diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-05-13 03:17:42 -0400 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-11 05:33:50 -0400 |
commit | 874aeea5d01cac55c160a4e503e3ddb4db030de7 (patch) | |
tree | 2ec67fc737ebc853d954b914a70098ece1ded19b /drivers/net/ethernet/sfc/efx.c | |
parent | e689cf4a042772f727450035b102579b0c01bdc7 (diff) |
sfc: Move the Solarflare drivers
Moves the Solarflare drivers into drivers/net/ethernet/sfc/ and
make the necessary Kconfig and Makefile changes.
CC: Steve Hodgson <shodgson@solarflare.com>
CC: Ben Hutchings <bhutchings@solarflare.com>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/ethernet/sfc/efx.c')
-rw-r--r-- | drivers/net/ethernet/sfc/efx.c | 2714 |
1 files changed, 2714 insertions, 0 deletions
diff --git a/drivers/net/ethernet/sfc/efx.c b/drivers/net/ethernet/sfc/efx.c new file mode 100644 index 000000000000..faca764aa21b --- /dev/null +++ b/drivers/net/ethernet/sfc/efx.c | |||
@@ -0,0 +1,2714 @@ | |||
1 | /**************************************************************************** | ||
2 | * Driver for Solarflare Solarstorm network controllers and boards | ||
3 | * Copyright 2005-2006 Fen Systems Ltd. | ||
4 | * Copyright 2005-2011 Solarflare Communications Inc. | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify it | ||
7 | * under the terms of the GNU General Public License version 2 as published | ||
8 | * by the Free Software Foundation, incorporated herein by reference. | ||
9 | */ | ||
10 | |||
11 | #include <linux/module.h> | ||
12 | #include <linux/pci.h> | ||
13 | #include <linux/netdevice.h> | ||
14 | #include <linux/etherdevice.h> | ||
15 | #include <linux/delay.h> | ||
16 | #include <linux/notifier.h> | ||
17 | #include <linux/ip.h> | ||
18 | #include <linux/tcp.h> | ||
19 | #include <linux/in.h> | ||
20 | #include <linux/crc32.h> | ||
21 | #include <linux/ethtool.h> | ||
22 | #include <linux/topology.h> | ||
23 | #include <linux/gfp.h> | ||
24 | #include <linux/cpu_rmap.h> | ||
25 | #include "net_driver.h" | ||
26 | #include "efx.h" | ||
27 | #include "nic.h" | ||
28 | |||
29 | #include "mcdi.h" | ||
30 | #include "workarounds.h" | ||
31 | |||
32 | /************************************************************************** | ||
33 | * | ||
34 | * Type name strings | ||
35 | * | ||
36 | ************************************************************************** | ||
37 | */ | ||
38 | |||
39 | /* Loopback mode names (see LOOPBACK_MODE()) */ | ||
40 | const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; | ||
41 | const char *efx_loopback_mode_names[] = { | ||
42 | [LOOPBACK_NONE] = "NONE", | ||
43 | [LOOPBACK_DATA] = "DATAPATH", | ||
44 | [LOOPBACK_GMAC] = "GMAC", | ||
45 | [LOOPBACK_XGMII] = "XGMII", | ||
46 | [LOOPBACK_XGXS] = "XGXS", | ||
47 | [LOOPBACK_XAUI] = "XAUI", | ||
48 | [LOOPBACK_GMII] = "GMII", | ||
49 | [LOOPBACK_SGMII] = "SGMII", | ||
50 | [LOOPBACK_XGBR] = "XGBR", | ||
51 | [LOOPBACK_XFI] = "XFI", | ||
52 | [LOOPBACK_XAUI_FAR] = "XAUI_FAR", | ||
53 | [LOOPBACK_GMII_FAR] = "GMII_FAR", | ||
54 | [LOOPBACK_SGMII_FAR] = "SGMII_FAR", | ||
55 | [LOOPBACK_XFI_FAR] = "XFI_FAR", | ||
56 | [LOOPBACK_GPHY] = "GPHY", | ||
57 | [LOOPBACK_PHYXS] = "PHYXS", | ||
58 | [LOOPBACK_PCS] = "PCS", | ||
59 | [LOOPBACK_PMAPMD] = "PMA/PMD", | ||
60 | [LOOPBACK_XPORT] = "XPORT", | ||
61 | [LOOPBACK_XGMII_WS] = "XGMII_WS", | ||
62 | [LOOPBACK_XAUI_WS] = "XAUI_WS", | ||
63 | [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", | ||
64 | [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", | ||
65 | [LOOPBACK_GMII_WS] = "GMII_WS", | ||
66 | [LOOPBACK_XFI_WS] = "XFI_WS", | ||
67 | [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", | ||
68 | [LOOPBACK_PHYXS_WS] = "PHYXS_WS", | ||
69 | }; | ||
70 | |||
71 | const unsigned int efx_reset_type_max = RESET_TYPE_MAX; | ||
72 | const char *efx_reset_type_names[] = { | ||
73 | [RESET_TYPE_INVISIBLE] = "INVISIBLE", | ||
74 | [RESET_TYPE_ALL] = "ALL", | ||
75 | [RESET_TYPE_WORLD] = "WORLD", | ||
76 | [RESET_TYPE_DISABLE] = "DISABLE", | ||
77 | [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", | ||
78 | [RESET_TYPE_INT_ERROR] = "INT_ERROR", | ||
79 | [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY", | ||
80 | [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH", | ||
81 | [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH", | ||
82 | [RESET_TYPE_TX_SKIP] = "TX_SKIP", | ||
83 | [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", | ||
84 | }; | ||
85 | |||
86 | #define EFX_MAX_MTU (9 * 1024) | ||
87 | |||
88 | /* Reset workqueue. If any NIC has a hardware failure then a reset will be | ||
89 | * queued onto this work queue. This is not a per-nic work queue, because | ||
90 | * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. | ||
91 | */ | ||
92 | static struct workqueue_struct *reset_workqueue; | ||
93 | |||
94 | /************************************************************************** | ||
95 | * | ||
96 | * Configurable values | ||
97 | * | ||
98 | *************************************************************************/ | ||
99 | |||
100 | /* | ||
101 | * Use separate channels for TX and RX events | ||
102 | * | ||
103 | * Set this to 1 to use separate channels for TX and RX. It allows us | ||
104 | * to control interrupt affinity separately for TX and RX. | ||
105 | * | ||
106 | * This is only used in MSI-X interrupt mode | ||
107 | */ | ||
108 | static unsigned int separate_tx_channels; | ||
109 | module_param(separate_tx_channels, uint, 0444); | ||
110 | MODULE_PARM_DESC(separate_tx_channels, | ||
111 | "Use separate channels for TX and RX"); | ||
112 | |||
113 | /* This is the weight assigned to each of the (per-channel) virtual | ||
114 | * NAPI devices. | ||
115 | */ | ||
116 | static int napi_weight = 64; | ||
117 | |||
118 | /* This is the time (in jiffies) between invocations of the hardware | ||
119 | * monitor. On Falcon-based NICs, this will: | ||
120 | * - Check the on-board hardware monitor; | ||
121 | * - Poll the link state and reconfigure the hardware as necessary. | ||
122 | */ | ||
123 | static unsigned int efx_monitor_interval = 1 * HZ; | ||
124 | |||
125 | /* This controls whether or not the driver will initialise devices | ||
126 | * with invalid MAC addresses stored in the EEPROM or flash. If true, | ||
127 | * such devices will be initialised with a random locally-generated | ||
128 | * MAC address. This allows for loading the sfc_mtd driver to | ||
129 | * reprogram the flash, even if the flash contents (including the MAC | ||
130 | * address) have previously been erased. | ||
131 | */ | ||
132 | static unsigned int allow_bad_hwaddr; | ||
133 | |||
134 | /* Initial interrupt moderation settings. They can be modified after | ||
135 | * module load with ethtool. | ||
136 | * | ||
137 | * The default for RX should strike a balance between increasing the | ||
138 | * round-trip latency and reducing overhead. | ||
139 | */ | ||
140 | static unsigned int rx_irq_mod_usec = 60; | ||
141 | |||
142 | /* Initial interrupt moderation settings. They can be modified after | ||
143 | * module load with ethtool. | ||
144 | * | ||
145 | * This default is chosen to ensure that a 10G link does not go idle | ||
146 | * while a TX queue is stopped after it has become full. A queue is | ||
147 | * restarted when it drops below half full. The time this takes (assuming | ||
148 | * worst case 3 descriptors per packet and 1024 descriptors) is | ||
149 | * 512 / 3 * 1.2 = 205 usec. | ||
150 | */ | ||
151 | static unsigned int tx_irq_mod_usec = 150; | ||
152 | |||
153 | /* This is the first interrupt mode to try out of: | ||
154 | * 0 => MSI-X | ||
155 | * 1 => MSI | ||
156 | * 2 => legacy | ||
157 | */ | ||
158 | static unsigned int interrupt_mode; | ||
159 | |||
160 | /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), | ||
161 | * i.e. the number of CPUs among which we may distribute simultaneous | ||
162 | * interrupt handling. | ||
163 | * | ||
164 | * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. | ||
165 | * The default (0) means to assign an interrupt to each package (level II cache) | ||
166 | */ | ||
167 | static unsigned int rss_cpus; | ||
168 | module_param(rss_cpus, uint, 0444); | ||
169 | MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); | ||
170 | |||
171 | static int phy_flash_cfg; | ||
172 | module_param(phy_flash_cfg, int, 0644); | ||
173 | MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); | ||
174 | |||
175 | static unsigned irq_adapt_low_thresh = 10000; | ||
176 | module_param(irq_adapt_low_thresh, uint, 0644); | ||
177 | MODULE_PARM_DESC(irq_adapt_low_thresh, | ||
178 | "Threshold score for reducing IRQ moderation"); | ||
179 | |||
180 | static unsigned irq_adapt_high_thresh = 20000; | ||
181 | module_param(irq_adapt_high_thresh, uint, 0644); | ||
182 | MODULE_PARM_DESC(irq_adapt_high_thresh, | ||
183 | "Threshold score for increasing IRQ moderation"); | ||
184 | |||
185 | static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | | ||
186 | NETIF_MSG_LINK | NETIF_MSG_IFDOWN | | ||
187 | NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | | ||
188 | NETIF_MSG_TX_ERR | NETIF_MSG_HW); | ||
189 | module_param(debug, uint, 0); | ||
190 | MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); | ||
191 | |||
192 | /************************************************************************** | ||
193 | * | ||
194 | * Utility functions and prototypes | ||
195 | * | ||
196 | *************************************************************************/ | ||
197 | |||
198 | static void efx_remove_channels(struct efx_nic *efx); | ||
199 | static void efx_remove_port(struct efx_nic *efx); | ||
200 | static void efx_init_napi(struct efx_nic *efx); | ||
201 | static void efx_fini_napi(struct efx_nic *efx); | ||
202 | static void efx_fini_napi_channel(struct efx_channel *channel); | ||
203 | static void efx_fini_struct(struct efx_nic *efx); | ||
204 | static void efx_start_all(struct efx_nic *efx); | ||
205 | static void efx_stop_all(struct efx_nic *efx); | ||
206 | |||
207 | #define EFX_ASSERT_RESET_SERIALISED(efx) \ | ||
208 | do { \ | ||
209 | if ((efx->state == STATE_RUNNING) || \ | ||
210 | (efx->state == STATE_DISABLED)) \ | ||
211 | ASSERT_RTNL(); \ | ||
212 | } while (0) | ||
213 | |||
214 | /************************************************************************** | ||
215 | * | ||
216 | * Event queue processing | ||
217 | * | ||
218 | *************************************************************************/ | ||
219 | |||
220 | /* Process channel's event queue | ||
221 | * | ||
222 | * This function is responsible for processing the event queue of a | ||
223 | * single channel. The caller must guarantee that this function will | ||
224 | * never be concurrently called more than once on the same channel, | ||
225 | * though different channels may be being processed concurrently. | ||
226 | */ | ||
227 | static int efx_process_channel(struct efx_channel *channel, int budget) | ||
228 | { | ||
229 | struct efx_nic *efx = channel->efx; | ||
230 | int spent; | ||
231 | |||
232 | if (unlikely(efx->reset_pending || !channel->enabled)) | ||
233 | return 0; | ||
234 | |||
235 | spent = efx_nic_process_eventq(channel, budget); | ||
236 | if (spent == 0) | ||
237 | return 0; | ||
238 | |||
239 | /* Deliver last RX packet. */ | ||
240 | if (channel->rx_pkt) { | ||
241 | __efx_rx_packet(channel, channel->rx_pkt, | ||
242 | channel->rx_pkt_csummed); | ||
243 | channel->rx_pkt = NULL; | ||
244 | } | ||
245 | |||
246 | efx_rx_strategy(channel); | ||
247 | |||
248 | efx_fast_push_rx_descriptors(efx_channel_get_rx_queue(channel)); | ||
249 | |||
250 | return spent; | ||
251 | } | ||
252 | |||
253 | /* Mark channel as finished processing | ||
254 | * | ||
255 | * Note that since we will not receive further interrupts for this | ||
256 | * channel before we finish processing and call the eventq_read_ack() | ||
257 | * method, there is no need to use the interrupt hold-off timers. | ||
258 | */ | ||
259 | static inline void efx_channel_processed(struct efx_channel *channel) | ||
260 | { | ||
261 | /* The interrupt handler for this channel may set work_pending | ||
262 | * as soon as we acknowledge the events we've seen. Make sure | ||
263 | * it's cleared before then. */ | ||
264 | channel->work_pending = false; | ||
265 | smp_wmb(); | ||
266 | |||
267 | efx_nic_eventq_read_ack(channel); | ||
268 | } | ||
269 | |||
270 | /* NAPI poll handler | ||
271 | * | ||
272 | * NAPI guarantees serialisation of polls of the same device, which | ||
273 | * provides the guarantee required by efx_process_channel(). | ||
274 | */ | ||
275 | static int efx_poll(struct napi_struct *napi, int budget) | ||
276 | { | ||
277 | struct efx_channel *channel = | ||
278 | container_of(napi, struct efx_channel, napi_str); | ||
279 | struct efx_nic *efx = channel->efx; | ||
280 | int spent; | ||
281 | |||
282 | netif_vdbg(efx, intr, efx->net_dev, | ||
283 | "channel %d NAPI poll executing on CPU %d\n", | ||
284 | channel->channel, raw_smp_processor_id()); | ||
285 | |||
286 | spent = efx_process_channel(channel, budget); | ||
287 | |||
288 | if (spent < budget) { | ||
289 | if (channel->channel < efx->n_rx_channels && | ||
290 | efx->irq_rx_adaptive && | ||
291 | unlikely(++channel->irq_count == 1000)) { | ||
292 | if (unlikely(channel->irq_mod_score < | ||
293 | irq_adapt_low_thresh)) { | ||
294 | if (channel->irq_moderation > 1) { | ||
295 | channel->irq_moderation -= 1; | ||
296 | efx->type->push_irq_moderation(channel); | ||
297 | } | ||
298 | } else if (unlikely(channel->irq_mod_score > | ||
299 | irq_adapt_high_thresh)) { | ||
300 | if (channel->irq_moderation < | ||
301 | efx->irq_rx_moderation) { | ||
302 | channel->irq_moderation += 1; | ||
303 | efx->type->push_irq_moderation(channel); | ||
304 | } | ||
305 | } | ||
306 | channel->irq_count = 0; | ||
307 | channel->irq_mod_score = 0; | ||
308 | } | ||
309 | |||
310 | efx_filter_rfs_expire(channel); | ||
311 | |||
312 | /* There is no race here; although napi_disable() will | ||
313 | * only wait for napi_complete(), this isn't a problem | ||
314 | * since efx_channel_processed() will have no effect if | ||
315 | * interrupts have already been disabled. | ||
316 | */ | ||
317 | napi_complete(napi); | ||
318 | efx_channel_processed(channel); | ||
319 | } | ||
320 | |||
321 | return spent; | ||
322 | } | ||
323 | |||
324 | /* Process the eventq of the specified channel immediately on this CPU | ||
325 | * | ||
326 | * Disable hardware generated interrupts, wait for any existing | ||
327 | * processing to finish, then directly poll (and ack ) the eventq. | ||
328 | * Finally reenable NAPI and interrupts. | ||
329 | * | ||
330 | * This is for use only during a loopback self-test. It must not | ||
331 | * deliver any packets up the stack as this can result in deadlock. | ||
332 | */ | ||
333 | void efx_process_channel_now(struct efx_channel *channel) | ||
334 | { | ||
335 | struct efx_nic *efx = channel->efx; | ||
336 | |||
337 | BUG_ON(channel->channel >= efx->n_channels); | ||
338 | BUG_ON(!channel->enabled); | ||
339 | BUG_ON(!efx->loopback_selftest); | ||
340 | |||
341 | /* Disable interrupts and wait for ISRs to complete */ | ||
342 | efx_nic_disable_interrupts(efx); | ||
343 | if (efx->legacy_irq) { | ||
344 | synchronize_irq(efx->legacy_irq); | ||
345 | efx->legacy_irq_enabled = false; | ||
346 | } | ||
347 | if (channel->irq) | ||
348 | synchronize_irq(channel->irq); | ||
349 | |||
350 | /* Wait for any NAPI processing to complete */ | ||
351 | napi_disable(&channel->napi_str); | ||
352 | |||
353 | /* Poll the channel */ | ||
354 | efx_process_channel(channel, channel->eventq_mask + 1); | ||
355 | |||
356 | /* Ack the eventq. This may cause an interrupt to be generated | ||
357 | * when they are reenabled */ | ||
358 | efx_channel_processed(channel); | ||
359 | |||
360 | napi_enable(&channel->napi_str); | ||
361 | if (efx->legacy_irq) | ||
362 | efx->legacy_irq_enabled = true; | ||
363 | efx_nic_enable_interrupts(efx); | ||
364 | } | ||
365 | |||
366 | /* Create event queue | ||
367 | * Event queue memory allocations are done only once. If the channel | ||
368 | * is reset, the memory buffer will be reused; this guards against | ||
369 | * errors during channel reset and also simplifies interrupt handling. | ||
370 | */ | ||
371 | static int efx_probe_eventq(struct efx_channel *channel) | ||
372 | { | ||
373 | struct efx_nic *efx = channel->efx; | ||
374 | unsigned long entries; | ||
375 | |||
376 | netif_dbg(channel->efx, probe, channel->efx->net_dev, | ||
377 | "chan %d create event queue\n", channel->channel); | ||
378 | |||
379 | /* Build an event queue with room for one event per tx and rx buffer, | ||
380 | * plus some extra for link state events and MCDI completions. */ | ||
381 | entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); | ||
382 | EFX_BUG_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); | ||
383 | channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; | ||
384 | |||
385 | return efx_nic_probe_eventq(channel); | ||
386 | } | ||
387 | |||
388 | /* Prepare channel's event queue */ | ||
389 | static void efx_init_eventq(struct efx_channel *channel) | ||
390 | { | ||
391 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
392 | "chan %d init event queue\n", channel->channel); | ||
393 | |||
394 | channel->eventq_read_ptr = 0; | ||
395 | |||
396 | efx_nic_init_eventq(channel); | ||
397 | } | ||
398 | |||
399 | static void efx_fini_eventq(struct efx_channel *channel) | ||
400 | { | ||
401 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
402 | "chan %d fini event queue\n", channel->channel); | ||
403 | |||
404 | efx_nic_fini_eventq(channel); | ||
405 | } | ||
406 | |||
407 | static void efx_remove_eventq(struct efx_channel *channel) | ||
408 | { | ||
409 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
410 | "chan %d remove event queue\n", channel->channel); | ||
411 | |||
412 | efx_nic_remove_eventq(channel); | ||
413 | } | ||
414 | |||
415 | /************************************************************************** | ||
416 | * | ||
417 | * Channel handling | ||
418 | * | ||
419 | *************************************************************************/ | ||
420 | |||
421 | /* Allocate and initialise a channel structure, optionally copying | ||
422 | * parameters (but not resources) from an old channel structure. */ | ||
423 | static struct efx_channel * | ||
424 | efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) | ||
425 | { | ||
426 | struct efx_channel *channel; | ||
427 | struct efx_rx_queue *rx_queue; | ||
428 | struct efx_tx_queue *tx_queue; | ||
429 | int j; | ||
430 | |||
431 | if (old_channel) { | ||
432 | channel = kmalloc(sizeof(*channel), GFP_KERNEL); | ||
433 | if (!channel) | ||
434 | return NULL; | ||
435 | |||
436 | *channel = *old_channel; | ||
437 | |||
438 | channel->napi_dev = NULL; | ||
439 | memset(&channel->eventq, 0, sizeof(channel->eventq)); | ||
440 | |||
441 | rx_queue = &channel->rx_queue; | ||
442 | rx_queue->buffer = NULL; | ||
443 | memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); | ||
444 | |||
445 | for (j = 0; j < EFX_TXQ_TYPES; j++) { | ||
446 | tx_queue = &channel->tx_queue[j]; | ||
447 | if (tx_queue->channel) | ||
448 | tx_queue->channel = channel; | ||
449 | tx_queue->buffer = NULL; | ||
450 | memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); | ||
451 | } | ||
452 | } else { | ||
453 | channel = kzalloc(sizeof(*channel), GFP_KERNEL); | ||
454 | if (!channel) | ||
455 | return NULL; | ||
456 | |||
457 | channel->efx = efx; | ||
458 | channel->channel = i; | ||
459 | |||
460 | for (j = 0; j < EFX_TXQ_TYPES; j++) { | ||
461 | tx_queue = &channel->tx_queue[j]; | ||
462 | tx_queue->efx = efx; | ||
463 | tx_queue->queue = i * EFX_TXQ_TYPES + j; | ||
464 | tx_queue->channel = channel; | ||
465 | } | ||
466 | } | ||
467 | |||
468 | rx_queue = &channel->rx_queue; | ||
469 | rx_queue->efx = efx; | ||
470 | setup_timer(&rx_queue->slow_fill, efx_rx_slow_fill, | ||
471 | (unsigned long)rx_queue); | ||
472 | |||
473 | return channel; | ||
474 | } | ||
475 | |||
476 | static int efx_probe_channel(struct efx_channel *channel) | ||
477 | { | ||
478 | struct efx_tx_queue *tx_queue; | ||
479 | struct efx_rx_queue *rx_queue; | ||
480 | int rc; | ||
481 | |||
482 | netif_dbg(channel->efx, probe, channel->efx->net_dev, | ||
483 | "creating channel %d\n", channel->channel); | ||
484 | |||
485 | rc = efx_probe_eventq(channel); | ||
486 | if (rc) | ||
487 | goto fail1; | ||
488 | |||
489 | efx_for_each_channel_tx_queue(tx_queue, channel) { | ||
490 | rc = efx_probe_tx_queue(tx_queue); | ||
491 | if (rc) | ||
492 | goto fail2; | ||
493 | } | ||
494 | |||
495 | efx_for_each_channel_rx_queue(rx_queue, channel) { | ||
496 | rc = efx_probe_rx_queue(rx_queue); | ||
497 | if (rc) | ||
498 | goto fail3; | ||
499 | } | ||
500 | |||
501 | channel->n_rx_frm_trunc = 0; | ||
502 | |||
503 | return 0; | ||
504 | |||
505 | fail3: | ||
506 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
507 | efx_remove_rx_queue(rx_queue); | ||
508 | fail2: | ||
509 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
510 | efx_remove_tx_queue(tx_queue); | ||
511 | fail1: | ||
512 | return rc; | ||
513 | } | ||
514 | |||
515 | |||
516 | static void efx_set_channel_names(struct efx_nic *efx) | ||
517 | { | ||
518 | struct efx_channel *channel; | ||
519 | const char *type = ""; | ||
520 | int number; | ||
521 | |||
522 | efx_for_each_channel(channel, efx) { | ||
523 | number = channel->channel; | ||
524 | if (efx->n_channels > efx->n_rx_channels) { | ||
525 | if (channel->channel < efx->n_rx_channels) { | ||
526 | type = "-rx"; | ||
527 | } else { | ||
528 | type = "-tx"; | ||
529 | number -= efx->n_rx_channels; | ||
530 | } | ||
531 | } | ||
532 | snprintf(efx->channel_name[channel->channel], | ||
533 | sizeof(efx->channel_name[0]), | ||
534 | "%s%s-%d", efx->name, type, number); | ||
535 | } | ||
536 | } | ||
537 | |||
538 | static int efx_probe_channels(struct efx_nic *efx) | ||
539 | { | ||
540 | struct efx_channel *channel; | ||
541 | int rc; | ||
542 | |||
543 | /* Restart special buffer allocation */ | ||
544 | efx->next_buffer_table = 0; | ||
545 | |||
546 | efx_for_each_channel(channel, efx) { | ||
547 | rc = efx_probe_channel(channel); | ||
548 | if (rc) { | ||
549 | netif_err(efx, probe, efx->net_dev, | ||
550 | "failed to create channel %d\n", | ||
551 | channel->channel); | ||
552 | goto fail; | ||
553 | } | ||
554 | } | ||
555 | efx_set_channel_names(efx); | ||
556 | |||
557 | return 0; | ||
558 | |||
559 | fail: | ||
560 | efx_remove_channels(efx); | ||
561 | return rc; | ||
562 | } | ||
563 | |||
564 | /* Channels are shutdown and reinitialised whilst the NIC is running | ||
565 | * to propagate configuration changes (mtu, checksum offload), or | ||
566 | * to clear hardware error conditions | ||
567 | */ | ||
568 | static void efx_init_channels(struct efx_nic *efx) | ||
569 | { | ||
570 | struct efx_tx_queue *tx_queue; | ||
571 | struct efx_rx_queue *rx_queue; | ||
572 | struct efx_channel *channel; | ||
573 | |||
574 | /* Calculate the rx buffer allocation parameters required to | ||
575 | * support the current MTU, including padding for header | ||
576 | * alignment and overruns. | ||
577 | */ | ||
578 | efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) + | ||
579 | EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + | ||
580 | efx->type->rx_buffer_hash_size + | ||
581 | efx->type->rx_buffer_padding); | ||
582 | efx->rx_buffer_order = get_order(efx->rx_buffer_len + | ||
583 | sizeof(struct efx_rx_page_state)); | ||
584 | |||
585 | /* Initialise the channels */ | ||
586 | efx_for_each_channel(channel, efx) { | ||
587 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
588 | "init chan %d\n", channel->channel); | ||
589 | |||
590 | efx_init_eventq(channel); | ||
591 | |||
592 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
593 | efx_init_tx_queue(tx_queue); | ||
594 | |||
595 | /* The rx buffer allocation strategy is MTU dependent */ | ||
596 | efx_rx_strategy(channel); | ||
597 | |||
598 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
599 | efx_init_rx_queue(rx_queue); | ||
600 | |||
601 | WARN_ON(channel->rx_pkt != NULL); | ||
602 | efx_rx_strategy(channel); | ||
603 | } | ||
604 | } | ||
605 | |||
606 | /* This enables event queue processing and packet transmission. | ||
607 | * | ||
608 | * Note that this function is not allowed to fail, since that would | ||
609 | * introduce too much complexity into the suspend/resume path. | ||
610 | */ | ||
611 | static void efx_start_channel(struct efx_channel *channel) | ||
612 | { | ||
613 | struct efx_rx_queue *rx_queue; | ||
614 | |||
615 | netif_dbg(channel->efx, ifup, channel->efx->net_dev, | ||
616 | "starting chan %d\n", channel->channel); | ||
617 | |||
618 | /* The interrupt handler for this channel may set work_pending | ||
619 | * as soon as we enable it. Make sure it's cleared before | ||
620 | * then. Similarly, make sure it sees the enabled flag set. */ | ||
621 | channel->work_pending = false; | ||
622 | channel->enabled = true; | ||
623 | smp_wmb(); | ||
624 | |||
625 | /* Fill the queues before enabling NAPI */ | ||
626 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
627 | efx_fast_push_rx_descriptors(rx_queue); | ||
628 | |||
629 | napi_enable(&channel->napi_str); | ||
630 | } | ||
631 | |||
632 | /* This disables event queue processing and packet transmission. | ||
633 | * This function does not guarantee that all queue processing | ||
634 | * (e.g. RX refill) is complete. | ||
635 | */ | ||
636 | static void efx_stop_channel(struct efx_channel *channel) | ||
637 | { | ||
638 | if (!channel->enabled) | ||
639 | return; | ||
640 | |||
641 | netif_dbg(channel->efx, ifdown, channel->efx->net_dev, | ||
642 | "stop chan %d\n", channel->channel); | ||
643 | |||
644 | channel->enabled = false; | ||
645 | napi_disable(&channel->napi_str); | ||
646 | } | ||
647 | |||
648 | static void efx_fini_channels(struct efx_nic *efx) | ||
649 | { | ||
650 | struct efx_channel *channel; | ||
651 | struct efx_tx_queue *tx_queue; | ||
652 | struct efx_rx_queue *rx_queue; | ||
653 | int rc; | ||
654 | |||
655 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
656 | BUG_ON(efx->port_enabled); | ||
657 | |||
658 | rc = efx_nic_flush_queues(efx); | ||
659 | if (rc && EFX_WORKAROUND_7803(efx)) { | ||
660 | /* Schedule a reset to recover from the flush failure. The | ||
661 | * descriptor caches reference memory we're about to free, | ||
662 | * but falcon_reconfigure_mac_wrapper() won't reconnect | ||
663 | * the MACs because of the pending reset. */ | ||
664 | netif_err(efx, drv, efx->net_dev, | ||
665 | "Resetting to recover from flush failure\n"); | ||
666 | efx_schedule_reset(efx, RESET_TYPE_ALL); | ||
667 | } else if (rc) { | ||
668 | netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); | ||
669 | } else { | ||
670 | netif_dbg(efx, drv, efx->net_dev, | ||
671 | "successfully flushed all queues\n"); | ||
672 | } | ||
673 | |||
674 | efx_for_each_channel(channel, efx) { | ||
675 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
676 | "shut down chan %d\n", channel->channel); | ||
677 | |||
678 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
679 | efx_fini_rx_queue(rx_queue); | ||
680 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) | ||
681 | efx_fini_tx_queue(tx_queue); | ||
682 | efx_fini_eventq(channel); | ||
683 | } | ||
684 | } | ||
685 | |||
686 | static void efx_remove_channel(struct efx_channel *channel) | ||
687 | { | ||
688 | struct efx_tx_queue *tx_queue; | ||
689 | struct efx_rx_queue *rx_queue; | ||
690 | |||
691 | netif_dbg(channel->efx, drv, channel->efx->net_dev, | ||
692 | "destroy chan %d\n", channel->channel); | ||
693 | |||
694 | efx_for_each_channel_rx_queue(rx_queue, channel) | ||
695 | efx_remove_rx_queue(rx_queue); | ||
696 | efx_for_each_possible_channel_tx_queue(tx_queue, channel) | ||
697 | efx_remove_tx_queue(tx_queue); | ||
698 | efx_remove_eventq(channel); | ||
699 | } | ||
700 | |||
701 | static void efx_remove_channels(struct efx_nic *efx) | ||
702 | { | ||
703 | struct efx_channel *channel; | ||
704 | |||
705 | efx_for_each_channel(channel, efx) | ||
706 | efx_remove_channel(channel); | ||
707 | } | ||
708 | |||
709 | int | ||
710 | efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) | ||
711 | { | ||
712 | struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; | ||
713 | u32 old_rxq_entries, old_txq_entries; | ||
714 | unsigned i; | ||
715 | int rc; | ||
716 | |||
717 | efx_stop_all(efx); | ||
718 | efx_fini_channels(efx); | ||
719 | |||
720 | /* Clone channels */ | ||
721 | memset(other_channel, 0, sizeof(other_channel)); | ||
722 | for (i = 0; i < efx->n_channels; i++) { | ||
723 | channel = efx_alloc_channel(efx, i, efx->channel[i]); | ||
724 | if (!channel) { | ||
725 | rc = -ENOMEM; | ||
726 | goto out; | ||
727 | } | ||
728 | other_channel[i] = channel; | ||
729 | } | ||
730 | |||
731 | /* Swap entry counts and channel pointers */ | ||
732 | old_rxq_entries = efx->rxq_entries; | ||
733 | old_txq_entries = efx->txq_entries; | ||
734 | efx->rxq_entries = rxq_entries; | ||
735 | efx->txq_entries = txq_entries; | ||
736 | for (i = 0; i < efx->n_channels; i++) { | ||
737 | channel = efx->channel[i]; | ||
738 | efx->channel[i] = other_channel[i]; | ||
739 | other_channel[i] = channel; | ||
740 | } | ||
741 | |||
742 | rc = efx_probe_channels(efx); | ||
743 | if (rc) | ||
744 | goto rollback; | ||
745 | |||
746 | efx_init_napi(efx); | ||
747 | |||
748 | /* Destroy old channels */ | ||
749 | for (i = 0; i < efx->n_channels; i++) { | ||
750 | efx_fini_napi_channel(other_channel[i]); | ||
751 | efx_remove_channel(other_channel[i]); | ||
752 | } | ||
753 | out: | ||
754 | /* Free unused channel structures */ | ||
755 | for (i = 0; i < efx->n_channels; i++) | ||
756 | kfree(other_channel[i]); | ||
757 | |||
758 | efx_init_channels(efx); | ||
759 | efx_start_all(efx); | ||
760 | return rc; | ||
761 | |||
762 | rollback: | ||
763 | /* Swap back */ | ||
764 | efx->rxq_entries = old_rxq_entries; | ||
765 | efx->txq_entries = old_txq_entries; | ||
766 | for (i = 0; i < efx->n_channels; i++) { | ||
767 | channel = efx->channel[i]; | ||
768 | efx->channel[i] = other_channel[i]; | ||
769 | other_channel[i] = channel; | ||
770 | } | ||
771 | goto out; | ||
772 | } | ||
773 | |||
774 | void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) | ||
775 | { | ||
776 | mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(100)); | ||
777 | } | ||
778 | |||
779 | /************************************************************************** | ||
780 | * | ||
781 | * Port handling | ||
782 | * | ||
783 | **************************************************************************/ | ||
784 | |||
785 | /* This ensures that the kernel is kept informed (via | ||
786 | * netif_carrier_on/off) of the link status, and also maintains the | ||
787 | * link status's stop on the port's TX queue. | ||
788 | */ | ||
789 | void efx_link_status_changed(struct efx_nic *efx) | ||
790 | { | ||
791 | struct efx_link_state *link_state = &efx->link_state; | ||
792 | |||
793 | /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure | ||
794 | * that no events are triggered between unregister_netdev() and the | ||
795 | * driver unloading. A more general condition is that NETDEV_CHANGE | ||
796 | * can only be generated between NETDEV_UP and NETDEV_DOWN */ | ||
797 | if (!netif_running(efx->net_dev)) | ||
798 | return; | ||
799 | |||
800 | if (link_state->up != netif_carrier_ok(efx->net_dev)) { | ||
801 | efx->n_link_state_changes++; | ||
802 | |||
803 | if (link_state->up) | ||
804 | netif_carrier_on(efx->net_dev); | ||
805 | else | ||
806 | netif_carrier_off(efx->net_dev); | ||
807 | } | ||
808 | |||
809 | /* Status message for kernel log */ | ||
810 | if (link_state->up) { | ||
811 | netif_info(efx, link, efx->net_dev, | ||
812 | "link up at %uMbps %s-duplex (MTU %d)%s\n", | ||
813 | link_state->speed, link_state->fd ? "full" : "half", | ||
814 | efx->net_dev->mtu, | ||
815 | (efx->promiscuous ? " [PROMISC]" : "")); | ||
816 | } else { | ||
817 | netif_info(efx, link, efx->net_dev, "link down\n"); | ||
818 | } | ||
819 | |||
820 | } | ||
821 | |||
822 | void efx_link_set_advertising(struct efx_nic *efx, u32 advertising) | ||
823 | { | ||
824 | efx->link_advertising = advertising; | ||
825 | if (advertising) { | ||
826 | if (advertising & ADVERTISED_Pause) | ||
827 | efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); | ||
828 | else | ||
829 | efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); | ||
830 | if (advertising & ADVERTISED_Asym_Pause) | ||
831 | efx->wanted_fc ^= EFX_FC_TX; | ||
832 | } | ||
833 | } | ||
834 | |||
835 | void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) | ||
836 | { | ||
837 | efx->wanted_fc = wanted_fc; | ||
838 | if (efx->link_advertising) { | ||
839 | if (wanted_fc & EFX_FC_RX) | ||
840 | efx->link_advertising |= (ADVERTISED_Pause | | ||
841 | ADVERTISED_Asym_Pause); | ||
842 | else | ||
843 | efx->link_advertising &= ~(ADVERTISED_Pause | | ||
844 | ADVERTISED_Asym_Pause); | ||
845 | if (wanted_fc & EFX_FC_TX) | ||
846 | efx->link_advertising ^= ADVERTISED_Asym_Pause; | ||
847 | } | ||
848 | } | ||
849 | |||
850 | static void efx_fini_port(struct efx_nic *efx); | ||
851 | |||
852 | /* Push loopback/power/transmit disable settings to the PHY, and reconfigure | ||
853 | * the MAC appropriately. All other PHY configuration changes are pushed | ||
854 | * through phy_op->set_settings(), and pushed asynchronously to the MAC | ||
855 | * through efx_monitor(). | ||
856 | * | ||
857 | * Callers must hold the mac_lock | ||
858 | */ | ||
859 | int __efx_reconfigure_port(struct efx_nic *efx) | ||
860 | { | ||
861 | enum efx_phy_mode phy_mode; | ||
862 | int rc; | ||
863 | |||
864 | WARN_ON(!mutex_is_locked(&efx->mac_lock)); | ||
865 | |||
866 | /* Serialise the promiscuous flag with efx_set_multicast_list. */ | ||
867 | if (efx_dev_registered(efx)) { | ||
868 | netif_addr_lock_bh(efx->net_dev); | ||
869 | netif_addr_unlock_bh(efx->net_dev); | ||
870 | } | ||
871 | |||
872 | /* Disable PHY transmit in mac level loopbacks */ | ||
873 | phy_mode = efx->phy_mode; | ||
874 | if (LOOPBACK_INTERNAL(efx)) | ||
875 | efx->phy_mode |= PHY_MODE_TX_DISABLED; | ||
876 | else | ||
877 | efx->phy_mode &= ~PHY_MODE_TX_DISABLED; | ||
878 | |||
879 | rc = efx->type->reconfigure_port(efx); | ||
880 | |||
881 | if (rc) | ||
882 | efx->phy_mode = phy_mode; | ||
883 | |||
884 | return rc; | ||
885 | } | ||
886 | |||
887 | /* Reinitialise the MAC to pick up new PHY settings, even if the port is | ||
888 | * disabled. */ | ||
889 | int efx_reconfigure_port(struct efx_nic *efx) | ||
890 | { | ||
891 | int rc; | ||
892 | |||
893 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
894 | |||
895 | mutex_lock(&efx->mac_lock); | ||
896 | rc = __efx_reconfigure_port(efx); | ||
897 | mutex_unlock(&efx->mac_lock); | ||
898 | |||
899 | return rc; | ||
900 | } | ||
901 | |||
902 | /* Asynchronous work item for changing MAC promiscuity and multicast | ||
903 | * hash. Avoid a drain/rx_ingress enable by reconfiguring the current | ||
904 | * MAC directly. */ | ||
905 | static void efx_mac_work(struct work_struct *data) | ||
906 | { | ||
907 | struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); | ||
908 | |||
909 | mutex_lock(&efx->mac_lock); | ||
910 | if (efx->port_enabled) { | ||
911 | efx->type->push_multicast_hash(efx); | ||
912 | efx->mac_op->reconfigure(efx); | ||
913 | } | ||
914 | mutex_unlock(&efx->mac_lock); | ||
915 | } | ||
916 | |||
917 | static int efx_probe_port(struct efx_nic *efx) | ||
918 | { | ||
919 | unsigned char *perm_addr; | ||
920 | int rc; | ||
921 | |||
922 | netif_dbg(efx, probe, efx->net_dev, "create port\n"); | ||
923 | |||
924 | if (phy_flash_cfg) | ||
925 | efx->phy_mode = PHY_MODE_SPECIAL; | ||
926 | |||
927 | /* Connect up MAC/PHY operations table */ | ||
928 | rc = efx->type->probe_port(efx); | ||
929 | if (rc) | ||
930 | return rc; | ||
931 | |||
932 | /* Sanity check MAC address */ | ||
933 | perm_addr = efx->net_dev->perm_addr; | ||
934 | if (is_valid_ether_addr(perm_addr)) { | ||
935 | memcpy(efx->net_dev->dev_addr, perm_addr, ETH_ALEN); | ||
936 | } else { | ||
937 | netif_err(efx, probe, efx->net_dev, "invalid MAC address %pM\n", | ||
938 | perm_addr); | ||
939 | if (!allow_bad_hwaddr) { | ||
940 | rc = -EINVAL; | ||
941 | goto err; | ||
942 | } | ||
943 | random_ether_addr(efx->net_dev->dev_addr); | ||
944 | netif_info(efx, probe, efx->net_dev, | ||
945 | "using locally-generated MAC %pM\n", | ||
946 | efx->net_dev->dev_addr); | ||
947 | } | ||
948 | |||
949 | return 0; | ||
950 | |||
951 | err: | ||
952 | efx->type->remove_port(efx); | ||
953 | return rc; | ||
954 | } | ||
955 | |||
956 | static int efx_init_port(struct efx_nic *efx) | ||
957 | { | ||
958 | int rc; | ||
959 | |||
960 | netif_dbg(efx, drv, efx->net_dev, "init port\n"); | ||
961 | |||
962 | mutex_lock(&efx->mac_lock); | ||
963 | |||
964 | rc = efx->phy_op->init(efx); | ||
965 | if (rc) | ||
966 | goto fail1; | ||
967 | |||
968 | efx->port_initialized = true; | ||
969 | |||
970 | /* Reconfigure the MAC before creating dma queues (required for | ||
971 | * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ | ||
972 | efx->mac_op->reconfigure(efx); | ||
973 | |||
974 | /* Ensure the PHY advertises the correct flow control settings */ | ||
975 | rc = efx->phy_op->reconfigure(efx); | ||
976 | if (rc) | ||
977 | goto fail2; | ||
978 | |||
979 | mutex_unlock(&efx->mac_lock); | ||
980 | return 0; | ||
981 | |||
982 | fail2: | ||
983 | efx->phy_op->fini(efx); | ||
984 | fail1: | ||
985 | mutex_unlock(&efx->mac_lock); | ||
986 | return rc; | ||
987 | } | ||
988 | |||
989 | static void efx_start_port(struct efx_nic *efx) | ||
990 | { | ||
991 | netif_dbg(efx, ifup, efx->net_dev, "start port\n"); | ||
992 | BUG_ON(efx->port_enabled); | ||
993 | |||
994 | mutex_lock(&efx->mac_lock); | ||
995 | efx->port_enabled = true; | ||
996 | |||
997 | /* efx_mac_work() might have been scheduled after efx_stop_port(), | ||
998 | * and then cancelled by efx_flush_all() */ | ||
999 | efx->type->push_multicast_hash(efx); | ||
1000 | efx->mac_op->reconfigure(efx); | ||
1001 | |||
1002 | mutex_unlock(&efx->mac_lock); | ||
1003 | } | ||
1004 | |||
1005 | /* Prevent efx_mac_work() and efx_monitor() from working */ | ||
1006 | static void efx_stop_port(struct efx_nic *efx) | ||
1007 | { | ||
1008 | netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); | ||
1009 | |||
1010 | mutex_lock(&efx->mac_lock); | ||
1011 | efx->port_enabled = false; | ||
1012 | mutex_unlock(&efx->mac_lock); | ||
1013 | |||
1014 | /* Serialise against efx_set_multicast_list() */ | ||
1015 | if (efx_dev_registered(efx)) { | ||
1016 | netif_addr_lock_bh(efx->net_dev); | ||
1017 | netif_addr_unlock_bh(efx->net_dev); | ||
1018 | } | ||
1019 | } | ||
1020 | |||
1021 | static void efx_fini_port(struct efx_nic *efx) | ||
1022 | { | ||
1023 | netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); | ||
1024 | |||
1025 | if (!efx->port_initialized) | ||
1026 | return; | ||
1027 | |||
1028 | efx->phy_op->fini(efx); | ||
1029 | efx->port_initialized = false; | ||
1030 | |||
1031 | efx->link_state.up = false; | ||
1032 | efx_link_status_changed(efx); | ||
1033 | } | ||
1034 | |||
1035 | static void efx_remove_port(struct efx_nic *efx) | ||
1036 | { | ||
1037 | netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); | ||
1038 | |||
1039 | efx->type->remove_port(efx); | ||
1040 | } | ||
1041 | |||
1042 | /************************************************************************** | ||
1043 | * | ||
1044 | * NIC handling | ||
1045 | * | ||
1046 | **************************************************************************/ | ||
1047 | |||
1048 | /* This configures the PCI device to enable I/O and DMA. */ | ||
1049 | static int efx_init_io(struct efx_nic *efx) | ||
1050 | { | ||
1051 | struct pci_dev *pci_dev = efx->pci_dev; | ||
1052 | dma_addr_t dma_mask = efx->type->max_dma_mask; | ||
1053 | bool use_wc; | ||
1054 | int rc; | ||
1055 | |||
1056 | netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); | ||
1057 | |||
1058 | rc = pci_enable_device(pci_dev); | ||
1059 | if (rc) { | ||
1060 | netif_err(efx, probe, efx->net_dev, | ||
1061 | "failed to enable PCI device\n"); | ||
1062 | goto fail1; | ||
1063 | } | ||
1064 | |||
1065 | pci_set_master(pci_dev); | ||
1066 | |||
1067 | /* Set the PCI DMA mask. Try all possibilities from our | ||
1068 | * genuine mask down to 32 bits, because some architectures | ||
1069 | * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit | ||
1070 | * masks event though they reject 46 bit masks. | ||
1071 | */ | ||
1072 | while (dma_mask > 0x7fffffffUL) { | ||
1073 | if (pci_dma_supported(pci_dev, dma_mask) && | ||
1074 | ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0)) | ||
1075 | break; | ||
1076 | dma_mask >>= 1; | ||
1077 | } | ||
1078 | if (rc) { | ||
1079 | netif_err(efx, probe, efx->net_dev, | ||
1080 | "could not find a suitable DMA mask\n"); | ||
1081 | goto fail2; | ||
1082 | } | ||
1083 | netif_dbg(efx, probe, efx->net_dev, | ||
1084 | "using DMA mask %llx\n", (unsigned long long) dma_mask); | ||
1085 | rc = pci_set_consistent_dma_mask(pci_dev, dma_mask); | ||
1086 | if (rc) { | ||
1087 | /* pci_set_consistent_dma_mask() is not *allowed* to | ||
1088 | * fail with a mask that pci_set_dma_mask() accepted, | ||
1089 | * but just in case... | ||
1090 | */ | ||
1091 | netif_err(efx, probe, efx->net_dev, | ||
1092 | "failed to set consistent DMA mask\n"); | ||
1093 | goto fail2; | ||
1094 | } | ||
1095 | |||
1096 | efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR); | ||
1097 | rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc"); | ||
1098 | if (rc) { | ||
1099 | netif_err(efx, probe, efx->net_dev, | ||
1100 | "request for memory BAR failed\n"); | ||
1101 | rc = -EIO; | ||
1102 | goto fail3; | ||
1103 | } | ||
1104 | |||
1105 | /* bug22643: If SR-IOV is enabled then tx push over a write combined | ||
1106 | * mapping is unsafe. We need to disable write combining in this case. | ||
1107 | * MSI is unsupported when SR-IOV is enabled, and the firmware will | ||
1108 | * have removed the MSI capability. So write combining is safe if | ||
1109 | * there is an MSI capability. | ||
1110 | */ | ||
1111 | use_wc = (!EFX_WORKAROUND_22643(efx) || | ||
1112 | pci_find_capability(pci_dev, PCI_CAP_ID_MSI)); | ||
1113 | if (use_wc) | ||
1114 | efx->membase = ioremap_wc(efx->membase_phys, | ||
1115 | efx->type->mem_map_size); | ||
1116 | else | ||
1117 | efx->membase = ioremap_nocache(efx->membase_phys, | ||
1118 | efx->type->mem_map_size); | ||
1119 | if (!efx->membase) { | ||
1120 | netif_err(efx, probe, efx->net_dev, | ||
1121 | "could not map memory BAR at %llx+%x\n", | ||
1122 | (unsigned long long)efx->membase_phys, | ||
1123 | efx->type->mem_map_size); | ||
1124 | rc = -ENOMEM; | ||
1125 | goto fail4; | ||
1126 | } | ||
1127 | netif_dbg(efx, probe, efx->net_dev, | ||
1128 | "memory BAR at %llx+%x (virtual %p)\n", | ||
1129 | (unsigned long long)efx->membase_phys, | ||
1130 | efx->type->mem_map_size, efx->membase); | ||
1131 | |||
1132 | return 0; | ||
1133 | |||
1134 | fail4: | ||
1135 | pci_release_region(efx->pci_dev, EFX_MEM_BAR); | ||
1136 | fail3: | ||
1137 | efx->membase_phys = 0; | ||
1138 | fail2: | ||
1139 | pci_disable_device(efx->pci_dev); | ||
1140 | fail1: | ||
1141 | return rc; | ||
1142 | } | ||
1143 | |||
1144 | static void efx_fini_io(struct efx_nic *efx) | ||
1145 | { | ||
1146 | netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); | ||
1147 | |||
1148 | if (efx->membase) { | ||
1149 | iounmap(efx->membase); | ||
1150 | efx->membase = NULL; | ||
1151 | } | ||
1152 | |||
1153 | if (efx->membase_phys) { | ||
1154 | pci_release_region(efx->pci_dev, EFX_MEM_BAR); | ||
1155 | efx->membase_phys = 0; | ||
1156 | } | ||
1157 | |||
1158 | pci_disable_device(efx->pci_dev); | ||
1159 | } | ||
1160 | |||
1161 | /* Get number of channels wanted. Each channel will have its own IRQ, | ||
1162 | * 1 RX queue and/or 2 TX queues. */ | ||
1163 | static int efx_wanted_channels(void) | ||
1164 | { | ||
1165 | cpumask_var_t core_mask; | ||
1166 | int count; | ||
1167 | int cpu; | ||
1168 | |||
1169 | if (rss_cpus) | ||
1170 | return rss_cpus; | ||
1171 | |||
1172 | if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) { | ||
1173 | printk(KERN_WARNING | ||
1174 | "sfc: RSS disabled due to allocation failure\n"); | ||
1175 | return 1; | ||
1176 | } | ||
1177 | |||
1178 | count = 0; | ||
1179 | for_each_online_cpu(cpu) { | ||
1180 | if (!cpumask_test_cpu(cpu, core_mask)) { | ||
1181 | ++count; | ||
1182 | cpumask_or(core_mask, core_mask, | ||
1183 | topology_core_cpumask(cpu)); | ||
1184 | } | ||
1185 | } | ||
1186 | |||
1187 | free_cpumask_var(core_mask); | ||
1188 | return count; | ||
1189 | } | ||
1190 | |||
1191 | static int | ||
1192 | efx_init_rx_cpu_rmap(struct efx_nic *efx, struct msix_entry *xentries) | ||
1193 | { | ||
1194 | #ifdef CONFIG_RFS_ACCEL | ||
1195 | int i, rc; | ||
1196 | |||
1197 | efx->net_dev->rx_cpu_rmap = alloc_irq_cpu_rmap(efx->n_rx_channels); | ||
1198 | if (!efx->net_dev->rx_cpu_rmap) | ||
1199 | return -ENOMEM; | ||
1200 | for (i = 0; i < efx->n_rx_channels; i++) { | ||
1201 | rc = irq_cpu_rmap_add(efx->net_dev->rx_cpu_rmap, | ||
1202 | xentries[i].vector); | ||
1203 | if (rc) { | ||
1204 | free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); | ||
1205 | efx->net_dev->rx_cpu_rmap = NULL; | ||
1206 | return rc; | ||
1207 | } | ||
1208 | } | ||
1209 | #endif | ||
1210 | return 0; | ||
1211 | } | ||
1212 | |||
1213 | /* Probe the number and type of interrupts we are able to obtain, and | ||
1214 | * the resulting numbers of channels and RX queues. | ||
1215 | */ | ||
1216 | static int efx_probe_interrupts(struct efx_nic *efx) | ||
1217 | { | ||
1218 | int max_channels = | ||
1219 | min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS); | ||
1220 | int rc, i; | ||
1221 | |||
1222 | if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { | ||
1223 | struct msix_entry xentries[EFX_MAX_CHANNELS]; | ||
1224 | int n_channels; | ||
1225 | |||
1226 | n_channels = efx_wanted_channels(); | ||
1227 | if (separate_tx_channels) | ||
1228 | n_channels *= 2; | ||
1229 | n_channels = min(n_channels, max_channels); | ||
1230 | |||
1231 | for (i = 0; i < n_channels; i++) | ||
1232 | xentries[i].entry = i; | ||
1233 | rc = pci_enable_msix(efx->pci_dev, xentries, n_channels); | ||
1234 | if (rc > 0) { | ||
1235 | netif_err(efx, drv, efx->net_dev, | ||
1236 | "WARNING: Insufficient MSI-X vectors" | ||
1237 | " available (%d < %d).\n", rc, n_channels); | ||
1238 | netif_err(efx, drv, efx->net_dev, | ||
1239 | "WARNING: Performance may be reduced.\n"); | ||
1240 | EFX_BUG_ON_PARANOID(rc >= n_channels); | ||
1241 | n_channels = rc; | ||
1242 | rc = pci_enable_msix(efx->pci_dev, xentries, | ||
1243 | n_channels); | ||
1244 | } | ||
1245 | |||
1246 | if (rc == 0) { | ||
1247 | efx->n_channels = n_channels; | ||
1248 | if (separate_tx_channels) { | ||
1249 | efx->n_tx_channels = | ||
1250 | max(efx->n_channels / 2, 1U); | ||
1251 | efx->n_rx_channels = | ||
1252 | max(efx->n_channels - | ||
1253 | efx->n_tx_channels, 1U); | ||
1254 | } else { | ||
1255 | efx->n_tx_channels = efx->n_channels; | ||
1256 | efx->n_rx_channels = efx->n_channels; | ||
1257 | } | ||
1258 | rc = efx_init_rx_cpu_rmap(efx, xentries); | ||
1259 | if (rc) { | ||
1260 | pci_disable_msix(efx->pci_dev); | ||
1261 | return rc; | ||
1262 | } | ||
1263 | for (i = 0; i < n_channels; i++) | ||
1264 | efx_get_channel(efx, i)->irq = | ||
1265 | xentries[i].vector; | ||
1266 | } else { | ||
1267 | /* Fall back to single channel MSI */ | ||
1268 | efx->interrupt_mode = EFX_INT_MODE_MSI; | ||
1269 | netif_err(efx, drv, efx->net_dev, | ||
1270 | "could not enable MSI-X\n"); | ||
1271 | } | ||
1272 | } | ||
1273 | |||
1274 | /* Try single interrupt MSI */ | ||
1275 | if (efx->interrupt_mode == EFX_INT_MODE_MSI) { | ||
1276 | efx->n_channels = 1; | ||
1277 | efx->n_rx_channels = 1; | ||
1278 | efx->n_tx_channels = 1; | ||
1279 | rc = pci_enable_msi(efx->pci_dev); | ||
1280 | if (rc == 0) { | ||
1281 | efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; | ||
1282 | } else { | ||
1283 | netif_err(efx, drv, efx->net_dev, | ||
1284 | "could not enable MSI\n"); | ||
1285 | efx->interrupt_mode = EFX_INT_MODE_LEGACY; | ||
1286 | } | ||
1287 | } | ||
1288 | |||
1289 | /* Assume legacy interrupts */ | ||
1290 | if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { | ||
1291 | efx->n_channels = 1 + (separate_tx_channels ? 1 : 0); | ||
1292 | efx->n_rx_channels = 1; | ||
1293 | efx->n_tx_channels = 1; | ||
1294 | efx->legacy_irq = efx->pci_dev->irq; | ||
1295 | } | ||
1296 | |||
1297 | return 0; | ||
1298 | } | ||
1299 | |||
1300 | static void efx_remove_interrupts(struct efx_nic *efx) | ||
1301 | { | ||
1302 | struct efx_channel *channel; | ||
1303 | |||
1304 | /* Remove MSI/MSI-X interrupts */ | ||
1305 | efx_for_each_channel(channel, efx) | ||
1306 | channel->irq = 0; | ||
1307 | pci_disable_msi(efx->pci_dev); | ||
1308 | pci_disable_msix(efx->pci_dev); | ||
1309 | |||
1310 | /* Remove legacy interrupt */ | ||
1311 | efx->legacy_irq = 0; | ||
1312 | } | ||
1313 | |||
1314 | static void efx_set_channels(struct efx_nic *efx) | ||
1315 | { | ||
1316 | struct efx_channel *channel; | ||
1317 | struct efx_tx_queue *tx_queue; | ||
1318 | |||
1319 | efx->tx_channel_offset = | ||
1320 | separate_tx_channels ? efx->n_channels - efx->n_tx_channels : 0; | ||
1321 | |||
1322 | /* We need to adjust the TX queue numbers if we have separate | ||
1323 | * RX-only and TX-only channels. | ||
1324 | */ | ||
1325 | efx_for_each_channel(channel, efx) { | ||
1326 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
1327 | tx_queue->queue -= (efx->tx_channel_offset * | ||
1328 | EFX_TXQ_TYPES); | ||
1329 | } | ||
1330 | } | ||
1331 | |||
1332 | static int efx_probe_nic(struct efx_nic *efx) | ||
1333 | { | ||
1334 | size_t i; | ||
1335 | int rc; | ||
1336 | |||
1337 | netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); | ||
1338 | |||
1339 | /* Carry out hardware-type specific initialisation */ | ||
1340 | rc = efx->type->probe(efx); | ||
1341 | if (rc) | ||
1342 | return rc; | ||
1343 | |||
1344 | /* Determine the number of channels and queues by trying to hook | ||
1345 | * in MSI-X interrupts. */ | ||
1346 | rc = efx_probe_interrupts(efx); | ||
1347 | if (rc) | ||
1348 | goto fail; | ||
1349 | |||
1350 | if (efx->n_channels > 1) | ||
1351 | get_random_bytes(&efx->rx_hash_key, sizeof(efx->rx_hash_key)); | ||
1352 | for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); i++) | ||
1353 | efx->rx_indir_table[i] = i % efx->n_rx_channels; | ||
1354 | |||
1355 | efx_set_channels(efx); | ||
1356 | netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); | ||
1357 | netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); | ||
1358 | |||
1359 | /* Initialise the interrupt moderation settings */ | ||
1360 | efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true); | ||
1361 | |||
1362 | return 0; | ||
1363 | |||
1364 | fail: | ||
1365 | efx->type->remove(efx); | ||
1366 | return rc; | ||
1367 | } | ||
1368 | |||
1369 | static void efx_remove_nic(struct efx_nic *efx) | ||
1370 | { | ||
1371 | netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); | ||
1372 | |||
1373 | efx_remove_interrupts(efx); | ||
1374 | efx->type->remove(efx); | ||
1375 | } | ||
1376 | |||
1377 | /************************************************************************** | ||
1378 | * | ||
1379 | * NIC startup/shutdown | ||
1380 | * | ||
1381 | *************************************************************************/ | ||
1382 | |||
1383 | static int efx_probe_all(struct efx_nic *efx) | ||
1384 | { | ||
1385 | int rc; | ||
1386 | |||
1387 | rc = efx_probe_nic(efx); | ||
1388 | if (rc) { | ||
1389 | netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); | ||
1390 | goto fail1; | ||
1391 | } | ||
1392 | |||
1393 | rc = efx_probe_port(efx); | ||
1394 | if (rc) { | ||
1395 | netif_err(efx, probe, efx->net_dev, "failed to create port\n"); | ||
1396 | goto fail2; | ||
1397 | } | ||
1398 | |||
1399 | efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; | ||
1400 | rc = efx_probe_channels(efx); | ||
1401 | if (rc) | ||
1402 | goto fail3; | ||
1403 | |||
1404 | rc = efx_probe_filters(efx); | ||
1405 | if (rc) { | ||
1406 | netif_err(efx, probe, efx->net_dev, | ||
1407 | "failed to create filter tables\n"); | ||
1408 | goto fail4; | ||
1409 | } | ||
1410 | |||
1411 | return 0; | ||
1412 | |||
1413 | fail4: | ||
1414 | efx_remove_channels(efx); | ||
1415 | fail3: | ||
1416 | efx_remove_port(efx); | ||
1417 | fail2: | ||
1418 | efx_remove_nic(efx); | ||
1419 | fail1: | ||
1420 | return rc; | ||
1421 | } | ||
1422 | |||
1423 | /* Called after previous invocation(s) of efx_stop_all, restarts the | ||
1424 | * port, kernel transmit queue, NAPI processing and hardware interrupts, | ||
1425 | * and ensures that the port is scheduled to be reconfigured. | ||
1426 | * This function is safe to call multiple times when the NIC is in any | ||
1427 | * state. */ | ||
1428 | static void efx_start_all(struct efx_nic *efx) | ||
1429 | { | ||
1430 | struct efx_channel *channel; | ||
1431 | |||
1432 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
1433 | |||
1434 | /* Check that it is appropriate to restart the interface. All | ||
1435 | * of these flags are safe to read under just the rtnl lock */ | ||
1436 | if (efx->port_enabled) | ||
1437 | return; | ||
1438 | if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT)) | ||
1439 | return; | ||
1440 | if (efx_dev_registered(efx) && !netif_running(efx->net_dev)) | ||
1441 | return; | ||
1442 | |||
1443 | /* Mark the port as enabled so port reconfigurations can start, then | ||
1444 | * restart the transmit interface early so the watchdog timer stops */ | ||
1445 | efx_start_port(efx); | ||
1446 | |||
1447 | if (efx_dev_registered(efx) && netif_device_present(efx->net_dev)) | ||
1448 | netif_tx_wake_all_queues(efx->net_dev); | ||
1449 | |||
1450 | efx_for_each_channel(channel, efx) | ||
1451 | efx_start_channel(channel); | ||
1452 | |||
1453 | if (efx->legacy_irq) | ||
1454 | efx->legacy_irq_enabled = true; | ||
1455 | efx_nic_enable_interrupts(efx); | ||
1456 | |||
1457 | /* Switch to event based MCDI completions after enabling interrupts. | ||
1458 | * If a reset has been scheduled, then we need to stay in polled mode. | ||
1459 | * Rather than serialising efx_mcdi_mode_event() [which sleeps] and | ||
1460 | * reset_pending [modified from an atomic context], we instead guarantee | ||
1461 | * that efx_mcdi_mode_poll() isn't reverted erroneously */ | ||
1462 | efx_mcdi_mode_event(efx); | ||
1463 | if (efx->reset_pending) | ||
1464 | efx_mcdi_mode_poll(efx); | ||
1465 | |||
1466 | /* Start the hardware monitor if there is one. Otherwise (we're link | ||
1467 | * event driven), we have to poll the PHY because after an event queue | ||
1468 | * flush, we could have a missed a link state change */ | ||
1469 | if (efx->type->monitor != NULL) { | ||
1470 | queue_delayed_work(efx->workqueue, &efx->monitor_work, | ||
1471 | efx_monitor_interval); | ||
1472 | } else { | ||
1473 | mutex_lock(&efx->mac_lock); | ||
1474 | if (efx->phy_op->poll(efx)) | ||
1475 | efx_link_status_changed(efx); | ||
1476 | mutex_unlock(&efx->mac_lock); | ||
1477 | } | ||
1478 | |||
1479 | efx->type->start_stats(efx); | ||
1480 | } | ||
1481 | |||
1482 | /* Flush all delayed work. Should only be called when no more delayed work | ||
1483 | * will be scheduled. This doesn't flush pending online resets (efx_reset), | ||
1484 | * since we're holding the rtnl_lock at this point. */ | ||
1485 | static void efx_flush_all(struct efx_nic *efx) | ||
1486 | { | ||
1487 | /* Make sure the hardware monitor is stopped */ | ||
1488 | cancel_delayed_work_sync(&efx->monitor_work); | ||
1489 | /* Stop scheduled port reconfigurations */ | ||
1490 | cancel_work_sync(&efx->mac_work); | ||
1491 | } | ||
1492 | |||
1493 | /* Quiesce hardware and software without bringing the link down. | ||
1494 | * Safe to call multiple times, when the nic and interface is in any | ||
1495 | * state. The caller is guaranteed to subsequently be in a position | ||
1496 | * to modify any hardware and software state they see fit without | ||
1497 | * taking locks. */ | ||
1498 | static void efx_stop_all(struct efx_nic *efx) | ||
1499 | { | ||
1500 | struct efx_channel *channel; | ||
1501 | |||
1502 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
1503 | |||
1504 | /* port_enabled can be read safely under the rtnl lock */ | ||
1505 | if (!efx->port_enabled) | ||
1506 | return; | ||
1507 | |||
1508 | efx->type->stop_stats(efx); | ||
1509 | |||
1510 | /* Switch to MCDI polling on Siena before disabling interrupts */ | ||
1511 | efx_mcdi_mode_poll(efx); | ||
1512 | |||
1513 | /* Disable interrupts and wait for ISR to complete */ | ||
1514 | efx_nic_disable_interrupts(efx); | ||
1515 | if (efx->legacy_irq) { | ||
1516 | synchronize_irq(efx->legacy_irq); | ||
1517 | efx->legacy_irq_enabled = false; | ||
1518 | } | ||
1519 | efx_for_each_channel(channel, efx) { | ||
1520 | if (channel->irq) | ||
1521 | synchronize_irq(channel->irq); | ||
1522 | } | ||
1523 | |||
1524 | /* Stop all NAPI processing and synchronous rx refills */ | ||
1525 | efx_for_each_channel(channel, efx) | ||
1526 | efx_stop_channel(channel); | ||
1527 | |||
1528 | /* Stop all asynchronous port reconfigurations. Since all | ||
1529 | * event processing has already been stopped, there is no | ||
1530 | * window to loose phy events */ | ||
1531 | efx_stop_port(efx); | ||
1532 | |||
1533 | /* Flush efx_mac_work(), refill_workqueue, monitor_work */ | ||
1534 | efx_flush_all(efx); | ||
1535 | |||
1536 | /* Stop the kernel transmit interface late, so the watchdog | ||
1537 | * timer isn't ticking over the flush */ | ||
1538 | if (efx_dev_registered(efx)) { | ||
1539 | netif_tx_stop_all_queues(efx->net_dev); | ||
1540 | netif_tx_lock_bh(efx->net_dev); | ||
1541 | netif_tx_unlock_bh(efx->net_dev); | ||
1542 | } | ||
1543 | } | ||
1544 | |||
1545 | static void efx_remove_all(struct efx_nic *efx) | ||
1546 | { | ||
1547 | efx_remove_filters(efx); | ||
1548 | efx_remove_channels(efx); | ||
1549 | efx_remove_port(efx); | ||
1550 | efx_remove_nic(efx); | ||
1551 | } | ||
1552 | |||
1553 | /************************************************************************** | ||
1554 | * | ||
1555 | * Interrupt moderation | ||
1556 | * | ||
1557 | **************************************************************************/ | ||
1558 | |||
1559 | static unsigned irq_mod_ticks(int usecs, int resolution) | ||
1560 | { | ||
1561 | if (usecs <= 0) | ||
1562 | return 0; /* cannot receive interrupts ahead of time :-) */ | ||
1563 | if (usecs < resolution) | ||
1564 | return 1; /* never round down to 0 */ | ||
1565 | return usecs / resolution; | ||
1566 | } | ||
1567 | |||
1568 | /* Set interrupt moderation parameters */ | ||
1569 | void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs, | ||
1570 | bool rx_adaptive) | ||
1571 | { | ||
1572 | struct efx_channel *channel; | ||
1573 | unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION); | ||
1574 | unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION); | ||
1575 | |||
1576 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
1577 | |||
1578 | efx->irq_rx_adaptive = rx_adaptive; | ||
1579 | efx->irq_rx_moderation = rx_ticks; | ||
1580 | efx_for_each_channel(channel, efx) { | ||
1581 | if (efx_channel_has_rx_queue(channel)) | ||
1582 | channel->irq_moderation = rx_ticks; | ||
1583 | else if (efx_channel_has_tx_queues(channel)) | ||
1584 | channel->irq_moderation = tx_ticks; | ||
1585 | } | ||
1586 | } | ||
1587 | |||
1588 | /************************************************************************** | ||
1589 | * | ||
1590 | * Hardware monitor | ||
1591 | * | ||
1592 | **************************************************************************/ | ||
1593 | |||
1594 | /* Run periodically off the general workqueue */ | ||
1595 | static void efx_monitor(struct work_struct *data) | ||
1596 | { | ||
1597 | struct efx_nic *efx = container_of(data, struct efx_nic, | ||
1598 | monitor_work.work); | ||
1599 | |||
1600 | netif_vdbg(efx, timer, efx->net_dev, | ||
1601 | "hardware monitor executing on CPU %d\n", | ||
1602 | raw_smp_processor_id()); | ||
1603 | BUG_ON(efx->type->monitor == NULL); | ||
1604 | |||
1605 | /* If the mac_lock is already held then it is likely a port | ||
1606 | * reconfiguration is already in place, which will likely do | ||
1607 | * most of the work of monitor() anyway. */ | ||
1608 | if (mutex_trylock(&efx->mac_lock)) { | ||
1609 | if (efx->port_enabled) | ||
1610 | efx->type->monitor(efx); | ||
1611 | mutex_unlock(&efx->mac_lock); | ||
1612 | } | ||
1613 | |||
1614 | queue_delayed_work(efx->workqueue, &efx->monitor_work, | ||
1615 | efx_monitor_interval); | ||
1616 | } | ||
1617 | |||
1618 | /************************************************************************** | ||
1619 | * | ||
1620 | * ioctls | ||
1621 | * | ||
1622 | *************************************************************************/ | ||
1623 | |||
1624 | /* Net device ioctl | ||
1625 | * Context: process, rtnl_lock() held. | ||
1626 | */ | ||
1627 | static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) | ||
1628 | { | ||
1629 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1630 | struct mii_ioctl_data *data = if_mii(ifr); | ||
1631 | |||
1632 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
1633 | |||
1634 | /* Convert phy_id from older PRTAD/DEVAD format */ | ||
1635 | if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && | ||
1636 | (data->phy_id & 0xfc00) == 0x0400) | ||
1637 | data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; | ||
1638 | |||
1639 | return mdio_mii_ioctl(&efx->mdio, data, cmd); | ||
1640 | } | ||
1641 | |||
1642 | /************************************************************************** | ||
1643 | * | ||
1644 | * NAPI interface | ||
1645 | * | ||
1646 | **************************************************************************/ | ||
1647 | |||
1648 | static void efx_init_napi(struct efx_nic *efx) | ||
1649 | { | ||
1650 | struct efx_channel *channel; | ||
1651 | |||
1652 | efx_for_each_channel(channel, efx) { | ||
1653 | channel->napi_dev = efx->net_dev; | ||
1654 | netif_napi_add(channel->napi_dev, &channel->napi_str, | ||
1655 | efx_poll, napi_weight); | ||
1656 | } | ||
1657 | } | ||
1658 | |||
1659 | static void efx_fini_napi_channel(struct efx_channel *channel) | ||
1660 | { | ||
1661 | if (channel->napi_dev) | ||
1662 | netif_napi_del(&channel->napi_str); | ||
1663 | channel->napi_dev = NULL; | ||
1664 | } | ||
1665 | |||
1666 | static void efx_fini_napi(struct efx_nic *efx) | ||
1667 | { | ||
1668 | struct efx_channel *channel; | ||
1669 | |||
1670 | efx_for_each_channel(channel, efx) | ||
1671 | efx_fini_napi_channel(channel); | ||
1672 | } | ||
1673 | |||
1674 | /************************************************************************** | ||
1675 | * | ||
1676 | * Kernel netpoll interface | ||
1677 | * | ||
1678 | *************************************************************************/ | ||
1679 | |||
1680 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
1681 | |||
1682 | /* Although in the common case interrupts will be disabled, this is not | ||
1683 | * guaranteed. However, all our work happens inside the NAPI callback, | ||
1684 | * so no locking is required. | ||
1685 | */ | ||
1686 | static void efx_netpoll(struct net_device *net_dev) | ||
1687 | { | ||
1688 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1689 | struct efx_channel *channel; | ||
1690 | |||
1691 | efx_for_each_channel(channel, efx) | ||
1692 | efx_schedule_channel(channel); | ||
1693 | } | ||
1694 | |||
1695 | #endif | ||
1696 | |||
1697 | /************************************************************************** | ||
1698 | * | ||
1699 | * Kernel net device interface | ||
1700 | * | ||
1701 | *************************************************************************/ | ||
1702 | |||
1703 | /* Context: process, rtnl_lock() held. */ | ||
1704 | static int efx_net_open(struct net_device *net_dev) | ||
1705 | { | ||
1706 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1707 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
1708 | |||
1709 | netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", | ||
1710 | raw_smp_processor_id()); | ||
1711 | |||
1712 | if (efx->state == STATE_DISABLED) | ||
1713 | return -EIO; | ||
1714 | if (efx->phy_mode & PHY_MODE_SPECIAL) | ||
1715 | return -EBUSY; | ||
1716 | if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) | ||
1717 | return -EIO; | ||
1718 | |||
1719 | /* Notify the kernel of the link state polled during driver load, | ||
1720 | * before the monitor starts running */ | ||
1721 | efx_link_status_changed(efx); | ||
1722 | |||
1723 | efx_start_all(efx); | ||
1724 | return 0; | ||
1725 | } | ||
1726 | |||
1727 | /* Context: process, rtnl_lock() held. | ||
1728 | * Note that the kernel will ignore our return code; this method | ||
1729 | * should really be a void. | ||
1730 | */ | ||
1731 | static int efx_net_stop(struct net_device *net_dev) | ||
1732 | { | ||
1733 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1734 | |||
1735 | netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", | ||
1736 | raw_smp_processor_id()); | ||
1737 | |||
1738 | if (efx->state != STATE_DISABLED) { | ||
1739 | /* Stop the device and flush all the channels */ | ||
1740 | efx_stop_all(efx); | ||
1741 | efx_fini_channels(efx); | ||
1742 | efx_init_channels(efx); | ||
1743 | } | ||
1744 | |||
1745 | return 0; | ||
1746 | } | ||
1747 | |||
1748 | /* Context: process, dev_base_lock or RTNL held, non-blocking. */ | ||
1749 | static struct rtnl_link_stats64 *efx_net_stats(struct net_device *net_dev, struct rtnl_link_stats64 *stats) | ||
1750 | { | ||
1751 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1752 | struct efx_mac_stats *mac_stats = &efx->mac_stats; | ||
1753 | |||
1754 | spin_lock_bh(&efx->stats_lock); | ||
1755 | efx->type->update_stats(efx); | ||
1756 | spin_unlock_bh(&efx->stats_lock); | ||
1757 | |||
1758 | stats->rx_packets = mac_stats->rx_packets; | ||
1759 | stats->tx_packets = mac_stats->tx_packets; | ||
1760 | stats->rx_bytes = mac_stats->rx_bytes; | ||
1761 | stats->tx_bytes = mac_stats->tx_bytes; | ||
1762 | stats->rx_dropped = efx->n_rx_nodesc_drop_cnt; | ||
1763 | stats->multicast = mac_stats->rx_multicast; | ||
1764 | stats->collisions = mac_stats->tx_collision; | ||
1765 | stats->rx_length_errors = (mac_stats->rx_gtjumbo + | ||
1766 | mac_stats->rx_length_error); | ||
1767 | stats->rx_crc_errors = mac_stats->rx_bad; | ||
1768 | stats->rx_frame_errors = mac_stats->rx_align_error; | ||
1769 | stats->rx_fifo_errors = mac_stats->rx_overflow; | ||
1770 | stats->rx_missed_errors = mac_stats->rx_missed; | ||
1771 | stats->tx_window_errors = mac_stats->tx_late_collision; | ||
1772 | |||
1773 | stats->rx_errors = (stats->rx_length_errors + | ||
1774 | stats->rx_crc_errors + | ||
1775 | stats->rx_frame_errors + | ||
1776 | mac_stats->rx_symbol_error); | ||
1777 | stats->tx_errors = (stats->tx_window_errors + | ||
1778 | mac_stats->tx_bad); | ||
1779 | |||
1780 | return stats; | ||
1781 | } | ||
1782 | |||
1783 | /* Context: netif_tx_lock held, BHs disabled. */ | ||
1784 | static void efx_watchdog(struct net_device *net_dev) | ||
1785 | { | ||
1786 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1787 | |||
1788 | netif_err(efx, tx_err, efx->net_dev, | ||
1789 | "TX stuck with port_enabled=%d: resetting channels\n", | ||
1790 | efx->port_enabled); | ||
1791 | |||
1792 | efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); | ||
1793 | } | ||
1794 | |||
1795 | |||
1796 | /* Context: process, rtnl_lock() held. */ | ||
1797 | static int efx_change_mtu(struct net_device *net_dev, int new_mtu) | ||
1798 | { | ||
1799 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1800 | int rc = 0; | ||
1801 | |||
1802 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
1803 | |||
1804 | if (new_mtu > EFX_MAX_MTU) | ||
1805 | return -EINVAL; | ||
1806 | |||
1807 | efx_stop_all(efx); | ||
1808 | |||
1809 | netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); | ||
1810 | |||
1811 | efx_fini_channels(efx); | ||
1812 | |||
1813 | mutex_lock(&efx->mac_lock); | ||
1814 | /* Reconfigure the MAC before enabling the dma queues so that | ||
1815 | * the RX buffers don't overflow */ | ||
1816 | net_dev->mtu = new_mtu; | ||
1817 | efx->mac_op->reconfigure(efx); | ||
1818 | mutex_unlock(&efx->mac_lock); | ||
1819 | |||
1820 | efx_init_channels(efx); | ||
1821 | |||
1822 | efx_start_all(efx); | ||
1823 | return rc; | ||
1824 | } | ||
1825 | |||
1826 | static int efx_set_mac_address(struct net_device *net_dev, void *data) | ||
1827 | { | ||
1828 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1829 | struct sockaddr *addr = data; | ||
1830 | char *new_addr = addr->sa_data; | ||
1831 | |||
1832 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
1833 | |||
1834 | if (!is_valid_ether_addr(new_addr)) { | ||
1835 | netif_err(efx, drv, efx->net_dev, | ||
1836 | "invalid ethernet MAC address requested: %pM\n", | ||
1837 | new_addr); | ||
1838 | return -EINVAL; | ||
1839 | } | ||
1840 | |||
1841 | memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len); | ||
1842 | |||
1843 | /* Reconfigure the MAC */ | ||
1844 | mutex_lock(&efx->mac_lock); | ||
1845 | efx->mac_op->reconfigure(efx); | ||
1846 | mutex_unlock(&efx->mac_lock); | ||
1847 | |||
1848 | return 0; | ||
1849 | } | ||
1850 | |||
1851 | /* Context: netif_addr_lock held, BHs disabled. */ | ||
1852 | static void efx_set_multicast_list(struct net_device *net_dev) | ||
1853 | { | ||
1854 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1855 | struct netdev_hw_addr *ha; | ||
1856 | union efx_multicast_hash *mc_hash = &efx->multicast_hash; | ||
1857 | u32 crc; | ||
1858 | int bit; | ||
1859 | |||
1860 | efx->promiscuous = !!(net_dev->flags & IFF_PROMISC); | ||
1861 | |||
1862 | /* Build multicast hash table */ | ||
1863 | if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) { | ||
1864 | memset(mc_hash, 0xff, sizeof(*mc_hash)); | ||
1865 | } else { | ||
1866 | memset(mc_hash, 0x00, sizeof(*mc_hash)); | ||
1867 | netdev_for_each_mc_addr(ha, net_dev) { | ||
1868 | crc = ether_crc_le(ETH_ALEN, ha->addr); | ||
1869 | bit = crc & (EFX_MCAST_HASH_ENTRIES - 1); | ||
1870 | set_bit_le(bit, mc_hash->byte); | ||
1871 | } | ||
1872 | |||
1873 | /* Broadcast packets go through the multicast hash filter. | ||
1874 | * ether_crc_le() of the broadcast address is 0xbe2612ff | ||
1875 | * so we always add bit 0xff to the mask. | ||
1876 | */ | ||
1877 | set_bit_le(0xff, mc_hash->byte); | ||
1878 | } | ||
1879 | |||
1880 | if (efx->port_enabled) | ||
1881 | queue_work(efx->workqueue, &efx->mac_work); | ||
1882 | /* Otherwise efx_start_port() will do this */ | ||
1883 | } | ||
1884 | |||
1885 | static int efx_set_features(struct net_device *net_dev, u32 data) | ||
1886 | { | ||
1887 | struct efx_nic *efx = netdev_priv(net_dev); | ||
1888 | |||
1889 | /* If disabling RX n-tuple filtering, clear existing filters */ | ||
1890 | if (net_dev->features & ~data & NETIF_F_NTUPLE) | ||
1891 | efx_filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); | ||
1892 | |||
1893 | return 0; | ||
1894 | } | ||
1895 | |||
1896 | static const struct net_device_ops efx_netdev_ops = { | ||
1897 | .ndo_open = efx_net_open, | ||
1898 | .ndo_stop = efx_net_stop, | ||
1899 | .ndo_get_stats64 = efx_net_stats, | ||
1900 | .ndo_tx_timeout = efx_watchdog, | ||
1901 | .ndo_start_xmit = efx_hard_start_xmit, | ||
1902 | .ndo_validate_addr = eth_validate_addr, | ||
1903 | .ndo_do_ioctl = efx_ioctl, | ||
1904 | .ndo_change_mtu = efx_change_mtu, | ||
1905 | .ndo_set_mac_address = efx_set_mac_address, | ||
1906 | .ndo_set_multicast_list = efx_set_multicast_list, | ||
1907 | .ndo_set_features = efx_set_features, | ||
1908 | #ifdef CONFIG_NET_POLL_CONTROLLER | ||
1909 | .ndo_poll_controller = efx_netpoll, | ||
1910 | #endif | ||
1911 | .ndo_setup_tc = efx_setup_tc, | ||
1912 | #ifdef CONFIG_RFS_ACCEL | ||
1913 | .ndo_rx_flow_steer = efx_filter_rfs, | ||
1914 | #endif | ||
1915 | }; | ||
1916 | |||
1917 | static void efx_update_name(struct efx_nic *efx) | ||
1918 | { | ||
1919 | strcpy(efx->name, efx->net_dev->name); | ||
1920 | efx_mtd_rename(efx); | ||
1921 | efx_set_channel_names(efx); | ||
1922 | } | ||
1923 | |||
1924 | static int efx_netdev_event(struct notifier_block *this, | ||
1925 | unsigned long event, void *ptr) | ||
1926 | { | ||
1927 | struct net_device *net_dev = ptr; | ||
1928 | |||
1929 | if (net_dev->netdev_ops == &efx_netdev_ops && | ||
1930 | event == NETDEV_CHANGENAME) | ||
1931 | efx_update_name(netdev_priv(net_dev)); | ||
1932 | |||
1933 | return NOTIFY_DONE; | ||
1934 | } | ||
1935 | |||
1936 | static struct notifier_block efx_netdev_notifier = { | ||
1937 | .notifier_call = efx_netdev_event, | ||
1938 | }; | ||
1939 | |||
1940 | static ssize_t | ||
1941 | show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) | ||
1942 | { | ||
1943 | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | ||
1944 | return sprintf(buf, "%d\n", efx->phy_type); | ||
1945 | } | ||
1946 | static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL); | ||
1947 | |||
1948 | static int efx_register_netdev(struct efx_nic *efx) | ||
1949 | { | ||
1950 | struct net_device *net_dev = efx->net_dev; | ||
1951 | struct efx_channel *channel; | ||
1952 | int rc; | ||
1953 | |||
1954 | net_dev->watchdog_timeo = 5 * HZ; | ||
1955 | net_dev->irq = efx->pci_dev->irq; | ||
1956 | net_dev->netdev_ops = &efx_netdev_ops; | ||
1957 | SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops); | ||
1958 | |||
1959 | /* Clear MAC statistics */ | ||
1960 | efx->mac_op->update_stats(efx); | ||
1961 | memset(&efx->mac_stats, 0, sizeof(efx->mac_stats)); | ||
1962 | |||
1963 | rtnl_lock(); | ||
1964 | |||
1965 | rc = dev_alloc_name(net_dev, net_dev->name); | ||
1966 | if (rc < 0) | ||
1967 | goto fail_locked; | ||
1968 | efx_update_name(efx); | ||
1969 | |||
1970 | rc = register_netdevice(net_dev); | ||
1971 | if (rc) | ||
1972 | goto fail_locked; | ||
1973 | |||
1974 | efx_for_each_channel(channel, efx) { | ||
1975 | struct efx_tx_queue *tx_queue; | ||
1976 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
1977 | efx_init_tx_queue_core_txq(tx_queue); | ||
1978 | } | ||
1979 | |||
1980 | /* Always start with carrier off; PHY events will detect the link */ | ||
1981 | netif_carrier_off(efx->net_dev); | ||
1982 | |||
1983 | rtnl_unlock(); | ||
1984 | |||
1985 | rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); | ||
1986 | if (rc) { | ||
1987 | netif_err(efx, drv, efx->net_dev, | ||
1988 | "failed to init net dev attributes\n"); | ||
1989 | goto fail_registered; | ||
1990 | } | ||
1991 | |||
1992 | return 0; | ||
1993 | |||
1994 | fail_locked: | ||
1995 | rtnl_unlock(); | ||
1996 | netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); | ||
1997 | return rc; | ||
1998 | |||
1999 | fail_registered: | ||
2000 | unregister_netdev(net_dev); | ||
2001 | return rc; | ||
2002 | } | ||
2003 | |||
2004 | static void efx_unregister_netdev(struct efx_nic *efx) | ||
2005 | { | ||
2006 | struct efx_channel *channel; | ||
2007 | struct efx_tx_queue *tx_queue; | ||
2008 | |||
2009 | if (!efx->net_dev) | ||
2010 | return; | ||
2011 | |||
2012 | BUG_ON(netdev_priv(efx->net_dev) != efx); | ||
2013 | |||
2014 | /* Free up any skbs still remaining. This has to happen before | ||
2015 | * we try to unregister the netdev as running their destructors | ||
2016 | * may be needed to get the device ref. count to 0. */ | ||
2017 | efx_for_each_channel(channel, efx) { | ||
2018 | efx_for_each_channel_tx_queue(tx_queue, channel) | ||
2019 | efx_release_tx_buffers(tx_queue); | ||
2020 | } | ||
2021 | |||
2022 | if (efx_dev_registered(efx)) { | ||
2023 | strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); | ||
2024 | device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); | ||
2025 | unregister_netdev(efx->net_dev); | ||
2026 | } | ||
2027 | } | ||
2028 | |||
2029 | /************************************************************************** | ||
2030 | * | ||
2031 | * Device reset and suspend | ||
2032 | * | ||
2033 | **************************************************************************/ | ||
2034 | |||
2035 | /* Tears down the entire software state and most of the hardware state | ||
2036 | * before reset. */ | ||
2037 | void efx_reset_down(struct efx_nic *efx, enum reset_type method) | ||
2038 | { | ||
2039 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
2040 | |||
2041 | efx_stop_all(efx); | ||
2042 | mutex_lock(&efx->mac_lock); | ||
2043 | |||
2044 | efx_fini_channels(efx); | ||
2045 | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) | ||
2046 | efx->phy_op->fini(efx); | ||
2047 | efx->type->fini(efx); | ||
2048 | } | ||
2049 | |||
2050 | /* This function will always ensure that the locks acquired in | ||
2051 | * efx_reset_down() are released. A failure return code indicates | ||
2052 | * that we were unable to reinitialise the hardware, and the | ||
2053 | * driver should be disabled. If ok is false, then the rx and tx | ||
2054 | * engines are not restarted, pending a RESET_DISABLE. */ | ||
2055 | int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) | ||
2056 | { | ||
2057 | int rc; | ||
2058 | |||
2059 | EFX_ASSERT_RESET_SERIALISED(efx); | ||
2060 | |||
2061 | rc = efx->type->init(efx); | ||
2062 | if (rc) { | ||
2063 | netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); | ||
2064 | goto fail; | ||
2065 | } | ||
2066 | |||
2067 | if (!ok) | ||
2068 | goto fail; | ||
2069 | |||
2070 | if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) { | ||
2071 | rc = efx->phy_op->init(efx); | ||
2072 | if (rc) | ||
2073 | goto fail; | ||
2074 | if (efx->phy_op->reconfigure(efx)) | ||
2075 | netif_err(efx, drv, efx->net_dev, | ||
2076 | "could not restore PHY settings\n"); | ||
2077 | } | ||
2078 | |||
2079 | efx->mac_op->reconfigure(efx); | ||
2080 | |||
2081 | efx_init_channels(efx); | ||
2082 | efx_restore_filters(efx); | ||
2083 | |||
2084 | mutex_unlock(&efx->mac_lock); | ||
2085 | |||
2086 | efx_start_all(efx); | ||
2087 | |||
2088 | return 0; | ||
2089 | |||
2090 | fail: | ||
2091 | efx->port_initialized = false; | ||
2092 | |||
2093 | mutex_unlock(&efx->mac_lock); | ||
2094 | |||
2095 | return rc; | ||
2096 | } | ||
2097 | |||
2098 | /* Reset the NIC using the specified method. Note that the reset may | ||
2099 | * fail, in which case the card will be left in an unusable state. | ||
2100 | * | ||
2101 | * Caller must hold the rtnl_lock. | ||
2102 | */ | ||
2103 | int efx_reset(struct efx_nic *efx, enum reset_type method) | ||
2104 | { | ||
2105 | int rc, rc2; | ||
2106 | bool disabled; | ||
2107 | |||
2108 | netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", | ||
2109 | RESET_TYPE(method)); | ||
2110 | |||
2111 | netif_device_detach(efx->net_dev); | ||
2112 | efx_reset_down(efx, method); | ||
2113 | |||
2114 | rc = efx->type->reset(efx, method); | ||
2115 | if (rc) { | ||
2116 | netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); | ||
2117 | goto out; | ||
2118 | } | ||
2119 | |||
2120 | /* Clear flags for the scopes we covered. We assume the NIC and | ||
2121 | * driver are now quiescent so that there is no race here. | ||
2122 | */ | ||
2123 | efx->reset_pending &= -(1 << (method + 1)); | ||
2124 | |||
2125 | /* Reinitialise bus-mastering, which may have been turned off before | ||
2126 | * the reset was scheduled. This is still appropriate, even in the | ||
2127 | * RESET_TYPE_DISABLE since this driver generally assumes the hardware | ||
2128 | * can respond to requests. */ | ||
2129 | pci_set_master(efx->pci_dev); | ||
2130 | |||
2131 | out: | ||
2132 | /* Leave device stopped if necessary */ | ||
2133 | disabled = rc || method == RESET_TYPE_DISABLE; | ||
2134 | rc2 = efx_reset_up(efx, method, !disabled); | ||
2135 | if (rc2) { | ||
2136 | disabled = true; | ||
2137 | if (!rc) | ||
2138 | rc = rc2; | ||
2139 | } | ||
2140 | |||
2141 | if (disabled) { | ||
2142 | dev_close(efx->net_dev); | ||
2143 | netif_err(efx, drv, efx->net_dev, "has been disabled\n"); | ||
2144 | efx->state = STATE_DISABLED; | ||
2145 | } else { | ||
2146 | netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); | ||
2147 | netif_device_attach(efx->net_dev); | ||
2148 | } | ||
2149 | return rc; | ||
2150 | } | ||
2151 | |||
2152 | /* The worker thread exists so that code that cannot sleep can | ||
2153 | * schedule a reset for later. | ||
2154 | */ | ||
2155 | static void efx_reset_work(struct work_struct *data) | ||
2156 | { | ||
2157 | struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); | ||
2158 | unsigned long pending = ACCESS_ONCE(efx->reset_pending); | ||
2159 | |||
2160 | if (!pending) | ||
2161 | return; | ||
2162 | |||
2163 | /* If we're not RUNNING then don't reset. Leave the reset_pending | ||
2164 | * flags set so that efx_pci_probe_main will be retried */ | ||
2165 | if (efx->state != STATE_RUNNING) { | ||
2166 | netif_info(efx, drv, efx->net_dev, | ||
2167 | "scheduled reset quenched. NIC not RUNNING\n"); | ||
2168 | return; | ||
2169 | } | ||
2170 | |||
2171 | rtnl_lock(); | ||
2172 | (void)efx_reset(efx, fls(pending) - 1); | ||
2173 | rtnl_unlock(); | ||
2174 | } | ||
2175 | |||
2176 | void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) | ||
2177 | { | ||
2178 | enum reset_type method; | ||
2179 | |||
2180 | switch (type) { | ||
2181 | case RESET_TYPE_INVISIBLE: | ||
2182 | case RESET_TYPE_ALL: | ||
2183 | case RESET_TYPE_WORLD: | ||
2184 | case RESET_TYPE_DISABLE: | ||
2185 | method = type; | ||
2186 | netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", | ||
2187 | RESET_TYPE(method)); | ||
2188 | break; | ||
2189 | default: | ||
2190 | method = efx->type->map_reset_reason(type); | ||
2191 | netif_dbg(efx, drv, efx->net_dev, | ||
2192 | "scheduling %s reset for %s\n", | ||
2193 | RESET_TYPE(method), RESET_TYPE(type)); | ||
2194 | break; | ||
2195 | } | ||
2196 | |||
2197 | set_bit(method, &efx->reset_pending); | ||
2198 | |||
2199 | /* efx_process_channel() will no longer read events once a | ||
2200 | * reset is scheduled. So switch back to poll'd MCDI completions. */ | ||
2201 | efx_mcdi_mode_poll(efx); | ||
2202 | |||
2203 | queue_work(reset_workqueue, &efx->reset_work); | ||
2204 | } | ||
2205 | |||
2206 | /************************************************************************** | ||
2207 | * | ||
2208 | * List of NICs we support | ||
2209 | * | ||
2210 | **************************************************************************/ | ||
2211 | |||
2212 | /* PCI device ID table */ | ||
2213 | static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = { | ||
2214 | {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID), | ||
2215 | .driver_data = (unsigned long) &falcon_a1_nic_type}, | ||
2216 | {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID), | ||
2217 | .driver_data = (unsigned long) &falcon_b0_nic_type}, | ||
2218 | {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID), | ||
2219 | .driver_data = (unsigned long) &siena_a0_nic_type}, | ||
2220 | {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID), | ||
2221 | .driver_data = (unsigned long) &siena_a0_nic_type}, | ||
2222 | {0} /* end of list */ | ||
2223 | }; | ||
2224 | |||
2225 | /************************************************************************** | ||
2226 | * | ||
2227 | * Dummy PHY/MAC operations | ||
2228 | * | ||
2229 | * Can be used for some unimplemented operations | ||
2230 | * Needed so all function pointers are valid and do not have to be tested | ||
2231 | * before use | ||
2232 | * | ||
2233 | **************************************************************************/ | ||
2234 | int efx_port_dummy_op_int(struct efx_nic *efx) | ||
2235 | { | ||
2236 | return 0; | ||
2237 | } | ||
2238 | void efx_port_dummy_op_void(struct efx_nic *efx) {} | ||
2239 | |||
2240 | static bool efx_port_dummy_op_poll(struct efx_nic *efx) | ||
2241 | { | ||
2242 | return false; | ||
2243 | } | ||
2244 | |||
2245 | static const struct efx_phy_operations efx_dummy_phy_operations = { | ||
2246 | .init = efx_port_dummy_op_int, | ||
2247 | .reconfigure = efx_port_dummy_op_int, | ||
2248 | .poll = efx_port_dummy_op_poll, | ||
2249 | .fini = efx_port_dummy_op_void, | ||
2250 | }; | ||
2251 | |||
2252 | /************************************************************************** | ||
2253 | * | ||
2254 | * Data housekeeping | ||
2255 | * | ||
2256 | **************************************************************************/ | ||
2257 | |||
2258 | /* This zeroes out and then fills in the invariants in a struct | ||
2259 | * efx_nic (including all sub-structures). | ||
2260 | */ | ||
2261 | static int efx_init_struct(struct efx_nic *efx, const struct efx_nic_type *type, | ||
2262 | struct pci_dev *pci_dev, struct net_device *net_dev) | ||
2263 | { | ||
2264 | int i; | ||
2265 | |||
2266 | /* Initialise common structures */ | ||
2267 | memset(efx, 0, sizeof(*efx)); | ||
2268 | spin_lock_init(&efx->biu_lock); | ||
2269 | #ifdef CONFIG_SFC_MTD | ||
2270 | INIT_LIST_HEAD(&efx->mtd_list); | ||
2271 | #endif | ||
2272 | INIT_WORK(&efx->reset_work, efx_reset_work); | ||
2273 | INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); | ||
2274 | efx->pci_dev = pci_dev; | ||
2275 | efx->msg_enable = debug; | ||
2276 | efx->state = STATE_INIT; | ||
2277 | strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); | ||
2278 | |||
2279 | efx->net_dev = net_dev; | ||
2280 | spin_lock_init(&efx->stats_lock); | ||
2281 | mutex_init(&efx->mac_lock); | ||
2282 | efx->mac_op = type->default_mac_ops; | ||
2283 | efx->phy_op = &efx_dummy_phy_operations; | ||
2284 | efx->mdio.dev = net_dev; | ||
2285 | INIT_WORK(&efx->mac_work, efx_mac_work); | ||
2286 | |||
2287 | for (i = 0; i < EFX_MAX_CHANNELS; i++) { | ||
2288 | efx->channel[i] = efx_alloc_channel(efx, i, NULL); | ||
2289 | if (!efx->channel[i]) | ||
2290 | goto fail; | ||
2291 | } | ||
2292 | |||
2293 | efx->type = type; | ||
2294 | |||
2295 | EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS); | ||
2296 | |||
2297 | /* Higher numbered interrupt modes are less capable! */ | ||
2298 | efx->interrupt_mode = max(efx->type->max_interrupt_mode, | ||
2299 | interrupt_mode); | ||
2300 | |||
2301 | /* Would be good to use the net_dev name, but we're too early */ | ||
2302 | snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", | ||
2303 | pci_name(pci_dev)); | ||
2304 | efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); | ||
2305 | if (!efx->workqueue) | ||
2306 | goto fail; | ||
2307 | |||
2308 | return 0; | ||
2309 | |||
2310 | fail: | ||
2311 | efx_fini_struct(efx); | ||
2312 | return -ENOMEM; | ||
2313 | } | ||
2314 | |||
2315 | static void efx_fini_struct(struct efx_nic *efx) | ||
2316 | { | ||
2317 | int i; | ||
2318 | |||
2319 | for (i = 0; i < EFX_MAX_CHANNELS; i++) | ||
2320 | kfree(efx->channel[i]); | ||
2321 | |||
2322 | if (efx->workqueue) { | ||
2323 | destroy_workqueue(efx->workqueue); | ||
2324 | efx->workqueue = NULL; | ||
2325 | } | ||
2326 | } | ||
2327 | |||
2328 | /************************************************************************** | ||
2329 | * | ||
2330 | * PCI interface | ||
2331 | * | ||
2332 | **************************************************************************/ | ||
2333 | |||
2334 | /* Main body of final NIC shutdown code | ||
2335 | * This is called only at module unload (or hotplug removal). | ||
2336 | */ | ||
2337 | static void efx_pci_remove_main(struct efx_nic *efx) | ||
2338 | { | ||
2339 | #ifdef CONFIG_RFS_ACCEL | ||
2340 | free_irq_cpu_rmap(efx->net_dev->rx_cpu_rmap); | ||
2341 | efx->net_dev->rx_cpu_rmap = NULL; | ||
2342 | #endif | ||
2343 | efx_nic_fini_interrupt(efx); | ||
2344 | efx_fini_channels(efx); | ||
2345 | efx_fini_port(efx); | ||
2346 | efx->type->fini(efx); | ||
2347 | efx_fini_napi(efx); | ||
2348 | efx_remove_all(efx); | ||
2349 | } | ||
2350 | |||
2351 | /* Final NIC shutdown | ||
2352 | * This is called only at module unload (or hotplug removal). | ||
2353 | */ | ||
2354 | static void efx_pci_remove(struct pci_dev *pci_dev) | ||
2355 | { | ||
2356 | struct efx_nic *efx; | ||
2357 | |||
2358 | efx = pci_get_drvdata(pci_dev); | ||
2359 | if (!efx) | ||
2360 | return; | ||
2361 | |||
2362 | /* Mark the NIC as fini, then stop the interface */ | ||
2363 | rtnl_lock(); | ||
2364 | efx->state = STATE_FINI; | ||
2365 | dev_close(efx->net_dev); | ||
2366 | |||
2367 | /* Allow any queued efx_resets() to complete */ | ||
2368 | rtnl_unlock(); | ||
2369 | |||
2370 | efx_unregister_netdev(efx); | ||
2371 | |||
2372 | efx_mtd_remove(efx); | ||
2373 | |||
2374 | /* Wait for any scheduled resets to complete. No more will be | ||
2375 | * scheduled from this point because efx_stop_all() has been | ||
2376 | * called, we are no longer registered with driverlink, and | ||
2377 | * the net_device's have been removed. */ | ||
2378 | cancel_work_sync(&efx->reset_work); | ||
2379 | |||
2380 | efx_pci_remove_main(efx); | ||
2381 | |||
2382 | efx_fini_io(efx); | ||
2383 | netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); | ||
2384 | |||
2385 | pci_set_drvdata(pci_dev, NULL); | ||
2386 | efx_fini_struct(efx); | ||
2387 | free_netdev(efx->net_dev); | ||
2388 | }; | ||
2389 | |||
2390 | /* Main body of NIC initialisation | ||
2391 | * This is called at module load (or hotplug insertion, theoretically). | ||
2392 | */ | ||
2393 | static int efx_pci_probe_main(struct efx_nic *efx) | ||
2394 | { | ||
2395 | int rc; | ||
2396 | |||
2397 | /* Do start-of-day initialisation */ | ||
2398 | rc = efx_probe_all(efx); | ||
2399 | if (rc) | ||
2400 | goto fail1; | ||
2401 | |||
2402 | efx_init_napi(efx); | ||
2403 | |||
2404 | rc = efx->type->init(efx); | ||
2405 | if (rc) { | ||
2406 | netif_err(efx, probe, efx->net_dev, | ||
2407 | "failed to initialise NIC\n"); | ||
2408 | goto fail3; | ||
2409 | } | ||
2410 | |||
2411 | rc = efx_init_port(efx); | ||
2412 | if (rc) { | ||
2413 | netif_err(efx, probe, efx->net_dev, | ||
2414 | "failed to initialise port\n"); | ||
2415 | goto fail4; | ||
2416 | } | ||
2417 | |||
2418 | efx_init_channels(efx); | ||
2419 | |||
2420 | rc = efx_nic_init_interrupt(efx); | ||
2421 | if (rc) | ||
2422 | goto fail5; | ||
2423 | |||
2424 | return 0; | ||
2425 | |||
2426 | fail5: | ||
2427 | efx_fini_channels(efx); | ||
2428 | efx_fini_port(efx); | ||
2429 | fail4: | ||
2430 | efx->type->fini(efx); | ||
2431 | fail3: | ||
2432 | efx_fini_napi(efx); | ||
2433 | efx_remove_all(efx); | ||
2434 | fail1: | ||
2435 | return rc; | ||
2436 | } | ||
2437 | |||
2438 | /* NIC initialisation | ||
2439 | * | ||
2440 | * This is called at module load (or hotplug insertion, | ||
2441 | * theoretically). It sets up PCI mappings, tests and resets the NIC, | ||
2442 | * sets up and registers the network devices with the kernel and hooks | ||
2443 | * the interrupt service routine. It does not prepare the device for | ||
2444 | * transmission; this is left to the first time one of the network | ||
2445 | * interfaces is brought up (i.e. efx_net_open). | ||
2446 | */ | ||
2447 | static int __devinit efx_pci_probe(struct pci_dev *pci_dev, | ||
2448 | const struct pci_device_id *entry) | ||
2449 | { | ||
2450 | const struct efx_nic_type *type = (const struct efx_nic_type *) entry->driver_data; | ||
2451 | struct net_device *net_dev; | ||
2452 | struct efx_nic *efx; | ||
2453 | int i, rc; | ||
2454 | |||
2455 | /* Allocate and initialise a struct net_device and struct efx_nic */ | ||
2456 | net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, | ||
2457 | EFX_MAX_RX_QUEUES); | ||
2458 | if (!net_dev) | ||
2459 | return -ENOMEM; | ||
2460 | net_dev->features |= (type->offload_features | NETIF_F_SG | | ||
2461 | NETIF_F_HIGHDMA | NETIF_F_TSO | | ||
2462 | NETIF_F_RXCSUM); | ||
2463 | if (type->offload_features & NETIF_F_V6_CSUM) | ||
2464 | net_dev->features |= NETIF_F_TSO6; | ||
2465 | /* Mask for features that also apply to VLAN devices */ | ||
2466 | net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG | | ||
2467 | NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | | ||
2468 | NETIF_F_RXCSUM); | ||
2469 | /* All offloads can be toggled */ | ||
2470 | net_dev->hw_features = net_dev->features & ~NETIF_F_HIGHDMA; | ||
2471 | efx = netdev_priv(net_dev); | ||
2472 | pci_set_drvdata(pci_dev, efx); | ||
2473 | SET_NETDEV_DEV(net_dev, &pci_dev->dev); | ||
2474 | rc = efx_init_struct(efx, type, pci_dev, net_dev); | ||
2475 | if (rc) | ||
2476 | goto fail1; | ||
2477 | |||
2478 | netif_info(efx, probe, efx->net_dev, | ||
2479 | "Solarflare NIC detected\n"); | ||
2480 | |||
2481 | /* Set up basic I/O (BAR mappings etc) */ | ||
2482 | rc = efx_init_io(efx); | ||
2483 | if (rc) | ||
2484 | goto fail2; | ||
2485 | |||
2486 | /* No serialisation is required with the reset path because | ||
2487 | * we're in STATE_INIT. */ | ||
2488 | for (i = 0; i < 5; i++) { | ||
2489 | rc = efx_pci_probe_main(efx); | ||
2490 | |||
2491 | /* Serialise against efx_reset(). No more resets will be | ||
2492 | * scheduled since efx_stop_all() has been called, and we | ||
2493 | * have not and never have been registered with either | ||
2494 | * the rtnetlink or driverlink layers. */ | ||
2495 | cancel_work_sync(&efx->reset_work); | ||
2496 | |||
2497 | if (rc == 0) { | ||
2498 | if (efx->reset_pending) { | ||
2499 | /* If there was a scheduled reset during | ||
2500 | * probe, the NIC is probably hosed anyway */ | ||
2501 | efx_pci_remove_main(efx); | ||
2502 | rc = -EIO; | ||
2503 | } else { | ||
2504 | break; | ||
2505 | } | ||
2506 | } | ||
2507 | |||
2508 | /* Retry if a recoverably reset event has been scheduled */ | ||
2509 | if (efx->reset_pending & | ||
2510 | ~(1 << RESET_TYPE_INVISIBLE | 1 << RESET_TYPE_ALL) || | ||
2511 | !efx->reset_pending) | ||
2512 | goto fail3; | ||
2513 | |||
2514 | efx->reset_pending = 0; | ||
2515 | } | ||
2516 | |||
2517 | if (rc) { | ||
2518 | netif_err(efx, probe, efx->net_dev, "Could not reset NIC\n"); | ||
2519 | goto fail4; | ||
2520 | } | ||
2521 | |||
2522 | /* Switch to the running state before we expose the device to the OS, | ||
2523 | * so that dev_open()|efx_start_all() will actually start the device */ | ||
2524 | efx->state = STATE_RUNNING; | ||
2525 | |||
2526 | rc = efx_register_netdev(efx); | ||
2527 | if (rc) | ||
2528 | goto fail5; | ||
2529 | |||
2530 | netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); | ||
2531 | |||
2532 | rtnl_lock(); | ||
2533 | efx_mtd_probe(efx); /* allowed to fail */ | ||
2534 | rtnl_unlock(); | ||
2535 | return 0; | ||
2536 | |||
2537 | fail5: | ||
2538 | efx_pci_remove_main(efx); | ||
2539 | fail4: | ||
2540 | fail3: | ||
2541 | efx_fini_io(efx); | ||
2542 | fail2: | ||
2543 | efx_fini_struct(efx); | ||
2544 | fail1: | ||
2545 | WARN_ON(rc > 0); | ||
2546 | netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); | ||
2547 | free_netdev(net_dev); | ||
2548 | return rc; | ||
2549 | } | ||
2550 | |||
2551 | static int efx_pm_freeze(struct device *dev) | ||
2552 | { | ||
2553 | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | ||
2554 | |||
2555 | efx->state = STATE_FINI; | ||
2556 | |||
2557 | netif_device_detach(efx->net_dev); | ||
2558 | |||
2559 | efx_stop_all(efx); | ||
2560 | efx_fini_channels(efx); | ||
2561 | |||
2562 | return 0; | ||
2563 | } | ||
2564 | |||
2565 | static int efx_pm_thaw(struct device *dev) | ||
2566 | { | ||
2567 | struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev)); | ||
2568 | |||
2569 | efx->state = STATE_INIT; | ||
2570 | |||
2571 | efx_init_channels(efx); | ||
2572 | |||
2573 | mutex_lock(&efx->mac_lock); | ||
2574 | efx->phy_op->reconfigure(efx); | ||
2575 | mutex_unlock(&efx->mac_lock); | ||
2576 | |||
2577 | efx_start_all(efx); | ||
2578 | |||
2579 | netif_device_attach(efx->net_dev); | ||
2580 | |||
2581 | efx->state = STATE_RUNNING; | ||
2582 | |||
2583 | efx->type->resume_wol(efx); | ||
2584 | |||
2585 | /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ | ||
2586 | queue_work(reset_workqueue, &efx->reset_work); | ||
2587 | |||
2588 | return 0; | ||
2589 | } | ||
2590 | |||
2591 | static int efx_pm_poweroff(struct device *dev) | ||
2592 | { | ||
2593 | struct pci_dev *pci_dev = to_pci_dev(dev); | ||
2594 | struct efx_nic *efx = pci_get_drvdata(pci_dev); | ||
2595 | |||
2596 | efx->type->fini(efx); | ||
2597 | |||
2598 | efx->reset_pending = 0; | ||
2599 | |||
2600 | pci_save_state(pci_dev); | ||
2601 | return pci_set_power_state(pci_dev, PCI_D3hot); | ||
2602 | } | ||
2603 | |||
2604 | /* Used for both resume and restore */ | ||
2605 | static int efx_pm_resume(struct device *dev) | ||
2606 | { | ||
2607 | struct pci_dev *pci_dev = to_pci_dev(dev); | ||
2608 | struct efx_nic *efx = pci_get_drvdata(pci_dev); | ||
2609 | int rc; | ||
2610 | |||
2611 | rc = pci_set_power_state(pci_dev, PCI_D0); | ||
2612 | if (rc) | ||
2613 | return rc; | ||
2614 | pci_restore_state(pci_dev); | ||
2615 | rc = pci_enable_device(pci_dev); | ||
2616 | if (rc) | ||
2617 | return rc; | ||
2618 | pci_set_master(efx->pci_dev); | ||
2619 | rc = efx->type->reset(efx, RESET_TYPE_ALL); | ||
2620 | if (rc) | ||
2621 | return rc; | ||
2622 | rc = efx->type->init(efx); | ||
2623 | if (rc) | ||
2624 | return rc; | ||
2625 | efx_pm_thaw(dev); | ||
2626 | return 0; | ||
2627 | } | ||
2628 | |||
2629 | static int efx_pm_suspend(struct device *dev) | ||
2630 | { | ||
2631 | int rc; | ||
2632 | |||
2633 | efx_pm_freeze(dev); | ||
2634 | rc = efx_pm_poweroff(dev); | ||
2635 | if (rc) | ||
2636 | efx_pm_resume(dev); | ||
2637 | return rc; | ||
2638 | } | ||
2639 | |||
2640 | static struct dev_pm_ops efx_pm_ops = { | ||
2641 | .suspend = efx_pm_suspend, | ||
2642 | .resume = efx_pm_resume, | ||
2643 | .freeze = efx_pm_freeze, | ||
2644 | .thaw = efx_pm_thaw, | ||
2645 | .poweroff = efx_pm_poweroff, | ||
2646 | .restore = efx_pm_resume, | ||
2647 | }; | ||
2648 | |||
2649 | static struct pci_driver efx_pci_driver = { | ||
2650 | .name = KBUILD_MODNAME, | ||
2651 | .id_table = efx_pci_table, | ||
2652 | .probe = efx_pci_probe, | ||
2653 | .remove = efx_pci_remove, | ||
2654 | .driver.pm = &efx_pm_ops, | ||
2655 | }; | ||
2656 | |||
2657 | /************************************************************************** | ||
2658 | * | ||
2659 | * Kernel module interface | ||
2660 | * | ||
2661 | *************************************************************************/ | ||
2662 | |||
2663 | module_param(interrupt_mode, uint, 0444); | ||
2664 | MODULE_PARM_DESC(interrupt_mode, | ||
2665 | "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); | ||
2666 | |||
2667 | static int __init efx_init_module(void) | ||
2668 | { | ||
2669 | int rc; | ||
2670 | |||
2671 | printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); | ||
2672 | |||
2673 | rc = register_netdevice_notifier(&efx_netdev_notifier); | ||
2674 | if (rc) | ||
2675 | goto err_notifier; | ||
2676 | |||
2677 | reset_workqueue = create_singlethread_workqueue("sfc_reset"); | ||
2678 | if (!reset_workqueue) { | ||
2679 | rc = -ENOMEM; | ||
2680 | goto err_reset; | ||
2681 | } | ||
2682 | |||
2683 | rc = pci_register_driver(&efx_pci_driver); | ||
2684 | if (rc < 0) | ||
2685 | goto err_pci; | ||
2686 | |||
2687 | return 0; | ||
2688 | |||
2689 | err_pci: | ||
2690 | destroy_workqueue(reset_workqueue); | ||
2691 | err_reset: | ||
2692 | unregister_netdevice_notifier(&efx_netdev_notifier); | ||
2693 | err_notifier: | ||
2694 | return rc; | ||
2695 | } | ||
2696 | |||
2697 | static void __exit efx_exit_module(void) | ||
2698 | { | ||
2699 | printk(KERN_INFO "Solarflare NET driver unloading\n"); | ||
2700 | |||
2701 | pci_unregister_driver(&efx_pci_driver); | ||
2702 | destroy_workqueue(reset_workqueue); | ||
2703 | unregister_netdevice_notifier(&efx_netdev_notifier); | ||
2704 | |||
2705 | } | ||
2706 | |||
2707 | module_init(efx_init_module); | ||
2708 | module_exit(efx_exit_module); | ||
2709 | |||
2710 | MODULE_AUTHOR("Solarflare Communications and " | ||
2711 | "Michael Brown <mbrown@fensystems.co.uk>"); | ||
2712 | MODULE_DESCRIPTION("Solarflare Communications network driver"); | ||
2713 | MODULE_LICENSE("GPL"); | ||
2714 | MODULE_DEVICE_TABLE(pci, efx_pci_table); | ||