diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/fec.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/fec.c')
-rw-r--r-- | drivers/net/fec.c | 2259 |
1 files changed, 2259 insertions, 0 deletions
diff --git a/drivers/net/fec.c b/drivers/net/fec.c new file mode 100644 index 000000000000..2c7008491378 --- /dev/null +++ b/drivers/net/fec.c | |||
@@ -0,0 +1,2259 @@ | |||
1 | /* | ||
2 | * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx. | ||
3 | * Copyright (c) 1997 Dan Malek (dmalek@jlc.net) | ||
4 | * | ||
5 | * This version of the driver is specific to the FADS implementation, | ||
6 | * since the board contains control registers external to the processor | ||
7 | * for the control of the LevelOne LXT970 transceiver. The MPC860T manual | ||
8 | * describes connections using the internal parallel port I/O, which | ||
9 | * is basically all of Port D. | ||
10 | * | ||
11 | * Right now, I am very watseful with the buffers. I allocate memory | ||
12 | * pages and then divide them into 2K frame buffers. This way I know I | ||
13 | * have buffers large enough to hold one frame within one buffer descriptor. | ||
14 | * Once I get this working, I will use 64 or 128 byte CPM buffers, which | ||
15 | * will be much more memory efficient and will easily handle lots of | ||
16 | * small packets. | ||
17 | * | ||
18 | * Much better multiple PHY support by Magnus Damm. | ||
19 | * Copyright (c) 2000 Ericsson Radio Systems AB. | ||
20 | * | ||
21 | * Support for FEC controller of ColdFire/5270/5271/5272/5274/5275/5280/5282. | ||
22 | * Copyrught (c) 2001-2004 Greg Ungerer (gerg@snapgear.com) | ||
23 | */ | ||
24 | |||
25 | #include <linux/config.h> | ||
26 | #include <linux/module.h> | ||
27 | #include <linux/kernel.h> | ||
28 | #include <linux/string.h> | ||
29 | #include <linux/ptrace.h> | ||
30 | #include <linux/errno.h> | ||
31 | #include <linux/ioport.h> | ||
32 | #include <linux/slab.h> | ||
33 | #include <linux/interrupt.h> | ||
34 | #include <linux/pci.h> | ||
35 | #include <linux/init.h> | ||
36 | #include <linux/delay.h> | ||
37 | #include <linux/netdevice.h> | ||
38 | #include <linux/etherdevice.h> | ||
39 | #include <linux/skbuff.h> | ||
40 | #include <linux/spinlock.h> | ||
41 | #include <linux/workqueue.h> | ||
42 | #include <linux/bitops.h> | ||
43 | |||
44 | #include <asm/irq.h> | ||
45 | #include <asm/uaccess.h> | ||
46 | #include <asm/io.h> | ||
47 | #include <asm/pgtable.h> | ||
48 | |||
49 | #if defined(CONFIG_M527x) || defined(CONFIG_M5272) || defined(CONFIG_M528x) | ||
50 | #include <asm/coldfire.h> | ||
51 | #include <asm/mcfsim.h> | ||
52 | #include "fec.h" | ||
53 | #else | ||
54 | #include <asm/8xx_immap.h> | ||
55 | #include <asm/mpc8xx.h> | ||
56 | #include "commproc.h" | ||
57 | #endif | ||
58 | |||
59 | #if defined(CONFIG_FEC2) | ||
60 | #define FEC_MAX_PORTS 2 | ||
61 | #else | ||
62 | #define FEC_MAX_PORTS 1 | ||
63 | #endif | ||
64 | |||
65 | /* | ||
66 | * Define the fixed address of the FEC hardware. | ||
67 | */ | ||
68 | static unsigned int fec_hw[] = { | ||
69 | #if defined(CONFIG_M5272) | ||
70 | (MCF_MBAR + 0x840), | ||
71 | #elif defined(CONFIG_M527x) | ||
72 | (MCF_MBAR + 0x1000), | ||
73 | (MCF_MBAR + 0x1800), | ||
74 | #elif defined(CONFIG_M528x) | ||
75 | (MCF_MBAR + 0x1000), | ||
76 | #else | ||
77 | &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec), | ||
78 | #endif | ||
79 | }; | ||
80 | |||
81 | static unsigned char fec_mac_default[] = { | ||
82 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, | ||
83 | }; | ||
84 | |||
85 | /* | ||
86 | * Some hardware gets it MAC address out of local flash memory. | ||
87 | * if this is non-zero then assume it is the address to get MAC from. | ||
88 | */ | ||
89 | #if defined(CONFIG_NETtel) | ||
90 | #define FEC_FLASHMAC 0xf0006006 | ||
91 | #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES) | ||
92 | #define FEC_FLASHMAC 0xf0006000 | ||
93 | #elif defined (CONFIG_MTD_KeyTechnology) | ||
94 | #define FEC_FLASHMAC 0xffe04000 | ||
95 | #elif defined(CONFIG_CANCam) | ||
96 | #define FEC_FLASHMAC 0xf0020000 | ||
97 | #else | ||
98 | #define FEC_FLASHMAC 0 | ||
99 | #endif | ||
100 | |||
101 | unsigned char *fec_flashmac = (unsigned char *) FEC_FLASHMAC; | ||
102 | |||
103 | /* Forward declarations of some structures to support different PHYs | ||
104 | */ | ||
105 | |||
106 | typedef struct { | ||
107 | uint mii_data; | ||
108 | void (*funct)(uint mii_reg, struct net_device *dev); | ||
109 | } phy_cmd_t; | ||
110 | |||
111 | typedef struct { | ||
112 | uint id; | ||
113 | char *name; | ||
114 | |||
115 | const phy_cmd_t *config; | ||
116 | const phy_cmd_t *startup; | ||
117 | const phy_cmd_t *ack_int; | ||
118 | const phy_cmd_t *shutdown; | ||
119 | } phy_info_t; | ||
120 | |||
121 | /* The number of Tx and Rx buffers. These are allocated from the page | ||
122 | * pool. The code may assume these are power of two, so it it best | ||
123 | * to keep them that size. | ||
124 | * We don't need to allocate pages for the transmitter. We just use | ||
125 | * the skbuffer directly. | ||
126 | */ | ||
127 | #define FEC_ENET_RX_PAGES 8 | ||
128 | #define FEC_ENET_RX_FRSIZE 2048 | ||
129 | #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE) | ||
130 | #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES) | ||
131 | #define FEC_ENET_TX_FRSIZE 2048 | ||
132 | #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE) | ||
133 | #define TX_RING_SIZE 16 /* Must be power of two */ | ||
134 | #define TX_RING_MOD_MASK 15 /* for this to work */ | ||
135 | |||
136 | /* Interrupt events/masks. | ||
137 | */ | ||
138 | #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */ | ||
139 | #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */ | ||
140 | #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */ | ||
141 | #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */ | ||
142 | #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */ | ||
143 | #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */ | ||
144 | #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */ | ||
145 | #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */ | ||
146 | #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */ | ||
147 | #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */ | ||
148 | |||
149 | /* The FEC stores dest/src/type, data, and checksum for receive packets. | ||
150 | */ | ||
151 | #define PKT_MAXBUF_SIZE 1518 | ||
152 | #define PKT_MINBUF_SIZE 64 | ||
153 | #define PKT_MAXBLR_SIZE 1520 | ||
154 | |||
155 | |||
156 | /* | ||
157 | * The 5270/5271/5280/5282 RX control register also contains maximum frame | ||
158 | * size bits. Other FEC hardware does not, so we need to take that into | ||
159 | * account when setting it. | ||
160 | */ | ||
161 | #if defined(CONFIG_M527x) || defined(CONFIG_M528x) | ||
162 | #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16) | ||
163 | #else | ||
164 | #define OPT_FRAME_SIZE 0 | ||
165 | #endif | ||
166 | |||
167 | /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and | ||
168 | * tx_bd_base always point to the base of the buffer descriptors. The | ||
169 | * cur_rx and cur_tx point to the currently available buffer. | ||
170 | * The dirty_tx tracks the current buffer that is being sent by the | ||
171 | * controller. The cur_tx and dirty_tx are equal under both completely | ||
172 | * empty and completely full conditions. The empty/ready indicator in | ||
173 | * the buffer descriptor determines the actual condition. | ||
174 | */ | ||
175 | struct fec_enet_private { | ||
176 | /* Hardware registers of the FEC device */ | ||
177 | volatile fec_t *hwp; | ||
178 | |||
179 | /* The saved address of a sent-in-place packet/buffer, for skfree(). */ | ||
180 | unsigned char *tx_bounce[TX_RING_SIZE]; | ||
181 | struct sk_buff* tx_skbuff[TX_RING_SIZE]; | ||
182 | ushort skb_cur; | ||
183 | ushort skb_dirty; | ||
184 | |||
185 | /* CPM dual port RAM relative addresses. | ||
186 | */ | ||
187 | cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */ | ||
188 | cbd_t *tx_bd_base; | ||
189 | cbd_t *cur_rx, *cur_tx; /* The next free ring entry */ | ||
190 | cbd_t *dirty_tx; /* The ring entries to be free()ed. */ | ||
191 | struct net_device_stats stats; | ||
192 | uint tx_full; | ||
193 | spinlock_t lock; | ||
194 | |||
195 | uint phy_id; | ||
196 | uint phy_id_done; | ||
197 | uint phy_status; | ||
198 | uint phy_speed; | ||
199 | phy_info_t *phy; | ||
200 | struct work_struct phy_task; | ||
201 | |||
202 | uint sequence_done; | ||
203 | uint mii_phy_task_queued; | ||
204 | |||
205 | uint phy_addr; | ||
206 | |||
207 | int index; | ||
208 | int opened; | ||
209 | int link; | ||
210 | int old_link; | ||
211 | int full_duplex; | ||
212 | unsigned char mac_addr[ETH_ALEN]; | ||
213 | }; | ||
214 | |||
215 | static int fec_enet_open(struct net_device *dev); | ||
216 | static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev); | ||
217 | static void fec_enet_mii(struct net_device *dev); | ||
218 | static irqreturn_t fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs); | ||
219 | static void fec_enet_tx(struct net_device *dev); | ||
220 | static void fec_enet_rx(struct net_device *dev); | ||
221 | static int fec_enet_close(struct net_device *dev); | ||
222 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev); | ||
223 | static void set_multicast_list(struct net_device *dev); | ||
224 | static void fec_restart(struct net_device *dev, int duplex); | ||
225 | static void fec_stop(struct net_device *dev); | ||
226 | static void fec_set_mac_address(struct net_device *dev); | ||
227 | |||
228 | |||
229 | /* MII processing. We keep this as simple as possible. Requests are | ||
230 | * placed on the list (if there is room). When the request is finished | ||
231 | * by the MII, an optional function may be called. | ||
232 | */ | ||
233 | typedef struct mii_list { | ||
234 | uint mii_regval; | ||
235 | void (*mii_func)(uint val, struct net_device *dev); | ||
236 | struct mii_list *mii_next; | ||
237 | } mii_list_t; | ||
238 | |||
239 | #define NMII 20 | ||
240 | mii_list_t mii_cmds[NMII]; | ||
241 | mii_list_t *mii_free; | ||
242 | mii_list_t *mii_head; | ||
243 | mii_list_t *mii_tail; | ||
244 | |||
245 | static int mii_queue(struct net_device *dev, int request, | ||
246 | void (*func)(uint, struct net_device *)); | ||
247 | |||
248 | /* Make MII read/write commands for the FEC. | ||
249 | */ | ||
250 | #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18)) | ||
251 | #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \ | ||
252 | (VAL & 0xffff)) | ||
253 | #define mk_mii_end 0 | ||
254 | |||
255 | /* Transmitter timeout. | ||
256 | */ | ||
257 | #define TX_TIMEOUT (2*HZ) | ||
258 | |||
259 | /* Register definitions for the PHY. | ||
260 | */ | ||
261 | |||
262 | #define MII_REG_CR 0 /* Control Register */ | ||
263 | #define MII_REG_SR 1 /* Status Register */ | ||
264 | #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */ | ||
265 | #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */ | ||
266 | #define MII_REG_ANAR 4 /* A-N Advertisement Register */ | ||
267 | #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */ | ||
268 | #define MII_REG_ANER 6 /* A-N Expansion Register */ | ||
269 | #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */ | ||
270 | #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */ | ||
271 | |||
272 | /* values for phy_status */ | ||
273 | |||
274 | #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */ | ||
275 | #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */ | ||
276 | #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */ | ||
277 | #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */ | ||
278 | #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */ | ||
279 | #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */ | ||
280 | #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */ | ||
281 | |||
282 | #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */ | ||
283 | #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */ | ||
284 | #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */ | ||
285 | #define PHY_STAT_SPMASK 0xf000 /* mask for speed */ | ||
286 | #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */ | ||
287 | #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */ | ||
288 | #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */ | ||
289 | #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */ | ||
290 | |||
291 | |||
292 | static int | ||
293 | fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev) | ||
294 | { | ||
295 | struct fec_enet_private *fep; | ||
296 | volatile fec_t *fecp; | ||
297 | volatile cbd_t *bdp; | ||
298 | |||
299 | fep = netdev_priv(dev); | ||
300 | fecp = (volatile fec_t*)dev->base_addr; | ||
301 | |||
302 | if (!fep->link) { | ||
303 | /* Link is down or autonegotiation is in progress. */ | ||
304 | return 1; | ||
305 | } | ||
306 | |||
307 | /* Fill in a Tx ring entry */ | ||
308 | bdp = fep->cur_tx; | ||
309 | |||
310 | #ifndef final_version | ||
311 | if (bdp->cbd_sc & BD_ENET_TX_READY) { | ||
312 | /* Ooops. All transmit buffers are full. Bail out. | ||
313 | * This should not happen, since dev->tbusy should be set. | ||
314 | */ | ||
315 | printk("%s: tx queue full!.\n", dev->name); | ||
316 | return 1; | ||
317 | } | ||
318 | #endif | ||
319 | |||
320 | /* Clear all of the status flags. | ||
321 | */ | ||
322 | bdp->cbd_sc &= ~BD_ENET_TX_STATS; | ||
323 | |||
324 | /* Set buffer length and buffer pointer. | ||
325 | */ | ||
326 | bdp->cbd_bufaddr = __pa(skb->data); | ||
327 | bdp->cbd_datlen = skb->len; | ||
328 | |||
329 | /* | ||
330 | * On some FEC implementations data must be aligned on | ||
331 | * 4-byte boundaries. Use bounce buffers to copy data | ||
332 | * and get it aligned. Ugh. | ||
333 | */ | ||
334 | if (bdp->cbd_bufaddr & 0x3) { | ||
335 | unsigned int index; | ||
336 | index = bdp - fep->tx_bd_base; | ||
337 | memcpy(fep->tx_bounce[index], (void *) bdp->cbd_bufaddr, bdp->cbd_datlen); | ||
338 | bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]); | ||
339 | } | ||
340 | |||
341 | /* Save skb pointer. | ||
342 | */ | ||
343 | fep->tx_skbuff[fep->skb_cur] = skb; | ||
344 | |||
345 | fep->stats.tx_bytes += skb->len; | ||
346 | fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK; | ||
347 | |||
348 | /* Push the data cache so the CPM does not get stale memory | ||
349 | * data. | ||
350 | */ | ||
351 | flush_dcache_range((unsigned long)skb->data, | ||
352 | (unsigned long)skb->data + skb->len); | ||
353 | |||
354 | spin_lock_irq(&fep->lock); | ||
355 | |||
356 | /* Send it on its way. Tell FEC its ready, interrupt when done, | ||
357 | * its the last BD of the frame, and to put the CRC on the end. | ||
358 | */ | ||
359 | |||
360 | bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR | ||
361 | | BD_ENET_TX_LAST | BD_ENET_TX_TC); | ||
362 | |||
363 | dev->trans_start = jiffies; | ||
364 | |||
365 | /* Trigger transmission start */ | ||
366 | fecp->fec_x_des_active = 0x01000000; | ||
367 | |||
368 | /* If this was the last BD in the ring, start at the beginning again. | ||
369 | */ | ||
370 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) { | ||
371 | bdp = fep->tx_bd_base; | ||
372 | } else { | ||
373 | bdp++; | ||
374 | } | ||
375 | |||
376 | if (bdp == fep->dirty_tx) { | ||
377 | fep->tx_full = 1; | ||
378 | netif_stop_queue(dev); | ||
379 | } | ||
380 | |||
381 | fep->cur_tx = (cbd_t *)bdp; | ||
382 | |||
383 | spin_unlock_irq(&fep->lock); | ||
384 | |||
385 | return 0; | ||
386 | } | ||
387 | |||
388 | static void | ||
389 | fec_timeout(struct net_device *dev) | ||
390 | { | ||
391 | struct fec_enet_private *fep = netdev_priv(dev); | ||
392 | |||
393 | printk("%s: transmit timed out.\n", dev->name); | ||
394 | fep->stats.tx_errors++; | ||
395 | #ifndef final_version | ||
396 | { | ||
397 | int i; | ||
398 | cbd_t *bdp; | ||
399 | |||
400 | printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n", | ||
401 | (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "", | ||
402 | (unsigned long)fep->dirty_tx, | ||
403 | (unsigned long)fep->cur_rx); | ||
404 | |||
405 | bdp = fep->tx_bd_base; | ||
406 | printk(" tx: %u buffers\n", TX_RING_SIZE); | ||
407 | for (i = 0 ; i < TX_RING_SIZE; i++) { | ||
408 | printk(" %08x: %04x %04x %08x\n", | ||
409 | (uint) bdp, | ||
410 | bdp->cbd_sc, | ||
411 | bdp->cbd_datlen, | ||
412 | (int) bdp->cbd_bufaddr); | ||
413 | bdp++; | ||
414 | } | ||
415 | |||
416 | bdp = fep->rx_bd_base; | ||
417 | printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE); | ||
418 | for (i = 0 ; i < RX_RING_SIZE; i++) { | ||
419 | printk(" %08x: %04x %04x %08x\n", | ||
420 | (uint) bdp, | ||
421 | bdp->cbd_sc, | ||
422 | bdp->cbd_datlen, | ||
423 | (int) bdp->cbd_bufaddr); | ||
424 | bdp++; | ||
425 | } | ||
426 | } | ||
427 | #endif | ||
428 | fec_restart(dev, 0); | ||
429 | netif_wake_queue(dev); | ||
430 | } | ||
431 | |||
432 | /* The interrupt handler. | ||
433 | * This is called from the MPC core interrupt. | ||
434 | */ | ||
435 | static irqreturn_t | ||
436 | fec_enet_interrupt(int irq, void * dev_id, struct pt_regs * regs) | ||
437 | { | ||
438 | struct net_device *dev = dev_id; | ||
439 | volatile fec_t *fecp; | ||
440 | uint int_events; | ||
441 | int handled = 0; | ||
442 | |||
443 | fecp = (volatile fec_t*)dev->base_addr; | ||
444 | |||
445 | /* Get the interrupt events that caused us to be here. | ||
446 | */ | ||
447 | while ((int_events = fecp->fec_ievent) != 0) { | ||
448 | fecp->fec_ievent = int_events; | ||
449 | |||
450 | /* Handle receive event in its own function. | ||
451 | */ | ||
452 | if (int_events & FEC_ENET_RXF) { | ||
453 | handled = 1; | ||
454 | fec_enet_rx(dev); | ||
455 | } | ||
456 | |||
457 | /* Transmit OK, or non-fatal error. Update the buffer | ||
458 | descriptors. FEC handles all errors, we just discover | ||
459 | them as part of the transmit process. | ||
460 | */ | ||
461 | if (int_events & FEC_ENET_TXF) { | ||
462 | handled = 1; | ||
463 | fec_enet_tx(dev); | ||
464 | } | ||
465 | |||
466 | if (int_events & FEC_ENET_MII) { | ||
467 | handled = 1; | ||
468 | fec_enet_mii(dev); | ||
469 | } | ||
470 | |||
471 | } | ||
472 | return IRQ_RETVAL(handled); | ||
473 | } | ||
474 | |||
475 | |||
476 | static void | ||
477 | fec_enet_tx(struct net_device *dev) | ||
478 | { | ||
479 | struct fec_enet_private *fep; | ||
480 | volatile cbd_t *bdp; | ||
481 | struct sk_buff *skb; | ||
482 | |||
483 | fep = netdev_priv(dev); | ||
484 | spin_lock(&fep->lock); | ||
485 | bdp = fep->dirty_tx; | ||
486 | |||
487 | while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) { | ||
488 | if (bdp == fep->cur_tx && fep->tx_full == 0) break; | ||
489 | |||
490 | skb = fep->tx_skbuff[fep->skb_dirty]; | ||
491 | /* Check for errors. */ | ||
492 | if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC | | ||
493 | BD_ENET_TX_RL | BD_ENET_TX_UN | | ||
494 | BD_ENET_TX_CSL)) { | ||
495 | fep->stats.tx_errors++; | ||
496 | if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */ | ||
497 | fep->stats.tx_heartbeat_errors++; | ||
498 | if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */ | ||
499 | fep->stats.tx_window_errors++; | ||
500 | if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */ | ||
501 | fep->stats.tx_aborted_errors++; | ||
502 | if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */ | ||
503 | fep->stats.tx_fifo_errors++; | ||
504 | if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */ | ||
505 | fep->stats.tx_carrier_errors++; | ||
506 | } else { | ||
507 | fep->stats.tx_packets++; | ||
508 | } | ||
509 | |||
510 | #ifndef final_version | ||
511 | if (bdp->cbd_sc & BD_ENET_TX_READY) | ||
512 | printk("HEY! Enet xmit interrupt and TX_READY.\n"); | ||
513 | #endif | ||
514 | /* Deferred means some collisions occurred during transmit, | ||
515 | * but we eventually sent the packet OK. | ||
516 | */ | ||
517 | if (bdp->cbd_sc & BD_ENET_TX_DEF) | ||
518 | fep->stats.collisions++; | ||
519 | |||
520 | /* Free the sk buffer associated with this last transmit. | ||
521 | */ | ||
522 | dev_kfree_skb_any(skb); | ||
523 | fep->tx_skbuff[fep->skb_dirty] = NULL; | ||
524 | fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK; | ||
525 | |||
526 | /* Update pointer to next buffer descriptor to be transmitted. | ||
527 | */ | ||
528 | if (bdp->cbd_sc & BD_ENET_TX_WRAP) | ||
529 | bdp = fep->tx_bd_base; | ||
530 | else | ||
531 | bdp++; | ||
532 | |||
533 | /* Since we have freed up a buffer, the ring is no longer | ||
534 | * full. | ||
535 | */ | ||
536 | if (fep->tx_full) { | ||
537 | fep->tx_full = 0; | ||
538 | if (netif_queue_stopped(dev)) | ||
539 | netif_wake_queue(dev); | ||
540 | } | ||
541 | } | ||
542 | fep->dirty_tx = (cbd_t *)bdp; | ||
543 | spin_unlock(&fep->lock); | ||
544 | } | ||
545 | |||
546 | |||
547 | /* During a receive, the cur_rx points to the current incoming buffer. | ||
548 | * When we update through the ring, if the next incoming buffer has | ||
549 | * not been given to the system, we just set the empty indicator, | ||
550 | * effectively tossing the packet. | ||
551 | */ | ||
552 | static void | ||
553 | fec_enet_rx(struct net_device *dev) | ||
554 | { | ||
555 | struct fec_enet_private *fep; | ||
556 | volatile fec_t *fecp; | ||
557 | volatile cbd_t *bdp; | ||
558 | struct sk_buff *skb; | ||
559 | ushort pkt_len; | ||
560 | __u8 *data; | ||
561 | |||
562 | fep = netdev_priv(dev); | ||
563 | fecp = (volatile fec_t*)dev->base_addr; | ||
564 | |||
565 | /* First, grab all of the stats for the incoming packet. | ||
566 | * These get messed up if we get called due to a busy condition. | ||
567 | */ | ||
568 | bdp = fep->cur_rx; | ||
569 | |||
570 | while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) { | ||
571 | |||
572 | #ifndef final_version | ||
573 | /* Since we have allocated space to hold a complete frame, | ||
574 | * the last indicator should be set. | ||
575 | */ | ||
576 | if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0) | ||
577 | printk("FEC ENET: rcv is not +last\n"); | ||
578 | #endif | ||
579 | |||
580 | if (!fep->opened) | ||
581 | goto rx_processing_done; | ||
582 | |||
583 | /* Check for errors. */ | ||
584 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO | | ||
585 | BD_ENET_RX_CR | BD_ENET_RX_OV)) { | ||
586 | fep->stats.rx_errors++; | ||
587 | if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) { | ||
588 | /* Frame too long or too short. */ | ||
589 | fep->stats.rx_length_errors++; | ||
590 | } | ||
591 | if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */ | ||
592 | fep->stats.rx_frame_errors++; | ||
593 | if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */ | ||
594 | fep->stats.rx_crc_errors++; | ||
595 | if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */ | ||
596 | fep->stats.rx_crc_errors++; | ||
597 | } | ||
598 | |||
599 | /* Report late collisions as a frame error. | ||
600 | * On this error, the BD is closed, but we don't know what we | ||
601 | * have in the buffer. So, just drop this frame on the floor. | ||
602 | */ | ||
603 | if (bdp->cbd_sc & BD_ENET_RX_CL) { | ||
604 | fep->stats.rx_errors++; | ||
605 | fep->stats.rx_frame_errors++; | ||
606 | goto rx_processing_done; | ||
607 | } | ||
608 | |||
609 | /* Process the incoming frame. | ||
610 | */ | ||
611 | fep->stats.rx_packets++; | ||
612 | pkt_len = bdp->cbd_datlen; | ||
613 | fep->stats.rx_bytes += pkt_len; | ||
614 | data = (__u8*)__va(bdp->cbd_bufaddr); | ||
615 | |||
616 | /* This does 16 byte alignment, exactly what we need. | ||
617 | * The packet length includes FCS, but we don't want to | ||
618 | * include that when passing upstream as it messes up | ||
619 | * bridging applications. | ||
620 | */ | ||
621 | skb = dev_alloc_skb(pkt_len-4); | ||
622 | |||
623 | if (skb == NULL) { | ||
624 | printk("%s: Memory squeeze, dropping packet.\n", dev->name); | ||
625 | fep->stats.rx_dropped++; | ||
626 | } else { | ||
627 | skb->dev = dev; | ||
628 | skb_put(skb,pkt_len-4); /* Make room */ | ||
629 | eth_copy_and_sum(skb, | ||
630 | (unsigned char *)__va(bdp->cbd_bufaddr), | ||
631 | pkt_len-4, 0); | ||
632 | skb->protocol=eth_type_trans(skb,dev); | ||
633 | netif_rx(skb); | ||
634 | } | ||
635 | rx_processing_done: | ||
636 | |||
637 | /* Clear the status flags for this buffer. | ||
638 | */ | ||
639 | bdp->cbd_sc &= ~BD_ENET_RX_STATS; | ||
640 | |||
641 | /* Mark the buffer empty. | ||
642 | */ | ||
643 | bdp->cbd_sc |= BD_ENET_RX_EMPTY; | ||
644 | |||
645 | /* Update BD pointer to next entry. | ||
646 | */ | ||
647 | if (bdp->cbd_sc & BD_ENET_RX_WRAP) | ||
648 | bdp = fep->rx_bd_base; | ||
649 | else | ||
650 | bdp++; | ||
651 | |||
652 | #if 1 | ||
653 | /* Doing this here will keep the FEC running while we process | ||
654 | * incoming frames. On a heavily loaded network, we should be | ||
655 | * able to keep up at the expense of system resources. | ||
656 | */ | ||
657 | fecp->fec_r_des_active = 0x01000000; | ||
658 | #endif | ||
659 | } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */ | ||
660 | fep->cur_rx = (cbd_t *)bdp; | ||
661 | |||
662 | #if 0 | ||
663 | /* Doing this here will allow us to process all frames in the | ||
664 | * ring before the FEC is allowed to put more there. On a heavily | ||
665 | * loaded network, some frames may be lost. Unfortunately, this | ||
666 | * increases the interrupt overhead since we can potentially work | ||
667 | * our way back to the interrupt return only to come right back | ||
668 | * here. | ||
669 | */ | ||
670 | fecp->fec_r_des_active = 0x01000000; | ||
671 | #endif | ||
672 | } | ||
673 | |||
674 | |||
675 | static void | ||
676 | fec_enet_mii(struct net_device *dev) | ||
677 | { | ||
678 | struct fec_enet_private *fep; | ||
679 | volatile fec_t *ep; | ||
680 | mii_list_t *mip; | ||
681 | uint mii_reg; | ||
682 | |||
683 | fep = netdev_priv(dev); | ||
684 | ep = fep->hwp; | ||
685 | mii_reg = ep->fec_mii_data; | ||
686 | |||
687 | if ((mip = mii_head) == NULL) { | ||
688 | printk("MII and no head!\n"); | ||
689 | return; | ||
690 | } | ||
691 | |||
692 | if (mip->mii_func != NULL) | ||
693 | (*(mip->mii_func))(mii_reg, dev); | ||
694 | |||
695 | mii_head = mip->mii_next; | ||
696 | mip->mii_next = mii_free; | ||
697 | mii_free = mip; | ||
698 | |||
699 | if ((mip = mii_head) != NULL) | ||
700 | ep->fec_mii_data = mip->mii_regval; | ||
701 | } | ||
702 | |||
703 | static int | ||
704 | mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *)) | ||
705 | { | ||
706 | struct fec_enet_private *fep; | ||
707 | unsigned long flags; | ||
708 | mii_list_t *mip; | ||
709 | int retval; | ||
710 | |||
711 | /* Add PHY address to register command. | ||
712 | */ | ||
713 | fep = netdev_priv(dev); | ||
714 | regval |= fep->phy_addr << 23; | ||
715 | |||
716 | retval = 0; | ||
717 | |||
718 | save_flags(flags); | ||
719 | cli(); | ||
720 | |||
721 | if ((mip = mii_free) != NULL) { | ||
722 | mii_free = mip->mii_next; | ||
723 | mip->mii_regval = regval; | ||
724 | mip->mii_func = func; | ||
725 | mip->mii_next = NULL; | ||
726 | if (mii_head) { | ||
727 | mii_tail->mii_next = mip; | ||
728 | mii_tail = mip; | ||
729 | } | ||
730 | else { | ||
731 | mii_head = mii_tail = mip; | ||
732 | fep->hwp->fec_mii_data = regval; | ||
733 | } | ||
734 | } | ||
735 | else { | ||
736 | retval = 1; | ||
737 | } | ||
738 | |||
739 | restore_flags(flags); | ||
740 | |||
741 | return(retval); | ||
742 | } | ||
743 | |||
744 | static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c) | ||
745 | { | ||
746 | int k; | ||
747 | |||
748 | if(!c) | ||
749 | return; | ||
750 | |||
751 | for(k = 0; (c+k)->mii_data != mk_mii_end; k++) { | ||
752 | mii_queue(dev, (c+k)->mii_data, (c+k)->funct); | ||
753 | } | ||
754 | } | ||
755 | |||
756 | static void mii_parse_sr(uint mii_reg, struct net_device *dev) | ||
757 | { | ||
758 | struct fec_enet_private *fep = netdev_priv(dev); | ||
759 | volatile uint *s = &(fep->phy_status); | ||
760 | |||
761 | *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC); | ||
762 | |||
763 | if (mii_reg & 0x0004) | ||
764 | *s |= PHY_STAT_LINK; | ||
765 | if (mii_reg & 0x0010) | ||
766 | *s |= PHY_STAT_FAULT; | ||
767 | if (mii_reg & 0x0020) | ||
768 | *s |= PHY_STAT_ANC; | ||
769 | } | ||
770 | |||
771 | static void mii_parse_cr(uint mii_reg, struct net_device *dev) | ||
772 | { | ||
773 | struct fec_enet_private *fep = netdev_priv(dev); | ||
774 | volatile uint *s = &(fep->phy_status); | ||
775 | |||
776 | *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP); | ||
777 | |||
778 | if (mii_reg & 0x1000) | ||
779 | *s |= PHY_CONF_ANE; | ||
780 | if (mii_reg & 0x4000) | ||
781 | *s |= PHY_CONF_LOOP; | ||
782 | } | ||
783 | |||
784 | static void mii_parse_anar(uint mii_reg, struct net_device *dev) | ||
785 | { | ||
786 | struct fec_enet_private *fep = netdev_priv(dev); | ||
787 | volatile uint *s = &(fep->phy_status); | ||
788 | |||
789 | *s &= ~(PHY_CONF_SPMASK); | ||
790 | |||
791 | if (mii_reg & 0x0020) | ||
792 | *s |= PHY_CONF_10HDX; | ||
793 | if (mii_reg & 0x0040) | ||
794 | *s |= PHY_CONF_10FDX; | ||
795 | if (mii_reg & 0x0080) | ||
796 | *s |= PHY_CONF_100HDX; | ||
797 | if (mii_reg & 0x00100) | ||
798 | *s |= PHY_CONF_100FDX; | ||
799 | } | ||
800 | |||
801 | /* ------------------------------------------------------------------------- */ | ||
802 | /* The Level one LXT970 is used by many boards */ | ||
803 | |||
804 | #define MII_LXT970_MIRROR 16 /* Mirror register */ | ||
805 | #define MII_LXT970_IER 17 /* Interrupt Enable Register */ | ||
806 | #define MII_LXT970_ISR 18 /* Interrupt Status Register */ | ||
807 | #define MII_LXT970_CONFIG 19 /* Configuration Register */ | ||
808 | #define MII_LXT970_CSR 20 /* Chip Status Register */ | ||
809 | |||
810 | static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev) | ||
811 | { | ||
812 | struct fec_enet_private *fep = netdev_priv(dev); | ||
813 | volatile uint *s = &(fep->phy_status); | ||
814 | |||
815 | *s &= ~(PHY_STAT_SPMASK); | ||
816 | |||
817 | if (mii_reg & 0x0800) { | ||
818 | if (mii_reg & 0x1000) | ||
819 | *s |= PHY_STAT_100FDX; | ||
820 | else | ||
821 | *s |= PHY_STAT_100HDX; | ||
822 | } else { | ||
823 | if (mii_reg & 0x1000) | ||
824 | *s |= PHY_STAT_10FDX; | ||
825 | else | ||
826 | *s |= PHY_STAT_10HDX; | ||
827 | } | ||
828 | } | ||
829 | |||
830 | static phy_info_t phy_info_lxt970 = { | ||
831 | 0x07810000, | ||
832 | "LXT970", | ||
833 | |||
834 | (const phy_cmd_t []) { /* config */ | ||
835 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
836 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
837 | { mk_mii_end, } | ||
838 | }, | ||
839 | (const phy_cmd_t []) { /* startup - enable interrupts */ | ||
840 | { mk_mii_write(MII_LXT970_IER, 0x0002), NULL }, | ||
841 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
842 | { mk_mii_end, } | ||
843 | }, | ||
844 | (const phy_cmd_t []) { /* ack_int */ | ||
845 | /* read SR and ISR to acknowledge */ | ||
846 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
847 | { mk_mii_read(MII_LXT970_ISR), NULL }, | ||
848 | |||
849 | /* find out the current status */ | ||
850 | { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr }, | ||
851 | { mk_mii_end, } | ||
852 | }, | ||
853 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ | ||
854 | { mk_mii_write(MII_LXT970_IER, 0x0000), NULL }, | ||
855 | { mk_mii_end, } | ||
856 | }, | ||
857 | }; | ||
858 | |||
859 | /* ------------------------------------------------------------------------- */ | ||
860 | /* The Level one LXT971 is used on some of my custom boards */ | ||
861 | |||
862 | /* register definitions for the 971 */ | ||
863 | |||
864 | #define MII_LXT971_PCR 16 /* Port Control Register */ | ||
865 | #define MII_LXT971_SR2 17 /* Status Register 2 */ | ||
866 | #define MII_LXT971_IER 18 /* Interrupt Enable Register */ | ||
867 | #define MII_LXT971_ISR 19 /* Interrupt Status Register */ | ||
868 | #define MII_LXT971_LCR 20 /* LED Control Register */ | ||
869 | #define MII_LXT971_TCR 30 /* Transmit Control Register */ | ||
870 | |||
871 | /* | ||
872 | * I had some nice ideas of running the MDIO faster... | ||
873 | * The 971 should support 8MHz and I tried it, but things acted really | ||
874 | * weird, so 2.5 MHz ought to be enough for anyone... | ||
875 | */ | ||
876 | |||
877 | static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev) | ||
878 | { | ||
879 | struct fec_enet_private *fep = netdev_priv(dev); | ||
880 | volatile uint *s = &(fep->phy_status); | ||
881 | |||
882 | *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC); | ||
883 | |||
884 | if (mii_reg & 0x0400) { | ||
885 | fep->link = 1; | ||
886 | *s |= PHY_STAT_LINK; | ||
887 | } else { | ||
888 | fep->link = 0; | ||
889 | } | ||
890 | if (mii_reg & 0x0080) | ||
891 | *s |= PHY_STAT_ANC; | ||
892 | if (mii_reg & 0x4000) { | ||
893 | if (mii_reg & 0x0200) | ||
894 | *s |= PHY_STAT_100FDX; | ||
895 | else | ||
896 | *s |= PHY_STAT_100HDX; | ||
897 | } else { | ||
898 | if (mii_reg & 0x0200) | ||
899 | *s |= PHY_STAT_10FDX; | ||
900 | else | ||
901 | *s |= PHY_STAT_10HDX; | ||
902 | } | ||
903 | if (mii_reg & 0x0008) | ||
904 | *s |= PHY_STAT_FAULT; | ||
905 | } | ||
906 | |||
907 | static phy_info_t phy_info_lxt971 = { | ||
908 | 0x0001378e, | ||
909 | "LXT971", | ||
910 | |||
911 | (const phy_cmd_t []) { /* config */ | ||
912 | /* limit to 10MBit because my protorype board | ||
913 | * doesn't work with 100. */ | ||
914 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
915 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
916 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | ||
917 | { mk_mii_end, } | ||
918 | }, | ||
919 | (const phy_cmd_t []) { /* startup - enable interrupts */ | ||
920 | { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL }, | ||
921 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
922 | { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */ | ||
923 | /* Somehow does the 971 tell me that the link is down | ||
924 | * the first read after power-up. | ||
925 | * read here to get a valid value in ack_int */ | ||
926 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
927 | { mk_mii_end, } | ||
928 | }, | ||
929 | (const phy_cmd_t []) { /* ack_int */ | ||
930 | /* find out the current status */ | ||
931 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
932 | { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 }, | ||
933 | /* we only need to read ISR to acknowledge */ | ||
934 | { mk_mii_read(MII_LXT971_ISR), NULL }, | ||
935 | { mk_mii_end, } | ||
936 | }, | ||
937 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ | ||
938 | { mk_mii_write(MII_LXT971_IER, 0x0000), NULL }, | ||
939 | { mk_mii_end, } | ||
940 | }, | ||
941 | }; | ||
942 | |||
943 | /* ------------------------------------------------------------------------- */ | ||
944 | /* The Quality Semiconductor QS6612 is used on the RPX CLLF */ | ||
945 | |||
946 | /* register definitions */ | ||
947 | |||
948 | #define MII_QS6612_MCR 17 /* Mode Control Register */ | ||
949 | #define MII_QS6612_FTR 27 /* Factory Test Register */ | ||
950 | #define MII_QS6612_MCO 28 /* Misc. Control Register */ | ||
951 | #define MII_QS6612_ISR 29 /* Interrupt Source Register */ | ||
952 | #define MII_QS6612_IMR 30 /* Interrupt Mask Register */ | ||
953 | #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */ | ||
954 | |||
955 | static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev) | ||
956 | { | ||
957 | struct fec_enet_private *fep = netdev_priv(dev); | ||
958 | volatile uint *s = &(fep->phy_status); | ||
959 | |||
960 | *s &= ~(PHY_STAT_SPMASK); | ||
961 | |||
962 | switch((mii_reg >> 2) & 7) { | ||
963 | case 1: *s |= PHY_STAT_10HDX; break; | ||
964 | case 2: *s |= PHY_STAT_100HDX; break; | ||
965 | case 5: *s |= PHY_STAT_10FDX; break; | ||
966 | case 6: *s |= PHY_STAT_100FDX; break; | ||
967 | } | ||
968 | } | ||
969 | |||
970 | static phy_info_t phy_info_qs6612 = { | ||
971 | 0x00181440, | ||
972 | "QS6612", | ||
973 | |||
974 | (const phy_cmd_t []) { /* config */ | ||
975 | /* The PHY powers up isolated on the RPX, | ||
976 | * so send a command to allow operation. | ||
977 | */ | ||
978 | { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL }, | ||
979 | |||
980 | /* parse cr and anar to get some info */ | ||
981 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
982 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
983 | { mk_mii_end, } | ||
984 | }, | ||
985 | (const phy_cmd_t []) { /* startup - enable interrupts */ | ||
986 | { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL }, | ||
987 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
988 | { mk_mii_end, } | ||
989 | }, | ||
990 | (const phy_cmd_t []) { /* ack_int */ | ||
991 | /* we need to read ISR, SR and ANER to acknowledge */ | ||
992 | { mk_mii_read(MII_QS6612_ISR), NULL }, | ||
993 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
994 | { mk_mii_read(MII_REG_ANER), NULL }, | ||
995 | |||
996 | /* read pcr to get info */ | ||
997 | { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr }, | ||
998 | { mk_mii_end, } | ||
999 | }, | ||
1000 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ | ||
1001 | { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL }, | ||
1002 | { mk_mii_end, } | ||
1003 | }, | ||
1004 | }; | ||
1005 | |||
1006 | /* ------------------------------------------------------------------------- */ | ||
1007 | /* AMD AM79C874 phy */ | ||
1008 | |||
1009 | /* register definitions for the 874 */ | ||
1010 | |||
1011 | #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */ | ||
1012 | #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */ | ||
1013 | #define MII_AM79C874_DR 18 /* Diagnostic Register */ | ||
1014 | #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */ | ||
1015 | #define MII_AM79C874_MCR 21 /* ModeControl Register */ | ||
1016 | #define MII_AM79C874_DC 23 /* Disconnect Counter */ | ||
1017 | #define MII_AM79C874_REC 24 /* Recieve Error Counter */ | ||
1018 | |||
1019 | static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev) | ||
1020 | { | ||
1021 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1022 | volatile uint *s = &(fep->phy_status); | ||
1023 | |||
1024 | *s &= ~(PHY_STAT_SPMASK | PHY_STAT_ANC); | ||
1025 | |||
1026 | if (mii_reg & 0x0080) | ||
1027 | *s |= PHY_STAT_ANC; | ||
1028 | if (mii_reg & 0x0400) | ||
1029 | *s |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX); | ||
1030 | else | ||
1031 | *s |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX); | ||
1032 | } | ||
1033 | |||
1034 | static phy_info_t phy_info_am79c874 = { | ||
1035 | 0x00022561, | ||
1036 | "AM79C874", | ||
1037 | |||
1038 | (const phy_cmd_t []) { /* config */ | ||
1039 | /* limit to 10MBit because my protorype board | ||
1040 | * doesn't work with 100. */ | ||
1041 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
1042 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
1043 | { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | ||
1044 | { mk_mii_end, } | ||
1045 | }, | ||
1046 | (const phy_cmd_t []) { /* startup - enable interrupts */ | ||
1047 | { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL }, | ||
1048 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
1049 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
1050 | { mk_mii_end, } | ||
1051 | }, | ||
1052 | (const phy_cmd_t []) { /* ack_int */ | ||
1053 | /* find out the current status */ | ||
1054 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
1055 | { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr }, | ||
1056 | /* we only need to read ISR to acknowledge */ | ||
1057 | { mk_mii_read(MII_AM79C874_ICSR), NULL }, | ||
1058 | { mk_mii_end, } | ||
1059 | }, | ||
1060 | (const phy_cmd_t []) { /* shutdown - disable interrupts */ | ||
1061 | { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL }, | ||
1062 | { mk_mii_end, } | ||
1063 | }, | ||
1064 | }; | ||
1065 | |||
1066 | /* ------------------------------------------------------------------------- */ | ||
1067 | /* Kendin KS8721BL phy */ | ||
1068 | |||
1069 | /* register definitions for the 8721 */ | ||
1070 | |||
1071 | #define MII_KS8721BL_RXERCR 21 | ||
1072 | #define MII_KS8721BL_ICSR 22 | ||
1073 | #define MII_KS8721BL_PHYCR 31 | ||
1074 | |||
1075 | static phy_info_t phy_info_ks8721bl = { | ||
1076 | 0x00022161, | ||
1077 | "KS8721BL", | ||
1078 | |||
1079 | (const phy_cmd_t []) { /* config */ | ||
1080 | { mk_mii_read(MII_REG_CR), mii_parse_cr }, | ||
1081 | { mk_mii_read(MII_REG_ANAR), mii_parse_anar }, | ||
1082 | { mk_mii_end, } | ||
1083 | }, | ||
1084 | (const phy_cmd_t []) { /* startup */ | ||
1085 | { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL }, | ||
1086 | { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */ | ||
1087 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
1088 | { mk_mii_end, } | ||
1089 | }, | ||
1090 | (const phy_cmd_t []) { /* ack_int */ | ||
1091 | /* find out the current status */ | ||
1092 | { mk_mii_read(MII_REG_SR), mii_parse_sr }, | ||
1093 | /* we only need to read ISR to acknowledge */ | ||
1094 | { mk_mii_read(MII_KS8721BL_ICSR), NULL }, | ||
1095 | { mk_mii_end, } | ||
1096 | }, | ||
1097 | (const phy_cmd_t []) { /* shutdown */ | ||
1098 | { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL }, | ||
1099 | { mk_mii_end, } | ||
1100 | }, | ||
1101 | }; | ||
1102 | |||
1103 | /* ------------------------------------------------------------------------- */ | ||
1104 | |||
1105 | static phy_info_t *phy_info[] = { | ||
1106 | &phy_info_lxt970, | ||
1107 | &phy_info_lxt971, | ||
1108 | &phy_info_qs6612, | ||
1109 | &phy_info_am79c874, | ||
1110 | &phy_info_ks8721bl, | ||
1111 | NULL | ||
1112 | }; | ||
1113 | |||
1114 | /* ------------------------------------------------------------------------- */ | ||
1115 | |||
1116 | #ifdef CONFIG_RPXCLASSIC | ||
1117 | static void | ||
1118 | mii_link_interrupt(void *dev_id); | ||
1119 | #else | ||
1120 | static irqreturn_t | ||
1121 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs); | ||
1122 | #endif | ||
1123 | |||
1124 | #if defined(CONFIG_M5272) | ||
1125 | |||
1126 | /* | ||
1127 | * Code specific to Coldfire 5272 setup. | ||
1128 | */ | ||
1129 | static void __inline__ fec_request_intrs(struct net_device *dev) | ||
1130 | { | ||
1131 | volatile unsigned long *icrp; | ||
1132 | |||
1133 | /* Setup interrupt handlers. */ | ||
1134 | if (request_irq(86, fec_enet_interrupt, 0, "fec(RX)", dev) != 0) | ||
1135 | printk("FEC: Could not allocate FEC(RC) IRQ(86)!\n"); | ||
1136 | if (request_irq(87, fec_enet_interrupt, 0, "fec(TX)", dev) != 0) | ||
1137 | printk("FEC: Could not allocate FEC(RC) IRQ(87)!\n"); | ||
1138 | if (request_irq(88, fec_enet_interrupt, 0, "fec(OTHER)", dev) != 0) | ||
1139 | printk("FEC: Could not allocate FEC(OTHER) IRQ(88)!\n"); | ||
1140 | if (request_irq(66, mii_link_interrupt, 0, "fec(MII)", dev) != 0) | ||
1141 | printk("FEC: Could not allocate MII IRQ(66)!\n"); | ||
1142 | |||
1143 | /* Unmask interrupt at ColdFire 5272 SIM */ | ||
1144 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR3); | ||
1145 | *icrp = 0x00000ddd; | ||
1146 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | ||
1147 | *icrp = (*icrp & 0x70777777) | 0x0d000000; | ||
1148 | } | ||
1149 | |||
1150 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | ||
1151 | { | ||
1152 | volatile fec_t *fecp; | ||
1153 | |||
1154 | fecp = fep->hwp; | ||
1155 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | ||
1156 | fecp->fec_x_cntrl = 0x00; | ||
1157 | |||
1158 | /* | ||
1159 | * Set MII speed to 2.5 MHz | ||
1160 | * See 5272 manual section 11.5.8: MSCR | ||
1161 | */ | ||
1162 | fep->phy_speed = ((((MCF_CLK / 4) / (2500000 / 10)) + 5) / 10) * 2; | ||
1163 | fecp->fec_mii_speed = fep->phy_speed; | ||
1164 | |||
1165 | fec_restart(dev, 0); | ||
1166 | } | ||
1167 | |||
1168 | static void __inline__ fec_get_mac(struct net_device *dev) | ||
1169 | { | ||
1170 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1171 | volatile fec_t *fecp; | ||
1172 | unsigned char *iap, tmpaddr[6]; | ||
1173 | int i; | ||
1174 | |||
1175 | fecp = fep->hwp; | ||
1176 | |||
1177 | if (fec_flashmac) { | ||
1178 | /* | ||
1179 | * Get MAC address from FLASH. | ||
1180 | * If it is all 1's or 0's, use the default. | ||
1181 | */ | ||
1182 | iap = fec_flashmac; | ||
1183 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && | ||
1184 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | ||
1185 | iap = fec_mac_default; | ||
1186 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | ||
1187 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | ||
1188 | iap = fec_mac_default; | ||
1189 | } else { | ||
1190 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | ||
1191 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | ||
1192 | iap = &tmpaddr[0]; | ||
1193 | } | ||
1194 | |||
1195 | for (i=0; i<ETH_ALEN; i++) | ||
1196 | dev->dev_addr[i] = fep->mac_addr[i] = *iap++; | ||
1197 | |||
1198 | /* Adjust MAC if using default MAC address */ | ||
1199 | if (iap == fec_mac_default) { | ||
1200 | dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] = | ||
1201 | iap[ETH_ALEN-1] + fep->index; | ||
1202 | } | ||
1203 | } | ||
1204 | |||
1205 | static void __inline__ fec_enable_phy_intr(void) | ||
1206 | { | ||
1207 | } | ||
1208 | |||
1209 | static void __inline__ fec_disable_phy_intr(void) | ||
1210 | { | ||
1211 | volatile unsigned long *icrp; | ||
1212 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | ||
1213 | *icrp = (*icrp & 0x70777777) | 0x08000000; | ||
1214 | } | ||
1215 | |||
1216 | static void __inline__ fec_phy_ack_intr(void) | ||
1217 | { | ||
1218 | volatile unsigned long *icrp; | ||
1219 | /* Acknowledge the interrupt */ | ||
1220 | icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1); | ||
1221 | *icrp = (*icrp & 0x77777777) | 0x08000000; | ||
1222 | } | ||
1223 | |||
1224 | static void __inline__ fec_localhw_setup(void) | ||
1225 | { | ||
1226 | } | ||
1227 | |||
1228 | /* | ||
1229 | * Do not need to make region uncached on 5272. | ||
1230 | */ | ||
1231 | static void __inline__ fec_uncache(unsigned long addr) | ||
1232 | { | ||
1233 | } | ||
1234 | |||
1235 | /* ------------------------------------------------------------------------- */ | ||
1236 | |||
1237 | #elif defined(CONFIG_M527x) || defined(CONFIG_M528x) | ||
1238 | |||
1239 | /* | ||
1240 | * Code specific to Coldfire 5270/5271/5274/5275 and 5280/5282 setups. | ||
1241 | */ | ||
1242 | static void __inline__ fec_request_intrs(struct net_device *dev) | ||
1243 | { | ||
1244 | struct fec_enet_private *fep; | ||
1245 | int b; | ||
1246 | |||
1247 | fep = netdev_priv(dev); | ||
1248 | b = (fep->index) ? 128 : 64; | ||
1249 | |||
1250 | /* Setup interrupt handlers. */ | ||
1251 | if (request_irq(b+23, fec_enet_interrupt, 0, "fec(TXF)", dev) != 0) | ||
1252 | printk("FEC: Could not allocate FEC(TXF) IRQ(%d+23)!\n", b); | ||
1253 | if (request_irq(b+24, fec_enet_interrupt, 0, "fec(TXB)", dev) != 0) | ||
1254 | printk("FEC: Could not allocate FEC(TXB) IRQ(%d+24)!\n", b); | ||
1255 | if (request_irq(b+25, fec_enet_interrupt, 0, "fec(TXFIFO)", dev) != 0) | ||
1256 | printk("FEC: Could not allocate FEC(TXFIFO) IRQ(%d+25)!\n", b); | ||
1257 | if (request_irq(b+26, fec_enet_interrupt, 0, "fec(TXCR)", dev) != 0) | ||
1258 | printk("FEC: Could not allocate FEC(TXCR) IRQ(%d+26)!\n", b); | ||
1259 | |||
1260 | if (request_irq(b+27, fec_enet_interrupt, 0, "fec(RXF)", dev) != 0) | ||
1261 | printk("FEC: Could not allocate FEC(RXF) IRQ(%d+27)!\n", b); | ||
1262 | if (request_irq(b+28, fec_enet_interrupt, 0, "fec(RXB)", dev) != 0) | ||
1263 | printk("FEC: Could not allocate FEC(RXB) IRQ(%d+28)!\n", b); | ||
1264 | |||
1265 | if (request_irq(b+29, fec_enet_interrupt, 0, "fec(MII)", dev) != 0) | ||
1266 | printk("FEC: Could not allocate FEC(MII) IRQ(%d+29)!\n", b); | ||
1267 | if (request_irq(b+30, fec_enet_interrupt, 0, "fec(LC)", dev) != 0) | ||
1268 | printk("FEC: Could not allocate FEC(LC) IRQ(%d+30)!\n", b); | ||
1269 | if (request_irq(b+31, fec_enet_interrupt, 0, "fec(HBERR)", dev) != 0) | ||
1270 | printk("FEC: Could not allocate FEC(HBERR) IRQ(%d+31)!\n", b); | ||
1271 | if (request_irq(b+32, fec_enet_interrupt, 0, "fec(GRA)", dev) != 0) | ||
1272 | printk("FEC: Could not allocate FEC(GRA) IRQ(%d+32)!\n", b); | ||
1273 | if (request_irq(b+33, fec_enet_interrupt, 0, "fec(EBERR)", dev) != 0) | ||
1274 | printk("FEC: Could not allocate FEC(EBERR) IRQ(%d+33)!\n", b); | ||
1275 | if (request_irq(b+34, fec_enet_interrupt, 0, "fec(BABT)", dev) != 0) | ||
1276 | printk("FEC: Could not allocate FEC(BABT) IRQ(%d+34)!\n", b); | ||
1277 | if (request_irq(b+35, fec_enet_interrupt, 0, "fec(BABR)", dev) != 0) | ||
1278 | printk("FEC: Could not allocate FEC(BABR) IRQ(%d+35)!\n", b); | ||
1279 | |||
1280 | /* Unmask interrupts at ColdFire 5280/5282 interrupt controller */ | ||
1281 | { | ||
1282 | volatile unsigned char *icrp; | ||
1283 | volatile unsigned long *imrp; | ||
1284 | int i; | ||
1285 | |||
1286 | b = (fep->index) ? MCFICM_INTC1 : MCFICM_INTC0; | ||
1287 | icrp = (volatile unsigned char *) (MCF_IPSBAR + b + | ||
1288 | MCFINTC_ICR0); | ||
1289 | for (i = 23; (i < 36); i++) | ||
1290 | icrp[i] = 0x23; | ||
1291 | |||
1292 | imrp = (volatile unsigned long *) (MCF_IPSBAR + b + | ||
1293 | MCFINTC_IMRH); | ||
1294 | *imrp &= ~0x0000000f; | ||
1295 | imrp = (volatile unsigned long *) (MCF_IPSBAR + b + | ||
1296 | MCFINTC_IMRL); | ||
1297 | *imrp &= ~0xff800001; | ||
1298 | } | ||
1299 | |||
1300 | #if defined(CONFIG_M528x) | ||
1301 | /* Set up gpio outputs for MII lines */ | ||
1302 | { | ||
1303 | volatile unsigned short *gpio_paspar; | ||
1304 | |||
1305 | gpio_paspar = (volatile unsigned short *) (MCF_IPSBAR + | ||
1306 | 0x100056); | ||
1307 | *gpio_paspar = 0x0f00; | ||
1308 | } | ||
1309 | #endif | ||
1310 | } | ||
1311 | |||
1312 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | ||
1313 | { | ||
1314 | volatile fec_t *fecp; | ||
1315 | |||
1316 | fecp = fep->hwp; | ||
1317 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04; | ||
1318 | fecp->fec_x_cntrl = 0x00; | ||
1319 | |||
1320 | /* | ||
1321 | * Set MII speed to 2.5 MHz | ||
1322 | * See 5282 manual section 17.5.4.7: MSCR | ||
1323 | */ | ||
1324 | fep->phy_speed = ((((MCF_CLK / 2) / (2500000 / 10)) + 5) / 10) * 2; | ||
1325 | fecp->fec_mii_speed = fep->phy_speed; | ||
1326 | |||
1327 | fec_restart(dev, 0); | ||
1328 | } | ||
1329 | |||
1330 | static void __inline__ fec_get_mac(struct net_device *dev) | ||
1331 | { | ||
1332 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1333 | volatile fec_t *fecp; | ||
1334 | unsigned char *iap, tmpaddr[6]; | ||
1335 | int i; | ||
1336 | |||
1337 | fecp = fep->hwp; | ||
1338 | |||
1339 | if (fec_flashmac) { | ||
1340 | /* | ||
1341 | * Get MAC address from FLASH. | ||
1342 | * If it is all 1's or 0's, use the default. | ||
1343 | */ | ||
1344 | iap = fec_flashmac; | ||
1345 | if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) && | ||
1346 | (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0)) | ||
1347 | iap = fec_mac_default; | ||
1348 | if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) && | ||
1349 | (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff)) | ||
1350 | iap = fec_mac_default; | ||
1351 | } else { | ||
1352 | *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low; | ||
1353 | *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16); | ||
1354 | iap = &tmpaddr[0]; | ||
1355 | } | ||
1356 | |||
1357 | for (i=0; i<ETH_ALEN; i++) | ||
1358 | dev->dev_addr[i] = fep->mac_addr[i] = *iap++; | ||
1359 | |||
1360 | /* Adjust MAC if using default MAC address */ | ||
1361 | if (iap == fec_mac_default) { | ||
1362 | dev->dev_addr[ETH_ALEN-1] = fep->mac_addr[ETH_ALEN-1] = | ||
1363 | iap[ETH_ALEN-1] + fep->index; | ||
1364 | } | ||
1365 | } | ||
1366 | |||
1367 | static void __inline__ fec_enable_phy_intr(void) | ||
1368 | { | ||
1369 | } | ||
1370 | |||
1371 | static void __inline__ fec_disable_phy_intr(void) | ||
1372 | { | ||
1373 | } | ||
1374 | |||
1375 | static void __inline__ fec_phy_ack_intr(void) | ||
1376 | { | ||
1377 | } | ||
1378 | |||
1379 | static void __inline__ fec_localhw_setup(void) | ||
1380 | { | ||
1381 | } | ||
1382 | |||
1383 | /* | ||
1384 | * Do not need to make region uncached on 5272. | ||
1385 | */ | ||
1386 | static void __inline__ fec_uncache(unsigned long addr) | ||
1387 | { | ||
1388 | } | ||
1389 | |||
1390 | /* ------------------------------------------------------------------------- */ | ||
1391 | |||
1392 | #else | ||
1393 | |||
1394 | /* | ||
1395 | * Code sepcific to the MPC860T setup. | ||
1396 | */ | ||
1397 | static void __inline__ fec_request_intrs(struct net_device *dev) | ||
1398 | { | ||
1399 | volatile immap_t *immap; | ||
1400 | |||
1401 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | ||
1402 | |||
1403 | if (request_8xxirq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0) | ||
1404 | panic("Could not allocate FEC IRQ!"); | ||
1405 | |||
1406 | #ifdef CONFIG_RPXCLASSIC | ||
1407 | /* Make Port C, bit 15 an input that causes interrupts. | ||
1408 | */ | ||
1409 | immap->im_ioport.iop_pcpar &= ~0x0001; | ||
1410 | immap->im_ioport.iop_pcdir &= ~0x0001; | ||
1411 | immap->im_ioport.iop_pcso &= ~0x0001; | ||
1412 | immap->im_ioport.iop_pcint |= 0x0001; | ||
1413 | cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev); | ||
1414 | |||
1415 | /* Make LEDS reflect Link status. | ||
1416 | */ | ||
1417 | *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE; | ||
1418 | #endif | ||
1419 | #ifdef CONFIG_FADS | ||
1420 | if (request_8xxirq(SIU_IRQ2, mii_link_interrupt, 0, "mii", dev) != 0) | ||
1421 | panic("Could not allocate MII IRQ!"); | ||
1422 | #endif | ||
1423 | } | ||
1424 | |||
1425 | static void __inline__ fec_get_mac(struct net_device *dev) | ||
1426 | { | ||
1427 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1428 | unsigned char *iap, tmpaddr[6]; | ||
1429 | bd_t *bd; | ||
1430 | int i; | ||
1431 | |||
1432 | iap = bd->bi_enetaddr; | ||
1433 | bd = (bd_t *)__res; | ||
1434 | |||
1435 | #ifdef CONFIG_RPXCLASSIC | ||
1436 | /* The Embedded Planet boards have only one MAC address in | ||
1437 | * the EEPROM, but can have two Ethernet ports. For the | ||
1438 | * FEC port, we create another address by setting one of | ||
1439 | * the address bits above something that would have (up to | ||
1440 | * now) been allocated. | ||
1441 | */ | ||
1442 | for (i=0; i<6; i++) | ||
1443 | tmpaddr[i] = *iap++; | ||
1444 | tmpaddr[3] |= 0x80; | ||
1445 | iap = tmpaddr; | ||
1446 | #endif | ||
1447 | |||
1448 | for (i=0; i<6; i++) | ||
1449 | dev->dev_addr[i] = fep->mac_addr[i] = *iap++; | ||
1450 | } | ||
1451 | |||
1452 | static void __inline__ fec_set_mii(struct net_device *dev, struct fec_enet_private *fep) | ||
1453 | { | ||
1454 | extern uint _get_IMMR(void); | ||
1455 | volatile immap_t *immap; | ||
1456 | volatile fec_t *fecp; | ||
1457 | |||
1458 | fecp = fep->hwp; | ||
1459 | immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */ | ||
1460 | |||
1461 | /* Configure all of port D for MII. | ||
1462 | */ | ||
1463 | immap->im_ioport.iop_pdpar = 0x1fff; | ||
1464 | |||
1465 | /* Bits moved from Rev. D onward. | ||
1466 | */ | ||
1467 | if ((_get_IMMR() & 0xffff) < 0x0501) | ||
1468 | immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */ | ||
1469 | else | ||
1470 | immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */ | ||
1471 | |||
1472 | /* Set MII speed to 2.5 MHz | ||
1473 | */ | ||
1474 | fecp->fec_mii_speed = fep->phy_speed = | ||
1475 | ((bd->bi_busfreq * 1000000) / 2500000) & 0x7e; | ||
1476 | } | ||
1477 | |||
1478 | static void __inline__ fec_enable_phy_intr(void) | ||
1479 | { | ||
1480 | volatile fec_t *fecp; | ||
1481 | |||
1482 | fecp = fep->hwp; | ||
1483 | |||
1484 | /* Enable MII command finished interrupt | ||
1485 | */ | ||
1486 | fecp->fec_ivec = (FEC_INTERRUPT/2) << 29; | ||
1487 | } | ||
1488 | |||
1489 | static void __inline__ fec_disable_phy_intr(void) | ||
1490 | { | ||
1491 | } | ||
1492 | |||
1493 | static void __inline__ fec_phy_ack_intr(void) | ||
1494 | { | ||
1495 | } | ||
1496 | |||
1497 | static void __inline__ fec_localhw_setup(void) | ||
1498 | { | ||
1499 | volatile fec_t *fecp; | ||
1500 | |||
1501 | fecp = fep->hwp; | ||
1502 | fecp->fec_r_hash = PKT_MAXBUF_SIZE; | ||
1503 | /* Enable big endian and don't care about SDMA FC. | ||
1504 | */ | ||
1505 | fecp->fec_fun_code = 0x78000000; | ||
1506 | } | ||
1507 | |||
1508 | static void __inline__ fec_uncache(unsigned long addr) | ||
1509 | { | ||
1510 | pte_t *pte; | ||
1511 | pte = va_to_pte(mem_addr); | ||
1512 | pte_val(*pte) |= _PAGE_NO_CACHE; | ||
1513 | flush_tlb_page(init_mm.mmap, mem_addr); | ||
1514 | } | ||
1515 | |||
1516 | #endif | ||
1517 | |||
1518 | /* ------------------------------------------------------------------------- */ | ||
1519 | |||
1520 | static void mii_display_status(struct net_device *dev) | ||
1521 | { | ||
1522 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1523 | volatile uint *s = &(fep->phy_status); | ||
1524 | |||
1525 | if (!fep->link && !fep->old_link) { | ||
1526 | /* Link is still down - don't print anything */ | ||
1527 | return; | ||
1528 | } | ||
1529 | |||
1530 | printk("%s: status: ", dev->name); | ||
1531 | |||
1532 | if (!fep->link) { | ||
1533 | printk("link down"); | ||
1534 | } else { | ||
1535 | printk("link up"); | ||
1536 | |||
1537 | switch(*s & PHY_STAT_SPMASK) { | ||
1538 | case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break; | ||
1539 | case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break; | ||
1540 | case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break; | ||
1541 | case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break; | ||
1542 | default: | ||
1543 | printk(", Unknown speed/duplex"); | ||
1544 | } | ||
1545 | |||
1546 | if (*s & PHY_STAT_ANC) | ||
1547 | printk(", auto-negotiation complete"); | ||
1548 | } | ||
1549 | |||
1550 | if (*s & PHY_STAT_FAULT) | ||
1551 | printk(", remote fault"); | ||
1552 | |||
1553 | printk(".\n"); | ||
1554 | } | ||
1555 | |||
1556 | static void mii_display_config(struct net_device *dev) | ||
1557 | { | ||
1558 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1559 | volatile uint *s = &(fep->phy_status); | ||
1560 | |||
1561 | /* | ||
1562 | ** When we get here, phy_task is already removed from | ||
1563 | ** the workqueue. It is thus safe to allow to reuse it. | ||
1564 | */ | ||
1565 | fep->mii_phy_task_queued = 0; | ||
1566 | printk("%s: config: auto-negotiation ", dev->name); | ||
1567 | |||
1568 | if (*s & PHY_CONF_ANE) | ||
1569 | printk("on"); | ||
1570 | else | ||
1571 | printk("off"); | ||
1572 | |||
1573 | if (*s & PHY_CONF_100FDX) | ||
1574 | printk(", 100FDX"); | ||
1575 | if (*s & PHY_CONF_100HDX) | ||
1576 | printk(", 100HDX"); | ||
1577 | if (*s & PHY_CONF_10FDX) | ||
1578 | printk(", 10FDX"); | ||
1579 | if (*s & PHY_CONF_10HDX) | ||
1580 | printk(", 10HDX"); | ||
1581 | if (!(*s & PHY_CONF_SPMASK)) | ||
1582 | printk(", No speed/duplex selected?"); | ||
1583 | |||
1584 | if (*s & PHY_CONF_LOOP) | ||
1585 | printk(", loopback enabled"); | ||
1586 | |||
1587 | printk(".\n"); | ||
1588 | |||
1589 | fep->sequence_done = 1; | ||
1590 | } | ||
1591 | |||
1592 | static void mii_relink(struct net_device *dev) | ||
1593 | { | ||
1594 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1595 | int duplex; | ||
1596 | |||
1597 | /* | ||
1598 | ** When we get here, phy_task is already removed from | ||
1599 | ** the workqueue. It is thus safe to allow to reuse it. | ||
1600 | */ | ||
1601 | fep->mii_phy_task_queued = 0; | ||
1602 | fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0; | ||
1603 | mii_display_status(dev); | ||
1604 | fep->old_link = fep->link; | ||
1605 | |||
1606 | if (fep->link) { | ||
1607 | duplex = 0; | ||
1608 | if (fep->phy_status | ||
1609 | & (PHY_STAT_100FDX | PHY_STAT_10FDX)) | ||
1610 | duplex = 1; | ||
1611 | fec_restart(dev, duplex); | ||
1612 | } | ||
1613 | else | ||
1614 | fec_stop(dev); | ||
1615 | |||
1616 | #if 0 | ||
1617 | enable_irq(fep->mii_irq); | ||
1618 | #endif | ||
1619 | |||
1620 | } | ||
1621 | |||
1622 | /* mii_queue_relink is called in interrupt context from mii_link_interrupt */ | ||
1623 | static void mii_queue_relink(uint mii_reg, struct net_device *dev) | ||
1624 | { | ||
1625 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1626 | |||
1627 | /* | ||
1628 | ** We cannot queue phy_task twice in the workqueue. It | ||
1629 | ** would cause an endless loop in the workqueue. | ||
1630 | ** Fortunately, if the last mii_relink entry has not yet been | ||
1631 | ** executed now, it will do the job for the current interrupt, | ||
1632 | ** which is just what we want. | ||
1633 | */ | ||
1634 | if (fep->mii_phy_task_queued) | ||
1635 | return; | ||
1636 | |||
1637 | fep->mii_phy_task_queued = 1; | ||
1638 | INIT_WORK(&fep->phy_task, (void*)mii_relink, dev); | ||
1639 | schedule_work(&fep->phy_task); | ||
1640 | } | ||
1641 | |||
1642 | /* mii_queue_config is called in user context from fec_enet_open */ | ||
1643 | static void mii_queue_config(uint mii_reg, struct net_device *dev) | ||
1644 | { | ||
1645 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1646 | |||
1647 | if (fep->mii_phy_task_queued) | ||
1648 | return; | ||
1649 | |||
1650 | fep->mii_phy_task_queued = 1; | ||
1651 | INIT_WORK(&fep->phy_task, (void*)mii_display_config, dev); | ||
1652 | schedule_work(&fep->phy_task); | ||
1653 | } | ||
1654 | |||
1655 | |||
1656 | |||
1657 | phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink }, | ||
1658 | { mk_mii_end, } }; | ||
1659 | phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config }, | ||
1660 | { mk_mii_end, } }; | ||
1661 | |||
1662 | |||
1663 | |||
1664 | /* Read remainder of PHY ID. | ||
1665 | */ | ||
1666 | static void | ||
1667 | mii_discover_phy3(uint mii_reg, struct net_device *dev) | ||
1668 | { | ||
1669 | struct fec_enet_private *fep; | ||
1670 | int i; | ||
1671 | |||
1672 | fep = netdev_priv(dev); | ||
1673 | fep->phy_id |= (mii_reg & 0xffff); | ||
1674 | printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id); | ||
1675 | |||
1676 | for(i = 0; phy_info[i]; i++) { | ||
1677 | if(phy_info[i]->id == (fep->phy_id >> 4)) | ||
1678 | break; | ||
1679 | } | ||
1680 | |||
1681 | if (phy_info[i]) | ||
1682 | printk(" -- %s\n", phy_info[i]->name); | ||
1683 | else | ||
1684 | printk(" -- unknown PHY!\n"); | ||
1685 | |||
1686 | fep->phy = phy_info[i]; | ||
1687 | fep->phy_id_done = 1; | ||
1688 | } | ||
1689 | |||
1690 | /* Scan all of the MII PHY addresses looking for someone to respond | ||
1691 | * with a valid ID. This usually happens quickly. | ||
1692 | */ | ||
1693 | static void | ||
1694 | mii_discover_phy(uint mii_reg, struct net_device *dev) | ||
1695 | { | ||
1696 | struct fec_enet_private *fep; | ||
1697 | volatile fec_t *fecp; | ||
1698 | uint phytype; | ||
1699 | |||
1700 | fep = netdev_priv(dev); | ||
1701 | fecp = fep->hwp; | ||
1702 | |||
1703 | if (fep->phy_addr < 32) { | ||
1704 | if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) { | ||
1705 | |||
1706 | /* Got first part of ID, now get remainder. | ||
1707 | */ | ||
1708 | fep->phy_id = phytype << 16; | ||
1709 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), | ||
1710 | mii_discover_phy3); | ||
1711 | } | ||
1712 | else { | ||
1713 | fep->phy_addr++; | ||
1714 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), | ||
1715 | mii_discover_phy); | ||
1716 | } | ||
1717 | } else { | ||
1718 | printk("FEC: No PHY device found.\n"); | ||
1719 | /* Disable external MII interface */ | ||
1720 | fecp->fec_mii_speed = fep->phy_speed = 0; | ||
1721 | fec_disable_phy_intr(); | ||
1722 | } | ||
1723 | } | ||
1724 | |||
1725 | /* This interrupt occurs when the PHY detects a link change. | ||
1726 | */ | ||
1727 | #ifdef CONFIG_RPXCLASSIC | ||
1728 | static void | ||
1729 | mii_link_interrupt(void *dev_id) | ||
1730 | #else | ||
1731 | static irqreturn_t | ||
1732 | mii_link_interrupt(int irq, void * dev_id, struct pt_regs * regs) | ||
1733 | #endif | ||
1734 | { | ||
1735 | struct net_device *dev = dev_id; | ||
1736 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1737 | |||
1738 | fec_phy_ack_intr(); | ||
1739 | |||
1740 | #if 0 | ||
1741 | disable_irq(fep->mii_irq); /* disable now, enable later */ | ||
1742 | #endif | ||
1743 | |||
1744 | mii_do_cmd(dev, fep->phy->ack_int); | ||
1745 | mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */ | ||
1746 | |||
1747 | return IRQ_HANDLED; | ||
1748 | } | ||
1749 | |||
1750 | static int | ||
1751 | fec_enet_open(struct net_device *dev) | ||
1752 | { | ||
1753 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1754 | |||
1755 | /* I should reset the ring buffers here, but I don't yet know | ||
1756 | * a simple way to do that. | ||
1757 | */ | ||
1758 | fec_set_mac_address(dev); | ||
1759 | |||
1760 | fep->sequence_done = 0; | ||
1761 | fep->link = 0; | ||
1762 | |||
1763 | if (fep->phy) { | ||
1764 | mii_do_cmd(dev, fep->phy->ack_int); | ||
1765 | mii_do_cmd(dev, fep->phy->config); | ||
1766 | mii_do_cmd(dev, phy_cmd_config); /* display configuration */ | ||
1767 | |||
1768 | /* FIXME: use netif_carrier_{on,off} ; this polls | ||
1769 | * until link is up which is wrong... could be | ||
1770 | * 30 seconds or more we are trapped in here. -jgarzik | ||
1771 | */ | ||
1772 | while(!fep->sequence_done) | ||
1773 | schedule(); | ||
1774 | |||
1775 | mii_do_cmd(dev, fep->phy->startup); | ||
1776 | |||
1777 | /* Set the initial link state to true. A lot of hardware | ||
1778 | * based on this device does not implement a PHY interrupt, | ||
1779 | * so we are never notified of link change. | ||
1780 | */ | ||
1781 | fep->link = 1; | ||
1782 | } else { | ||
1783 | fep->link = 1; /* lets just try it and see */ | ||
1784 | /* no phy, go full duplex, it's most likely a hub chip */ | ||
1785 | fec_restart(dev, 1); | ||
1786 | } | ||
1787 | |||
1788 | netif_start_queue(dev); | ||
1789 | fep->opened = 1; | ||
1790 | return 0; /* Success */ | ||
1791 | } | ||
1792 | |||
1793 | static int | ||
1794 | fec_enet_close(struct net_device *dev) | ||
1795 | { | ||
1796 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1797 | |||
1798 | /* Don't know what to do yet. | ||
1799 | */ | ||
1800 | fep->opened = 0; | ||
1801 | netif_stop_queue(dev); | ||
1802 | fec_stop(dev); | ||
1803 | |||
1804 | return 0; | ||
1805 | } | ||
1806 | |||
1807 | static struct net_device_stats *fec_enet_get_stats(struct net_device *dev) | ||
1808 | { | ||
1809 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1810 | |||
1811 | return &fep->stats; | ||
1812 | } | ||
1813 | |||
1814 | /* Set or clear the multicast filter for this adaptor. | ||
1815 | * Skeleton taken from sunlance driver. | ||
1816 | * The CPM Ethernet implementation allows Multicast as well as individual | ||
1817 | * MAC address filtering. Some of the drivers check to make sure it is | ||
1818 | * a group multicast address, and discard those that are not. I guess I | ||
1819 | * will do the same for now, but just remove the test if you want | ||
1820 | * individual filtering as well (do the upper net layers want or support | ||
1821 | * this kind of feature?). | ||
1822 | */ | ||
1823 | |||
1824 | #define HASH_BITS 6 /* #bits in hash */ | ||
1825 | #define CRC32_POLY 0xEDB88320 | ||
1826 | |||
1827 | static void set_multicast_list(struct net_device *dev) | ||
1828 | { | ||
1829 | struct fec_enet_private *fep; | ||
1830 | volatile fec_t *ep; | ||
1831 | struct dev_mc_list *dmi; | ||
1832 | unsigned int i, j, bit, data, crc; | ||
1833 | unsigned char hash; | ||
1834 | |||
1835 | fep = netdev_priv(dev); | ||
1836 | ep = fep->hwp; | ||
1837 | |||
1838 | if (dev->flags&IFF_PROMISC) { | ||
1839 | /* Log any net taps. */ | ||
1840 | printk("%s: Promiscuous mode enabled.\n", dev->name); | ||
1841 | ep->fec_r_cntrl |= 0x0008; | ||
1842 | } else { | ||
1843 | |||
1844 | ep->fec_r_cntrl &= ~0x0008; | ||
1845 | |||
1846 | if (dev->flags & IFF_ALLMULTI) { | ||
1847 | /* Catch all multicast addresses, so set the | ||
1848 | * filter to all 1's. | ||
1849 | */ | ||
1850 | ep->fec_hash_table_high = 0xffffffff; | ||
1851 | ep->fec_hash_table_low = 0xffffffff; | ||
1852 | } else { | ||
1853 | /* Clear filter and add the addresses in hash register. | ||
1854 | */ | ||
1855 | ep->fec_hash_table_high = 0; | ||
1856 | ep->fec_hash_table_low = 0; | ||
1857 | |||
1858 | dmi = dev->mc_list; | ||
1859 | |||
1860 | for (j = 0; j < dev->mc_count; j++, dmi = dmi->next) | ||
1861 | { | ||
1862 | /* Only support group multicast for now. | ||
1863 | */ | ||
1864 | if (!(dmi->dmi_addr[0] & 1)) | ||
1865 | continue; | ||
1866 | |||
1867 | /* calculate crc32 value of mac address | ||
1868 | */ | ||
1869 | crc = 0xffffffff; | ||
1870 | |||
1871 | for (i = 0; i < dmi->dmi_addrlen; i++) | ||
1872 | { | ||
1873 | data = dmi->dmi_addr[i]; | ||
1874 | for (bit = 0; bit < 8; bit++, data >>= 1) | ||
1875 | { | ||
1876 | crc = (crc >> 1) ^ | ||
1877 | (((crc ^ data) & 1) ? CRC32_POLY : 0); | ||
1878 | } | ||
1879 | } | ||
1880 | |||
1881 | /* only upper 6 bits (HASH_BITS) are used | ||
1882 | which point to specific bit in he hash registers | ||
1883 | */ | ||
1884 | hash = (crc >> (32 - HASH_BITS)) & 0x3f; | ||
1885 | |||
1886 | if (hash > 31) | ||
1887 | ep->fec_hash_table_high |= 1 << (hash - 32); | ||
1888 | else | ||
1889 | ep->fec_hash_table_low |= 1 << hash; | ||
1890 | } | ||
1891 | } | ||
1892 | } | ||
1893 | } | ||
1894 | |||
1895 | /* Set a MAC change in hardware. | ||
1896 | */ | ||
1897 | static void | ||
1898 | fec_set_mac_address(struct net_device *dev) | ||
1899 | { | ||
1900 | struct fec_enet_private *fep; | ||
1901 | volatile fec_t *fecp; | ||
1902 | |||
1903 | fep = netdev_priv(dev); | ||
1904 | fecp = fep->hwp; | ||
1905 | |||
1906 | /* Set station address. */ | ||
1907 | fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) | | ||
1908 | (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24); | ||
1909 | fecp->fec_addr_high = (fep->mac_addr[5] << 16) | | ||
1910 | (fep->mac_addr[4] << 24); | ||
1911 | |||
1912 | } | ||
1913 | |||
1914 | /* Initialize the FEC Ethernet on 860T (or ColdFire 5272). | ||
1915 | */ | ||
1916 | /* | ||
1917 | * XXX: We need to clean up on failure exits here. | ||
1918 | */ | ||
1919 | int __init fec_enet_init(struct net_device *dev) | ||
1920 | { | ||
1921 | struct fec_enet_private *fep = netdev_priv(dev); | ||
1922 | unsigned long mem_addr; | ||
1923 | volatile cbd_t *bdp; | ||
1924 | cbd_t *cbd_base; | ||
1925 | volatile fec_t *fecp; | ||
1926 | int i, j; | ||
1927 | static int index = 0; | ||
1928 | |||
1929 | /* Only allow us to be probed once. */ | ||
1930 | if (index >= FEC_MAX_PORTS) | ||
1931 | return -ENXIO; | ||
1932 | |||
1933 | /* Create an Ethernet device instance. | ||
1934 | */ | ||
1935 | fecp = (volatile fec_t *) fec_hw[index]; | ||
1936 | |||
1937 | fep->index = index; | ||
1938 | fep->hwp = fecp; | ||
1939 | |||
1940 | /* Whack a reset. We should wait for this. | ||
1941 | */ | ||
1942 | fecp->fec_ecntrl = 1; | ||
1943 | udelay(10); | ||
1944 | |||
1945 | /* Clear and enable interrupts */ | ||
1946 | fecp->fec_ievent = 0xffc0; | ||
1947 | fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | | ||
1948 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); | ||
1949 | fecp->fec_hash_table_high = 0; | ||
1950 | fecp->fec_hash_table_low = 0; | ||
1951 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | ||
1952 | fecp->fec_ecntrl = 2; | ||
1953 | fecp->fec_r_des_active = 0x01000000; | ||
1954 | |||
1955 | /* Set the Ethernet address. If using multiple Enets on the 8xx, | ||
1956 | * this needs some work to get unique addresses. | ||
1957 | * | ||
1958 | * This is our default MAC address unless the user changes | ||
1959 | * it via eth_mac_addr (our dev->set_mac_addr handler). | ||
1960 | */ | ||
1961 | fec_get_mac(dev); | ||
1962 | |||
1963 | /* Allocate memory for buffer descriptors. | ||
1964 | */ | ||
1965 | if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) { | ||
1966 | printk("FEC init error. Need more space.\n"); | ||
1967 | printk("FEC initialization failed.\n"); | ||
1968 | return 1; | ||
1969 | } | ||
1970 | mem_addr = __get_free_page(GFP_KERNEL); | ||
1971 | cbd_base = (cbd_t *)mem_addr; | ||
1972 | /* XXX: missing check for allocation failure */ | ||
1973 | |||
1974 | fec_uncache(mem_addr); | ||
1975 | |||
1976 | /* Set receive and transmit descriptor base. | ||
1977 | */ | ||
1978 | fep->rx_bd_base = cbd_base; | ||
1979 | fep->tx_bd_base = cbd_base + RX_RING_SIZE; | ||
1980 | |||
1981 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | ||
1982 | fep->cur_rx = fep->rx_bd_base; | ||
1983 | |||
1984 | fep->skb_cur = fep->skb_dirty = 0; | ||
1985 | |||
1986 | /* Initialize the receive buffer descriptors. | ||
1987 | */ | ||
1988 | bdp = fep->rx_bd_base; | ||
1989 | for (i=0; i<FEC_ENET_RX_PAGES; i++) { | ||
1990 | |||
1991 | /* Allocate a page. | ||
1992 | */ | ||
1993 | mem_addr = __get_free_page(GFP_KERNEL); | ||
1994 | /* XXX: missing check for allocation failure */ | ||
1995 | |||
1996 | fec_uncache(mem_addr); | ||
1997 | |||
1998 | /* Initialize the BD for every fragment in the page. | ||
1999 | */ | ||
2000 | for (j=0; j<FEC_ENET_RX_FRPPG; j++) { | ||
2001 | bdp->cbd_sc = BD_ENET_RX_EMPTY; | ||
2002 | bdp->cbd_bufaddr = __pa(mem_addr); | ||
2003 | mem_addr += FEC_ENET_RX_FRSIZE; | ||
2004 | bdp++; | ||
2005 | } | ||
2006 | } | ||
2007 | |||
2008 | /* Set the last buffer to wrap. | ||
2009 | */ | ||
2010 | bdp--; | ||
2011 | bdp->cbd_sc |= BD_SC_WRAP; | ||
2012 | |||
2013 | /* ...and the same for transmmit. | ||
2014 | */ | ||
2015 | bdp = fep->tx_bd_base; | ||
2016 | for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) { | ||
2017 | if (j >= FEC_ENET_TX_FRPPG) { | ||
2018 | mem_addr = __get_free_page(GFP_KERNEL); | ||
2019 | j = 1; | ||
2020 | } else { | ||
2021 | mem_addr += FEC_ENET_TX_FRSIZE; | ||
2022 | j++; | ||
2023 | } | ||
2024 | fep->tx_bounce[i] = (unsigned char *) mem_addr; | ||
2025 | |||
2026 | /* Initialize the BD for every fragment in the page. | ||
2027 | */ | ||
2028 | bdp->cbd_sc = 0; | ||
2029 | bdp->cbd_bufaddr = 0; | ||
2030 | bdp++; | ||
2031 | } | ||
2032 | |||
2033 | /* Set the last buffer to wrap. | ||
2034 | */ | ||
2035 | bdp--; | ||
2036 | bdp->cbd_sc |= BD_SC_WRAP; | ||
2037 | |||
2038 | /* Set receive and transmit descriptor base. | ||
2039 | */ | ||
2040 | fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); | ||
2041 | fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); | ||
2042 | |||
2043 | /* Install our interrupt handlers. This varies depending on | ||
2044 | * the architecture. | ||
2045 | */ | ||
2046 | fec_request_intrs(dev); | ||
2047 | |||
2048 | dev->base_addr = (unsigned long)fecp; | ||
2049 | |||
2050 | /* The FEC Ethernet specific entries in the device structure. */ | ||
2051 | dev->open = fec_enet_open; | ||
2052 | dev->hard_start_xmit = fec_enet_start_xmit; | ||
2053 | dev->tx_timeout = fec_timeout; | ||
2054 | dev->watchdog_timeo = TX_TIMEOUT; | ||
2055 | dev->stop = fec_enet_close; | ||
2056 | dev->get_stats = fec_enet_get_stats; | ||
2057 | dev->set_multicast_list = set_multicast_list; | ||
2058 | |||
2059 | for (i=0; i<NMII-1; i++) | ||
2060 | mii_cmds[i].mii_next = &mii_cmds[i+1]; | ||
2061 | mii_free = mii_cmds; | ||
2062 | |||
2063 | /* setup MII interface */ | ||
2064 | fec_set_mii(dev, fep); | ||
2065 | |||
2066 | printk("%s: FEC ENET Version 0.2, ", dev->name); | ||
2067 | for (i=0; i<5; i++) | ||
2068 | printk("%02x:", dev->dev_addr[i]); | ||
2069 | printk("%02x\n", dev->dev_addr[5]); | ||
2070 | |||
2071 | /* Queue up command to detect the PHY and initialize the | ||
2072 | * remainder of the interface. | ||
2073 | */ | ||
2074 | fep->phy_id_done = 0; | ||
2075 | fep->phy_addr = 0; | ||
2076 | mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy); | ||
2077 | |||
2078 | index++; | ||
2079 | return 0; | ||
2080 | } | ||
2081 | |||
2082 | /* This function is called to start or restart the FEC during a link | ||
2083 | * change. This only happens when switching between half and full | ||
2084 | * duplex. | ||
2085 | */ | ||
2086 | static void | ||
2087 | fec_restart(struct net_device *dev, int duplex) | ||
2088 | { | ||
2089 | struct fec_enet_private *fep; | ||
2090 | volatile cbd_t *bdp; | ||
2091 | volatile fec_t *fecp; | ||
2092 | int i; | ||
2093 | |||
2094 | fep = netdev_priv(dev); | ||
2095 | fecp = fep->hwp; | ||
2096 | |||
2097 | /* Whack a reset. We should wait for this. | ||
2098 | */ | ||
2099 | fecp->fec_ecntrl = 1; | ||
2100 | udelay(10); | ||
2101 | |||
2102 | /* Enable interrupts we wish to service. | ||
2103 | */ | ||
2104 | fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_TXB | | ||
2105 | FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII); | ||
2106 | |||
2107 | /* Clear any outstanding interrupt. | ||
2108 | */ | ||
2109 | fecp->fec_ievent = 0xffc0; | ||
2110 | fec_enable_phy_intr(); | ||
2111 | |||
2112 | /* Set station address. | ||
2113 | */ | ||
2114 | fecp->fec_addr_low = fep->mac_addr[3] | (fep->mac_addr[2] << 8) | | ||
2115 | (fep->mac_addr[1] << 16) | (fep->mac_addr[0] << 24); | ||
2116 | fecp->fec_addr_high = (fep->mac_addr[5] << 16) | | ||
2117 | (fep->mac_addr[4] << 24); | ||
2118 | |||
2119 | for (i=0; i<ETH_ALEN; i++) | ||
2120 | dev->dev_addr[i] = fep->mac_addr[i]; | ||
2121 | |||
2122 | /* Reset all multicast. | ||
2123 | */ | ||
2124 | fecp->fec_hash_table_high = 0; | ||
2125 | fecp->fec_hash_table_low = 0; | ||
2126 | |||
2127 | /* Set maximum receive buffer size. | ||
2128 | */ | ||
2129 | fecp->fec_r_buff_size = PKT_MAXBLR_SIZE; | ||
2130 | |||
2131 | fec_localhw_setup(); | ||
2132 | |||
2133 | /* Set receive and transmit descriptor base. | ||
2134 | */ | ||
2135 | fecp->fec_r_des_start = __pa((uint)(fep->rx_bd_base)); | ||
2136 | fecp->fec_x_des_start = __pa((uint)(fep->tx_bd_base)); | ||
2137 | |||
2138 | fep->dirty_tx = fep->cur_tx = fep->tx_bd_base; | ||
2139 | fep->cur_rx = fep->rx_bd_base; | ||
2140 | |||
2141 | /* Reset SKB transmit buffers. | ||
2142 | */ | ||
2143 | fep->skb_cur = fep->skb_dirty = 0; | ||
2144 | for (i=0; i<=TX_RING_MOD_MASK; i++) { | ||
2145 | if (fep->tx_skbuff[i] != NULL) { | ||
2146 | dev_kfree_skb_any(fep->tx_skbuff[i]); | ||
2147 | fep->tx_skbuff[i] = NULL; | ||
2148 | } | ||
2149 | } | ||
2150 | |||
2151 | /* Initialize the receive buffer descriptors. | ||
2152 | */ | ||
2153 | bdp = fep->rx_bd_base; | ||
2154 | for (i=0; i<RX_RING_SIZE; i++) { | ||
2155 | |||
2156 | /* Initialize the BD for every fragment in the page. | ||
2157 | */ | ||
2158 | bdp->cbd_sc = BD_ENET_RX_EMPTY; | ||
2159 | bdp++; | ||
2160 | } | ||
2161 | |||
2162 | /* Set the last buffer to wrap. | ||
2163 | */ | ||
2164 | bdp--; | ||
2165 | bdp->cbd_sc |= BD_SC_WRAP; | ||
2166 | |||
2167 | /* ...and the same for transmmit. | ||
2168 | */ | ||
2169 | bdp = fep->tx_bd_base; | ||
2170 | for (i=0; i<TX_RING_SIZE; i++) { | ||
2171 | |||
2172 | /* Initialize the BD for every fragment in the page. | ||
2173 | */ | ||
2174 | bdp->cbd_sc = 0; | ||
2175 | bdp->cbd_bufaddr = 0; | ||
2176 | bdp++; | ||
2177 | } | ||
2178 | |||
2179 | /* Set the last buffer to wrap. | ||
2180 | */ | ||
2181 | bdp--; | ||
2182 | bdp->cbd_sc |= BD_SC_WRAP; | ||
2183 | |||
2184 | /* Enable MII mode. | ||
2185 | */ | ||
2186 | if (duplex) { | ||
2187 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */ | ||
2188 | fecp->fec_x_cntrl = 0x04; /* FD enable */ | ||
2189 | } | ||
2190 | else { | ||
2191 | /* MII enable|No Rcv on Xmit */ | ||
2192 | fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06; | ||
2193 | fecp->fec_x_cntrl = 0x00; | ||
2194 | } | ||
2195 | fep->full_duplex = duplex; | ||
2196 | |||
2197 | /* Set MII speed. | ||
2198 | */ | ||
2199 | fecp->fec_mii_speed = fep->phy_speed; | ||
2200 | |||
2201 | /* And last, enable the transmit and receive processing. | ||
2202 | */ | ||
2203 | fecp->fec_ecntrl = 2; | ||
2204 | fecp->fec_r_des_active = 0x01000000; | ||
2205 | } | ||
2206 | |||
2207 | static void | ||
2208 | fec_stop(struct net_device *dev) | ||
2209 | { | ||
2210 | volatile fec_t *fecp; | ||
2211 | struct fec_enet_private *fep; | ||
2212 | |||
2213 | fep = netdev_priv(dev); | ||
2214 | fecp = fep->hwp; | ||
2215 | |||
2216 | fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */ | ||
2217 | |||
2218 | while(!(fecp->fec_ievent & 0x10000000)); | ||
2219 | |||
2220 | /* Whack a reset. We should wait for this. | ||
2221 | */ | ||
2222 | fecp->fec_ecntrl = 1; | ||
2223 | udelay(10); | ||
2224 | |||
2225 | /* Clear outstanding MII command interrupts. | ||
2226 | */ | ||
2227 | fecp->fec_ievent = FEC_ENET_MII; | ||
2228 | fec_enable_phy_intr(); | ||
2229 | |||
2230 | fecp->fec_imask = FEC_ENET_MII; | ||
2231 | fecp->fec_mii_speed = fep->phy_speed; | ||
2232 | } | ||
2233 | |||
2234 | static int __init fec_enet_module_init(void) | ||
2235 | { | ||
2236 | struct net_device *dev; | ||
2237 | int i, err; | ||
2238 | |||
2239 | for (i = 0; (i < FEC_MAX_PORTS); i++) { | ||
2240 | dev = alloc_etherdev(sizeof(struct fec_enet_private)); | ||
2241 | if (!dev) | ||
2242 | return -ENOMEM; | ||
2243 | err = fec_enet_init(dev); | ||
2244 | if (err) { | ||
2245 | free_netdev(dev); | ||
2246 | continue; | ||
2247 | } | ||
2248 | if (register_netdev(dev) != 0) { | ||
2249 | /* XXX: missing cleanup here */ | ||
2250 | free_netdev(dev); | ||
2251 | return -EIO; | ||
2252 | } | ||
2253 | } | ||
2254 | return 0; | ||
2255 | } | ||
2256 | |||
2257 | module_init(fec_enet_module_init); | ||
2258 | |||
2259 | MODULE_LICENSE("GPL"); | ||