aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/sfc/farch.c
diff options
context:
space:
mode:
authorBen Hutchings <bhutchings@solarflare.com>2013-08-21 14:51:04 -0400
committerBen Hutchings <bhutchings@solarflare.com>2013-08-21 15:19:05 -0400
commit86094f7f38ff711f3db8497fcb4d2e109100f497 (patch)
treec9c8d9418b32d0a2abf6220a22328ceeb9130244 /drivers/net/ethernet/sfc/farch.c
parente42c3d85af629697699c89aecba481527a1da898 (diff)
sfc: Move and rename Falcon/Siena common NIC operations
Add efx_nic_type operations for the many efx_nic functions that need to be implemented different on EF10. For now, change most of the existing efx_nic_*() functions into inline wrappers. As a later step, we may be able to improve branch prediction for operations used on the fast path by copying the pointers into each queue/channel structure. Move the Falcon/Siena implementations to new file farch.c and rename the functions and static data to use a prefix of 'efx_farch_'. Move efx_may_push_tx_desc() to nic.h, as the EF10 TX code will also use it. Signed-off-by: Ben Hutchings <bhutchings@solarflare.com>
Diffstat (limited to 'drivers/net/ethernet/sfc/farch.c')
-rw-r--r--drivers/net/ethernet/sfc/farch.c1781
1 files changed, 1781 insertions, 0 deletions
diff --git a/drivers/net/ethernet/sfc/farch.c b/drivers/net/ethernet/sfc/farch.c
new file mode 100644
index 000000000000..c3d07c556569
--- /dev/null
+++ b/drivers/net/ethernet/sfc/farch.c
@@ -0,0 +1,1781 @@
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2011 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include "net_driver.h"
18#include "bitfield.h"
19#include "efx.h"
20#include "nic.h"
21#include "farch_regs.h"
22#include "io.h"
23#include "workarounds.h"
24
25/* Falcon-architecture (SFC4000 and SFC9000-family) support */
26
27/**************************************************************************
28 *
29 * Configurable values
30 *
31 **************************************************************************
32 */
33
34/* This is set to 16 for a good reason. In summary, if larger than
35 * 16, the descriptor cache holds more than a default socket
36 * buffer's worth of packets (for UDP we can only have at most one
37 * socket buffer's worth outstanding). This combined with the fact
38 * that we only get 1 TX event per descriptor cache means the NIC
39 * goes idle.
40 */
41#define TX_DC_ENTRIES 16
42#define TX_DC_ENTRIES_ORDER 1
43
44#define RX_DC_ENTRIES 64
45#define RX_DC_ENTRIES_ORDER 3
46
47/* If EFX_MAX_INT_ERRORS internal errors occur within
48 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
49 * disable it.
50 */
51#define EFX_INT_ERROR_EXPIRE 3600
52#define EFX_MAX_INT_ERRORS 5
53
54/* Depth of RX flush request fifo */
55#define EFX_RX_FLUSH_COUNT 4
56
57/* Driver generated events */
58#define _EFX_CHANNEL_MAGIC_TEST 0x000101
59#define _EFX_CHANNEL_MAGIC_FILL 0x000102
60#define _EFX_CHANNEL_MAGIC_RX_DRAIN 0x000103
61#define _EFX_CHANNEL_MAGIC_TX_DRAIN 0x000104
62
63#define _EFX_CHANNEL_MAGIC(_code, _data) ((_code) << 8 | (_data))
64#define _EFX_CHANNEL_MAGIC_CODE(_magic) ((_magic) >> 8)
65
66#define EFX_CHANNEL_MAGIC_TEST(_channel) \
67 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
68#define EFX_CHANNEL_MAGIC_FILL(_rx_queue) \
69 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL, \
70 efx_rx_queue_index(_rx_queue))
71#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue) \
72 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN, \
73 efx_rx_queue_index(_rx_queue))
74#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue) \
75 _EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN, \
76 (_tx_queue)->queue)
77
78static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
79
80/**************************************************************************
81 *
82 * Hardware access
83 *
84 **************************************************************************/
85
86static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
87 unsigned int index)
88{
89 efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
90 value, index);
91}
92
93static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
94 const efx_oword_t *mask)
95{
96 return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
97 ((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
98}
99
100int efx_farch_test_registers(struct efx_nic *efx,
101 const struct efx_farch_register_test *regs,
102 size_t n_regs)
103{
104 unsigned address = 0, i, j;
105 efx_oword_t mask, imask, original, reg, buf;
106
107 for (i = 0; i < n_regs; ++i) {
108 address = regs[i].address;
109 mask = imask = regs[i].mask;
110 EFX_INVERT_OWORD(imask);
111
112 efx_reado(efx, &original, address);
113
114 /* bit sweep on and off */
115 for (j = 0; j < 128; j++) {
116 if (!EFX_EXTRACT_OWORD32(mask, j, j))
117 continue;
118
119 /* Test this testable bit can be set in isolation */
120 EFX_AND_OWORD(reg, original, mask);
121 EFX_SET_OWORD32(reg, j, j, 1);
122
123 efx_writeo(efx, &reg, address);
124 efx_reado(efx, &buf, address);
125
126 if (efx_masked_compare_oword(&reg, &buf, &mask))
127 goto fail;
128
129 /* Test this testable bit can be cleared in isolation */
130 EFX_OR_OWORD(reg, original, mask);
131 EFX_SET_OWORD32(reg, j, j, 0);
132
133 efx_writeo(efx, &reg, address);
134 efx_reado(efx, &buf, address);
135
136 if (efx_masked_compare_oword(&reg, &buf, &mask))
137 goto fail;
138 }
139
140 efx_writeo(efx, &original, address);
141 }
142
143 return 0;
144
145fail:
146 netif_err(efx, hw, efx->net_dev,
147 "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
148 " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
149 EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
150 return -EIO;
151}
152
153/**************************************************************************
154 *
155 * Special buffer handling
156 * Special buffers are used for event queues and the TX and RX
157 * descriptor rings.
158 *
159 *************************************************************************/
160
161/*
162 * Initialise a special buffer
163 *
164 * This will define a buffer (previously allocated via
165 * efx_alloc_special_buffer()) in the buffer table, allowing
166 * it to be used for event queues, descriptor rings etc.
167 */
168static void
169efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
170{
171 efx_qword_t buf_desc;
172 unsigned int index;
173 dma_addr_t dma_addr;
174 int i;
175
176 EFX_BUG_ON_PARANOID(!buffer->buf.addr);
177
178 /* Write buffer descriptors to NIC */
179 for (i = 0; i < buffer->entries; i++) {
180 index = buffer->index + i;
181 dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
182 netif_dbg(efx, probe, efx->net_dev,
183 "mapping special buffer %d at %llx\n",
184 index, (unsigned long long)dma_addr);
185 EFX_POPULATE_QWORD_3(buf_desc,
186 FRF_AZ_BUF_ADR_REGION, 0,
187 FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
188 FRF_AZ_BUF_OWNER_ID_FBUF, 0);
189 efx_write_buf_tbl(efx, &buf_desc, index);
190 }
191}
192
193/* Unmaps a buffer and clears the buffer table entries */
194static void
195efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
196{
197 efx_oword_t buf_tbl_upd;
198 unsigned int start = buffer->index;
199 unsigned int end = (buffer->index + buffer->entries - 1);
200
201 if (!buffer->entries)
202 return;
203
204 netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
205 buffer->index, buffer->index + buffer->entries - 1);
206
207 EFX_POPULATE_OWORD_4(buf_tbl_upd,
208 FRF_AZ_BUF_UPD_CMD, 0,
209 FRF_AZ_BUF_CLR_CMD, 1,
210 FRF_AZ_BUF_CLR_END_ID, end,
211 FRF_AZ_BUF_CLR_START_ID, start);
212 efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
213}
214
215/*
216 * Allocate a new special buffer
217 *
218 * This allocates memory for a new buffer, clears it and allocates a
219 * new buffer ID range. It does not write into the buffer table.
220 *
221 * This call will allocate 4KB buffers, since 8KB buffers can't be
222 * used for event queues and descriptor rings.
223 */
224static int efx_alloc_special_buffer(struct efx_nic *efx,
225 struct efx_special_buffer *buffer,
226 unsigned int len)
227{
228 len = ALIGN(len, EFX_BUF_SIZE);
229
230 if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
231 return -ENOMEM;
232 buffer->entries = len / EFX_BUF_SIZE;
233 BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
234
235 /* Select new buffer ID */
236 buffer->index = efx->next_buffer_table;
237 efx->next_buffer_table += buffer->entries;
238#ifdef CONFIG_SFC_SRIOV
239 BUG_ON(efx_sriov_enabled(efx) &&
240 efx->vf_buftbl_base < efx->next_buffer_table);
241#endif
242
243 netif_dbg(efx, probe, efx->net_dev,
244 "allocating special buffers %d-%d at %llx+%x "
245 "(virt %p phys %llx)\n", buffer->index,
246 buffer->index + buffer->entries - 1,
247 (u64)buffer->buf.dma_addr, len,
248 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
249
250 return 0;
251}
252
253static void
254efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
255{
256 if (!buffer->buf.addr)
257 return;
258
259 netif_dbg(efx, hw, efx->net_dev,
260 "deallocating special buffers %d-%d at %llx+%x "
261 "(virt %p phys %llx)\n", buffer->index,
262 buffer->index + buffer->entries - 1,
263 (u64)buffer->buf.dma_addr, buffer->buf.len,
264 buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
265
266 efx_nic_free_buffer(efx, &buffer->buf);
267 buffer->entries = 0;
268}
269
270/**************************************************************************
271 *
272 * TX path
273 *
274 **************************************************************************/
275
276/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
277static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
278{
279 unsigned write_ptr;
280 efx_dword_t reg;
281
282 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
283 EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
284 efx_writed_page(tx_queue->efx, &reg,
285 FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
286}
287
288/* Write pointer and first descriptor for TX descriptor ring */
289static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
290 const efx_qword_t *txd)
291{
292 unsigned write_ptr;
293 efx_oword_t reg;
294
295 BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
296 BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
297
298 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
299 EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
300 FRF_AZ_TX_DESC_WPTR, write_ptr);
301 reg.qword[0] = *txd;
302 efx_writeo_page(tx_queue->efx, &reg,
303 FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
304}
305
306
307/* For each entry inserted into the software descriptor ring, create a
308 * descriptor in the hardware TX descriptor ring (in host memory), and
309 * write a doorbell.
310 */
311void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
312{
313
314 struct efx_tx_buffer *buffer;
315 efx_qword_t *txd;
316 unsigned write_ptr;
317 unsigned old_write_count = tx_queue->write_count;
318
319 BUG_ON(tx_queue->write_count == tx_queue->insert_count);
320
321 do {
322 write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
323 buffer = &tx_queue->buffer[write_ptr];
324 txd = efx_tx_desc(tx_queue, write_ptr);
325 ++tx_queue->write_count;
326
327 /* Create TX descriptor ring entry */
328 BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
329 EFX_POPULATE_QWORD_4(*txd,
330 FSF_AZ_TX_KER_CONT,
331 buffer->flags & EFX_TX_BUF_CONT,
332 FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
333 FSF_AZ_TX_KER_BUF_REGION, 0,
334 FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
335 } while (tx_queue->write_count != tx_queue->insert_count);
336
337 wmb(); /* Ensure descriptors are written before they are fetched */
338
339 if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
340 txd = efx_tx_desc(tx_queue,
341 old_write_count & tx_queue->ptr_mask);
342 efx_farch_push_tx_desc(tx_queue, txd);
343 ++tx_queue->pushes;
344 } else {
345 efx_farch_notify_tx_desc(tx_queue);
346 }
347}
348
349/* Allocate hardware resources for a TX queue */
350int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
351{
352 struct efx_nic *efx = tx_queue->efx;
353 unsigned entries;
354
355 entries = tx_queue->ptr_mask + 1;
356 return efx_alloc_special_buffer(efx, &tx_queue->txd,
357 entries * sizeof(efx_qword_t));
358}
359
360void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
361{
362 struct efx_nic *efx = tx_queue->efx;
363 efx_oword_t reg;
364
365 /* Pin TX descriptor ring */
366 efx_init_special_buffer(efx, &tx_queue->txd);
367
368 /* Push TX descriptor ring to card */
369 EFX_POPULATE_OWORD_10(reg,
370 FRF_AZ_TX_DESCQ_EN, 1,
371 FRF_AZ_TX_ISCSI_DDIG_EN, 0,
372 FRF_AZ_TX_ISCSI_HDIG_EN, 0,
373 FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
374 FRF_AZ_TX_DESCQ_EVQ_ID,
375 tx_queue->channel->channel,
376 FRF_AZ_TX_DESCQ_OWNER_ID, 0,
377 FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
378 FRF_AZ_TX_DESCQ_SIZE,
379 __ffs(tx_queue->txd.entries),
380 FRF_AZ_TX_DESCQ_TYPE, 0,
381 FRF_BZ_TX_NON_IP_DROP_DIS, 1);
382
383 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
384 int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
385 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
386 EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
387 !csum);
388 }
389
390 efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
391 tx_queue->queue);
392
393 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
394 /* Only 128 bits in this register */
395 BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
396
397 efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
398 if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
399 __clear_bit_le(tx_queue->queue, &reg);
400 else
401 __set_bit_le(tx_queue->queue, &reg);
402 efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
403 }
404
405 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
406 EFX_POPULATE_OWORD_1(reg,
407 FRF_BZ_TX_PACE,
408 (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
409 FFE_BZ_TX_PACE_OFF :
410 FFE_BZ_TX_PACE_RESERVED);
411 efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
412 tx_queue->queue);
413 }
414}
415
416static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
417{
418 struct efx_nic *efx = tx_queue->efx;
419 efx_oword_t tx_flush_descq;
420
421 WARN_ON(atomic_read(&tx_queue->flush_outstanding));
422 atomic_set(&tx_queue->flush_outstanding, 1);
423
424 EFX_POPULATE_OWORD_2(tx_flush_descq,
425 FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
426 FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
427 efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
428}
429
430void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
431{
432 struct efx_nic *efx = tx_queue->efx;
433 efx_oword_t tx_desc_ptr;
434
435 /* Remove TX descriptor ring from card */
436 EFX_ZERO_OWORD(tx_desc_ptr);
437 efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
438 tx_queue->queue);
439
440 /* Unpin TX descriptor ring */
441 efx_fini_special_buffer(efx, &tx_queue->txd);
442}
443
444/* Free buffers backing TX queue */
445void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
446{
447 efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
448}
449
450/**************************************************************************
451 *
452 * RX path
453 *
454 **************************************************************************/
455
456/* This creates an entry in the RX descriptor queue */
457static inline void
458efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
459{
460 struct efx_rx_buffer *rx_buf;
461 efx_qword_t *rxd;
462
463 rxd = efx_rx_desc(rx_queue, index);
464 rx_buf = efx_rx_buffer(rx_queue, index);
465 EFX_POPULATE_QWORD_3(*rxd,
466 FSF_AZ_RX_KER_BUF_SIZE,
467 rx_buf->len -
468 rx_queue->efx->type->rx_buffer_padding,
469 FSF_AZ_RX_KER_BUF_REGION, 0,
470 FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
471}
472
473/* This writes to the RX_DESC_WPTR register for the specified receive
474 * descriptor ring.
475 */
476void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
477{
478 struct efx_nic *efx = rx_queue->efx;
479 efx_dword_t reg;
480 unsigned write_ptr;
481
482 while (rx_queue->notified_count != rx_queue->added_count) {
483 efx_farch_build_rx_desc(
484 rx_queue,
485 rx_queue->notified_count & rx_queue->ptr_mask);
486 ++rx_queue->notified_count;
487 }
488
489 wmb();
490 write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
491 EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
492 efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
493 efx_rx_queue_index(rx_queue));
494}
495
496int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
497{
498 struct efx_nic *efx = rx_queue->efx;
499 unsigned entries;
500
501 entries = rx_queue->ptr_mask + 1;
502 return efx_alloc_special_buffer(efx, &rx_queue->rxd,
503 entries * sizeof(efx_qword_t));
504}
505
506void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
507{
508 efx_oword_t rx_desc_ptr;
509 struct efx_nic *efx = rx_queue->efx;
510 bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
511 bool iscsi_digest_en = is_b0;
512 bool jumbo_en;
513
514 /* For kernel-mode queues in Falcon A1, the JUMBO flag enables
515 * DMA to continue after a PCIe page boundary (and scattering
516 * is not possible). In Falcon B0 and Siena, it enables
517 * scatter.
518 */
519 jumbo_en = !is_b0 || efx->rx_scatter;
520
521 netif_dbg(efx, hw, efx->net_dev,
522 "RX queue %d ring in special buffers %d-%d\n",
523 efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
524 rx_queue->rxd.index + rx_queue->rxd.entries - 1);
525
526 rx_queue->scatter_n = 0;
527
528 /* Pin RX descriptor ring */
529 efx_init_special_buffer(efx, &rx_queue->rxd);
530
531 /* Push RX descriptor ring to card */
532 EFX_POPULATE_OWORD_10(rx_desc_ptr,
533 FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
534 FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
535 FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
536 FRF_AZ_RX_DESCQ_EVQ_ID,
537 efx_rx_queue_channel(rx_queue)->channel,
538 FRF_AZ_RX_DESCQ_OWNER_ID, 0,
539 FRF_AZ_RX_DESCQ_LABEL,
540 efx_rx_queue_index(rx_queue),
541 FRF_AZ_RX_DESCQ_SIZE,
542 __ffs(rx_queue->rxd.entries),
543 FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
544 FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
545 FRF_AZ_RX_DESCQ_EN, 1);
546 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
547 efx_rx_queue_index(rx_queue));
548}
549
550static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
551{
552 struct efx_nic *efx = rx_queue->efx;
553 efx_oword_t rx_flush_descq;
554
555 EFX_POPULATE_OWORD_2(rx_flush_descq,
556 FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
557 FRF_AZ_RX_FLUSH_DESCQ,
558 efx_rx_queue_index(rx_queue));
559 efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
560}
561
562void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
563{
564 efx_oword_t rx_desc_ptr;
565 struct efx_nic *efx = rx_queue->efx;
566
567 /* Remove RX descriptor ring from card */
568 EFX_ZERO_OWORD(rx_desc_ptr);
569 efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
570 efx_rx_queue_index(rx_queue));
571
572 /* Unpin RX descriptor ring */
573 efx_fini_special_buffer(efx, &rx_queue->rxd);
574}
575
576/* Free buffers backing RX queue */
577void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
578{
579 efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
580}
581
582/**************************************************************************
583 *
584 * Flush handling
585 *
586 **************************************************************************/
587
588/* efx_farch_flush_queues() must be woken up when all flushes are completed,
589 * or more RX flushes can be kicked off.
590 */
591static bool efx_farch_flush_wake(struct efx_nic *efx)
592{
593 /* Ensure that all updates are visible to efx_farch_flush_queues() */
594 smp_mb();
595
596 return (atomic_read(&efx->drain_pending) == 0 ||
597 (atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
598 && atomic_read(&efx->rxq_flush_pending) > 0));
599}
600
601static bool efx_check_tx_flush_complete(struct efx_nic *efx)
602{
603 bool i = true;
604 efx_oword_t txd_ptr_tbl;
605 struct efx_channel *channel;
606 struct efx_tx_queue *tx_queue;
607
608 efx_for_each_channel(channel, efx) {
609 efx_for_each_channel_tx_queue(tx_queue, channel) {
610 efx_reado_table(efx, &txd_ptr_tbl,
611 FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
612 if (EFX_OWORD_FIELD(txd_ptr_tbl,
613 FRF_AZ_TX_DESCQ_FLUSH) ||
614 EFX_OWORD_FIELD(txd_ptr_tbl,
615 FRF_AZ_TX_DESCQ_EN)) {
616 netif_dbg(efx, hw, efx->net_dev,
617 "flush did not complete on TXQ %d\n",
618 tx_queue->queue);
619 i = false;
620 } else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
621 1, 0)) {
622 /* The flush is complete, but we didn't
623 * receive a flush completion event
624 */
625 netif_dbg(efx, hw, efx->net_dev,
626 "flush complete on TXQ %d, so drain "
627 "the queue\n", tx_queue->queue);
628 /* Don't need to increment drain_pending as it
629 * has already been incremented for the queues
630 * which did not drain
631 */
632 efx_farch_magic_event(channel,
633 EFX_CHANNEL_MAGIC_TX_DRAIN(
634 tx_queue));
635 }
636 }
637 }
638
639 return i;
640}
641
642/* Flush all the transmit queues, and continue flushing receive queues until
643 * they're all flushed. Wait for the DRAIN events to be recieved so that there
644 * are no more RX and TX events left on any channel. */
645static int efx_farch_do_flush(struct efx_nic *efx)
646{
647 unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
648 struct efx_channel *channel;
649 struct efx_rx_queue *rx_queue;
650 struct efx_tx_queue *tx_queue;
651 int rc = 0;
652
653 efx_for_each_channel(channel, efx) {
654 efx_for_each_channel_tx_queue(tx_queue, channel) {
655 atomic_inc(&efx->drain_pending);
656 efx_farch_flush_tx_queue(tx_queue);
657 }
658 efx_for_each_channel_rx_queue(rx_queue, channel) {
659 atomic_inc(&efx->drain_pending);
660 rx_queue->flush_pending = true;
661 atomic_inc(&efx->rxq_flush_pending);
662 }
663 }
664
665 while (timeout && atomic_read(&efx->drain_pending) > 0) {
666 /* If SRIOV is enabled, then offload receive queue flushing to
667 * the firmware (though we will still have to poll for
668 * completion). If that fails, fall back to the old scheme.
669 */
670 if (efx_sriov_enabled(efx)) {
671 rc = efx_mcdi_flush_rxqs(efx);
672 if (!rc)
673 goto wait;
674 }
675
676 /* The hardware supports four concurrent rx flushes, each of
677 * which may need to be retried if there is an outstanding
678 * descriptor fetch
679 */
680 efx_for_each_channel(channel, efx) {
681 efx_for_each_channel_rx_queue(rx_queue, channel) {
682 if (atomic_read(&efx->rxq_flush_outstanding) >=
683 EFX_RX_FLUSH_COUNT)
684 break;
685
686 if (rx_queue->flush_pending) {
687 rx_queue->flush_pending = false;
688 atomic_dec(&efx->rxq_flush_pending);
689 atomic_inc(&efx->rxq_flush_outstanding);
690 efx_farch_flush_rx_queue(rx_queue);
691 }
692 }
693 }
694
695 wait:
696 timeout = wait_event_timeout(efx->flush_wq,
697 efx_farch_flush_wake(efx),
698 timeout);
699 }
700
701 if (atomic_read(&efx->drain_pending) &&
702 !efx_check_tx_flush_complete(efx)) {
703 netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
704 "(rx %d+%d)\n", atomic_read(&efx->drain_pending),
705 atomic_read(&efx->rxq_flush_outstanding),
706 atomic_read(&efx->rxq_flush_pending));
707 rc = -ETIMEDOUT;
708
709 atomic_set(&efx->drain_pending, 0);
710 atomic_set(&efx->rxq_flush_pending, 0);
711 atomic_set(&efx->rxq_flush_outstanding, 0);
712 }
713
714 return rc;
715}
716
717int efx_farch_fini_dmaq(struct efx_nic *efx)
718{
719 struct efx_channel *channel;
720 struct efx_tx_queue *tx_queue;
721 struct efx_rx_queue *rx_queue;
722 int rc = 0;
723
724 /* Do not attempt to write to the NIC during EEH recovery */
725 if (efx->state != STATE_RECOVERY) {
726 /* Only perform flush if DMA is enabled */
727 if (efx->pci_dev->is_busmaster) {
728 efx->type->prepare_flush(efx);
729 rc = efx_farch_do_flush(efx);
730 efx->type->finish_flush(efx);
731 }
732
733 efx_for_each_channel(channel, efx) {
734 efx_for_each_channel_rx_queue(rx_queue, channel)
735 efx_farch_rx_fini(rx_queue);
736 efx_for_each_channel_tx_queue(tx_queue, channel)
737 efx_farch_tx_fini(tx_queue);
738 }
739 }
740
741 return rc;
742}
743
744/**************************************************************************
745 *
746 * Event queue processing
747 * Event queues are processed by per-channel tasklets.
748 *
749 **************************************************************************/
750
751/* Update a channel's event queue's read pointer (RPTR) register
752 *
753 * This writes the EVQ_RPTR_REG register for the specified channel's
754 * event queue.
755 */
756void efx_farch_ev_read_ack(struct efx_channel *channel)
757{
758 efx_dword_t reg;
759 struct efx_nic *efx = channel->efx;
760
761 EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
762 channel->eventq_read_ptr & channel->eventq_mask);
763
764 /* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
765 * of 4 bytes, but it is really 16 bytes just like later revisions.
766 */
767 efx_writed(efx, &reg,
768 efx->type->evq_rptr_tbl_base +
769 FR_BZ_EVQ_RPTR_STEP * channel->channel);
770}
771
772/* Use HW to insert a SW defined event */
773void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
774 efx_qword_t *event)
775{
776 efx_oword_t drv_ev_reg;
777
778 BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
779 FRF_AZ_DRV_EV_DATA_WIDTH != 64);
780 drv_ev_reg.u32[0] = event->u32[0];
781 drv_ev_reg.u32[1] = event->u32[1];
782 drv_ev_reg.u32[2] = 0;
783 drv_ev_reg.u32[3] = 0;
784 EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
785 efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
786}
787
788static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
789{
790 efx_qword_t event;
791
792 EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
793 FSE_AZ_EV_CODE_DRV_GEN_EV,
794 FSF_AZ_DRV_GEN_EV_MAGIC, magic);
795 efx_farch_generate_event(channel->efx, channel->channel, &event);
796}
797
798/* Handle a transmit completion event
799 *
800 * The NIC batches TX completion events; the message we receive is of
801 * the form "complete all TX events up to this index".
802 */
803static int
804efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
805{
806 unsigned int tx_ev_desc_ptr;
807 unsigned int tx_ev_q_label;
808 struct efx_tx_queue *tx_queue;
809 struct efx_nic *efx = channel->efx;
810 int tx_packets = 0;
811
812 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
813 return 0;
814
815 if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
816 /* Transmit completion */
817 tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
818 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
819 tx_queue = efx_channel_get_tx_queue(
820 channel, tx_ev_q_label % EFX_TXQ_TYPES);
821 tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
822 tx_queue->ptr_mask);
823 efx_xmit_done(tx_queue, tx_ev_desc_ptr);
824 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
825 /* Rewrite the FIFO write pointer */
826 tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
827 tx_queue = efx_channel_get_tx_queue(
828 channel, tx_ev_q_label % EFX_TXQ_TYPES);
829
830 netif_tx_lock(efx->net_dev);
831 efx_farch_notify_tx_desc(tx_queue);
832 netif_tx_unlock(efx->net_dev);
833 } else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR) &&
834 EFX_WORKAROUND_10727(efx)) {
835 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
836 } else {
837 netif_err(efx, tx_err, efx->net_dev,
838 "channel %d unexpected TX event "
839 EFX_QWORD_FMT"\n", channel->channel,
840 EFX_QWORD_VAL(*event));
841 }
842
843 return tx_packets;
844}
845
846/* Detect errors included in the rx_evt_pkt_ok bit. */
847static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
848 const efx_qword_t *event)
849{
850 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
851 struct efx_nic *efx = rx_queue->efx;
852 bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
853 bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
854 bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
855 bool rx_ev_other_err, rx_ev_pause_frm;
856 bool rx_ev_hdr_type, rx_ev_mcast_pkt;
857 unsigned rx_ev_pkt_type;
858
859 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
860 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
861 rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
862 rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
863 rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
864 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
865 rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
866 FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
867 rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
868 FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
869 rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
870 rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
871 rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
872 0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
873 rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
874
875 /* Every error apart from tobe_disc and pause_frm */
876 rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
877 rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
878 rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
879
880 /* Count errors that are not in MAC stats. Ignore expected
881 * checksum errors during self-test. */
882 if (rx_ev_frm_trunc)
883 ++channel->n_rx_frm_trunc;
884 else if (rx_ev_tobe_disc)
885 ++channel->n_rx_tobe_disc;
886 else if (!efx->loopback_selftest) {
887 if (rx_ev_ip_hdr_chksum_err)
888 ++channel->n_rx_ip_hdr_chksum_err;
889 else if (rx_ev_tcp_udp_chksum_err)
890 ++channel->n_rx_tcp_udp_chksum_err;
891 }
892
893 /* TOBE_DISC is expected on unicast mismatches; don't print out an
894 * error message. FRM_TRUNC indicates RXDP dropped the packet due
895 * to a FIFO overflow.
896 */
897#ifdef DEBUG
898 if (rx_ev_other_err && net_ratelimit()) {
899 netif_dbg(efx, rx_err, efx->net_dev,
900 " RX queue %d unexpected RX event "
901 EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
902 efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
903 rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
904 rx_ev_ip_hdr_chksum_err ?
905 " [IP_HDR_CHKSUM_ERR]" : "",
906 rx_ev_tcp_udp_chksum_err ?
907 " [TCP_UDP_CHKSUM_ERR]" : "",
908 rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
909 rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
910 rx_ev_drib_nib ? " [DRIB_NIB]" : "",
911 rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
912 rx_ev_pause_frm ? " [PAUSE]" : "");
913 }
914#endif
915
916 /* The frame must be discarded if any of these are true. */
917 return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
918 rx_ev_tobe_disc | rx_ev_pause_frm) ?
919 EFX_RX_PKT_DISCARD : 0;
920}
921
922/* Handle receive events that are not in-order. Return true if this
923 * can be handled as a partial packet discard, false if it's more
924 * serious.
925 */
926static bool
927efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
928{
929 struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
930 struct efx_nic *efx = rx_queue->efx;
931 unsigned expected, dropped;
932
933 if (rx_queue->scatter_n &&
934 index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
935 rx_queue->ptr_mask)) {
936 ++channel->n_rx_nodesc_trunc;
937 return true;
938 }
939
940 expected = rx_queue->removed_count & rx_queue->ptr_mask;
941 dropped = (index - expected) & rx_queue->ptr_mask;
942 netif_info(efx, rx_err, efx->net_dev,
943 "dropped %d events (index=%d expected=%d)\n",
944 dropped, index, expected);
945
946 efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
947 RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
948 return false;
949}
950
951/* Handle a packet received event
952 *
953 * The NIC gives a "discard" flag if it's a unicast packet with the
954 * wrong destination address
955 * Also "is multicast" and "matches multicast filter" flags can be used to
956 * discard non-matching multicast packets.
957 */
958static void
959efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
960{
961 unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
962 unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
963 unsigned expected_ptr;
964 bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
965 u16 flags;
966 struct efx_rx_queue *rx_queue;
967 struct efx_nic *efx = channel->efx;
968
969 if (unlikely(ACCESS_ONCE(efx->reset_pending)))
970 return;
971
972 rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
973 rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
974 WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
975 channel->channel);
976
977 rx_queue = efx_channel_get_rx_queue(channel);
978
979 rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
980 expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
981 rx_queue->ptr_mask);
982
983 /* Check for partial drops and other errors */
984 if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
985 unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
986 if (rx_ev_desc_ptr != expected_ptr &&
987 !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
988 return;
989
990 /* Discard all pending fragments */
991 if (rx_queue->scatter_n) {
992 efx_rx_packet(
993 rx_queue,
994 rx_queue->removed_count & rx_queue->ptr_mask,
995 rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
996 rx_queue->removed_count += rx_queue->scatter_n;
997 rx_queue->scatter_n = 0;
998 }
999
1000 /* Return if there is no new fragment */
1001 if (rx_ev_desc_ptr != expected_ptr)
1002 return;
1003
1004 /* Discard new fragment if not SOP */
1005 if (!rx_ev_sop) {
1006 efx_rx_packet(
1007 rx_queue,
1008 rx_queue->removed_count & rx_queue->ptr_mask,
1009 1, 0, EFX_RX_PKT_DISCARD);
1010 ++rx_queue->removed_count;
1011 return;
1012 }
1013 }
1014
1015 ++rx_queue->scatter_n;
1016 if (rx_ev_cont)
1017 return;
1018
1019 rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1020 rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1021 rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1022
1023 if (likely(rx_ev_pkt_ok)) {
1024 /* If packet is marked as OK then we can rely on the
1025 * hardware checksum and classification.
1026 */
1027 flags = 0;
1028 switch (rx_ev_hdr_type) {
1029 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1030 flags |= EFX_RX_PKT_TCP;
1031 /* fall through */
1032 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1033 flags |= EFX_RX_PKT_CSUMMED;
1034 /* fall through */
1035 case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1036 case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1037 break;
1038 }
1039 } else {
1040 flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1041 }
1042
1043 /* Detect multicast packets that didn't match the filter */
1044 rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1045 if (rx_ev_mcast_pkt) {
1046 unsigned int rx_ev_mcast_hash_match =
1047 EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1048
1049 if (unlikely(!rx_ev_mcast_hash_match)) {
1050 ++channel->n_rx_mcast_mismatch;
1051 flags |= EFX_RX_PKT_DISCARD;
1052 }
1053 }
1054
1055 channel->irq_mod_score += 2;
1056
1057 /* Handle received packet */
1058 efx_rx_packet(rx_queue,
1059 rx_queue->removed_count & rx_queue->ptr_mask,
1060 rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1061 rx_queue->removed_count += rx_queue->scatter_n;
1062 rx_queue->scatter_n = 0;
1063}
1064
1065/* If this flush done event corresponds to a &struct efx_tx_queue, then
1066 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1067 * of all transmit completions.
1068 */
1069static void
1070efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1071{
1072 struct efx_tx_queue *tx_queue;
1073 int qid;
1074
1075 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1076 if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1077 tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1078 qid % EFX_TXQ_TYPES);
1079 if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1080 efx_farch_magic_event(tx_queue->channel,
1081 EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1082 }
1083 }
1084}
1085
1086/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1087 * was succesful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1088 * the RX queue back to the mask of RX queues in need of flushing.
1089 */
1090static void
1091efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1092{
1093 struct efx_channel *channel;
1094 struct efx_rx_queue *rx_queue;
1095 int qid;
1096 bool failed;
1097
1098 qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1099 failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1100 if (qid >= efx->n_channels)
1101 return;
1102 channel = efx_get_channel(efx, qid);
1103 if (!efx_channel_has_rx_queue(channel))
1104 return;
1105 rx_queue = efx_channel_get_rx_queue(channel);
1106
1107 if (failed) {
1108 netif_info(efx, hw, efx->net_dev,
1109 "RXQ %d flush retry\n", qid);
1110 rx_queue->flush_pending = true;
1111 atomic_inc(&efx->rxq_flush_pending);
1112 } else {
1113 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1114 EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1115 }
1116 atomic_dec(&efx->rxq_flush_outstanding);
1117 if (efx_farch_flush_wake(efx))
1118 wake_up(&efx->flush_wq);
1119}
1120
1121static void
1122efx_farch_handle_drain_event(struct efx_channel *channel)
1123{
1124 struct efx_nic *efx = channel->efx;
1125
1126 WARN_ON(atomic_read(&efx->drain_pending) == 0);
1127 atomic_dec(&efx->drain_pending);
1128 if (efx_farch_flush_wake(efx))
1129 wake_up(&efx->flush_wq);
1130}
1131
1132static void efx_farch_handle_generated_event(struct efx_channel *channel,
1133 efx_qword_t *event)
1134{
1135 struct efx_nic *efx = channel->efx;
1136 struct efx_rx_queue *rx_queue =
1137 efx_channel_has_rx_queue(channel) ?
1138 efx_channel_get_rx_queue(channel) : NULL;
1139 unsigned magic, code;
1140
1141 magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1142 code = _EFX_CHANNEL_MAGIC_CODE(magic);
1143
1144 if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1145 channel->event_test_cpu = raw_smp_processor_id();
1146 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1147 /* The queue must be empty, so we won't receive any rx
1148 * events, so efx_process_channel() won't refill the
1149 * queue. Refill it here */
1150 efx_fast_push_rx_descriptors(rx_queue);
1151 } else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1152 efx_farch_handle_drain_event(channel);
1153 } else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1154 efx_farch_handle_drain_event(channel);
1155 } else {
1156 netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1157 "generated event "EFX_QWORD_FMT"\n",
1158 channel->channel, EFX_QWORD_VAL(*event));
1159 }
1160}
1161
1162static void
1163efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1164{
1165 struct efx_nic *efx = channel->efx;
1166 unsigned int ev_sub_code;
1167 unsigned int ev_sub_data;
1168
1169 ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1170 ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1171
1172 switch (ev_sub_code) {
1173 case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1174 netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1175 channel->channel, ev_sub_data);
1176 efx_farch_handle_tx_flush_done(efx, event);
1177 efx_sriov_tx_flush_done(efx, event);
1178 break;
1179 case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1180 netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1181 channel->channel, ev_sub_data);
1182 efx_farch_handle_rx_flush_done(efx, event);
1183 efx_sriov_rx_flush_done(efx, event);
1184 break;
1185 case FSE_AZ_EVQ_INIT_DONE_EV:
1186 netif_dbg(efx, hw, efx->net_dev,
1187 "channel %d EVQ %d initialised\n",
1188 channel->channel, ev_sub_data);
1189 break;
1190 case FSE_AZ_SRM_UPD_DONE_EV:
1191 netif_vdbg(efx, hw, efx->net_dev,
1192 "channel %d SRAM update done\n", channel->channel);
1193 break;
1194 case FSE_AZ_WAKE_UP_EV:
1195 netif_vdbg(efx, hw, efx->net_dev,
1196 "channel %d RXQ %d wakeup event\n",
1197 channel->channel, ev_sub_data);
1198 break;
1199 case FSE_AZ_TIMER_EV:
1200 netif_vdbg(efx, hw, efx->net_dev,
1201 "channel %d RX queue %d timer expired\n",
1202 channel->channel, ev_sub_data);
1203 break;
1204 case FSE_AA_RX_RECOVER_EV:
1205 netif_err(efx, rx_err, efx->net_dev,
1206 "channel %d seen DRIVER RX_RESET event. "
1207 "Resetting.\n", channel->channel);
1208 atomic_inc(&efx->rx_reset);
1209 efx_schedule_reset(efx,
1210 EFX_WORKAROUND_6555(efx) ?
1211 RESET_TYPE_RX_RECOVERY :
1212 RESET_TYPE_DISABLE);
1213 break;
1214 case FSE_BZ_RX_DSC_ERROR_EV:
1215 if (ev_sub_data < EFX_VI_BASE) {
1216 netif_err(efx, rx_err, efx->net_dev,
1217 "RX DMA Q %d reports descriptor fetch error."
1218 " RX Q %d is disabled.\n", ev_sub_data,
1219 ev_sub_data);
1220 efx_schedule_reset(efx, RESET_TYPE_RX_DESC_FETCH);
1221 } else
1222 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1223 break;
1224 case FSE_BZ_TX_DSC_ERROR_EV:
1225 if (ev_sub_data < EFX_VI_BASE) {
1226 netif_err(efx, tx_err, efx->net_dev,
1227 "TX DMA Q %d reports descriptor fetch error."
1228 " TX Q %d is disabled.\n", ev_sub_data,
1229 ev_sub_data);
1230 efx_schedule_reset(efx, RESET_TYPE_TX_DESC_FETCH);
1231 } else
1232 efx_sriov_desc_fetch_err(efx, ev_sub_data);
1233 break;
1234 default:
1235 netif_vdbg(efx, hw, efx->net_dev,
1236 "channel %d unknown driver event code %d "
1237 "data %04x\n", channel->channel, ev_sub_code,
1238 ev_sub_data);
1239 break;
1240 }
1241}
1242
1243int efx_farch_ev_process(struct efx_channel *channel, int budget)
1244{
1245 struct efx_nic *efx = channel->efx;
1246 unsigned int read_ptr;
1247 efx_qword_t event, *p_event;
1248 int ev_code;
1249 int tx_packets = 0;
1250 int spent = 0;
1251
1252 read_ptr = channel->eventq_read_ptr;
1253
1254 for (;;) {
1255 p_event = efx_event(channel, read_ptr);
1256 event = *p_event;
1257
1258 if (!efx_event_present(&event))
1259 /* End of events */
1260 break;
1261
1262 netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1263 "channel %d event is "EFX_QWORD_FMT"\n",
1264 channel->channel, EFX_QWORD_VAL(event));
1265
1266 /* Clear this event by marking it all ones */
1267 EFX_SET_QWORD(*p_event);
1268
1269 ++read_ptr;
1270
1271 ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1272
1273 switch (ev_code) {
1274 case FSE_AZ_EV_CODE_RX_EV:
1275 efx_farch_handle_rx_event(channel, &event);
1276 if (++spent == budget)
1277 goto out;
1278 break;
1279 case FSE_AZ_EV_CODE_TX_EV:
1280 tx_packets += efx_farch_handle_tx_event(channel,
1281 &event);
1282 if (tx_packets > efx->txq_entries) {
1283 spent = budget;
1284 goto out;
1285 }
1286 break;
1287 case FSE_AZ_EV_CODE_DRV_GEN_EV:
1288 efx_farch_handle_generated_event(channel, &event);
1289 break;
1290 case FSE_AZ_EV_CODE_DRIVER_EV:
1291 efx_farch_handle_driver_event(channel, &event);
1292 break;
1293 case FSE_CZ_EV_CODE_USER_EV:
1294 efx_sriov_event(channel, &event);
1295 break;
1296 case FSE_CZ_EV_CODE_MCDI_EV:
1297 efx_mcdi_process_event(channel, &event);
1298 break;
1299 case FSE_AZ_EV_CODE_GLOBAL_EV:
1300 if (efx->type->handle_global_event &&
1301 efx->type->handle_global_event(channel, &event))
1302 break;
1303 /* else fall through */
1304 default:
1305 netif_err(channel->efx, hw, channel->efx->net_dev,
1306 "channel %d unknown event type %d (data "
1307 EFX_QWORD_FMT ")\n", channel->channel,
1308 ev_code, EFX_QWORD_VAL(event));
1309 }
1310 }
1311
1312out:
1313 channel->eventq_read_ptr = read_ptr;
1314 return spent;
1315}
1316
1317/* Allocate buffer table entries for event queue */
1318int efx_farch_ev_probe(struct efx_channel *channel)
1319{
1320 struct efx_nic *efx = channel->efx;
1321 unsigned entries;
1322
1323 entries = channel->eventq_mask + 1;
1324 return efx_alloc_special_buffer(efx, &channel->eventq,
1325 entries * sizeof(efx_qword_t));
1326}
1327
1328void efx_farch_ev_init(struct efx_channel *channel)
1329{
1330 efx_oword_t reg;
1331 struct efx_nic *efx = channel->efx;
1332
1333 netif_dbg(efx, hw, efx->net_dev,
1334 "channel %d event queue in special buffers %d-%d\n",
1335 channel->channel, channel->eventq.index,
1336 channel->eventq.index + channel->eventq.entries - 1);
1337
1338 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1339 EFX_POPULATE_OWORD_3(reg,
1340 FRF_CZ_TIMER_Q_EN, 1,
1341 FRF_CZ_HOST_NOTIFY_MODE, 0,
1342 FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1343 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1344 }
1345
1346 /* Pin event queue buffer */
1347 efx_init_special_buffer(efx, &channel->eventq);
1348
1349 /* Fill event queue with all ones (i.e. empty events) */
1350 memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1351
1352 /* Push event queue to card */
1353 EFX_POPULATE_OWORD_3(reg,
1354 FRF_AZ_EVQ_EN, 1,
1355 FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1356 FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1357 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1358 channel->channel);
1359
1360 efx->type->push_irq_moderation(channel);
1361}
1362
1363void efx_farch_ev_fini(struct efx_channel *channel)
1364{
1365 efx_oword_t reg;
1366 struct efx_nic *efx = channel->efx;
1367
1368 /* Remove event queue from card */
1369 EFX_ZERO_OWORD(reg);
1370 efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1371 channel->channel);
1372 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1373 efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1374
1375 /* Unpin event queue */
1376 efx_fini_special_buffer(efx, &channel->eventq);
1377}
1378
1379/* Free buffers backing event queue */
1380void efx_farch_ev_remove(struct efx_channel *channel)
1381{
1382 efx_free_special_buffer(channel->efx, &channel->eventq);
1383}
1384
1385
1386void efx_farch_ev_test_generate(struct efx_channel *channel)
1387{
1388 efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1389}
1390
1391void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1392{
1393 efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1394 EFX_CHANNEL_MAGIC_FILL(rx_queue));
1395}
1396
1397/**************************************************************************
1398 *
1399 * Hardware interrupts
1400 * The hardware interrupt handler does very little work; all the event
1401 * queue processing is carried out by per-channel tasklets.
1402 *
1403 **************************************************************************/
1404
1405/* Enable/disable/generate interrupts */
1406static inline void efx_farch_interrupts(struct efx_nic *efx,
1407 bool enabled, bool force)
1408{
1409 efx_oword_t int_en_reg_ker;
1410
1411 EFX_POPULATE_OWORD_3(int_en_reg_ker,
1412 FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1413 FRF_AZ_KER_INT_KER, force,
1414 FRF_AZ_DRV_INT_EN_KER, enabled);
1415 efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1416}
1417
1418void efx_farch_irq_enable_master(struct efx_nic *efx)
1419{
1420 EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1421 wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1422
1423 efx_farch_interrupts(efx, true, false);
1424}
1425
1426void efx_farch_irq_disable_master(struct efx_nic *efx)
1427{
1428 /* Disable interrupts */
1429 efx_farch_interrupts(efx, false, false);
1430}
1431
1432/* Generate a test interrupt
1433 * Interrupt must already have been enabled, otherwise nasty things
1434 * may happen.
1435 */
1436void efx_farch_irq_test_generate(struct efx_nic *efx)
1437{
1438 efx_farch_interrupts(efx, true, true);
1439}
1440
1441/* Process a fatal interrupt
1442 * Disable bus mastering ASAP and schedule a reset
1443 */
1444irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1445{
1446 struct falcon_nic_data *nic_data = efx->nic_data;
1447 efx_oword_t *int_ker = efx->irq_status.addr;
1448 efx_oword_t fatal_intr;
1449 int error, mem_perr;
1450
1451 efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1452 error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1453
1454 netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1455 EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1456 EFX_OWORD_VAL(fatal_intr),
1457 error ? "disabling bus mastering" : "no recognised error");
1458
1459 /* If this is a memory parity error dump which blocks are offending */
1460 mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1461 EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1462 if (mem_perr) {
1463 efx_oword_t reg;
1464 efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1465 netif_err(efx, hw, efx->net_dev,
1466 "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1467 EFX_OWORD_VAL(reg));
1468 }
1469
1470 /* Disable both devices */
1471 pci_clear_master(efx->pci_dev);
1472 if (efx_nic_is_dual_func(efx))
1473 pci_clear_master(nic_data->pci_dev2);
1474 efx_farch_irq_disable_master(efx);
1475
1476 /* Count errors and reset or disable the NIC accordingly */
1477 if (efx->int_error_count == 0 ||
1478 time_after(jiffies, efx->int_error_expire)) {
1479 efx->int_error_count = 0;
1480 efx->int_error_expire =
1481 jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1482 }
1483 if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1484 netif_err(efx, hw, efx->net_dev,
1485 "SYSTEM ERROR - reset scheduled\n");
1486 efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1487 } else {
1488 netif_err(efx, hw, efx->net_dev,
1489 "SYSTEM ERROR - max number of errors seen."
1490 "NIC will be disabled\n");
1491 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1492 }
1493
1494 return IRQ_HANDLED;
1495}
1496
1497/* Handle a legacy interrupt
1498 * Acknowledges the interrupt and schedule event queue processing.
1499 */
1500irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1501{
1502 struct efx_nic *efx = dev_id;
1503 bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1504 efx_oword_t *int_ker = efx->irq_status.addr;
1505 irqreturn_t result = IRQ_NONE;
1506 struct efx_channel *channel;
1507 efx_dword_t reg;
1508 u32 queues;
1509 int syserr;
1510
1511 /* Read the ISR which also ACKs the interrupts */
1512 efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1513 queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1514
1515 /* Legacy interrupts are disabled too late by the EEH kernel
1516 * code. Disable them earlier.
1517 * If an EEH error occurred, the read will have returned all ones.
1518 */
1519 if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1520 !efx->eeh_disabled_legacy_irq) {
1521 disable_irq_nosync(efx->legacy_irq);
1522 efx->eeh_disabled_legacy_irq = true;
1523 }
1524
1525 /* Handle non-event-queue sources */
1526 if (queues & (1U << efx->irq_level) && soft_enabled) {
1527 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1528 if (unlikely(syserr))
1529 return efx_farch_fatal_interrupt(efx);
1530 efx->last_irq_cpu = raw_smp_processor_id();
1531 }
1532
1533 if (queues != 0) {
1534 if (EFX_WORKAROUND_15783(efx))
1535 efx->irq_zero_count = 0;
1536
1537 /* Schedule processing of any interrupting queues */
1538 if (likely(soft_enabled)) {
1539 efx_for_each_channel(channel, efx) {
1540 if (queues & 1)
1541 efx_schedule_channel_irq(channel);
1542 queues >>= 1;
1543 }
1544 }
1545 result = IRQ_HANDLED;
1546
1547 } else if (EFX_WORKAROUND_15783(efx)) {
1548 efx_qword_t *event;
1549
1550 /* We can't return IRQ_HANDLED more than once on seeing ISR=0
1551 * because this might be a shared interrupt. */
1552 if (efx->irq_zero_count++ == 0)
1553 result = IRQ_HANDLED;
1554
1555 /* Ensure we schedule or rearm all event queues */
1556 if (likely(soft_enabled)) {
1557 efx_for_each_channel(channel, efx) {
1558 event = efx_event(channel,
1559 channel->eventq_read_ptr);
1560 if (efx_event_present(event))
1561 efx_schedule_channel_irq(channel);
1562 else
1563 efx_farch_ev_read_ack(channel);
1564 }
1565 }
1566 }
1567
1568 if (result == IRQ_HANDLED)
1569 netif_vdbg(efx, intr, efx->net_dev,
1570 "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1571 irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1572
1573 return result;
1574}
1575
1576/* Handle an MSI interrupt
1577 *
1578 * Handle an MSI hardware interrupt. This routine schedules event
1579 * queue processing. No interrupt acknowledgement cycle is necessary.
1580 * Also, we never need to check that the interrupt is for us, since
1581 * MSI interrupts cannot be shared.
1582 */
1583irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1584{
1585 struct efx_msi_context *context = dev_id;
1586 struct efx_nic *efx = context->efx;
1587 efx_oword_t *int_ker = efx->irq_status.addr;
1588 int syserr;
1589
1590 netif_vdbg(efx, intr, efx->net_dev,
1591 "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1592 irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1593
1594 if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1595 return IRQ_HANDLED;
1596
1597 /* Handle non-event-queue sources */
1598 if (context->index == efx->irq_level) {
1599 syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1600 if (unlikely(syserr))
1601 return efx_farch_fatal_interrupt(efx);
1602 efx->last_irq_cpu = raw_smp_processor_id();
1603 }
1604
1605 /* Schedule processing of the channel */
1606 efx_schedule_channel_irq(efx->channel[context->index]);
1607
1608 return IRQ_HANDLED;
1609}
1610
1611
1612/* Setup RSS indirection table.
1613 * This maps from the hash value of the packet to RXQ
1614 */
1615void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1616{
1617 size_t i = 0;
1618 efx_dword_t dword;
1619
1620 if (efx_nic_rev(efx) < EFX_REV_FALCON_B0)
1621 return;
1622
1623 BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1624 FR_BZ_RX_INDIRECTION_TBL_ROWS);
1625
1626 for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1627 EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1628 efx->rx_indir_table[i]);
1629 efx_writed(efx, &dword,
1630 FR_BZ_RX_INDIRECTION_TBL +
1631 FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1632 }
1633}
1634
1635/* Looks at available SRAM resources and works out how many queues we
1636 * can support, and where things like descriptor caches should live.
1637 *
1638 * SRAM is split up as follows:
1639 * 0 buftbl entries for channels
1640 * efx->vf_buftbl_base buftbl entries for SR-IOV
1641 * efx->rx_dc_base RX descriptor caches
1642 * efx->tx_dc_base TX descriptor caches
1643 */
1644void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1645{
1646 unsigned vi_count, buftbl_min;
1647
1648 /* Account for the buffer table entries backing the datapath channels
1649 * and the descriptor caches for those channels.
1650 */
1651 buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1652 efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1653 efx->n_channels * EFX_MAX_EVQ_SIZE)
1654 * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1655 vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1656
1657#ifdef CONFIG_SFC_SRIOV
1658 if (efx_sriov_wanted(efx)) {
1659 unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1660
1661 efx->vf_buftbl_base = buftbl_min;
1662
1663 vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1664 vi_count = max(vi_count, EFX_VI_BASE);
1665 buftbl_free = (sram_lim_qw - buftbl_min -
1666 vi_count * vi_dc_entries);
1667
1668 entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1669 efx_vf_size(efx));
1670 vf_limit = min(buftbl_free / entries_per_vf,
1671 (1024U - EFX_VI_BASE) >> efx->vi_scale);
1672
1673 if (efx->vf_count > vf_limit) {
1674 netif_err(efx, probe, efx->net_dev,
1675 "Reducing VF count from from %d to %d\n",
1676 efx->vf_count, vf_limit);
1677 efx->vf_count = vf_limit;
1678 }
1679 vi_count += efx->vf_count * efx_vf_size(efx);
1680 }
1681#endif
1682
1683 efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1684 efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1685}
1686
1687u32 efx_farch_fpga_ver(struct efx_nic *efx)
1688{
1689 efx_oword_t altera_build;
1690 efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1691 return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1692}
1693
1694void efx_farch_init_common(struct efx_nic *efx)
1695{
1696 efx_oword_t temp;
1697
1698 /* Set positions of descriptor caches in SRAM. */
1699 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1700 efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1701 EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1702 efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1703
1704 /* Set TX descriptor cache size. */
1705 BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1706 EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1707 efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1708
1709 /* Set RX descriptor cache size. Set low watermark to size-8, as
1710 * this allows most efficient prefetching.
1711 */
1712 BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1713 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1714 efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1715 EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1716 efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1717
1718 /* Program INT_KER address */
1719 EFX_POPULATE_OWORD_2(temp,
1720 FRF_AZ_NORM_INT_VEC_DIS_KER,
1721 EFX_INT_MODE_USE_MSI(efx),
1722 FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1723 efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1724
1725 if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1726 /* Use an interrupt level unused by event queues */
1727 efx->irq_level = 0x1f;
1728 else
1729 /* Use a valid MSI-X vector */
1730 efx->irq_level = 0;
1731
1732 /* Enable all the genuinely fatal interrupts. (They are still
1733 * masked by the overall interrupt mask, controlled by
1734 * falcon_interrupts()).
1735 *
1736 * Note: All other fatal interrupts are enabled
1737 */
1738 EFX_POPULATE_OWORD_3(temp,
1739 FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1740 FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1741 FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1742 if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1743 EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1744 EFX_INVERT_OWORD(temp);
1745 efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1746
1747 efx_farch_rx_push_indir_table(efx);
1748
1749 /* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1750 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1751 */
1752 efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1753 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1754 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1755 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1756 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1757 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1758 /* Enable SW_EV to inherit in char driver - assume harmless here */
1759 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1760 /* Prefetch threshold 2 => fetch when descriptor cache half empty */
1761 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1762 /* Disable hardware watchdog which can misfire */
1763 EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1764 /* Squash TX of packets of 16 bytes or less */
1765 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1766 EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1767 efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1768
1769 if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1770 EFX_POPULATE_OWORD_4(temp,
1771 /* Default values */
1772 FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1773 FRF_BZ_TX_PACE_SB_AF, 0xb,
1774 FRF_BZ_TX_PACE_FB_BASE, 0,
1775 /* Allow large pace values in the
1776 * fast bin. */
1777 FRF_BZ_TX_PACE_BIN_TH,
1778 FFE_BZ_TX_PACE_RESERVED);
1779 efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1780 }
1781}