aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ks8851.c
diff options
context:
space:
mode:
authorRafael J. Wysocki <rjw@sisk.pl>2009-07-29 14:28:08 -0400
committerRafael J. Wysocki <rjw@sisk.pl>2009-07-29 14:28:08 -0400
commitb4093d6235b7e4249616651ee328600ced48a18a (patch)
tree9f5b8e466e2d26fbe13ee7934f9e939a09815bd5 /drivers/net/ks8851.c
parentd9ab77161d811ffb0bccf396f7155cc905c1b9e1 (diff)
parent7d3e91b8a1f5179d56a7412d4b499f2d5fc6b25d (diff)
Merge branch 'master' into for-linus
Diffstat (limited to 'drivers/net/ks8851.c')
-rw-r--r--drivers/net/ks8851.c1322
1 files changed, 1322 insertions, 0 deletions
diff --git a/drivers/net/ks8851.c b/drivers/net/ks8851.c
new file mode 100644
index 000000000000..9a1dea60c1c4
--- /dev/null
+++ b/drivers/net/ks8851.c
@@ -0,0 +1,1322 @@
1/* drivers/net/ks8651.c
2 *
3 * Copyright 2009 Simtec Electronics
4 * http://www.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#define DEBUG
13
14#include <linux/module.h>
15#include <linux/kernel.h>
16#include <linux/netdevice.h>
17#include <linux/etherdevice.h>
18#include <linux/ethtool.h>
19#include <linux/cache.h>
20#include <linux/crc32.h>
21#include <linux/mii.h>
22
23#include <linux/spi/spi.h>
24
25#include "ks8851.h"
26
27/**
28 * struct ks8851_rxctrl - KS8851 driver rx control
29 * @mchash: Multicast hash-table data.
30 * @rxcr1: KS_RXCR1 register setting
31 * @rxcr2: KS_RXCR2 register setting
32 *
33 * Representation of the settings needs to control the receive filtering
34 * such as the multicast hash-filter and the receive register settings. This
35 * is used to make the job of working out if the receive settings change and
36 * then issuing the new settings to the worker that will send the necessary
37 * commands.
38 */
39struct ks8851_rxctrl {
40 u16 mchash[4];
41 u16 rxcr1;
42 u16 rxcr2;
43};
44
45/**
46 * union ks8851_tx_hdr - tx header data
47 * @txb: The header as bytes
48 * @txw: The header as 16bit, little-endian words
49 *
50 * A dual representation of the tx header data to allow
51 * access to individual bytes, and to allow 16bit accesses
52 * with 16bit alignment.
53 */
54union ks8851_tx_hdr {
55 u8 txb[6];
56 __le16 txw[3];
57};
58
59/**
60 * struct ks8851_net - KS8851 driver private data
61 * @netdev: The network device we're bound to
62 * @spidev: The spi device we're bound to.
63 * @lock: Lock to ensure that the device is not accessed when busy.
64 * @statelock: Lock on this structure for tx list.
65 * @mii: The MII state information for the mii calls.
66 * @rxctrl: RX settings for @rxctrl_work.
67 * @tx_work: Work queue for tx packets
68 * @irq_work: Work queue for servicing interrupts
69 * @rxctrl_work: Work queue for updating RX mode and multicast lists
70 * @txq: Queue of packets for transmission.
71 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
72 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
73 * @txh: Space for generating packet TX header in DMA-able data
74 * @rxd: Space for receiving SPI data, in DMA-able space.
75 * @txd: Space for transmitting SPI data, in DMA-able space.
76 * @msg_enable: The message flags controlling driver output (see ethtool).
77 * @fid: Incrementing frame id tag.
78 * @rc_ier: Cached copy of KS_IER.
79 * @rc_rxqcr: Cached copy of KS_RXQCR.
80 *
81 * The @lock ensures that the chip is protected when certain operations are
82 * in progress. When the read or write packet transfer is in progress, most
83 * of the chip registers are not ccessible until the transfer is finished and
84 * the DMA has been de-asserted.
85 *
86 * The @statelock is used to protect information in the structure which may
87 * need to be accessed via several sources, such as the network driver layer
88 * or one of the work queues.
89 *
90 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
91 * wants to DMA map them, it will not have any problems with data the driver
92 * modifies.
93 */
94struct ks8851_net {
95 struct net_device *netdev;
96 struct spi_device *spidev;
97 struct mutex lock;
98 spinlock_t statelock;
99
100 union ks8851_tx_hdr txh ____cacheline_aligned;
101 u8 rxd[8];
102 u8 txd[8];
103
104 u32 msg_enable ____cacheline_aligned;
105 u16 tx_space;
106 u8 fid;
107
108 u16 rc_ier;
109 u16 rc_rxqcr;
110
111 struct mii_if_info mii;
112 struct ks8851_rxctrl rxctrl;
113
114 struct work_struct tx_work;
115 struct work_struct irq_work;
116 struct work_struct rxctrl_work;
117
118 struct sk_buff_head txq;
119
120 struct spi_message spi_msg1;
121 struct spi_message spi_msg2;
122 struct spi_transfer spi_xfer1;
123 struct spi_transfer spi_xfer2[2];
124};
125
126static int msg_enable;
127
128#define ks_info(_ks, _msg...) dev_info(&(_ks)->spidev->dev, _msg)
129#define ks_warn(_ks, _msg...) dev_warn(&(_ks)->spidev->dev, _msg)
130#define ks_dbg(_ks, _msg...) dev_dbg(&(_ks)->spidev->dev, _msg)
131#define ks_err(_ks, _msg...) dev_err(&(_ks)->spidev->dev, _msg)
132
133/* shift for byte-enable data */
134#define BYTE_EN(_x) ((_x) << 2)
135
136/* turn register number and byte-enable mask into data for start of packet */
137#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg) << (8+2) | (_reg) >> 6)
138
139/* SPI register read/write calls.
140 *
141 * All these calls issue SPI transactions to access the chip's registers. They
142 * all require that the necessary lock is held to prevent accesses when the
143 * chip is busy transfering packet data (RX/TX FIFO accesses).
144 */
145
146/**
147 * ks8851_wrreg16 - write 16bit register value to chip
148 * @ks: The chip state
149 * @reg: The register address
150 * @val: The value to write
151 *
152 * Issue a write to put the value @val into the register specified in @reg.
153 */
154static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
155{
156 struct spi_transfer *xfer = &ks->spi_xfer1;
157 struct spi_message *msg = &ks->spi_msg1;
158 __le16 txb[2];
159 int ret;
160
161 txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
162 txb[1] = cpu_to_le16(val);
163
164 xfer->tx_buf = txb;
165 xfer->rx_buf = NULL;
166 xfer->len = 4;
167
168 ret = spi_sync(ks->spidev, msg);
169 if (ret < 0)
170 ks_err(ks, "spi_sync() failed\n");
171}
172
173/**
174 * ks8851_rx_1msg - select whether to use one or two messages for spi read
175 * @ks: The device structure
176 *
177 * Return whether to generate a single message with a tx and rx buffer
178 * supplied to spi_sync(), or alternatively send the tx and rx buffers
179 * as separate messages.
180 *
181 * Depending on the hardware in use, a single message may be more efficient
182 * on interrupts or work done by the driver.
183 *
184 * This currently always returns true until we add some per-device data passed
185 * from the platform code to specify which mode is better.
186 */
187static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
188{
189 return true;
190}
191
192/**
193 * ks8851_rdreg - issue read register command and return the data
194 * @ks: The device state
195 * @op: The register address and byte enables in message format.
196 * @rxb: The RX buffer to return the result into
197 * @rxl: The length of data expected.
198 *
199 * This is the low level read call that issues the necessary spi message(s)
200 * to read data from the register specified in @op.
201 */
202static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
203 u8 *rxb, unsigned rxl)
204{
205 struct spi_transfer *xfer;
206 struct spi_message *msg;
207 __le16 *txb = (__le16 *)ks->txd;
208 u8 *trx = ks->rxd;
209 int ret;
210
211 txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
212
213 if (ks8851_rx_1msg(ks)) {
214 msg = &ks->spi_msg1;
215 xfer = &ks->spi_xfer1;
216
217 xfer->tx_buf = txb;
218 xfer->rx_buf = trx;
219 xfer->len = rxl + 2;
220 } else {
221 msg = &ks->spi_msg2;
222 xfer = ks->spi_xfer2;
223
224 xfer->tx_buf = txb;
225 xfer->rx_buf = NULL;
226 xfer->len = 2;
227
228 xfer++;
229 xfer->tx_buf = NULL;
230 xfer->rx_buf = trx;
231 xfer->len = rxl;
232 }
233
234 ret = spi_sync(ks->spidev, msg);
235 if (ret < 0)
236 ks_err(ks, "read: spi_sync() failed\n");
237 else if (ks8851_rx_1msg(ks))
238 memcpy(rxb, trx + 2, rxl);
239 else
240 memcpy(rxb, trx, rxl);
241}
242
243/**
244 * ks8851_rdreg8 - read 8 bit register from device
245 * @ks: The chip information
246 * @reg: The register address
247 *
248 * Read a 8bit register from the chip, returning the result
249*/
250static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
251{
252 u8 rxb[1];
253
254 ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
255 return rxb[0];
256}
257
258/**
259 * ks8851_rdreg16 - read 16 bit register from device
260 * @ks: The chip information
261 * @reg: The register address
262 *
263 * Read a 16bit register from the chip, returning the result
264*/
265static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
266{
267 __le16 rx = 0;
268
269 ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
270 return le16_to_cpu(rx);
271}
272
273/**
274 * ks8851_rdreg32 - read 32 bit register from device
275 * @ks: The chip information
276 * @reg: The register address
277 *
278 * Read a 32bit register from the chip.
279 *
280 * Note, this read requires the address be aligned to 4 bytes.
281*/
282static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
283{
284 __le32 rx = 0;
285
286 WARN_ON(reg & 3);
287
288 ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
289 return le32_to_cpu(rx);
290}
291
292/**
293 * ks8851_soft_reset - issue one of the soft reset to the device
294 * @ks: The device state.
295 * @op: The bit(s) to set in the GRR
296 *
297 * Issue the relevant soft-reset command to the device's GRR register
298 * specified by @op.
299 *
300 * Note, the delays are in there as a caution to ensure that the reset
301 * has time to take effect and then complete. Since the datasheet does
302 * not currently specify the exact sequence, we have chosen something
303 * that seems to work with our device.
304 */
305static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
306{
307 ks8851_wrreg16(ks, KS_GRR, op);
308 mdelay(1); /* wait a short time to effect reset */
309 ks8851_wrreg16(ks, KS_GRR, 0);
310 mdelay(1); /* wait for condition to clear */
311}
312
313/**
314 * ks8851_write_mac_addr - write mac address to device registers
315 * @dev: The network device
316 *
317 * Update the KS8851 MAC address registers from the address in @dev.
318 *
319 * This call assumes that the chip is not running, so there is no need to
320 * shutdown the RXQ process whilst setting this.
321*/
322static int ks8851_write_mac_addr(struct net_device *dev)
323{
324 struct ks8851_net *ks = netdev_priv(dev);
325 u16 *mcp = (u16 *)dev->dev_addr;
326
327 mutex_lock(&ks->lock);
328
329 ks8851_wrreg16(ks, KS_MARL, mcp[0]);
330 ks8851_wrreg16(ks, KS_MARM, mcp[1]);
331 ks8851_wrreg16(ks, KS_MARH, mcp[2]);
332
333 mutex_unlock(&ks->lock);
334
335 return 0;
336}
337
338/**
339 * ks8851_init_mac - initialise the mac address
340 * @ks: The device structure
341 *
342 * Get or create the initial mac address for the device and then set that
343 * into the station address register. Currently we assume that the device
344 * does not have a valid mac address in it, and so we use random_ether_addr()
345 * to create a new one.
346 *
347 * In future, the driver should check to see if the device has an EEPROM
348 * attached and whether that has a valid ethernet address in it.
349 */
350static void ks8851_init_mac(struct ks8851_net *ks)
351{
352 struct net_device *dev = ks->netdev;
353
354 random_ether_addr(dev->dev_addr);
355 ks8851_write_mac_addr(dev);
356}
357
358/**
359 * ks8851_irq - device interrupt handler
360 * @irq: Interrupt number passed from the IRQ hnalder.
361 * @pw: The private word passed to register_irq(), our struct ks8851_net.
362 *
363 * Disable the interrupt from happening again until we've processed the
364 * current status by scheduling ks8851_irq_work().
365 */
366static irqreturn_t ks8851_irq(int irq, void *pw)
367{
368 struct ks8851_net *ks = pw;
369
370 disable_irq_nosync(irq);
371 schedule_work(&ks->irq_work);
372 return IRQ_HANDLED;
373}
374
375/**
376 * ks8851_rdfifo - read data from the receive fifo
377 * @ks: The device state.
378 * @buff: The buffer address
379 * @len: The length of the data to read
380 *
381 * Issue an RXQ FIFO read command and read the @len ammount of data from
382 * the FIFO into the buffer specified by @buff.
383 */
384static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
385{
386 struct spi_transfer *xfer = ks->spi_xfer2;
387 struct spi_message *msg = &ks->spi_msg2;
388 u8 txb[1];
389 int ret;
390
391 if (netif_msg_rx_status(ks))
392 ks_dbg(ks, "%s: %d@%p\n", __func__, len, buff);
393
394 /* set the operation we're issuing */
395 txb[0] = KS_SPIOP_RXFIFO;
396
397 xfer->tx_buf = txb;
398 xfer->rx_buf = NULL;
399 xfer->len = 1;
400
401 xfer++;
402 xfer->rx_buf = buff;
403 xfer->tx_buf = NULL;
404 xfer->len = len;
405
406 ret = spi_sync(ks->spidev, msg);
407 if (ret < 0)
408 ks_err(ks, "%s: spi_sync() failed\n", __func__);
409}
410
411/**
412 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
413 * @ks: The device state
414 * @rxpkt: The data for the received packet
415 *
416 * Dump the initial data from the packet to dev_dbg().
417*/
418static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
419{
420 ks_dbg(ks, "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
421 rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
422 rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
423 rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
424}
425
426/**
427 * ks8851_rx_pkts - receive packets from the host
428 * @ks: The device information.
429 *
430 * This is called from the IRQ work queue when the system detects that there
431 * are packets in the receive queue. Find out how many packets there are and
432 * read them from the FIFO.
433 */
434static void ks8851_rx_pkts(struct ks8851_net *ks)
435{
436 struct sk_buff *skb;
437 unsigned rxfc;
438 unsigned rxlen;
439 unsigned rxstat;
440 u32 rxh;
441 u8 *rxpkt;
442
443 rxfc = ks8851_rdreg8(ks, KS_RXFC);
444
445 if (netif_msg_rx_status(ks))
446 ks_dbg(ks, "%s: %d packets\n", __func__, rxfc);
447
448 /* Currently we're issuing a read per packet, but we could possibly
449 * improve the code by issuing a single read, getting the receive
450 * header, allocating the packet and then reading the packet data
451 * out in one go.
452 *
453 * This form of operation would require us to hold the SPI bus'
454 * chipselect low during the entie transaction to avoid any
455 * reset to the data stream comming from the chip.
456 */
457
458 for (; rxfc != 0; rxfc--) {
459 rxh = ks8851_rdreg32(ks, KS_RXFHSR);
460 rxstat = rxh & 0xffff;
461 rxlen = rxh >> 16;
462
463 if (netif_msg_rx_status(ks))
464 ks_dbg(ks, "rx: stat 0x%04x, len 0x%04x\n",
465 rxstat, rxlen);
466
467 /* the length of the packet includes the 32bit CRC */
468
469 /* set dma read address */
470 ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
471
472 /* start the packet dma process, and set auto-dequeue rx */
473 ks8851_wrreg16(ks, KS_RXQCR,
474 ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
475
476 if (rxlen > 0) {
477 skb = netdev_alloc_skb(ks->netdev, rxlen + 2 + 8);
478 if (!skb) {
479 /* todo - dump frame and move on */
480 }
481
482 /* two bytes to ensure ip is aligned, and four bytes
483 * for the status header and 4 bytes of garbage */
484 skb_reserve(skb, 2 + 4 + 4);
485
486 rxpkt = skb_put(skb, rxlen - 4) - 8;
487
488 /* align the packet length to 4 bytes, and add 4 bytes
489 * as we're getting the rx status header as well */
490 ks8851_rdfifo(ks, rxpkt, ALIGN(rxlen, 4) + 8);
491
492 if (netif_msg_pktdata(ks))
493 ks8851_dbg_dumpkkt(ks, rxpkt);
494
495 skb->protocol = eth_type_trans(skb, ks->netdev);
496 netif_rx(skb);
497
498 ks->netdev->stats.rx_packets++;
499 ks->netdev->stats.rx_bytes += rxlen - 4;
500 }
501
502 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
503 }
504}
505
506/**
507 * ks8851_irq_work - work queue handler for dealing with interrupt requests
508 * @work: The work structure that was scheduled by schedule_work()
509 *
510 * This is the handler invoked when the ks8851_irq() is called to find out
511 * what happened, as we cannot allow ourselves to sleep whilst waiting for
512 * anything other process has the chip's lock.
513 *
514 * Read the interrupt status, work out what needs to be done and then clear
515 * any of the interrupts that are not needed.
516 */
517static void ks8851_irq_work(struct work_struct *work)
518{
519 struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
520 unsigned status;
521 unsigned handled = 0;
522
523 mutex_lock(&ks->lock);
524
525 status = ks8851_rdreg16(ks, KS_ISR);
526
527 if (netif_msg_intr(ks))
528 dev_dbg(&ks->spidev->dev, "%s: status 0x%04x\n",
529 __func__, status);
530
531 if (status & IRQ_LCI) {
532 /* should do something about checking link status */
533 handled |= IRQ_LCI;
534 }
535
536 if (status & IRQ_LDI) {
537 u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
538 pmecr &= ~PMECR_WKEVT_MASK;
539 ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
540
541 handled |= IRQ_LDI;
542 }
543
544 if (status & IRQ_RXPSI)
545 handled |= IRQ_RXPSI;
546
547 if (status & IRQ_TXI) {
548 handled |= IRQ_TXI;
549
550 /* no lock here, tx queue should have been stopped */
551
552 /* update our idea of how much tx space is available to the
553 * system */
554 ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
555
556 if (netif_msg_intr(ks))
557 ks_dbg(ks, "%s: txspace %d\n", __func__, ks->tx_space);
558 }
559
560 if (status & IRQ_RXI)
561 handled |= IRQ_RXI;
562
563 if (status & IRQ_SPIBEI) {
564 dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
565 handled |= IRQ_SPIBEI;
566 }
567
568 ks8851_wrreg16(ks, KS_ISR, handled);
569
570 if (status & IRQ_RXI) {
571 /* the datasheet says to disable the rx interrupt during
572 * packet read-out, however we're masking the interrupt
573 * from the device so do not bother masking just the RX
574 * from the device. */
575
576 ks8851_rx_pkts(ks);
577 }
578
579 /* if something stopped the rx process, probably due to wanting
580 * to change the rx settings, then do something about restarting
581 * it. */
582 if (status & IRQ_RXPSI) {
583 struct ks8851_rxctrl *rxc = &ks->rxctrl;
584
585 /* update the multicast hash table */
586 ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
587 ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
588 ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
589 ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
590
591 ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
592 ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
593 }
594
595 mutex_unlock(&ks->lock);
596
597 if (status & IRQ_TXI)
598 netif_wake_queue(ks->netdev);
599
600 enable_irq(ks->netdev->irq);
601}
602
603/**
604 * calc_txlen - calculate size of message to send packet
605 * @len: Lenght of data
606 *
607 * Returns the size of the TXFIFO message needed to send
608 * this packet.
609 */
610static inline unsigned calc_txlen(unsigned len)
611{
612 return ALIGN(len + 4, 4);
613}
614
615/**
616 * ks8851_wrpkt - write packet to TX FIFO
617 * @ks: The device state.
618 * @txp: The sk_buff to transmit.
619 * @irq: IRQ on completion of the packet.
620 *
621 * Send the @txp to the chip. This means creating the relevant packet header
622 * specifying the length of the packet and the other information the chip
623 * needs, such as IRQ on completion. Send the header and the packet data to
624 * the device.
625 */
626static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
627{
628 struct spi_transfer *xfer = ks->spi_xfer2;
629 struct spi_message *msg = &ks->spi_msg2;
630 unsigned fid = 0;
631 int ret;
632
633 if (netif_msg_tx_queued(ks))
634 dev_dbg(&ks->spidev->dev, "%s: skb %p, %d@%p, irq %d\n",
635 __func__, txp, txp->len, txp->data, irq);
636
637 fid = ks->fid++;
638 fid &= TXFR_TXFID_MASK;
639
640 if (irq)
641 fid |= TXFR_TXIC; /* irq on completion */
642
643 /* start header at txb[1] to align txw entries */
644 ks->txh.txb[1] = KS_SPIOP_TXFIFO;
645 ks->txh.txw[1] = cpu_to_le16(fid);
646 ks->txh.txw[2] = cpu_to_le16(txp->len);
647
648 xfer->tx_buf = &ks->txh.txb[1];
649 xfer->rx_buf = NULL;
650 xfer->len = 5;
651
652 xfer++;
653 xfer->tx_buf = txp->data;
654 xfer->rx_buf = NULL;
655 xfer->len = ALIGN(txp->len, 4);
656
657 ret = spi_sync(ks->spidev, msg);
658 if (ret < 0)
659 ks_err(ks, "%s: spi_sync() failed\n", __func__);
660}
661
662/**
663 * ks8851_done_tx - update and then free skbuff after transmitting
664 * @ks: The device state
665 * @txb: The buffer transmitted
666 */
667static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
668{
669 struct net_device *dev = ks->netdev;
670
671 dev->stats.tx_bytes += txb->len;
672 dev->stats.tx_packets++;
673
674 dev_kfree_skb(txb);
675}
676
677/**
678 * ks8851_tx_work - process tx packet(s)
679 * @work: The work strucutre what was scheduled.
680 *
681 * This is called when a number of packets have been scheduled for
682 * transmission and need to be sent to the device.
683 */
684static void ks8851_tx_work(struct work_struct *work)
685{
686 struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
687 struct sk_buff *txb;
688 bool last = false;
689
690 mutex_lock(&ks->lock);
691
692 while (!last) {
693 txb = skb_dequeue(&ks->txq);
694 last = skb_queue_empty(&ks->txq);
695
696 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
697 ks8851_wrpkt(ks, txb, last);
698 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
699 ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
700
701 ks8851_done_tx(ks, txb);
702 }
703
704 mutex_unlock(&ks->lock);
705}
706
707/**
708 * ks8851_set_powermode - set power mode of the device
709 * @ks: The device state
710 * @pwrmode: The power mode value to write to KS_PMECR.
711 *
712 * Change the power mode of the chip.
713 */
714static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
715{
716 unsigned pmecr;
717
718 if (netif_msg_hw(ks))
719 ks_dbg(ks, "setting power mode %d\n", pwrmode);
720
721 pmecr = ks8851_rdreg16(ks, KS_PMECR);
722 pmecr &= ~PMECR_PM_MASK;
723 pmecr |= pwrmode;
724
725 ks8851_wrreg16(ks, KS_PMECR, pmecr);
726}
727
728/**
729 * ks8851_net_open - open network device
730 * @dev: The network device being opened.
731 *
732 * Called when the network device is marked active, such as a user executing
733 * 'ifconfig up' on the device.
734 */
735static int ks8851_net_open(struct net_device *dev)
736{
737 struct ks8851_net *ks = netdev_priv(dev);
738
739 /* lock the card, even if we may not actually be doing anything
740 * else at the moment */
741 mutex_lock(&ks->lock);
742
743 if (netif_msg_ifup(ks))
744 ks_dbg(ks, "opening %s\n", dev->name);
745
746 /* bring chip out of any power saving mode it was in */
747 ks8851_set_powermode(ks, PMECR_PM_NORMAL);
748
749 /* issue a soft reset to the RX/TX QMU to put it into a known
750 * state. */
751 ks8851_soft_reset(ks, GRR_QMU);
752
753 /* setup transmission parameters */
754
755 ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
756 TXCR_TXPE | /* pad to min length */
757 TXCR_TXCRC | /* add CRC */
758 TXCR_TXFCE)); /* enable flow control */
759
760 /* auto-increment tx data, reset tx pointer */
761 ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
762
763 /* setup receiver control */
764
765 ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /* from mac filter */
766 RXCR1_RXFCE | /* enable flow control */
767 RXCR1_RXBE | /* broadcast enable */
768 RXCR1_RXUE | /* unicast enable */
769 RXCR1_RXE)); /* enable rx block */
770
771 /* transfer entire frames out in one go */
772 ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
773
774 /* set receive counter timeouts */
775 ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
776 ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
777 ks8851_wrreg16(ks, KS_RXFCTR, 10); /* 10 frames to IRQ */
778
779 ks->rc_rxqcr = (RXQCR_RXFCTE | /* IRQ on frame count exceeded */
780 RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
781 RXQCR_RXDTTE); /* IRQ on time exceeded */
782
783 ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
784
785 /* clear then enable interrupts */
786
787#define STD_IRQ (IRQ_LCI | /* Link Change */ \
788 IRQ_TXI | /* TX done */ \
789 IRQ_RXI | /* RX done */ \
790 IRQ_SPIBEI | /* SPI bus error */ \
791 IRQ_TXPSI | /* TX process stop */ \
792 IRQ_RXPSI) /* RX process stop */
793
794 ks->rc_ier = STD_IRQ;
795 ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
796 ks8851_wrreg16(ks, KS_IER, STD_IRQ);
797
798 netif_start_queue(ks->netdev);
799
800 if (netif_msg_ifup(ks))
801 ks_dbg(ks, "network device %s up\n", dev->name);
802
803 mutex_unlock(&ks->lock);
804 return 0;
805}
806
807/**
808 * ks8851_net_stop - close network device
809 * @dev: The device being closed.
810 *
811 * Called to close down a network device which has been active. Cancell any
812 * work, shutdown the RX and TX process and then place the chip into a low
813 * power state whilst it is not being used.
814 */
815static int ks8851_net_stop(struct net_device *dev)
816{
817 struct ks8851_net *ks = netdev_priv(dev);
818
819 if (netif_msg_ifdown(ks))
820 ks_info(ks, "%s: shutting down\n", dev->name);
821
822 netif_stop_queue(dev);
823
824 mutex_lock(&ks->lock);
825
826 /* stop any outstanding work */
827 flush_work(&ks->irq_work);
828 flush_work(&ks->tx_work);
829 flush_work(&ks->rxctrl_work);
830
831 /* turn off the IRQs and ack any outstanding */
832 ks8851_wrreg16(ks, KS_IER, 0x0000);
833 ks8851_wrreg16(ks, KS_ISR, 0xffff);
834
835 /* shutdown RX process */
836 ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
837
838 /* shutdown TX process */
839 ks8851_wrreg16(ks, KS_TXCR, 0x0000);
840
841 /* set powermode to soft power down to save power */
842 ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
843
844 /* ensure any queued tx buffers are dumped */
845 while (!skb_queue_empty(&ks->txq)) {
846 struct sk_buff *txb = skb_dequeue(&ks->txq);
847
848 if (netif_msg_ifdown(ks))
849 ks_dbg(ks, "%s: freeing txb %p\n", __func__, txb);
850
851 dev_kfree_skb(txb);
852 }
853
854 mutex_unlock(&ks->lock);
855 return 0;
856}
857
858/**
859 * ks8851_start_xmit - transmit packet
860 * @skb: The buffer to transmit
861 * @dev: The device used to transmit the packet.
862 *
863 * Called by the network layer to transmit the @skb. Queue the packet for
864 * the device and schedule the necessary work to transmit the packet when
865 * it is free.
866 *
867 * We do this to firstly avoid sleeping with the network device locked,
868 * and secondly so we can round up more than one packet to transmit which
869 * means we can try and avoid generating too many transmit done interrupts.
870 */
871static int ks8851_start_xmit(struct sk_buff *skb, struct net_device *dev)
872{
873 struct ks8851_net *ks = netdev_priv(dev);
874 unsigned needed = calc_txlen(skb->len);
875 int ret = NETDEV_TX_OK;
876
877 if (netif_msg_tx_queued(ks))
878 ks_dbg(ks, "%s: skb %p, %d@%p\n", __func__,
879 skb, skb->len, skb->data);
880
881 spin_lock(&ks->statelock);
882
883 if (needed > ks->tx_space) {
884 netif_stop_queue(dev);
885 ret = NETDEV_TX_BUSY;
886 } else {
887 ks->tx_space -= needed;
888 skb_queue_tail(&ks->txq, skb);
889 }
890
891 spin_unlock(&ks->statelock);
892 schedule_work(&ks->tx_work);
893
894 return ret;
895}
896
897/**
898 * ks8851_rxctrl_work - work handler to change rx mode
899 * @work: The work structure this belongs to.
900 *
901 * Lock the device and issue the necessary changes to the receive mode from
902 * the network device layer. This is done so that we can do this without
903 * having to sleep whilst holding the network device lock.
904 *
905 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
906 * receive parameters are programmed, we issue a write to disable the RXQ and
907 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
908 * complete. The interrupt handler then writes the new values into the chip.
909 */
910static void ks8851_rxctrl_work(struct work_struct *work)
911{
912 struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
913
914 mutex_lock(&ks->lock);
915
916 /* need to shutdown RXQ before modifying filter parameters */
917 ks8851_wrreg16(ks, KS_RXCR1, 0x00);
918
919 mutex_unlock(&ks->lock);
920}
921
922static void ks8851_set_rx_mode(struct net_device *dev)
923{
924 struct ks8851_net *ks = netdev_priv(dev);
925 struct ks8851_rxctrl rxctrl;
926
927 memset(&rxctrl, 0, sizeof(rxctrl));
928
929 if (dev->flags & IFF_PROMISC) {
930 /* interface to receive everything */
931
932 rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
933 } else if (dev->flags & IFF_ALLMULTI) {
934 /* accept all multicast packets */
935
936 rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
937 RXCR1_RXPAFMA | RXCR1_RXMAFMA);
938 } else if (dev->flags & IFF_MULTICAST && dev->mc_count > 0) {
939 struct dev_mc_list *mcptr = dev->mc_list;
940 u32 crc;
941 int i;
942
943 /* accept some multicast */
944
945 for (i = dev->mc_count; i > 0; i--) {
946 crc = ether_crc(ETH_ALEN, mcptr->dmi_addr);
947 crc >>= (32 - 6); /* get top six bits */
948
949 rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
950 mcptr = mcptr->next;
951 }
952
953 rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXAE | RXCR1_RXPAFMA;
954 } else {
955 /* just accept broadcast / unicast */
956 rxctrl.rxcr1 = RXCR1_RXPAFMA;
957 }
958
959 rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
960 RXCR1_RXBE | /* broadcast enable */
961 RXCR1_RXE | /* RX process enable */
962 RXCR1_RXFCE); /* enable flow control */
963
964 rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
965
966 /* schedule work to do the actual set of the data if needed */
967
968 spin_lock(&ks->statelock);
969
970 if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
971 memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
972 schedule_work(&ks->rxctrl_work);
973 }
974
975 spin_unlock(&ks->statelock);
976}
977
978static int ks8851_set_mac_address(struct net_device *dev, void *addr)
979{
980 struct sockaddr *sa = addr;
981
982 if (netif_running(dev))
983 return -EBUSY;
984
985 if (!is_valid_ether_addr(sa->sa_data))
986 return -EADDRNOTAVAIL;
987
988 memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
989 return ks8851_write_mac_addr(dev);
990}
991
992static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
993{
994 struct ks8851_net *ks = netdev_priv(dev);
995
996 if (!netif_running(dev))
997 return -EINVAL;
998
999 return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1000}
1001
1002static const struct net_device_ops ks8851_netdev_ops = {
1003 .ndo_open = ks8851_net_open,
1004 .ndo_stop = ks8851_net_stop,
1005 .ndo_do_ioctl = ks8851_net_ioctl,
1006 .ndo_start_xmit = ks8851_start_xmit,
1007 .ndo_set_mac_address = ks8851_set_mac_address,
1008 .ndo_set_rx_mode = ks8851_set_rx_mode,
1009 .ndo_change_mtu = eth_change_mtu,
1010 .ndo_validate_addr = eth_validate_addr,
1011};
1012
1013/* ethtool support */
1014
1015static void ks8851_get_drvinfo(struct net_device *dev,
1016 struct ethtool_drvinfo *di)
1017{
1018 strlcpy(di->driver, "KS8851", sizeof(di->driver));
1019 strlcpy(di->version, "1.00", sizeof(di->version));
1020 strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1021}
1022
1023static u32 ks8851_get_msglevel(struct net_device *dev)
1024{
1025 struct ks8851_net *ks = netdev_priv(dev);
1026 return ks->msg_enable;
1027}
1028
1029static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1030{
1031 struct ks8851_net *ks = netdev_priv(dev);
1032 ks->msg_enable = to;
1033}
1034
1035static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1036{
1037 struct ks8851_net *ks = netdev_priv(dev);
1038 return mii_ethtool_gset(&ks->mii, cmd);
1039}
1040
1041static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1042{
1043 struct ks8851_net *ks = netdev_priv(dev);
1044 return mii_ethtool_sset(&ks->mii, cmd);
1045}
1046
1047static u32 ks8851_get_link(struct net_device *dev)
1048{
1049 struct ks8851_net *ks = netdev_priv(dev);
1050 return mii_link_ok(&ks->mii);
1051}
1052
1053static int ks8851_nway_reset(struct net_device *dev)
1054{
1055 struct ks8851_net *ks = netdev_priv(dev);
1056 return mii_nway_restart(&ks->mii);
1057}
1058
1059static const struct ethtool_ops ks8851_ethtool_ops = {
1060 .get_drvinfo = ks8851_get_drvinfo,
1061 .get_msglevel = ks8851_get_msglevel,
1062 .set_msglevel = ks8851_set_msglevel,
1063 .get_settings = ks8851_get_settings,
1064 .set_settings = ks8851_set_settings,
1065 .get_link = ks8851_get_link,
1066 .nway_reset = ks8851_nway_reset,
1067};
1068
1069/* MII interface controls */
1070
1071/**
1072 * ks8851_phy_reg - convert MII register into a KS8851 register
1073 * @reg: MII register number.
1074 *
1075 * Return the KS8851 register number for the corresponding MII PHY register
1076 * if possible. Return zero if the MII register has no direct mapping to the
1077 * KS8851 register set.
1078 */
1079static int ks8851_phy_reg(int reg)
1080{
1081 switch (reg) {
1082 case MII_BMCR:
1083 return KS_P1MBCR;
1084 case MII_BMSR:
1085 return KS_P1MBSR;
1086 case MII_PHYSID1:
1087 return KS_PHY1ILR;
1088 case MII_PHYSID2:
1089 return KS_PHY1IHR;
1090 case MII_ADVERTISE:
1091 return KS_P1ANAR;
1092 case MII_LPA:
1093 return KS_P1ANLPR;
1094 }
1095
1096 return 0x0;
1097}
1098
1099/**
1100 * ks8851_phy_read - MII interface PHY register read.
1101 * @dev: The network device the PHY is on.
1102 * @phy_addr: Address of PHY (ignored as we only have one)
1103 * @reg: The register to read.
1104 *
1105 * This call reads data from the PHY register specified in @reg. Since the
1106 * device does not support all the MII registers, the non-existant values
1107 * are always returned as zero.
1108 *
1109 * We return zero for unsupported registers as the MII code does not check
1110 * the value returned for any error status, and simply returns it to the
1111 * caller. The mii-tool that the driver was tested with takes any -ve error
1112 * as real PHY capabilities, thus displaying incorrect data to the user.
1113 */
1114static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1115{
1116 struct ks8851_net *ks = netdev_priv(dev);
1117 int ksreg;
1118 int result;
1119
1120 ksreg = ks8851_phy_reg(reg);
1121 if (!ksreg)
1122 return 0x0; /* no error return allowed, so use zero */
1123
1124 mutex_lock(&ks->lock);
1125 result = ks8851_rdreg16(ks, ksreg);
1126 mutex_unlock(&ks->lock);
1127
1128 return result;
1129}
1130
1131static void ks8851_phy_write(struct net_device *dev,
1132 int phy, int reg, int value)
1133{
1134 struct ks8851_net *ks = netdev_priv(dev);
1135 int ksreg;
1136
1137 ksreg = ks8851_phy_reg(reg);
1138 if (ksreg) {
1139 mutex_lock(&ks->lock);
1140 ks8851_wrreg16(ks, ksreg, value);
1141 mutex_unlock(&ks->lock);
1142 }
1143}
1144
1145/**
1146 * ks8851_read_selftest - read the selftest memory info.
1147 * @ks: The device state
1148 *
1149 * Read and check the TX/RX memory selftest information.
1150 */
1151static int ks8851_read_selftest(struct ks8851_net *ks)
1152{
1153 unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1154 int ret = 0;
1155 unsigned rd;
1156
1157 rd = ks8851_rdreg16(ks, KS_MBIR);
1158
1159 if ((rd & both_done) != both_done) {
1160 ks_warn(ks, "Memory selftest not finished\n");
1161 return 0;
1162 }
1163
1164 if (rd & MBIR_TXMBFA) {
1165 ks_err(ks, "TX memory selftest fail\n");
1166 ret |= 1;
1167 }
1168
1169 if (rd & MBIR_RXMBFA) {
1170 ks_err(ks, "RX memory selftest fail\n");
1171 ret |= 2;
1172 }
1173
1174 return 0;
1175}
1176
1177/* driver bus management functions */
1178
1179static int __devinit ks8851_probe(struct spi_device *spi)
1180{
1181 struct net_device *ndev;
1182 struct ks8851_net *ks;
1183 int ret;
1184
1185 ndev = alloc_etherdev(sizeof(struct ks8851_net));
1186 if (!ndev) {
1187 dev_err(&spi->dev, "failed to alloc ethernet device\n");
1188 return -ENOMEM;
1189 }
1190
1191 spi->bits_per_word = 8;
1192
1193 ks = netdev_priv(ndev);
1194
1195 ks->netdev = ndev;
1196 ks->spidev = spi;
1197 ks->tx_space = 6144;
1198
1199 mutex_init(&ks->lock);
1200 spin_lock_init(&ks->statelock);
1201
1202 INIT_WORK(&ks->tx_work, ks8851_tx_work);
1203 INIT_WORK(&ks->irq_work, ks8851_irq_work);
1204 INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1205
1206 /* initialise pre-made spi transfer messages */
1207
1208 spi_message_init(&ks->spi_msg1);
1209 spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1210
1211 spi_message_init(&ks->spi_msg2);
1212 spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1213 spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1214
1215 /* setup mii state */
1216 ks->mii.dev = ndev;
1217 ks->mii.phy_id = 1,
1218 ks->mii.phy_id_mask = 1;
1219 ks->mii.reg_num_mask = 0xf;
1220 ks->mii.mdio_read = ks8851_phy_read;
1221 ks->mii.mdio_write = ks8851_phy_write;
1222
1223 dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1224
1225 /* set the default message enable */
1226 ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1227 NETIF_MSG_PROBE |
1228 NETIF_MSG_LINK));
1229
1230 skb_queue_head_init(&ks->txq);
1231
1232 SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1233 SET_NETDEV_DEV(ndev, &spi->dev);
1234
1235 dev_set_drvdata(&spi->dev, ks);
1236
1237 ndev->if_port = IF_PORT_100BASET;
1238 ndev->netdev_ops = &ks8851_netdev_ops;
1239 ndev->irq = spi->irq;
1240
1241 /* simple check for a valid chip being connected to the bus */
1242
1243 if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1244 dev_err(&spi->dev, "failed to read device ID\n");
1245 ret = -ENODEV;
1246 goto err_id;
1247 }
1248
1249 ks8851_read_selftest(ks);
1250 ks8851_init_mac(ks);
1251
1252 ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1253 ndev->name, ks);
1254 if (ret < 0) {
1255 dev_err(&spi->dev, "failed to get irq\n");
1256 goto err_irq;
1257 }
1258
1259 ret = register_netdev(ndev);
1260 if (ret) {
1261 dev_err(&spi->dev, "failed to register network device\n");
1262 goto err_netdev;
1263 }
1264
1265 dev_info(&spi->dev, "revision %d, MAC %pM, IRQ %d\n",
1266 CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1267 ndev->dev_addr, ndev->irq);
1268
1269 return 0;
1270
1271
1272err_netdev:
1273 free_irq(ndev->irq, ndev);
1274
1275err_id:
1276err_irq:
1277 free_netdev(ndev);
1278 return ret;
1279}
1280
1281static int __devexit ks8851_remove(struct spi_device *spi)
1282{
1283 struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1284
1285 if (netif_msg_drv(priv))
1286 dev_info(&spi->dev, "remove");
1287
1288 unregister_netdev(priv->netdev);
1289 free_irq(spi->irq, priv);
1290 free_netdev(priv->netdev);
1291
1292 return 0;
1293}
1294
1295static struct spi_driver ks8851_driver = {
1296 .driver = {
1297 .name = "ks8851",
1298 .owner = THIS_MODULE,
1299 },
1300 .probe = ks8851_probe,
1301 .remove = __devexit_p(ks8851_remove),
1302};
1303
1304static int __init ks8851_init(void)
1305{
1306 return spi_register_driver(&ks8851_driver);
1307}
1308
1309static void __exit ks8851_exit(void)
1310{
1311 spi_unregister_driver(&ks8851_driver);
1312}
1313
1314module_init(ks8851_init);
1315module_exit(ks8851_exit);
1316
1317MODULE_DESCRIPTION("KS8851 Network driver");
1318MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1319MODULE_LICENSE("GPL");
1320
1321module_param_named(message, msg_enable, int, 0);
1322MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");