aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/igbvf/netdev.c
diff options
context:
space:
mode:
authorDavid S. Miller <davem@davemloft.net>2009-04-16 20:35:26 -0400
committerDavid S. Miller <davem@davemloft.net>2009-04-16 20:35:26 -0400
commita54bfa40fd16aeb90bc556189221576f746f8567 (patch)
tree176bb7a99ffab5f42f0dd4e9671f335be3f3efa0 /drivers/net/igbvf/netdev.c
parentfe957c40ec5e2763b9977c565beab3bde3aaf85b (diff)
parent134ffb4cad92a6aa534e55a9be145bca780a32c1 (diff)
Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
Diffstat (limited to 'drivers/net/igbvf/netdev.c')
-rw-r--r--drivers/net/igbvf/netdev.c2922
1 files changed, 2922 insertions, 0 deletions
diff --git a/drivers/net/igbvf/netdev.c b/drivers/net/igbvf/netdev.c
new file mode 100644
index 000000000000..b774666ad3cf
--- /dev/null
+++ b/drivers/net/igbvf/netdev.c
@@ -0,0 +1,2922 @@
1/*******************************************************************************
2
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/module.h>
29#include <linux/types.h>
30#include <linux/init.h>
31#include <linux/pci.h>
32#include <linux/vmalloc.h>
33#include <linux/pagemap.h>
34#include <linux/delay.h>
35#include <linux/netdevice.h>
36#include <linux/tcp.h>
37#include <linux/ipv6.h>
38#include <net/checksum.h>
39#include <net/ip6_checksum.h>
40#include <linux/mii.h>
41#include <linux/ethtool.h>
42#include <linux/if_vlan.h>
43#include <linux/pm_qos_params.h>
44
45#include "igbvf.h"
46
47#define DRV_VERSION "1.0.0-k0"
48char igbvf_driver_name[] = "igbvf";
49const char igbvf_driver_version[] = DRV_VERSION;
50static const char igbvf_driver_string[] =
51 "Intel(R) Virtual Function Network Driver";
52static const char igbvf_copyright[] = "Copyright (c) 2009 Intel Corporation.";
53
54static int igbvf_poll(struct napi_struct *napi, int budget);
55static void igbvf_reset(struct igbvf_adapter *);
56static void igbvf_set_interrupt_capability(struct igbvf_adapter *);
57static void igbvf_reset_interrupt_capability(struct igbvf_adapter *);
58
59static struct igbvf_info igbvf_vf_info = {
60 .mac = e1000_vfadapt,
61 .flags = FLAG_HAS_JUMBO_FRAMES
62 | FLAG_RX_CSUM_ENABLED,
63 .pba = 10,
64 .init_ops = e1000_init_function_pointers_vf,
65};
66
67static const struct igbvf_info *igbvf_info_tbl[] = {
68 [board_vf] = &igbvf_vf_info,
69};
70
71/**
72 * igbvf_desc_unused - calculate if we have unused descriptors
73 **/
74static int igbvf_desc_unused(struct igbvf_ring *ring)
75{
76 if (ring->next_to_clean > ring->next_to_use)
77 return ring->next_to_clean - ring->next_to_use - 1;
78
79 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
80}
81
82/**
83 * igbvf_receive_skb - helper function to handle Rx indications
84 * @adapter: board private structure
85 * @status: descriptor status field as written by hardware
86 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
87 * @skb: pointer to sk_buff to be indicated to stack
88 **/
89static void igbvf_receive_skb(struct igbvf_adapter *adapter,
90 struct net_device *netdev,
91 struct sk_buff *skb,
92 u32 status, u16 vlan)
93{
94 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
95 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
96 le16_to_cpu(vlan) &
97 E1000_RXD_SPC_VLAN_MASK);
98 else
99 netif_receive_skb(skb);
100
101 netdev->last_rx = jiffies;
102}
103
104static inline void igbvf_rx_checksum_adv(struct igbvf_adapter *adapter,
105 u32 status_err, struct sk_buff *skb)
106{
107 skb->ip_summed = CHECKSUM_NONE;
108
109 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
110 if ((status_err & E1000_RXD_STAT_IXSM))
111 return;
112 /* TCP/UDP checksum error bit is set */
113 if (status_err &
114 (E1000_RXDEXT_STATERR_TCPE | E1000_RXDEXT_STATERR_IPE)) {
115 /* let the stack verify checksum errors */
116 adapter->hw_csum_err++;
117 return;
118 }
119 /* It must be a TCP or UDP packet with a valid checksum */
120 if (status_err & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS))
121 skb->ip_summed = CHECKSUM_UNNECESSARY;
122
123 adapter->hw_csum_good++;
124}
125
126/**
127 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
128 * @rx_ring: address of ring structure to repopulate
129 * @cleaned_count: number of buffers to repopulate
130 **/
131static void igbvf_alloc_rx_buffers(struct igbvf_ring *rx_ring,
132 int cleaned_count)
133{
134 struct igbvf_adapter *adapter = rx_ring->adapter;
135 struct net_device *netdev = adapter->netdev;
136 struct pci_dev *pdev = adapter->pdev;
137 union e1000_adv_rx_desc *rx_desc;
138 struct igbvf_buffer *buffer_info;
139 struct sk_buff *skb;
140 unsigned int i;
141 int bufsz;
142
143 i = rx_ring->next_to_use;
144 buffer_info = &rx_ring->buffer_info[i];
145
146 if (adapter->rx_ps_hdr_size)
147 bufsz = adapter->rx_ps_hdr_size;
148 else
149 bufsz = adapter->rx_buffer_len;
150 bufsz += NET_IP_ALIGN;
151
152 while (cleaned_count--) {
153 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
154
155 if (adapter->rx_ps_hdr_size && !buffer_info->page_dma) {
156 if (!buffer_info->page) {
157 buffer_info->page = alloc_page(GFP_ATOMIC);
158 if (!buffer_info->page) {
159 adapter->alloc_rx_buff_failed++;
160 goto no_buffers;
161 }
162 buffer_info->page_offset = 0;
163 } else {
164 buffer_info->page_offset ^= PAGE_SIZE / 2;
165 }
166 buffer_info->page_dma =
167 pci_map_page(pdev, buffer_info->page,
168 buffer_info->page_offset,
169 PAGE_SIZE / 2,
170 PCI_DMA_FROMDEVICE);
171 }
172
173 if (!buffer_info->skb) {
174 skb = netdev_alloc_skb(netdev, bufsz);
175 if (!skb) {
176 adapter->alloc_rx_buff_failed++;
177 goto no_buffers;
178 }
179
180 /* Make buffer alignment 2 beyond a 16 byte boundary
181 * this will result in a 16 byte aligned IP header after
182 * the 14 byte MAC header is removed
183 */
184 skb_reserve(skb, NET_IP_ALIGN);
185
186 buffer_info->skb = skb;
187 buffer_info->dma = pci_map_single(pdev, skb->data,
188 bufsz,
189 PCI_DMA_FROMDEVICE);
190 }
191 /* Refresh the desc even if buffer_addrs didn't change because
192 * each write-back erases this info. */
193 if (adapter->rx_ps_hdr_size) {
194 rx_desc->read.pkt_addr =
195 cpu_to_le64(buffer_info->page_dma);
196 rx_desc->read.hdr_addr = cpu_to_le64(buffer_info->dma);
197 } else {
198 rx_desc->read.pkt_addr =
199 cpu_to_le64(buffer_info->dma);
200 rx_desc->read.hdr_addr = 0;
201 }
202
203 i++;
204 if (i == rx_ring->count)
205 i = 0;
206 buffer_info = &rx_ring->buffer_info[i];
207 }
208
209no_buffers:
210 if (rx_ring->next_to_use != i) {
211 rx_ring->next_to_use = i;
212 if (i == 0)
213 i = (rx_ring->count - 1);
214 else
215 i--;
216
217 /* Force memory writes to complete before letting h/w
218 * know there are new descriptors to fetch. (Only
219 * applicable for weak-ordered memory model archs,
220 * such as IA-64). */
221 wmb();
222 writel(i, adapter->hw.hw_addr + rx_ring->tail);
223 }
224}
225
226/**
227 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
228 * @adapter: board private structure
229 *
230 * the return value indicates whether actual cleaning was done, there
231 * is no guarantee that everything was cleaned
232 **/
233static bool igbvf_clean_rx_irq(struct igbvf_adapter *adapter,
234 int *work_done, int work_to_do)
235{
236 struct igbvf_ring *rx_ring = adapter->rx_ring;
237 struct net_device *netdev = adapter->netdev;
238 struct pci_dev *pdev = adapter->pdev;
239 union e1000_adv_rx_desc *rx_desc, *next_rxd;
240 struct igbvf_buffer *buffer_info, *next_buffer;
241 struct sk_buff *skb;
242 bool cleaned = false;
243 int cleaned_count = 0;
244 unsigned int total_bytes = 0, total_packets = 0;
245 unsigned int i;
246 u32 length, hlen, staterr;
247
248 i = rx_ring->next_to_clean;
249 rx_desc = IGBVF_RX_DESC_ADV(*rx_ring, i);
250 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
251
252 while (staterr & E1000_RXD_STAT_DD) {
253 if (*work_done >= work_to_do)
254 break;
255 (*work_done)++;
256
257 buffer_info = &rx_ring->buffer_info[i];
258
259 /* HW will not DMA in data larger than the given buffer, even
260 * if it parses the (NFS, of course) header to be larger. In
261 * that case, it fills the header buffer and spills the rest
262 * into the page.
263 */
264 hlen = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.hdr_info) &
265 E1000_RXDADV_HDRBUFLEN_MASK) >> E1000_RXDADV_HDRBUFLEN_SHIFT;
266 if (hlen > adapter->rx_ps_hdr_size)
267 hlen = adapter->rx_ps_hdr_size;
268
269 length = le16_to_cpu(rx_desc->wb.upper.length);
270 cleaned = true;
271 cleaned_count++;
272
273 skb = buffer_info->skb;
274 prefetch(skb->data - NET_IP_ALIGN);
275 buffer_info->skb = NULL;
276 if (!adapter->rx_ps_hdr_size) {
277 pci_unmap_single(pdev, buffer_info->dma,
278 adapter->rx_buffer_len,
279 PCI_DMA_FROMDEVICE);
280 buffer_info->dma = 0;
281 skb_put(skb, length);
282 goto send_up;
283 }
284
285 if (!skb_shinfo(skb)->nr_frags) {
286 pci_unmap_single(pdev, buffer_info->dma,
287 adapter->rx_ps_hdr_size + NET_IP_ALIGN,
288 PCI_DMA_FROMDEVICE);
289 skb_put(skb, hlen);
290 }
291
292 if (length) {
293 pci_unmap_page(pdev, buffer_info->page_dma,
294 PAGE_SIZE / 2,
295 PCI_DMA_FROMDEVICE);
296 buffer_info->page_dma = 0;
297
298 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags++,
299 buffer_info->page,
300 buffer_info->page_offset,
301 length);
302
303 if ((adapter->rx_buffer_len > (PAGE_SIZE / 2)) ||
304 (page_count(buffer_info->page) != 1))
305 buffer_info->page = NULL;
306 else
307 get_page(buffer_info->page);
308
309 skb->len += length;
310 skb->data_len += length;
311 skb->truesize += length;
312 }
313send_up:
314 i++;
315 if (i == rx_ring->count)
316 i = 0;
317 next_rxd = IGBVF_RX_DESC_ADV(*rx_ring, i);
318 prefetch(next_rxd);
319 next_buffer = &rx_ring->buffer_info[i];
320
321 if (!(staterr & E1000_RXD_STAT_EOP)) {
322 buffer_info->skb = next_buffer->skb;
323 buffer_info->dma = next_buffer->dma;
324 next_buffer->skb = skb;
325 next_buffer->dma = 0;
326 goto next_desc;
327 }
328
329 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
330 dev_kfree_skb_irq(skb);
331 goto next_desc;
332 }
333
334 total_bytes += skb->len;
335 total_packets++;
336
337 igbvf_rx_checksum_adv(adapter, staterr, skb);
338
339 skb->protocol = eth_type_trans(skb, netdev);
340
341 igbvf_receive_skb(adapter, netdev, skb, staterr,
342 rx_desc->wb.upper.vlan);
343
344 netdev->last_rx = jiffies;
345
346next_desc:
347 rx_desc->wb.upper.status_error = 0;
348
349 /* return some buffers to hardware, one at a time is too slow */
350 if (cleaned_count >= IGBVF_RX_BUFFER_WRITE) {
351 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
352 cleaned_count = 0;
353 }
354
355 /* use prefetched values */
356 rx_desc = next_rxd;
357 buffer_info = next_buffer;
358
359 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
360 }
361
362 rx_ring->next_to_clean = i;
363 cleaned_count = igbvf_desc_unused(rx_ring);
364
365 if (cleaned_count)
366 igbvf_alloc_rx_buffers(rx_ring, cleaned_count);
367
368 adapter->total_rx_packets += total_packets;
369 adapter->total_rx_bytes += total_bytes;
370 adapter->net_stats.rx_bytes += total_bytes;
371 adapter->net_stats.rx_packets += total_packets;
372 return cleaned;
373}
374
375static void igbvf_put_txbuf(struct igbvf_adapter *adapter,
376 struct igbvf_buffer *buffer_info)
377{
378 buffer_info->dma = 0;
379 if (buffer_info->skb) {
380 skb_dma_unmap(&adapter->pdev->dev, buffer_info->skb,
381 DMA_TO_DEVICE);
382 dev_kfree_skb_any(buffer_info->skb);
383 buffer_info->skb = NULL;
384 }
385 buffer_info->time_stamp = 0;
386}
387
388static void igbvf_print_tx_hang(struct igbvf_adapter *adapter)
389{
390 struct igbvf_ring *tx_ring = adapter->tx_ring;
391 unsigned int i = tx_ring->next_to_clean;
392 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
393 union e1000_adv_tx_desc *eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
394
395 /* detected Tx unit hang */
396 dev_err(&adapter->pdev->dev,
397 "Detected Tx Unit Hang:\n"
398 " TDH <%x>\n"
399 " TDT <%x>\n"
400 " next_to_use <%x>\n"
401 " next_to_clean <%x>\n"
402 "buffer_info[next_to_clean]:\n"
403 " time_stamp <%lx>\n"
404 " next_to_watch <%x>\n"
405 " jiffies <%lx>\n"
406 " next_to_watch.status <%x>\n",
407 readl(adapter->hw.hw_addr + tx_ring->head),
408 readl(adapter->hw.hw_addr + tx_ring->tail),
409 tx_ring->next_to_use,
410 tx_ring->next_to_clean,
411 tx_ring->buffer_info[eop].time_stamp,
412 eop,
413 jiffies,
414 eop_desc->wb.status);
415}
416
417/**
418 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
419 * @adapter: board private structure
420 *
421 * Return 0 on success, negative on failure
422 **/
423int igbvf_setup_tx_resources(struct igbvf_adapter *adapter,
424 struct igbvf_ring *tx_ring)
425{
426 struct pci_dev *pdev = adapter->pdev;
427 int size;
428
429 size = sizeof(struct igbvf_buffer) * tx_ring->count;
430 tx_ring->buffer_info = vmalloc(size);
431 if (!tx_ring->buffer_info)
432 goto err;
433 memset(tx_ring->buffer_info, 0, size);
434
435 /* round up to nearest 4K */
436 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
437 tx_ring->size = ALIGN(tx_ring->size, 4096);
438
439 tx_ring->desc = pci_alloc_consistent(pdev, tx_ring->size,
440 &tx_ring->dma);
441
442 if (!tx_ring->desc)
443 goto err;
444
445 tx_ring->adapter = adapter;
446 tx_ring->next_to_use = 0;
447 tx_ring->next_to_clean = 0;
448
449 return 0;
450err:
451 vfree(tx_ring->buffer_info);
452 dev_err(&adapter->pdev->dev,
453 "Unable to allocate memory for the transmit descriptor ring\n");
454 return -ENOMEM;
455}
456
457/**
458 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
459 * @adapter: board private structure
460 *
461 * Returns 0 on success, negative on failure
462 **/
463int igbvf_setup_rx_resources(struct igbvf_adapter *adapter,
464 struct igbvf_ring *rx_ring)
465{
466 struct pci_dev *pdev = adapter->pdev;
467 int size, desc_len;
468
469 size = sizeof(struct igbvf_buffer) * rx_ring->count;
470 rx_ring->buffer_info = vmalloc(size);
471 if (!rx_ring->buffer_info)
472 goto err;
473 memset(rx_ring->buffer_info, 0, size);
474
475 desc_len = sizeof(union e1000_adv_rx_desc);
476
477 /* Round up to nearest 4K */
478 rx_ring->size = rx_ring->count * desc_len;
479 rx_ring->size = ALIGN(rx_ring->size, 4096);
480
481 rx_ring->desc = pci_alloc_consistent(pdev, rx_ring->size,
482 &rx_ring->dma);
483
484 if (!rx_ring->desc)
485 goto err;
486
487 rx_ring->next_to_clean = 0;
488 rx_ring->next_to_use = 0;
489
490 rx_ring->adapter = adapter;
491
492 return 0;
493
494err:
495 vfree(rx_ring->buffer_info);
496 rx_ring->buffer_info = NULL;
497 dev_err(&adapter->pdev->dev,
498 "Unable to allocate memory for the receive descriptor ring\n");
499 return -ENOMEM;
500}
501
502/**
503 * igbvf_clean_tx_ring - Free Tx Buffers
504 * @tx_ring: ring to be cleaned
505 **/
506static void igbvf_clean_tx_ring(struct igbvf_ring *tx_ring)
507{
508 struct igbvf_adapter *adapter = tx_ring->adapter;
509 struct igbvf_buffer *buffer_info;
510 unsigned long size;
511 unsigned int i;
512
513 if (!tx_ring->buffer_info)
514 return;
515
516 /* Free all the Tx ring sk_buffs */
517 for (i = 0; i < tx_ring->count; i++) {
518 buffer_info = &tx_ring->buffer_info[i];
519 igbvf_put_txbuf(adapter, buffer_info);
520 }
521
522 size = sizeof(struct igbvf_buffer) * tx_ring->count;
523 memset(tx_ring->buffer_info, 0, size);
524
525 /* Zero out the descriptor ring */
526 memset(tx_ring->desc, 0, tx_ring->size);
527
528 tx_ring->next_to_use = 0;
529 tx_ring->next_to_clean = 0;
530
531 writel(0, adapter->hw.hw_addr + tx_ring->head);
532 writel(0, adapter->hw.hw_addr + tx_ring->tail);
533}
534
535/**
536 * igbvf_free_tx_resources - Free Tx Resources per Queue
537 * @tx_ring: ring to free resources from
538 *
539 * Free all transmit software resources
540 **/
541void igbvf_free_tx_resources(struct igbvf_ring *tx_ring)
542{
543 struct pci_dev *pdev = tx_ring->adapter->pdev;
544
545 igbvf_clean_tx_ring(tx_ring);
546
547 vfree(tx_ring->buffer_info);
548 tx_ring->buffer_info = NULL;
549
550 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
551
552 tx_ring->desc = NULL;
553}
554
555/**
556 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
557 * @adapter: board private structure
558 **/
559static void igbvf_clean_rx_ring(struct igbvf_ring *rx_ring)
560{
561 struct igbvf_adapter *adapter = rx_ring->adapter;
562 struct igbvf_buffer *buffer_info;
563 struct pci_dev *pdev = adapter->pdev;
564 unsigned long size;
565 unsigned int i;
566
567 if (!rx_ring->buffer_info)
568 return;
569
570 /* Free all the Rx ring sk_buffs */
571 for (i = 0; i < rx_ring->count; i++) {
572 buffer_info = &rx_ring->buffer_info[i];
573 if (buffer_info->dma) {
574 if (adapter->rx_ps_hdr_size){
575 pci_unmap_single(pdev, buffer_info->dma,
576 adapter->rx_ps_hdr_size,
577 PCI_DMA_FROMDEVICE);
578 } else {
579 pci_unmap_single(pdev, buffer_info->dma,
580 adapter->rx_buffer_len,
581 PCI_DMA_FROMDEVICE);
582 }
583 buffer_info->dma = 0;
584 }
585
586 if (buffer_info->skb) {
587 dev_kfree_skb(buffer_info->skb);
588 buffer_info->skb = NULL;
589 }
590
591 if (buffer_info->page) {
592 if (buffer_info->page_dma)
593 pci_unmap_page(pdev, buffer_info->page_dma,
594 PAGE_SIZE / 2,
595 PCI_DMA_FROMDEVICE);
596 put_page(buffer_info->page);
597 buffer_info->page = NULL;
598 buffer_info->page_dma = 0;
599 buffer_info->page_offset = 0;
600 }
601 }
602
603 size = sizeof(struct igbvf_buffer) * rx_ring->count;
604 memset(rx_ring->buffer_info, 0, size);
605
606 /* Zero out the descriptor ring */
607 memset(rx_ring->desc, 0, rx_ring->size);
608
609 rx_ring->next_to_clean = 0;
610 rx_ring->next_to_use = 0;
611
612 writel(0, adapter->hw.hw_addr + rx_ring->head);
613 writel(0, adapter->hw.hw_addr + rx_ring->tail);
614}
615
616/**
617 * igbvf_free_rx_resources - Free Rx Resources
618 * @rx_ring: ring to clean the resources from
619 *
620 * Free all receive software resources
621 **/
622
623void igbvf_free_rx_resources(struct igbvf_ring *rx_ring)
624{
625 struct pci_dev *pdev = rx_ring->adapter->pdev;
626
627 igbvf_clean_rx_ring(rx_ring);
628
629 vfree(rx_ring->buffer_info);
630 rx_ring->buffer_info = NULL;
631
632 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
633 rx_ring->dma);
634 rx_ring->desc = NULL;
635}
636
637/**
638 * igbvf_update_itr - update the dynamic ITR value based on statistics
639 * @adapter: pointer to adapter
640 * @itr_setting: current adapter->itr
641 * @packets: the number of packets during this measurement interval
642 * @bytes: the number of bytes during this measurement interval
643 *
644 * Stores a new ITR value based on packets and byte
645 * counts during the last interrupt. The advantage of per interrupt
646 * computation is faster updates and more accurate ITR for the current
647 * traffic pattern. Constants in this function were computed
648 * based on theoretical maximum wire speed and thresholds were set based
649 * on testing data as well as attempting to minimize response time
650 * while increasing bulk throughput. This functionality is controlled
651 * by the InterruptThrottleRate module parameter.
652 **/
653static unsigned int igbvf_update_itr(struct igbvf_adapter *adapter,
654 u16 itr_setting, int packets,
655 int bytes)
656{
657 unsigned int retval = itr_setting;
658
659 if (packets == 0)
660 goto update_itr_done;
661
662 switch (itr_setting) {
663 case lowest_latency:
664 /* handle TSO and jumbo frames */
665 if (bytes/packets > 8000)
666 retval = bulk_latency;
667 else if ((packets < 5) && (bytes > 512))
668 retval = low_latency;
669 break;
670 case low_latency: /* 50 usec aka 20000 ints/s */
671 if (bytes > 10000) {
672 /* this if handles the TSO accounting */
673 if (bytes/packets > 8000)
674 retval = bulk_latency;
675 else if ((packets < 10) || ((bytes/packets) > 1200))
676 retval = bulk_latency;
677 else if ((packets > 35))
678 retval = lowest_latency;
679 } else if (bytes/packets > 2000) {
680 retval = bulk_latency;
681 } else if (packets <= 2 && bytes < 512) {
682 retval = lowest_latency;
683 }
684 break;
685 case bulk_latency: /* 250 usec aka 4000 ints/s */
686 if (bytes > 25000) {
687 if (packets > 35)
688 retval = low_latency;
689 } else if (bytes < 6000) {
690 retval = low_latency;
691 }
692 break;
693 }
694
695update_itr_done:
696 return retval;
697}
698
699static void igbvf_set_itr(struct igbvf_adapter *adapter)
700{
701 struct e1000_hw *hw = &adapter->hw;
702 u16 current_itr;
703 u32 new_itr = adapter->itr;
704
705 adapter->tx_itr = igbvf_update_itr(adapter, adapter->tx_itr,
706 adapter->total_tx_packets,
707 adapter->total_tx_bytes);
708 /* conservative mode (itr 3) eliminates the lowest_latency setting */
709 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
710 adapter->tx_itr = low_latency;
711
712 adapter->rx_itr = igbvf_update_itr(adapter, adapter->rx_itr,
713 adapter->total_rx_packets,
714 adapter->total_rx_bytes);
715 /* conservative mode (itr 3) eliminates the lowest_latency setting */
716 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
717 adapter->rx_itr = low_latency;
718
719 current_itr = max(adapter->rx_itr, adapter->tx_itr);
720
721 switch (current_itr) {
722 /* counts and packets in update_itr are dependent on these numbers */
723 case lowest_latency:
724 new_itr = 70000;
725 break;
726 case low_latency:
727 new_itr = 20000; /* aka hwitr = ~200 */
728 break;
729 case bulk_latency:
730 new_itr = 4000;
731 break;
732 default:
733 break;
734 }
735
736 if (new_itr != adapter->itr) {
737 /*
738 * this attempts to bias the interrupt rate towards Bulk
739 * by adding intermediate steps when interrupt rate is
740 * increasing
741 */
742 new_itr = new_itr > adapter->itr ?
743 min(adapter->itr + (new_itr >> 2), new_itr) :
744 new_itr;
745 adapter->itr = new_itr;
746 adapter->rx_ring->itr_val = 1952;
747
748 if (adapter->msix_entries)
749 adapter->rx_ring->set_itr = 1;
750 else
751 ew32(ITR, 1952);
752 }
753}
754
755/**
756 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
757 * @adapter: board private structure
758 * returns true if ring is completely cleaned
759 **/
760static bool igbvf_clean_tx_irq(struct igbvf_ring *tx_ring)
761{
762 struct igbvf_adapter *adapter = tx_ring->adapter;
763 struct e1000_hw *hw = &adapter->hw;
764 struct net_device *netdev = adapter->netdev;
765 struct igbvf_buffer *buffer_info;
766 struct sk_buff *skb;
767 union e1000_adv_tx_desc *tx_desc, *eop_desc;
768 unsigned int total_bytes = 0, total_packets = 0;
769 unsigned int i, eop, count = 0;
770 bool cleaned = false;
771
772 i = tx_ring->next_to_clean;
773 eop = tx_ring->buffer_info[i].next_to_watch;
774 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
775
776 while ((eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)) &&
777 (count < tx_ring->count)) {
778 for (cleaned = false; !cleaned; count++) {
779 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
780 buffer_info = &tx_ring->buffer_info[i];
781 cleaned = (i == eop);
782 skb = buffer_info->skb;
783
784 if (skb) {
785 unsigned int segs, bytecount;
786
787 /* gso_segs is currently only valid for tcp */
788 segs = skb_shinfo(skb)->gso_segs ?: 1;
789 /* multiply data chunks by size of headers */
790 bytecount = ((segs - 1) * skb_headlen(skb)) +
791 skb->len;
792 total_packets += segs;
793 total_bytes += bytecount;
794 }
795
796 igbvf_put_txbuf(adapter, buffer_info);
797 tx_desc->wb.status = 0;
798
799 i++;
800 if (i == tx_ring->count)
801 i = 0;
802 }
803 eop = tx_ring->buffer_info[i].next_to_watch;
804 eop_desc = IGBVF_TX_DESC_ADV(*tx_ring, eop);
805 }
806
807 tx_ring->next_to_clean = i;
808
809 if (unlikely(count &&
810 netif_carrier_ok(netdev) &&
811 igbvf_desc_unused(tx_ring) >= IGBVF_TX_QUEUE_WAKE)) {
812 /* Make sure that anybody stopping the queue after this
813 * sees the new next_to_clean.
814 */
815 smp_mb();
816 if (netif_queue_stopped(netdev) &&
817 !(test_bit(__IGBVF_DOWN, &adapter->state))) {
818 netif_wake_queue(netdev);
819 ++adapter->restart_queue;
820 }
821 }
822
823 if (adapter->detect_tx_hung) {
824 /* Detect a transmit hang in hardware, this serializes the
825 * check with the clearing of time_stamp and movement of i */
826 adapter->detect_tx_hung = false;
827 if (tx_ring->buffer_info[i].time_stamp &&
828 time_after(jiffies, tx_ring->buffer_info[i].time_stamp +
829 (adapter->tx_timeout_factor * HZ))
830 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
831
832 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
833 /* detected Tx unit hang */
834 igbvf_print_tx_hang(adapter);
835
836 netif_stop_queue(netdev);
837 }
838 }
839 adapter->net_stats.tx_bytes += total_bytes;
840 adapter->net_stats.tx_packets += total_packets;
841 return (count < tx_ring->count);
842}
843
844static irqreturn_t igbvf_msix_other(int irq, void *data)
845{
846 struct net_device *netdev = data;
847 struct igbvf_adapter *adapter = netdev_priv(netdev);
848 struct e1000_hw *hw = &adapter->hw;
849
850 adapter->int_counter1++;
851
852 netif_carrier_off(netdev);
853 hw->mac.get_link_status = 1;
854 if (!test_bit(__IGBVF_DOWN, &adapter->state))
855 mod_timer(&adapter->watchdog_timer, jiffies + 1);
856
857 ew32(EIMS, adapter->eims_other);
858
859 return IRQ_HANDLED;
860}
861
862static irqreturn_t igbvf_intr_msix_tx(int irq, void *data)
863{
864 struct net_device *netdev = data;
865 struct igbvf_adapter *adapter = netdev_priv(netdev);
866 struct e1000_hw *hw = &adapter->hw;
867 struct igbvf_ring *tx_ring = adapter->tx_ring;
868
869
870 adapter->total_tx_bytes = 0;
871 adapter->total_tx_packets = 0;
872
873 /* auto mask will automatically reenable the interrupt when we write
874 * EICS */
875 if (!igbvf_clean_tx_irq(tx_ring))
876 /* Ring was not completely cleaned, so fire another interrupt */
877 ew32(EICS, tx_ring->eims_value);
878 else
879 ew32(EIMS, tx_ring->eims_value);
880
881 return IRQ_HANDLED;
882}
883
884static irqreturn_t igbvf_intr_msix_rx(int irq, void *data)
885{
886 struct net_device *netdev = data;
887 struct igbvf_adapter *adapter = netdev_priv(netdev);
888
889 adapter->int_counter0++;
890
891 /* Write the ITR value calculated at the end of the
892 * previous interrupt.
893 */
894 if (adapter->rx_ring->set_itr) {
895 writel(adapter->rx_ring->itr_val,
896 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
897 adapter->rx_ring->set_itr = 0;
898 }
899
900 if (napi_schedule_prep(&adapter->rx_ring->napi)) {
901 adapter->total_rx_bytes = 0;
902 adapter->total_rx_packets = 0;
903 __napi_schedule(&adapter->rx_ring->napi);
904 }
905
906 return IRQ_HANDLED;
907}
908
909#define IGBVF_NO_QUEUE -1
910
911static void igbvf_assign_vector(struct igbvf_adapter *adapter, int rx_queue,
912 int tx_queue, int msix_vector)
913{
914 struct e1000_hw *hw = &adapter->hw;
915 u32 ivar, index;
916
917 /* 82576 uses a table-based method for assigning vectors.
918 Each queue has a single entry in the table to which we write
919 a vector number along with a "valid" bit. Sadly, the layout
920 of the table is somewhat counterintuitive. */
921 if (rx_queue > IGBVF_NO_QUEUE) {
922 index = (rx_queue >> 1);
923 ivar = array_er32(IVAR0, index);
924 if (rx_queue & 0x1) {
925 /* vector goes into third byte of register */
926 ivar = ivar & 0xFF00FFFF;
927 ivar |= (msix_vector | E1000_IVAR_VALID) << 16;
928 } else {
929 /* vector goes into low byte of register */
930 ivar = ivar & 0xFFFFFF00;
931 ivar |= msix_vector | E1000_IVAR_VALID;
932 }
933 adapter->rx_ring[rx_queue].eims_value = 1 << msix_vector;
934 array_ew32(IVAR0, index, ivar);
935 }
936 if (tx_queue > IGBVF_NO_QUEUE) {
937 index = (tx_queue >> 1);
938 ivar = array_er32(IVAR0, index);
939 if (tx_queue & 0x1) {
940 /* vector goes into high byte of register */
941 ivar = ivar & 0x00FFFFFF;
942 ivar |= (msix_vector | E1000_IVAR_VALID) << 24;
943 } else {
944 /* vector goes into second byte of register */
945 ivar = ivar & 0xFFFF00FF;
946 ivar |= (msix_vector | E1000_IVAR_VALID) << 8;
947 }
948 adapter->tx_ring[tx_queue].eims_value = 1 << msix_vector;
949 array_ew32(IVAR0, index, ivar);
950 }
951}
952
953/**
954 * igbvf_configure_msix - Configure MSI-X hardware
955 *
956 * igbvf_configure_msix sets up the hardware to properly
957 * generate MSI-X interrupts.
958 **/
959static void igbvf_configure_msix(struct igbvf_adapter *adapter)
960{
961 u32 tmp;
962 struct e1000_hw *hw = &adapter->hw;
963 struct igbvf_ring *tx_ring = adapter->tx_ring;
964 struct igbvf_ring *rx_ring = adapter->rx_ring;
965 int vector = 0;
966
967 adapter->eims_enable_mask = 0;
968
969 igbvf_assign_vector(adapter, IGBVF_NO_QUEUE, 0, vector++);
970 adapter->eims_enable_mask |= tx_ring->eims_value;
971 if (tx_ring->itr_val)
972 writel(tx_ring->itr_val,
973 hw->hw_addr + tx_ring->itr_register);
974 else
975 writel(1952, hw->hw_addr + tx_ring->itr_register);
976
977 igbvf_assign_vector(adapter, 0, IGBVF_NO_QUEUE, vector++);
978 adapter->eims_enable_mask |= rx_ring->eims_value;
979 if (rx_ring->itr_val)
980 writel(rx_ring->itr_val,
981 hw->hw_addr + rx_ring->itr_register);
982 else
983 writel(1952, hw->hw_addr + rx_ring->itr_register);
984
985 /* set vector for other causes, i.e. link changes */
986
987 tmp = (vector++ | E1000_IVAR_VALID);
988
989 ew32(IVAR_MISC, tmp);
990
991 adapter->eims_enable_mask = (1 << (vector)) - 1;
992 adapter->eims_other = 1 << (vector - 1);
993 e1e_flush();
994}
995
996static void igbvf_reset_interrupt_capability(struct igbvf_adapter *adapter)
997{
998 if (adapter->msix_entries) {
999 pci_disable_msix(adapter->pdev);
1000 kfree(adapter->msix_entries);
1001 adapter->msix_entries = NULL;
1002 }
1003}
1004
1005/**
1006 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
1007 *
1008 * Attempt to configure interrupts using the best available
1009 * capabilities of the hardware and kernel.
1010 **/
1011static void igbvf_set_interrupt_capability(struct igbvf_adapter *adapter)
1012{
1013 int err = -ENOMEM;
1014 int i;
1015
1016 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
1017 adapter->msix_entries = kcalloc(3, sizeof(struct msix_entry),
1018 GFP_KERNEL);
1019 if (adapter->msix_entries) {
1020 for (i = 0; i < 3; i++)
1021 adapter->msix_entries[i].entry = i;
1022
1023 err = pci_enable_msix(adapter->pdev,
1024 adapter->msix_entries, 3);
1025 }
1026
1027 if (err) {
1028 /* MSI-X failed */
1029 dev_err(&adapter->pdev->dev,
1030 "Failed to initialize MSI-X interrupts.\n");
1031 igbvf_reset_interrupt_capability(adapter);
1032 }
1033}
1034
1035/**
1036 * igbvf_request_msix - Initialize MSI-X interrupts
1037 *
1038 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1039 * kernel.
1040 **/
1041static int igbvf_request_msix(struct igbvf_adapter *adapter)
1042{
1043 struct net_device *netdev = adapter->netdev;
1044 int err = 0, vector = 0;
1045
1046 if (strlen(netdev->name) < (IFNAMSIZ - 5)) {
1047 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1048 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1049 } else {
1050 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1051 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1052 }
1053
1054 err = request_irq(adapter->msix_entries[vector].vector,
1055 &igbvf_intr_msix_tx, 0, adapter->tx_ring->name,
1056 netdev);
1057 if (err)
1058 goto out;
1059
1060 adapter->tx_ring->itr_register = E1000_EITR(vector);
1061 adapter->tx_ring->itr_val = 1952;
1062 vector++;
1063
1064 err = request_irq(adapter->msix_entries[vector].vector,
1065 &igbvf_intr_msix_rx, 0, adapter->rx_ring->name,
1066 netdev);
1067 if (err)
1068 goto out;
1069
1070 adapter->rx_ring->itr_register = E1000_EITR(vector);
1071 adapter->rx_ring->itr_val = 1952;
1072 vector++;
1073
1074 err = request_irq(adapter->msix_entries[vector].vector,
1075 &igbvf_msix_other, 0, netdev->name, netdev);
1076 if (err)
1077 goto out;
1078
1079 igbvf_configure_msix(adapter);
1080 return 0;
1081out:
1082 return err;
1083}
1084
1085/**
1086 * igbvf_alloc_queues - Allocate memory for all rings
1087 * @adapter: board private structure to initialize
1088 **/
1089static int __devinit igbvf_alloc_queues(struct igbvf_adapter *adapter)
1090{
1091 struct net_device *netdev = adapter->netdev;
1092
1093 adapter->tx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1094 if (!adapter->tx_ring)
1095 return -ENOMEM;
1096
1097 adapter->rx_ring = kzalloc(sizeof(struct igbvf_ring), GFP_KERNEL);
1098 if (!adapter->rx_ring) {
1099 kfree(adapter->tx_ring);
1100 return -ENOMEM;
1101 }
1102
1103 netif_napi_add(netdev, &adapter->rx_ring->napi, igbvf_poll, 64);
1104
1105 return 0;
1106}
1107
1108/**
1109 * igbvf_request_irq - initialize interrupts
1110 *
1111 * Attempts to configure interrupts using the best available
1112 * capabilities of the hardware and kernel.
1113 **/
1114static int igbvf_request_irq(struct igbvf_adapter *adapter)
1115{
1116 int err = -1;
1117
1118 /* igbvf supports msi-x only */
1119 if (adapter->msix_entries)
1120 err = igbvf_request_msix(adapter);
1121
1122 if (!err)
1123 return err;
1124
1125 dev_err(&adapter->pdev->dev,
1126 "Unable to allocate interrupt, Error: %d\n", err);
1127
1128 return err;
1129}
1130
1131static void igbvf_free_irq(struct igbvf_adapter *adapter)
1132{
1133 struct net_device *netdev = adapter->netdev;
1134 int vector;
1135
1136 if (adapter->msix_entries) {
1137 for (vector = 0; vector < 3; vector++)
1138 free_irq(adapter->msix_entries[vector].vector, netdev);
1139 }
1140}
1141
1142/**
1143 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1144 **/
1145static void igbvf_irq_disable(struct igbvf_adapter *adapter)
1146{
1147 struct e1000_hw *hw = &adapter->hw;
1148
1149 ew32(EIMC, ~0);
1150
1151 if (adapter->msix_entries)
1152 ew32(EIAC, 0);
1153}
1154
1155/**
1156 * igbvf_irq_enable - Enable default interrupt generation settings
1157 **/
1158static void igbvf_irq_enable(struct igbvf_adapter *adapter)
1159{
1160 struct e1000_hw *hw = &adapter->hw;
1161
1162 ew32(EIAC, adapter->eims_enable_mask);
1163 ew32(EIAM, adapter->eims_enable_mask);
1164 ew32(EIMS, adapter->eims_enable_mask);
1165}
1166
1167/**
1168 * igbvf_poll - NAPI Rx polling callback
1169 * @napi: struct associated with this polling callback
1170 * @budget: amount of packets driver is allowed to process this poll
1171 **/
1172static int igbvf_poll(struct napi_struct *napi, int budget)
1173{
1174 struct igbvf_ring *rx_ring = container_of(napi, struct igbvf_ring, napi);
1175 struct igbvf_adapter *adapter = rx_ring->adapter;
1176 struct e1000_hw *hw = &adapter->hw;
1177 int work_done = 0;
1178
1179 igbvf_clean_rx_irq(adapter, &work_done, budget);
1180
1181 /* If not enough Rx work done, exit the polling mode */
1182 if (work_done < budget) {
1183 napi_complete(napi);
1184
1185 if (adapter->itr_setting & 3)
1186 igbvf_set_itr(adapter);
1187
1188 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1189 ew32(EIMS, adapter->rx_ring->eims_value);
1190 }
1191
1192 return work_done;
1193}
1194
1195/**
1196 * igbvf_set_rlpml - set receive large packet maximum length
1197 * @adapter: board private structure
1198 *
1199 * Configure the maximum size of packets that will be received
1200 */
1201static void igbvf_set_rlpml(struct igbvf_adapter *adapter)
1202{
1203 int max_frame_size = adapter->max_frame_size;
1204 struct e1000_hw *hw = &adapter->hw;
1205
1206 if (adapter->vlgrp)
1207 max_frame_size += VLAN_TAG_SIZE;
1208
1209 e1000_rlpml_set_vf(hw, max_frame_size);
1210}
1211
1212static void igbvf_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
1213{
1214 struct igbvf_adapter *adapter = netdev_priv(netdev);
1215 struct e1000_hw *hw = &adapter->hw;
1216
1217 if (hw->mac.ops.set_vfta(hw, vid, true))
1218 dev_err(&adapter->pdev->dev, "Failed to add vlan id %d\n", vid);
1219}
1220
1221static void igbvf_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
1222{
1223 struct igbvf_adapter *adapter = netdev_priv(netdev);
1224 struct e1000_hw *hw = &adapter->hw;
1225
1226 igbvf_irq_disable(adapter);
1227 vlan_group_set_device(adapter->vlgrp, vid, NULL);
1228
1229 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1230 igbvf_irq_enable(adapter);
1231
1232 if (hw->mac.ops.set_vfta(hw, vid, false))
1233 dev_err(&adapter->pdev->dev,
1234 "Failed to remove vlan id %d\n", vid);
1235}
1236
1237static void igbvf_vlan_rx_register(struct net_device *netdev,
1238 struct vlan_group *grp)
1239{
1240 struct igbvf_adapter *adapter = netdev_priv(netdev);
1241
1242 adapter->vlgrp = grp;
1243}
1244
1245static void igbvf_restore_vlan(struct igbvf_adapter *adapter)
1246{
1247 u16 vid;
1248
1249 if (!adapter->vlgrp)
1250 return;
1251
1252 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
1253 if (!vlan_group_get_device(adapter->vlgrp, vid))
1254 continue;
1255 igbvf_vlan_rx_add_vid(adapter->netdev, vid);
1256 }
1257
1258 igbvf_set_rlpml(adapter);
1259}
1260
1261/**
1262 * igbvf_configure_tx - Configure Transmit Unit after Reset
1263 * @adapter: board private structure
1264 *
1265 * Configure the Tx unit of the MAC after a reset.
1266 **/
1267static void igbvf_configure_tx(struct igbvf_adapter *adapter)
1268{
1269 struct e1000_hw *hw = &adapter->hw;
1270 struct igbvf_ring *tx_ring = adapter->tx_ring;
1271 u64 tdba;
1272 u32 txdctl, dca_txctrl;
1273
1274 /* disable transmits */
1275 txdctl = er32(TXDCTL(0));
1276 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1277 msleep(10);
1278
1279 /* Setup the HW Tx Head and Tail descriptor pointers */
1280 ew32(TDLEN(0), tx_ring->count * sizeof(union e1000_adv_tx_desc));
1281 tdba = tx_ring->dma;
1282 ew32(TDBAL(0), (tdba & DMA_32BIT_MASK));
1283 ew32(TDBAH(0), (tdba >> 32));
1284 ew32(TDH(0), 0);
1285 ew32(TDT(0), 0);
1286 tx_ring->head = E1000_TDH(0);
1287 tx_ring->tail = E1000_TDT(0);
1288
1289 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1290 * MUST be delivered in order or it will completely screw up
1291 * our bookeeping.
1292 */
1293 dca_txctrl = er32(DCA_TXCTRL(0));
1294 dca_txctrl &= ~E1000_DCA_TXCTRL_TX_WB_RO_EN;
1295 ew32(DCA_TXCTRL(0), dca_txctrl);
1296
1297 /* enable transmits */
1298 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
1299 ew32(TXDCTL(0), txdctl);
1300
1301 /* Setup Transmit Descriptor Settings for eop descriptor */
1302 adapter->txd_cmd = E1000_ADVTXD_DCMD_EOP | E1000_ADVTXD_DCMD_IFCS;
1303
1304 /* enable Report Status bit */
1305 adapter->txd_cmd |= E1000_ADVTXD_DCMD_RS;
1306
1307 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
1308}
1309
1310/**
1311 * igbvf_setup_srrctl - configure the receive control registers
1312 * @adapter: Board private structure
1313 **/
1314static void igbvf_setup_srrctl(struct igbvf_adapter *adapter)
1315{
1316 struct e1000_hw *hw = &adapter->hw;
1317 u32 srrctl = 0;
1318
1319 srrctl &= ~(E1000_SRRCTL_DESCTYPE_MASK |
1320 E1000_SRRCTL_BSIZEHDR_MASK |
1321 E1000_SRRCTL_BSIZEPKT_MASK);
1322
1323 /* Enable queue drop to avoid head of line blocking */
1324 srrctl |= E1000_SRRCTL_DROP_EN;
1325
1326 /* Setup buffer sizes */
1327 srrctl |= ALIGN(adapter->rx_buffer_len, 1024) >>
1328 E1000_SRRCTL_BSIZEPKT_SHIFT;
1329
1330 if (adapter->rx_buffer_len < 2048) {
1331 adapter->rx_ps_hdr_size = 0;
1332 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
1333 } else {
1334 adapter->rx_ps_hdr_size = 128;
1335 srrctl |= adapter->rx_ps_hdr_size <<
1336 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
1337 srrctl |= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS;
1338 }
1339
1340 ew32(SRRCTL(0), srrctl);
1341}
1342
1343/**
1344 * igbvf_configure_rx - Configure Receive Unit after Reset
1345 * @adapter: board private structure
1346 *
1347 * Configure the Rx unit of the MAC after a reset.
1348 **/
1349static void igbvf_configure_rx(struct igbvf_adapter *adapter)
1350{
1351 struct e1000_hw *hw = &adapter->hw;
1352 struct igbvf_ring *rx_ring = adapter->rx_ring;
1353 u64 rdba;
1354 u32 rdlen, rxdctl;
1355
1356 /* disable receives */
1357 rxdctl = er32(RXDCTL(0));
1358 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1359 msleep(10);
1360
1361 rdlen = rx_ring->count * sizeof(union e1000_adv_rx_desc);
1362
1363 /*
1364 * Setup the HW Rx Head and Tail Descriptor Pointers and
1365 * the Base and Length of the Rx Descriptor Ring
1366 */
1367 rdba = rx_ring->dma;
1368 ew32(RDBAL(0), (rdba & DMA_32BIT_MASK));
1369 ew32(RDBAH(0), (rdba >> 32));
1370 ew32(RDLEN(0), rx_ring->count * sizeof(union e1000_adv_rx_desc));
1371 rx_ring->head = E1000_RDH(0);
1372 rx_ring->tail = E1000_RDT(0);
1373 ew32(RDH(0), 0);
1374 ew32(RDT(0), 0);
1375
1376 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
1377 rxdctl &= 0xFFF00000;
1378 rxdctl |= IGBVF_RX_PTHRESH;
1379 rxdctl |= IGBVF_RX_HTHRESH << 8;
1380 rxdctl |= IGBVF_RX_WTHRESH << 16;
1381
1382 igbvf_set_rlpml(adapter);
1383
1384 /* enable receives */
1385 ew32(RXDCTL(0), rxdctl);
1386}
1387
1388/**
1389 * igbvf_set_multi - Multicast and Promiscuous mode set
1390 * @netdev: network interface device structure
1391 *
1392 * The set_multi entry point is called whenever the multicast address
1393 * list or the network interface flags are updated. This routine is
1394 * responsible for configuring the hardware for proper multicast,
1395 * promiscuous mode, and all-multi behavior.
1396 **/
1397static void igbvf_set_multi(struct net_device *netdev)
1398{
1399 struct igbvf_adapter *adapter = netdev_priv(netdev);
1400 struct e1000_hw *hw = &adapter->hw;
1401 struct dev_mc_list *mc_ptr;
1402 u8 *mta_list = NULL;
1403 int i;
1404
1405 if (netdev->mc_count) {
1406 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
1407 if (!mta_list) {
1408 dev_err(&adapter->pdev->dev,
1409 "failed to allocate multicast filter list\n");
1410 return;
1411 }
1412 }
1413
1414 /* prepare a packed array of only addresses. */
1415 mc_ptr = netdev->mc_list;
1416
1417 for (i = 0; i < netdev->mc_count; i++) {
1418 if (!mc_ptr)
1419 break;
1420 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
1421 ETH_ALEN);
1422 mc_ptr = mc_ptr->next;
1423 }
1424
1425 hw->mac.ops.update_mc_addr_list(hw, mta_list, i, 0, 0);
1426 kfree(mta_list);
1427}
1428
1429/**
1430 * igbvf_configure - configure the hardware for Rx and Tx
1431 * @adapter: private board structure
1432 **/
1433static void igbvf_configure(struct igbvf_adapter *adapter)
1434{
1435 igbvf_set_multi(adapter->netdev);
1436
1437 igbvf_restore_vlan(adapter);
1438
1439 igbvf_configure_tx(adapter);
1440 igbvf_setup_srrctl(adapter);
1441 igbvf_configure_rx(adapter);
1442 igbvf_alloc_rx_buffers(adapter->rx_ring,
1443 igbvf_desc_unused(adapter->rx_ring));
1444}
1445
1446/* igbvf_reset - bring the hardware into a known good state
1447 *
1448 * This function boots the hardware and enables some settings that
1449 * require a configuration cycle of the hardware - those cannot be
1450 * set/changed during runtime. After reset the device needs to be
1451 * properly configured for Rx, Tx etc.
1452 */
1453static void igbvf_reset(struct igbvf_adapter *adapter)
1454{
1455 struct e1000_mac_info *mac = &adapter->hw.mac;
1456 struct net_device *netdev = adapter->netdev;
1457 struct e1000_hw *hw = &adapter->hw;
1458
1459 /* Allow time for pending master requests to run */
1460 if (mac->ops.reset_hw(hw))
1461 dev_err(&adapter->pdev->dev, "PF still resetting\n");
1462
1463 mac->ops.init_hw(hw);
1464
1465 if (is_valid_ether_addr(adapter->hw.mac.addr)) {
1466 memcpy(netdev->dev_addr, adapter->hw.mac.addr,
1467 netdev->addr_len);
1468 memcpy(netdev->perm_addr, adapter->hw.mac.addr,
1469 netdev->addr_len);
1470 }
1471}
1472
1473int igbvf_up(struct igbvf_adapter *adapter)
1474{
1475 struct e1000_hw *hw = &adapter->hw;
1476
1477 /* hardware has been reset, we need to reload some things */
1478 igbvf_configure(adapter);
1479
1480 clear_bit(__IGBVF_DOWN, &adapter->state);
1481
1482 napi_enable(&adapter->rx_ring->napi);
1483 if (adapter->msix_entries)
1484 igbvf_configure_msix(adapter);
1485
1486 /* Clear any pending interrupts. */
1487 er32(EICR);
1488 igbvf_irq_enable(adapter);
1489
1490 /* start the watchdog */
1491 hw->mac.get_link_status = 1;
1492 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1493
1494
1495 return 0;
1496}
1497
1498void igbvf_down(struct igbvf_adapter *adapter)
1499{
1500 struct net_device *netdev = adapter->netdev;
1501 struct e1000_hw *hw = &adapter->hw;
1502 u32 rxdctl, txdctl;
1503
1504 /*
1505 * signal that we're down so the interrupt handler does not
1506 * reschedule our watchdog timer
1507 */
1508 set_bit(__IGBVF_DOWN, &adapter->state);
1509
1510 /* disable receives in the hardware */
1511 rxdctl = er32(RXDCTL(0));
1512 ew32(RXDCTL(0), rxdctl & ~E1000_RXDCTL_QUEUE_ENABLE);
1513
1514 netif_stop_queue(netdev);
1515
1516 /* disable transmits in the hardware */
1517 txdctl = er32(TXDCTL(0));
1518 ew32(TXDCTL(0), txdctl & ~E1000_TXDCTL_QUEUE_ENABLE);
1519
1520 /* flush both disables and wait for them to finish */
1521 e1e_flush();
1522 msleep(10);
1523
1524 napi_disable(&adapter->rx_ring->napi);
1525
1526 igbvf_irq_disable(adapter);
1527
1528 del_timer_sync(&adapter->watchdog_timer);
1529
1530 netdev->tx_queue_len = adapter->tx_queue_len;
1531 netif_carrier_off(netdev);
1532
1533 /* record the stats before reset*/
1534 igbvf_update_stats(adapter);
1535
1536 adapter->link_speed = 0;
1537 adapter->link_duplex = 0;
1538
1539 igbvf_reset(adapter);
1540 igbvf_clean_tx_ring(adapter->tx_ring);
1541 igbvf_clean_rx_ring(adapter->rx_ring);
1542}
1543
1544void igbvf_reinit_locked(struct igbvf_adapter *adapter)
1545{
1546 might_sleep();
1547 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
1548 msleep(1);
1549 igbvf_down(adapter);
1550 igbvf_up(adapter);
1551 clear_bit(__IGBVF_RESETTING, &adapter->state);
1552}
1553
1554/**
1555 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1556 * @adapter: board private structure to initialize
1557 *
1558 * igbvf_sw_init initializes the Adapter private data structure.
1559 * Fields are initialized based on PCI device information and
1560 * OS network device settings (MTU size).
1561 **/
1562static int __devinit igbvf_sw_init(struct igbvf_adapter *adapter)
1563{
1564 struct net_device *netdev = adapter->netdev;
1565 s32 rc;
1566
1567 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
1568 adapter->rx_ps_hdr_size = 0;
1569 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
1570 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
1571
1572 adapter->tx_int_delay = 8;
1573 adapter->tx_abs_int_delay = 32;
1574 adapter->rx_int_delay = 0;
1575 adapter->rx_abs_int_delay = 8;
1576 adapter->itr_setting = 3;
1577 adapter->itr = 20000;
1578
1579 /* Set various function pointers */
1580 adapter->ei->init_ops(&adapter->hw);
1581
1582 rc = adapter->hw.mac.ops.init_params(&adapter->hw);
1583 if (rc)
1584 return rc;
1585
1586 rc = adapter->hw.mbx.ops.init_params(&adapter->hw);
1587 if (rc)
1588 return rc;
1589
1590 igbvf_set_interrupt_capability(adapter);
1591
1592 if (igbvf_alloc_queues(adapter))
1593 return -ENOMEM;
1594
1595 spin_lock_init(&adapter->tx_queue_lock);
1596
1597 /* Explicitly disable IRQ since the NIC can be in any state. */
1598 igbvf_irq_disable(adapter);
1599
1600 spin_lock_init(&adapter->stats_lock);
1601
1602 set_bit(__IGBVF_DOWN, &adapter->state);
1603 return 0;
1604}
1605
1606static void igbvf_initialize_last_counter_stats(struct igbvf_adapter *adapter)
1607{
1608 struct e1000_hw *hw = &adapter->hw;
1609
1610 adapter->stats.last_gprc = er32(VFGPRC);
1611 adapter->stats.last_gorc = er32(VFGORC);
1612 adapter->stats.last_gptc = er32(VFGPTC);
1613 adapter->stats.last_gotc = er32(VFGOTC);
1614 adapter->stats.last_mprc = er32(VFMPRC);
1615 adapter->stats.last_gotlbc = er32(VFGOTLBC);
1616 adapter->stats.last_gptlbc = er32(VFGPTLBC);
1617 adapter->stats.last_gorlbc = er32(VFGORLBC);
1618 adapter->stats.last_gprlbc = er32(VFGPRLBC);
1619
1620 adapter->stats.base_gprc = er32(VFGPRC);
1621 adapter->stats.base_gorc = er32(VFGORC);
1622 adapter->stats.base_gptc = er32(VFGPTC);
1623 adapter->stats.base_gotc = er32(VFGOTC);
1624 adapter->stats.base_mprc = er32(VFMPRC);
1625 adapter->stats.base_gotlbc = er32(VFGOTLBC);
1626 adapter->stats.base_gptlbc = er32(VFGPTLBC);
1627 adapter->stats.base_gorlbc = er32(VFGORLBC);
1628 adapter->stats.base_gprlbc = er32(VFGPRLBC);
1629}
1630
1631/**
1632 * igbvf_open - Called when a network interface is made active
1633 * @netdev: network interface device structure
1634 *
1635 * Returns 0 on success, negative value on failure
1636 *
1637 * The open entry point is called when a network interface is made
1638 * active by the system (IFF_UP). At this point all resources needed
1639 * for transmit and receive operations are allocated, the interrupt
1640 * handler is registered with the OS, the watchdog timer is started,
1641 * and the stack is notified that the interface is ready.
1642 **/
1643static int igbvf_open(struct net_device *netdev)
1644{
1645 struct igbvf_adapter *adapter = netdev_priv(netdev);
1646 struct e1000_hw *hw = &adapter->hw;
1647 int err;
1648
1649 /* disallow open during test */
1650 if (test_bit(__IGBVF_TESTING, &adapter->state))
1651 return -EBUSY;
1652
1653 /* allocate transmit descriptors */
1654 err = igbvf_setup_tx_resources(adapter, adapter->tx_ring);
1655 if (err)
1656 goto err_setup_tx;
1657
1658 /* allocate receive descriptors */
1659 err = igbvf_setup_rx_resources(adapter, adapter->rx_ring);
1660 if (err)
1661 goto err_setup_rx;
1662
1663 /*
1664 * before we allocate an interrupt, we must be ready to handle it.
1665 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1666 * as soon as we call pci_request_irq, so we have to setup our
1667 * clean_rx handler before we do so.
1668 */
1669 igbvf_configure(adapter);
1670
1671 err = igbvf_request_irq(adapter);
1672 if (err)
1673 goto err_req_irq;
1674
1675 /* From here on the code is the same as igbvf_up() */
1676 clear_bit(__IGBVF_DOWN, &adapter->state);
1677
1678 napi_enable(&adapter->rx_ring->napi);
1679
1680 /* clear any pending interrupts */
1681 er32(EICR);
1682
1683 igbvf_irq_enable(adapter);
1684
1685 /* start the watchdog */
1686 hw->mac.get_link_status = 1;
1687 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1688
1689 return 0;
1690
1691err_req_irq:
1692 igbvf_free_rx_resources(adapter->rx_ring);
1693err_setup_rx:
1694 igbvf_free_tx_resources(adapter->tx_ring);
1695err_setup_tx:
1696 igbvf_reset(adapter);
1697
1698 return err;
1699}
1700
1701/**
1702 * igbvf_close - Disables a network interface
1703 * @netdev: network interface device structure
1704 *
1705 * Returns 0, this is not allowed to fail
1706 *
1707 * The close entry point is called when an interface is de-activated
1708 * by the OS. The hardware is still under the drivers control, but
1709 * needs to be disabled. A global MAC reset is issued to stop the
1710 * hardware, and all transmit and receive resources are freed.
1711 **/
1712static int igbvf_close(struct net_device *netdev)
1713{
1714 struct igbvf_adapter *adapter = netdev_priv(netdev);
1715
1716 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
1717 igbvf_down(adapter);
1718
1719 igbvf_free_irq(adapter);
1720
1721 igbvf_free_tx_resources(adapter->tx_ring);
1722 igbvf_free_rx_resources(adapter->rx_ring);
1723
1724 return 0;
1725}
1726/**
1727 * igbvf_set_mac - Change the Ethernet Address of the NIC
1728 * @netdev: network interface device structure
1729 * @p: pointer to an address structure
1730 *
1731 * Returns 0 on success, negative on failure
1732 **/
1733static int igbvf_set_mac(struct net_device *netdev, void *p)
1734{
1735 struct igbvf_adapter *adapter = netdev_priv(netdev);
1736 struct e1000_hw *hw = &adapter->hw;
1737 struct sockaddr *addr = p;
1738
1739 if (!is_valid_ether_addr(addr->sa_data))
1740 return -EADDRNOTAVAIL;
1741
1742 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
1743
1744 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
1745
1746 if (memcmp(addr->sa_data, hw->mac.addr, 6))
1747 return -EADDRNOTAVAIL;
1748
1749 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1750
1751 return 0;
1752}
1753
1754#define UPDATE_VF_COUNTER(reg, name) \
1755 { \
1756 u32 current_counter = er32(reg); \
1757 if (current_counter < adapter->stats.last_##name) \
1758 adapter->stats.name += 0x100000000LL; \
1759 adapter->stats.last_##name = current_counter; \
1760 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1761 adapter->stats.name |= current_counter; \
1762 }
1763
1764/**
1765 * igbvf_update_stats - Update the board statistics counters
1766 * @adapter: board private structure
1767**/
1768void igbvf_update_stats(struct igbvf_adapter *adapter)
1769{
1770 struct e1000_hw *hw = &adapter->hw;
1771 struct pci_dev *pdev = adapter->pdev;
1772
1773 /*
1774 * Prevent stats update while adapter is being reset, link is down
1775 * or if the pci connection is down.
1776 */
1777 if (adapter->link_speed == 0)
1778 return;
1779
1780 if (test_bit(__IGBVF_RESETTING, &adapter->state))
1781 return;
1782
1783 if (pci_channel_offline(pdev))
1784 return;
1785
1786 UPDATE_VF_COUNTER(VFGPRC, gprc);
1787 UPDATE_VF_COUNTER(VFGORC, gorc);
1788 UPDATE_VF_COUNTER(VFGPTC, gptc);
1789 UPDATE_VF_COUNTER(VFGOTC, gotc);
1790 UPDATE_VF_COUNTER(VFMPRC, mprc);
1791 UPDATE_VF_COUNTER(VFGOTLBC, gotlbc);
1792 UPDATE_VF_COUNTER(VFGPTLBC, gptlbc);
1793 UPDATE_VF_COUNTER(VFGORLBC, gorlbc);
1794 UPDATE_VF_COUNTER(VFGPRLBC, gprlbc);
1795
1796 /* Fill out the OS statistics structure */
1797 adapter->net_stats.multicast = adapter->stats.mprc;
1798}
1799
1800static void igbvf_print_link_info(struct igbvf_adapter *adapter)
1801{
1802 dev_info(&adapter->pdev->dev, "Link is Up %d Mbps %s\n",
1803 adapter->link_speed,
1804 ((adapter->link_duplex == FULL_DUPLEX) ?
1805 "Full Duplex" : "Half Duplex"));
1806}
1807
1808static bool igbvf_has_link(struct igbvf_adapter *adapter)
1809{
1810 struct e1000_hw *hw = &adapter->hw;
1811 s32 ret_val = E1000_SUCCESS;
1812 bool link_active;
1813
1814 ret_val = hw->mac.ops.check_for_link(hw);
1815 link_active = !hw->mac.get_link_status;
1816
1817 /* if check for link returns error we will need to reset */
1818 if (ret_val)
1819 schedule_work(&adapter->reset_task);
1820
1821 return link_active;
1822}
1823
1824/**
1825 * igbvf_watchdog - Timer Call-back
1826 * @data: pointer to adapter cast into an unsigned long
1827 **/
1828static void igbvf_watchdog(unsigned long data)
1829{
1830 struct igbvf_adapter *adapter = (struct igbvf_adapter *) data;
1831
1832 /* Do the rest outside of interrupt context */
1833 schedule_work(&adapter->watchdog_task);
1834}
1835
1836static void igbvf_watchdog_task(struct work_struct *work)
1837{
1838 struct igbvf_adapter *adapter = container_of(work,
1839 struct igbvf_adapter,
1840 watchdog_task);
1841 struct net_device *netdev = adapter->netdev;
1842 struct e1000_mac_info *mac = &adapter->hw.mac;
1843 struct igbvf_ring *tx_ring = adapter->tx_ring;
1844 struct e1000_hw *hw = &adapter->hw;
1845 u32 link;
1846 int tx_pending = 0;
1847
1848 link = igbvf_has_link(adapter);
1849
1850 if (link) {
1851 if (!netif_carrier_ok(netdev)) {
1852 bool txb2b = 1;
1853
1854 mac->ops.get_link_up_info(&adapter->hw,
1855 &adapter->link_speed,
1856 &adapter->link_duplex);
1857 igbvf_print_link_info(adapter);
1858
1859 /*
1860 * tweak tx_queue_len according to speed/duplex
1861 * and adjust the timeout factor
1862 */
1863 netdev->tx_queue_len = adapter->tx_queue_len;
1864 adapter->tx_timeout_factor = 1;
1865 switch (adapter->link_speed) {
1866 case SPEED_10:
1867 txb2b = 0;
1868 netdev->tx_queue_len = 10;
1869 adapter->tx_timeout_factor = 16;
1870 break;
1871 case SPEED_100:
1872 txb2b = 0;
1873 netdev->tx_queue_len = 100;
1874 /* maybe add some timeout factor ? */
1875 break;
1876 }
1877
1878 netif_carrier_on(netdev);
1879 netif_wake_queue(netdev);
1880 }
1881 } else {
1882 if (netif_carrier_ok(netdev)) {
1883 adapter->link_speed = 0;
1884 adapter->link_duplex = 0;
1885 dev_info(&adapter->pdev->dev, "Link is Down\n");
1886 netif_carrier_off(netdev);
1887 netif_stop_queue(netdev);
1888 }
1889 }
1890
1891 if (netif_carrier_ok(netdev)) {
1892 igbvf_update_stats(adapter);
1893 } else {
1894 tx_pending = (igbvf_desc_unused(tx_ring) + 1 <
1895 tx_ring->count);
1896 if (tx_pending) {
1897 /*
1898 * We've lost link, so the controller stops DMA,
1899 * but we've got queued Tx work that's never going
1900 * to get done, so reset controller to flush Tx.
1901 * (Do the reset outside of interrupt context).
1902 */
1903 adapter->tx_timeout_count++;
1904 schedule_work(&adapter->reset_task);
1905 }
1906 }
1907
1908 /* Cause software interrupt to ensure Rx ring is cleaned */
1909 ew32(EICS, adapter->rx_ring->eims_value);
1910
1911 /* Force detection of hung controller every watchdog period */
1912 adapter->detect_tx_hung = 1;
1913
1914 /* Reset the timer */
1915 if (!test_bit(__IGBVF_DOWN, &adapter->state))
1916 mod_timer(&adapter->watchdog_timer,
1917 round_jiffies(jiffies + (2 * HZ)));
1918}
1919
1920#define IGBVF_TX_FLAGS_CSUM 0x00000001
1921#define IGBVF_TX_FLAGS_VLAN 0x00000002
1922#define IGBVF_TX_FLAGS_TSO 0x00000004
1923#define IGBVF_TX_FLAGS_IPV4 0x00000008
1924#define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1925#define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1926
1927static int igbvf_tso(struct igbvf_adapter *adapter,
1928 struct igbvf_ring *tx_ring,
1929 struct sk_buff *skb, u32 tx_flags, u8 *hdr_len)
1930{
1931 struct e1000_adv_tx_context_desc *context_desc;
1932 unsigned int i;
1933 int err;
1934 struct igbvf_buffer *buffer_info;
1935 u32 info = 0, tu_cmd = 0;
1936 u32 mss_l4len_idx, l4len;
1937 *hdr_len = 0;
1938
1939 if (skb_header_cloned(skb)) {
1940 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1941 if (err) {
1942 dev_err(&adapter->pdev->dev,
1943 "igbvf_tso returning an error\n");
1944 return err;
1945 }
1946 }
1947
1948 l4len = tcp_hdrlen(skb);
1949 *hdr_len += l4len;
1950
1951 if (skb->protocol == htons(ETH_P_IP)) {
1952 struct iphdr *iph = ip_hdr(skb);
1953 iph->tot_len = 0;
1954 iph->check = 0;
1955 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
1956 iph->daddr, 0,
1957 IPPROTO_TCP,
1958 0);
1959 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
1960 ipv6_hdr(skb)->payload_len = 0;
1961 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
1962 &ipv6_hdr(skb)->daddr,
1963 0, IPPROTO_TCP, 0);
1964 }
1965
1966 i = tx_ring->next_to_use;
1967
1968 buffer_info = &tx_ring->buffer_info[i];
1969 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
1970 /* VLAN MACLEN IPLEN */
1971 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
1972 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
1973 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
1974 *hdr_len += skb_network_offset(skb);
1975 info |= (skb_transport_header(skb) - skb_network_header(skb));
1976 *hdr_len += (skb_transport_header(skb) - skb_network_header(skb));
1977 context_desc->vlan_macip_lens = cpu_to_le32(info);
1978
1979 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1980 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
1981
1982 if (skb->protocol == htons(ETH_P_IP))
1983 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
1984 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
1985
1986 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
1987
1988 /* MSS L4LEN IDX */
1989 mss_l4len_idx = (skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT);
1990 mss_l4len_idx |= (l4len << E1000_ADVTXD_L4LEN_SHIFT);
1991
1992 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
1993 context_desc->seqnum_seed = 0;
1994
1995 buffer_info->time_stamp = jiffies;
1996 buffer_info->next_to_watch = i;
1997 buffer_info->dma = 0;
1998 i++;
1999 if (i == tx_ring->count)
2000 i = 0;
2001
2002 tx_ring->next_to_use = i;
2003
2004 return true;
2005}
2006
2007static inline bool igbvf_tx_csum(struct igbvf_adapter *adapter,
2008 struct igbvf_ring *tx_ring,
2009 struct sk_buff *skb, u32 tx_flags)
2010{
2011 struct e1000_adv_tx_context_desc *context_desc;
2012 unsigned int i;
2013 struct igbvf_buffer *buffer_info;
2014 u32 info = 0, tu_cmd = 0;
2015
2016 if ((skb->ip_summed == CHECKSUM_PARTIAL) ||
2017 (tx_flags & IGBVF_TX_FLAGS_VLAN)) {
2018 i = tx_ring->next_to_use;
2019 buffer_info = &tx_ring->buffer_info[i];
2020 context_desc = IGBVF_TX_CTXTDESC_ADV(*tx_ring, i);
2021
2022 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2023 info |= (tx_flags & IGBVF_TX_FLAGS_VLAN_MASK);
2024
2025 info |= (skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT);
2026 if (skb->ip_summed == CHECKSUM_PARTIAL)
2027 info |= (skb_transport_header(skb) -
2028 skb_network_header(skb));
2029
2030
2031 context_desc->vlan_macip_lens = cpu_to_le32(info);
2032
2033 tu_cmd |= (E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT);
2034
2035 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2036 switch (skb->protocol) {
2037 case __constant_htons(ETH_P_IP):
2038 tu_cmd |= E1000_ADVTXD_TUCMD_IPV4;
2039 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2040 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2041 break;
2042 case __constant_htons(ETH_P_IPV6):
2043 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2044 tu_cmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
2045 break;
2046 default:
2047 break;
2048 }
2049 }
2050
2051 context_desc->type_tucmd_mlhl = cpu_to_le32(tu_cmd);
2052 context_desc->seqnum_seed = 0;
2053 context_desc->mss_l4len_idx = 0;
2054
2055 buffer_info->time_stamp = jiffies;
2056 buffer_info->next_to_watch = i;
2057 buffer_info->dma = 0;
2058 i++;
2059 if (i == tx_ring->count)
2060 i = 0;
2061 tx_ring->next_to_use = i;
2062
2063 return true;
2064 }
2065
2066 return false;
2067}
2068
2069static int igbvf_maybe_stop_tx(struct net_device *netdev, int size)
2070{
2071 struct igbvf_adapter *adapter = netdev_priv(netdev);
2072
2073 /* there is enough descriptors then we don't need to worry */
2074 if (igbvf_desc_unused(adapter->tx_ring) >= size)
2075 return 0;
2076
2077 netif_stop_queue(netdev);
2078
2079 smp_mb();
2080
2081 /* We need to check again just in case room has been made available */
2082 if (igbvf_desc_unused(adapter->tx_ring) < size)
2083 return -EBUSY;
2084
2085 netif_wake_queue(netdev);
2086
2087 ++adapter->restart_queue;
2088 return 0;
2089}
2090
2091#define IGBVF_MAX_TXD_PWR 16
2092#define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2093
2094static inline int igbvf_tx_map_adv(struct igbvf_adapter *adapter,
2095 struct igbvf_ring *tx_ring,
2096 struct sk_buff *skb,
2097 unsigned int first)
2098{
2099 struct igbvf_buffer *buffer_info;
2100 unsigned int len = skb_headlen(skb);
2101 unsigned int count = 0, i;
2102 unsigned int f;
2103 dma_addr_t *map;
2104
2105 i = tx_ring->next_to_use;
2106
2107 if (skb_dma_map(&adapter->pdev->dev, skb, DMA_TO_DEVICE)) {
2108 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
2109 return 0;
2110 }
2111
2112 map = skb_shinfo(skb)->dma_maps;
2113
2114 buffer_info = &tx_ring->buffer_info[i];
2115 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2116 buffer_info->length = len;
2117 /* set time_stamp *before* dma to help avoid a possible race */
2118 buffer_info->time_stamp = jiffies;
2119 buffer_info->next_to_watch = i;
2120 buffer_info->dma = map[count];
2121 count++;
2122
2123 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++) {
2124 struct skb_frag_struct *frag;
2125
2126 i++;
2127 if (i == tx_ring->count)
2128 i = 0;
2129
2130 frag = &skb_shinfo(skb)->frags[f];
2131 len = frag->size;
2132
2133 buffer_info = &tx_ring->buffer_info[i];
2134 BUG_ON(len >= IGBVF_MAX_DATA_PER_TXD);
2135 buffer_info->length = len;
2136 buffer_info->time_stamp = jiffies;
2137 buffer_info->next_to_watch = i;
2138 buffer_info->dma = map[count];
2139 count++;
2140 }
2141
2142 tx_ring->buffer_info[i].skb = skb;
2143 tx_ring->buffer_info[first].next_to_watch = i;
2144
2145 return count;
2146}
2147
2148static inline void igbvf_tx_queue_adv(struct igbvf_adapter *adapter,
2149 struct igbvf_ring *tx_ring,
2150 int tx_flags, int count, u32 paylen,
2151 u8 hdr_len)
2152{
2153 union e1000_adv_tx_desc *tx_desc = NULL;
2154 struct igbvf_buffer *buffer_info;
2155 u32 olinfo_status = 0, cmd_type_len;
2156 unsigned int i;
2157
2158 cmd_type_len = (E1000_ADVTXD_DTYP_DATA | E1000_ADVTXD_DCMD_IFCS |
2159 E1000_ADVTXD_DCMD_DEXT);
2160
2161 if (tx_flags & IGBVF_TX_FLAGS_VLAN)
2162 cmd_type_len |= E1000_ADVTXD_DCMD_VLE;
2163
2164 if (tx_flags & IGBVF_TX_FLAGS_TSO) {
2165 cmd_type_len |= E1000_ADVTXD_DCMD_TSE;
2166
2167 /* insert tcp checksum */
2168 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2169
2170 /* insert ip checksum */
2171 if (tx_flags & IGBVF_TX_FLAGS_IPV4)
2172 olinfo_status |= E1000_TXD_POPTS_IXSM << 8;
2173
2174 } else if (tx_flags & IGBVF_TX_FLAGS_CSUM) {
2175 olinfo_status |= E1000_TXD_POPTS_TXSM << 8;
2176 }
2177
2178 olinfo_status |= ((paylen - hdr_len) << E1000_ADVTXD_PAYLEN_SHIFT);
2179
2180 i = tx_ring->next_to_use;
2181 while (count--) {
2182 buffer_info = &tx_ring->buffer_info[i];
2183 tx_desc = IGBVF_TX_DESC_ADV(*tx_ring, i);
2184 tx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
2185 tx_desc->read.cmd_type_len =
2186 cpu_to_le32(cmd_type_len | buffer_info->length);
2187 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2188 i++;
2189 if (i == tx_ring->count)
2190 i = 0;
2191 }
2192
2193 tx_desc->read.cmd_type_len |= cpu_to_le32(adapter->txd_cmd);
2194 /* Force memory writes to complete before letting h/w
2195 * know there are new descriptors to fetch. (Only
2196 * applicable for weak-ordered memory model archs,
2197 * such as IA-64). */
2198 wmb();
2199
2200 tx_ring->next_to_use = i;
2201 writel(i, adapter->hw.hw_addr + tx_ring->tail);
2202 /* we need this if more than one processor can write to our tail
2203 * at a time, it syncronizes IO on IA64/Altix systems */
2204 mmiowb();
2205}
2206
2207static int igbvf_xmit_frame_ring_adv(struct sk_buff *skb,
2208 struct net_device *netdev,
2209 struct igbvf_ring *tx_ring)
2210{
2211 struct igbvf_adapter *adapter = netdev_priv(netdev);
2212 unsigned int first, tx_flags = 0;
2213 u8 hdr_len = 0;
2214 int count = 0;
2215 int tso = 0;
2216
2217 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2218 dev_kfree_skb_any(skb);
2219 return NETDEV_TX_OK;
2220 }
2221
2222 if (skb->len <= 0) {
2223 dev_kfree_skb_any(skb);
2224 return NETDEV_TX_OK;
2225 }
2226
2227 /*
2228 * need: count + 4 desc gap to keep tail from touching
2229 * + 2 desc gap to keep tail from touching head,
2230 * + 1 desc for skb->data,
2231 * + 1 desc for context descriptor,
2232 * head, otherwise try next time
2233 */
2234 if (igbvf_maybe_stop_tx(netdev, skb_shinfo(skb)->nr_frags + 4)) {
2235 /* this is a hard error */
2236 return NETDEV_TX_BUSY;
2237 }
2238
2239 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
2240 tx_flags |= IGBVF_TX_FLAGS_VLAN;
2241 tx_flags |= (vlan_tx_tag_get(skb) << IGBVF_TX_FLAGS_VLAN_SHIFT);
2242 }
2243
2244 if (skb->protocol == htons(ETH_P_IP))
2245 tx_flags |= IGBVF_TX_FLAGS_IPV4;
2246
2247 first = tx_ring->next_to_use;
2248
2249 tso = skb_is_gso(skb) ?
2250 igbvf_tso(adapter, tx_ring, skb, tx_flags, &hdr_len) : 0;
2251 if (unlikely(tso < 0)) {
2252 dev_kfree_skb_any(skb);
2253 return NETDEV_TX_OK;
2254 }
2255
2256 if (tso)
2257 tx_flags |= IGBVF_TX_FLAGS_TSO;
2258 else if (igbvf_tx_csum(adapter, tx_ring, skb, tx_flags) &&
2259 (skb->ip_summed == CHECKSUM_PARTIAL))
2260 tx_flags |= IGBVF_TX_FLAGS_CSUM;
2261
2262 /*
2263 * count reflects descriptors mapped, if 0 then mapping error
2264 * has occured and we need to rewind the descriptor queue
2265 */
2266 count = igbvf_tx_map_adv(adapter, tx_ring, skb, first);
2267
2268 if (count) {
2269 igbvf_tx_queue_adv(adapter, tx_ring, tx_flags, count,
2270 skb->len, hdr_len);
2271 netdev->trans_start = jiffies;
2272 /* Make sure there is space in the ring for the next send. */
2273 igbvf_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 4);
2274 } else {
2275 dev_kfree_skb_any(skb);
2276 tx_ring->buffer_info[first].time_stamp = 0;
2277 tx_ring->next_to_use = first;
2278 }
2279
2280 return NETDEV_TX_OK;
2281}
2282
2283static int igbvf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2284{
2285 struct igbvf_adapter *adapter = netdev_priv(netdev);
2286 struct igbvf_ring *tx_ring;
2287 int retval;
2288
2289 if (test_bit(__IGBVF_DOWN, &adapter->state)) {
2290 dev_kfree_skb_any(skb);
2291 return NETDEV_TX_OK;
2292 }
2293
2294 tx_ring = &adapter->tx_ring[0];
2295
2296 retval = igbvf_xmit_frame_ring_adv(skb, netdev, tx_ring);
2297
2298 return retval;
2299}
2300
2301/**
2302 * igbvf_tx_timeout - Respond to a Tx Hang
2303 * @netdev: network interface device structure
2304 **/
2305static void igbvf_tx_timeout(struct net_device *netdev)
2306{
2307 struct igbvf_adapter *adapter = netdev_priv(netdev);
2308
2309 /* Do the reset outside of interrupt context */
2310 adapter->tx_timeout_count++;
2311 schedule_work(&adapter->reset_task);
2312}
2313
2314static void igbvf_reset_task(struct work_struct *work)
2315{
2316 struct igbvf_adapter *adapter;
2317 adapter = container_of(work, struct igbvf_adapter, reset_task);
2318
2319 igbvf_reinit_locked(adapter);
2320}
2321
2322/**
2323 * igbvf_get_stats - Get System Network Statistics
2324 * @netdev: network interface device structure
2325 *
2326 * Returns the address of the device statistics structure.
2327 * The statistics are actually updated from the timer callback.
2328 **/
2329static struct net_device_stats *igbvf_get_stats(struct net_device *netdev)
2330{
2331 struct igbvf_adapter *adapter = netdev_priv(netdev);
2332
2333 /* only return the current stats */
2334 return &adapter->net_stats;
2335}
2336
2337/**
2338 * igbvf_change_mtu - Change the Maximum Transfer Unit
2339 * @netdev: network interface device structure
2340 * @new_mtu: new value for maximum frame size
2341 *
2342 * Returns 0 on success, negative on failure
2343 **/
2344static int igbvf_change_mtu(struct net_device *netdev, int new_mtu)
2345{
2346 struct igbvf_adapter *adapter = netdev_priv(netdev);
2347 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
2348
2349 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
2350 dev_err(&adapter->pdev->dev, "Invalid MTU setting\n");
2351 return -EINVAL;
2352 }
2353
2354 /* Jumbo frame size limits */
2355 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
2356 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
2357 dev_err(&adapter->pdev->dev,
2358 "Jumbo Frames not supported.\n");
2359 return -EINVAL;
2360 }
2361 }
2362
2363#define MAX_STD_JUMBO_FRAME_SIZE 9234
2364 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
2365 dev_err(&adapter->pdev->dev, "MTU > 9216 not supported.\n");
2366 return -EINVAL;
2367 }
2368
2369 while (test_and_set_bit(__IGBVF_RESETTING, &adapter->state))
2370 msleep(1);
2371 /* igbvf_down has a dependency on max_frame_size */
2372 adapter->max_frame_size = max_frame;
2373 if (netif_running(netdev))
2374 igbvf_down(adapter);
2375
2376 /*
2377 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2378 * means we reserve 2 more, this pushes us to allocate from the next
2379 * larger slab size.
2380 * i.e. RXBUFFER_2048 --> size-4096 slab
2381 * However with the new *_jumbo_rx* routines, jumbo receives will use
2382 * fragmented skbs
2383 */
2384
2385 if (max_frame <= 1024)
2386 adapter->rx_buffer_len = 1024;
2387 else if (max_frame <= 2048)
2388 adapter->rx_buffer_len = 2048;
2389 else
2390#if (PAGE_SIZE / 2) > 16384
2391 adapter->rx_buffer_len = 16384;
2392#else
2393 adapter->rx_buffer_len = PAGE_SIZE / 2;
2394#endif
2395
2396
2397 /* adjust allocation if LPE protects us, and we aren't using SBP */
2398 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
2399 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
2400 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN +
2401 ETH_FCS_LEN;
2402
2403 dev_info(&adapter->pdev->dev, "changing MTU from %d to %d\n",
2404 netdev->mtu, new_mtu);
2405 netdev->mtu = new_mtu;
2406
2407 if (netif_running(netdev))
2408 igbvf_up(adapter);
2409 else
2410 igbvf_reset(adapter);
2411
2412 clear_bit(__IGBVF_RESETTING, &adapter->state);
2413
2414 return 0;
2415}
2416
2417static int igbvf_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
2418{
2419 switch (cmd) {
2420 default:
2421 return -EOPNOTSUPP;
2422 }
2423}
2424
2425static int igbvf_suspend(struct pci_dev *pdev, pm_message_t state)
2426{
2427 struct net_device *netdev = pci_get_drvdata(pdev);
2428 struct igbvf_adapter *adapter = netdev_priv(netdev);
2429#ifdef CONFIG_PM
2430 int retval = 0;
2431#endif
2432
2433 netif_device_detach(netdev);
2434
2435 if (netif_running(netdev)) {
2436 WARN_ON(test_bit(__IGBVF_RESETTING, &adapter->state));
2437 igbvf_down(adapter);
2438 igbvf_free_irq(adapter);
2439 }
2440
2441#ifdef CONFIG_PM
2442 retval = pci_save_state(pdev);
2443 if (retval)
2444 return retval;
2445#endif
2446
2447 pci_disable_device(pdev);
2448
2449 return 0;
2450}
2451
2452#ifdef CONFIG_PM
2453static int igbvf_resume(struct pci_dev *pdev)
2454{
2455 struct net_device *netdev = pci_get_drvdata(pdev);
2456 struct igbvf_adapter *adapter = netdev_priv(netdev);
2457 u32 err;
2458
2459 pci_restore_state(pdev);
2460 err = pci_enable_device_mem(pdev);
2461 if (err) {
2462 dev_err(&pdev->dev, "Cannot enable PCI device from suspend\n");
2463 return err;
2464 }
2465
2466 pci_set_master(pdev);
2467
2468 if (netif_running(netdev)) {
2469 err = igbvf_request_irq(adapter);
2470 if (err)
2471 return err;
2472 }
2473
2474 igbvf_reset(adapter);
2475
2476 if (netif_running(netdev))
2477 igbvf_up(adapter);
2478
2479 netif_device_attach(netdev);
2480
2481 return 0;
2482}
2483#endif
2484
2485static void igbvf_shutdown(struct pci_dev *pdev)
2486{
2487 igbvf_suspend(pdev, PMSG_SUSPEND);
2488}
2489
2490#ifdef CONFIG_NET_POLL_CONTROLLER
2491/*
2492 * Polling 'interrupt' - used by things like netconsole to send skbs
2493 * without having to re-enable interrupts. It's not called while
2494 * the interrupt routine is executing.
2495 */
2496static void igbvf_netpoll(struct net_device *netdev)
2497{
2498 struct igbvf_adapter *adapter = netdev_priv(netdev);
2499
2500 disable_irq(adapter->pdev->irq);
2501
2502 igbvf_clean_tx_irq(adapter->tx_ring);
2503
2504 enable_irq(adapter->pdev->irq);
2505}
2506#endif
2507
2508/**
2509 * igbvf_io_error_detected - called when PCI error is detected
2510 * @pdev: Pointer to PCI device
2511 * @state: The current pci connection state
2512 *
2513 * This function is called after a PCI bus error affecting
2514 * this device has been detected.
2515 */
2516static pci_ers_result_t igbvf_io_error_detected(struct pci_dev *pdev,
2517 pci_channel_state_t state)
2518{
2519 struct net_device *netdev = pci_get_drvdata(pdev);
2520 struct igbvf_adapter *adapter = netdev_priv(netdev);
2521
2522 netif_device_detach(netdev);
2523
2524 if (netif_running(netdev))
2525 igbvf_down(adapter);
2526 pci_disable_device(pdev);
2527
2528 /* Request a slot slot reset. */
2529 return PCI_ERS_RESULT_NEED_RESET;
2530}
2531
2532/**
2533 * igbvf_io_slot_reset - called after the pci bus has been reset.
2534 * @pdev: Pointer to PCI device
2535 *
2536 * Restart the card from scratch, as if from a cold-boot. Implementation
2537 * resembles the first-half of the igbvf_resume routine.
2538 */
2539static pci_ers_result_t igbvf_io_slot_reset(struct pci_dev *pdev)
2540{
2541 struct net_device *netdev = pci_get_drvdata(pdev);
2542 struct igbvf_adapter *adapter = netdev_priv(netdev);
2543
2544 if (pci_enable_device_mem(pdev)) {
2545 dev_err(&pdev->dev,
2546 "Cannot re-enable PCI device after reset.\n");
2547 return PCI_ERS_RESULT_DISCONNECT;
2548 }
2549 pci_set_master(pdev);
2550
2551 igbvf_reset(adapter);
2552
2553 return PCI_ERS_RESULT_RECOVERED;
2554}
2555
2556/**
2557 * igbvf_io_resume - called when traffic can start flowing again.
2558 * @pdev: Pointer to PCI device
2559 *
2560 * This callback is called when the error recovery driver tells us that
2561 * its OK to resume normal operation. Implementation resembles the
2562 * second-half of the igbvf_resume routine.
2563 */
2564static void igbvf_io_resume(struct pci_dev *pdev)
2565{
2566 struct net_device *netdev = pci_get_drvdata(pdev);
2567 struct igbvf_adapter *adapter = netdev_priv(netdev);
2568
2569 if (netif_running(netdev)) {
2570 if (igbvf_up(adapter)) {
2571 dev_err(&pdev->dev,
2572 "can't bring device back up after reset\n");
2573 return;
2574 }
2575 }
2576
2577 netif_device_attach(netdev);
2578}
2579
2580static void igbvf_print_device_info(struct igbvf_adapter *adapter)
2581{
2582 struct e1000_hw *hw = &adapter->hw;
2583 struct net_device *netdev = adapter->netdev;
2584 struct pci_dev *pdev = adapter->pdev;
2585
2586 dev_info(&pdev->dev, "Intel(R) 82576 Virtual Function\n");
2587 dev_info(&pdev->dev, "Address: %02x:%02x:%02x:%02x:%02x:%02x\n",
2588 /* MAC address */
2589 netdev->dev_addr[0], netdev->dev_addr[1],
2590 netdev->dev_addr[2], netdev->dev_addr[3],
2591 netdev->dev_addr[4], netdev->dev_addr[5]);
2592 dev_info(&pdev->dev, "MAC: %d\n", hw->mac.type);
2593}
2594
2595static const struct net_device_ops igbvf_netdev_ops = {
2596 .ndo_open = igbvf_open,
2597 .ndo_stop = igbvf_close,
2598 .ndo_start_xmit = igbvf_xmit_frame,
2599 .ndo_get_stats = igbvf_get_stats,
2600 .ndo_set_multicast_list = igbvf_set_multi,
2601 .ndo_set_mac_address = igbvf_set_mac,
2602 .ndo_change_mtu = igbvf_change_mtu,
2603 .ndo_do_ioctl = igbvf_ioctl,
2604 .ndo_tx_timeout = igbvf_tx_timeout,
2605 .ndo_vlan_rx_register = igbvf_vlan_rx_register,
2606 .ndo_vlan_rx_add_vid = igbvf_vlan_rx_add_vid,
2607 .ndo_vlan_rx_kill_vid = igbvf_vlan_rx_kill_vid,
2608#ifdef CONFIG_NET_POLL_CONTROLLER
2609 .ndo_poll_controller = igbvf_netpoll,
2610#endif
2611};
2612
2613/**
2614 * igbvf_probe - Device Initialization Routine
2615 * @pdev: PCI device information struct
2616 * @ent: entry in igbvf_pci_tbl
2617 *
2618 * Returns 0 on success, negative on failure
2619 *
2620 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2621 * The OS initialization, configuring of the adapter private structure,
2622 * and a hardware reset occur.
2623 **/
2624static int __devinit igbvf_probe(struct pci_dev *pdev,
2625 const struct pci_device_id *ent)
2626{
2627 struct net_device *netdev;
2628 struct igbvf_adapter *adapter;
2629 struct e1000_hw *hw;
2630 const struct igbvf_info *ei = igbvf_info_tbl[ent->driver_data];
2631
2632 static int cards_found;
2633 int err, pci_using_dac;
2634
2635 err = pci_enable_device_mem(pdev);
2636 if (err)
2637 return err;
2638
2639 pci_using_dac = 0;
2640 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
2641 if (!err) {
2642 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
2643 if (!err)
2644 pci_using_dac = 1;
2645 } else {
2646 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2647 if (err) {
2648 err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK);
2649 if (err) {
2650 dev_err(&pdev->dev, "No usable DMA "
2651 "configuration, aborting\n");
2652 goto err_dma;
2653 }
2654 }
2655 }
2656
2657 err = pci_request_regions(pdev, igbvf_driver_name);
2658 if (err)
2659 goto err_pci_reg;
2660
2661 pci_set_master(pdev);
2662
2663 err = -ENOMEM;
2664 netdev = alloc_etherdev(sizeof(struct igbvf_adapter));
2665 if (!netdev)
2666 goto err_alloc_etherdev;
2667
2668 SET_NETDEV_DEV(netdev, &pdev->dev);
2669
2670 pci_set_drvdata(pdev, netdev);
2671 adapter = netdev_priv(netdev);
2672 hw = &adapter->hw;
2673 adapter->netdev = netdev;
2674 adapter->pdev = pdev;
2675 adapter->ei = ei;
2676 adapter->pba = ei->pba;
2677 adapter->flags = ei->flags;
2678 adapter->hw.back = adapter;
2679 adapter->hw.mac.type = ei->mac;
2680 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
2681
2682 /* PCI config space info */
2683
2684 hw->vendor_id = pdev->vendor;
2685 hw->device_id = pdev->device;
2686 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2687 hw->subsystem_device_id = pdev->subsystem_device;
2688
2689 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
2690
2691 err = -EIO;
2692 adapter->hw.hw_addr = ioremap(pci_resource_start(pdev, 0),
2693 pci_resource_len(pdev, 0));
2694
2695 if (!adapter->hw.hw_addr)
2696 goto err_ioremap;
2697
2698 if (ei->get_variants) {
2699 err = ei->get_variants(adapter);
2700 if (err)
2701 goto err_ioremap;
2702 }
2703
2704 /* setup adapter struct */
2705 err = igbvf_sw_init(adapter);
2706 if (err)
2707 goto err_sw_init;
2708
2709 /* construct the net_device struct */
2710 netdev->netdev_ops = &igbvf_netdev_ops;
2711
2712 igbvf_set_ethtool_ops(netdev);
2713 netdev->watchdog_timeo = 5 * HZ;
2714 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2715
2716 adapter->bd_number = cards_found++;
2717
2718 netdev->features = NETIF_F_SG |
2719 NETIF_F_IP_CSUM |
2720 NETIF_F_HW_VLAN_TX |
2721 NETIF_F_HW_VLAN_RX |
2722 NETIF_F_HW_VLAN_FILTER;
2723
2724 netdev->features |= NETIF_F_IPV6_CSUM;
2725 netdev->features |= NETIF_F_TSO;
2726 netdev->features |= NETIF_F_TSO6;
2727
2728 if (pci_using_dac)
2729 netdev->features |= NETIF_F_HIGHDMA;
2730
2731 netdev->vlan_features |= NETIF_F_TSO;
2732 netdev->vlan_features |= NETIF_F_TSO6;
2733 netdev->vlan_features |= NETIF_F_IP_CSUM;
2734 netdev->vlan_features |= NETIF_F_IPV6_CSUM;
2735 netdev->vlan_features |= NETIF_F_SG;
2736
2737 /*reset the controller to put the device in a known good state */
2738 err = hw->mac.ops.reset_hw(hw);
2739 if (err) {
2740 dev_info(&pdev->dev,
2741 "PF still in reset state, assigning new address\n");
2742 random_ether_addr(hw->mac.addr);
2743 } else {
2744 err = hw->mac.ops.read_mac_addr(hw);
2745 if (err) {
2746 dev_err(&pdev->dev, "Error reading MAC address\n");
2747 goto err_hw_init;
2748 }
2749 }
2750
2751 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
2752 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
2753
2754 if (!is_valid_ether_addr(netdev->perm_addr)) {
2755 dev_err(&pdev->dev, "Invalid MAC Address: "
2756 "%02x:%02x:%02x:%02x:%02x:%02x\n",
2757 netdev->dev_addr[0], netdev->dev_addr[1],
2758 netdev->dev_addr[2], netdev->dev_addr[3],
2759 netdev->dev_addr[4], netdev->dev_addr[5]);
2760 err = -EIO;
2761 goto err_hw_init;
2762 }
2763
2764 setup_timer(&adapter->watchdog_timer, &igbvf_watchdog,
2765 (unsigned long) adapter);
2766
2767 INIT_WORK(&adapter->reset_task, igbvf_reset_task);
2768 INIT_WORK(&adapter->watchdog_task, igbvf_watchdog_task);
2769
2770 /* ring size defaults */
2771 adapter->rx_ring->count = 1024;
2772 adapter->tx_ring->count = 1024;
2773
2774 /* reset the hardware with the new settings */
2775 igbvf_reset(adapter);
2776
2777 /* tell the stack to leave us alone until igbvf_open() is called */
2778 netif_carrier_off(netdev);
2779 netif_stop_queue(netdev);
2780
2781 strcpy(netdev->name, "eth%d");
2782 err = register_netdev(netdev);
2783 if (err)
2784 goto err_hw_init;
2785
2786 igbvf_print_device_info(adapter);
2787
2788 igbvf_initialize_last_counter_stats(adapter);
2789
2790 return 0;
2791
2792err_hw_init:
2793 kfree(adapter->tx_ring);
2794 kfree(adapter->rx_ring);
2795err_sw_init:
2796 igbvf_reset_interrupt_capability(adapter);
2797 iounmap(adapter->hw.hw_addr);
2798err_ioremap:
2799 free_netdev(netdev);
2800err_alloc_etherdev:
2801 pci_release_regions(pdev);
2802err_pci_reg:
2803err_dma:
2804 pci_disable_device(pdev);
2805 return err;
2806}
2807
2808/**
2809 * igbvf_remove - Device Removal Routine
2810 * @pdev: PCI device information struct
2811 *
2812 * igbvf_remove is called by the PCI subsystem to alert the driver
2813 * that it should release a PCI device. The could be caused by a
2814 * Hot-Plug event, or because the driver is going to be removed from
2815 * memory.
2816 **/
2817static void __devexit igbvf_remove(struct pci_dev *pdev)
2818{
2819 struct net_device *netdev = pci_get_drvdata(pdev);
2820 struct igbvf_adapter *adapter = netdev_priv(netdev);
2821 struct e1000_hw *hw = &adapter->hw;
2822
2823 /*
2824 * flush_scheduled work may reschedule our watchdog task, so
2825 * explicitly disable watchdog tasks from being rescheduled
2826 */
2827 set_bit(__IGBVF_DOWN, &adapter->state);
2828 del_timer_sync(&adapter->watchdog_timer);
2829
2830 flush_scheduled_work();
2831
2832 unregister_netdev(netdev);
2833
2834 igbvf_reset_interrupt_capability(adapter);
2835
2836 /*
2837 * it is important to delete the napi struct prior to freeing the
2838 * rx ring so that you do not end up with null pointer refs
2839 */
2840 netif_napi_del(&adapter->rx_ring->napi);
2841 kfree(adapter->tx_ring);
2842 kfree(adapter->rx_ring);
2843
2844 iounmap(hw->hw_addr);
2845 if (hw->flash_address)
2846 iounmap(hw->flash_address);
2847 pci_release_regions(pdev);
2848
2849 free_netdev(netdev);
2850
2851 pci_disable_device(pdev);
2852}
2853
2854/* PCI Error Recovery (ERS) */
2855static struct pci_error_handlers igbvf_err_handler = {
2856 .error_detected = igbvf_io_error_detected,
2857 .slot_reset = igbvf_io_slot_reset,
2858 .resume = igbvf_io_resume,
2859};
2860
2861static struct pci_device_id igbvf_pci_tbl[] = {
2862 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_VF), board_vf },
2863 { } /* terminate list */
2864};
2865MODULE_DEVICE_TABLE(pci, igbvf_pci_tbl);
2866
2867/* PCI Device API Driver */
2868static struct pci_driver igbvf_driver = {
2869 .name = igbvf_driver_name,
2870 .id_table = igbvf_pci_tbl,
2871 .probe = igbvf_probe,
2872 .remove = __devexit_p(igbvf_remove),
2873#ifdef CONFIG_PM
2874 /* Power Management Hooks */
2875 .suspend = igbvf_suspend,
2876 .resume = igbvf_resume,
2877#endif
2878 .shutdown = igbvf_shutdown,
2879 .err_handler = &igbvf_err_handler
2880};
2881
2882/**
2883 * igbvf_init_module - Driver Registration Routine
2884 *
2885 * igbvf_init_module is the first routine called when the driver is
2886 * loaded. All it does is register with the PCI subsystem.
2887 **/
2888static int __init igbvf_init_module(void)
2889{
2890 int ret;
2891 printk(KERN_INFO "%s - version %s\n",
2892 igbvf_driver_string, igbvf_driver_version);
2893 printk(KERN_INFO "%s\n", igbvf_copyright);
2894
2895 ret = pci_register_driver(&igbvf_driver);
2896 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name,
2897 PM_QOS_DEFAULT_VALUE);
2898
2899 return ret;
2900}
2901module_init(igbvf_init_module);
2902
2903/**
2904 * igbvf_exit_module - Driver Exit Cleanup Routine
2905 *
2906 * igbvf_exit_module is called just before the driver is removed
2907 * from memory.
2908 **/
2909static void __exit igbvf_exit_module(void)
2910{
2911 pci_unregister_driver(&igbvf_driver);
2912 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, igbvf_driver_name);
2913}
2914module_exit(igbvf_exit_module);
2915
2916
2917MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2918MODULE_DESCRIPTION("Intel(R) 82576 Virtual Function Network Driver");
2919MODULE_LICENSE("GPL");
2920MODULE_VERSION(DRV_VERSION);
2921
2922/* netdev.c */