diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-05-13 02:04:46 -0400 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-11 05:33:43 -0400 |
commit | e689cf4a042772f727450035b102579b0c01bdc7 (patch) | |
tree | f2b17aa21b8358a8f7589fed46fa08688b439464 /drivers/net/ethernet/sun/sungem.c | |
parent | 8efc91254fda97ee78e2e0b8e016120e664131de (diff) |
cassini/niu/sun*: Move the Sun drivers
Moves the Sun drivers into drivers/net/ethernet/sun/ and make
the necessary Kconfig and Makefile changes.
Oliver Hartkopp <socketcan@hartkopp.net> suggested removing the
sun* prefix on the driver names. This type of change I will
leave up to the driver maintainers.
CC: Sam Creasey <sammy@sammy.net>
CC: Adrian Sun <asun@darksunrising.com>
CC: Benjamin Herrenscmidt <benh@kernel.crashing.org>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/ethernet/sun/sungem.c')
-rw-r--r-- | drivers/net/ethernet/sun/sungem.c | 3049 |
1 files changed, 3049 insertions, 0 deletions
diff --git a/drivers/net/ethernet/sun/sungem.c b/drivers/net/ethernet/sun/sungem.c new file mode 100644 index 000000000000..ade35dde5b51 --- /dev/null +++ b/drivers/net/ethernet/sun/sungem.c | |||
@@ -0,0 +1,3049 @@ | |||
1 | /* $Id: sungem.c,v 1.44.2.22 2002/03/13 01:18:12 davem Exp $ | ||
2 | * sungem.c: Sun GEM ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2000, 2001, 2002, 2003 David S. Miller (davem@redhat.com) | ||
5 | * | ||
6 | * Support for Apple GMAC and assorted PHYs, WOL, Power Management | ||
7 | * (C) 2001,2002,2003 Benjamin Herrenscmidt (benh@kernel.crashing.org) | ||
8 | * (C) 2004,2005 Benjamin Herrenscmidt, IBM Corp. | ||
9 | * | ||
10 | * NAPI and NETPOLL support | ||
11 | * (C) 2004 by Eric Lemoine (eric.lemoine@gmail.com) | ||
12 | * | ||
13 | */ | ||
14 | |||
15 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | ||
16 | |||
17 | #include <linux/module.h> | ||
18 | #include <linux/kernel.h> | ||
19 | #include <linux/types.h> | ||
20 | #include <linux/fcntl.h> | ||
21 | #include <linux/interrupt.h> | ||
22 | #include <linux/ioport.h> | ||
23 | #include <linux/in.h> | ||
24 | #include <linux/sched.h> | ||
25 | #include <linux/string.h> | ||
26 | #include <linux/delay.h> | ||
27 | #include <linux/init.h> | ||
28 | #include <linux/errno.h> | ||
29 | #include <linux/pci.h> | ||
30 | #include <linux/dma-mapping.h> | ||
31 | #include <linux/netdevice.h> | ||
32 | #include <linux/etherdevice.h> | ||
33 | #include <linux/skbuff.h> | ||
34 | #include <linux/mii.h> | ||
35 | #include <linux/ethtool.h> | ||
36 | #include <linux/crc32.h> | ||
37 | #include <linux/random.h> | ||
38 | #include <linux/workqueue.h> | ||
39 | #include <linux/if_vlan.h> | ||
40 | #include <linux/bitops.h> | ||
41 | #include <linux/mm.h> | ||
42 | #include <linux/gfp.h> | ||
43 | |||
44 | #include <asm/system.h> | ||
45 | #include <asm/io.h> | ||
46 | #include <asm/byteorder.h> | ||
47 | #include <asm/uaccess.h> | ||
48 | #include <asm/irq.h> | ||
49 | |||
50 | #ifdef CONFIG_SPARC | ||
51 | #include <asm/idprom.h> | ||
52 | #include <asm/prom.h> | ||
53 | #endif | ||
54 | |||
55 | #ifdef CONFIG_PPC_PMAC | ||
56 | #include <asm/pci-bridge.h> | ||
57 | #include <asm/prom.h> | ||
58 | #include <asm/machdep.h> | ||
59 | #include <asm/pmac_feature.h> | ||
60 | #endif | ||
61 | |||
62 | #include "sungem_phy.h" | ||
63 | #include "sungem.h" | ||
64 | |||
65 | /* Stripping FCS is causing problems, disabled for now */ | ||
66 | #undef STRIP_FCS | ||
67 | |||
68 | #define DEFAULT_MSG (NETIF_MSG_DRV | \ | ||
69 | NETIF_MSG_PROBE | \ | ||
70 | NETIF_MSG_LINK) | ||
71 | |||
72 | #define ADVERTISE_MASK (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ | ||
73 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ | ||
74 | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | \ | ||
75 | SUPPORTED_Pause | SUPPORTED_Autoneg) | ||
76 | |||
77 | #define DRV_NAME "sungem" | ||
78 | #define DRV_VERSION "1.0" | ||
79 | #define DRV_AUTHOR "David S. Miller <davem@redhat.com>" | ||
80 | |||
81 | static char version[] __devinitdata = | ||
82 | DRV_NAME ".c:v" DRV_VERSION " " DRV_AUTHOR "\n"; | ||
83 | |||
84 | MODULE_AUTHOR(DRV_AUTHOR); | ||
85 | MODULE_DESCRIPTION("Sun GEM Gbit ethernet driver"); | ||
86 | MODULE_LICENSE("GPL"); | ||
87 | |||
88 | #define GEM_MODULE_NAME "gem" | ||
89 | |||
90 | static DEFINE_PCI_DEVICE_TABLE(gem_pci_tbl) = { | ||
91 | { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_GEM, | ||
92 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
93 | |||
94 | /* These models only differ from the original GEM in | ||
95 | * that their tx/rx fifos are of a different size and | ||
96 | * they only support 10/100 speeds. -DaveM | ||
97 | * | ||
98 | * Apple's GMAC does support gigabit on machines with | ||
99 | * the BCM54xx PHYs. -BenH | ||
100 | */ | ||
101 | { PCI_VENDOR_ID_SUN, PCI_DEVICE_ID_SUN_RIO_GEM, | ||
102 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
103 | { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC, | ||
104 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
105 | { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMACP, | ||
106 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
107 | { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_GMAC2, | ||
108 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
109 | { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_K2_GMAC, | ||
110 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
111 | { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_SH_SUNGEM, | ||
112 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
113 | { PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_IPID2_GMAC, | ||
114 | PCI_ANY_ID, PCI_ANY_ID, 0, 0, 0UL }, | ||
115 | {0, } | ||
116 | }; | ||
117 | |||
118 | MODULE_DEVICE_TABLE(pci, gem_pci_tbl); | ||
119 | |||
120 | static u16 __phy_read(struct gem *gp, int phy_addr, int reg) | ||
121 | { | ||
122 | u32 cmd; | ||
123 | int limit = 10000; | ||
124 | |||
125 | cmd = (1 << 30); | ||
126 | cmd |= (2 << 28); | ||
127 | cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; | ||
128 | cmd |= (reg << 18) & MIF_FRAME_REGAD; | ||
129 | cmd |= (MIF_FRAME_TAMSB); | ||
130 | writel(cmd, gp->regs + MIF_FRAME); | ||
131 | |||
132 | while (--limit) { | ||
133 | cmd = readl(gp->regs + MIF_FRAME); | ||
134 | if (cmd & MIF_FRAME_TALSB) | ||
135 | break; | ||
136 | |||
137 | udelay(10); | ||
138 | } | ||
139 | |||
140 | if (!limit) | ||
141 | cmd = 0xffff; | ||
142 | |||
143 | return cmd & MIF_FRAME_DATA; | ||
144 | } | ||
145 | |||
146 | static inline int _phy_read(struct net_device *dev, int mii_id, int reg) | ||
147 | { | ||
148 | struct gem *gp = netdev_priv(dev); | ||
149 | return __phy_read(gp, mii_id, reg); | ||
150 | } | ||
151 | |||
152 | static inline u16 phy_read(struct gem *gp, int reg) | ||
153 | { | ||
154 | return __phy_read(gp, gp->mii_phy_addr, reg); | ||
155 | } | ||
156 | |||
157 | static void __phy_write(struct gem *gp, int phy_addr, int reg, u16 val) | ||
158 | { | ||
159 | u32 cmd; | ||
160 | int limit = 10000; | ||
161 | |||
162 | cmd = (1 << 30); | ||
163 | cmd |= (1 << 28); | ||
164 | cmd |= (phy_addr << 23) & MIF_FRAME_PHYAD; | ||
165 | cmd |= (reg << 18) & MIF_FRAME_REGAD; | ||
166 | cmd |= (MIF_FRAME_TAMSB); | ||
167 | cmd |= (val & MIF_FRAME_DATA); | ||
168 | writel(cmd, gp->regs + MIF_FRAME); | ||
169 | |||
170 | while (limit--) { | ||
171 | cmd = readl(gp->regs + MIF_FRAME); | ||
172 | if (cmd & MIF_FRAME_TALSB) | ||
173 | break; | ||
174 | |||
175 | udelay(10); | ||
176 | } | ||
177 | } | ||
178 | |||
179 | static inline void _phy_write(struct net_device *dev, int mii_id, int reg, int val) | ||
180 | { | ||
181 | struct gem *gp = netdev_priv(dev); | ||
182 | __phy_write(gp, mii_id, reg, val & 0xffff); | ||
183 | } | ||
184 | |||
185 | static inline void phy_write(struct gem *gp, int reg, u16 val) | ||
186 | { | ||
187 | __phy_write(gp, gp->mii_phy_addr, reg, val); | ||
188 | } | ||
189 | |||
190 | static inline void gem_enable_ints(struct gem *gp) | ||
191 | { | ||
192 | /* Enable all interrupts but TXDONE */ | ||
193 | writel(GREG_STAT_TXDONE, gp->regs + GREG_IMASK); | ||
194 | } | ||
195 | |||
196 | static inline void gem_disable_ints(struct gem *gp) | ||
197 | { | ||
198 | /* Disable all interrupts, including TXDONE */ | ||
199 | writel(GREG_STAT_NAPI | GREG_STAT_TXDONE, gp->regs + GREG_IMASK); | ||
200 | (void)readl(gp->regs + GREG_IMASK); /* write posting */ | ||
201 | } | ||
202 | |||
203 | static void gem_get_cell(struct gem *gp) | ||
204 | { | ||
205 | BUG_ON(gp->cell_enabled < 0); | ||
206 | gp->cell_enabled++; | ||
207 | #ifdef CONFIG_PPC_PMAC | ||
208 | if (gp->cell_enabled == 1) { | ||
209 | mb(); | ||
210 | pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 1); | ||
211 | udelay(10); | ||
212 | } | ||
213 | #endif /* CONFIG_PPC_PMAC */ | ||
214 | } | ||
215 | |||
216 | /* Turn off the chip's clock */ | ||
217 | static void gem_put_cell(struct gem *gp) | ||
218 | { | ||
219 | BUG_ON(gp->cell_enabled <= 0); | ||
220 | gp->cell_enabled--; | ||
221 | #ifdef CONFIG_PPC_PMAC | ||
222 | if (gp->cell_enabled == 0) { | ||
223 | mb(); | ||
224 | pmac_call_feature(PMAC_FTR_GMAC_ENABLE, gp->of_node, 0, 0); | ||
225 | udelay(10); | ||
226 | } | ||
227 | #endif /* CONFIG_PPC_PMAC */ | ||
228 | } | ||
229 | |||
230 | static inline void gem_netif_stop(struct gem *gp) | ||
231 | { | ||
232 | gp->dev->trans_start = jiffies; /* prevent tx timeout */ | ||
233 | napi_disable(&gp->napi); | ||
234 | netif_tx_disable(gp->dev); | ||
235 | } | ||
236 | |||
237 | static inline void gem_netif_start(struct gem *gp) | ||
238 | { | ||
239 | /* NOTE: unconditional netif_wake_queue is only | ||
240 | * appropriate so long as all callers are assured to | ||
241 | * have free tx slots. | ||
242 | */ | ||
243 | netif_wake_queue(gp->dev); | ||
244 | napi_enable(&gp->napi); | ||
245 | } | ||
246 | |||
247 | static void gem_schedule_reset(struct gem *gp) | ||
248 | { | ||
249 | gp->reset_task_pending = 1; | ||
250 | schedule_work(&gp->reset_task); | ||
251 | } | ||
252 | |||
253 | static void gem_handle_mif_event(struct gem *gp, u32 reg_val, u32 changed_bits) | ||
254 | { | ||
255 | if (netif_msg_intr(gp)) | ||
256 | printk(KERN_DEBUG "%s: mif interrupt\n", gp->dev->name); | ||
257 | } | ||
258 | |||
259 | static int gem_pcs_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) | ||
260 | { | ||
261 | u32 pcs_istat = readl(gp->regs + PCS_ISTAT); | ||
262 | u32 pcs_miistat; | ||
263 | |||
264 | if (netif_msg_intr(gp)) | ||
265 | printk(KERN_DEBUG "%s: pcs interrupt, pcs_istat: 0x%x\n", | ||
266 | gp->dev->name, pcs_istat); | ||
267 | |||
268 | if (!(pcs_istat & PCS_ISTAT_LSC)) { | ||
269 | netdev_err(dev, "PCS irq but no link status change???\n"); | ||
270 | return 0; | ||
271 | } | ||
272 | |||
273 | /* The link status bit latches on zero, so you must | ||
274 | * read it twice in such a case to see a transition | ||
275 | * to the link being up. | ||
276 | */ | ||
277 | pcs_miistat = readl(gp->regs + PCS_MIISTAT); | ||
278 | if (!(pcs_miistat & PCS_MIISTAT_LS)) | ||
279 | pcs_miistat |= | ||
280 | (readl(gp->regs + PCS_MIISTAT) & | ||
281 | PCS_MIISTAT_LS); | ||
282 | |||
283 | if (pcs_miistat & PCS_MIISTAT_ANC) { | ||
284 | /* The remote-fault indication is only valid | ||
285 | * when autoneg has completed. | ||
286 | */ | ||
287 | if (pcs_miistat & PCS_MIISTAT_RF) | ||
288 | netdev_info(dev, "PCS AutoNEG complete, RemoteFault\n"); | ||
289 | else | ||
290 | netdev_info(dev, "PCS AutoNEG complete\n"); | ||
291 | } | ||
292 | |||
293 | if (pcs_miistat & PCS_MIISTAT_LS) { | ||
294 | netdev_info(dev, "PCS link is now up\n"); | ||
295 | netif_carrier_on(gp->dev); | ||
296 | } else { | ||
297 | netdev_info(dev, "PCS link is now down\n"); | ||
298 | netif_carrier_off(gp->dev); | ||
299 | /* If this happens and the link timer is not running, | ||
300 | * reset so we re-negotiate. | ||
301 | */ | ||
302 | if (!timer_pending(&gp->link_timer)) | ||
303 | return 1; | ||
304 | } | ||
305 | |||
306 | return 0; | ||
307 | } | ||
308 | |||
309 | static int gem_txmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) | ||
310 | { | ||
311 | u32 txmac_stat = readl(gp->regs + MAC_TXSTAT); | ||
312 | |||
313 | if (netif_msg_intr(gp)) | ||
314 | printk(KERN_DEBUG "%s: txmac interrupt, txmac_stat: 0x%x\n", | ||
315 | gp->dev->name, txmac_stat); | ||
316 | |||
317 | /* Defer timer expiration is quite normal, | ||
318 | * don't even log the event. | ||
319 | */ | ||
320 | if ((txmac_stat & MAC_TXSTAT_DTE) && | ||
321 | !(txmac_stat & ~MAC_TXSTAT_DTE)) | ||
322 | return 0; | ||
323 | |||
324 | if (txmac_stat & MAC_TXSTAT_URUN) { | ||
325 | netdev_err(dev, "TX MAC xmit underrun\n"); | ||
326 | dev->stats.tx_fifo_errors++; | ||
327 | } | ||
328 | |||
329 | if (txmac_stat & MAC_TXSTAT_MPE) { | ||
330 | netdev_err(dev, "TX MAC max packet size error\n"); | ||
331 | dev->stats.tx_errors++; | ||
332 | } | ||
333 | |||
334 | /* The rest are all cases of one of the 16-bit TX | ||
335 | * counters expiring. | ||
336 | */ | ||
337 | if (txmac_stat & MAC_TXSTAT_NCE) | ||
338 | dev->stats.collisions += 0x10000; | ||
339 | |||
340 | if (txmac_stat & MAC_TXSTAT_ECE) { | ||
341 | dev->stats.tx_aborted_errors += 0x10000; | ||
342 | dev->stats.collisions += 0x10000; | ||
343 | } | ||
344 | |||
345 | if (txmac_stat & MAC_TXSTAT_LCE) { | ||
346 | dev->stats.tx_aborted_errors += 0x10000; | ||
347 | dev->stats.collisions += 0x10000; | ||
348 | } | ||
349 | |||
350 | /* We do not keep track of MAC_TXSTAT_FCE and | ||
351 | * MAC_TXSTAT_PCE events. | ||
352 | */ | ||
353 | return 0; | ||
354 | } | ||
355 | |||
356 | /* When we get a RX fifo overflow, the RX unit in GEM is probably hung | ||
357 | * so we do the following. | ||
358 | * | ||
359 | * If any part of the reset goes wrong, we return 1 and that causes the | ||
360 | * whole chip to be reset. | ||
361 | */ | ||
362 | static int gem_rxmac_reset(struct gem *gp) | ||
363 | { | ||
364 | struct net_device *dev = gp->dev; | ||
365 | int limit, i; | ||
366 | u64 desc_dma; | ||
367 | u32 val; | ||
368 | |||
369 | /* First, reset & disable MAC RX. */ | ||
370 | writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); | ||
371 | for (limit = 0; limit < 5000; limit++) { | ||
372 | if (!(readl(gp->regs + MAC_RXRST) & MAC_RXRST_CMD)) | ||
373 | break; | ||
374 | udelay(10); | ||
375 | } | ||
376 | if (limit == 5000) { | ||
377 | netdev_err(dev, "RX MAC will not reset, resetting whole chip\n"); | ||
378 | return 1; | ||
379 | } | ||
380 | |||
381 | writel(gp->mac_rx_cfg & ~MAC_RXCFG_ENAB, | ||
382 | gp->regs + MAC_RXCFG); | ||
383 | for (limit = 0; limit < 5000; limit++) { | ||
384 | if (!(readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB)) | ||
385 | break; | ||
386 | udelay(10); | ||
387 | } | ||
388 | if (limit == 5000) { | ||
389 | netdev_err(dev, "RX MAC will not disable, resetting whole chip\n"); | ||
390 | return 1; | ||
391 | } | ||
392 | |||
393 | /* Second, disable RX DMA. */ | ||
394 | writel(0, gp->regs + RXDMA_CFG); | ||
395 | for (limit = 0; limit < 5000; limit++) { | ||
396 | if (!(readl(gp->regs + RXDMA_CFG) & RXDMA_CFG_ENABLE)) | ||
397 | break; | ||
398 | udelay(10); | ||
399 | } | ||
400 | if (limit == 5000) { | ||
401 | netdev_err(dev, "RX DMA will not disable, resetting whole chip\n"); | ||
402 | return 1; | ||
403 | } | ||
404 | |||
405 | udelay(5000); | ||
406 | |||
407 | /* Execute RX reset command. */ | ||
408 | writel(gp->swrst_base | GREG_SWRST_RXRST, | ||
409 | gp->regs + GREG_SWRST); | ||
410 | for (limit = 0; limit < 5000; limit++) { | ||
411 | if (!(readl(gp->regs + GREG_SWRST) & GREG_SWRST_RXRST)) | ||
412 | break; | ||
413 | udelay(10); | ||
414 | } | ||
415 | if (limit == 5000) { | ||
416 | netdev_err(dev, "RX reset command will not execute, resetting whole chip\n"); | ||
417 | return 1; | ||
418 | } | ||
419 | |||
420 | /* Refresh the RX ring. */ | ||
421 | for (i = 0; i < RX_RING_SIZE; i++) { | ||
422 | struct gem_rxd *rxd = &gp->init_block->rxd[i]; | ||
423 | |||
424 | if (gp->rx_skbs[i] == NULL) { | ||
425 | netdev_err(dev, "Parts of RX ring empty, resetting whole chip\n"); | ||
426 | return 1; | ||
427 | } | ||
428 | |||
429 | rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); | ||
430 | } | ||
431 | gp->rx_new = gp->rx_old = 0; | ||
432 | |||
433 | /* Now we must reprogram the rest of RX unit. */ | ||
434 | desc_dma = (u64) gp->gblock_dvma; | ||
435 | desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); | ||
436 | writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); | ||
437 | writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); | ||
438 | writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); | ||
439 | val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | | ||
440 | ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); | ||
441 | writel(val, gp->regs + RXDMA_CFG); | ||
442 | if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) | ||
443 | writel(((5 & RXDMA_BLANK_IPKTS) | | ||
444 | ((8 << 12) & RXDMA_BLANK_ITIME)), | ||
445 | gp->regs + RXDMA_BLANK); | ||
446 | else | ||
447 | writel(((5 & RXDMA_BLANK_IPKTS) | | ||
448 | ((4 << 12) & RXDMA_BLANK_ITIME)), | ||
449 | gp->regs + RXDMA_BLANK); | ||
450 | val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); | ||
451 | val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); | ||
452 | writel(val, gp->regs + RXDMA_PTHRESH); | ||
453 | val = readl(gp->regs + RXDMA_CFG); | ||
454 | writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); | ||
455 | writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); | ||
456 | val = readl(gp->regs + MAC_RXCFG); | ||
457 | writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); | ||
458 | |||
459 | return 0; | ||
460 | } | ||
461 | |||
462 | static int gem_rxmac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) | ||
463 | { | ||
464 | u32 rxmac_stat = readl(gp->regs + MAC_RXSTAT); | ||
465 | int ret = 0; | ||
466 | |||
467 | if (netif_msg_intr(gp)) | ||
468 | printk(KERN_DEBUG "%s: rxmac interrupt, rxmac_stat: 0x%x\n", | ||
469 | gp->dev->name, rxmac_stat); | ||
470 | |||
471 | if (rxmac_stat & MAC_RXSTAT_OFLW) { | ||
472 | u32 smac = readl(gp->regs + MAC_SMACHINE); | ||
473 | |||
474 | netdev_err(dev, "RX MAC fifo overflow smac[%08x]\n", smac); | ||
475 | dev->stats.rx_over_errors++; | ||
476 | dev->stats.rx_fifo_errors++; | ||
477 | |||
478 | ret = gem_rxmac_reset(gp); | ||
479 | } | ||
480 | |||
481 | if (rxmac_stat & MAC_RXSTAT_ACE) | ||
482 | dev->stats.rx_frame_errors += 0x10000; | ||
483 | |||
484 | if (rxmac_stat & MAC_RXSTAT_CCE) | ||
485 | dev->stats.rx_crc_errors += 0x10000; | ||
486 | |||
487 | if (rxmac_stat & MAC_RXSTAT_LCE) | ||
488 | dev->stats.rx_length_errors += 0x10000; | ||
489 | |||
490 | /* We do not track MAC_RXSTAT_FCE and MAC_RXSTAT_VCE | ||
491 | * events. | ||
492 | */ | ||
493 | return ret; | ||
494 | } | ||
495 | |||
496 | static int gem_mac_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) | ||
497 | { | ||
498 | u32 mac_cstat = readl(gp->regs + MAC_CSTAT); | ||
499 | |||
500 | if (netif_msg_intr(gp)) | ||
501 | printk(KERN_DEBUG "%s: mac interrupt, mac_cstat: 0x%x\n", | ||
502 | gp->dev->name, mac_cstat); | ||
503 | |||
504 | /* This interrupt is just for pause frame and pause | ||
505 | * tracking. It is useful for diagnostics and debug | ||
506 | * but probably by default we will mask these events. | ||
507 | */ | ||
508 | if (mac_cstat & MAC_CSTAT_PS) | ||
509 | gp->pause_entered++; | ||
510 | |||
511 | if (mac_cstat & MAC_CSTAT_PRCV) | ||
512 | gp->pause_last_time_recvd = (mac_cstat >> 16); | ||
513 | |||
514 | return 0; | ||
515 | } | ||
516 | |||
517 | static int gem_mif_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) | ||
518 | { | ||
519 | u32 mif_status = readl(gp->regs + MIF_STATUS); | ||
520 | u32 reg_val, changed_bits; | ||
521 | |||
522 | reg_val = (mif_status & MIF_STATUS_DATA) >> 16; | ||
523 | changed_bits = (mif_status & MIF_STATUS_STAT); | ||
524 | |||
525 | gem_handle_mif_event(gp, reg_val, changed_bits); | ||
526 | |||
527 | return 0; | ||
528 | } | ||
529 | |||
530 | static int gem_pci_interrupt(struct net_device *dev, struct gem *gp, u32 gem_status) | ||
531 | { | ||
532 | u32 pci_estat = readl(gp->regs + GREG_PCIESTAT); | ||
533 | |||
534 | if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && | ||
535 | gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { | ||
536 | netdev_err(dev, "PCI error [%04x]", pci_estat); | ||
537 | |||
538 | if (pci_estat & GREG_PCIESTAT_BADACK) | ||
539 | pr_cont(" <No ACK64# during ABS64 cycle>"); | ||
540 | if (pci_estat & GREG_PCIESTAT_DTRTO) | ||
541 | pr_cont(" <Delayed transaction timeout>"); | ||
542 | if (pci_estat & GREG_PCIESTAT_OTHER) | ||
543 | pr_cont(" <other>"); | ||
544 | pr_cont("\n"); | ||
545 | } else { | ||
546 | pci_estat |= GREG_PCIESTAT_OTHER; | ||
547 | netdev_err(dev, "PCI error\n"); | ||
548 | } | ||
549 | |||
550 | if (pci_estat & GREG_PCIESTAT_OTHER) { | ||
551 | u16 pci_cfg_stat; | ||
552 | |||
553 | /* Interrogate PCI config space for the | ||
554 | * true cause. | ||
555 | */ | ||
556 | pci_read_config_word(gp->pdev, PCI_STATUS, | ||
557 | &pci_cfg_stat); | ||
558 | netdev_err(dev, "Read PCI cfg space status [%04x]\n", | ||
559 | pci_cfg_stat); | ||
560 | if (pci_cfg_stat & PCI_STATUS_PARITY) | ||
561 | netdev_err(dev, "PCI parity error detected\n"); | ||
562 | if (pci_cfg_stat & PCI_STATUS_SIG_TARGET_ABORT) | ||
563 | netdev_err(dev, "PCI target abort\n"); | ||
564 | if (pci_cfg_stat & PCI_STATUS_REC_TARGET_ABORT) | ||
565 | netdev_err(dev, "PCI master acks target abort\n"); | ||
566 | if (pci_cfg_stat & PCI_STATUS_REC_MASTER_ABORT) | ||
567 | netdev_err(dev, "PCI master abort\n"); | ||
568 | if (pci_cfg_stat & PCI_STATUS_SIG_SYSTEM_ERROR) | ||
569 | netdev_err(dev, "PCI system error SERR#\n"); | ||
570 | if (pci_cfg_stat & PCI_STATUS_DETECTED_PARITY) | ||
571 | netdev_err(dev, "PCI parity error\n"); | ||
572 | |||
573 | /* Write the error bits back to clear them. */ | ||
574 | pci_cfg_stat &= (PCI_STATUS_PARITY | | ||
575 | PCI_STATUS_SIG_TARGET_ABORT | | ||
576 | PCI_STATUS_REC_TARGET_ABORT | | ||
577 | PCI_STATUS_REC_MASTER_ABORT | | ||
578 | PCI_STATUS_SIG_SYSTEM_ERROR | | ||
579 | PCI_STATUS_DETECTED_PARITY); | ||
580 | pci_write_config_word(gp->pdev, | ||
581 | PCI_STATUS, pci_cfg_stat); | ||
582 | } | ||
583 | |||
584 | /* For all PCI errors, we should reset the chip. */ | ||
585 | return 1; | ||
586 | } | ||
587 | |||
588 | /* All non-normal interrupt conditions get serviced here. | ||
589 | * Returns non-zero if we should just exit the interrupt | ||
590 | * handler right now (ie. if we reset the card which invalidates | ||
591 | * all of the other original irq status bits). | ||
592 | */ | ||
593 | static int gem_abnormal_irq(struct net_device *dev, struct gem *gp, u32 gem_status) | ||
594 | { | ||
595 | if (gem_status & GREG_STAT_RXNOBUF) { | ||
596 | /* Frame arrived, no free RX buffers available. */ | ||
597 | if (netif_msg_rx_err(gp)) | ||
598 | printk(KERN_DEBUG "%s: no buffer for rx frame\n", | ||
599 | gp->dev->name); | ||
600 | dev->stats.rx_dropped++; | ||
601 | } | ||
602 | |||
603 | if (gem_status & GREG_STAT_RXTAGERR) { | ||
604 | /* corrupt RX tag framing */ | ||
605 | if (netif_msg_rx_err(gp)) | ||
606 | printk(KERN_DEBUG "%s: corrupt rx tag framing\n", | ||
607 | gp->dev->name); | ||
608 | dev->stats.rx_errors++; | ||
609 | |||
610 | return 1; | ||
611 | } | ||
612 | |||
613 | if (gem_status & GREG_STAT_PCS) { | ||
614 | if (gem_pcs_interrupt(dev, gp, gem_status)) | ||
615 | return 1; | ||
616 | } | ||
617 | |||
618 | if (gem_status & GREG_STAT_TXMAC) { | ||
619 | if (gem_txmac_interrupt(dev, gp, gem_status)) | ||
620 | return 1; | ||
621 | } | ||
622 | |||
623 | if (gem_status & GREG_STAT_RXMAC) { | ||
624 | if (gem_rxmac_interrupt(dev, gp, gem_status)) | ||
625 | return 1; | ||
626 | } | ||
627 | |||
628 | if (gem_status & GREG_STAT_MAC) { | ||
629 | if (gem_mac_interrupt(dev, gp, gem_status)) | ||
630 | return 1; | ||
631 | } | ||
632 | |||
633 | if (gem_status & GREG_STAT_MIF) { | ||
634 | if (gem_mif_interrupt(dev, gp, gem_status)) | ||
635 | return 1; | ||
636 | } | ||
637 | |||
638 | if (gem_status & GREG_STAT_PCIERR) { | ||
639 | if (gem_pci_interrupt(dev, gp, gem_status)) | ||
640 | return 1; | ||
641 | } | ||
642 | |||
643 | return 0; | ||
644 | } | ||
645 | |||
646 | static __inline__ void gem_tx(struct net_device *dev, struct gem *gp, u32 gem_status) | ||
647 | { | ||
648 | int entry, limit; | ||
649 | |||
650 | entry = gp->tx_old; | ||
651 | limit = ((gem_status & GREG_STAT_TXNR) >> GREG_STAT_TXNR_SHIFT); | ||
652 | while (entry != limit) { | ||
653 | struct sk_buff *skb; | ||
654 | struct gem_txd *txd; | ||
655 | dma_addr_t dma_addr; | ||
656 | u32 dma_len; | ||
657 | int frag; | ||
658 | |||
659 | if (netif_msg_tx_done(gp)) | ||
660 | printk(KERN_DEBUG "%s: tx done, slot %d\n", | ||
661 | gp->dev->name, entry); | ||
662 | skb = gp->tx_skbs[entry]; | ||
663 | if (skb_shinfo(skb)->nr_frags) { | ||
664 | int last = entry + skb_shinfo(skb)->nr_frags; | ||
665 | int walk = entry; | ||
666 | int incomplete = 0; | ||
667 | |||
668 | last &= (TX_RING_SIZE - 1); | ||
669 | for (;;) { | ||
670 | walk = NEXT_TX(walk); | ||
671 | if (walk == limit) | ||
672 | incomplete = 1; | ||
673 | if (walk == last) | ||
674 | break; | ||
675 | } | ||
676 | if (incomplete) | ||
677 | break; | ||
678 | } | ||
679 | gp->tx_skbs[entry] = NULL; | ||
680 | dev->stats.tx_bytes += skb->len; | ||
681 | |||
682 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { | ||
683 | txd = &gp->init_block->txd[entry]; | ||
684 | |||
685 | dma_addr = le64_to_cpu(txd->buffer); | ||
686 | dma_len = le64_to_cpu(txd->control_word) & TXDCTRL_BUFSZ; | ||
687 | |||
688 | pci_unmap_page(gp->pdev, dma_addr, dma_len, PCI_DMA_TODEVICE); | ||
689 | entry = NEXT_TX(entry); | ||
690 | } | ||
691 | |||
692 | dev->stats.tx_packets++; | ||
693 | dev_kfree_skb(skb); | ||
694 | } | ||
695 | gp->tx_old = entry; | ||
696 | |||
697 | /* Need to make the tx_old update visible to gem_start_xmit() | ||
698 | * before checking for netif_queue_stopped(). Without the | ||
699 | * memory barrier, there is a small possibility that gem_start_xmit() | ||
700 | * will miss it and cause the queue to be stopped forever. | ||
701 | */ | ||
702 | smp_mb(); | ||
703 | |||
704 | if (unlikely(netif_queue_stopped(dev) && | ||
705 | TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1))) { | ||
706 | struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); | ||
707 | |||
708 | __netif_tx_lock(txq, smp_processor_id()); | ||
709 | if (netif_queue_stopped(dev) && | ||
710 | TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) | ||
711 | netif_wake_queue(dev); | ||
712 | __netif_tx_unlock(txq); | ||
713 | } | ||
714 | } | ||
715 | |||
716 | static __inline__ void gem_post_rxds(struct gem *gp, int limit) | ||
717 | { | ||
718 | int cluster_start, curr, count, kick; | ||
719 | |||
720 | cluster_start = curr = (gp->rx_new & ~(4 - 1)); | ||
721 | count = 0; | ||
722 | kick = -1; | ||
723 | wmb(); | ||
724 | while (curr != limit) { | ||
725 | curr = NEXT_RX(curr); | ||
726 | if (++count == 4) { | ||
727 | struct gem_rxd *rxd = | ||
728 | &gp->init_block->rxd[cluster_start]; | ||
729 | for (;;) { | ||
730 | rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); | ||
731 | rxd++; | ||
732 | cluster_start = NEXT_RX(cluster_start); | ||
733 | if (cluster_start == curr) | ||
734 | break; | ||
735 | } | ||
736 | kick = curr; | ||
737 | count = 0; | ||
738 | } | ||
739 | } | ||
740 | if (kick >= 0) { | ||
741 | mb(); | ||
742 | writel(kick, gp->regs + RXDMA_KICK); | ||
743 | } | ||
744 | } | ||
745 | |||
746 | #define ALIGNED_RX_SKB_ADDR(addr) \ | ||
747 | ((((unsigned long)(addr) + (64UL - 1UL)) & ~(64UL - 1UL)) - (unsigned long)(addr)) | ||
748 | static __inline__ struct sk_buff *gem_alloc_skb(struct net_device *dev, int size, | ||
749 | gfp_t gfp_flags) | ||
750 | { | ||
751 | struct sk_buff *skb = alloc_skb(size + 64, gfp_flags); | ||
752 | |||
753 | if (likely(skb)) { | ||
754 | unsigned long offset = ALIGNED_RX_SKB_ADDR(skb->data); | ||
755 | skb_reserve(skb, offset); | ||
756 | skb->dev = dev; | ||
757 | } | ||
758 | return skb; | ||
759 | } | ||
760 | |||
761 | static int gem_rx(struct gem *gp, int work_to_do) | ||
762 | { | ||
763 | struct net_device *dev = gp->dev; | ||
764 | int entry, drops, work_done = 0; | ||
765 | u32 done; | ||
766 | __sum16 csum; | ||
767 | |||
768 | if (netif_msg_rx_status(gp)) | ||
769 | printk(KERN_DEBUG "%s: rx interrupt, done: %d, rx_new: %d\n", | ||
770 | gp->dev->name, readl(gp->regs + RXDMA_DONE), gp->rx_new); | ||
771 | |||
772 | entry = gp->rx_new; | ||
773 | drops = 0; | ||
774 | done = readl(gp->regs + RXDMA_DONE); | ||
775 | for (;;) { | ||
776 | struct gem_rxd *rxd = &gp->init_block->rxd[entry]; | ||
777 | struct sk_buff *skb; | ||
778 | u64 status = le64_to_cpu(rxd->status_word); | ||
779 | dma_addr_t dma_addr; | ||
780 | int len; | ||
781 | |||
782 | if ((status & RXDCTRL_OWN) != 0) | ||
783 | break; | ||
784 | |||
785 | if (work_done >= RX_RING_SIZE || work_done >= work_to_do) | ||
786 | break; | ||
787 | |||
788 | /* When writing back RX descriptor, GEM writes status | ||
789 | * then buffer address, possibly in separate transactions. | ||
790 | * If we don't wait for the chip to write both, we could | ||
791 | * post a new buffer to this descriptor then have GEM spam | ||
792 | * on the buffer address. We sync on the RX completion | ||
793 | * register to prevent this from happening. | ||
794 | */ | ||
795 | if (entry == done) { | ||
796 | done = readl(gp->regs + RXDMA_DONE); | ||
797 | if (entry == done) | ||
798 | break; | ||
799 | } | ||
800 | |||
801 | /* We can now account for the work we're about to do */ | ||
802 | work_done++; | ||
803 | |||
804 | skb = gp->rx_skbs[entry]; | ||
805 | |||
806 | len = (status & RXDCTRL_BUFSZ) >> 16; | ||
807 | if ((len < ETH_ZLEN) || (status & RXDCTRL_BAD)) { | ||
808 | dev->stats.rx_errors++; | ||
809 | if (len < ETH_ZLEN) | ||
810 | dev->stats.rx_length_errors++; | ||
811 | if (len & RXDCTRL_BAD) | ||
812 | dev->stats.rx_crc_errors++; | ||
813 | |||
814 | /* We'll just return it to GEM. */ | ||
815 | drop_it: | ||
816 | dev->stats.rx_dropped++; | ||
817 | goto next; | ||
818 | } | ||
819 | |||
820 | dma_addr = le64_to_cpu(rxd->buffer); | ||
821 | if (len > RX_COPY_THRESHOLD) { | ||
822 | struct sk_buff *new_skb; | ||
823 | |||
824 | new_skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_ATOMIC); | ||
825 | if (new_skb == NULL) { | ||
826 | drops++; | ||
827 | goto drop_it; | ||
828 | } | ||
829 | pci_unmap_page(gp->pdev, dma_addr, | ||
830 | RX_BUF_ALLOC_SIZE(gp), | ||
831 | PCI_DMA_FROMDEVICE); | ||
832 | gp->rx_skbs[entry] = new_skb; | ||
833 | skb_put(new_skb, (gp->rx_buf_sz + RX_OFFSET)); | ||
834 | rxd->buffer = cpu_to_le64(pci_map_page(gp->pdev, | ||
835 | virt_to_page(new_skb->data), | ||
836 | offset_in_page(new_skb->data), | ||
837 | RX_BUF_ALLOC_SIZE(gp), | ||
838 | PCI_DMA_FROMDEVICE)); | ||
839 | skb_reserve(new_skb, RX_OFFSET); | ||
840 | |||
841 | /* Trim the original skb for the netif. */ | ||
842 | skb_trim(skb, len); | ||
843 | } else { | ||
844 | struct sk_buff *copy_skb = netdev_alloc_skb(dev, len + 2); | ||
845 | |||
846 | if (copy_skb == NULL) { | ||
847 | drops++; | ||
848 | goto drop_it; | ||
849 | } | ||
850 | |||
851 | skb_reserve(copy_skb, 2); | ||
852 | skb_put(copy_skb, len); | ||
853 | pci_dma_sync_single_for_cpu(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); | ||
854 | skb_copy_from_linear_data(skb, copy_skb->data, len); | ||
855 | pci_dma_sync_single_for_device(gp->pdev, dma_addr, len, PCI_DMA_FROMDEVICE); | ||
856 | |||
857 | /* We'll reuse the original ring buffer. */ | ||
858 | skb = copy_skb; | ||
859 | } | ||
860 | |||
861 | csum = (__force __sum16)htons((status & RXDCTRL_TCPCSUM) ^ 0xffff); | ||
862 | skb->csum = csum_unfold(csum); | ||
863 | skb->ip_summed = CHECKSUM_COMPLETE; | ||
864 | skb->protocol = eth_type_trans(skb, gp->dev); | ||
865 | |||
866 | napi_gro_receive(&gp->napi, skb); | ||
867 | |||
868 | dev->stats.rx_packets++; | ||
869 | dev->stats.rx_bytes += len; | ||
870 | |||
871 | next: | ||
872 | entry = NEXT_RX(entry); | ||
873 | } | ||
874 | |||
875 | gem_post_rxds(gp, entry); | ||
876 | |||
877 | gp->rx_new = entry; | ||
878 | |||
879 | if (drops) | ||
880 | netdev_info(gp->dev, "Memory squeeze, deferring packet\n"); | ||
881 | |||
882 | return work_done; | ||
883 | } | ||
884 | |||
885 | static int gem_poll(struct napi_struct *napi, int budget) | ||
886 | { | ||
887 | struct gem *gp = container_of(napi, struct gem, napi); | ||
888 | struct net_device *dev = gp->dev; | ||
889 | int work_done; | ||
890 | |||
891 | work_done = 0; | ||
892 | do { | ||
893 | /* Handle anomalies */ | ||
894 | if (unlikely(gp->status & GREG_STAT_ABNORMAL)) { | ||
895 | struct netdev_queue *txq = netdev_get_tx_queue(dev, 0); | ||
896 | int reset; | ||
897 | |||
898 | /* We run the abnormal interrupt handling code with | ||
899 | * the Tx lock. It only resets the Rx portion of the | ||
900 | * chip, but we need to guard it against DMA being | ||
901 | * restarted by the link poll timer | ||
902 | */ | ||
903 | __netif_tx_lock(txq, smp_processor_id()); | ||
904 | reset = gem_abnormal_irq(dev, gp, gp->status); | ||
905 | __netif_tx_unlock(txq); | ||
906 | if (reset) { | ||
907 | gem_schedule_reset(gp); | ||
908 | napi_complete(napi); | ||
909 | return work_done; | ||
910 | } | ||
911 | } | ||
912 | |||
913 | /* Run TX completion thread */ | ||
914 | gem_tx(dev, gp, gp->status); | ||
915 | |||
916 | /* Run RX thread. We don't use any locking here, | ||
917 | * code willing to do bad things - like cleaning the | ||
918 | * rx ring - must call napi_disable(), which | ||
919 | * schedule_timeout()'s if polling is already disabled. | ||
920 | */ | ||
921 | work_done += gem_rx(gp, budget - work_done); | ||
922 | |||
923 | if (work_done >= budget) | ||
924 | return work_done; | ||
925 | |||
926 | gp->status = readl(gp->regs + GREG_STAT); | ||
927 | } while (gp->status & GREG_STAT_NAPI); | ||
928 | |||
929 | napi_complete(napi); | ||
930 | gem_enable_ints(gp); | ||
931 | |||
932 | return work_done; | ||
933 | } | ||
934 | |||
935 | static irqreturn_t gem_interrupt(int irq, void *dev_id) | ||
936 | { | ||
937 | struct net_device *dev = dev_id; | ||
938 | struct gem *gp = netdev_priv(dev); | ||
939 | |||
940 | if (napi_schedule_prep(&gp->napi)) { | ||
941 | u32 gem_status = readl(gp->regs + GREG_STAT); | ||
942 | |||
943 | if (unlikely(gem_status == 0)) { | ||
944 | napi_enable(&gp->napi); | ||
945 | return IRQ_NONE; | ||
946 | } | ||
947 | if (netif_msg_intr(gp)) | ||
948 | printk(KERN_DEBUG "%s: gem_interrupt() gem_status: 0x%x\n", | ||
949 | gp->dev->name, gem_status); | ||
950 | |||
951 | gp->status = gem_status; | ||
952 | gem_disable_ints(gp); | ||
953 | __napi_schedule(&gp->napi); | ||
954 | } | ||
955 | |||
956 | /* If polling was disabled at the time we received that | ||
957 | * interrupt, we may return IRQ_HANDLED here while we | ||
958 | * should return IRQ_NONE. No big deal... | ||
959 | */ | ||
960 | return IRQ_HANDLED; | ||
961 | } | ||
962 | |||
963 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
964 | static void gem_poll_controller(struct net_device *dev) | ||
965 | { | ||
966 | struct gem *gp = netdev_priv(dev); | ||
967 | |||
968 | disable_irq(gp->pdev->irq); | ||
969 | gem_interrupt(gp->pdev->irq, dev); | ||
970 | enable_irq(gp->pdev->irq); | ||
971 | } | ||
972 | #endif | ||
973 | |||
974 | static void gem_tx_timeout(struct net_device *dev) | ||
975 | { | ||
976 | struct gem *gp = netdev_priv(dev); | ||
977 | |||
978 | netdev_err(dev, "transmit timed out, resetting\n"); | ||
979 | |||
980 | netdev_err(dev, "TX_STATE[%08x:%08x:%08x]\n", | ||
981 | readl(gp->regs + TXDMA_CFG), | ||
982 | readl(gp->regs + MAC_TXSTAT), | ||
983 | readl(gp->regs + MAC_TXCFG)); | ||
984 | netdev_err(dev, "RX_STATE[%08x:%08x:%08x]\n", | ||
985 | readl(gp->regs + RXDMA_CFG), | ||
986 | readl(gp->regs + MAC_RXSTAT), | ||
987 | readl(gp->regs + MAC_RXCFG)); | ||
988 | |||
989 | gem_schedule_reset(gp); | ||
990 | } | ||
991 | |||
992 | static __inline__ int gem_intme(int entry) | ||
993 | { | ||
994 | /* Algorithm: IRQ every 1/2 of descriptors. */ | ||
995 | if (!(entry & ((TX_RING_SIZE>>1)-1))) | ||
996 | return 1; | ||
997 | |||
998 | return 0; | ||
999 | } | ||
1000 | |||
1001 | static netdev_tx_t gem_start_xmit(struct sk_buff *skb, | ||
1002 | struct net_device *dev) | ||
1003 | { | ||
1004 | struct gem *gp = netdev_priv(dev); | ||
1005 | int entry; | ||
1006 | u64 ctrl; | ||
1007 | |||
1008 | ctrl = 0; | ||
1009 | if (skb->ip_summed == CHECKSUM_PARTIAL) { | ||
1010 | const u64 csum_start_off = skb_checksum_start_offset(skb); | ||
1011 | const u64 csum_stuff_off = csum_start_off + skb->csum_offset; | ||
1012 | |||
1013 | ctrl = (TXDCTRL_CENAB | | ||
1014 | (csum_start_off << 15) | | ||
1015 | (csum_stuff_off << 21)); | ||
1016 | } | ||
1017 | |||
1018 | if (unlikely(TX_BUFFS_AVAIL(gp) <= (skb_shinfo(skb)->nr_frags + 1))) { | ||
1019 | /* This is a hard error, log it. */ | ||
1020 | if (!netif_queue_stopped(dev)) { | ||
1021 | netif_stop_queue(dev); | ||
1022 | netdev_err(dev, "BUG! Tx Ring full when queue awake!\n"); | ||
1023 | } | ||
1024 | return NETDEV_TX_BUSY; | ||
1025 | } | ||
1026 | |||
1027 | entry = gp->tx_new; | ||
1028 | gp->tx_skbs[entry] = skb; | ||
1029 | |||
1030 | if (skb_shinfo(skb)->nr_frags == 0) { | ||
1031 | struct gem_txd *txd = &gp->init_block->txd[entry]; | ||
1032 | dma_addr_t mapping; | ||
1033 | u32 len; | ||
1034 | |||
1035 | len = skb->len; | ||
1036 | mapping = pci_map_page(gp->pdev, | ||
1037 | virt_to_page(skb->data), | ||
1038 | offset_in_page(skb->data), | ||
1039 | len, PCI_DMA_TODEVICE); | ||
1040 | ctrl |= TXDCTRL_SOF | TXDCTRL_EOF | len; | ||
1041 | if (gem_intme(entry)) | ||
1042 | ctrl |= TXDCTRL_INTME; | ||
1043 | txd->buffer = cpu_to_le64(mapping); | ||
1044 | wmb(); | ||
1045 | txd->control_word = cpu_to_le64(ctrl); | ||
1046 | entry = NEXT_TX(entry); | ||
1047 | } else { | ||
1048 | struct gem_txd *txd; | ||
1049 | u32 first_len; | ||
1050 | u64 intme; | ||
1051 | dma_addr_t first_mapping; | ||
1052 | int frag, first_entry = entry; | ||
1053 | |||
1054 | intme = 0; | ||
1055 | if (gem_intme(entry)) | ||
1056 | intme |= TXDCTRL_INTME; | ||
1057 | |||
1058 | /* We must give this initial chunk to the device last. | ||
1059 | * Otherwise we could race with the device. | ||
1060 | */ | ||
1061 | first_len = skb_headlen(skb); | ||
1062 | first_mapping = pci_map_page(gp->pdev, virt_to_page(skb->data), | ||
1063 | offset_in_page(skb->data), | ||
1064 | first_len, PCI_DMA_TODEVICE); | ||
1065 | entry = NEXT_TX(entry); | ||
1066 | |||
1067 | for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) { | ||
1068 | skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag]; | ||
1069 | u32 len; | ||
1070 | dma_addr_t mapping; | ||
1071 | u64 this_ctrl; | ||
1072 | |||
1073 | len = this_frag->size; | ||
1074 | mapping = pci_map_page(gp->pdev, | ||
1075 | this_frag->page, | ||
1076 | this_frag->page_offset, | ||
1077 | len, PCI_DMA_TODEVICE); | ||
1078 | this_ctrl = ctrl; | ||
1079 | if (frag == skb_shinfo(skb)->nr_frags - 1) | ||
1080 | this_ctrl |= TXDCTRL_EOF; | ||
1081 | |||
1082 | txd = &gp->init_block->txd[entry]; | ||
1083 | txd->buffer = cpu_to_le64(mapping); | ||
1084 | wmb(); | ||
1085 | txd->control_word = cpu_to_le64(this_ctrl | len); | ||
1086 | |||
1087 | if (gem_intme(entry)) | ||
1088 | intme |= TXDCTRL_INTME; | ||
1089 | |||
1090 | entry = NEXT_TX(entry); | ||
1091 | } | ||
1092 | txd = &gp->init_block->txd[first_entry]; | ||
1093 | txd->buffer = cpu_to_le64(first_mapping); | ||
1094 | wmb(); | ||
1095 | txd->control_word = | ||
1096 | cpu_to_le64(ctrl | TXDCTRL_SOF | intme | first_len); | ||
1097 | } | ||
1098 | |||
1099 | gp->tx_new = entry; | ||
1100 | if (unlikely(TX_BUFFS_AVAIL(gp) <= (MAX_SKB_FRAGS + 1))) { | ||
1101 | netif_stop_queue(dev); | ||
1102 | |||
1103 | /* netif_stop_queue() must be done before checking | ||
1104 | * checking tx index in TX_BUFFS_AVAIL() below, because | ||
1105 | * in gem_tx(), we update tx_old before checking for | ||
1106 | * netif_queue_stopped(). | ||
1107 | */ | ||
1108 | smp_mb(); | ||
1109 | if (TX_BUFFS_AVAIL(gp) > (MAX_SKB_FRAGS + 1)) | ||
1110 | netif_wake_queue(dev); | ||
1111 | } | ||
1112 | if (netif_msg_tx_queued(gp)) | ||
1113 | printk(KERN_DEBUG "%s: tx queued, slot %d, skblen %d\n", | ||
1114 | dev->name, entry, skb->len); | ||
1115 | mb(); | ||
1116 | writel(gp->tx_new, gp->regs + TXDMA_KICK); | ||
1117 | |||
1118 | return NETDEV_TX_OK; | ||
1119 | } | ||
1120 | |||
1121 | static void gem_pcs_reset(struct gem *gp) | ||
1122 | { | ||
1123 | int limit; | ||
1124 | u32 val; | ||
1125 | |||
1126 | /* Reset PCS unit. */ | ||
1127 | val = readl(gp->regs + PCS_MIICTRL); | ||
1128 | val |= PCS_MIICTRL_RST; | ||
1129 | writel(val, gp->regs + PCS_MIICTRL); | ||
1130 | |||
1131 | limit = 32; | ||
1132 | while (readl(gp->regs + PCS_MIICTRL) & PCS_MIICTRL_RST) { | ||
1133 | udelay(100); | ||
1134 | if (limit-- <= 0) | ||
1135 | break; | ||
1136 | } | ||
1137 | if (limit < 0) | ||
1138 | netdev_warn(gp->dev, "PCS reset bit would not clear\n"); | ||
1139 | } | ||
1140 | |||
1141 | static void gem_pcs_reinit_adv(struct gem *gp) | ||
1142 | { | ||
1143 | u32 val; | ||
1144 | |||
1145 | /* Make sure PCS is disabled while changing advertisement | ||
1146 | * configuration. | ||
1147 | */ | ||
1148 | val = readl(gp->regs + PCS_CFG); | ||
1149 | val &= ~(PCS_CFG_ENABLE | PCS_CFG_TO); | ||
1150 | writel(val, gp->regs + PCS_CFG); | ||
1151 | |||
1152 | /* Advertise all capabilities except asymmetric | ||
1153 | * pause. | ||
1154 | */ | ||
1155 | val = readl(gp->regs + PCS_MIIADV); | ||
1156 | val |= (PCS_MIIADV_FD | PCS_MIIADV_HD | | ||
1157 | PCS_MIIADV_SP | PCS_MIIADV_AP); | ||
1158 | writel(val, gp->regs + PCS_MIIADV); | ||
1159 | |||
1160 | /* Enable and restart auto-negotiation, disable wrapback/loopback, | ||
1161 | * and re-enable PCS. | ||
1162 | */ | ||
1163 | val = readl(gp->regs + PCS_MIICTRL); | ||
1164 | val |= (PCS_MIICTRL_RAN | PCS_MIICTRL_ANE); | ||
1165 | val &= ~PCS_MIICTRL_WB; | ||
1166 | writel(val, gp->regs + PCS_MIICTRL); | ||
1167 | |||
1168 | val = readl(gp->regs + PCS_CFG); | ||
1169 | val |= PCS_CFG_ENABLE; | ||
1170 | writel(val, gp->regs + PCS_CFG); | ||
1171 | |||
1172 | /* Make sure serialink loopback is off. The meaning | ||
1173 | * of this bit is logically inverted based upon whether | ||
1174 | * you are in Serialink or SERDES mode. | ||
1175 | */ | ||
1176 | val = readl(gp->regs + PCS_SCTRL); | ||
1177 | if (gp->phy_type == phy_serialink) | ||
1178 | val &= ~PCS_SCTRL_LOOP; | ||
1179 | else | ||
1180 | val |= PCS_SCTRL_LOOP; | ||
1181 | writel(val, gp->regs + PCS_SCTRL); | ||
1182 | } | ||
1183 | |||
1184 | #define STOP_TRIES 32 | ||
1185 | |||
1186 | static void gem_reset(struct gem *gp) | ||
1187 | { | ||
1188 | int limit; | ||
1189 | u32 val; | ||
1190 | |||
1191 | /* Make sure we won't get any more interrupts */ | ||
1192 | writel(0xffffffff, gp->regs + GREG_IMASK); | ||
1193 | |||
1194 | /* Reset the chip */ | ||
1195 | writel(gp->swrst_base | GREG_SWRST_TXRST | GREG_SWRST_RXRST, | ||
1196 | gp->regs + GREG_SWRST); | ||
1197 | |||
1198 | limit = STOP_TRIES; | ||
1199 | |||
1200 | do { | ||
1201 | udelay(20); | ||
1202 | val = readl(gp->regs + GREG_SWRST); | ||
1203 | if (limit-- <= 0) | ||
1204 | break; | ||
1205 | } while (val & (GREG_SWRST_TXRST | GREG_SWRST_RXRST)); | ||
1206 | |||
1207 | if (limit < 0) | ||
1208 | netdev_err(gp->dev, "SW reset is ghetto\n"); | ||
1209 | |||
1210 | if (gp->phy_type == phy_serialink || gp->phy_type == phy_serdes) | ||
1211 | gem_pcs_reinit_adv(gp); | ||
1212 | } | ||
1213 | |||
1214 | static void gem_start_dma(struct gem *gp) | ||
1215 | { | ||
1216 | u32 val; | ||
1217 | |||
1218 | /* We are ready to rock, turn everything on. */ | ||
1219 | val = readl(gp->regs + TXDMA_CFG); | ||
1220 | writel(val | TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); | ||
1221 | val = readl(gp->regs + RXDMA_CFG); | ||
1222 | writel(val | RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); | ||
1223 | val = readl(gp->regs + MAC_TXCFG); | ||
1224 | writel(val | MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); | ||
1225 | val = readl(gp->regs + MAC_RXCFG); | ||
1226 | writel(val | MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); | ||
1227 | |||
1228 | (void) readl(gp->regs + MAC_RXCFG); | ||
1229 | udelay(100); | ||
1230 | |||
1231 | gem_enable_ints(gp); | ||
1232 | |||
1233 | writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); | ||
1234 | } | ||
1235 | |||
1236 | /* DMA won't be actually stopped before about 4ms tho ... | ||
1237 | */ | ||
1238 | static void gem_stop_dma(struct gem *gp) | ||
1239 | { | ||
1240 | u32 val; | ||
1241 | |||
1242 | /* We are done rocking, turn everything off. */ | ||
1243 | val = readl(gp->regs + TXDMA_CFG); | ||
1244 | writel(val & ~TXDMA_CFG_ENABLE, gp->regs + TXDMA_CFG); | ||
1245 | val = readl(gp->regs + RXDMA_CFG); | ||
1246 | writel(val & ~RXDMA_CFG_ENABLE, gp->regs + RXDMA_CFG); | ||
1247 | val = readl(gp->regs + MAC_TXCFG); | ||
1248 | writel(val & ~MAC_TXCFG_ENAB, gp->regs + MAC_TXCFG); | ||
1249 | val = readl(gp->regs + MAC_RXCFG); | ||
1250 | writel(val & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); | ||
1251 | |||
1252 | (void) readl(gp->regs + MAC_RXCFG); | ||
1253 | |||
1254 | /* Need to wait a bit ... done by the caller */ | ||
1255 | } | ||
1256 | |||
1257 | |||
1258 | // XXX dbl check what that function should do when called on PCS PHY | ||
1259 | static void gem_begin_auto_negotiation(struct gem *gp, struct ethtool_cmd *ep) | ||
1260 | { | ||
1261 | u32 advertise, features; | ||
1262 | int autoneg; | ||
1263 | int speed; | ||
1264 | int duplex; | ||
1265 | |||
1266 | if (gp->phy_type != phy_mii_mdio0 && | ||
1267 | gp->phy_type != phy_mii_mdio1) | ||
1268 | goto non_mii; | ||
1269 | |||
1270 | /* Setup advertise */ | ||
1271 | if (found_mii_phy(gp)) | ||
1272 | features = gp->phy_mii.def->features; | ||
1273 | else | ||
1274 | features = 0; | ||
1275 | |||
1276 | advertise = features & ADVERTISE_MASK; | ||
1277 | if (gp->phy_mii.advertising != 0) | ||
1278 | advertise &= gp->phy_mii.advertising; | ||
1279 | |||
1280 | autoneg = gp->want_autoneg; | ||
1281 | speed = gp->phy_mii.speed; | ||
1282 | duplex = gp->phy_mii.duplex; | ||
1283 | |||
1284 | /* Setup link parameters */ | ||
1285 | if (!ep) | ||
1286 | goto start_aneg; | ||
1287 | if (ep->autoneg == AUTONEG_ENABLE) { | ||
1288 | advertise = ep->advertising; | ||
1289 | autoneg = 1; | ||
1290 | } else { | ||
1291 | autoneg = 0; | ||
1292 | speed = ethtool_cmd_speed(ep); | ||
1293 | duplex = ep->duplex; | ||
1294 | } | ||
1295 | |||
1296 | start_aneg: | ||
1297 | /* Sanitize settings based on PHY capabilities */ | ||
1298 | if ((features & SUPPORTED_Autoneg) == 0) | ||
1299 | autoneg = 0; | ||
1300 | if (speed == SPEED_1000 && | ||
1301 | !(features & (SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full))) | ||
1302 | speed = SPEED_100; | ||
1303 | if (speed == SPEED_100 && | ||
1304 | !(features & (SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full))) | ||
1305 | speed = SPEED_10; | ||
1306 | if (duplex == DUPLEX_FULL && | ||
1307 | !(features & (SUPPORTED_1000baseT_Full | | ||
1308 | SUPPORTED_100baseT_Full | | ||
1309 | SUPPORTED_10baseT_Full))) | ||
1310 | duplex = DUPLEX_HALF; | ||
1311 | if (speed == 0) | ||
1312 | speed = SPEED_10; | ||
1313 | |||
1314 | /* If we are asleep, we don't try to actually setup the PHY, we | ||
1315 | * just store the settings | ||
1316 | */ | ||
1317 | if (!netif_device_present(gp->dev)) { | ||
1318 | gp->phy_mii.autoneg = gp->want_autoneg = autoneg; | ||
1319 | gp->phy_mii.speed = speed; | ||
1320 | gp->phy_mii.duplex = duplex; | ||
1321 | return; | ||
1322 | } | ||
1323 | |||
1324 | /* Configure PHY & start aneg */ | ||
1325 | gp->want_autoneg = autoneg; | ||
1326 | if (autoneg) { | ||
1327 | if (found_mii_phy(gp)) | ||
1328 | gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, advertise); | ||
1329 | gp->lstate = link_aneg; | ||
1330 | } else { | ||
1331 | if (found_mii_phy(gp)) | ||
1332 | gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, speed, duplex); | ||
1333 | gp->lstate = link_force_ok; | ||
1334 | } | ||
1335 | |||
1336 | non_mii: | ||
1337 | gp->timer_ticks = 0; | ||
1338 | mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); | ||
1339 | } | ||
1340 | |||
1341 | /* A link-up condition has occurred, initialize and enable the | ||
1342 | * rest of the chip. | ||
1343 | */ | ||
1344 | static int gem_set_link_modes(struct gem *gp) | ||
1345 | { | ||
1346 | struct netdev_queue *txq = netdev_get_tx_queue(gp->dev, 0); | ||
1347 | int full_duplex, speed, pause; | ||
1348 | u32 val; | ||
1349 | |||
1350 | full_duplex = 0; | ||
1351 | speed = SPEED_10; | ||
1352 | pause = 0; | ||
1353 | |||
1354 | if (found_mii_phy(gp)) { | ||
1355 | if (gp->phy_mii.def->ops->read_link(&gp->phy_mii)) | ||
1356 | return 1; | ||
1357 | full_duplex = (gp->phy_mii.duplex == DUPLEX_FULL); | ||
1358 | speed = gp->phy_mii.speed; | ||
1359 | pause = gp->phy_mii.pause; | ||
1360 | } else if (gp->phy_type == phy_serialink || | ||
1361 | gp->phy_type == phy_serdes) { | ||
1362 | u32 pcs_lpa = readl(gp->regs + PCS_MIILP); | ||
1363 | |||
1364 | if ((pcs_lpa & PCS_MIIADV_FD) || gp->phy_type == phy_serdes) | ||
1365 | full_duplex = 1; | ||
1366 | speed = SPEED_1000; | ||
1367 | } | ||
1368 | |||
1369 | netif_info(gp, link, gp->dev, "Link is up at %d Mbps, %s-duplex\n", | ||
1370 | speed, (full_duplex ? "full" : "half")); | ||
1371 | |||
1372 | |||
1373 | /* We take the tx queue lock to avoid collisions between | ||
1374 | * this code, the tx path and the NAPI-driven error path | ||
1375 | */ | ||
1376 | __netif_tx_lock(txq, smp_processor_id()); | ||
1377 | |||
1378 | val = (MAC_TXCFG_EIPG0 | MAC_TXCFG_NGU); | ||
1379 | if (full_duplex) { | ||
1380 | val |= (MAC_TXCFG_ICS | MAC_TXCFG_ICOLL); | ||
1381 | } else { | ||
1382 | /* MAC_TXCFG_NBO must be zero. */ | ||
1383 | } | ||
1384 | writel(val, gp->regs + MAC_TXCFG); | ||
1385 | |||
1386 | val = (MAC_XIFCFG_OE | MAC_XIFCFG_LLED); | ||
1387 | if (!full_duplex && | ||
1388 | (gp->phy_type == phy_mii_mdio0 || | ||
1389 | gp->phy_type == phy_mii_mdio1)) { | ||
1390 | val |= MAC_XIFCFG_DISE; | ||
1391 | } else if (full_duplex) { | ||
1392 | val |= MAC_XIFCFG_FLED; | ||
1393 | } | ||
1394 | |||
1395 | if (speed == SPEED_1000) | ||
1396 | val |= (MAC_XIFCFG_GMII); | ||
1397 | |||
1398 | writel(val, gp->regs + MAC_XIFCFG); | ||
1399 | |||
1400 | /* If gigabit and half-duplex, enable carrier extension | ||
1401 | * mode. Else, disable it. | ||
1402 | */ | ||
1403 | if (speed == SPEED_1000 && !full_duplex) { | ||
1404 | val = readl(gp->regs + MAC_TXCFG); | ||
1405 | writel(val | MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); | ||
1406 | |||
1407 | val = readl(gp->regs + MAC_RXCFG); | ||
1408 | writel(val | MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); | ||
1409 | } else { | ||
1410 | val = readl(gp->regs + MAC_TXCFG); | ||
1411 | writel(val & ~MAC_TXCFG_TCE, gp->regs + MAC_TXCFG); | ||
1412 | |||
1413 | val = readl(gp->regs + MAC_RXCFG); | ||
1414 | writel(val & ~MAC_RXCFG_RCE, gp->regs + MAC_RXCFG); | ||
1415 | } | ||
1416 | |||
1417 | if (gp->phy_type == phy_serialink || | ||
1418 | gp->phy_type == phy_serdes) { | ||
1419 | u32 pcs_lpa = readl(gp->regs + PCS_MIILP); | ||
1420 | |||
1421 | if (pcs_lpa & (PCS_MIIADV_SP | PCS_MIIADV_AP)) | ||
1422 | pause = 1; | ||
1423 | } | ||
1424 | |||
1425 | if (!full_duplex) | ||
1426 | writel(512, gp->regs + MAC_STIME); | ||
1427 | else | ||
1428 | writel(64, gp->regs + MAC_STIME); | ||
1429 | val = readl(gp->regs + MAC_MCCFG); | ||
1430 | if (pause) | ||
1431 | val |= (MAC_MCCFG_SPE | MAC_MCCFG_RPE); | ||
1432 | else | ||
1433 | val &= ~(MAC_MCCFG_SPE | MAC_MCCFG_RPE); | ||
1434 | writel(val, gp->regs + MAC_MCCFG); | ||
1435 | |||
1436 | gem_start_dma(gp); | ||
1437 | |||
1438 | __netif_tx_unlock(txq); | ||
1439 | |||
1440 | if (netif_msg_link(gp)) { | ||
1441 | if (pause) { | ||
1442 | netdev_info(gp->dev, | ||
1443 | "Pause is enabled (rxfifo: %d off: %d on: %d)\n", | ||
1444 | gp->rx_fifo_sz, | ||
1445 | gp->rx_pause_off, | ||
1446 | gp->rx_pause_on); | ||
1447 | } else { | ||
1448 | netdev_info(gp->dev, "Pause is disabled\n"); | ||
1449 | } | ||
1450 | } | ||
1451 | |||
1452 | return 0; | ||
1453 | } | ||
1454 | |||
1455 | static int gem_mdio_link_not_up(struct gem *gp) | ||
1456 | { | ||
1457 | switch (gp->lstate) { | ||
1458 | case link_force_ret: | ||
1459 | netif_info(gp, link, gp->dev, | ||
1460 | "Autoneg failed again, keeping forced mode\n"); | ||
1461 | gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, | ||
1462 | gp->last_forced_speed, DUPLEX_HALF); | ||
1463 | gp->timer_ticks = 5; | ||
1464 | gp->lstate = link_force_ok; | ||
1465 | return 0; | ||
1466 | case link_aneg: | ||
1467 | /* We try forced modes after a failed aneg only on PHYs that don't | ||
1468 | * have "magic_aneg" bit set, which means they internally do the | ||
1469 | * while forced-mode thingy. On these, we just restart aneg | ||
1470 | */ | ||
1471 | if (gp->phy_mii.def->magic_aneg) | ||
1472 | return 1; | ||
1473 | netif_info(gp, link, gp->dev, "switching to forced 100bt\n"); | ||
1474 | /* Try forced modes. */ | ||
1475 | gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_100, | ||
1476 | DUPLEX_HALF); | ||
1477 | gp->timer_ticks = 5; | ||
1478 | gp->lstate = link_force_try; | ||
1479 | return 0; | ||
1480 | case link_force_try: | ||
1481 | /* Downgrade from 100 to 10 Mbps if necessary. | ||
1482 | * If already at 10Mbps, warn user about the | ||
1483 | * situation every 10 ticks. | ||
1484 | */ | ||
1485 | if (gp->phy_mii.speed == SPEED_100) { | ||
1486 | gp->phy_mii.def->ops->setup_forced(&gp->phy_mii, SPEED_10, | ||
1487 | DUPLEX_HALF); | ||
1488 | gp->timer_ticks = 5; | ||
1489 | netif_info(gp, link, gp->dev, | ||
1490 | "switching to forced 10bt\n"); | ||
1491 | return 0; | ||
1492 | } else | ||
1493 | return 1; | ||
1494 | default: | ||
1495 | return 0; | ||
1496 | } | ||
1497 | } | ||
1498 | |||
1499 | static void gem_link_timer(unsigned long data) | ||
1500 | { | ||
1501 | struct gem *gp = (struct gem *) data; | ||
1502 | struct net_device *dev = gp->dev; | ||
1503 | int restart_aneg = 0; | ||
1504 | |||
1505 | /* There's no point doing anything if we're going to be reset */ | ||
1506 | if (gp->reset_task_pending) | ||
1507 | return; | ||
1508 | |||
1509 | if (gp->phy_type == phy_serialink || | ||
1510 | gp->phy_type == phy_serdes) { | ||
1511 | u32 val = readl(gp->regs + PCS_MIISTAT); | ||
1512 | |||
1513 | if (!(val & PCS_MIISTAT_LS)) | ||
1514 | val = readl(gp->regs + PCS_MIISTAT); | ||
1515 | |||
1516 | if ((val & PCS_MIISTAT_LS) != 0) { | ||
1517 | if (gp->lstate == link_up) | ||
1518 | goto restart; | ||
1519 | |||
1520 | gp->lstate = link_up; | ||
1521 | netif_carrier_on(dev); | ||
1522 | (void)gem_set_link_modes(gp); | ||
1523 | } | ||
1524 | goto restart; | ||
1525 | } | ||
1526 | if (found_mii_phy(gp) && gp->phy_mii.def->ops->poll_link(&gp->phy_mii)) { | ||
1527 | /* Ok, here we got a link. If we had it due to a forced | ||
1528 | * fallback, and we were configured for autoneg, we do | ||
1529 | * retry a short autoneg pass. If you know your hub is | ||
1530 | * broken, use ethtool ;) | ||
1531 | */ | ||
1532 | if (gp->lstate == link_force_try && gp->want_autoneg) { | ||
1533 | gp->lstate = link_force_ret; | ||
1534 | gp->last_forced_speed = gp->phy_mii.speed; | ||
1535 | gp->timer_ticks = 5; | ||
1536 | if (netif_msg_link(gp)) | ||
1537 | netdev_info(dev, | ||
1538 | "Got link after fallback, retrying autoneg once...\n"); | ||
1539 | gp->phy_mii.def->ops->setup_aneg(&gp->phy_mii, gp->phy_mii.advertising); | ||
1540 | } else if (gp->lstate != link_up) { | ||
1541 | gp->lstate = link_up; | ||
1542 | netif_carrier_on(dev); | ||
1543 | if (gem_set_link_modes(gp)) | ||
1544 | restart_aneg = 1; | ||
1545 | } | ||
1546 | } else { | ||
1547 | /* If the link was previously up, we restart the | ||
1548 | * whole process | ||
1549 | */ | ||
1550 | if (gp->lstate == link_up) { | ||
1551 | gp->lstate = link_down; | ||
1552 | netif_info(gp, link, dev, "Link down\n"); | ||
1553 | netif_carrier_off(dev); | ||
1554 | gem_schedule_reset(gp); | ||
1555 | /* The reset task will restart the timer */ | ||
1556 | return; | ||
1557 | } else if (++gp->timer_ticks > 10) { | ||
1558 | if (found_mii_phy(gp)) | ||
1559 | restart_aneg = gem_mdio_link_not_up(gp); | ||
1560 | else | ||
1561 | restart_aneg = 1; | ||
1562 | } | ||
1563 | } | ||
1564 | if (restart_aneg) { | ||
1565 | gem_begin_auto_negotiation(gp, NULL); | ||
1566 | return; | ||
1567 | } | ||
1568 | restart: | ||
1569 | mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); | ||
1570 | } | ||
1571 | |||
1572 | static void gem_clean_rings(struct gem *gp) | ||
1573 | { | ||
1574 | struct gem_init_block *gb = gp->init_block; | ||
1575 | struct sk_buff *skb; | ||
1576 | int i; | ||
1577 | dma_addr_t dma_addr; | ||
1578 | |||
1579 | for (i = 0; i < RX_RING_SIZE; i++) { | ||
1580 | struct gem_rxd *rxd; | ||
1581 | |||
1582 | rxd = &gb->rxd[i]; | ||
1583 | if (gp->rx_skbs[i] != NULL) { | ||
1584 | skb = gp->rx_skbs[i]; | ||
1585 | dma_addr = le64_to_cpu(rxd->buffer); | ||
1586 | pci_unmap_page(gp->pdev, dma_addr, | ||
1587 | RX_BUF_ALLOC_SIZE(gp), | ||
1588 | PCI_DMA_FROMDEVICE); | ||
1589 | dev_kfree_skb_any(skb); | ||
1590 | gp->rx_skbs[i] = NULL; | ||
1591 | } | ||
1592 | rxd->status_word = 0; | ||
1593 | wmb(); | ||
1594 | rxd->buffer = 0; | ||
1595 | } | ||
1596 | |||
1597 | for (i = 0; i < TX_RING_SIZE; i++) { | ||
1598 | if (gp->tx_skbs[i] != NULL) { | ||
1599 | struct gem_txd *txd; | ||
1600 | int frag; | ||
1601 | |||
1602 | skb = gp->tx_skbs[i]; | ||
1603 | gp->tx_skbs[i] = NULL; | ||
1604 | |||
1605 | for (frag = 0; frag <= skb_shinfo(skb)->nr_frags; frag++) { | ||
1606 | int ent = i & (TX_RING_SIZE - 1); | ||
1607 | |||
1608 | txd = &gb->txd[ent]; | ||
1609 | dma_addr = le64_to_cpu(txd->buffer); | ||
1610 | pci_unmap_page(gp->pdev, dma_addr, | ||
1611 | le64_to_cpu(txd->control_word) & | ||
1612 | TXDCTRL_BUFSZ, PCI_DMA_TODEVICE); | ||
1613 | |||
1614 | if (frag != skb_shinfo(skb)->nr_frags) | ||
1615 | i++; | ||
1616 | } | ||
1617 | dev_kfree_skb_any(skb); | ||
1618 | } | ||
1619 | } | ||
1620 | } | ||
1621 | |||
1622 | static void gem_init_rings(struct gem *gp) | ||
1623 | { | ||
1624 | struct gem_init_block *gb = gp->init_block; | ||
1625 | struct net_device *dev = gp->dev; | ||
1626 | int i; | ||
1627 | dma_addr_t dma_addr; | ||
1628 | |||
1629 | gp->rx_new = gp->rx_old = gp->tx_new = gp->tx_old = 0; | ||
1630 | |||
1631 | gem_clean_rings(gp); | ||
1632 | |||
1633 | gp->rx_buf_sz = max(dev->mtu + ETH_HLEN + VLAN_HLEN, | ||
1634 | (unsigned)VLAN_ETH_FRAME_LEN); | ||
1635 | |||
1636 | for (i = 0; i < RX_RING_SIZE; i++) { | ||
1637 | struct sk_buff *skb; | ||
1638 | struct gem_rxd *rxd = &gb->rxd[i]; | ||
1639 | |||
1640 | skb = gem_alloc_skb(dev, RX_BUF_ALLOC_SIZE(gp), GFP_KERNEL); | ||
1641 | if (!skb) { | ||
1642 | rxd->buffer = 0; | ||
1643 | rxd->status_word = 0; | ||
1644 | continue; | ||
1645 | } | ||
1646 | |||
1647 | gp->rx_skbs[i] = skb; | ||
1648 | skb_put(skb, (gp->rx_buf_sz + RX_OFFSET)); | ||
1649 | dma_addr = pci_map_page(gp->pdev, | ||
1650 | virt_to_page(skb->data), | ||
1651 | offset_in_page(skb->data), | ||
1652 | RX_BUF_ALLOC_SIZE(gp), | ||
1653 | PCI_DMA_FROMDEVICE); | ||
1654 | rxd->buffer = cpu_to_le64(dma_addr); | ||
1655 | wmb(); | ||
1656 | rxd->status_word = cpu_to_le64(RXDCTRL_FRESH(gp)); | ||
1657 | skb_reserve(skb, RX_OFFSET); | ||
1658 | } | ||
1659 | |||
1660 | for (i = 0; i < TX_RING_SIZE; i++) { | ||
1661 | struct gem_txd *txd = &gb->txd[i]; | ||
1662 | |||
1663 | txd->control_word = 0; | ||
1664 | wmb(); | ||
1665 | txd->buffer = 0; | ||
1666 | } | ||
1667 | wmb(); | ||
1668 | } | ||
1669 | |||
1670 | /* Init PHY interface and start link poll state machine */ | ||
1671 | static void gem_init_phy(struct gem *gp) | ||
1672 | { | ||
1673 | u32 mifcfg; | ||
1674 | |||
1675 | /* Revert MIF CFG setting done on stop_phy */ | ||
1676 | mifcfg = readl(gp->regs + MIF_CFG); | ||
1677 | mifcfg &= ~MIF_CFG_BBMODE; | ||
1678 | writel(mifcfg, gp->regs + MIF_CFG); | ||
1679 | |||
1680 | if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) { | ||
1681 | int i; | ||
1682 | |||
1683 | /* Those delay sucks, the HW seem to love them though, I'll | ||
1684 | * serisouly consider breaking some locks here to be able | ||
1685 | * to schedule instead | ||
1686 | */ | ||
1687 | for (i = 0; i < 3; i++) { | ||
1688 | #ifdef CONFIG_PPC_PMAC | ||
1689 | pmac_call_feature(PMAC_FTR_GMAC_PHY_RESET, gp->of_node, 0, 0); | ||
1690 | msleep(20); | ||
1691 | #endif | ||
1692 | /* Some PHYs used by apple have problem getting back to us, | ||
1693 | * we do an additional reset here | ||
1694 | */ | ||
1695 | phy_write(gp, MII_BMCR, BMCR_RESET); | ||
1696 | msleep(20); | ||
1697 | if (phy_read(gp, MII_BMCR) != 0xffff) | ||
1698 | break; | ||
1699 | if (i == 2) | ||
1700 | netdev_warn(gp->dev, "GMAC PHY not responding !\n"); | ||
1701 | } | ||
1702 | } | ||
1703 | |||
1704 | if (gp->pdev->vendor == PCI_VENDOR_ID_SUN && | ||
1705 | gp->pdev->device == PCI_DEVICE_ID_SUN_GEM) { | ||
1706 | u32 val; | ||
1707 | |||
1708 | /* Init datapath mode register. */ | ||
1709 | if (gp->phy_type == phy_mii_mdio0 || | ||
1710 | gp->phy_type == phy_mii_mdio1) { | ||
1711 | val = PCS_DMODE_MGM; | ||
1712 | } else if (gp->phy_type == phy_serialink) { | ||
1713 | val = PCS_DMODE_SM | PCS_DMODE_GMOE; | ||
1714 | } else { | ||
1715 | val = PCS_DMODE_ESM; | ||
1716 | } | ||
1717 | |||
1718 | writel(val, gp->regs + PCS_DMODE); | ||
1719 | } | ||
1720 | |||
1721 | if (gp->phy_type == phy_mii_mdio0 || | ||
1722 | gp->phy_type == phy_mii_mdio1) { | ||
1723 | /* Reset and detect MII PHY */ | ||
1724 | mii_phy_probe(&gp->phy_mii, gp->mii_phy_addr); | ||
1725 | |||
1726 | /* Init PHY */ | ||
1727 | if (gp->phy_mii.def && gp->phy_mii.def->ops->init) | ||
1728 | gp->phy_mii.def->ops->init(&gp->phy_mii); | ||
1729 | } else { | ||
1730 | gem_pcs_reset(gp); | ||
1731 | gem_pcs_reinit_adv(gp); | ||
1732 | } | ||
1733 | |||
1734 | /* Default aneg parameters */ | ||
1735 | gp->timer_ticks = 0; | ||
1736 | gp->lstate = link_down; | ||
1737 | netif_carrier_off(gp->dev); | ||
1738 | |||
1739 | /* Print things out */ | ||
1740 | if (gp->phy_type == phy_mii_mdio0 || | ||
1741 | gp->phy_type == phy_mii_mdio1) | ||
1742 | netdev_info(gp->dev, "Found %s PHY\n", | ||
1743 | gp->phy_mii.def ? gp->phy_mii.def->name : "no"); | ||
1744 | |||
1745 | gem_begin_auto_negotiation(gp, NULL); | ||
1746 | } | ||
1747 | |||
1748 | static void gem_init_dma(struct gem *gp) | ||
1749 | { | ||
1750 | u64 desc_dma = (u64) gp->gblock_dvma; | ||
1751 | u32 val; | ||
1752 | |||
1753 | val = (TXDMA_CFG_BASE | (0x7ff << 10) | TXDMA_CFG_PMODE); | ||
1754 | writel(val, gp->regs + TXDMA_CFG); | ||
1755 | |||
1756 | writel(desc_dma >> 32, gp->regs + TXDMA_DBHI); | ||
1757 | writel(desc_dma & 0xffffffff, gp->regs + TXDMA_DBLOW); | ||
1758 | desc_dma += (INIT_BLOCK_TX_RING_SIZE * sizeof(struct gem_txd)); | ||
1759 | |||
1760 | writel(0, gp->regs + TXDMA_KICK); | ||
1761 | |||
1762 | val = (RXDMA_CFG_BASE | (RX_OFFSET << 10) | | ||
1763 | ((14 / 2) << 13) | RXDMA_CFG_FTHRESH_128); | ||
1764 | writel(val, gp->regs + RXDMA_CFG); | ||
1765 | |||
1766 | writel(desc_dma >> 32, gp->regs + RXDMA_DBHI); | ||
1767 | writel(desc_dma & 0xffffffff, gp->regs + RXDMA_DBLOW); | ||
1768 | |||
1769 | writel(RX_RING_SIZE - 4, gp->regs + RXDMA_KICK); | ||
1770 | |||
1771 | val = (((gp->rx_pause_off / 64) << 0) & RXDMA_PTHRESH_OFF); | ||
1772 | val |= (((gp->rx_pause_on / 64) << 12) & RXDMA_PTHRESH_ON); | ||
1773 | writel(val, gp->regs + RXDMA_PTHRESH); | ||
1774 | |||
1775 | if (readl(gp->regs + GREG_BIFCFG) & GREG_BIFCFG_M66EN) | ||
1776 | writel(((5 & RXDMA_BLANK_IPKTS) | | ||
1777 | ((8 << 12) & RXDMA_BLANK_ITIME)), | ||
1778 | gp->regs + RXDMA_BLANK); | ||
1779 | else | ||
1780 | writel(((5 & RXDMA_BLANK_IPKTS) | | ||
1781 | ((4 << 12) & RXDMA_BLANK_ITIME)), | ||
1782 | gp->regs + RXDMA_BLANK); | ||
1783 | } | ||
1784 | |||
1785 | static u32 gem_setup_multicast(struct gem *gp) | ||
1786 | { | ||
1787 | u32 rxcfg = 0; | ||
1788 | int i; | ||
1789 | |||
1790 | if ((gp->dev->flags & IFF_ALLMULTI) || | ||
1791 | (netdev_mc_count(gp->dev) > 256)) { | ||
1792 | for (i=0; i<16; i++) | ||
1793 | writel(0xffff, gp->regs + MAC_HASH0 + (i << 2)); | ||
1794 | rxcfg |= MAC_RXCFG_HFE; | ||
1795 | } else if (gp->dev->flags & IFF_PROMISC) { | ||
1796 | rxcfg |= MAC_RXCFG_PROM; | ||
1797 | } else { | ||
1798 | u16 hash_table[16]; | ||
1799 | u32 crc; | ||
1800 | struct netdev_hw_addr *ha; | ||
1801 | int i; | ||
1802 | |||
1803 | memset(hash_table, 0, sizeof(hash_table)); | ||
1804 | netdev_for_each_mc_addr(ha, gp->dev) { | ||
1805 | crc = ether_crc_le(6, ha->addr); | ||
1806 | crc >>= 24; | ||
1807 | hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf)); | ||
1808 | } | ||
1809 | for (i=0; i<16; i++) | ||
1810 | writel(hash_table[i], gp->regs + MAC_HASH0 + (i << 2)); | ||
1811 | rxcfg |= MAC_RXCFG_HFE; | ||
1812 | } | ||
1813 | |||
1814 | return rxcfg; | ||
1815 | } | ||
1816 | |||
1817 | static void gem_init_mac(struct gem *gp) | ||
1818 | { | ||
1819 | unsigned char *e = &gp->dev->dev_addr[0]; | ||
1820 | |||
1821 | writel(0x1bf0, gp->regs + MAC_SNDPAUSE); | ||
1822 | |||
1823 | writel(0x00, gp->regs + MAC_IPG0); | ||
1824 | writel(0x08, gp->regs + MAC_IPG1); | ||
1825 | writel(0x04, gp->regs + MAC_IPG2); | ||
1826 | writel(0x40, gp->regs + MAC_STIME); | ||
1827 | writel(0x40, gp->regs + MAC_MINFSZ); | ||
1828 | |||
1829 | /* Ethernet payload + header + FCS + optional VLAN tag. */ | ||
1830 | writel(0x20000000 | (gp->rx_buf_sz + 4), gp->regs + MAC_MAXFSZ); | ||
1831 | |||
1832 | writel(0x07, gp->regs + MAC_PASIZE); | ||
1833 | writel(0x04, gp->regs + MAC_JAMSIZE); | ||
1834 | writel(0x10, gp->regs + MAC_ATTLIM); | ||
1835 | writel(0x8808, gp->regs + MAC_MCTYPE); | ||
1836 | |||
1837 | writel((e[5] | (e[4] << 8)) & 0x3ff, gp->regs + MAC_RANDSEED); | ||
1838 | |||
1839 | writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); | ||
1840 | writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); | ||
1841 | writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); | ||
1842 | |||
1843 | writel(0, gp->regs + MAC_ADDR3); | ||
1844 | writel(0, gp->regs + MAC_ADDR4); | ||
1845 | writel(0, gp->regs + MAC_ADDR5); | ||
1846 | |||
1847 | writel(0x0001, gp->regs + MAC_ADDR6); | ||
1848 | writel(0xc200, gp->regs + MAC_ADDR7); | ||
1849 | writel(0x0180, gp->regs + MAC_ADDR8); | ||
1850 | |||
1851 | writel(0, gp->regs + MAC_AFILT0); | ||
1852 | writel(0, gp->regs + MAC_AFILT1); | ||
1853 | writel(0, gp->regs + MAC_AFILT2); | ||
1854 | writel(0, gp->regs + MAC_AF21MSK); | ||
1855 | writel(0, gp->regs + MAC_AF0MSK); | ||
1856 | |||
1857 | gp->mac_rx_cfg = gem_setup_multicast(gp); | ||
1858 | #ifdef STRIP_FCS | ||
1859 | gp->mac_rx_cfg |= MAC_RXCFG_SFCS; | ||
1860 | #endif | ||
1861 | writel(0, gp->regs + MAC_NCOLL); | ||
1862 | writel(0, gp->regs + MAC_FASUCC); | ||
1863 | writel(0, gp->regs + MAC_ECOLL); | ||
1864 | writel(0, gp->regs + MAC_LCOLL); | ||
1865 | writel(0, gp->regs + MAC_DTIMER); | ||
1866 | writel(0, gp->regs + MAC_PATMPS); | ||
1867 | writel(0, gp->regs + MAC_RFCTR); | ||
1868 | writel(0, gp->regs + MAC_LERR); | ||
1869 | writel(0, gp->regs + MAC_AERR); | ||
1870 | writel(0, gp->regs + MAC_FCSERR); | ||
1871 | writel(0, gp->regs + MAC_RXCVERR); | ||
1872 | |||
1873 | /* Clear RX/TX/MAC/XIF config, we will set these up and enable | ||
1874 | * them once a link is established. | ||
1875 | */ | ||
1876 | writel(0, gp->regs + MAC_TXCFG); | ||
1877 | writel(gp->mac_rx_cfg, gp->regs + MAC_RXCFG); | ||
1878 | writel(0, gp->regs + MAC_MCCFG); | ||
1879 | writel(0, gp->regs + MAC_XIFCFG); | ||
1880 | |||
1881 | /* Setup MAC interrupts. We want to get all of the interesting | ||
1882 | * counter expiration events, but we do not want to hear about | ||
1883 | * normal rx/tx as the DMA engine tells us that. | ||
1884 | */ | ||
1885 | writel(MAC_TXSTAT_XMIT, gp->regs + MAC_TXMASK); | ||
1886 | writel(MAC_RXSTAT_RCV, gp->regs + MAC_RXMASK); | ||
1887 | |||
1888 | /* Don't enable even the PAUSE interrupts for now, we | ||
1889 | * make no use of those events other than to record them. | ||
1890 | */ | ||
1891 | writel(0xffffffff, gp->regs + MAC_MCMASK); | ||
1892 | |||
1893 | /* Don't enable GEM's WOL in normal operations | ||
1894 | */ | ||
1895 | if (gp->has_wol) | ||
1896 | writel(0, gp->regs + WOL_WAKECSR); | ||
1897 | } | ||
1898 | |||
1899 | static void gem_init_pause_thresholds(struct gem *gp) | ||
1900 | { | ||
1901 | u32 cfg; | ||
1902 | |||
1903 | /* Calculate pause thresholds. Setting the OFF threshold to the | ||
1904 | * full RX fifo size effectively disables PAUSE generation which | ||
1905 | * is what we do for 10/100 only GEMs which have FIFOs too small | ||
1906 | * to make real gains from PAUSE. | ||
1907 | */ | ||
1908 | if (gp->rx_fifo_sz <= (2 * 1024)) { | ||
1909 | gp->rx_pause_off = gp->rx_pause_on = gp->rx_fifo_sz; | ||
1910 | } else { | ||
1911 | int max_frame = (gp->rx_buf_sz + 4 + 64) & ~63; | ||
1912 | int off = (gp->rx_fifo_sz - (max_frame * 2)); | ||
1913 | int on = off - max_frame; | ||
1914 | |||
1915 | gp->rx_pause_off = off; | ||
1916 | gp->rx_pause_on = on; | ||
1917 | } | ||
1918 | |||
1919 | |||
1920 | /* Configure the chip "burst" DMA mode & enable some | ||
1921 | * HW bug fixes on Apple version | ||
1922 | */ | ||
1923 | cfg = 0; | ||
1924 | if (gp->pdev->vendor == PCI_VENDOR_ID_APPLE) | ||
1925 | cfg |= GREG_CFG_RONPAULBIT | GREG_CFG_ENBUG2FIX; | ||
1926 | #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA) | ||
1927 | cfg |= GREG_CFG_IBURST; | ||
1928 | #endif | ||
1929 | cfg |= ((31 << 1) & GREG_CFG_TXDMALIM); | ||
1930 | cfg |= ((31 << 6) & GREG_CFG_RXDMALIM); | ||
1931 | writel(cfg, gp->regs + GREG_CFG); | ||
1932 | |||
1933 | /* If Infinite Burst didn't stick, then use different | ||
1934 | * thresholds (and Apple bug fixes don't exist) | ||
1935 | */ | ||
1936 | if (!(readl(gp->regs + GREG_CFG) & GREG_CFG_IBURST)) { | ||
1937 | cfg = ((2 << 1) & GREG_CFG_TXDMALIM); | ||
1938 | cfg |= ((8 << 6) & GREG_CFG_RXDMALIM); | ||
1939 | writel(cfg, gp->regs + GREG_CFG); | ||
1940 | } | ||
1941 | } | ||
1942 | |||
1943 | static int gem_check_invariants(struct gem *gp) | ||
1944 | { | ||
1945 | struct pci_dev *pdev = gp->pdev; | ||
1946 | u32 mif_cfg; | ||
1947 | |||
1948 | /* On Apple's sungem, we can't rely on registers as the chip | ||
1949 | * was been powered down by the firmware. The PHY is looked | ||
1950 | * up later on. | ||
1951 | */ | ||
1952 | if (pdev->vendor == PCI_VENDOR_ID_APPLE) { | ||
1953 | gp->phy_type = phy_mii_mdio0; | ||
1954 | gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; | ||
1955 | gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; | ||
1956 | gp->swrst_base = 0; | ||
1957 | |||
1958 | mif_cfg = readl(gp->regs + MIF_CFG); | ||
1959 | mif_cfg &= ~(MIF_CFG_PSELECT|MIF_CFG_POLL|MIF_CFG_BBMODE|MIF_CFG_MDI1); | ||
1960 | mif_cfg |= MIF_CFG_MDI0; | ||
1961 | writel(mif_cfg, gp->regs + MIF_CFG); | ||
1962 | writel(PCS_DMODE_MGM, gp->regs + PCS_DMODE); | ||
1963 | writel(MAC_XIFCFG_OE, gp->regs + MAC_XIFCFG); | ||
1964 | |||
1965 | /* We hard-code the PHY address so we can properly bring it out of | ||
1966 | * reset later on, we can't really probe it at this point, though | ||
1967 | * that isn't an issue. | ||
1968 | */ | ||
1969 | if (gp->pdev->device == PCI_DEVICE_ID_APPLE_K2_GMAC) | ||
1970 | gp->mii_phy_addr = 1; | ||
1971 | else | ||
1972 | gp->mii_phy_addr = 0; | ||
1973 | |||
1974 | return 0; | ||
1975 | } | ||
1976 | |||
1977 | mif_cfg = readl(gp->regs + MIF_CFG); | ||
1978 | |||
1979 | if (pdev->vendor == PCI_VENDOR_ID_SUN && | ||
1980 | pdev->device == PCI_DEVICE_ID_SUN_RIO_GEM) { | ||
1981 | /* One of the MII PHYs _must_ be present | ||
1982 | * as this chip has no gigabit PHY. | ||
1983 | */ | ||
1984 | if ((mif_cfg & (MIF_CFG_MDI0 | MIF_CFG_MDI1)) == 0) { | ||
1985 | pr_err("RIO GEM lacks MII phy, mif_cfg[%08x]\n", | ||
1986 | mif_cfg); | ||
1987 | return -1; | ||
1988 | } | ||
1989 | } | ||
1990 | |||
1991 | /* Determine initial PHY interface type guess. MDIO1 is the | ||
1992 | * external PHY and thus takes precedence over MDIO0. | ||
1993 | */ | ||
1994 | |||
1995 | if (mif_cfg & MIF_CFG_MDI1) { | ||
1996 | gp->phy_type = phy_mii_mdio1; | ||
1997 | mif_cfg |= MIF_CFG_PSELECT; | ||
1998 | writel(mif_cfg, gp->regs + MIF_CFG); | ||
1999 | } else if (mif_cfg & MIF_CFG_MDI0) { | ||
2000 | gp->phy_type = phy_mii_mdio0; | ||
2001 | mif_cfg &= ~MIF_CFG_PSELECT; | ||
2002 | writel(mif_cfg, gp->regs + MIF_CFG); | ||
2003 | } else { | ||
2004 | #ifdef CONFIG_SPARC | ||
2005 | const char *p; | ||
2006 | |||
2007 | p = of_get_property(gp->of_node, "shared-pins", NULL); | ||
2008 | if (p && !strcmp(p, "serdes")) | ||
2009 | gp->phy_type = phy_serdes; | ||
2010 | else | ||
2011 | #endif | ||
2012 | gp->phy_type = phy_serialink; | ||
2013 | } | ||
2014 | if (gp->phy_type == phy_mii_mdio1 || | ||
2015 | gp->phy_type == phy_mii_mdio0) { | ||
2016 | int i; | ||
2017 | |||
2018 | for (i = 0; i < 32; i++) { | ||
2019 | gp->mii_phy_addr = i; | ||
2020 | if (phy_read(gp, MII_BMCR) != 0xffff) | ||
2021 | break; | ||
2022 | } | ||
2023 | if (i == 32) { | ||
2024 | if (pdev->device != PCI_DEVICE_ID_SUN_GEM) { | ||
2025 | pr_err("RIO MII phy will not respond\n"); | ||
2026 | return -1; | ||
2027 | } | ||
2028 | gp->phy_type = phy_serdes; | ||
2029 | } | ||
2030 | } | ||
2031 | |||
2032 | /* Fetch the FIFO configurations now too. */ | ||
2033 | gp->tx_fifo_sz = readl(gp->regs + TXDMA_FSZ) * 64; | ||
2034 | gp->rx_fifo_sz = readl(gp->regs + RXDMA_FSZ) * 64; | ||
2035 | |||
2036 | if (pdev->vendor == PCI_VENDOR_ID_SUN) { | ||
2037 | if (pdev->device == PCI_DEVICE_ID_SUN_GEM) { | ||
2038 | if (gp->tx_fifo_sz != (9 * 1024) || | ||
2039 | gp->rx_fifo_sz != (20 * 1024)) { | ||
2040 | pr_err("GEM has bogus fifo sizes tx(%d) rx(%d)\n", | ||
2041 | gp->tx_fifo_sz, gp->rx_fifo_sz); | ||
2042 | return -1; | ||
2043 | } | ||
2044 | gp->swrst_base = 0; | ||
2045 | } else { | ||
2046 | if (gp->tx_fifo_sz != (2 * 1024) || | ||
2047 | gp->rx_fifo_sz != (2 * 1024)) { | ||
2048 | pr_err("RIO GEM has bogus fifo sizes tx(%d) rx(%d)\n", | ||
2049 | gp->tx_fifo_sz, gp->rx_fifo_sz); | ||
2050 | return -1; | ||
2051 | } | ||
2052 | gp->swrst_base = (64 / 4) << GREG_SWRST_CACHE_SHIFT; | ||
2053 | } | ||
2054 | } | ||
2055 | |||
2056 | return 0; | ||
2057 | } | ||
2058 | |||
2059 | static void gem_reinit_chip(struct gem *gp) | ||
2060 | { | ||
2061 | /* Reset the chip */ | ||
2062 | gem_reset(gp); | ||
2063 | |||
2064 | /* Make sure ints are disabled */ | ||
2065 | gem_disable_ints(gp); | ||
2066 | |||
2067 | /* Allocate & setup ring buffers */ | ||
2068 | gem_init_rings(gp); | ||
2069 | |||
2070 | /* Configure pause thresholds */ | ||
2071 | gem_init_pause_thresholds(gp); | ||
2072 | |||
2073 | /* Init DMA & MAC engines */ | ||
2074 | gem_init_dma(gp); | ||
2075 | gem_init_mac(gp); | ||
2076 | } | ||
2077 | |||
2078 | |||
2079 | static void gem_stop_phy(struct gem *gp, int wol) | ||
2080 | { | ||
2081 | u32 mifcfg; | ||
2082 | |||
2083 | /* Let the chip settle down a bit, it seems that helps | ||
2084 | * for sleep mode on some models | ||
2085 | */ | ||
2086 | msleep(10); | ||
2087 | |||
2088 | /* Make sure we aren't polling PHY status change. We | ||
2089 | * don't currently use that feature though | ||
2090 | */ | ||
2091 | mifcfg = readl(gp->regs + MIF_CFG); | ||
2092 | mifcfg &= ~MIF_CFG_POLL; | ||
2093 | writel(mifcfg, gp->regs + MIF_CFG); | ||
2094 | |||
2095 | if (wol && gp->has_wol) { | ||
2096 | unsigned char *e = &gp->dev->dev_addr[0]; | ||
2097 | u32 csr; | ||
2098 | |||
2099 | /* Setup wake-on-lan for MAGIC packet */ | ||
2100 | writel(MAC_RXCFG_HFE | MAC_RXCFG_SFCS | MAC_RXCFG_ENAB, | ||
2101 | gp->regs + MAC_RXCFG); | ||
2102 | writel((e[4] << 8) | e[5], gp->regs + WOL_MATCH0); | ||
2103 | writel((e[2] << 8) | e[3], gp->regs + WOL_MATCH1); | ||
2104 | writel((e[0] << 8) | e[1], gp->regs + WOL_MATCH2); | ||
2105 | |||
2106 | writel(WOL_MCOUNT_N | WOL_MCOUNT_M, gp->regs + WOL_MCOUNT); | ||
2107 | csr = WOL_WAKECSR_ENABLE; | ||
2108 | if ((readl(gp->regs + MAC_XIFCFG) & MAC_XIFCFG_GMII) == 0) | ||
2109 | csr |= WOL_WAKECSR_MII; | ||
2110 | writel(csr, gp->regs + WOL_WAKECSR); | ||
2111 | } else { | ||
2112 | writel(0, gp->regs + MAC_RXCFG); | ||
2113 | (void)readl(gp->regs + MAC_RXCFG); | ||
2114 | /* Machine sleep will die in strange ways if we | ||
2115 | * dont wait a bit here, looks like the chip takes | ||
2116 | * some time to really shut down | ||
2117 | */ | ||
2118 | msleep(10); | ||
2119 | } | ||
2120 | |||
2121 | writel(0, gp->regs + MAC_TXCFG); | ||
2122 | writel(0, gp->regs + MAC_XIFCFG); | ||
2123 | writel(0, gp->regs + TXDMA_CFG); | ||
2124 | writel(0, gp->regs + RXDMA_CFG); | ||
2125 | |||
2126 | if (!wol) { | ||
2127 | gem_reset(gp); | ||
2128 | writel(MAC_TXRST_CMD, gp->regs + MAC_TXRST); | ||
2129 | writel(MAC_RXRST_CMD, gp->regs + MAC_RXRST); | ||
2130 | |||
2131 | if (found_mii_phy(gp) && gp->phy_mii.def->ops->suspend) | ||
2132 | gp->phy_mii.def->ops->suspend(&gp->phy_mii); | ||
2133 | |||
2134 | /* According to Apple, we must set the MDIO pins to this begnign | ||
2135 | * state or we may 1) eat more current, 2) damage some PHYs | ||
2136 | */ | ||
2137 | writel(mifcfg | MIF_CFG_BBMODE, gp->regs + MIF_CFG); | ||
2138 | writel(0, gp->regs + MIF_BBCLK); | ||
2139 | writel(0, gp->regs + MIF_BBDATA); | ||
2140 | writel(0, gp->regs + MIF_BBOENAB); | ||
2141 | writel(MAC_XIFCFG_GMII | MAC_XIFCFG_LBCK, gp->regs + MAC_XIFCFG); | ||
2142 | (void) readl(gp->regs + MAC_XIFCFG); | ||
2143 | } | ||
2144 | } | ||
2145 | |||
2146 | static int gem_do_start(struct net_device *dev) | ||
2147 | { | ||
2148 | struct gem *gp = netdev_priv(dev); | ||
2149 | int rc; | ||
2150 | |||
2151 | /* Enable the cell */ | ||
2152 | gem_get_cell(gp); | ||
2153 | |||
2154 | /* Make sure PCI access and bus master are enabled */ | ||
2155 | rc = pci_enable_device(gp->pdev); | ||
2156 | if (rc) { | ||
2157 | netdev_err(dev, "Failed to enable chip on PCI bus !\n"); | ||
2158 | |||
2159 | /* Put cell and forget it for now, it will be considered as | ||
2160 | * still asleep, a new sleep cycle may bring it back | ||
2161 | */ | ||
2162 | gem_put_cell(gp); | ||
2163 | return -ENXIO; | ||
2164 | } | ||
2165 | pci_set_master(gp->pdev); | ||
2166 | |||
2167 | /* Init & setup chip hardware */ | ||
2168 | gem_reinit_chip(gp); | ||
2169 | |||
2170 | /* An interrupt might come in handy */ | ||
2171 | rc = request_irq(gp->pdev->irq, gem_interrupt, | ||
2172 | IRQF_SHARED, dev->name, (void *)dev); | ||
2173 | if (rc) { | ||
2174 | netdev_err(dev, "failed to request irq !\n"); | ||
2175 | |||
2176 | gem_reset(gp); | ||
2177 | gem_clean_rings(gp); | ||
2178 | gem_put_cell(gp); | ||
2179 | return rc; | ||
2180 | } | ||
2181 | |||
2182 | /* Mark us as attached again if we come from resume(), this has | ||
2183 | * no effect if we weren't detatched and needs to be done now. | ||
2184 | */ | ||
2185 | netif_device_attach(dev); | ||
2186 | |||
2187 | /* Restart NAPI & queues */ | ||
2188 | gem_netif_start(gp); | ||
2189 | |||
2190 | /* Detect & init PHY, start autoneg etc... this will | ||
2191 | * eventually result in starting DMA operations when | ||
2192 | * the link is up | ||
2193 | */ | ||
2194 | gem_init_phy(gp); | ||
2195 | |||
2196 | return 0; | ||
2197 | } | ||
2198 | |||
2199 | static void gem_do_stop(struct net_device *dev, int wol) | ||
2200 | { | ||
2201 | struct gem *gp = netdev_priv(dev); | ||
2202 | |||
2203 | /* Stop NAPI and stop tx queue */ | ||
2204 | gem_netif_stop(gp); | ||
2205 | |||
2206 | /* Make sure ints are disabled. We don't care about | ||
2207 | * synchronizing as NAPI is disabled, thus a stray | ||
2208 | * interrupt will do nothing bad (our irq handler | ||
2209 | * just schedules NAPI) | ||
2210 | */ | ||
2211 | gem_disable_ints(gp); | ||
2212 | |||
2213 | /* Stop the link timer */ | ||
2214 | del_timer_sync(&gp->link_timer); | ||
2215 | |||
2216 | /* We cannot cancel the reset task while holding the | ||
2217 | * rtnl lock, we'd get an A->B / B->A deadlock stituation | ||
2218 | * if we did. This is not an issue however as the reset | ||
2219 | * task is synchronized vs. us (rtnl_lock) and will do | ||
2220 | * nothing if the device is down or suspended. We do | ||
2221 | * still clear reset_task_pending to avoid a spurrious | ||
2222 | * reset later on in case we do resume before it gets | ||
2223 | * scheduled. | ||
2224 | */ | ||
2225 | gp->reset_task_pending = 0; | ||
2226 | |||
2227 | /* If we are going to sleep with WOL */ | ||
2228 | gem_stop_dma(gp); | ||
2229 | msleep(10); | ||
2230 | if (!wol) | ||
2231 | gem_reset(gp); | ||
2232 | msleep(10); | ||
2233 | |||
2234 | /* Get rid of rings */ | ||
2235 | gem_clean_rings(gp); | ||
2236 | |||
2237 | /* No irq needed anymore */ | ||
2238 | free_irq(gp->pdev->irq, (void *) dev); | ||
2239 | |||
2240 | /* Shut the PHY down eventually and setup WOL */ | ||
2241 | gem_stop_phy(gp, wol); | ||
2242 | |||
2243 | /* Make sure bus master is disabled */ | ||
2244 | pci_disable_device(gp->pdev); | ||
2245 | |||
2246 | /* Cell not needed neither if no WOL */ | ||
2247 | if (!wol) | ||
2248 | gem_put_cell(gp); | ||
2249 | } | ||
2250 | |||
2251 | static void gem_reset_task(struct work_struct *work) | ||
2252 | { | ||
2253 | struct gem *gp = container_of(work, struct gem, reset_task); | ||
2254 | |||
2255 | /* Lock out the network stack (essentially shield ourselves | ||
2256 | * against a racing open, close, control call, or suspend | ||
2257 | */ | ||
2258 | rtnl_lock(); | ||
2259 | |||
2260 | /* Skip the reset task if suspended or closed, or if it's | ||
2261 | * been cancelled by gem_do_stop (see comment there) | ||
2262 | */ | ||
2263 | if (!netif_device_present(gp->dev) || | ||
2264 | !netif_running(gp->dev) || | ||
2265 | !gp->reset_task_pending) { | ||
2266 | rtnl_unlock(); | ||
2267 | return; | ||
2268 | } | ||
2269 | |||
2270 | /* Stop the link timer */ | ||
2271 | del_timer_sync(&gp->link_timer); | ||
2272 | |||
2273 | /* Stop NAPI and tx */ | ||
2274 | gem_netif_stop(gp); | ||
2275 | |||
2276 | /* Reset the chip & rings */ | ||
2277 | gem_reinit_chip(gp); | ||
2278 | if (gp->lstate == link_up) | ||
2279 | gem_set_link_modes(gp); | ||
2280 | |||
2281 | /* Restart NAPI and Tx */ | ||
2282 | gem_netif_start(gp); | ||
2283 | |||
2284 | /* We are back ! */ | ||
2285 | gp->reset_task_pending = 0; | ||
2286 | |||
2287 | /* If the link is not up, restart autoneg, else restart the | ||
2288 | * polling timer | ||
2289 | */ | ||
2290 | if (gp->lstate != link_up) | ||
2291 | gem_begin_auto_negotiation(gp, NULL); | ||
2292 | else | ||
2293 | mod_timer(&gp->link_timer, jiffies + ((12 * HZ) / 10)); | ||
2294 | |||
2295 | rtnl_unlock(); | ||
2296 | } | ||
2297 | |||
2298 | static int gem_open(struct net_device *dev) | ||
2299 | { | ||
2300 | /* We allow open while suspended, we just do nothing, | ||
2301 | * the chip will be initialized in resume() | ||
2302 | */ | ||
2303 | if (netif_device_present(dev)) | ||
2304 | return gem_do_start(dev); | ||
2305 | return 0; | ||
2306 | } | ||
2307 | |||
2308 | static int gem_close(struct net_device *dev) | ||
2309 | { | ||
2310 | if (netif_device_present(dev)) | ||
2311 | gem_do_stop(dev, 0); | ||
2312 | |||
2313 | return 0; | ||
2314 | } | ||
2315 | |||
2316 | #ifdef CONFIG_PM | ||
2317 | static int gem_suspend(struct pci_dev *pdev, pm_message_t state) | ||
2318 | { | ||
2319 | struct net_device *dev = pci_get_drvdata(pdev); | ||
2320 | struct gem *gp = netdev_priv(dev); | ||
2321 | |||
2322 | /* Lock the network stack first to avoid racing with open/close, | ||
2323 | * reset task and setting calls | ||
2324 | */ | ||
2325 | rtnl_lock(); | ||
2326 | |||
2327 | /* Not running, mark ourselves non-present, no need for | ||
2328 | * a lock here | ||
2329 | */ | ||
2330 | if (!netif_running(dev)) { | ||
2331 | netif_device_detach(dev); | ||
2332 | rtnl_unlock(); | ||
2333 | return 0; | ||
2334 | } | ||
2335 | netdev_info(dev, "suspending, WakeOnLan %s\n", | ||
2336 | (gp->wake_on_lan && netif_running(dev)) ? | ||
2337 | "enabled" : "disabled"); | ||
2338 | |||
2339 | /* Tell the network stack we're gone. gem_do_stop() below will | ||
2340 | * synchronize with TX, stop NAPI etc... | ||
2341 | */ | ||
2342 | netif_device_detach(dev); | ||
2343 | |||
2344 | /* Switch off chip, remember WOL setting */ | ||
2345 | gp->asleep_wol = gp->wake_on_lan; | ||
2346 | gem_do_stop(dev, gp->asleep_wol); | ||
2347 | |||
2348 | /* Unlock the network stack */ | ||
2349 | rtnl_unlock(); | ||
2350 | |||
2351 | return 0; | ||
2352 | } | ||
2353 | |||
2354 | static int gem_resume(struct pci_dev *pdev) | ||
2355 | { | ||
2356 | struct net_device *dev = pci_get_drvdata(pdev); | ||
2357 | struct gem *gp = netdev_priv(dev); | ||
2358 | |||
2359 | /* See locking comment in gem_suspend */ | ||
2360 | rtnl_lock(); | ||
2361 | |||
2362 | /* Not running, mark ourselves present, no need for | ||
2363 | * a lock here | ||
2364 | */ | ||
2365 | if (!netif_running(dev)) { | ||
2366 | netif_device_attach(dev); | ||
2367 | rtnl_unlock(); | ||
2368 | return 0; | ||
2369 | } | ||
2370 | |||
2371 | /* Restart chip. If that fails there isn't much we can do, we | ||
2372 | * leave things stopped. | ||
2373 | */ | ||
2374 | gem_do_start(dev); | ||
2375 | |||
2376 | /* If we had WOL enabled, the cell clock was never turned off during | ||
2377 | * sleep, so we end up beeing unbalanced. Fix that here | ||
2378 | */ | ||
2379 | if (gp->asleep_wol) | ||
2380 | gem_put_cell(gp); | ||
2381 | |||
2382 | /* Unlock the network stack */ | ||
2383 | rtnl_unlock(); | ||
2384 | |||
2385 | return 0; | ||
2386 | } | ||
2387 | #endif /* CONFIG_PM */ | ||
2388 | |||
2389 | static struct net_device_stats *gem_get_stats(struct net_device *dev) | ||
2390 | { | ||
2391 | struct gem *gp = netdev_priv(dev); | ||
2392 | |||
2393 | /* I have seen this being called while the PM was in progress, | ||
2394 | * so we shield against this. Let's also not poke at registers | ||
2395 | * while the reset task is going on. | ||
2396 | * | ||
2397 | * TODO: Move stats collection elsewhere (link timer ?) and | ||
2398 | * make this a nop to avoid all those synchro issues | ||
2399 | */ | ||
2400 | if (!netif_device_present(dev) || !netif_running(dev)) | ||
2401 | goto bail; | ||
2402 | |||
2403 | /* Better safe than sorry... */ | ||
2404 | if (WARN_ON(!gp->cell_enabled)) | ||
2405 | goto bail; | ||
2406 | |||
2407 | dev->stats.rx_crc_errors += readl(gp->regs + MAC_FCSERR); | ||
2408 | writel(0, gp->regs + MAC_FCSERR); | ||
2409 | |||
2410 | dev->stats.rx_frame_errors += readl(gp->regs + MAC_AERR); | ||
2411 | writel(0, gp->regs + MAC_AERR); | ||
2412 | |||
2413 | dev->stats.rx_length_errors += readl(gp->regs + MAC_LERR); | ||
2414 | writel(0, gp->regs + MAC_LERR); | ||
2415 | |||
2416 | dev->stats.tx_aborted_errors += readl(gp->regs + MAC_ECOLL); | ||
2417 | dev->stats.collisions += | ||
2418 | (readl(gp->regs + MAC_ECOLL) + readl(gp->regs + MAC_LCOLL)); | ||
2419 | writel(0, gp->regs + MAC_ECOLL); | ||
2420 | writel(0, gp->regs + MAC_LCOLL); | ||
2421 | bail: | ||
2422 | return &dev->stats; | ||
2423 | } | ||
2424 | |||
2425 | static int gem_set_mac_address(struct net_device *dev, void *addr) | ||
2426 | { | ||
2427 | struct sockaddr *macaddr = (struct sockaddr *) addr; | ||
2428 | struct gem *gp = netdev_priv(dev); | ||
2429 | unsigned char *e = &dev->dev_addr[0]; | ||
2430 | |||
2431 | if (!is_valid_ether_addr(macaddr->sa_data)) | ||
2432 | return -EADDRNOTAVAIL; | ||
2433 | |||
2434 | memcpy(dev->dev_addr, macaddr->sa_data, dev->addr_len); | ||
2435 | |||
2436 | /* We'll just catch it later when the device is up'd or resumed */ | ||
2437 | if (!netif_running(dev) || !netif_device_present(dev)) | ||
2438 | return 0; | ||
2439 | |||
2440 | /* Better safe than sorry... */ | ||
2441 | if (WARN_ON(!gp->cell_enabled)) | ||
2442 | return 0; | ||
2443 | |||
2444 | writel((e[4] << 8) | e[5], gp->regs + MAC_ADDR0); | ||
2445 | writel((e[2] << 8) | e[3], gp->regs + MAC_ADDR1); | ||
2446 | writel((e[0] << 8) | e[1], gp->regs + MAC_ADDR2); | ||
2447 | |||
2448 | return 0; | ||
2449 | } | ||
2450 | |||
2451 | static void gem_set_multicast(struct net_device *dev) | ||
2452 | { | ||
2453 | struct gem *gp = netdev_priv(dev); | ||
2454 | u32 rxcfg, rxcfg_new; | ||
2455 | int limit = 10000; | ||
2456 | |||
2457 | if (!netif_running(dev) || !netif_device_present(dev)) | ||
2458 | return; | ||
2459 | |||
2460 | /* Better safe than sorry... */ | ||
2461 | if (gp->reset_task_pending || WARN_ON(!gp->cell_enabled)) | ||
2462 | return; | ||
2463 | |||
2464 | rxcfg = readl(gp->regs + MAC_RXCFG); | ||
2465 | rxcfg_new = gem_setup_multicast(gp); | ||
2466 | #ifdef STRIP_FCS | ||
2467 | rxcfg_new |= MAC_RXCFG_SFCS; | ||
2468 | #endif | ||
2469 | gp->mac_rx_cfg = rxcfg_new; | ||
2470 | |||
2471 | writel(rxcfg & ~MAC_RXCFG_ENAB, gp->regs + MAC_RXCFG); | ||
2472 | while (readl(gp->regs + MAC_RXCFG) & MAC_RXCFG_ENAB) { | ||
2473 | if (!limit--) | ||
2474 | break; | ||
2475 | udelay(10); | ||
2476 | } | ||
2477 | |||
2478 | rxcfg &= ~(MAC_RXCFG_PROM | MAC_RXCFG_HFE); | ||
2479 | rxcfg |= rxcfg_new; | ||
2480 | |||
2481 | writel(rxcfg, gp->regs + MAC_RXCFG); | ||
2482 | } | ||
2483 | |||
2484 | /* Jumbo-grams don't seem to work :-( */ | ||
2485 | #define GEM_MIN_MTU 68 | ||
2486 | #if 1 | ||
2487 | #define GEM_MAX_MTU 1500 | ||
2488 | #else | ||
2489 | #define GEM_MAX_MTU 9000 | ||
2490 | #endif | ||
2491 | |||
2492 | static int gem_change_mtu(struct net_device *dev, int new_mtu) | ||
2493 | { | ||
2494 | struct gem *gp = netdev_priv(dev); | ||
2495 | |||
2496 | if (new_mtu < GEM_MIN_MTU || new_mtu > GEM_MAX_MTU) | ||
2497 | return -EINVAL; | ||
2498 | |||
2499 | dev->mtu = new_mtu; | ||
2500 | |||
2501 | /* We'll just catch it later when the device is up'd or resumed */ | ||
2502 | if (!netif_running(dev) || !netif_device_present(dev)) | ||
2503 | return 0; | ||
2504 | |||
2505 | /* Better safe than sorry... */ | ||
2506 | if (WARN_ON(!gp->cell_enabled)) | ||
2507 | return 0; | ||
2508 | |||
2509 | gem_netif_stop(gp); | ||
2510 | gem_reinit_chip(gp); | ||
2511 | if (gp->lstate == link_up) | ||
2512 | gem_set_link_modes(gp); | ||
2513 | gem_netif_start(gp); | ||
2514 | |||
2515 | return 0; | ||
2516 | } | ||
2517 | |||
2518 | static void gem_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | ||
2519 | { | ||
2520 | struct gem *gp = netdev_priv(dev); | ||
2521 | |||
2522 | strcpy(info->driver, DRV_NAME); | ||
2523 | strcpy(info->version, DRV_VERSION); | ||
2524 | strcpy(info->bus_info, pci_name(gp->pdev)); | ||
2525 | } | ||
2526 | |||
2527 | static int gem_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | ||
2528 | { | ||
2529 | struct gem *gp = netdev_priv(dev); | ||
2530 | |||
2531 | if (gp->phy_type == phy_mii_mdio0 || | ||
2532 | gp->phy_type == phy_mii_mdio1) { | ||
2533 | if (gp->phy_mii.def) | ||
2534 | cmd->supported = gp->phy_mii.def->features; | ||
2535 | else | ||
2536 | cmd->supported = (SUPPORTED_10baseT_Half | | ||
2537 | SUPPORTED_10baseT_Full); | ||
2538 | |||
2539 | /* XXX hardcoded stuff for now */ | ||
2540 | cmd->port = PORT_MII; | ||
2541 | cmd->transceiver = XCVR_EXTERNAL; | ||
2542 | cmd->phy_address = 0; /* XXX fixed PHYAD */ | ||
2543 | |||
2544 | /* Return current PHY settings */ | ||
2545 | cmd->autoneg = gp->want_autoneg; | ||
2546 | ethtool_cmd_speed_set(cmd, gp->phy_mii.speed); | ||
2547 | cmd->duplex = gp->phy_mii.duplex; | ||
2548 | cmd->advertising = gp->phy_mii.advertising; | ||
2549 | |||
2550 | /* If we started with a forced mode, we don't have a default | ||
2551 | * advertise set, we need to return something sensible so | ||
2552 | * userland can re-enable autoneg properly. | ||
2553 | */ | ||
2554 | if (cmd->advertising == 0) | ||
2555 | cmd->advertising = cmd->supported; | ||
2556 | } else { // XXX PCS ? | ||
2557 | cmd->supported = | ||
2558 | (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | | ||
2559 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | | ||
2560 | SUPPORTED_Autoneg); | ||
2561 | cmd->advertising = cmd->supported; | ||
2562 | ethtool_cmd_speed_set(cmd, 0); | ||
2563 | cmd->duplex = cmd->port = cmd->phy_address = | ||
2564 | cmd->transceiver = cmd->autoneg = 0; | ||
2565 | |||
2566 | /* serdes means usually a Fibre connector, with most fixed */ | ||
2567 | if (gp->phy_type == phy_serdes) { | ||
2568 | cmd->port = PORT_FIBRE; | ||
2569 | cmd->supported = (SUPPORTED_1000baseT_Half | | ||
2570 | SUPPORTED_1000baseT_Full | | ||
2571 | SUPPORTED_FIBRE | SUPPORTED_Autoneg | | ||
2572 | SUPPORTED_Pause | SUPPORTED_Asym_Pause); | ||
2573 | cmd->advertising = cmd->supported; | ||
2574 | cmd->transceiver = XCVR_INTERNAL; | ||
2575 | if (gp->lstate == link_up) | ||
2576 | ethtool_cmd_speed_set(cmd, SPEED_1000); | ||
2577 | cmd->duplex = DUPLEX_FULL; | ||
2578 | cmd->autoneg = 1; | ||
2579 | } | ||
2580 | } | ||
2581 | cmd->maxtxpkt = cmd->maxrxpkt = 0; | ||
2582 | |||
2583 | return 0; | ||
2584 | } | ||
2585 | |||
2586 | static int gem_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | ||
2587 | { | ||
2588 | struct gem *gp = netdev_priv(dev); | ||
2589 | u32 speed = ethtool_cmd_speed(cmd); | ||
2590 | |||
2591 | /* Verify the settings we care about. */ | ||
2592 | if (cmd->autoneg != AUTONEG_ENABLE && | ||
2593 | cmd->autoneg != AUTONEG_DISABLE) | ||
2594 | return -EINVAL; | ||
2595 | |||
2596 | if (cmd->autoneg == AUTONEG_ENABLE && | ||
2597 | cmd->advertising == 0) | ||
2598 | return -EINVAL; | ||
2599 | |||
2600 | if (cmd->autoneg == AUTONEG_DISABLE && | ||
2601 | ((speed != SPEED_1000 && | ||
2602 | speed != SPEED_100 && | ||
2603 | speed != SPEED_10) || | ||
2604 | (cmd->duplex != DUPLEX_HALF && | ||
2605 | cmd->duplex != DUPLEX_FULL))) | ||
2606 | return -EINVAL; | ||
2607 | |||
2608 | /* Apply settings and restart link process. */ | ||
2609 | if (netif_device_present(gp->dev)) { | ||
2610 | del_timer_sync(&gp->link_timer); | ||
2611 | gem_begin_auto_negotiation(gp, cmd); | ||
2612 | } | ||
2613 | |||
2614 | return 0; | ||
2615 | } | ||
2616 | |||
2617 | static int gem_nway_reset(struct net_device *dev) | ||
2618 | { | ||
2619 | struct gem *gp = netdev_priv(dev); | ||
2620 | |||
2621 | if (!gp->want_autoneg) | ||
2622 | return -EINVAL; | ||
2623 | |||
2624 | /* Restart link process */ | ||
2625 | if (netif_device_present(gp->dev)) { | ||
2626 | del_timer_sync(&gp->link_timer); | ||
2627 | gem_begin_auto_negotiation(gp, NULL); | ||
2628 | } | ||
2629 | |||
2630 | return 0; | ||
2631 | } | ||
2632 | |||
2633 | static u32 gem_get_msglevel(struct net_device *dev) | ||
2634 | { | ||
2635 | struct gem *gp = netdev_priv(dev); | ||
2636 | return gp->msg_enable; | ||
2637 | } | ||
2638 | |||
2639 | static void gem_set_msglevel(struct net_device *dev, u32 value) | ||
2640 | { | ||
2641 | struct gem *gp = netdev_priv(dev); | ||
2642 | gp->msg_enable = value; | ||
2643 | } | ||
2644 | |||
2645 | |||
2646 | /* Add more when I understand how to program the chip */ | ||
2647 | /* like WAKE_UCAST | WAKE_MCAST | WAKE_BCAST */ | ||
2648 | |||
2649 | #define WOL_SUPPORTED_MASK (WAKE_MAGIC) | ||
2650 | |||
2651 | static void gem_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | ||
2652 | { | ||
2653 | struct gem *gp = netdev_priv(dev); | ||
2654 | |||
2655 | /* Add more when I understand how to program the chip */ | ||
2656 | if (gp->has_wol) { | ||
2657 | wol->supported = WOL_SUPPORTED_MASK; | ||
2658 | wol->wolopts = gp->wake_on_lan; | ||
2659 | } else { | ||
2660 | wol->supported = 0; | ||
2661 | wol->wolopts = 0; | ||
2662 | } | ||
2663 | } | ||
2664 | |||
2665 | static int gem_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | ||
2666 | { | ||
2667 | struct gem *gp = netdev_priv(dev); | ||
2668 | |||
2669 | if (!gp->has_wol) | ||
2670 | return -EOPNOTSUPP; | ||
2671 | gp->wake_on_lan = wol->wolopts & WOL_SUPPORTED_MASK; | ||
2672 | return 0; | ||
2673 | } | ||
2674 | |||
2675 | static const struct ethtool_ops gem_ethtool_ops = { | ||
2676 | .get_drvinfo = gem_get_drvinfo, | ||
2677 | .get_link = ethtool_op_get_link, | ||
2678 | .get_settings = gem_get_settings, | ||
2679 | .set_settings = gem_set_settings, | ||
2680 | .nway_reset = gem_nway_reset, | ||
2681 | .get_msglevel = gem_get_msglevel, | ||
2682 | .set_msglevel = gem_set_msglevel, | ||
2683 | .get_wol = gem_get_wol, | ||
2684 | .set_wol = gem_set_wol, | ||
2685 | }; | ||
2686 | |||
2687 | static int gem_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) | ||
2688 | { | ||
2689 | struct gem *gp = netdev_priv(dev); | ||
2690 | struct mii_ioctl_data *data = if_mii(ifr); | ||
2691 | int rc = -EOPNOTSUPP; | ||
2692 | |||
2693 | /* For SIOCGMIIREG and SIOCSMIIREG the core checks for us that | ||
2694 | * netif_device_present() is true and holds rtnl_lock for us | ||
2695 | * so we have nothing to worry about | ||
2696 | */ | ||
2697 | |||
2698 | switch (cmd) { | ||
2699 | case SIOCGMIIPHY: /* Get address of MII PHY in use. */ | ||
2700 | data->phy_id = gp->mii_phy_addr; | ||
2701 | /* Fallthrough... */ | ||
2702 | |||
2703 | case SIOCGMIIREG: /* Read MII PHY register. */ | ||
2704 | data->val_out = __phy_read(gp, data->phy_id & 0x1f, | ||
2705 | data->reg_num & 0x1f); | ||
2706 | rc = 0; | ||
2707 | break; | ||
2708 | |||
2709 | case SIOCSMIIREG: /* Write MII PHY register. */ | ||
2710 | __phy_write(gp, data->phy_id & 0x1f, data->reg_num & 0x1f, | ||
2711 | data->val_in); | ||
2712 | rc = 0; | ||
2713 | break; | ||
2714 | } | ||
2715 | return rc; | ||
2716 | } | ||
2717 | |||
2718 | #if (!defined(CONFIG_SPARC) && !defined(CONFIG_PPC_PMAC)) | ||
2719 | /* Fetch MAC address from vital product data of PCI ROM. */ | ||
2720 | static int find_eth_addr_in_vpd(void __iomem *rom_base, int len, unsigned char *dev_addr) | ||
2721 | { | ||
2722 | int this_offset; | ||
2723 | |||
2724 | for (this_offset = 0x20; this_offset < len; this_offset++) { | ||
2725 | void __iomem *p = rom_base + this_offset; | ||
2726 | int i; | ||
2727 | |||
2728 | if (readb(p + 0) != 0x90 || | ||
2729 | readb(p + 1) != 0x00 || | ||
2730 | readb(p + 2) != 0x09 || | ||
2731 | readb(p + 3) != 0x4e || | ||
2732 | readb(p + 4) != 0x41 || | ||
2733 | readb(p + 5) != 0x06) | ||
2734 | continue; | ||
2735 | |||
2736 | this_offset += 6; | ||
2737 | p += 6; | ||
2738 | |||
2739 | for (i = 0; i < 6; i++) | ||
2740 | dev_addr[i] = readb(p + i); | ||
2741 | return 1; | ||
2742 | } | ||
2743 | return 0; | ||
2744 | } | ||
2745 | |||
2746 | static void get_gem_mac_nonobp(struct pci_dev *pdev, unsigned char *dev_addr) | ||
2747 | { | ||
2748 | size_t size; | ||
2749 | void __iomem *p = pci_map_rom(pdev, &size); | ||
2750 | |||
2751 | if (p) { | ||
2752 | int found; | ||
2753 | |||
2754 | found = readb(p) == 0x55 && | ||
2755 | readb(p + 1) == 0xaa && | ||
2756 | find_eth_addr_in_vpd(p, (64 * 1024), dev_addr); | ||
2757 | pci_unmap_rom(pdev, p); | ||
2758 | if (found) | ||
2759 | return; | ||
2760 | } | ||
2761 | |||
2762 | /* Sun MAC prefix then 3 random bytes. */ | ||
2763 | dev_addr[0] = 0x08; | ||
2764 | dev_addr[1] = 0x00; | ||
2765 | dev_addr[2] = 0x20; | ||
2766 | get_random_bytes(dev_addr + 3, 3); | ||
2767 | } | ||
2768 | #endif /* not Sparc and not PPC */ | ||
2769 | |||
2770 | static int __devinit gem_get_device_address(struct gem *gp) | ||
2771 | { | ||
2772 | #if defined(CONFIG_SPARC) || defined(CONFIG_PPC_PMAC) | ||
2773 | struct net_device *dev = gp->dev; | ||
2774 | const unsigned char *addr; | ||
2775 | |||
2776 | addr = of_get_property(gp->of_node, "local-mac-address", NULL); | ||
2777 | if (addr == NULL) { | ||
2778 | #ifdef CONFIG_SPARC | ||
2779 | addr = idprom->id_ethaddr; | ||
2780 | #else | ||
2781 | printk("\n"); | ||
2782 | pr_err("%s: can't get mac-address\n", dev->name); | ||
2783 | return -1; | ||
2784 | #endif | ||
2785 | } | ||
2786 | memcpy(dev->dev_addr, addr, 6); | ||
2787 | #else | ||
2788 | get_gem_mac_nonobp(gp->pdev, gp->dev->dev_addr); | ||
2789 | #endif | ||
2790 | return 0; | ||
2791 | } | ||
2792 | |||
2793 | static void gem_remove_one(struct pci_dev *pdev) | ||
2794 | { | ||
2795 | struct net_device *dev = pci_get_drvdata(pdev); | ||
2796 | |||
2797 | if (dev) { | ||
2798 | struct gem *gp = netdev_priv(dev); | ||
2799 | |||
2800 | unregister_netdev(dev); | ||
2801 | |||
2802 | /* Ensure reset task is truely gone */ | ||
2803 | cancel_work_sync(&gp->reset_task); | ||
2804 | |||
2805 | /* Free resources */ | ||
2806 | pci_free_consistent(pdev, | ||
2807 | sizeof(struct gem_init_block), | ||
2808 | gp->init_block, | ||
2809 | gp->gblock_dvma); | ||
2810 | iounmap(gp->regs); | ||
2811 | pci_release_regions(pdev); | ||
2812 | free_netdev(dev); | ||
2813 | |||
2814 | pci_set_drvdata(pdev, NULL); | ||
2815 | } | ||
2816 | } | ||
2817 | |||
2818 | static const struct net_device_ops gem_netdev_ops = { | ||
2819 | .ndo_open = gem_open, | ||
2820 | .ndo_stop = gem_close, | ||
2821 | .ndo_start_xmit = gem_start_xmit, | ||
2822 | .ndo_get_stats = gem_get_stats, | ||
2823 | .ndo_set_multicast_list = gem_set_multicast, | ||
2824 | .ndo_do_ioctl = gem_ioctl, | ||
2825 | .ndo_tx_timeout = gem_tx_timeout, | ||
2826 | .ndo_change_mtu = gem_change_mtu, | ||
2827 | .ndo_validate_addr = eth_validate_addr, | ||
2828 | .ndo_set_mac_address = gem_set_mac_address, | ||
2829 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
2830 | .ndo_poll_controller = gem_poll_controller, | ||
2831 | #endif | ||
2832 | }; | ||
2833 | |||
2834 | static int __devinit gem_init_one(struct pci_dev *pdev, | ||
2835 | const struct pci_device_id *ent) | ||
2836 | { | ||
2837 | unsigned long gemreg_base, gemreg_len; | ||
2838 | struct net_device *dev; | ||
2839 | struct gem *gp; | ||
2840 | int err, pci_using_dac; | ||
2841 | |||
2842 | printk_once(KERN_INFO "%s", version); | ||
2843 | |||
2844 | /* Apple gmac note: during probe, the chip is powered up by | ||
2845 | * the arch code to allow the code below to work (and to let | ||
2846 | * the chip be probed on the config space. It won't stay powered | ||
2847 | * up until the interface is brought up however, so we can't rely | ||
2848 | * on register configuration done at this point. | ||
2849 | */ | ||
2850 | err = pci_enable_device(pdev); | ||
2851 | if (err) { | ||
2852 | pr_err("Cannot enable MMIO operation, aborting\n"); | ||
2853 | return err; | ||
2854 | } | ||
2855 | pci_set_master(pdev); | ||
2856 | |||
2857 | /* Configure DMA attributes. */ | ||
2858 | |||
2859 | /* All of the GEM documentation states that 64-bit DMA addressing | ||
2860 | * is fully supported and should work just fine. However the | ||
2861 | * front end for RIO based GEMs is different and only supports | ||
2862 | * 32-bit addressing. | ||
2863 | * | ||
2864 | * For now we assume the various PPC GEMs are 32-bit only as well. | ||
2865 | */ | ||
2866 | if (pdev->vendor == PCI_VENDOR_ID_SUN && | ||
2867 | pdev->device == PCI_DEVICE_ID_SUN_GEM && | ||
2868 | !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { | ||
2869 | pci_using_dac = 1; | ||
2870 | } else { | ||
2871 | err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); | ||
2872 | if (err) { | ||
2873 | pr_err("No usable DMA configuration, aborting\n"); | ||
2874 | goto err_disable_device; | ||
2875 | } | ||
2876 | pci_using_dac = 0; | ||
2877 | } | ||
2878 | |||
2879 | gemreg_base = pci_resource_start(pdev, 0); | ||
2880 | gemreg_len = pci_resource_len(pdev, 0); | ||
2881 | |||
2882 | if ((pci_resource_flags(pdev, 0) & IORESOURCE_IO) != 0) { | ||
2883 | pr_err("Cannot find proper PCI device base address, aborting\n"); | ||
2884 | err = -ENODEV; | ||
2885 | goto err_disable_device; | ||
2886 | } | ||
2887 | |||
2888 | dev = alloc_etherdev(sizeof(*gp)); | ||
2889 | if (!dev) { | ||
2890 | pr_err("Etherdev alloc failed, aborting\n"); | ||
2891 | err = -ENOMEM; | ||
2892 | goto err_disable_device; | ||
2893 | } | ||
2894 | SET_NETDEV_DEV(dev, &pdev->dev); | ||
2895 | |||
2896 | gp = netdev_priv(dev); | ||
2897 | |||
2898 | err = pci_request_regions(pdev, DRV_NAME); | ||
2899 | if (err) { | ||
2900 | pr_err("Cannot obtain PCI resources, aborting\n"); | ||
2901 | goto err_out_free_netdev; | ||
2902 | } | ||
2903 | |||
2904 | gp->pdev = pdev; | ||
2905 | dev->base_addr = (long) pdev; | ||
2906 | gp->dev = dev; | ||
2907 | |||
2908 | gp->msg_enable = DEFAULT_MSG; | ||
2909 | |||
2910 | init_timer(&gp->link_timer); | ||
2911 | gp->link_timer.function = gem_link_timer; | ||
2912 | gp->link_timer.data = (unsigned long) gp; | ||
2913 | |||
2914 | INIT_WORK(&gp->reset_task, gem_reset_task); | ||
2915 | |||
2916 | gp->lstate = link_down; | ||
2917 | gp->timer_ticks = 0; | ||
2918 | netif_carrier_off(dev); | ||
2919 | |||
2920 | gp->regs = ioremap(gemreg_base, gemreg_len); | ||
2921 | if (!gp->regs) { | ||
2922 | pr_err("Cannot map device registers, aborting\n"); | ||
2923 | err = -EIO; | ||
2924 | goto err_out_free_res; | ||
2925 | } | ||
2926 | |||
2927 | /* On Apple, we want a reference to the Open Firmware device-tree | ||
2928 | * node. We use it for clock control. | ||
2929 | */ | ||
2930 | #if defined(CONFIG_PPC_PMAC) || defined(CONFIG_SPARC) | ||
2931 | gp->of_node = pci_device_to_OF_node(pdev); | ||
2932 | #endif | ||
2933 | |||
2934 | /* Only Apple version supports WOL afaik */ | ||
2935 | if (pdev->vendor == PCI_VENDOR_ID_APPLE) | ||
2936 | gp->has_wol = 1; | ||
2937 | |||
2938 | /* Make sure cell is enabled */ | ||
2939 | gem_get_cell(gp); | ||
2940 | |||
2941 | /* Make sure everything is stopped and in init state */ | ||
2942 | gem_reset(gp); | ||
2943 | |||
2944 | /* Fill up the mii_phy structure (even if we won't use it) */ | ||
2945 | gp->phy_mii.dev = dev; | ||
2946 | gp->phy_mii.mdio_read = _phy_read; | ||
2947 | gp->phy_mii.mdio_write = _phy_write; | ||
2948 | #ifdef CONFIG_PPC_PMAC | ||
2949 | gp->phy_mii.platform_data = gp->of_node; | ||
2950 | #endif | ||
2951 | /* By default, we start with autoneg */ | ||
2952 | gp->want_autoneg = 1; | ||
2953 | |||
2954 | /* Check fifo sizes, PHY type, etc... */ | ||
2955 | if (gem_check_invariants(gp)) { | ||
2956 | err = -ENODEV; | ||
2957 | goto err_out_iounmap; | ||
2958 | } | ||
2959 | |||
2960 | /* It is guaranteed that the returned buffer will be at least | ||
2961 | * PAGE_SIZE aligned. | ||
2962 | */ | ||
2963 | gp->init_block = (struct gem_init_block *) | ||
2964 | pci_alloc_consistent(pdev, sizeof(struct gem_init_block), | ||
2965 | &gp->gblock_dvma); | ||
2966 | if (!gp->init_block) { | ||
2967 | pr_err("Cannot allocate init block, aborting\n"); | ||
2968 | err = -ENOMEM; | ||
2969 | goto err_out_iounmap; | ||
2970 | } | ||
2971 | |||
2972 | if (gem_get_device_address(gp)) | ||
2973 | goto err_out_free_consistent; | ||
2974 | |||
2975 | dev->netdev_ops = &gem_netdev_ops; | ||
2976 | netif_napi_add(dev, &gp->napi, gem_poll, 64); | ||
2977 | dev->ethtool_ops = &gem_ethtool_ops; | ||
2978 | dev->watchdog_timeo = 5 * HZ; | ||
2979 | dev->irq = pdev->irq; | ||
2980 | dev->dma = 0; | ||
2981 | |||
2982 | /* Set that now, in case PM kicks in now */ | ||
2983 | pci_set_drvdata(pdev, dev); | ||
2984 | |||
2985 | /* We can do scatter/gather and HW checksum */ | ||
2986 | dev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM; | ||
2987 | dev->features |= dev->hw_features | NETIF_F_RXCSUM; | ||
2988 | if (pci_using_dac) | ||
2989 | dev->features |= NETIF_F_HIGHDMA; | ||
2990 | |||
2991 | /* Register with kernel */ | ||
2992 | if (register_netdev(dev)) { | ||
2993 | pr_err("Cannot register net device, aborting\n"); | ||
2994 | err = -ENOMEM; | ||
2995 | goto err_out_free_consistent; | ||
2996 | } | ||
2997 | |||
2998 | /* Undo the get_cell with appropriate locking (we could use | ||
2999 | * ndo_init/uninit but that would be even more clumsy imho) | ||
3000 | */ | ||
3001 | rtnl_lock(); | ||
3002 | gem_put_cell(gp); | ||
3003 | rtnl_unlock(); | ||
3004 | |||
3005 | netdev_info(dev, "Sun GEM (PCI) 10/100/1000BaseT Ethernet %pM\n", | ||
3006 | dev->dev_addr); | ||
3007 | return 0; | ||
3008 | |||
3009 | err_out_free_consistent: | ||
3010 | gem_remove_one(pdev); | ||
3011 | err_out_iounmap: | ||
3012 | gem_put_cell(gp); | ||
3013 | iounmap(gp->regs); | ||
3014 | |||
3015 | err_out_free_res: | ||
3016 | pci_release_regions(pdev); | ||
3017 | |||
3018 | err_out_free_netdev: | ||
3019 | free_netdev(dev); | ||
3020 | err_disable_device: | ||
3021 | pci_disable_device(pdev); | ||
3022 | return err; | ||
3023 | |||
3024 | } | ||
3025 | |||
3026 | |||
3027 | static struct pci_driver gem_driver = { | ||
3028 | .name = GEM_MODULE_NAME, | ||
3029 | .id_table = gem_pci_tbl, | ||
3030 | .probe = gem_init_one, | ||
3031 | .remove = gem_remove_one, | ||
3032 | #ifdef CONFIG_PM | ||
3033 | .suspend = gem_suspend, | ||
3034 | .resume = gem_resume, | ||
3035 | #endif /* CONFIG_PM */ | ||
3036 | }; | ||
3037 | |||
3038 | static int __init gem_init(void) | ||
3039 | { | ||
3040 | return pci_register_driver(&gem_driver); | ||
3041 | } | ||
3042 | |||
3043 | static void __exit gem_cleanup(void) | ||
3044 | { | ||
3045 | pci_unregister_driver(&gem_driver); | ||
3046 | } | ||
3047 | |||
3048 | module_init(gem_init); | ||
3049 | module_exit(gem_cleanup); | ||