the data that are actually to be written into | ||
3411 | * the Eeprom. (max of 3) | ||
3412 | * Description: | ||
3413 | * Actually writes the relevant part of the data value into the Eeprom | ||
3414 | * through the I2C bus. | ||
3415 | * Return value: | ||
3416 | * 0 on success, -1 on failure. | ||
3417 | */ | ||
3418 | |||
3419 | static int write_eeprom(nic_t * sp, int off, u32 data, int cnt) | ||
3420 | { | ||
3421 | int exit_cnt = 0, ret = -1; | ||
3422 | u64 val64; | ||
3423 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3424 | |||
3425 | val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) | | ||
3426 | I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA(data) | | ||
3427 | I2C_CONTROL_CNTL_START; | ||
3428 | SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF); | ||
3429 | |||
3430 | while (exit_cnt < 5) { | ||
3431 | val64 = readq(&bar0->i2c_control); | ||
3432 | if (I2C_CONTROL_CNTL_END(val64)) { | ||
3433 | if (!(val64 & I2C_CONTROL_NACK)) | ||
3434 | ret = 0; | ||
3435 | break; | ||
3436 | } | ||
3437 | msleep(50); | ||
3438 | exit_cnt++; | ||
3439 | } | ||
3440 | |||
3441 | return ret; | ||
3442 | } | ||
3443 | |||
3444 | /** | ||
3445 | * s2io_ethtool_geeprom - reads the value stored in the Eeprom. | ||
3446 | * @sp : private member of the device structure, which is a pointer to the * s2io_nic structure. | ||
3447 | * @eeprom : pointer to the user level structure provided by ethtool, | ||
3448 | * containing all relevant information. | ||
3449 | * @data_buf : user defined value to be written into Eeprom. | ||
3450 | * Description: Reads the values stored in the Eeprom at given offset | ||
3451 | * for a given length. Stores these values int the input argument data | ||
3452 | * buffer 'data_buf' and returns these to the caller (ethtool.) | ||
3453 | * Return value: | ||
3454 | * int 0 on success | ||
3455 | */ | ||
3456 | |||
3457 | static int s2io_ethtool_geeprom(struct net_device *dev, | ||
3458 | struct ethtool_eeprom *eeprom, u8 * data_buf) | ||
3459 | { | ||
3460 | u32 data, i, valid; | ||
3461 | nic_t *sp = dev->priv; | ||
3462 | |||
3463 | eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16); | ||
3464 | |||
3465 | if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE)) | ||
3466 | eeprom->len = XENA_EEPROM_SPACE - eeprom->offset; | ||
3467 | |||
3468 | for (i = 0; i < eeprom->len; i += 4) { | ||
3469 | if (read_eeprom(sp, (eeprom->offset + i), &data)) { | ||
3470 | DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n"); | ||
3471 | return -EFAULT; | ||
3472 | } | ||
3473 | valid = INV(data); | ||
3474 | memcpy((data_buf + i), &valid, 4); | ||
3475 | } | ||
3476 | return 0; | ||
3477 | } | ||
3478 | |||
3479 | /** | ||
3480 | * s2io_ethtool_seeprom - tries to write the user provided value in Eeprom | ||
3481 | * @sp : private member of the device structure, which is a pointer to the | ||
3482 | * s2io_nic structure. | ||
3483 | * @eeprom : pointer to the user level structure provided by ethtool, | ||
3484 | * containing all relevant information. | ||
3485 | * @data_buf ; user defined value to be written into Eeprom. | ||
3486 | * Description: | ||
3487 | * Tries to write the user provided value in the Eeprom, at the offset | ||
3488 | * given by the user. | ||
3489 | * Return value: | ||
3490 | * 0 on success, -EFAULT on failure. | ||
3491 | */ | ||
3492 | |||
3493 | static int s2io_ethtool_seeprom(struct net_device *dev, | ||
3494 | struct ethtool_eeprom *eeprom, | ||
3495 | u8 * data_buf) | ||
3496 | { | ||
3497 | int len = eeprom->len, cnt = 0; | ||
3498 | u32 valid = 0, data; | ||
3499 | nic_t *sp = dev->priv; | ||
3500 | |||
3501 | if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) { | ||
3502 | DBG_PRINT(ERR_DBG, | ||
3503 | "ETHTOOL_WRITE_EEPROM Err: Magic value "); | ||
3504 | DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n", | ||
3505 | eeprom->magic); | ||
3506 | return -EFAULT; | ||
3507 | } | ||
3508 | |||
3509 | while (len) { | ||
3510 | data = (u32) data_buf[cnt] & 0x000000FF; | ||
3511 | if (data) { | ||
3512 | valid = (u32) (data << 24); | ||
3513 | } else | ||
3514 | valid = data; | ||
3515 | |||
3516 | if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) { | ||
3517 | DBG_PRINT(ERR_DBG, | ||
3518 | "ETHTOOL_WRITE_EEPROM Err: Cannot "); | ||
3519 | DBG_PRINT(ERR_DBG, | ||
3520 | "write into the specified offset\n"); | ||
3521 | return -EFAULT; | ||
3522 | } | ||
3523 | cnt++; | ||
3524 | len--; | ||
3525 | } | ||
3526 | |||
3527 | return 0; | ||
3528 | } | ||
3529 | |||
3530 | /** | ||
3531 | * s2io_register_test - reads and writes into all clock domains. | ||
3532 | * @sp : private member of the device structure, which is a pointer to the | ||
3533 | * s2io_nic structure. | ||
3534 | * @data : variable that returns the result of each of the test conducted b | ||
3535 | * by the driver. | ||
3536 | * Description: | ||
3537 | * Read and write into all clock domains. The NIC has 3 clock domains, | ||
3538 | * see that registers in all the three regions are accessible. | ||
3539 | * Return value: | ||
3540 | * 0 on success. | ||
3541 | */ | ||
3542 | |||
3543 | static int s2io_register_test(nic_t * sp, uint64_t * data) | ||
3544 | { | ||
3545 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3546 | u64 val64 = 0; | ||
3547 | int fail = 0; | ||
3548 | |||
3549 | val64 = readq(&bar0->pcc_enable); | ||
3550 | if (val64 != 0xff00000000000000ULL) { | ||
3551 | fail = 1; | ||
3552 | DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n"); | ||
3553 | } | ||
3554 | |||
3555 | val64 = readq(&bar0->rmac_pause_cfg); | ||
3556 | if (val64 != 0xc000ffff00000000ULL) { | ||
3557 | fail = 1; | ||
3558 | DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n"); | ||
3559 | } | ||
3560 | |||
3561 | val64 = readq(&bar0->rx_queue_cfg); | ||
3562 | if (val64 != 0x0808080808080808ULL) { | ||
3563 | fail = 1; | ||
3564 | DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n"); | ||
3565 | } | ||
3566 | |||
3567 | val64 = readq(&bar0->xgxs_efifo_cfg); | ||
3568 | if (val64 != 0x000000001923141EULL) { | ||
3569 | fail = 1; | ||
3570 | DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n"); | ||
3571 | } | ||
3572 | |||
3573 | val64 = 0x5A5A5A5A5A5A5A5AULL; | ||
3574 | writeq(val64, &bar0->xmsi_data); | ||
3575 | val64 = readq(&bar0->xmsi_data); | ||
3576 | if (val64 != 0x5A5A5A5A5A5A5A5AULL) { | ||
3577 | fail = 1; | ||
3578 | DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n"); | ||
3579 | } | ||
3580 | |||
3581 | val64 = 0xA5A5A5A5A5A5A5A5ULL; | ||
3582 | writeq(val64, &bar0->xmsi_data); | ||
3583 | val64 = readq(&bar0->xmsi_data); | ||
3584 | if (val64 != 0xA5A5A5A5A5A5A5A5ULL) { | ||
3585 | fail = 1; | ||
3586 | DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n"); | ||
3587 | } | ||
3588 | |||
3589 | *data = fail; | ||
3590 | return 0; | ||
3591 | } | ||
3592 | |||
3593 | /** | ||
3594 | * s2io_eeprom_test - to verify that EEprom in the xena can be programmed. | ||
3595 | * @sp : private member of the device structure, which is a pointer to the | ||
3596 | * s2io_nic structure. | ||
3597 | * @data:variable that returns the result of each of the test conducted by | ||
3598 | * the driver. | ||
3599 | * Description: | ||
3600 | * Verify that EEPROM in the xena can be programmed using I2C_CONTROL | ||
3601 | * register. | ||
3602 | * Return value: | ||
3603 | * 0 on success. | ||
3604 | */ | ||
3605 | |||
3606 | static int s2io_eeprom_test(nic_t * sp, uint64_t * data) | ||
3607 | { | ||
3608 | int fail = 0; | ||
3609 | u32 ret_data; | ||
3610 | |||
3611 | /* Test Write Error at offset 0 */ | ||
3612 | if (!write_eeprom(sp, 0, 0, 3)) | ||
3613 | fail = 1; | ||
3614 | |||
3615 | /* Test Write at offset 4f0 */ | ||
3616 | if (write_eeprom(sp, 0x4F0, 0x01234567, 3)) | ||
3617 | fail = 1; | ||
3618 | if (read_eeprom(sp, 0x4F0, &ret_data)) | ||
3619 | fail = 1; | ||
3620 | |||
3621 | if (ret_data != 0x01234567) | ||
3622 | fail = 1; | ||
3623 | |||
3624 | /* Reset the EEPROM data go FFFF */ | ||
3625 | write_eeprom(sp, 0x4F0, 0xFFFFFFFF, 3); | ||
3626 | |||
3627 | /* Test Write Request Error at offset 0x7c */ | ||
3628 | if (!write_eeprom(sp, 0x07C, 0, 3)) | ||
3629 | fail = 1; | ||
3630 | |||
3631 | /* Test Write Request at offset 0x7fc */ | ||
3632 | if (write_eeprom(sp, 0x7FC, 0x01234567, 3)) | ||
3633 | fail = 1; | ||
3634 | if (read_eeprom(sp, 0x7FC, &ret_data)) | ||
3635 | fail = 1; | ||
3636 | |||
3637 | if (ret_data != 0x01234567) | ||
3638 | fail = 1; | ||
3639 | |||
3640 | /* Reset the EEPROM data go FFFF */ | ||
3641 | write_eeprom(sp, 0x7FC, 0xFFFFFFFF, 3); | ||
3642 | |||
3643 | /* Test Write Error at offset 0x80 */ | ||
3644 | if (!write_eeprom(sp, 0x080, 0, 3)) | ||
3645 | fail = 1; | ||
3646 | |||
3647 | /* Test Write Error at offset 0xfc */ | ||
3648 | if (!write_eeprom(sp, 0x0FC, 0, 3)) | ||
3649 | fail = 1; | ||
3650 | |||
3651 | /* Test Write Error at offset 0x100 */ | ||
3652 | if (!write_eeprom(sp, 0x100, 0, 3)) | ||
3653 | fail = 1; | ||
3654 | |||
3655 | /* Test Write Error at offset 4ec */ | ||
3656 | if (!write_eeprom(sp, 0x4EC, 0, 3)) | ||
3657 | fail = 1; | ||
3658 | |||
3659 | *data = fail; | ||
3660 | return 0; | ||
3661 | } | ||
3662 | |||
3663 | /** | ||
3664 | * s2io_bist_test - invokes the MemBist test of the card . | ||
3665 | * @sp : private member of the device structure, which is a pointer to the | ||
3666 | * s2io_nic structure. | ||
3667 | * @data:variable that returns the result of each of the test conducted by | ||
3668 | * the driver. | ||
3669 | * Description: | ||
3670 | * This invokes the MemBist test of the card. We give around | ||
3671 | * 2 secs time for the Test to complete. If it's still not complete | ||
3672 | * within this peiod, we consider that the test failed. | ||
3673 | * Return value: | ||
3674 | * 0 on success and -1 on failure. | ||
3675 | */ | ||
3676 | |||
3677 | static int s2io_bist_test(nic_t * sp, uint64_t * data) | ||
3678 | { | ||
3679 | u8 bist = 0; | ||
3680 | int cnt = 0, ret = -1; | ||
3681 | |||
3682 | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); | ||
3683 | bist |= PCI_BIST_START; | ||
3684 | pci_write_config_word(sp->pdev, PCI_BIST, bist); | ||
3685 | |||
3686 | while (cnt < 20) { | ||
3687 | pci_read_config_byte(sp->pdev, PCI_BIST, &bist); | ||
3688 | if (!(bist & PCI_BIST_START)) { | ||
3689 | *data = (bist & PCI_BIST_CODE_MASK); | ||
3690 | ret = 0; | ||
3691 | break; | ||
3692 | } | ||
3693 | msleep(100); | ||
3694 | cnt++; | ||
3695 | } | ||
3696 | |||
3697 | return ret; | ||
3698 | } | ||
3699 | |||
3700 | /** | ||
3701 | * s2io-link_test - verifies the link state of the nic | ||
3702 | * @sp ; private member of the device structure, which is a pointer to the | ||
3703 | * s2io_nic structure. | ||
3704 | * @data: variable that returns the result of each of the test conducted by | ||
3705 | * the driver. | ||
3706 | * Description: | ||
3707 | * The function verifies the link state of the NIC and updates the input | ||
3708 | * argument 'data' appropriately. | ||
3709 | * Return value: | ||
3710 | * 0 on success. | ||
3711 | */ | ||
3712 | |||
3713 | static int s2io_link_test(nic_t * sp, uint64_t * data) | ||
3714 | { | ||
3715 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3716 | u64 val64; | ||
3717 | |||
3718 | val64 = readq(&bar0->adapter_status); | ||
3719 | if (val64 & ADAPTER_STATUS_RMAC_LOCAL_FAULT) | ||
3720 | *data = 1; | ||
3721 | |||
3722 | return 0; | ||
3723 | } | ||
3724 | |||
3725 | /** | ||
3726 | * s2io_rldram_test - offline test for access to the RldRam chip on the NIC | ||
3727 | * @sp - private member of the device structure, which is a pointer to the | ||
3728 | * s2io_nic structure. | ||
3729 | * @data - variable that returns the result of each of the test | ||
3730 | * conducted by the driver. | ||
3731 | * Description: | ||
3732 | * This is one of the offline test that tests the read and write | ||
3733 | * access to the RldRam chip on the NIC. | ||
3734 | * Return value: | ||
3735 | * 0 on success. | ||
3736 | */ | ||
3737 | |||
3738 | static int s2io_rldram_test(nic_t * sp, uint64_t * data) | ||
3739 | { | ||
3740 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
3741 | u64 val64; | ||
3742 | int cnt, iteration = 0, test_pass = 0; | ||
3743 | |||
3744 | val64 = readq(&bar0->adapter_control); | ||
3745 | val64 &= ~ADAPTER_ECC_EN; | ||
3746 | writeq(val64, &bar0->adapter_control); | ||
3747 | |||
3748 | val64 = readq(&bar0->mc_rldram_test_ctrl); | ||
3749 | val64 |= MC_RLDRAM_TEST_MODE; | ||
3750 | writeq(val64, &bar0->mc_rldram_test_ctrl); | ||
3751 | |||
3752 | val64 = readq(&bar0->mc_rldram_mrs); | ||
3753 | val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE; | ||
3754 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | ||
3755 | |||
3756 | val64 |= MC_RLDRAM_MRS_ENABLE; | ||
3757 | SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF); | ||
3758 | |||
3759 | while (iteration < 2) { | ||
3760 | val64 = 0x55555555aaaa0000ULL; | ||
3761 | if (iteration == 1) { | ||
3762 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | ||
3763 | } | ||
3764 | writeq(val64, &bar0->mc_rldram_test_d0); | ||
3765 | |||
3766 | val64 = 0xaaaa5a5555550000ULL; | ||
3767 | if (iteration == 1) { | ||
3768 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | ||
3769 | } | ||
3770 | writeq(val64, &bar0->mc_rldram_test_d1); | ||
3771 | |||
3772 | val64 = 0x55aaaaaaaa5a0000ULL; | ||
3773 | if (iteration == 1) { | ||
3774 | val64 ^= 0xFFFFFFFFFFFF0000ULL; | ||
3775 | } | ||
3776 | writeq(val64, &bar0->mc_rldram_test_d2); | ||
3777 | |||
3778 | val64 = (u64) (0x0000003fffff0000ULL); | ||
3779 | writeq(val64, &bar0->mc_rldram_test_add); | ||
3780 | |||
3781 | |||
3782 | val64 = MC_RLDRAM_TEST_MODE; | ||
3783 | writeq(val64, &bar0->mc_rldram_test_ctrl); | ||
3784 | |||
3785 | val64 |= | ||
3786 | MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE | | ||
3787 | MC_RLDRAM_TEST_GO; | ||
3788 | writeq(val64, &bar0->mc_rldram_test_ctrl); | ||
3789 | |||
3790 | for (cnt = 0; cnt < 5; cnt++) { | ||
3791 | val64 = readq(&bar0->mc_rldram_test_ctrl); | ||
3792 | if (val64 & MC_RLDRAM_TEST_DONE) | ||
3793 | break; | ||
3794 | msleep(200); | ||
3795 | } | ||
3796 | |||
3797 | if (cnt == 5) | ||
3798 | break; | ||
3799 | |||
3800 | val64 = MC_RLDRAM_TEST_MODE; | ||
3801 | writeq(val64, &bar0->mc_rldram_test_ctrl); | ||
3802 | |||
3803 | val64 |= MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO; | ||
3804 | writeq(val64, &bar0->mc_rldram_test_ctrl); | ||
3805 | |||
3806 | for (cnt = 0; cnt < 5; cnt++) { | ||
3807 | val64 = readq(&bar0->mc_rldram_test_ctrl); | ||
3808 | if (val64 & MC_RLDRAM_TEST_DONE) | ||
3809 | break; | ||
3810 | msleep(500); | ||
3811 | } | ||
3812 | |||
3813 | if (cnt == 5) | ||
3814 | break; | ||
3815 | |||
3816 | val64 = readq(&bar0->mc_rldram_test_ctrl); | ||
3817 | if (val64 & MC_RLDRAM_TEST_PASS) | ||
3818 | test_pass = 1; | ||
3819 | |||
3820 | iteration++; | ||
3821 | } | ||
3822 | |||
3823 | if (!test_pass) | ||
3824 | *data = 1; | ||
3825 | else | ||
3826 | *data = 0; | ||
3827 | |||
3828 | return 0; | ||
3829 | } | ||
3830 | |||
3831 | /** | ||
3832 | * s2io_ethtool_test - conducts 6 tsets to determine the health of card. | ||
3833 | * @sp : private member of the device structure, which is a pointer to the | ||
3834 | * s2io_nic structure. | ||
3835 | * @ethtest : pointer to a ethtool command specific structure that will be | ||
3836 | * returned to the user. | ||
3837 | * @data : variable that returns the result of each of the test | ||
3838 | * conducted by the driver. | ||
3839 | * Description: | ||
3840 | * This function conducts 6 tests ( 4 offline and 2 online) to determine | ||
3841 | * the health of the card. | ||
3842 | * Return value: | ||
3843 | * void | ||
3844 | */ | ||
3845 | |||
3846 | static void s2io_ethtool_test(struct net_device *dev, | ||
3847 | struct ethtool_test *ethtest, | ||
3848 | uint64_t * data) | ||
3849 | { | ||
3850 | nic_t *sp = dev->priv; | ||
3851 | int orig_state = netif_running(sp->dev); | ||
3852 | |||
3853 | if (ethtest->flags == ETH_TEST_FL_OFFLINE) { | ||
3854 | /* Offline Tests. */ | ||
3855 | if (orig_state) { | ||
3856 | s2io_close(sp->dev); | ||
3857 | s2io_set_swapper(sp); | ||
3858 | } else | ||
3859 | s2io_set_swapper(sp); | ||
3860 | |||
3861 | if (s2io_register_test(sp, &data[0])) | ||
3862 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
3863 | |||
3864 | s2io_reset(sp); | ||
3865 | s2io_set_swapper(sp); | ||
3866 | |||
3867 | if (s2io_rldram_test(sp, &data[3])) | ||
3868 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
3869 | |||
3870 | s2io_reset(sp); | ||
3871 | s2io_set_swapper(sp); | ||
3872 | |||
3873 | if (s2io_eeprom_test(sp, &data[1])) | ||
3874 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
3875 | |||
3876 | if (s2io_bist_test(sp, &data[4])) | ||
3877 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
3878 | |||
3879 | if (orig_state) | ||
3880 | s2io_open(sp->dev); | ||
3881 | |||
3882 | data[2] = 0; | ||
3883 | } else { | ||
3884 | /* Online Tests. */ | ||
3885 | if (!orig_state) { | ||
3886 | DBG_PRINT(ERR_DBG, | ||
3887 | "%s: is not up, cannot run test\n", | ||
3888 | dev->name); | ||
3889 | data[0] = -1; | ||
3890 | data[1] = -1; | ||
3891 | data[2] = -1; | ||
3892 | data[3] = -1; | ||
3893 | data[4] = -1; | ||
3894 | } | ||
3895 | |||
3896 | if (s2io_link_test(sp, &data[2])) | ||
3897 | ethtest->flags |= ETH_TEST_FL_FAILED; | ||
3898 | |||
3899 | data[0] = 0; | ||
3900 | data[1] = 0; | ||
3901 | data[3] = 0; | ||
3902 | data[4] = 0; | ||
3903 | } | ||
3904 | } | ||
3905 | |||
3906 | static void s2io_get_ethtool_stats(struct net_device *dev, | ||
3907 | struct ethtool_stats *estats, | ||
3908 | u64 * tmp_stats) | ||
3909 | { | ||
3910 | int i = 0; | ||
3911 | nic_t *sp = dev->priv; | ||
3912 | StatInfo_t *stat_info = sp->mac_control.stats_info; | ||
3913 | |||
3914 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_frms); | ||
3915 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_data_octets); | ||
3916 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms); | ||
3917 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_mcst_frms); | ||
3918 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_bcst_frms); | ||
3919 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms); | ||
3920 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_any_err_frms); | ||
3921 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets); | ||
3922 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_vld_ip); | ||
3923 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_drop_ip); | ||
3924 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_icmp); | ||
3925 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_rst_tcp); | ||
3926 | tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp); | ||
3927 | tmp_stats[i++] = le32_to_cpu(stat_info->tmac_udp); | ||
3928 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_frms); | ||
3929 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_data_octets); | ||
3930 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms); | ||
3931 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms); | ||
3932 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_mcst_frms); | ||
3933 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_vld_bcst_frms); | ||
3934 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms); | ||
3935 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms); | ||
3936 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms); | ||
3937 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_discarded_frms); | ||
3938 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_usized_frms); | ||
3939 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_osized_frms); | ||
3940 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_frag_frms); | ||
3941 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_jabber_frms); | ||
3942 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ip); | ||
3943 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets); | ||
3944 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip); | ||
3945 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_drop_ip); | ||
3946 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_icmp); | ||
3947 | tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp); | ||
3948 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_udp); | ||
3949 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_drp_udp); | ||
3950 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pause_cnt); | ||
3951 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_accepted_ip); | ||
3952 | tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp); | ||
3953 | } | ||
3954 | |||
3955 | static int s2io_ethtool_get_regs_len(struct net_device *dev) | ||
3956 | { | ||
3957 | return (XENA_REG_SPACE); | ||
3958 | } | ||
3959 | |||
3960 | |||
3961 | static u32 s2io_ethtool_get_rx_csum(struct net_device * dev) | ||
3962 | { | ||
3963 | nic_t *sp = dev->priv; | ||
3964 | |||
3965 | return (sp->rx_csum); | ||
3966 | } | ||
3967 | |||
3968 | static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data) | ||
3969 | { | ||
3970 | nic_t *sp = dev->priv; | ||
3971 | |||
3972 | if (data) | ||
3973 | sp->rx_csum = 1; | ||
3974 | else | ||
3975 | sp->rx_csum = 0; | ||
3976 | |||
3977 | return 0; | ||
3978 | } | ||
3979 | |||
3980 | static int s2io_get_eeprom_len(struct net_device *dev) | ||
3981 | { | ||
3982 | return (XENA_EEPROM_SPACE); | ||
3983 | } | ||
3984 | |||
3985 | static int s2io_ethtool_self_test_count(struct net_device *dev) | ||
3986 | { | ||
3987 | return (S2IO_TEST_LEN); | ||
3988 | } | ||
3989 | |||
3990 | static void s2io_ethtool_get_strings(struct net_device *dev, | ||
3991 | u32 stringset, u8 * data) | ||
3992 | { | ||
3993 | switch (stringset) { | ||
3994 | case ETH_SS_TEST: | ||
3995 | memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN); | ||
3996 | break; | ||
3997 | case ETH_SS_STATS: | ||
3998 | memcpy(data, ðtool_stats_keys, | ||
3999 | sizeof(ethtool_stats_keys)); | ||
4000 | } | ||
4001 | } | ||
4002 | |||
4003 | static int s2io_ethtool_get_stats_count(struct net_device *dev) | ||
4004 | { | ||
4005 | return (S2IO_STAT_LEN); | ||
4006 | } | ||
4007 | |||
4008 | static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data) | ||
4009 | { | ||
4010 | if (data) | ||
4011 | dev->features |= NETIF_F_IP_CSUM; | ||
4012 | else | ||
4013 | dev->features &= ~NETIF_F_IP_CSUM; | ||
4014 | |||
4015 | return 0; | ||
4016 | } | ||
4017 | |||
4018 | |||
4019 | static struct ethtool_ops netdev_ethtool_ops = { | ||
4020 | .get_settings = s2io_ethtool_gset, | ||
4021 | .set_settings = s2io_ethtool_sset, | ||
4022 | .get_drvinfo = s2io_ethtool_gdrvinfo, | ||
4023 | .get_regs_len = s2io_ethtool_get_regs_len, | ||
4024 | .get_regs = s2io_ethtool_gregs, | ||
4025 | .get_link = ethtool_op_get_link, | ||
4026 | .get_eeprom_len = s2io_get_eeprom_len, | ||
4027 | .get_eeprom = s2io_ethtool_geeprom, | ||
4028 | .set_eeprom = s2io_ethtool_seeprom, | ||
4029 | .get_pauseparam = s2io_ethtool_getpause_data, | ||
4030 | .set_pauseparam = s2io_ethtool_setpause_data, | ||
4031 | .get_rx_csum = s2io_ethtool_get_rx_csum, | ||
4032 | .set_rx_csum = s2io_ethtool_set_rx_csum, | ||
4033 | .get_tx_csum = ethtool_op_get_tx_csum, | ||
4034 | .set_tx_csum = s2io_ethtool_op_set_tx_csum, | ||
4035 | .get_sg = ethtool_op_get_sg, | ||
4036 | .set_sg = ethtool_op_set_sg, | ||
4037 | #ifdef NETIF_F_TSO | ||
4038 | .get_tso = ethtool_op_get_tso, | ||
4039 | .set_tso = ethtool_op_set_tso, | ||
4040 | #endif | ||
4041 | .self_test_count = s2io_ethtool_self_test_count, | ||
4042 | .self_test = s2io_ethtool_test, | ||
4043 | .get_strings = s2io_ethtool_get_strings, | ||
4044 | .phys_id = s2io_ethtool_idnic, | ||
4045 | .get_stats_count = s2io_ethtool_get_stats_count, | ||
4046 | .get_ethtool_stats = s2io_get_ethtool_stats | ||
4047 | }; | ||
4048 | |||
4049 | /** | ||
4050 | * s2io_ioctl - Entry point for the Ioctl | ||
4051 | * @dev : Device pointer. | ||
4052 | * @ifr : An IOCTL specefic structure, that can contain a pointer to | ||
4053 | * a proprietary structure used to pass information to the driver. | ||
4054 | * @cmd : This is used to distinguish between the different commands that | ||
4055 | * can be passed to the IOCTL functions. | ||
4056 | * Description: | ||
4057 | * This function has support for ethtool, adding multiple MAC addresses on | ||
4058 | * the NIC and some DBG commands for the util tool. | ||
4059 | * Return value: | ||
4060 | * Currently the IOCTL supports no operations, hence by default this | ||
4061 | * function returns OP NOT SUPPORTED value. | ||
4062 | */ | ||
4063 | |||
4064 | static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | ||
4065 | { | ||
4066 | return -EOPNOTSUPP; | ||
4067 | } | ||
4068 | |||
4069 | /** | ||
4070 | * s2io_change_mtu - entry point to change MTU size for the device. | ||
4071 | * @dev : device pointer. | ||
4072 | * @new_mtu : the new MTU size for the device. | ||
4073 | * Description: A driver entry point to change MTU size for the device. | ||
4074 | * Before changing the MTU the device must be stopped. | ||
4075 | * Return value: | ||
4076 | * 0 on success and an appropriate (-)ve integer as defined in errno.h | ||
4077 | * file on failure. | ||
4078 | */ | ||
4079 | |||
4080 | static int s2io_change_mtu(struct net_device *dev, int new_mtu) | ||
4081 | { | ||
4082 | nic_t *sp = dev->priv; | ||
4083 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
4084 | register u64 val64; | ||
4085 | |||
4086 | if (netif_running(dev)) { | ||
4087 | DBG_PRINT(ERR_DBG, "%s: Must be stopped to ", dev->name); | ||
4088 | DBG_PRINT(ERR_DBG, "change its MTU \n"); | ||
4089 | return -EBUSY; | ||
4090 | } | ||
4091 | |||
4092 | if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) { | ||
4093 | DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n", | ||
4094 | dev->name); | ||
4095 | return -EPERM; | ||
4096 | } | ||
4097 | |||
4098 | /* Set the new MTU into the PYLD register of the NIC */ | ||
4099 | val64 = new_mtu; | ||
4100 | writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len); | ||
4101 | |||
4102 | dev->mtu = new_mtu; | ||
4103 | |||
4104 | return 0; | ||
4105 | } | ||
4106 | |||
4107 | /** | ||
4108 | * s2io_tasklet - Bottom half of the ISR. | ||
4109 | * @dev_adr : address of the device structure in dma_addr_t format. | ||
4110 | * Description: | ||
4111 | * This is the tasklet or the bottom half of the ISR. This is | ||
4112 | * an extension of the ISR which is scheduled by the scheduler to be run | ||
4113 | * when the load on the CPU is low. All low priority tasks of the ISR can | ||
4114 | * be pushed into the tasklet. For now the tasklet is used only to | ||
4115 | * replenish the Rx buffers in the Rx buffer descriptors. | ||
4116 | * Return value: | ||
4117 | * void. | ||
4118 | */ | ||
4119 | |||
4120 | static void s2io_tasklet(unsigned long dev_addr) | ||
4121 | { | ||
4122 | struct net_device *dev = (struct net_device *) dev_addr; | ||
4123 | nic_t *sp = dev->priv; | ||
4124 | int i, ret; | ||
4125 | mac_info_t *mac_control; | ||
4126 | struct config_param *config; | ||
4127 | |||
4128 | mac_control = &sp->mac_control; | ||
4129 | config = &sp->config; | ||
4130 | |||
4131 | if (!TASKLET_IN_USE) { | ||
4132 | for (i = 0; i < config->rx_ring_num; i++) { | ||
4133 | ret = fill_rx_buffers(sp, i); | ||
4134 | if (ret == -ENOMEM) { | ||
4135 | DBG_PRINT(ERR_DBG, "%s: Out of ", | ||
4136 | dev->name); | ||
4137 | DBG_PRINT(ERR_DBG, "memory in tasklet\n"); | ||
4138 | break; | ||
4139 | } else if (ret == -EFILL) { | ||
4140 | DBG_PRINT(ERR_DBG, | ||
4141 | "%s: Rx Ring %d is full\n", | ||
4142 | dev->name, i); | ||
4143 | break; | ||
4144 | } | ||
4145 | } | ||
4146 | clear_bit(0, (&sp->tasklet_status)); | ||
4147 | } | ||
4148 | } | ||
4149 | |||
4150 | /** | ||
4151 | * s2io_set_link - Set the LInk status | ||
4152 | * @data: long pointer to device private structue | ||
4153 | * Description: Sets the link status for the adapter | ||
4154 | */ | ||
4155 | |||
4156 | static void s2io_set_link(unsigned long data) | ||
4157 | { | ||
4158 | nic_t *nic = (nic_t *) data; | ||
4159 | struct net_device *dev = nic->dev; | ||
4160 | XENA_dev_config_t __iomem *bar0 = nic->bar0; | ||
4161 | register u64 val64; | ||
4162 | u16 subid; | ||
4163 | |||
4164 | if (test_and_set_bit(0, &(nic->link_state))) { | ||
4165 | /* The card is being reset, no point doing anything */ | ||
4166 | return; | ||
4167 | } | ||
4168 | |||
4169 | subid = nic->pdev->subsystem_device; | ||
4170 | /* | ||
4171 | * Allow a small delay for the NICs self initiated | ||
4172 | * cleanup to complete. | ||
4173 | */ | ||
4174 | msleep(100); | ||
4175 | |||
4176 | val64 = readq(&bar0->adapter_status); | ||
4177 | if (verify_xena_quiescence(val64, nic->device_enabled_once)) { | ||
4178 | if (LINK_IS_UP(val64)) { | ||
4179 | val64 = readq(&bar0->adapter_control); | ||
4180 | val64 |= ADAPTER_CNTL_EN; | ||
4181 | writeq(val64, &bar0->adapter_control); | ||
4182 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { | ||
4183 | val64 = readq(&bar0->gpio_control); | ||
4184 | val64 |= GPIO_CTRL_GPIO_0; | ||
4185 | writeq(val64, &bar0->gpio_control); | ||
4186 | val64 = readq(&bar0->gpio_control); | ||
4187 | } else { | ||
4188 | val64 |= ADAPTER_LED_ON; | ||
4189 | writeq(val64, &bar0->adapter_control); | ||
4190 | } | ||
4191 | val64 = readq(&bar0->adapter_status); | ||
4192 | if (!LINK_IS_UP(val64)) { | ||
4193 | DBG_PRINT(ERR_DBG, "%s:", dev->name); | ||
4194 | DBG_PRINT(ERR_DBG, " Link down"); | ||
4195 | DBG_PRINT(ERR_DBG, "after "); | ||
4196 | DBG_PRINT(ERR_DBG, "enabling "); | ||
4197 | DBG_PRINT(ERR_DBG, "device \n"); | ||
4198 | } | ||
4199 | if (nic->device_enabled_once == FALSE) { | ||
4200 | nic->device_enabled_once = TRUE; | ||
4201 | } | ||
4202 | s2io_link(nic, LINK_UP); | ||
4203 | } else { | ||
4204 | if (CARDS_WITH_FAULTY_LINK_INDICATORS(subid)) { | ||
4205 | val64 = readq(&bar0->gpio_control); | ||
4206 | val64 &= ~GPIO_CTRL_GPIO_0; | ||
4207 | writeq(val64, &bar0->gpio_control); | ||
4208 | val64 = readq(&bar0->gpio_control); | ||
4209 | } | ||
4210 | s2io_link(nic, LINK_DOWN); | ||
4211 | } | ||
4212 | } else { /* NIC is not Quiescent. */ | ||
4213 | DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name); | ||
4214 | DBG_PRINT(ERR_DBG, "device is not Quiescent\n"); | ||
4215 | netif_stop_queue(dev); | ||
4216 | } | ||
4217 | clear_bit(0, &(nic->link_state)); | ||
4218 | } | ||
4219 | |||
4220 | static void s2io_card_down(nic_t * sp) | ||
4221 | { | ||
4222 | int cnt = 0; | ||
4223 | XENA_dev_config_t __iomem *bar0 = sp->bar0; | ||
4224 | unsigned long flags; | ||
4225 | register u64 val64 = 0; | ||
4226 | |||
4227 | /* If s2io_set_link task is executing, wait till it completes. */ | ||
4228 | while (test_and_set_bit(0, &(sp->link_state))) | ||
4229 | msleep(50); | ||
4230 | atomic_set(&sp->card_state, CARD_DOWN); | ||
4231 | |||
4232 | /* disable Tx and Rx traffic on the NIC */ | ||
4233 | stop_nic(sp); | ||
4234 | |||
4235 | /* Kill tasklet. */ | ||
4236 | tasklet_kill(&sp->task); | ||
4237 | |||
4238 | /* Check if the device is Quiescent and then Reset the NIC */ | ||
4239 | do { | ||
4240 | val64 = readq(&bar0->adapter_status); | ||
4241 | if (verify_xena_quiescence(val64, sp->device_enabled_once)) { | ||
4242 | break; | ||
4243 | } | ||
4244 | |||
4245 | msleep(50); | ||
4246 | cnt++; | ||
4247 | if (cnt == 10) { | ||
4248 | DBG_PRINT(ERR_DBG, | ||
4249 | "s2io_close:Device not Quiescent "); | ||
4250 | DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n", | ||
4251 | (unsigned long long) val64); | ||
4252 | break; | ||
4253 | } | ||
4254 | } while (1); | ||
4255 | spin_lock_irqsave(&sp->tx_lock, flags); | ||
4256 | s2io_reset(sp); | ||
4257 | |||
4258 | /* Free all unused Tx and Rx buffers */ | ||
4259 | free_tx_buffers(sp); | ||
4260 | free_rx_buffers(sp); | ||
4261 | |||
4262 | spin_unlock_irqrestore(&sp->tx_lock, flags); | ||
4263 | clear_bit(0, &(sp->link_state)); | ||
4264 | } | ||
4265 | |||
4266 | static int s2io_card_up(nic_t * sp) | ||
4267 | { | ||
4268 | int i, ret; | ||
4269 | mac_info_t *mac_control; | ||
4270 | struct config_param *config; | ||
4271 | struct net_device *dev = (struct net_device *) sp->dev; | ||
4272 | |||
4273 | /* Initialize the H/W I/O registers */ | ||
4274 | if (init_nic(sp) != 0) { | ||
4275 | DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n", | ||
4276 | dev->name); | ||
4277 | return -ENODEV; | ||
4278 | } | ||
4279 | |||
4280 | /* | ||
4281 | * Initializing the Rx buffers. For now we are considering only 1 | ||
4282 | * Rx ring and initializing buffers into 30 Rx blocks | ||
4283 | */ | ||
4284 | mac_control = &sp->mac_control; | ||
4285 | config = &sp->config; | ||
4286 | |||
4287 | for (i = 0; i < config->rx_ring_num; i++) { | ||
4288 | if ((ret = fill_rx_buffers(sp, i))) { | ||
4289 | DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n", | ||
4290 | dev->name); | ||
4291 | s2io_reset(sp); | ||
4292 | free_rx_buffers(sp); | ||
4293 | return -ENOMEM; | ||
4294 | } | ||
4295 | DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i, | ||
4296 | atomic_read(&sp->rx_bufs_left[i])); | ||
4297 | } | ||
4298 | |||
4299 | /* Setting its receive mode */ | ||
4300 | s2io_set_multicast(dev); | ||
4301 | |||
4302 | /* Enable tasklet for the device */ | ||
4303 | tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev); | ||
4304 | |||
4305 | /* Enable Rx Traffic and interrupts on the NIC */ | ||
4306 | if (start_nic(sp)) { | ||
4307 | DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name); | ||
4308 | tasklet_kill(&sp->task); | ||
4309 | s2io_reset(sp); | ||
4310 | free_irq(dev->irq, dev); | ||
4311 | free_rx_buffers(sp); | ||
4312 | return -ENODEV; | ||
4313 | } | ||
4314 | |||
4315 | atomic_set(&sp->card_state, CARD_UP); | ||
4316 | return 0; | ||
4317 | } | ||
4318 | |||
4319 | /** | ||
4320 | * s2io_restart_nic - Resets the NIC. | ||
4321 | * @data : long pointer to the device private structure | ||
4322 | * Description: | ||
4323 | * This function is scheduled to be run by the s2io_tx_watchdog | ||
4324 | * function after 0.5 secs to reset the NIC. The idea is to reduce | ||
4325 | * the run time of the watch dog routine which is run holding a | ||
4326 | * spin lock. | ||
4327 | */ | ||
4328 | |||
4329 | static void s2io_restart_nic(unsigned long data) | ||
4330 | { | ||
4331 | struct net_device *dev = (struct net_device *) data; | ||
4332 | nic_t *sp = dev->priv; | ||
4333 | |||
4334 | s2io_card_down(sp); | ||
4335 | if (s2io_card_up(sp)) { | ||
4336 | DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n", | ||
4337 | dev->name); | ||
4338 | } | ||
4339 | netif_wake_queue(dev); | ||
4340 | DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n", | ||
4341 | dev->name); | ||
4342 | } | ||
4343 | |||
4344 | /** | ||
4345 | * s2io_tx_watchdog - Watchdog for transmit side. | ||
4346 | * @dev : Pointer to net device structure | ||
4347 | * Description: | ||
4348 | * This function is triggered if the Tx Queue is stopped | ||
4349 | * for a pre-defined amount of time when the Interface is still up. | ||
4350 | * If the Interface is jammed in such a situation, the hardware is | ||
4351 | * reset (by s2io_close) and restarted again (by s2io_open) to | ||
4352 | * overcome any problem that might have been caused in the hardware. | ||
4353 | * Return value: | ||
4354 | * void | ||
4355 | */ | ||
4356 | |||
4357 | static void s2io_tx_watchdog(struct net_device *dev) | ||
4358 | { | ||
4359 | nic_t *sp = dev->priv; | ||
4360 | |||
4361 | if (netif_carrier_ok(dev)) { | ||
4362 | schedule_work(&sp->rst_timer_task); | ||
4363 | } | ||
4364 | } | ||
4365 | |||
4366 | /** | ||
4367 | * rx_osm_handler - To perform some OS related operations on SKB. | ||
4368 | * @sp: private member of the device structure,pointer to s2io_nic structure. | ||
4369 | * @skb : the socket buffer pointer. | ||
4370 | * @len : length of the packet | ||
4371 | * @cksum : FCS checksum of the frame. | ||
4372 | * @ring_no : the ring from which this RxD was extracted. | ||
4373 | * Description: | ||
4374 | * This function is called by the Tx interrupt serivce routine to perform | ||
4375 | * some OS related operations on the SKB before passing it to the upper | ||
4376 | * layers. It mainly checks if the checksum is OK, if so adds it to the | ||
4377 | * SKBs cksum variable, increments the Rx packet count and passes the SKB | ||
4378 | * to the upper layer. If the checksum is wrong, it increments the Rx | ||
4379 | * packet error count, frees the SKB and returns error. | ||
4380 | * Return value: | ||
4381 | * SUCCESS on success and -1 on failure. | ||
4382 | */ | ||
4383 | #ifndef CONFIG_2BUFF_MODE | ||
4384 | static int rx_osm_handler(nic_t * sp, u16 len, RxD_t * rxdp, int ring_no) | ||
4385 | #else | ||
4386 | static int rx_osm_handler(nic_t * sp, RxD_t * rxdp, int ring_no, | ||
4387 | buffAdd_t * ba) | ||
4388 | #endif | ||
4389 | { | ||
4390 | struct net_device *dev = (struct net_device *) sp->dev; | ||
4391 | struct sk_buff *skb = | ||
4392 | (struct sk_buff *) ((unsigned long) rxdp->Host_Control); | ||
4393 | u16 l3_csum, l4_csum; | ||
4394 | #ifdef CONFIG_2BUFF_MODE | ||
4395 | int buf0_len, buf2_len; | ||
4396 | unsigned char *buff; | ||
4397 | #endif | ||
4398 | |||
4399 | l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1); | ||
4400 | if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && (sp->rx_csum)) { | ||
4401 | l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1); | ||
4402 | if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) { | ||
4403 | /* | ||
4404 | * NIC verifies if the Checksum of the received | ||
4405 | * frame is Ok or not and accordingly returns | ||
4406 | * a flag in the RxD. | ||
4407 | */ | ||
4408 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
4409 | } else { | ||
4410 | /* | ||
4411 | * Packet with erroneous checksum, let the | ||
4412 | * upper layers deal with it. | ||
4413 | */ | ||
4414 | skb->ip_summed = CHECKSUM_NONE; | ||
4415 | } | ||
4416 | } else { | ||
4417 | skb->ip_summed = CHECKSUM_NONE; | ||
4418 | } | ||
4419 | |||
4420 | if (rxdp->Control_1 & RXD_T_CODE) { | ||
4421 | unsigned long long err = rxdp->Control_1 & RXD_T_CODE; | ||
4422 | DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%llx\n", | ||
4423 | dev->name, err); | ||
4424 | } | ||
4425 | #ifdef CONFIG_2BUFF_MODE | ||
4426 | buf0_len = RXD_GET_BUFFER0_SIZE(rxdp->Control_2); | ||
4427 | buf2_len = RXD_GET_BUFFER2_SIZE(rxdp->Control_2); | ||
4428 | #endif | ||
4429 | |||
4430 | skb->dev = dev; | ||
4431 | #ifndef CONFIG_2BUFF_MODE | ||
4432 | skb_put(skb, len); | ||
4433 | skb->protocol = eth_type_trans(skb, dev); | ||
4434 | #else | ||
4435 | buff = skb_push(skb, buf0_len); | ||
4436 | memcpy(buff, ba->ba_0, buf0_len); | ||
4437 | skb_put(skb, buf2_len); | ||
4438 | skb->protocol = eth_type_trans(skb, dev); | ||
4439 | #endif | ||
4440 | |||
4441 | #ifdef CONFIG_S2IO_NAPI | ||
4442 | netif_receive_skb(skb); | ||
4443 | #else | ||
4444 | netif_rx(skb); | ||
4445 | #endif | ||
4446 | |||
4447 | dev->last_rx = jiffies; | ||
4448 | sp->rx_pkt_count++; | ||
4449 | sp->stats.rx_packets++; | ||
4450 | #ifndef CONFIG_2BUFF_MODE | ||
4451 | sp->stats.rx_bytes += len; | ||
4452 | #else | ||
4453 | sp->stats.rx_bytes += buf0_len + buf2_len; | ||
4454 | #endif | ||
4455 | |||
4456 | atomic_dec(&sp->rx_bufs_left[ring_no]); | ||
4457 | rxdp->Host_Control = 0; | ||
4458 | return SUCCESS; | ||
4459 | } | ||
4460 | |||
4461 | /** | ||
4462 | * s2io_link - stops/starts the Tx queue. | ||
4463 | * @sp : private member of the device structure, which is a pointer to the | ||
4464 | * s2io_nic structure. | ||
4465 | * @link : inidicates whether link is UP/DOWN. | ||
4466 | * Description: | ||
4467 | * This function stops/starts the Tx queue depending on whether the link | ||
4468 | * status of the NIC is is down or up. This is called by the Alarm | ||
4469 | * interrupt handler whenever a link change interrupt comes up. | ||
4470 | * Return value: | ||
4471 | * void. | ||
4472 | */ | ||
4473 | |||
4474 | static void s2io_link(nic_t * sp, int link) | ||
4475 | { | ||
4476 | struct net_device *dev = (struct net_device *) sp->dev; | ||
4477 | |||
4478 | if (link != sp->last_link_state) { | ||
4479 | if (link == LINK_DOWN) { | ||
4480 | DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name); | ||
4481 | netif_carrier_off(dev); | ||
4482 | } else { | ||
4483 | DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name); | ||
4484 | netif_carrier_on(dev); | ||
4485 | } | ||
4486 | } | ||
4487 | sp->last_link_state = link; | ||
4488 | } | ||
4489 | |||
4490 | /** | ||
4491 | * s2io_init_pci -Initialization of PCI and PCI-X configuration registers . | ||
4492 | * @sp : private member of the device structure, which is a pointer to the | ||
4493 | * s2io_nic structure. | ||
4494 | * Description: | ||
4495 | * This function initializes a few of the PCI and PCI-X configuration registers | ||
4496 | * with recommended values. | ||
4497 | * Return value: | ||
4498 | * void | ||
4499 | */ | ||
4500 | |||
4501 | static void s2io_init_pci(nic_t * sp) | ||
4502 | { | ||
4503 | u16 pci_cmd = 0; | ||
4504 | |||
4505 | /* Enable Data Parity Error Recovery in PCI-X command register. */ | ||
4506 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
4507 | &(sp->pcix_cmd)); | ||
4508 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
4509 | (sp->pcix_cmd | 1)); | ||
4510 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
4511 | &(sp->pcix_cmd)); | ||
4512 | |||
4513 | /* Set the PErr Response bit in PCI command register. */ | ||
4514 | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); | ||
4515 | pci_write_config_word(sp->pdev, PCI_COMMAND, | ||
4516 | (pci_cmd | PCI_COMMAND_PARITY)); | ||
4517 | pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd); | ||
4518 | |||
4519 | /* Set MMRB count to 1024 in PCI-X Command register. */ | ||
4520 | sp->pcix_cmd &= 0xFFF3; | ||
4521 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, (sp->pcix_cmd | (0x1 << 2))); /* MMRBC 1K */ | ||
4522 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
4523 | &(sp->pcix_cmd)); | ||
4524 | |||
4525 | /* Setting Maximum outstanding splits based on system type. */ | ||
4526 | sp->pcix_cmd &= 0xFF8F; | ||
4527 | |||
4528 | sp->pcix_cmd |= XENA_MAX_OUTSTANDING_SPLITS(0x1); /* 2 splits. */ | ||
4529 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
4530 | sp->pcix_cmd); | ||
4531 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
4532 | &(sp->pcix_cmd)); | ||
4533 | /* Forcibly disabling relaxed ordering capability of the card. */ | ||
4534 | sp->pcix_cmd &= 0xfffd; | ||
4535 | pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
4536 | sp->pcix_cmd); | ||
4537 | pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, | ||
4538 | &(sp->pcix_cmd)); | ||
4539 | } | ||
4540 | |||
4541 | MODULE_AUTHOR("Raghavendra Koushik <raghavendra.koushik@neterion.com>"); | ||
4542 | MODULE_LICENSE("GPL"); | ||
4543 | module_param(tx_fifo_num, int, 0); | ||
4544 | module_param_array(tx_fifo_len, int, NULL, 0); | ||
4545 | module_param(rx_ring_num, int, 0); | ||
4546 | module_param_array(rx_ring_sz, int, NULL, 0); | ||
4547 | module_param(Stats_refresh_time, int, 0); | ||
4548 | module_param(rmac_pause_time, int, 0); | ||
4549 | module_param(mc_pause_threshold_q0q3, int, 0); | ||
4550 | module_param(mc_pause_threshold_q4q7, int, 0); | ||
4551 | module_param(shared_splits, int, 0); | ||
4552 | module_param(tmac_util_period, int, 0); | ||
4553 | module_param(rmac_util_period, int, 0); | ||
4554 | #ifndef CONFIG_S2IO_NAPI | ||
4555 | module_param(indicate_max_pkts, int, 0); | ||
4556 | #endif | ||
4557 | /** | ||
4558 | * s2io_init_nic - Initialization of the adapter . | ||
4559 | * @pdev : structure containing the PCI related information of the device. | ||
4560 | * @pre: List of PCI devices supported by the driver listed in s2io_tbl. | ||
4561 | * Description: | ||
4562 | * The function initializes an adapter identified by the pci_dec structure. | ||
4563 | * All OS related initialization including memory and device structure and | ||
4564 | * initlaization of the device private variable is done. Also the swapper | ||
4565 | * control register is initialized to enable read and write into the I/O | ||
4566 | * registers of the device. | ||
4567 | * Return value: | ||
4568 | * returns 0 on success and negative on failure. | ||
4569 | */ | ||
4570 | |||
4571 | static int __devinit | ||
4572 | s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre) | ||
4573 | { | ||
4574 | nic_t *sp; | ||
4575 | struct net_device *dev; | ||
4576 | char *dev_name = "S2IO 10GE NIC"; | ||
4577 | int i, j, ret; | ||
4578 | int dma_flag = FALSE; | ||
4579 | u32 mac_up, mac_down; | ||
4580 | u64 val64 = 0, tmp64 = 0; | ||
4581 | XENA_dev_config_t __iomem *bar0 = NULL; | ||
4582 | u16 subid; | ||
4583 | mac_info_t *mac_control; | ||
4584 | struct config_param *config; | ||
4585 | |||
4586 | |||
4587 | DBG_PRINT(ERR_DBG, "Loading S2IO driver with %s\n", | ||
4588 | s2io_driver_version); | ||
4589 | |||
4590 | if ((ret = pci_enable_device(pdev))) { | ||
4591 | DBG_PRINT(ERR_DBG, | ||
4592 | "s2io_init_nic: pci_enable_device failed\n"); | ||
4593 | return ret; | ||
4594 | } | ||
4595 | |||
4596 | if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) { | ||
4597 | DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n"); | ||
4598 | dma_flag = TRUE; | ||
4599 | |||
4600 | if (pci_set_consistent_dma_mask | ||
4601 | (pdev, 0xffffffffffffffffULL)) { | ||
4602 | DBG_PRINT(ERR_DBG, | ||
4603 | "Unable to obtain 64bit DMA for \ | ||
4604 | consistent allocations\n"); | ||
4605 | pci_disable_device(pdev); | ||
4606 | return -ENOMEM; | ||
4607 | } | ||
4608 | } else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) { | ||
4609 | DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n"); | ||
4610 | } else { | ||
4611 | pci_disable_device(pdev); | ||
4612 | return -ENOMEM; | ||
4613 | } | ||
4614 | |||
4615 | if (pci_request_regions(pdev, s2io_driver_name)) { | ||
4616 | DBG_PRINT(ERR_DBG, "Request Regions failed\n"), | ||
4617 | pci_disable_device(pdev); | ||
4618 | return -ENODEV; | ||
4619 | } | ||
4620 | |||
4621 | dev = alloc_etherdev(sizeof(nic_t)); | ||
4622 | if (dev == NULL) { | ||
4623 | DBG_PRINT(ERR_DBG, "Device allocation failed\n"); | ||
4624 | pci_disable_device(pdev); | ||
4625 | pci_release_regions(pdev); | ||
4626 | return -ENODEV; | ||
4627 | } | ||
4628 | |||
4629 | pci_set_master(pdev); | ||
4630 | pci_set_drvdata(pdev, dev); | ||
4631 | SET_MODULE_OWNER(dev); | ||
4632 | SET_NETDEV_DEV(dev, &pdev->dev); | ||
4633 | |||
4634 | /* Private member variable initialized to s2io NIC structure */ | ||
4635 | sp = dev->priv; | ||
4636 | memset(sp, 0, sizeof(nic_t)); | ||
4637 | sp->dev = dev; | ||
4638 | sp->pdev = pdev; | ||
4639 | sp->vendor_id = pdev->vendor; | ||
4640 | sp->device_id = pdev->device; | ||
4641 | sp->high_dma_flag = dma_flag; | ||
4642 | sp->irq = pdev->irq; | ||
4643 | sp->device_enabled_once = FALSE; | ||
4644 | strcpy(sp->name, dev_name); | ||
4645 | |||
4646 | /* Initialize some PCI/PCI-X fields of the NIC. */ | ||
4647 | s2io_init_pci(sp); | ||
4648 | |||
4649 | /* | ||
4650 | * Setting the device configuration parameters. | ||
4651 | * Most of these parameters can be specified by the user during | ||
4652 | * module insertion as they are module loadable parameters. If | ||
4653 | * these parameters are not not specified during load time, they | ||
4654 | * are initialized with default values. | ||
4655 | */ | ||
4656 | mac_control = &sp->mac_control; | ||
4657 | config = &sp->config; | ||
4658 | |||
4659 | /* Tx side parameters. */ | ||
4660 | tx_fifo_len[0] = DEFAULT_FIFO_LEN; /* Default value. */ | ||
4661 | config->tx_fifo_num = tx_fifo_num; | ||
4662 | for (i = 0; i < MAX_TX_FIFOS; i++) { | ||
4663 | config->tx_cfg[i].fifo_len = tx_fifo_len[i]; | ||
4664 | config->tx_cfg[i].fifo_priority = i; | ||
4665 | } | ||
4666 | |||
4667 | config->tx_intr_type = TXD_INT_TYPE_UTILZ; | ||
4668 | for (i = 0; i < config->tx_fifo_num; i++) { | ||
4669 | config->tx_cfg[i].f_no_snoop = | ||
4670 | (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER); | ||
4671 | if (config->tx_cfg[i].fifo_len < 65) { | ||
4672 | config->tx_intr_type = TXD_INT_TYPE_PER_LIST; | ||
4673 | break; | ||
4674 | } | ||
4675 | } | ||
4676 | config->max_txds = MAX_SKB_FRAGS; | ||
4677 | |||
4678 | /* Rx side parameters. */ | ||
4679 | rx_ring_sz[0] = SMALL_BLK_CNT; /* Default value. */ | ||
4680 | config->rx_ring_num = rx_ring_num; | ||
4681 | for (i = 0; i < MAX_RX_RINGS; i++) { | ||
4682 | config->rx_cfg[i].num_rxd = rx_ring_sz[i] * | ||
4683 | (MAX_RXDS_PER_BLOCK + 1); | ||
4684 | config->rx_cfg[i].ring_priority = i; | ||
4685 | } | ||
4686 | |||
4687 | for (i = 0; i < rx_ring_num; i++) { | ||
4688 | config->rx_cfg[i].ring_org = RING_ORG_BUFF1; | ||
4689 | config->rx_cfg[i].f_no_snoop = | ||
4690 | (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER); | ||
4691 | } | ||
4692 | |||
4693 | /* Setting Mac Control parameters */ | ||
4694 | mac_control->rmac_pause_time = rmac_pause_time; | ||
4695 | mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3; | ||
4696 | mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7; | ||
4697 | |||
4698 | |||
4699 | /* Initialize Ring buffer parameters. */ | ||
4700 | for (i = 0; i < config->rx_ring_num; i++) | ||
4701 | atomic_set(&sp->rx_bufs_left[i], 0); | ||
4702 | |||
4703 | /* initialize the shared memory used by the NIC and the host */ | ||
4704 | if (init_shared_mem(sp)) { | ||
4705 | DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n", | ||
4706 | dev->name); | ||
4707 | ret = -ENOMEM; | ||
4708 | goto mem_alloc_failed; | ||
4709 | } | ||
4710 | |||
4711 | sp->bar0 = ioremap(pci_resource_start(pdev, 0), | ||
4712 | pci_resource_len(pdev, 0)); | ||
4713 | if (!sp->bar0) { | ||
4714 | DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem1\n", | ||
4715 | dev->name); | ||
4716 | ret = -ENOMEM; | ||
4717 | goto bar0_remap_failed; | ||
4718 | } | ||
4719 | |||
4720 | sp->bar1 = ioremap(pci_resource_start(pdev, 2), | ||
4721 | pci_resource_len(pdev, 2)); | ||
4722 | if (!sp->bar1) { | ||
4723 | DBG_PRINT(ERR_DBG, "%s: S2IO: cannot remap io mem2\n", | ||
4724 | dev->name); | ||
4725 | ret = -ENOMEM; | ||
4726 | goto bar1_remap_failed; | ||
4727 | } | ||
4728 | |||
4729 | dev->irq = pdev->irq; | ||
4730 | dev->base_addr = (unsigned long) sp->bar0; | ||
4731 | |||
4732 | /* Initializing the BAR1 address as the start of the FIFO pointer. */ | ||
4733 | for (j = 0; j < MAX_TX_FIFOS; j++) { | ||
4734 | mac_control->tx_FIFO_start[j] = (TxFIFO_element_t __iomem *) | ||
4735 | (sp->bar1 + (j * 0x00020000)); | ||
4736 | } | ||
4737 | |||
4738 | /* Driver entry points */ | ||
4739 | dev->open = &s2io_open; | ||
4740 | dev->stop = &s2io_close; | ||
4741 | dev->hard_start_xmit = &s2io_xmit; | ||
4742 | dev->get_stats = &s2io_get_stats; | ||
4743 | dev->set_multicast_list = &s2io_set_multicast; | ||
4744 | dev->do_ioctl = &s2io_ioctl; | ||
4745 | dev->change_mtu = &s2io_change_mtu; | ||
4746 | SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops); | ||
4747 | /* | ||
4748 | * will use eth_mac_addr() for dev->set_mac_address | ||
4749 | * mac address will be set every time dev->open() is called | ||
4750 | */ | ||
4751 | #ifdef CONFIG_S2IO_NAPI | ||
4752 | dev->poll = s2io_poll; | ||
4753 | dev->weight = 90; | ||
4754 | #endif | ||
4755 | |||
4756 | dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | ||
4757 | if (sp->high_dma_flag == TRUE) | ||
4758 | dev->features |= NETIF_F_HIGHDMA; | ||
4759 | #ifdef NETIF_F_TSO | ||
4760 | dev->features |= NETIF_F_TSO; | ||
4761 | #endif | ||
4762 | |||
4763 | dev->tx_timeout = &s2io_tx_watchdog; | ||
4764 | dev->watchdog_timeo = WATCH_DOG_TIMEOUT; | ||
4765 | INIT_WORK(&sp->rst_timer_task, | ||
4766 | (void (*)(void *)) s2io_restart_nic, dev); | ||
4767 | INIT_WORK(&sp->set_link_task, | ||
4768 | (void (*)(void *)) s2io_set_link, sp); | ||
4769 | |||
4770 | pci_save_state(sp->pdev); | ||
4771 | |||
4772 | /* Setting swapper control on the NIC, for proper reset operation */ | ||
4773 | if (s2io_set_swapper(sp)) { | ||
4774 | DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n", | ||
4775 | dev->name); | ||
4776 | ret = -EAGAIN; | ||
4777 | goto set_swap_failed; | ||
4778 | } | ||
4779 | |||
4780 | /* Fix for all "FFs" MAC address problems observed on Alpha platforms */ | ||
4781 | fix_mac_address(sp); | ||
4782 | s2io_reset(sp); | ||
4783 | |||
4784 | /* | ||
4785 | * Setting swapper control on the NIC, so the MAC address can be read. | ||
4786 | */ | ||
4787 | if (s2io_set_swapper(sp)) { | ||
4788 | DBG_PRINT(ERR_DBG, | ||
4789 | "%s: S2IO: swapper settings are wrong\n", | ||
4790 | dev->name); | ||
4791 | ret = -EAGAIN; | ||
4792 | goto set_swap_failed; | ||
4793 | } | ||
4794 | |||
4795 | /* | ||
4796 | * MAC address initialization. | ||
4797 | * For now only one mac address will be read and used. | ||
4798 | */ | ||
4799 | bar0 = sp->bar0; | ||
4800 | val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD | | ||
4801 | RMAC_ADDR_CMD_MEM_OFFSET(0 + MAC_MAC_ADDR_START_OFFSET); | ||
4802 | writeq(val64, &bar0->rmac_addr_cmd_mem); | ||
4803 | wait_for_cmd_complete(sp); | ||
4804 | |||
4805 | tmp64 = readq(&bar0->rmac_addr_data0_mem); | ||
4806 | mac_down = (u32) tmp64; | ||
4807 | mac_up = (u32) (tmp64 >> 32); | ||
4808 | |||
4809 | memset(sp->def_mac_addr[0].mac_addr, 0, sizeof(ETH_ALEN)); | ||
4810 | |||
4811 | sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up); | ||
4812 | sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8); | ||
4813 | sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16); | ||
4814 | sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24); | ||
4815 | sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16); | ||
4816 | sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24); | ||
4817 | |||
4818 | DBG_PRINT(INIT_DBG, | ||
4819 | "DEFAULT MAC ADDR:0x%02x-%02x-%02x-%02x-%02x-%02x\n", | ||
4820 | sp->def_mac_addr[0].mac_addr[0], | ||
4821 | sp->def_mac_addr[0].mac_addr[1], | ||
4822 | sp->def_mac_addr[0].mac_addr[2], | ||
4823 | sp->def_mac_addr[0].mac_addr[3], | ||
4824 | sp->def_mac_addr[0].mac_addr[4], | ||
4825 | sp->def_mac_addr[0].mac_addr[5]); | ||
4826 | |||
4827 | /* Set the factory defined MAC address initially */ | ||
4828 | dev->addr_len = ETH_ALEN; | ||
4829 | memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN); | ||
4830 | |||
4831 | /* | ||
4832 | * Initialize the tasklet status and link state flags | ||
4833 | * and the card statte parameter | ||
4834 | */ | ||
4835 | atomic_set(&(sp->card_state), 0); | ||
4836 | sp->tasklet_status = 0; | ||
4837 | sp->link_state = 0; | ||
4838 | |||
4839 | |||
4840 | /* Initialize spinlocks */ | ||
4841 | spin_lock_init(&sp->tx_lock); | ||
4842 | #ifndef CONFIG_S2IO_NAPI | ||
4843 | spin_lock_init(&sp->put_lock); | ||
4844 | #endif | ||
4845 | |||
4846 | /* | ||
4847 | * SXE-002: Configure link and activity LED to init state | ||
4848 | * on driver load. | ||
4849 | */ | ||
4850 | subid = sp->pdev->subsystem_device; | ||
4851 | if ((subid & 0xFF) >= 0x07) { | ||
4852 | val64 = readq(&bar0->gpio_control); | ||
4853 | val64 |= 0x0000800000000000ULL; | ||
4854 | writeq(val64, &bar0->gpio_control); | ||
4855 | val64 = 0x0411040400000000ULL; | ||
4856 | writeq(val64, (void __iomem *) bar0 + 0x2700); | ||
4857 | val64 = readq(&bar0->gpio_control); | ||
4858 | } | ||
4859 | |||
4860 | sp->rx_csum = 1; /* Rx chksum verify enabled by default */ | ||
4861 | |||
4862 | if (register_netdev(dev)) { | ||
4863 | DBG_PRINT(ERR_DBG, "Device registration failed\n"); | ||
4864 | ret = -ENODEV; | ||
4865 | goto register_failed; | ||
4866 | } | ||
4867 | |||
4868 | /* | ||
4869 | * Make Link state as off at this point, when the Link change | ||
4870 | * interrupt comes the state will be automatically changed to | ||
4871 | * the right state. | ||
4872 | */ | ||
4873 | netif_carrier_off(dev); | ||
4874 | sp->last_link_state = LINK_DOWN; | ||
4875 | |||
4876 | return 0; | ||
4877 | |||
4878 | register_failed: | ||
4879 | set_swap_failed: | ||
4880 | iounmap(sp->bar1); | ||
4881 | bar1_remap_failed: | ||
4882 | iounmap(sp->bar0); | ||
4883 | bar0_remap_failed: | ||
4884 | mem_alloc_failed: | ||
4885 | free_shared_mem(sp); | ||
4886 | pci_disable_device(pdev); | ||
4887 | pci_release_regions(pdev); | ||
4888 | pci_set_drvdata(pdev, NULL); | ||
4889 | free_netdev(dev); | ||
4890 | |||
4891 | return ret; | ||
4892 | } | ||
4893 | |||
4894 | /** | ||
4895 | * s2io_rem_nic - Free the PCI device | ||
4896 | * @pdev: structure containing the PCI related information of the device. | ||
4897 | * Description: This function is called by the Pci subsystem to release a | ||
4898 | * PCI device and free up all resource held up by the device. This could | ||
4899 | * be in response to a Hot plug event or when the driver is to be removed | ||
4900 | * from memory. | ||
4901 | */ | ||
4902 | |||
4903 | static void __devexit s2io_rem_nic(struct pci_dev *pdev) | ||
4904 | { | ||
4905 | struct net_device *dev = | ||
4906 | (struct net_device *) pci_get_drvdata(pdev); | ||
4907 | nic_t *sp; | ||
4908 | |||
4909 | if (dev == NULL) { | ||
4910 | DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n"); | ||
4911 | return; | ||
4912 | } | ||
4913 | |||
4914 | sp = dev->priv; | ||
4915 | unregister_netdev(dev); | ||
4916 | |||
4917 | free_shared_mem(sp); | ||
4918 | iounmap(sp->bar0); | ||
4919 | iounmap(sp->bar1); | ||
4920 | pci_disable_device(pdev); | ||
4921 | pci_release_regions(pdev); | ||
4922 | pci_set_drvdata(pdev, NULL); | ||
4923 | |||
4924 | free_netdev(dev); | ||
4925 | } | ||
4926 | |||
4927 | /** | ||
4928 | * s2io_starter - Entry point for the driver | ||
4929 | * Description: This function is the entry point for the driver. It verifies | ||
4930 | * the module loadable parameters and initializes PCI configuration space. | ||
4931 | */ | ||
4932 | |||
4933 | int __init s2io_starter(void) | ||
4934 | { | ||
4935 | return pci_module_init(&s2io_driver); | ||
4936 | } | ||
4937 | |||
4938 | /** | ||
4939 | * s2io_closer - Cleanup routine for the driver | ||
4940 | * Description: This function is the cleanup routine for the driver. It unregist * ers the driver. | ||
4941 | */ | ||
4942 | |||
4943 | static void s2io_closer(void) | ||
4944 | { | ||
4945 | pci_unregister_driver(&s2io_driver); | ||
4946 | DBG_PRINT(INIT_DBG, "cleanup done\n"); | ||
4947 | } | ||
4948 | |||
4949 | module_init(s2io_starter); | ||
4950 | module_exit(s2io_closer); | ||