diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-04-07 10:42:33 -0400 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-10 23:03:27 -0400 |
commit | dee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch) | |
tree | 47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/ethernet/intel/e1000e/ich8lan.c | |
parent | f7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff) |
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and
the necessary Kconfig and Makefile changes.
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e/ich8lan.c')
-rw-r--r-- | drivers/net/ethernet/intel/e1000e/ich8lan.c | 4111 |
1 files changed, 4111 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/ich8lan.c b/drivers/net/ethernet/intel/e1000e/ich8lan.c new file mode 100644 index 000000000000..4e36978b8fd8 --- /dev/null +++ b/drivers/net/ethernet/intel/e1000e/ich8lan.c | |||
@@ -0,0 +1,4111 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | Intel PRO/1000 Linux driver | ||
4 | Copyright(c) 1999 - 2011 Intel Corporation. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms and conditions of the GNU General Public License, | ||
8 | version 2, as published by the Free Software Foundation. | ||
9 | |||
10 | This program is distributed in the hope it will be useful, but WITHOUT | ||
11 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
12 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
13 | more details. | ||
14 | |||
15 | You should have received a copy of the GNU General Public License along with | ||
16 | this program; if not, write to the Free Software Foundation, Inc., | ||
17 | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | ||
18 | |||
19 | The full GNU General Public License is included in this distribution in | ||
20 | the file called "COPYING". | ||
21 | |||
22 | Contact Information: | ||
23 | Linux NICS <linux.nics@intel.com> | ||
24 | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* | ||
30 | * 82562G 10/100 Network Connection | ||
31 | * 82562G-2 10/100 Network Connection | ||
32 | * 82562GT 10/100 Network Connection | ||
33 | * 82562GT-2 10/100 Network Connection | ||
34 | * 82562V 10/100 Network Connection | ||
35 | * 82562V-2 10/100 Network Connection | ||
36 | * 82566DC-2 Gigabit Network Connection | ||
37 | * 82566DC Gigabit Network Connection | ||
38 | * 82566DM-2 Gigabit Network Connection | ||
39 | * 82566DM Gigabit Network Connection | ||
40 | * 82566MC Gigabit Network Connection | ||
41 | * 82566MM Gigabit Network Connection | ||
42 | * 82567LM Gigabit Network Connection | ||
43 | * 82567LF Gigabit Network Connection | ||
44 | * 82567V Gigabit Network Connection | ||
45 | * 82567LM-2 Gigabit Network Connection | ||
46 | * 82567LF-2 Gigabit Network Connection | ||
47 | * 82567V-2 Gigabit Network Connection | ||
48 | * 82567LF-3 Gigabit Network Connection | ||
49 | * 82567LM-3 Gigabit Network Connection | ||
50 | * 82567LM-4 Gigabit Network Connection | ||
51 | * 82577LM Gigabit Network Connection | ||
52 | * 82577LC Gigabit Network Connection | ||
53 | * 82578DM Gigabit Network Connection | ||
54 | * 82578DC Gigabit Network Connection | ||
55 | * 82579LM Gigabit Network Connection | ||
56 | * 82579V Gigabit Network Connection | ||
57 | */ | ||
58 | |||
59 | #include "e1000.h" | ||
60 | |||
61 | #define ICH_FLASH_GFPREG 0x0000 | ||
62 | #define ICH_FLASH_HSFSTS 0x0004 | ||
63 | #define ICH_FLASH_HSFCTL 0x0006 | ||
64 | #define ICH_FLASH_FADDR 0x0008 | ||
65 | #define ICH_FLASH_FDATA0 0x0010 | ||
66 | #define ICH_FLASH_PR0 0x0074 | ||
67 | |||
68 | #define ICH_FLASH_READ_COMMAND_TIMEOUT 500 | ||
69 | #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500 | ||
70 | #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000 | ||
71 | #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF | ||
72 | #define ICH_FLASH_CYCLE_REPEAT_COUNT 10 | ||
73 | |||
74 | #define ICH_CYCLE_READ 0 | ||
75 | #define ICH_CYCLE_WRITE 2 | ||
76 | #define ICH_CYCLE_ERASE 3 | ||
77 | |||
78 | #define FLASH_GFPREG_BASE_MASK 0x1FFF | ||
79 | #define FLASH_SECTOR_ADDR_SHIFT 12 | ||
80 | |||
81 | #define ICH_FLASH_SEG_SIZE_256 256 | ||
82 | #define ICH_FLASH_SEG_SIZE_4K 4096 | ||
83 | #define ICH_FLASH_SEG_SIZE_8K 8192 | ||
84 | #define ICH_FLASH_SEG_SIZE_64K 65536 | ||
85 | |||
86 | |||
87 | #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */ | ||
88 | /* FW established a valid mode */ | ||
89 | #define E1000_ICH_FWSM_FW_VALID 0x00008000 | ||
90 | |||
91 | #define E1000_ICH_MNG_IAMT_MODE 0x2 | ||
92 | |||
93 | #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \ | ||
94 | (ID_LED_DEF1_OFF2 << 8) | \ | ||
95 | (ID_LED_DEF1_ON2 << 4) | \ | ||
96 | (ID_LED_DEF1_DEF2)) | ||
97 | |||
98 | #define E1000_ICH_NVM_SIG_WORD 0x13 | ||
99 | #define E1000_ICH_NVM_SIG_MASK 0xC000 | ||
100 | #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0 | ||
101 | #define E1000_ICH_NVM_SIG_VALUE 0x80 | ||
102 | |||
103 | #define E1000_ICH8_LAN_INIT_TIMEOUT 1500 | ||
104 | |||
105 | #define E1000_FEXTNVM_SW_CONFIG 1 | ||
106 | #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */ | ||
107 | |||
108 | #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7 | ||
109 | #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7 | ||
110 | #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3 | ||
111 | |||
112 | #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL | ||
113 | |||
114 | #define E1000_ICH_RAR_ENTRIES 7 | ||
115 | |||
116 | #define PHY_PAGE_SHIFT 5 | ||
117 | #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \ | ||
118 | ((reg) & MAX_PHY_REG_ADDRESS)) | ||
119 | #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */ | ||
120 | #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */ | ||
121 | |||
122 | #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002 | ||
123 | #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300 | ||
124 | #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200 | ||
125 | |||
126 | #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */ | ||
127 | |||
128 | #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */ | ||
129 | |||
130 | /* SMBus Address Phy Register */ | ||
131 | #define HV_SMB_ADDR PHY_REG(768, 26) | ||
132 | #define HV_SMB_ADDR_MASK 0x007F | ||
133 | #define HV_SMB_ADDR_PEC_EN 0x0200 | ||
134 | #define HV_SMB_ADDR_VALID 0x0080 | ||
135 | |||
136 | /* PHY Power Management Control */ | ||
137 | #define HV_PM_CTRL PHY_REG(770, 17) | ||
138 | |||
139 | /* PHY Low Power Idle Control */ | ||
140 | #define I82579_LPI_CTRL PHY_REG(772, 20) | ||
141 | #define I82579_LPI_CTRL_ENABLE_MASK 0x6000 | ||
142 | |||
143 | /* EMI Registers */ | ||
144 | #define I82579_EMI_ADDR 0x10 | ||
145 | #define I82579_EMI_DATA 0x11 | ||
146 | #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */ | ||
147 | |||
148 | /* Strapping Option Register - RO */ | ||
149 | #define E1000_STRAP 0x0000C | ||
150 | #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000 | ||
151 | #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17 | ||
152 | |||
153 | /* OEM Bits Phy Register */ | ||
154 | #define HV_OEM_BITS PHY_REG(768, 25) | ||
155 | #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */ | ||
156 | #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */ | ||
157 | #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */ | ||
158 | |||
159 | #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */ | ||
160 | #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */ | ||
161 | |||
162 | /* KMRN Mode Control */ | ||
163 | #define HV_KMRN_MODE_CTRL PHY_REG(769, 16) | ||
164 | #define HV_KMRN_MDIO_SLOW 0x0400 | ||
165 | |||
166 | /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */ | ||
167 | /* Offset 04h HSFSTS */ | ||
168 | union ich8_hws_flash_status { | ||
169 | struct ich8_hsfsts { | ||
170 | u16 flcdone :1; /* bit 0 Flash Cycle Done */ | ||
171 | u16 flcerr :1; /* bit 1 Flash Cycle Error */ | ||
172 | u16 dael :1; /* bit 2 Direct Access error Log */ | ||
173 | u16 berasesz :2; /* bit 4:3 Sector Erase Size */ | ||
174 | u16 flcinprog :1; /* bit 5 flash cycle in Progress */ | ||
175 | u16 reserved1 :2; /* bit 13:6 Reserved */ | ||
176 | u16 reserved2 :6; /* bit 13:6 Reserved */ | ||
177 | u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */ | ||
178 | u16 flockdn :1; /* bit 15 Flash Config Lock-Down */ | ||
179 | } hsf_status; | ||
180 | u16 regval; | ||
181 | }; | ||
182 | |||
183 | /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */ | ||
184 | /* Offset 06h FLCTL */ | ||
185 | union ich8_hws_flash_ctrl { | ||
186 | struct ich8_hsflctl { | ||
187 | u16 flcgo :1; /* 0 Flash Cycle Go */ | ||
188 | u16 flcycle :2; /* 2:1 Flash Cycle */ | ||
189 | u16 reserved :5; /* 7:3 Reserved */ | ||
190 | u16 fldbcount :2; /* 9:8 Flash Data Byte Count */ | ||
191 | u16 flockdn :6; /* 15:10 Reserved */ | ||
192 | } hsf_ctrl; | ||
193 | u16 regval; | ||
194 | }; | ||
195 | |||
196 | /* ICH Flash Region Access Permissions */ | ||
197 | union ich8_hws_flash_regacc { | ||
198 | struct ich8_flracc { | ||
199 | u32 grra :8; /* 0:7 GbE region Read Access */ | ||
200 | u32 grwa :8; /* 8:15 GbE region Write Access */ | ||
201 | u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */ | ||
202 | u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */ | ||
203 | } hsf_flregacc; | ||
204 | u16 regval; | ||
205 | }; | ||
206 | |||
207 | /* ICH Flash Protected Region */ | ||
208 | union ich8_flash_protected_range { | ||
209 | struct ich8_pr { | ||
210 | u32 base:13; /* 0:12 Protected Range Base */ | ||
211 | u32 reserved1:2; /* 13:14 Reserved */ | ||
212 | u32 rpe:1; /* 15 Read Protection Enable */ | ||
213 | u32 limit:13; /* 16:28 Protected Range Limit */ | ||
214 | u32 reserved2:2; /* 29:30 Reserved */ | ||
215 | u32 wpe:1; /* 31 Write Protection Enable */ | ||
216 | } range; | ||
217 | u32 regval; | ||
218 | }; | ||
219 | |||
220 | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw); | ||
221 | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw); | ||
222 | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw); | ||
223 | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank); | ||
224 | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, | ||
225 | u32 offset, u8 byte); | ||
226 | static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | ||
227 | u8 *data); | ||
228 | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, | ||
229 | u16 *data); | ||
230 | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | ||
231 | u8 size, u16 *data); | ||
232 | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw); | ||
233 | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw); | ||
234 | static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw); | ||
235 | static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw); | ||
236 | static s32 e1000_led_on_ich8lan(struct e1000_hw *hw); | ||
237 | static s32 e1000_led_off_ich8lan(struct e1000_hw *hw); | ||
238 | static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw); | ||
239 | static s32 e1000_setup_led_pchlan(struct e1000_hw *hw); | ||
240 | static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw); | ||
241 | static s32 e1000_led_on_pchlan(struct e1000_hw *hw); | ||
242 | static s32 e1000_led_off_pchlan(struct e1000_hw *hw); | ||
243 | static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active); | ||
244 | static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw); | ||
245 | static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw); | ||
246 | static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link); | ||
247 | static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw); | ||
248 | static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw); | ||
249 | static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw); | ||
250 | static s32 e1000_k1_workaround_lv(struct e1000_hw *hw); | ||
251 | static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate); | ||
252 | |||
253 | static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg) | ||
254 | { | ||
255 | return readw(hw->flash_address + reg); | ||
256 | } | ||
257 | |||
258 | static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg) | ||
259 | { | ||
260 | return readl(hw->flash_address + reg); | ||
261 | } | ||
262 | |||
263 | static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val) | ||
264 | { | ||
265 | writew(val, hw->flash_address + reg); | ||
266 | } | ||
267 | |||
268 | static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val) | ||
269 | { | ||
270 | writel(val, hw->flash_address + reg); | ||
271 | } | ||
272 | |||
273 | #define er16flash(reg) __er16flash(hw, (reg)) | ||
274 | #define er32flash(reg) __er32flash(hw, (reg)) | ||
275 | #define ew16flash(reg,val) __ew16flash(hw, (reg), (val)) | ||
276 | #define ew32flash(reg,val) __ew32flash(hw, (reg), (val)) | ||
277 | |||
278 | static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw) | ||
279 | { | ||
280 | u32 ctrl; | ||
281 | |||
282 | ctrl = er32(CTRL); | ||
283 | ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE; | ||
284 | ctrl &= ~E1000_CTRL_LANPHYPC_VALUE; | ||
285 | ew32(CTRL, ctrl); | ||
286 | e1e_flush(); | ||
287 | udelay(10); | ||
288 | ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE; | ||
289 | ew32(CTRL, ctrl); | ||
290 | } | ||
291 | |||
292 | /** | ||
293 | * e1000_init_phy_params_pchlan - Initialize PHY function pointers | ||
294 | * @hw: pointer to the HW structure | ||
295 | * | ||
296 | * Initialize family-specific PHY parameters and function pointers. | ||
297 | **/ | ||
298 | static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw) | ||
299 | { | ||
300 | struct e1000_phy_info *phy = &hw->phy; | ||
301 | u32 fwsm; | ||
302 | s32 ret_val = 0; | ||
303 | |||
304 | phy->addr = 1; | ||
305 | phy->reset_delay_us = 100; | ||
306 | |||
307 | phy->ops.set_page = e1000_set_page_igp; | ||
308 | phy->ops.read_reg = e1000_read_phy_reg_hv; | ||
309 | phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked; | ||
310 | phy->ops.read_reg_page = e1000_read_phy_reg_page_hv; | ||
311 | phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan; | ||
312 | phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan; | ||
313 | phy->ops.write_reg = e1000_write_phy_reg_hv; | ||
314 | phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked; | ||
315 | phy->ops.write_reg_page = e1000_write_phy_reg_page_hv; | ||
316 | phy->ops.power_up = e1000_power_up_phy_copper; | ||
317 | phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; | ||
318 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
319 | |||
320 | /* | ||
321 | * The MAC-PHY interconnect may still be in SMBus mode | ||
322 | * after Sx->S0. If the manageability engine (ME) is | ||
323 | * disabled, then toggle the LANPHYPC Value bit to force | ||
324 | * the interconnect to PCIe mode. | ||
325 | */ | ||
326 | fwsm = er32(FWSM); | ||
327 | if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) { | ||
328 | e1000_toggle_lanphypc_value_ich8lan(hw); | ||
329 | msleep(50); | ||
330 | |||
331 | /* | ||
332 | * Gate automatic PHY configuration by hardware on | ||
333 | * non-managed 82579 | ||
334 | */ | ||
335 | if (hw->mac.type == e1000_pch2lan) | ||
336 | e1000_gate_hw_phy_config_ich8lan(hw, true); | ||
337 | } | ||
338 | |||
339 | /* | ||
340 | * Reset the PHY before any access to it. Doing so, ensures that | ||
341 | * the PHY is in a known good state before we read/write PHY registers. | ||
342 | * The generic reset is sufficient here, because we haven't determined | ||
343 | * the PHY type yet. | ||
344 | */ | ||
345 | ret_val = e1000e_phy_hw_reset_generic(hw); | ||
346 | if (ret_val) | ||
347 | goto out; | ||
348 | |||
349 | /* Ungate automatic PHY configuration on non-managed 82579 */ | ||
350 | if ((hw->mac.type == e1000_pch2lan) && | ||
351 | !(fwsm & E1000_ICH_FWSM_FW_VALID)) { | ||
352 | usleep_range(10000, 20000); | ||
353 | e1000_gate_hw_phy_config_ich8lan(hw, false); | ||
354 | } | ||
355 | |||
356 | phy->id = e1000_phy_unknown; | ||
357 | switch (hw->mac.type) { | ||
358 | default: | ||
359 | ret_val = e1000e_get_phy_id(hw); | ||
360 | if (ret_val) | ||
361 | goto out; | ||
362 | if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK)) | ||
363 | break; | ||
364 | /* fall-through */ | ||
365 | case e1000_pch2lan: | ||
366 | /* | ||
367 | * In case the PHY needs to be in mdio slow mode, | ||
368 | * set slow mode and try to get the PHY id again. | ||
369 | */ | ||
370 | ret_val = e1000_set_mdio_slow_mode_hv(hw); | ||
371 | if (ret_val) | ||
372 | goto out; | ||
373 | ret_val = e1000e_get_phy_id(hw); | ||
374 | if (ret_val) | ||
375 | goto out; | ||
376 | break; | ||
377 | } | ||
378 | phy->type = e1000e_get_phy_type_from_id(phy->id); | ||
379 | |||
380 | switch (phy->type) { | ||
381 | case e1000_phy_82577: | ||
382 | case e1000_phy_82579: | ||
383 | phy->ops.check_polarity = e1000_check_polarity_82577; | ||
384 | phy->ops.force_speed_duplex = | ||
385 | e1000_phy_force_speed_duplex_82577; | ||
386 | phy->ops.get_cable_length = e1000_get_cable_length_82577; | ||
387 | phy->ops.get_info = e1000_get_phy_info_82577; | ||
388 | phy->ops.commit = e1000e_phy_sw_reset; | ||
389 | break; | ||
390 | case e1000_phy_82578: | ||
391 | phy->ops.check_polarity = e1000_check_polarity_m88; | ||
392 | phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; | ||
393 | phy->ops.get_cable_length = e1000e_get_cable_length_m88; | ||
394 | phy->ops.get_info = e1000e_get_phy_info_m88; | ||
395 | break; | ||
396 | default: | ||
397 | ret_val = -E1000_ERR_PHY; | ||
398 | break; | ||
399 | } | ||
400 | |||
401 | out: | ||
402 | return ret_val; | ||
403 | } | ||
404 | |||
405 | /** | ||
406 | * e1000_init_phy_params_ich8lan - Initialize PHY function pointers | ||
407 | * @hw: pointer to the HW structure | ||
408 | * | ||
409 | * Initialize family-specific PHY parameters and function pointers. | ||
410 | **/ | ||
411 | static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw) | ||
412 | { | ||
413 | struct e1000_phy_info *phy = &hw->phy; | ||
414 | s32 ret_val; | ||
415 | u16 i = 0; | ||
416 | |||
417 | phy->addr = 1; | ||
418 | phy->reset_delay_us = 100; | ||
419 | |||
420 | phy->ops.power_up = e1000_power_up_phy_copper; | ||
421 | phy->ops.power_down = e1000_power_down_phy_copper_ich8lan; | ||
422 | |||
423 | /* | ||
424 | * We may need to do this twice - once for IGP and if that fails, | ||
425 | * we'll set BM func pointers and try again | ||
426 | */ | ||
427 | ret_val = e1000e_determine_phy_address(hw); | ||
428 | if (ret_val) { | ||
429 | phy->ops.write_reg = e1000e_write_phy_reg_bm; | ||
430 | phy->ops.read_reg = e1000e_read_phy_reg_bm; | ||
431 | ret_val = e1000e_determine_phy_address(hw); | ||
432 | if (ret_val) { | ||
433 | e_dbg("Cannot determine PHY addr. Erroring out\n"); | ||
434 | return ret_val; | ||
435 | } | ||
436 | } | ||
437 | |||
438 | phy->id = 0; | ||
439 | while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) && | ||
440 | (i++ < 100)) { | ||
441 | usleep_range(1000, 2000); | ||
442 | ret_val = e1000e_get_phy_id(hw); | ||
443 | if (ret_val) | ||
444 | return ret_val; | ||
445 | } | ||
446 | |||
447 | /* Verify phy id */ | ||
448 | switch (phy->id) { | ||
449 | case IGP03E1000_E_PHY_ID: | ||
450 | phy->type = e1000_phy_igp_3; | ||
451 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
452 | phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked; | ||
453 | phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked; | ||
454 | phy->ops.get_info = e1000e_get_phy_info_igp; | ||
455 | phy->ops.check_polarity = e1000_check_polarity_igp; | ||
456 | phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp; | ||
457 | break; | ||
458 | case IFE_E_PHY_ID: | ||
459 | case IFE_PLUS_E_PHY_ID: | ||
460 | case IFE_C_E_PHY_ID: | ||
461 | phy->type = e1000_phy_ife; | ||
462 | phy->autoneg_mask = E1000_ALL_NOT_GIG; | ||
463 | phy->ops.get_info = e1000_get_phy_info_ife; | ||
464 | phy->ops.check_polarity = e1000_check_polarity_ife; | ||
465 | phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife; | ||
466 | break; | ||
467 | case BME1000_E_PHY_ID: | ||
468 | phy->type = e1000_phy_bm; | ||
469 | phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
470 | phy->ops.read_reg = e1000e_read_phy_reg_bm; | ||
471 | phy->ops.write_reg = e1000e_write_phy_reg_bm; | ||
472 | phy->ops.commit = e1000e_phy_sw_reset; | ||
473 | phy->ops.get_info = e1000e_get_phy_info_m88; | ||
474 | phy->ops.check_polarity = e1000_check_polarity_m88; | ||
475 | phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88; | ||
476 | break; | ||
477 | default: | ||
478 | return -E1000_ERR_PHY; | ||
479 | break; | ||
480 | } | ||
481 | |||
482 | return 0; | ||
483 | } | ||
484 | |||
485 | /** | ||
486 | * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers | ||
487 | * @hw: pointer to the HW structure | ||
488 | * | ||
489 | * Initialize family-specific NVM parameters and function | ||
490 | * pointers. | ||
491 | **/ | ||
492 | static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw) | ||
493 | { | ||
494 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
495 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
496 | u32 gfpreg, sector_base_addr, sector_end_addr; | ||
497 | u16 i; | ||
498 | |||
499 | /* Can't read flash registers if the register set isn't mapped. */ | ||
500 | if (!hw->flash_address) { | ||
501 | e_dbg("ERROR: Flash registers not mapped\n"); | ||
502 | return -E1000_ERR_CONFIG; | ||
503 | } | ||
504 | |||
505 | nvm->type = e1000_nvm_flash_sw; | ||
506 | |||
507 | gfpreg = er32flash(ICH_FLASH_GFPREG); | ||
508 | |||
509 | /* | ||
510 | * sector_X_addr is a "sector"-aligned address (4096 bytes) | ||
511 | * Add 1 to sector_end_addr since this sector is included in | ||
512 | * the overall size. | ||
513 | */ | ||
514 | sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK; | ||
515 | sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1; | ||
516 | |||
517 | /* flash_base_addr is byte-aligned */ | ||
518 | nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT; | ||
519 | |||
520 | /* | ||
521 | * find total size of the NVM, then cut in half since the total | ||
522 | * size represents two separate NVM banks. | ||
523 | */ | ||
524 | nvm->flash_bank_size = (sector_end_addr - sector_base_addr) | ||
525 | << FLASH_SECTOR_ADDR_SHIFT; | ||
526 | nvm->flash_bank_size /= 2; | ||
527 | /* Adjust to word count */ | ||
528 | nvm->flash_bank_size /= sizeof(u16); | ||
529 | |||
530 | nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS; | ||
531 | |||
532 | /* Clear shadow ram */ | ||
533 | for (i = 0; i < nvm->word_size; i++) { | ||
534 | dev_spec->shadow_ram[i].modified = false; | ||
535 | dev_spec->shadow_ram[i].value = 0xFFFF; | ||
536 | } | ||
537 | |||
538 | return 0; | ||
539 | } | ||
540 | |||
541 | /** | ||
542 | * e1000_init_mac_params_ich8lan - Initialize MAC function pointers | ||
543 | * @hw: pointer to the HW structure | ||
544 | * | ||
545 | * Initialize family-specific MAC parameters and function | ||
546 | * pointers. | ||
547 | **/ | ||
548 | static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter) | ||
549 | { | ||
550 | struct e1000_hw *hw = &adapter->hw; | ||
551 | struct e1000_mac_info *mac = &hw->mac; | ||
552 | |||
553 | /* Set media type function pointer */ | ||
554 | hw->phy.media_type = e1000_media_type_copper; | ||
555 | |||
556 | /* Set mta register count */ | ||
557 | mac->mta_reg_count = 32; | ||
558 | /* Set rar entry count */ | ||
559 | mac->rar_entry_count = E1000_ICH_RAR_ENTRIES; | ||
560 | if (mac->type == e1000_ich8lan) | ||
561 | mac->rar_entry_count--; | ||
562 | /* FWSM register */ | ||
563 | mac->has_fwsm = true; | ||
564 | /* ARC subsystem not supported */ | ||
565 | mac->arc_subsystem_valid = false; | ||
566 | /* Adaptive IFS supported */ | ||
567 | mac->adaptive_ifs = true; | ||
568 | |||
569 | /* LED operations */ | ||
570 | switch (mac->type) { | ||
571 | case e1000_ich8lan: | ||
572 | case e1000_ich9lan: | ||
573 | case e1000_ich10lan: | ||
574 | /* check management mode */ | ||
575 | mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan; | ||
576 | /* ID LED init */ | ||
577 | mac->ops.id_led_init = e1000e_id_led_init; | ||
578 | /* blink LED */ | ||
579 | mac->ops.blink_led = e1000e_blink_led_generic; | ||
580 | /* setup LED */ | ||
581 | mac->ops.setup_led = e1000e_setup_led_generic; | ||
582 | /* cleanup LED */ | ||
583 | mac->ops.cleanup_led = e1000_cleanup_led_ich8lan; | ||
584 | /* turn on/off LED */ | ||
585 | mac->ops.led_on = e1000_led_on_ich8lan; | ||
586 | mac->ops.led_off = e1000_led_off_ich8lan; | ||
587 | break; | ||
588 | case e1000_pchlan: | ||
589 | case e1000_pch2lan: | ||
590 | /* check management mode */ | ||
591 | mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan; | ||
592 | /* ID LED init */ | ||
593 | mac->ops.id_led_init = e1000_id_led_init_pchlan; | ||
594 | /* setup LED */ | ||
595 | mac->ops.setup_led = e1000_setup_led_pchlan; | ||
596 | /* cleanup LED */ | ||
597 | mac->ops.cleanup_led = e1000_cleanup_led_pchlan; | ||
598 | /* turn on/off LED */ | ||
599 | mac->ops.led_on = e1000_led_on_pchlan; | ||
600 | mac->ops.led_off = e1000_led_off_pchlan; | ||
601 | break; | ||
602 | default: | ||
603 | break; | ||
604 | } | ||
605 | |||
606 | /* Enable PCS Lock-loss workaround for ICH8 */ | ||
607 | if (mac->type == e1000_ich8lan) | ||
608 | e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true); | ||
609 | |||
610 | /* Gate automatic PHY configuration by hardware on managed 82579 */ | ||
611 | if ((mac->type == e1000_pch2lan) && | ||
612 | (er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | ||
613 | e1000_gate_hw_phy_config_ich8lan(hw, true); | ||
614 | |||
615 | return 0; | ||
616 | } | ||
617 | |||
618 | /** | ||
619 | * e1000_set_eee_pchlan - Enable/disable EEE support | ||
620 | * @hw: pointer to the HW structure | ||
621 | * | ||
622 | * Enable/disable EEE based on setting in dev_spec structure. The bits in | ||
623 | * the LPI Control register will remain set only if/when link is up. | ||
624 | **/ | ||
625 | static s32 e1000_set_eee_pchlan(struct e1000_hw *hw) | ||
626 | { | ||
627 | s32 ret_val = 0; | ||
628 | u16 phy_reg; | ||
629 | |||
630 | if (hw->phy.type != e1000_phy_82579) | ||
631 | goto out; | ||
632 | |||
633 | ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg); | ||
634 | if (ret_val) | ||
635 | goto out; | ||
636 | |||
637 | if (hw->dev_spec.ich8lan.eee_disable) | ||
638 | phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK; | ||
639 | else | ||
640 | phy_reg |= I82579_LPI_CTRL_ENABLE_MASK; | ||
641 | |||
642 | ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg); | ||
643 | out: | ||
644 | return ret_val; | ||
645 | } | ||
646 | |||
647 | /** | ||
648 | * e1000_check_for_copper_link_ich8lan - Check for link (Copper) | ||
649 | * @hw: pointer to the HW structure | ||
650 | * | ||
651 | * Checks to see of the link status of the hardware has changed. If a | ||
652 | * change in link status has been detected, then we read the PHY registers | ||
653 | * to get the current speed/duplex if link exists. | ||
654 | **/ | ||
655 | static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw) | ||
656 | { | ||
657 | struct e1000_mac_info *mac = &hw->mac; | ||
658 | s32 ret_val; | ||
659 | bool link; | ||
660 | |||
661 | /* | ||
662 | * We only want to go out to the PHY registers to see if Auto-Neg | ||
663 | * has completed and/or if our link status has changed. The | ||
664 | * get_link_status flag is set upon receiving a Link Status | ||
665 | * Change or Rx Sequence Error interrupt. | ||
666 | */ | ||
667 | if (!mac->get_link_status) { | ||
668 | ret_val = 0; | ||
669 | goto out; | ||
670 | } | ||
671 | |||
672 | /* | ||
673 | * First we want to see if the MII Status Register reports | ||
674 | * link. If so, then we want to get the current speed/duplex | ||
675 | * of the PHY. | ||
676 | */ | ||
677 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
678 | if (ret_val) | ||
679 | goto out; | ||
680 | |||
681 | if (hw->mac.type == e1000_pchlan) { | ||
682 | ret_val = e1000_k1_gig_workaround_hv(hw, link); | ||
683 | if (ret_val) | ||
684 | goto out; | ||
685 | } | ||
686 | |||
687 | if (!link) | ||
688 | goto out; /* No link detected */ | ||
689 | |||
690 | mac->get_link_status = false; | ||
691 | |||
692 | if (hw->phy.type == e1000_phy_82578) { | ||
693 | ret_val = e1000_link_stall_workaround_hv(hw); | ||
694 | if (ret_val) | ||
695 | goto out; | ||
696 | } | ||
697 | |||
698 | if (hw->mac.type == e1000_pch2lan) { | ||
699 | ret_val = e1000_k1_workaround_lv(hw); | ||
700 | if (ret_val) | ||
701 | goto out; | ||
702 | } | ||
703 | |||
704 | /* | ||
705 | * Check if there was DownShift, must be checked | ||
706 | * immediately after link-up | ||
707 | */ | ||
708 | e1000e_check_downshift(hw); | ||
709 | |||
710 | /* Enable/Disable EEE after link up */ | ||
711 | ret_val = e1000_set_eee_pchlan(hw); | ||
712 | if (ret_val) | ||
713 | goto out; | ||
714 | |||
715 | /* | ||
716 | * If we are forcing speed/duplex, then we simply return since | ||
717 | * we have already determined whether we have link or not. | ||
718 | */ | ||
719 | if (!mac->autoneg) { | ||
720 | ret_val = -E1000_ERR_CONFIG; | ||
721 | goto out; | ||
722 | } | ||
723 | |||
724 | /* | ||
725 | * Auto-Neg is enabled. Auto Speed Detection takes care | ||
726 | * of MAC speed/duplex configuration. So we only need to | ||
727 | * configure Collision Distance in the MAC. | ||
728 | */ | ||
729 | e1000e_config_collision_dist(hw); | ||
730 | |||
731 | /* | ||
732 | * Configure Flow Control now that Auto-Neg has completed. | ||
733 | * First, we need to restore the desired flow control | ||
734 | * settings because we may have had to re-autoneg with a | ||
735 | * different link partner. | ||
736 | */ | ||
737 | ret_val = e1000e_config_fc_after_link_up(hw); | ||
738 | if (ret_val) | ||
739 | e_dbg("Error configuring flow control\n"); | ||
740 | |||
741 | out: | ||
742 | return ret_val; | ||
743 | } | ||
744 | |||
745 | static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter) | ||
746 | { | ||
747 | struct e1000_hw *hw = &adapter->hw; | ||
748 | s32 rc; | ||
749 | |||
750 | rc = e1000_init_mac_params_ich8lan(adapter); | ||
751 | if (rc) | ||
752 | return rc; | ||
753 | |||
754 | rc = e1000_init_nvm_params_ich8lan(hw); | ||
755 | if (rc) | ||
756 | return rc; | ||
757 | |||
758 | switch (hw->mac.type) { | ||
759 | case e1000_ich8lan: | ||
760 | case e1000_ich9lan: | ||
761 | case e1000_ich10lan: | ||
762 | rc = e1000_init_phy_params_ich8lan(hw); | ||
763 | break; | ||
764 | case e1000_pchlan: | ||
765 | case e1000_pch2lan: | ||
766 | rc = e1000_init_phy_params_pchlan(hw); | ||
767 | break; | ||
768 | default: | ||
769 | break; | ||
770 | } | ||
771 | if (rc) | ||
772 | return rc; | ||
773 | |||
774 | /* | ||
775 | * Disable Jumbo Frame support on parts with Intel 10/100 PHY or | ||
776 | * on parts with MACsec enabled in NVM (reflected in CTRL_EXT). | ||
777 | */ | ||
778 | if ((adapter->hw.phy.type == e1000_phy_ife) || | ||
779 | ((adapter->hw.mac.type >= e1000_pch2lan) && | ||
780 | (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) { | ||
781 | adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; | ||
782 | adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN; | ||
783 | |||
784 | hw->mac.ops.blink_led = NULL; | ||
785 | } | ||
786 | |||
787 | if ((adapter->hw.mac.type == e1000_ich8lan) && | ||
788 | (adapter->hw.phy.type == e1000_phy_igp_3)) | ||
789 | adapter->flags |= FLAG_LSC_GIG_SPEED_DROP; | ||
790 | |||
791 | /* Disable EEE by default until IEEE802.3az spec is finalized */ | ||
792 | if (adapter->flags2 & FLAG2_HAS_EEE) | ||
793 | adapter->hw.dev_spec.ich8lan.eee_disable = true; | ||
794 | |||
795 | return 0; | ||
796 | } | ||
797 | |||
798 | static DEFINE_MUTEX(nvm_mutex); | ||
799 | |||
800 | /** | ||
801 | * e1000_acquire_nvm_ich8lan - Acquire NVM mutex | ||
802 | * @hw: pointer to the HW structure | ||
803 | * | ||
804 | * Acquires the mutex for performing NVM operations. | ||
805 | **/ | ||
806 | static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw) | ||
807 | { | ||
808 | mutex_lock(&nvm_mutex); | ||
809 | |||
810 | return 0; | ||
811 | } | ||
812 | |||
813 | /** | ||
814 | * e1000_release_nvm_ich8lan - Release NVM mutex | ||
815 | * @hw: pointer to the HW structure | ||
816 | * | ||
817 | * Releases the mutex used while performing NVM operations. | ||
818 | **/ | ||
819 | static void e1000_release_nvm_ich8lan(struct e1000_hw *hw) | ||
820 | { | ||
821 | mutex_unlock(&nvm_mutex); | ||
822 | } | ||
823 | |||
824 | static DEFINE_MUTEX(swflag_mutex); | ||
825 | |||
826 | /** | ||
827 | * e1000_acquire_swflag_ich8lan - Acquire software control flag | ||
828 | * @hw: pointer to the HW structure | ||
829 | * | ||
830 | * Acquires the software control flag for performing PHY and select | ||
831 | * MAC CSR accesses. | ||
832 | **/ | ||
833 | static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw) | ||
834 | { | ||
835 | u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT; | ||
836 | s32 ret_val = 0; | ||
837 | |||
838 | mutex_lock(&swflag_mutex); | ||
839 | |||
840 | while (timeout) { | ||
841 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
842 | if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)) | ||
843 | break; | ||
844 | |||
845 | mdelay(1); | ||
846 | timeout--; | ||
847 | } | ||
848 | |||
849 | if (!timeout) { | ||
850 | e_dbg("SW/FW/HW has locked the resource for too long.\n"); | ||
851 | ret_val = -E1000_ERR_CONFIG; | ||
852 | goto out; | ||
853 | } | ||
854 | |||
855 | timeout = SW_FLAG_TIMEOUT; | ||
856 | |||
857 | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | ||
858 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
859 | |||
860 | while (timeout) { | ||
861 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
862 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | ||
863 | break; | ||
864 | |||
865 | mdelay(1); | ||
866 | timeout--; | ||
867 | } | ||
868 | |||
869 | if (!timeout) { | ||
870 | e_dbg("Failed to acquire the semaphore.\n"); | ||
871 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | ||
872 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
873 | ret_val = -E1000_ERR_CONFIG; | ||
874 | goto out; | ||
875 | } | ||
876 | |||
877 | out: | ||
878 | if (ret_val) | ||
879 | mutex_unlock(&swflag_mutex); | ||
880 | |||
881 | return ret_val; | ||
882 | } | ||
883 | |||
884 | /** | ||
885 | * e1000_release_swflag_ich8lan - Release software control flag | ||
886 | * @hw: pointer to the HW structure | ||
887 | * | ||
888 | * Releases the software control flag for performing PHY and select | ||
889 | * MAC CSR accesses. | ||
890 | **/ | ||
891 | static void e1000_release_swflag_ich8lan(struct e1000_hw *hw) | ||
892 | { | ||
893 | u32 extcnf_ctrl; | ||
894 | |||
895 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
896 | |||
897 | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) { | ||
898 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | ||
899 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
900 | } else { | ||
901 | e_dbg("Semaphore unexpectedly released by sw/fw/hw\n"); | ||
902 | } | ||
903 | |||
904 | mutex_unlock(&swflag_mutex); | ||
905 | } | ||
906 | |||
907 | /** | ||
908 | * e1000_check_mng_mode_ich8lan - Checks management mode | ||
909 | * @hw: pointer to the HW structure | ||
910 | * | ||
911 | * This checks if the adapter has any manageability enabled. | ||
912 | * This is a function pointer entry point only called by read/write | ||
913 | * routines for the PHY and NVM parts. | ||
914 | **/ | ||
915 | static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw) | ||
916 | { | ||
917 | u32 fwsm; | ||
918 | |||
919 | fwsm = er32(FWSM); | ||
920 | return (fwsm & E1000_ICH_FWSM_FW_VALID) && | ||
921 | ((fwsm & E1000_FWSM_MODE_MASK) == | ||
922 | (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); | ||
923 | } | ||
924 | |||
925 | /** | ||
926 | * e1000_check_mng_mode_pchlan - Checks management mode | ||
927 | * @hw: pointer to the HW structure | ||
928 | * | ||
929 | * This checks if the adapter has iAMT enabled. | ||
930 | * This is a function pointer entry point only called by read/write | ||
931 | * routines for the PHY and NVM parts. | ||
932 | **/ | ||
933 | static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw) | ||
934 | { | ||
935 | u32 fwsm; | ||
936 | |||
937 | fwsm = er32(FWSM); | ||
938 | return (fwsm & E1000_ICH_FWSM_FW_VALID) && | ||
939 | (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)); | ||
940 | } | ||
941 | |||
942 | /** | ||
943 | * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked | ||
944 | * @hw: pointer to the HW structure | ||
945 | * | ||
946 | * Checks if firmware is blocking the reset of the PHY. | ||
947 | * This is a function pointer entry point only called by | ||
948 | * reset routines. | ||
949 | **/ | ||
950 | static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw) | ||
951 | { | ||
952 | u32 fwsm; | ||
953 | |||
954 | fwsm = er32(FWSM); | ||
955 | |||
956 | return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET; | ||
957 | } | ||
958 | |||
959 | /** | ||
960 | * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states | ||
961 | * @hw: pointer to the HW structure | ||
962 | * | ||
963 | * Assumes semaphore already acquired. | ||
964 | * | ||
965 | **/ | ||
966 | static s32 e1000_write_smbus_addr(struct e1000_hw *hw) | ||
967 | { | ||
968 | u16 phy_data; | ||
969 | u32 strap = er32(STRAP); | ||
970 | s32 ret_val = 0; | ||
971 | |||
972 | strap &= E1000_STRAP_SMBUS_ADDRESS_MASK; | ||
973 | |||
974 | ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data); | ||
975 | if (ret_val) | ||
976 | goto out; | ||
977 | |||
978 | phy_data &= ~HV_SMB_ADDR_MASK; | ||
979 | phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT); | ||
980 | phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID; | ||
981 | ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data); | ||
982 | |||
983 | out: | ||
984 | return ret_val; | ||
985 | } | ||
986 | |||
987 | /** | ||
988 | * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration | ||
989 | * @hw: pointer to the HW structure | ||
990 | * | ||
991 | * SW should configure the LCD from the NVM extended configuration region | ||
992 | * as a workaround for certain parts. | ||
993 | **/ | ||
994 | static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw) | ||
995 | { | ||
996 | struct e1000_phy_info *phy = &hw->phy; | ||
997 | u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask; | ||
998 | s32 ret_val = 0; | ||
999 | u16 word_addr, reg_data, reg_addr, phy_page = 0; | ||
1000 | |||
1001 | /* | ||
1002 | * Initialize the PHY from the NVM on ICH platforms. This | ||
1003 | * is needed due to an issue where the NVM configuration is | ||
1004 | * not properly autoloaded after power transitions. | ||
1005 | * Therefore, after each PHY reset, we will load the | ||
1006 | * configuration data out of the NVM manually. | ||
1007 | */ | ||
1008 | switch (hw->mac.type) { | ||
1009 | case e1000_ich8lan: | ||
1010 | if (phy->type != e1000_phy_igp_3) | ||
1011 | return ret_val; | ||
1012 | |||
1013 | if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) || | ||
1014 | (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) { | ||
1015 | sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG; | ||
1016 | break; | ||
1017 | } | ||
1018 | /* Fall-thru */ | ||
1019 | case e1000_pchlan: | ||
1020 | case e1000_pch2lan: | ||
1021 | sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M; | ||
1022 | break; | ||
1023 | default: | ||
1024 | return ret_val; | ||
1025 | } | ||
1026 | |||
1027 | ret_val = hw->phy.ops.acquire(hw); | ||
1028 | if (ret_val) | ||
1029 | return ret_val; | ||
1030 | |||
1031 | data = er32(FEXTNVM); | ||
1032 | if (!(data & sw_cfg_mask)) | ||
1033 | goto out; | ||
1034 | |||
1035 | /* | ||
1036 | * Make sure HW does not configure LCD from PHY | ||
1037 | * extended configuration before SW configuration | ||
1038 | */ | ||
1039 | data = er32(EXTCNF_CTRL); | ||
1040 | if (!(hw->mac.type == e1000_pch2lan)) { | ||
1041 | if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) | ||
1042 | goto out; | ||
1043 | } | ||
1044 | |||
1045 | cnf_size = er32(EXTCNF_SIZE); | ||
1046 | cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK; | ||
1047 | cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT; | ||
1048 | if (!cnf_size) | ||
1049 | goto out; | ||
1050 | |||
1051 | cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK; | ||
1052 | cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT; | ||
1053 | |||
1054 | if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) && | ||
1055 | (hw->mac.type == e1000_pchlan)) || | ||
1056 | (hw->mac.type == e1000_pch2lan)) { | ||
1057 | /* | ||
1058 | * HW configures the SMBus address and LEDs when the | ||
1059 | * OEM and LCD Write Enable bits are set in the NVM. | ||
1060 | * When both NVM bits are cleared, SW will configure | ||
1061 | * them instead. | ||
1062 | */ | ||
1063 | ret_val = e1000_write_smbus_addr(hw); | ||
1064 | if (ret_val) | ||
1065 | goto out; | ||
1066 | |||
1067 | data = er32(LEDCTL); | ||
1068 | ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG, | ||
1069 | (u16)data); | ||
1070 | if (ret_val) | ||
1071 | goto out; | ||
1072 | } | ||
1073 | |||
1074 | /* Configure LCD from extended configuration region. */ | ||
1075 | |||
1076 | /* cnf_base_addr is in DWORD */ | ||
1077 | word_addr = (u16)(cnf_base_addr << 1); | ||
1078 | |||
1079 | for (i = 0; i < cnf_size; i++) { | ||
1080 | ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, | ||
1081 | ®_data); | ||
1082 | if (ret_val) | ||
1083 | goto out; | ||
1084 | |||
1085 | ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1), | ||
1086 | 1, ®_addr); | ||
1087 | if (ret_val) | ||
1088 | goto out; | ||
1089 | |||
1090 | /* Save off the PHY page for future writes. */ | ||
1091 | if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) { | ||
1092 | phy_page = reg_data; | ||
1093 | continue; | ||
1094 | } | ||
1095 | |||
1096 | reg_addr &= PHY_REG_MASK; | ||
1097 | reg_addr |= phy_page; | ||
1098 | |||
1099 | ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr, | ||
1100 | reg_data); | ||
1101 | if (ret_val) | ||
1102 | goto out; | ||
1103 | } | ||
1104 | |||
1105 | out: | ||
1106 | hw->phy.ops.release(hw); | ||
1107 | return ret_val; | ||
1108 | } | ||
1109 | |||
1110 | /** | ||
1111 | * e1000_k1_gig_workaround_hv - K1 Si workaround | ||
1112 | * @hw: pointer to the HW structure | ||
1113 | * @link: link up bool flag | ||
1114 | * | ||
1115 | * If K1 is enabled for 1Gbps, the MAC might stall when transitioning | ||
1116 | * from a lower speed. This workaround disables K1 whenever link is at 1Gig | ||
1117 | * If link is down, the function will restore the default K1 setting located | ||
1118 | * in the NVM. | ||
1119 | **/ | ||
1120 | static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link) | ||
1121 | { | ||
1122 | s32 ret_val = 0; | ||
1123 | u16 status_reg = 0; | ||
1124 | bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled; | ||
1125 | |||
1126 | if (hw->mac.type != e1000_pchlan) | ||
1127 | goto out; | ||
1128 | |||
1129 | /* Wrap the whole flow with the sw flag */ | ||
1130 | ret_val = hw->phy.ops.acquire(hw); | ||
1131 | if (ret_val) | ||
1132 | goto out; | ||
1133 | |||
1134 | /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */ | ||
1135 | if (link) { | ||
1136 | if (hw->phy.type == e1000_phy_82578) { | ||
1137 | ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS, | ||
1138 | &status_reg); | ||
1139 | if (ret_val) | ||
1140 | goto release; | ||
1141 | |||
1142 | status_reg &= BM_CS_STATUS_LINK_UP | | ||
1143 | BM_CS_STATUS_RESOLVED | | ||
1144 | BM_CS_STATUS_SPEED_MASK; | ||
1145 | |||
1146 | if (status_reg == (BM_CS_STATUS_LINK_UP | | ||
1147 | BM_CS_STATUS_RESOLVED | | ||
1148 | BM_CS_STATUS_SPEED_1000)) | ||
1149 | k1_enable = false; | ||
1150 | } | ||
1151 | |||
1152 | if (hw->phy.type == e1000_phy_82577) { | ||
1153 | ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS, | ||
1154 | &status_reg); | ||
1155 | if (ret_val) | ||
1156 | goto release; | ||
1157 | |||
1158 | status_reg &= HV_M_STATUS_LINK_UP | | ||
1159 | HV_M_STATUS_AUTONEG_COMPLETE | | ||
1160 | HV_M_STATUS_SPEED_MASK; | ||
1161 | |||
1162 | if (status_reg == (HV_M_STATUS_LINK_UP | | ||
1163 | HV_M_STATUS_AUTONEG_COMPLETE | | ||
1164 | HV_M_STATUS_SPEED_1000)) | ||
1165 | k1_enable = false; | ||
1166 | } | ||
1167 | |||
1168 | /* Link stall fix for link up */ | ||
1169 | ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), | ||
1170 | 0x0100); | ||
1171 | if (ret_val) | ||
1172 | goto release; | ||
1173 | |||
1174 | } else { | ||
1175 | /* Link stall fix for link down */ | ||
1176 | ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19), | ||
1177 | 0x4100); | ||
1178 | if (ret_val) | ||
1179 | goto release; | ||
1180 | } | ||
1181 | |||
1182 | ret_val = e1000_configure_k1_ich8lan(hw, k1_enable); | ||
1183 | |||
1184 | release: | ||
1185 | hw->phy.ops.release(hw); | ||
1186 | out: | ||
1187 | return ret_val; | ||
1188 | } | ||
1189 | |||
1190 | /** | ||
1191 | * e1000_configure_k1_ich8lan - Configure K1 power state | ||
1192 | * @hw: pointer to the HW structure | ||
1193 | * @enable: K1 state to configure | ||
1194 | * | ||
1195 | * Configure the K1 power state based on the provided parameter. | ||
1196 | * Assumes semaphore already acquired. | ||
1197 | * | ||
1198 | * Success returns 0, Failure returns -E1000_ERR_PHY (-2) | ||
1199 | **/ | ||
1200 | s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable) | ||
1201 | { | ||
1202 | s32 ret_val = 0; | ||
1203 | u32 ctrl_reg = 0; | ||
1204 | u32 ctrl_ext = 0; | ||
1205 | u32 reg = 0; | ||
1206 | u16 kmrn_reg = 0; | ||
1207 | |||
1208 | ret_val = e1000e_read_kmrn_reg_locked(hw, | ||
1209 | E1000_KMRNCTRLSTA_K1_CONFIG, | ||
1210 | &kmrn_reg); | ||
1211 | if (ret_val) | ||
1212 | goto out; | ||
1213 | |||
1214 | if (k1_enable) | ||
1215 | kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE; | ||
1216 | else | ||
1217 | kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE; | ||
1218 | |||
1219 | ret_val = e1000e_write_kmrn_reg_locked(hw, | ||
1220 | E1000_KMRNCTRLSTA_K1_CONFIG, | ||
1221 | kmrn_reg); | ||
1222 | if (ret_val) | ||
1223 | goto out; | ||
1224 | |||
1225 | udelay(20); | ||
1226 | ctrl_ext = er32(CTRL_EXT); | ||
1227 | ctrl_reg = er32(CTRL); | ||
1228 | |||
1229 | reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1230 | reg |= E1000_CTRL_FRCSPD; | ||
1231 | ew32(CTRL, reg); | ||
1232 | |||
1233 | ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS); | ||
1234 | e1e_flush(); | ||
1235 | udelay(20); | ||
1236 | ew32(CTRL, ctrl_reg); | ||
1237 | ew32(CTRL_EXT, ctrl_ext); | ||
1238 | e1e_flush(); | ||
1239 | udelay(20); | ||
1240 | |||
1241 | out: | ||
1242 | return ret_val; | ||
1243 | } | ||
1244 | |||
1245 | /** | ||
1246 | * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration | ||
1247 | * @hw: pointer to the HW structure | ||
1248 | * @d0_state: boolean if entering d0 or d3 device state | ||
1249 | * | ||
1250 | * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are | ||
1251 | * collectively called OEM bits. The OEM Write Enable bit and SW Config bit | ||
1252 | * in NVM determines whether HW should configure LPLU and Gbe Disable. | ||
1253 | **/ | ||
1254 | static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state) | ||
1255 | { | ||
1256 | s32 ret_val = 0; | ||
1257 | u32 mac_reg; | ||
1258 | u16 oem_reg; | ||
1259 | |||
1260 | if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan)) | ||
1261 | return ret_val; | ||
1262 | |||
1263 | ret_val = hw->phy.ops.acquire(hw); | ||
1264 | if (ret_val) | ||
1265 | return ret_val; | ||
1266 | |||
1267 | if (!(hw->mac.type == e1000_pch2lan)) { | ||
1268 | mac_reg = er32(EXTCNF_CTRL); | ||
1269 | if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) | ||
1270 | goto out; | ||
1271 | } | ||
1272 | |||
1273 | mac_reg = er32(FEXTNVM); | ||
1274 | if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M)) | ||
1275 | goto out; | ||
1276 | |||
1277 | mac_reg = er32(PHY_CTRL); | ||
1278 | |||
1279 | ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg); | ||
1280 | if (ret_val) | ||
1281 | goto out; | ||
1282 | |||
1283 | oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU); | ||
1284 | |||
1285 | if (d0_state) { | ||
1286 | if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE) | ||
1287 | oem_reg |= HV_OEM_BITS_GBE_DIS; | ||
1288 | |||
1289 | if (mac_reg & E1000_PHY_CTRL_D0A_LPLU) | ||
1290 | oem_reg |= HV_OEM_BITS_LPLU; | ||
1291 | } else { | ||
1292 | if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE) | ||
1293 | oem_reg |= HV_OEM_BITS_GBE_DIS; | ||
1294 | |||
1295 | if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU) | ||
1296 | oem_reg |= HV_OEM_BITS_LPLU; | ||
1297 | } | ||
1298 | /* Restart auto-neg to activate the bits */ | ||
1299 | if (!e1000_check_reset_block(hw)) | ||
1300 | oem_reg |= HV_OEM_BITS_RESTART_AN; | ||
1301 | ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg); | ||
1302 | |||
1303 | out: | ||
1304 | hw->phy.ops.release(hw); | ||
1305 | |||
1306 | return ret_val; | ||
1307 | } | ||
1308 | |||
1309 | |||
1310 | /** | ||
1311 | * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode | ||
1312 | * @hw: pointer to the HW structure | ||
1313 | **/ | ||
1314 | static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw) | ||
1315 | { | ||
1316 | s32 ret_val; | ||
1317 | u16 data; | ||
1318 | |||
1319 | ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data); | ||
1320 | if (ret_val) | ||
1321 | return ret_val; | ||
1322 | |||
1323 | data |= HV_KMRN_MDIO_SLOW; | ||
1324 | |||
1325 | ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data); | ||
1326 | |||
1327 | return ret_val; | ||
1328 | } | ||
1329 | |||
1330 | /** | ||
1331 | * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be | ||
1332 | * done after every PHY reset. | ||
1333 | **/ | ||
1334 | static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw) | ||
1335 | { | ||
1336 | s32 ret_val = 0; | ||
1337 | u16 phy_data; | ||
1338 | |||
1339 | if (hw->mac.type != e1000_pchlan) | ||
1340 | return ret_val; | ||
1341 | |||
1342 | /* Set MDIO slow mode before any other MDIO access */ | ||
1343 | if (hw->phy.type == e1000_phy_82577) { | ||
1344 | ret_val = e1000_set_mdio_slow_mode_hv(hw); | ||
1345 | if (ret_val) | ||
1346 | goto out; | ||
1347 | } | ||
1348 | |||
1349 | if (((hw->phy.type == e1000_phy_82577) && | ||
1350 | ((hw->phy.revision == 1) || (hw->phy.revision == 2))) || | ||
1351 | ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) { | ||
1352 | /* Disable generation of early preamble */ | ||
1353 | ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431); | ||
1354 | if (ret_val) | ||
1355 | return ret_val; | ||
1356 | |||
1357 | /* Preamble tuning for SSC */ | ||
1358 | ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204); | ||
1359 | if (ret_val) | ||
1360 | return ret_val; | ||
1361 | } | ||
1362 | |||
1363 | if (hw->phy.type == e1000_phy_82578) { | ||
1364 | /* | ||
1365 | * Return registers to default by doing a soft reset then | ||
1366 | * writing 0x3140 to the control register. | ||
1367 | */ | ||
1368 | if (hw->phy.revision < 2) { | ||
1369 | e1000e_phy_sw_reset(hw); | ||
1370 | ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140); | ||
1371 | } | ||
1372 | } | ||
1373 | |||
1374 | /* Select page 0 */ | ||
1375 | ret_val = hw->phy.ops.acquire(hw); | ||
1376 | if (ret_val) | ||
1377 | return ret_val; | ||
1378 | |||
1379 | hw->phy.addr = 1; | ||
1380 | ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0); | ||
1381 | hw->phy.ops.release(hw); | ||
1382 | if (ret_val) | ||
1383 | goto out; | ||
1384 | |||
1385 | /* | ||
1386 | * Configure the K1 Si workaround during phy reset assuming there is | ||
1387 | * link so that it disables K1 if link is in 1Gbps. | ||
1388 | */ | ||
1389 | ret_val = e1000_k1_gig_workaround_hv(hw, true); | ||
1390 | if (ret_val) | ||
1391 | goto out; | ||
1392 | |||
1393 | /* Workaround for link disconnects on a busy hub in half duplex */ | ||
1394 | ret_val = hw->phy.ops.acquire(hw); | ||
1395 | if (ret_val) | ||
1396 | goto out; | ||
1397 | ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data); | ||
1398 | if (ret_val) | ||
1399 | goto release; | ||
1400 | ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG, | ||
1401 | phy_data & 0x00FF); | ||
1402 | release: | ||
1403 | hw->phy.ops.release(hw); | ||
1404 | out: | ||
1405 | return ret_val; | ||
1406 | } | ||
1407 | |||
1408 | /** | ||
1409 | * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY | ||
1410 | * @hw: pointer to the HW structure | ||
1411 | **/ | ||
1412 | void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw) | ||
1413 | { | ||
1414 | u32 mac_reg; | ||
1415 | u16 i, phy_reg = 0; | ||
1416 | s32 ret_val; | ||
1417 | |||
1418 | ret_val = hw->phy.ops.acquire(hw); | ||
1419 | if (ret_val) | ||
1420 | return; | ||
1421 | ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg); | ||
1422 | if (ret_val) | ||
1423 | goto release; | ||
1424 | |||
1425 | /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */ | ||
1426 | for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { | ||
1427 | mac_reg = er32(RAL(i)); | ||
1428 | hw->phy.ops.write_reg_page(hw, BM_RAR_L(i), | ||
1429 | (u16)(mac_reg & 0xFFFF)); | ||
1430 | hw->phy.ops.write_reg_page(hw, BM_RAR_M(i), | ||
1431 | (u16)((mac_reg >> 16) & 0xFFFF)); | ||
1432 | |||
1433 | mac_reg = er32(RAH(i)); | ||
1434 | hw->phy.ops.write_reg_page(hw, BM_RAR_H(i), | ||
1435 | (u16)(mac_reg & 0xFFFF)); | ||
1436 | hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i), | ||
1437 | (u16)((mac_reg & E1000_RAH_AV) | ||
1438 | >> 16)); | ||
1439 | } | ||
1440 | |||
1441 | e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg); | ||
1442 | |||
1443 | release: | ||
1444 | hw->phy.ops.release(hw); | ||
1445 | } | ||
1446 | |||
1447 | /** | ||
1448 | * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation | ||
1449 | * with 82579 PHY | ||
1450 | * @hw: pointer to the HW structure | ||
1451 | * @enable: flag to enable/disable workaround when enabling/disabling jumbos | ||
1452 | **/ | ||
1453 | s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable) | ||
1454 | { | ||
1455 | s32 ret_val = 0; | ||
1456 | u16 phy_reg, data; | ||
1457 | u32 mac_reg; | ||
1458 | u16 i; | ||
1459 | |||
1460 | if (hw->mac.type != e1000_pch2lan) | ||
1461 | goto out; | ||
1462 | |||
1463 | /* disable Rx path while enabling/disabling workaround */ | ||
1464 | e1e_rphy(hw, PHY_REG(769, 20), &phy_reg); | ||
1465 | ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14)); | ||
1466 | if (ret_val) | ||
1467 | goto out; | ||
1468 | |||
1469 | if (enable) { | ||
1470 | /* | ||
1471 | * Write Rx addresses (rar_entry_count for RAL/H, +4 for | ||
1472 | * SHRAL/H) and initial CRC values to the MAC | ||
1473 | */ | ||
1474 | for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) { | ||
1475 | u8 mac_addr[ETH_ALEN] = {0}; | ||
1476 | u32 addr_high, addr_low; | ||
1477 | |||
1478 | addr_high = er32(RAH(i)); | ||
1479 | if (!(addr_high & E1000_RAH_AV)) | ||
1480 | continue; | ||
1481 | addr_low = er32(RAL(i)); | ||
1482 | mac_addr[0] = (addr_low & 0xFF); | ||
1483 | mac_addr[1] = ((addr_low >> 8) & 0xFF); | ||
1484 | mac_addr[2] = ((addr_low >> 16) & 0xFF); | ||
1485 | mac_addr[3] = ((addr_low >> 24) & 0xFF); | ||
1486 | mac_addr[4] = (addr_high & 0xFF); | ||
1487 | mac_addr[5] = ((addr_high >> 8) & 0xFF); | ||
1488 | |||
1489 | ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr)); | ||
1490 | } | ||
1491 | |||
1492 | /* Write Rx addresses to the PHY */ | ||
1493 | e1000_copy_rx_addrs_to_phy_ich8lan(hw); | ||
1494 | |||
1495 | /* Enable jumbo frame workaround in the MAC */ | ||
1496 | mac_reg = er32(FFLT_DBG); | ||
1497 | mac_reg &= ~(1 << 14); | ||
1498 | mac_reg |= (7 << 15); | ||
1499 | ew32(FFLT_DBG, mac_reg); | ||
1500 | |||
1501 | mac_reg = er32(RCTL); | ||
1502 | mac_reg |= E1000_RCTL_SECRC; | ||
1503 | ew32(RCTL, mac_reg); | ||
1504 | |||
1505 | ret_val = e1000e_read_kmrn_reg(hw, | ||
1506 | E1000_KMRNCTRLSTA_CTRL_OFFSET, | ||
1507 | &data); | ||
1508 | if (ret_val) | ||
1509 | goto out; | ||
1510 | ret_val = e1000e_write_kmrn_reg(hw, | ||
1511 | E1000_KMRNCTRLSTA_CTRL_OFFSET, | ||
1512 | data | (1 << 0)); | ||
1513 | if (ret_val) | ||
1514 | goto out; | ||
1515 | ret_val = e1000e_read_kmrn_reg(hw, | ||
1516 | E1000_KMRNCTRLSTA_HD_CTRL, | ||
1517 | &data); | ||
1518 | if (ret_val) | ||
1519 | goto out; | ||
1520 | data &= ~(0xF << 8); | ||
1521 | data |= (0xB << 8); | ||
1522 | ret_val = e1000e_write_kmrn_reg(hw, | ||
1523 | E1000_KMRNCTRLSTA_HD_CTRL, | ||
1524 | data); | ||
1525 | if (ret_val) | ||
1526 | goto out; | ||
1527 | |||
1528 | /* Enable jumbo frame workaround in the PHY */ | ||
1529 | e1e_rphy(hw, PHY_REG(769, 23), &data); | ||
1530 | data &= ~(0x7F << 5); | ||
1531 | data |= (0x37 << 5); | ||
1532 | ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); | ||
1533 | if (ret_val) | ||
1534 | goto out; | ||
1535 | e1e_rphy(hw, PHY_REG(769, 16), &data); | ||
1536 | data &= ~(1 << 13); | ||
1537 | ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); | ||
1538 | if (ret_val) | ||
1539 | goto out; | ||
1540 | e1e_rphy(hw, PHY_REG(776, 20), &data); | ||
1541 | data &= ~(0x3FF << 2); | ||
1542 | data |= (0x1A << 2); | ||
1543 | ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); | ||
1544 | if (ret_val) | ||
1545 | goto out; | ||
1546 | ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00); | ||
1547 | if (ret_val) | ||
1548 | goto out; | ||
1549 | e1e_rphy(hw, HV_PM_CTRL, &data); | ||
1550 | ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10)); | ||
1551 | if (ret_val) | ||
1552 | goto out; | ||
1553 | } else { | ||
1554 | /* Write MAC register values back to h/w defaults */ | ||
1555 | mac_reg = er32(FFLT_DBG); | ||
1556 | mac_reg &= ~(0xF << 14); | ||
1557 | ew32(FFLT_DBG, mac_reg); | ||
1558 | |||
1559 | mac_reg = er32(RCTL); | ||
1560 | mac_reg &= ~E1000_RCTL_SECRC; | ||
1561 | ew32(RCTL, mac_reg); | ||
1562 | |||
1563 | ret_val = e1000e_read_kmrn_reg(hw, | ||
1564 | E1000_KMRNCTRLSTA_CTRL_OFFSET, | ||
1565 | &data); | ||
1566 | if (ret_val) | ||
1567 | goto out; | ||
1568 | ret_val = e1000e_write_kmrn_reg(hw, | ||
1569 | E1000_KMRNCTRLSTA_CTRL_OFFSET, | ||
1570 | data & ~(1 << 0)); | ||
1571 | if (ret_val) | ||
1572 | goto out; | ||
1573 | ret_val = e1000e_read_kmrn_reg(hw, | ||
1574 | E1000_KMRNCTRLSTA_HD_CTRL, | ||
1575 | &data); | ||
1576 | if (ret_val) | ||
1577 | goto out; | ||
1578 | data &= ~(0xF << 8); | ||
1579 | data |= (0xB << 8); | ||
1580 | ret_val = e1000e_write_kmrn_reg(hw, | ||
1581 | E1000_KMRNCTRLSTA_HD_CTRL, | ||
1582 | data); | ||
1583 | if (ret_val) | ||
1584 | goto out; | ||
1585 | |||
1586 | /* Write PHY register values back to h/w defaults */ | ||
1587 | e1e_rphy(hw, PHY_REG(769, 23), &data); | ||
1588 | data &= ~(0x7F << 5); | ||
1589 | ret_val = e1e_wphy(hw, PHY_REG(769, 23), data); | ||
1590 | if (ret_val) | ||
1591 | goto out; | ||
1592 | e1e_rphy(hw, PHY_REG(769, 16), &data); | ||
1593 | data |= (1 << 13); | ||
1594 | ret_val = e1e_wphy(hw, PHY_REG(769, 16), data); | ||
1595 | if (ret_val) | ||
1596 | goto out; | ||
1597 | e1e_rphy(hw, PHY_REG(776, 20), &data); | ||
1598 | data &= ~(0x3FF << 2); | ||
1599 | data |= (0x8 << 2); | ||
1600 | ret_val = e1e_wphy(hw, PHY_REG(776, 20), data); | ||
1601 | if (ret_val) | ||
1602 | goto out; | ||
1603 | ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00); | ||
1604 | if (ret_val) | ||
1605 | goto out; | ||
1606 | e1e_rphy(hw, HV_PM_CTRL, &data); | ||
1607 | ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10)); | ||
1608 | if (ret_val) | ||
1609 | goto out; | ||
1610 | } | ||
1611 | |||
1612 | /* re-enable Rx path after enabling/disabling workaround */ | ||
1613 | ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14)); | ||
1614 | |||
1615 | out: | ||
1616 | return ret_val; | ||
1617 | } | ||
1618 | |||
1619 | /** | ||
1620 | * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be | ||
1621 | * done after every PHY reset. | ||
1622 | **/ | ||
1623 | static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw) | ||
1624 | { | ||
1625 | s32 ret_val = 0; | ||
1626 | |||
1627 | if (hw->mac.type != e1000_pch2lan) | ||
1628 | goto out; | ||
1629 | |||
1630 | /* Set MDIO slow mode before any other MDIO access */ | ||
1631 | ret_val = e1000_set_mdio_slow_mode_hv(hw); | ||
1632 | |||
1633 | out: | ||
1634 | return ret_val; | ||
1635 | } | ||
1636 | |||
1637 | /** | ||
1638 | * e1000_k1_gig_workaround_lv - K1 Si workaround | ||
1639 | * @hw: pointer to the HW structure | ||
1640 | * | ||
1641 | * Workaround to set the K1 beacon duration for 82579 parts | ||
1642 | **/ | ||
1643 | static s32 e1000_k1_workaround_lv(struct e1000_hw *hw) | ||
1644 | { | ||
1645 | s32 ret_val = 0; | ||
1646 | u16 status_reg = 0; | ||
1647 | u32 mac_reg; | ||
1648 | |||
1649 | if (hw->mac.type != e1000_pch2lan) | ||
1650 | goto out; | ||
1651 | |||
1652 | /* Set K1 beacon duration based on 1Gbps speed or otherwise */ | ||
1653 | ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg); | ||
1654 | if (ret_val) | ||
1655 | goto out; | ||
1656 | |||
1657 | if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) | ||
1658 | == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) { | ||
1659 | mac_reg = er32(FEXTNVM4); | ||
1660 | mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK; | ||
1661 | |||
1662 | if (status_reg & HV_M_STATUS_SPEED_1000) | ||
1663 | mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC; | ||
1664 | else | ||
1665 | mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC; | ||
1666 | |||
1667 | ew32(FEXTNVM4, mac_reg); | ||
1668 | } | ||
1669 | |||
1670 | out: | ||
1671 | return ret_val; | ||
1672 | } | ||
1673 | |||
1674 | /** | ||
1675 | * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware | ||
1676 | * @hw: pointer to the HW structure | ||
1677 | * @gate: boolean set to true to gate, false to ungate | ||
1678 | * | ||
1679 | * Gate/ungate the automatic PHY configuration via hardware; perform | ||
1680 | * the configuration via software instead. | ||
1681 | **/ | ||
1682 | static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate) | ||
1683 | { | ||
1684 | u32 extcnf_ctrl; | ||
1685 | |||
1686 | if (hw->mac.type != e1000_pch2lan) | ||
1687 | return; | ||
1688 | |||
1689 | extcnf_ctrl = er32(EXTCNF_CTRL); | ||
1690 | |||
1691 | if (gate) | ||
1692 | extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG; | ||
1693 | else | ||
1694 | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG; | ||
1695 | |||
1696 | ew32(EXTCNF_CTRL, extcnf_ctrl); | ||
1697 | return; | ||
1698 | } | ||
1699 | |||
1700 | /** | ||
1701 | * e1000_lan_init_done_ich8lan - Check for PHY config completion | ||
1702 | * @hw: pointer to the HW structure | ||
1703 | * | ||
1704 | * Check the appropriate indication the MAC has finished configuring the | ||
1705 | * PHY after a software reset. | ||
1706 | **/ | ||
1707 | static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw) | ||
1708 | { | ||
1709 | u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT; | ||
1710 | |||
1711 | /* Wait for basic configuration completes before proceeding */ | ||
1712 | do { | ||
1713 | data = er32(STATUS); | ||
1714 | data &= E1000_STATUS_LAN_INIT_DONE; | ||
1715 | udelay(100); | ||
1716 | } while ((!data) && --loop); | ||
1717 | |||
1718 | /* | ||
1719 | * If basic configuration is incomplete before the above loop | ||
1720 | * count reaches 0, loading the configuration from NVM will | ||
1721 | * leave the PHY in a bad state possibly resulting in no link. | ||
1722 | */ | ||
1723 | if (loop == 0) | ||
1724 | e_dbg("LAN_INIT_DONE not set, increase timeout\n"); | ||
1725 | |||
1726 | /* Clear the Init Done bit for the next init event */ | ||
1727 | data = er32(STATUS); | ||
1728 | data &= ~E1000_STATUS_LAN_INIT_DONE; | ||
1729 | ew32(STATUS, data); | ||
1730 | } | ||
1731 | |||
1732 | /** | ||
1733 | * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset | ||
1734 | * @hw: pointer to the HW structure | ||
1735 | **/ | ||
1736 | static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw) | ||
1737 | { | ||
1738 | s32 ret_val = 0; | ||
1739 | u16 reg; | ||
1740 | |||
1741 | if (e1000_check_reset_block(hw)) | ||
1742 | goto out; | ||
1743 | |||
1744 | /* Allow time for h/w to get to quiescent state after reset */ | ||
1745 | usleep_range(10000, 20000); | ||
1746 | |||
1747 | /* Perform any necessary post-reset workarounds */ | ||
1748 | switch (hw->mac.type) { | ||
1749 | case e1000_pchlan: | ||
1750 | ret_val = e1000_hv_phy_workarounds_ich8lan(hw); | ||
1751 | if (ret_val) | ||
1752 | goto out; | ||
1753 | break; | ||
1754 | case e1000_pch2lan: | ||
1755 | ret_val = e1000_lv_phy_workarounds_ich8lan(hw); | ||
1756 | if (ret_val) | ||
1757 | goto out; | ||
1758 | break; | ||
1759 | default: | ||
1760 | break; | ||
1761 | } | ||
1762 | |||
1763 | /* Clear the host wakeup bit after lcd reset */ | ||
1764 | if (hw->mac.type >= e1000_pchlan) { | ||
1765 | e1e_rphy(hw, BM_PORT_GEN_CFG, ®); | ||
1766 | reg &= ~BM_WUC_HOST_WU_BIT; | ||
1767 | e1e_wphy(hw, BM_PORT_GEN_CFG, reg); | ||
1768 | } | ||
1769 | |||
1770 | /* Configure the LCD with the extended configuration region in NVM */ | ||
1771 | ret_val = e1000_sw_lcd_config_ich8lan(hw); | ||
1772 | if (ret_val) | ||
1773 | goto out; | ||
1774 | |||
1775 | /* Configure the LCD with the OEM bits in NVM */ | ||
1776 | ret_val = e1000_oem_bits_config_ich8lan(hw, true); | ||
1777 | |||
1778 | if (hw->mac.type == e1000_pch2lan) { | ||
1779 | /* Ungate automatic PHY configuration on non-managed 82579 */ | ||
1780 | if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) { | ||
1781 | usleep_range(10000, 20000); | ||
1782 | e1000_gate_hw_phy_config_ich8lan(hw, false); | ||
1783 | } | ||
1784 | |||
1785 | /* Set EEE LPI Update Timer to 200usec */ | ||
1786 | ret_val = hw->phy.ops.acquire(hw); | ||
1787 | if (ret_val) | ||
1788 | goto out; | ||
1789 | ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR, | ||
1790 | I82579_LPI_UPDATE_TIMER); | ||
1791 | if (ret_val) | ||
1792 | goto release; | ||
1793 | ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA, | ||
1794 | 0x1387); | ||
1795 | release: | ||
1796 | hw->phy.ops.release(hw); | ||
1797 | } | ||
1798 | |||
1799 | out: | ||
1800 | return ret_val; | ||
1801 | } | ||
1802 | |||
1803 | /** | ||
1804 | * e1000_phy_hw_reset_ich8lan - Performs a PHY reset | ||
1805 | * @hw: pointer to the HW structure | ||
1806 | * | ||
1807 | * Resets the PHY | ||
1808 | * This is a function pointer entry point called by drivers | ||
1809 | * or other shared routines. | ||
1810 | **/ | ||
1811 | static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw) | ||
1812 | { | ||
1813 | s32 ret_val = 0; | ||
1814 | |||
1815 | /* Gate automatic PHY configuration by hardware on non-managed 82579 */ | ||
1816 | if ((hw->mac.type == e1000_pch2lan) && | ||
1817 | !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | ||
1818 | e1000_gate_hw_phy_config_ich8lan(hw, true); | ||
1819 | |||
1820 | ret_val = e1000e_phy_hw_reset_generic(hw); | ||
1821 | if (ret_val) | ||
1822 | goto out; | ||
1823 | |||
1824 | ret_val = e1000_post_phy_reset_ich8lan(hw); | ||
1825 | |||
1826 | out: | ||
1827 | return ret_val; | ||
1828 | } | ||
1829 | |||
1830 | /** | ||
1831 | * e1000_set_lplu_state_pchlan - Set Low Power Link Up state | ||
1832 | * @hw: pointer to the HW structure | ||
1833 | * @active: true to enable LPLU, false to disable | ||
1834 | * | ||
1835 | * Sets the LPLU state according to the active flag. For PCH, if OEM write | ||
1836 | * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set | ||
1837 | * the phy speed. This function will manually set the LPLU bit and restart | ||
1838 | * auto-neg as hw would do. D3 and D0 LPLU will call the same function | ||
1839 | * since it configures the same bit. | ||
1840 | **/ | ||
1841 | static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active) | ||
1842 | { | ||
1843 | s32 ret_val = 0; | ||
1844 | u16 oem_reg; | ||
1845 | |||
1846 | ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg); | ||
1847 | if (ret_val) | ||
1848 | goto out; | ||
1849 | |||
1850 | if (active) | ||
1851 | oem_reg |= HV_OEM_BITS_LPLU; | ||
1852 | else | ||
1853 | oem_reg &= ~HV_OEM_BITS_LPLU; | ||
1854 | |||
1855 | oem_reg |= HV_OEM_BITS_RESTART_AN; | ||
1856 | ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg); | ||
1857 | |||
1858 | out: | ||
1859 | return ret_val; | ||
1860 | } | ||
1861 | |||
1862 | /** | ||
1863 | * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state | ||
1864 | * @hw: pointer to the HW structure | ||
1865 | * @active: true to enable LPLU, false to disable | ||
1866 | * | ||
1867 | * Sets the LPLU D0 state according to the active flag. When | ||
1868 | * activating LPLU this function also disables smart speed | ||
1869 | * and vice versa. LPLU will not be activated unless the | ||
1870 | * device autonegotiation advertisement meets standards of | ||
1871 | * either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
1872 | * This is a function pointer entry point only called by | ||
1873 | * PHY setup routines. | ||
1874 | **/ | ||
1875 | static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active) | ||
1876 | { | ||
1877 | struct e1000_phy_info *phy = &hw->phy; | ||
1878 | u32 phy_ctrl; | ||
1879 | s32 ret_val = 0; | ||
1880 | u16 data; | ||
1881 | |||
1882 | if (phy->type == e1000_phy_ife) | ||
1883 | return ret_val; | ||
1884 | |||
1885 | phy_ctrl = er32(PHY_CTRL); | ||
1886 | |||
1887 | if (active) { | ||
1888 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | ||
1889 | ew32(PHY_CTRL, phy_ctrl); | ||
1890 | |||
1891 | if (phy->type != e1000_phy_igp_3) | ||
1892 | return 0; | ||
1893 | |||
1894 | /* | ||
1895 | * Call gig speed drop workaround on LPLU before accessing | ||
1896 | * any PHY registers | ||
1897 | */ | ||
1898 | if (hw->mac.type == e1000_ich8lan) | ||
1899 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
1900 | |||
1901 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
1902 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | ||
1903 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1904 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | ||
1905 | if (ret_val) | ||
1906 | return ret_val; | ||
1907 | } else { | ||
1908 | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | ||
1909 | ew32(PHY_CTRL, phy_ctrl); | ||
1910 | |||
1911 | if (phy->type != e1000_phy_igp_3) | ||
1912 | return 0; | ||
1913 | |||
1914 | /* | ||
1915 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
1916 | * during Dx states where the power conservation is most | ||
1917 | * important. During driver activity we should enable | ||
1918 | * SmartSpeed, so performance is maintained. | ||
1919 | */ | ||
1920 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
1921 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1922 | &data); | ||
1923 | if (ret_val) | ||
1924 | return ret_val; | ||
1925 | |||
1926 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
1927 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1928 | data); | ||
1929 | if (ret_val) | ||
1930 | return ret_val; | ||
1931 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
1932 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1933 | &data); | ||
1934 | if (ret_val) | ||
1935 | return ret_val; | ||
1936 | |||
1937 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1938 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1939 | data); | ||
1940 | if (ret_val) | ||
1941 | return ret_val; | ||
1942 | } | ||
1943 | } | ||
1944 | |||
1945 | return 0; | ||
1946 | } | ||
1947 | |||
1948 | /** | ||
1949 | * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state | ||
1950 | * @hw: pointer to the HW structure | ||
1951 | * @active: true to enable LPLU, false to disable | ||
1952 | * | ||
1953 | * Sets the LPLU D3 state according to the active flag. When | ||
1954 | * activating LPLU this function also disables smart speed | ||
1955 | * and vice versa. LPLU will not be activated unless the | ||
1956 | * device autonegotiation advertisement meets standards of | ||
1957 | * either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
1958 | * This is a function pointer entry point only called by | ||
1959 | * PHY setup routines. | ||
1960 | **/ | ||
1961 | static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active) | ||
1962 | { | ||
1963 | struct e1000_phy_info *phy = &hw->phy; | ||
1964 | u32 phy_ctrl; | ||
1965 | s32 ret_val; | ||
1966 | u16 data; | ||
1967 | |||
1968 | phy_ctrl = er32(PHY_CTRL); | ||
1969 | |||
1970 | if (!active) { | ||
1971 | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | ||
1972 | ew32(PHY_CTRL, phy_ctrl); | ||
1973 | |||
1974 | if (phy->type != e1000_phy_igp_3) | ||
1975 | return 0; | ||
1976 | |||
1977 | /* | ||
1978 | * LPLU and SmartSpeed are mutually exclusive. LPLU is used | ||
1979 | * during Dx states where the power conservation is most | ||
1980 | * important. During driver activity we should enable | ||
1981 | * SmartSpeed, so performance is maintained. | ||
1982 | */ | ||
1983 | if (phy->smart_speed == e1000_smart_speed_on) { | ||
1984 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1985 | &data); | ||
1986 | if (ret_val) | ||
1987 | return ret_val; | ||
1988 | |||
1989 | data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
1990 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1991 | data); | ||
1992 | if (ret_val) | ||
1993 | return ret_val; | ||
1994 | } else if (phy->smart_speed == e1000_smart_speed_off) { | ||
1995 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1996 | &data); | ||
1997 | if (ret_val) | ||
1998 | return ret_val; | ||
1999 | |||
2000 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
2001 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
2002 | data); | ||
2003 | if (ret_val) | ||
2004 | return ret_val; | ||
2005 | } | ||
2006 | } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || | ||
2007 | (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || | ||
2008 | (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { | ||
2009 | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | ||
2010 | ew32(PHY_CTRL, phy_ctrl); | ||
2011 | |||
2012 | if (phy->type != e1000_phy_igp_3) | ||
2013 | return 0; | ||
2014 | |||
2015 | /* | ||
2016 | * Call gig speed drop workaround on LPLU before accessing | ||
2017 | * any PHY registers | ||
2018 | */ | ||
2019 | if (hw->mac.type == e1000_ich8lan) | ||
2020 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
2021 | |||
2022 | /* When LPLU is enabled, we should disable SmartSpeed */ | ||
2023 | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | ||
2024 | if (ret_val) | ||
2025 | return ret_val; | ||
2026 | |||
2027 | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
2028 | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | ||
2029 | } | ||
2030 | |||
2031 | return 0; | ||
2032 | } | ||
2033 | |||
2034 | /** | ||
2035 | * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1 | ||
2036 | * @hw: pointer to the HW structure | ||
2037 | * @bank: pointer to the variable that returns the active bank | ||
2038 | * | ||
2039 | * Reads signature byte from the NVM using the flash access registers. | ||
2040 | * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank. | ||
2041 | **/ | ||
2042 | static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank) | ||
2043 | { | ||
2044 | u32 eecd; | ||
2045 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
2046 | u32 bank1_offset = nvm->flash_bank_size * sizeof(u16); | ||
2047 | u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1; | ||
2048 | u8 sig_byte = 0; | ||
2049 | s32 ret_val = 0; | ||
2050 | |||
2051 | switch (hw->mac.type) { | ||
2052 | case e1000_ich8lan: | ||
2053 | case e1000_ich9lan: | ||
2054 | eecd = er32(EECD); | ||
2055 | if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) == | ||
2056 | E1000_EECD_SEC1VAL_VALID_MASK) { | ||
2057 | if (eecd & E1000_EECD_SEC1VAL) | ||
2058 | *bank = 1; | ||
2059 | else | ||
2060 | *bank = 0; | ||
2061 | |||
2062 | return 0; | ||
2063 | } | ||
2064 | e_dbg("Unable to determine valid NVM bank via EEC - " | ||
2065 | "reading flash signature\n"); | ||
2066 | /* fall-thru */ | ||
2067 | default: | ||
2068 | /* set bank to 0 in case flash read fails */ | ||
2069 | *bank = 0; | ||
2070 | |||
2071 | /* Check bank 0 */ | ||
2072 | ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset, | ||
2073 | &sig_byte); | ||
2074 | if (ret_val) | ||
2075 | return ret_val; | ||
2076 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == | ||
2077 | E1000_ICH_NVM_SIG_VALUE) { | ||
2078 | *bank = 0; | ||
2079 | return 0; | ||
2080 | } | ||
2081 | |||
2082 | /* Check bank 1 */ | ||
2083 | ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset + | ||
2084 | bank1_offset, | ||
2085 | &sig_byte); | ||
2086 | if (ret_val) | ||
2087 | return ret_val; | ||
2088 | if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) == | ||
2089 | E1000_ICH_NVM_SIG_VALUE) { | ||
2090 | *bank = 1; | ||
2091 | return 0; | ||
2092 | } | ||
2093 | |||
2094 | e_dbg("ERROR: No valid NVM bank present\n"); | ||
2095 | return -E1000_ERR_NVM; | ||
2096 | } | ||
2097 | |||
2098 | return 0; | ||
2099 | } | ||
2100 | |||
2101 | /** | ||
2102 | * e1000_read_nvm_ich8lan - Read word(s) from the NVM | ||
2103 | * @hw: pointer to the HW structure | ||
2104 | * @offset: The offset (in bytes) of the word(s) to read. | ||
2105 | * @words: Size of data to read in words | ||
2106 | * @data: Pointer to the word(s) to read at offset. | ||
2107 | * | ||
2108 | * Reads a word(s) from the NVM using the flash access registers. | ||
2109 | **/ | ||
2110 | static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, | ||
2111 | u16 *data) | ||
2112 | { | ||
2113 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
2114 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
2115 | u32 act_offset; | ||
2116 | s32 ret_val = 0; | ||
2117 | u32 bank = 0; | ||
2118 | u16 i, word; | ||
2119 | |||
2120 | if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | ||
2121 | (words == 0)) { | ||
2122 | e_dbg("nvm parameter(s) out of bounds\n"); | ||
2123 | ret_val = -E1000_ERR_NVM; | ||
2124 | goto out; | ||
2125 | } | ||
2126 | |||
2127 | nvm->ops.acquire(hw); | ||
2128 | |||
2129 | ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); | ||
2130 | if (ret_val) { | ||
2131 | e_dbg("Could not detect valid bank, assuming bank 0\n"); | ||
2132 | bank = 0; | ||
2133 | } | ||
2134 | |||
2135 | act_offset = (bank) ? nvm->flash_bank_size : 0; | ||
2136 | act_offset += offset; | ||
2137 | |||
2138 | ret_val = 0; | ||
2139 | for (i = 0; i < words; i++) { | ||
2140 | if (dev_spec->shadow_ram[offset+i].modified) { | ||
2141 | data[i] = dev_spec->shadow_ram[offset+i].value; | ||
2142 | } else { | ||
2143 | ret_val = e1000_read_flash_word_ich8lan(hw, | ||
2144 | act_offset + i, | ||
2145 | &word); | ||
2146 | if (ret_val) | ||
2147 | break; | ||
2148 | data[i] = word; | ||
2149 | } | ||
2150 | } | ||
2151 | |||
2152 | nvm->ops.release(hw); | ||
2153 | |||
2154 | out: | ||
2155 | if (ret_val) | ||
2156 | e_dbg("NVM read error: %d\n", ret_val); | ||
2157 | |||
2158 | return ret_val; | ||
2159 | } | ||
2160 | |||
2161 | /** | ||
2162 | * e1000_flash_cycle_init_ich8lan - Initialize flash | ||
2163 | * @hw: pointer to the HW structure | ||
2164 | * | ||
2165 | * This function does initial flash setup so that a new read/write/erase cycle | ||
2166 | * can be started. | ||
2167 | **/ | ||
2168 | static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw) | ||
2169 | { | ||
2170 | union ich8_hws_flash_status hsfsts; | ||
2171 | s32 ret_val = -E1000_ERR_NVM; | ||
2172 | |||
2173 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
2174 | |||
2175 | /* Check if the flash descriptor is valid */ | ||
2176 | if (hsfsts.hsf_status.fldesvalid == 0) { | ||
2177 | e_dbg("Flash descriptor invalid. " | ||
2178 | "SW Sequencing must be used.\n"); | ||
2179 | return -E1000_ERR_NVM; | ||
2180 | } | ||
2181 | |||
2182 | /* Clear FCERR and DAEL in hw status by writing 1 */ | ||
2183 | hsfsts.hsf_status.flcerr = 1; | ||
2184 | hsfsts.hsf_status.dael = 1; | ||
2185 | |||
2186 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | ||
2187 | |||
2188 | /* | ||
2189 | * Either we should have a hardware SPI cycle in progress | ||
2190 | * bit to check against, in order to start a new cycle or | ||
2191 | * FDONE bit should be changed in the hardware so that it | ||
2192 | * is 1 after hardware reset, which can then be used as an | ||
2193 | * indication whether a cycle is in progress or has been | ||
2194 | * completed. | ||
2195 | */ | ||
2196 | |||
2197 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
2198 | /* | ||
2199 | * There is no cycle running at present, | ||
2200 | * so we can start a cycle. | ||
2201 | * Begin by setting Flash Cycle Done. | ||
2202 | */ | ||
2203 | hsfsts.hsf_status.flcdone = 1; | ||
2204 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | ||
2205 | ret_val = 0; | ||
2206 | } else { | ||
2207 | s32 i = 0; | ||
2208 | |||
2209 | /* | ||
2210 | * Otherwise poll for sometime so the current | ||
2211 | * cycle has a chance to end before giving up. | ||
2212 | */ | ||
2213 | for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) { | ||
2214 | hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS); | ||
2215 | if (hsfsts.hsf_status.flcinprog == 0) { | ||
2216 | ret_val = 0; | ||
2217 | break; | ||
2218 | } | ||
2219 | udelay(1); | ||
2220 | } | ||
2221 | if (ret_val == 0) { | ||
2222 | /* | ||
2223 | * Successful in waiting for previous cycle to timeout, | ||
2224 | * now set the Flash Cycle Done. | ||
2225 | */ | ||
2226 | hsfsts.hsf_status.flcdone = 1; | ||
2227 | ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval); | ||
2228 | } else { | ||
2229 | e_dbg("Flash controller busy, cannot get access\n"); | ||
2230 | } | ||
2231 | } | ||
2232 | |||
2233 | return ret_val; | ||
2234 | } | ||
2235 | |||
2236 | /** | ||
2237 | * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase) | ||
2238 | * @hw: pointer to the HW structure | ||
2239 | * @timeout: maximum time to wait for completion | ||
2240 | * | ||
2241 | * This function starts a flash cycle and waits for its completion. | ||
2242 | **/ | ||
2243 | static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout) | ||
2244 | { | ||
2245 | union ich8_hws_flash_ctrl hsflctl; | ||
2246 | union ich8_hws_flash_status hsfsts; | ||
2247 | s32 ret_val = -E1000_ERR_NVM; | ||
2248 | u32 i = 0; | ||
2249 | |||
2250 | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | ||
2251 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | ||
2252 | hsflctl.hsf_ctrl.flcgo = 1; | ||
2253 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | ||
2254 | |||
2255 | /* wait till FDONE bit is set to 1 */ | ||
2256 | do { | ||
2257 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
2258 | if (hsfsts.hsf_status.flcdone == 1) | ||
2259 | break; | ||
2260 | udelay(1); | ||
2261 | } while (i++ < timeout); | ||
2262 | |||
2263 | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) | ||
2264 | return 0; | ||
2265 | |||
2266 | return ret_val; | ||
2267 | } | ||
2268 | |||
2269 | /** | ||
2270 | * e1000_read_flash_word_ich8lan - Read word from flash | ||
2271 | * @hw: pointer to the HW structure | ||
2272 | * @offset: offset to data location | ||
2273 | * @data: pointer to the location for storing the data | ||
2274 | * | ||
2275 | * Reads the flash word at offset into data. Offset is converted | ||
2276 | * to bytes before read. | ||
2277 | **/ | ||
2278 | static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset, | ||
2279 | u16 *data) | ||
2280 | { | ||
2281 | /* Must convert offset into bytes. */ | ||
2282 | offset <<= 1; | ||
2283 | |||
2284 | return e1000_read_flash_data_ich8lan(hw, offset, 2, data); | ||
2285 | } | ||
2286 | |||
2287 | /** | ||
2288 | * e1000_read_flash_byte_ich8lan - Read byte from flash | ||
2289 | * @hw: pointer to the HW structure | ||
2290 | * @offset: The offset of the byte to read. | ||
2291 | * @data: Pointer to a byte to store the value read. | ||
2292 | * | ||
2293 | * Reads a single byte from the NVM using the flash access registers. | ||
2294 | **/ | ||
2295 | static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | ||
2296 | u8 *data) | ||
2297 | { | ||
2298 | s32 ret_val; | ||
2299 | u16 word = 0; | ||
2300 | |||
2301 | ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word); | ||
2302 | if (ret_val) | ||
2303 | return ret_val; | ||
2304 | |||
2305 | *data = (u8)word; | ||
2306 | |||
2307 | return 0; | ||
2308 | } | ||
2309 | |||
2310 | /** | ||
2311 | * e1000_read_flash_data_ich8lan - Read byte or word from NVM | ||
2312 | * @hw: pointer to the HW structure | ||
2313 | * @offset: The offset (in bytes) of the byte or word to read. | ||
2314 | * @size: Size of data to read, 1=byte 2=word | ||
2315 | * @data: Pointer to the word to store the value read. | ||
2316 | * | ||
2317 | * Reads a byte or word from the NVM using the flash access registers. | ||
2318 | **/ | ||
2319 | static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | ||
2320 | u8 size, u16 *data) | ||
2321 | { | ||
2322 | union ich8_hws_flash_status hsfsts; | ||
2323 | union ich8_hws_flash_ctrl hsflctl; | ||
2324 | u32 flash_linear_addr; | ||
2325 | u32 flash_data = 0; | ||
2326 | s32 ret_val = -E1000_ERR_NVM; | ||
2327 | u8 count = 0; | ||
2328 | |||
2329 | if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK) | ||
2330 | return -E1000_ERR_NVM; | ||
2331 | |||
2332 | flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + | ||
2333 | hw->nvm.flash_base_addr; | ||
2334 | |||
2335 | do { | ||
2336 | udelay(1); | ||
2337 | /* Steps */ | ||
2338 | ret_val = e1000_flash_cycle_init_ich8lan(hw); | ||
2339 | if (ret_val != 0) | ||
2340 | break; | ||
2341 | |||
2342 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | ||
2343 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
2344 | hsflctl.hsf_ctrl.fldbcount = size - 1; | ||
2345 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; | ||
2346 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | ||
2347 | |||
2348 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | ||
2349 | |||
2350 | ret_val = e1000_flash_cycle_ich8lan(hw, | ||
2351 | ICH_FLASH_READ_COMMAND_TIMEOUT); | ||
2352 | |||
2353 | /* | ||
2354 | * Check if FCERR is set to 1, if set to 1, clear it | ||
2355 | * and try the whole sequence a few more times, else | ||
2356 | * read in (shift in) the Flash Data0, the order is | ||
2357 | * least significant byte first msb to lsb | ||
2358 | */ | ||
2359 | if (ret_val == 0) { | ||
2360 | flash_data = er32flash(ICH_FLASH_FDATA0); | ||
2361 | if (size == 1) | ||
2362 | *data = (u8)(flash_data & 0x000000FF); | ||
2363 | else if (size == 2) | ||
2364 | *data = (u16)(flash_data & 0x0000FFFF); | ||
2365 | break; | ||
2366 | } else { | ||
2367 | /* | ||
2368 | * If we've gotten here, then things are probably | ||
2369 | * completely hosed, but if the error condition is | ||
2370 | * detected, it won't hurt to give it another try... | ||
2371 | * ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||
2372 | */ | ||
2373 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
2374 | if (hsfsts.hsf_status.flcerr == 1) { | ||
2375 | /* Repeat for some time before giving up. */ | ||
2376 | continue; | ||
2377 | } else if (hsfsts.hsf_status.flcdone == 0) { | ||
2378 | e_dbg("Timeout error - flash cycle " | ||
2379 | "did not complete.\n"); | ||
2380 | break; | ||
2381 | } | ||
2382 | } | ||
2383 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
2384 | |||
2385 | return ret_val; | ||
2386 | } | ||
2387 | |||
2388 | /** | ||
2389 | * e1000_write_nvm_ich8lan - Write word(s) to the NVM | ||
2390 | * @hw: pointer to the HW structure | ||
2391 | * @offset: The offset (in bytes) of the word(s) to write. | ||
2392 | * @words: Size of data to write in words | ||
2393 | * @data: Pointer to the word(s) to write at offset. | ||
2394 | * | ||
2395 | * Writes a byte or word to the NVM using the flash access registers. | ||
2396 | **/ | ||
2397 | static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words, | ||
2398 | u16 *data) | ||
2399 | { | ||
2400 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
2401 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
2402 | u16 i; | ||
2403 | |||
2404 | if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) || | ||
2405 | (words == 0)) { | ||
2406 | e_dbg("nvm parameter(s) out of bounds\n"); | ||
2407 | return -E1000_ERR_NVM; | ||
2408 | } | ||
2409 | |||
2410 | nvm->ops.acquire(hw); | ||
2411 | |||
2412 | for (i = 0; i < words; i++) { | ||
2413 | dev_spec->shadow_ram[offset+i].modified = true; | ||
2414 | dev_spec->shadow_ram[offset+i].value = data[i]; | ||
2415 | } | ||
2416 | |||
2417 | nvm->ops.release(hw); | ||
2418 | |||
2419 | return 0; | ||
2420 | } | ||
2421 | |||
2422 | /** | ||
2423 | * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM | ||
2424 | * @hw: pointer to the HW structure | ||
2425 | * | ||
2426 | * The NVM checksum is updated by calling the generic update_nvm_checksum, | ||
2427 | * which writes the checksum to the shadow ram. The changes in the shadow | ||
2428 | * ram are then committed to the EEPROM by processing each bank at a time | ||
2429 | * checking for the modified bit and writing only the pending changes. | ||
2430 | * After a successful commit, the shadow ram is cleared and is ready for | ||
2431 | * future writes. | ||
2432 | **/ | ||
2433 | static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw) | ||
2434 | { | ||
2435 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
2436 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
2437 | u32 i, act_offset, new_bank_offset, old_bank_offset, bank; | ||
2438 | s32 ret_val; | ||
2439 | u16 data; | ||
2440 | |||
2441 | ret_val = e1000e_update_nvm_checksum_generic(hw); | ||
2442 | if (ret_val) | ||
2443 | goto out; | ||
2444 | |||
2445 | if (nvm->type != e1000_nvm_flash_sw) | ||
2446 | goto out; | ||
2447 | |||
2448 | nvm->ops.acquire(hw); | ||
2449 | |||
2450 | /* | ||
2451 | * We're writing to the opposite bank so if we're on bank 1, | ||
2452 | * write to bank 0 etc. We also need to erase the segment that | ||
2453 | * is going to be written | ||
2454 | */ | ||
2455 | ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank); | ||
2456 | if (ret_val) { | ||
2457 | e_dbg("Could not detect valid bank, assuming bank 0\n"); | ||
2458 | bank = 0; | ||
2459 | } | ||
2460 | |||
2461 | if (bank == 0) { | ||
2462 | new_bank_offset = nvm->flash_bank_size; | ||
2463 | old_bank_offset = 0; | ||
2464 | ret_val = e1000_erase_flash_bank_ich8lan(hw, 1); | ||
2465 | if (ret_val) | ||
2466 | goto release; | ||
2467 | } else { | ||
2468 | old_bank_offset = nvm->flash_bank_size; | ||
2469 | new_bank_offset = 0; | ||
2470 | ret_val = e1000_erase_flash_bank_ich8lan(hw, 0); | ||
2471 | if (ret_val) | ||
2472 | goto release; | ||
2473 | } | ||
2474 | |||
2475 | for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | ||
2476 | /* | ||
2477 | * Determine whether to write the value stored | ||
2478 | * in the other NVM bank or a modified value stored | ||
2479 | * in the shadow RAM | ||
2480 | */ | ||
2481 | if (dev_spec->shadow_ram[i].modified) { | ||
2482 | data = dev_spec->shadow_ram[i].value; | ||
2483 | } else { | ||
2484 | ret_val = e1000_read_flash_word_ich8lan(hw, i + | ||
2485 | old_bank_offset, | ||
2486 | &data); | ||
2487 | if (ret_val) | ||
2488 | break; | ||
2489 | } | ||
2490 | |||
2491 | /* | ||
2492 | * If the word is 0x13, then make sure the signature bits | ||
2493 | * (15:14) are 11b until the commit has completed. | ||
2494 | * This will allow us to write 10b which indicates the | ||
2495 | * signature is valid. We want to do this after the write | ||
2496 | * has completed so that we don't mark the segment valid | ||
2497 | * while the write is still in progress | ||
2498 | */ | ||
2499 | if (i == E1000_ICH_NVM_SIG_WORD) | ||
2500 | data |= E1000_ICH_NVM_SIG_MASK; | ||
2501 | |||
2502 | /* Convert offset to bytes. */ | ||
2503 | act_offset = (i + new_bank_offset) << 1; | ||
2504 | |||
2505 | udelay(100); | ||
2506 | /* Write the bytes to the new bank. */ | ||
2507 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | ||
2508 | act_offset, | ||
2509 | (u8)data); | ||
2510 | if (ret_val) | ||
2511 | break; | ||
2512 | |||
2513 | udelay(100); | ||
2514 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | ||
2515 | act_offset + 1, | ||
2516 | (u8)(data >> 8)); | ||
2517 | if (ret_val) | ||
2518 | break; | ||
2519 | } | ||
2520 | |||
2521 | /* | ||
2522 | * Don't bother writing the segment valid bits if sector | ||
2523 | * programming failed. | ||
2524 | */ | ||
2525 | if (ret_val) { | ||
2526 | /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */ | ||
2527 | e_dbg("Flash commit failed.\n"); | ||
2528 | goto release; | ||
2529 | } | ||
2530 | |||
2531 | /* | ||
2532 | * Finally validate the new segment by setting bit 15:14 | ||
2533 | * to 10b in word 0x13 , this can be done without an | ||
2534 | * erase as well since these bits are 11 to start with | ||
2535 | * and we need to change bit 14 to 0b | ||
2536 | */ | ||
2537 | act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD; | ||
2538 | ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data); | ||
2539 | if (ret_val) | ||
2540 | goto release; | ||
2541 | |||
2542 | data &= 0xBFFF; | ||
2543 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, | ||
2544 | act_offset * 2 + 1, | ||
2545 | (u8)(data >> 8)); | ||
2546 | if (ret_val) | ||
2547 | goto release; | ||
2548 | |||
2549 | /* | ||
2550 | * And invalidate the previously valid segment by setting | ||
2551 | * its signature word (0x13) high_byte to 0b. This can be | ||
2552 | * done without an erase because flash erase sets all bits | ||
2553 | * to 1's. We can write 1's to 0's without an erase | ||
2554 | */ | ||
2555 | act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1; | ||
2556 | ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0); | ||
2557 | if (ret_val) | ||
2558 | goto release; | ||
2559 | |||
2560 | /* Great! Everything worked, we can now clear the cached entries. */ | ||
2561 | for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) { | ||
2562 | dev_spec->shadow_ram[i].modified = false; | ||
2563 | dev_spec->shadow_ram[i].value = 0xFFFF; | ||
2564 | } | ||
2565 | |||
2566 | release: | ||
2567 | nvm->ops.release(hw); | ||
2568 | |||
2569 | /* | ||
2570 | * Reload the EEPROM, or else modifications will not appear | ||
2571 | * until after the next adapter reset. | ||
2572 | */ | ||
2573 | if (!ret_val) { | ||
2574 | e1000e_reload_nvm(hw); | ||
2575 | usleep_range(10000, 20000); | ||
2576 | } | ||
2577 | |||
2578 | out: | ||
2579 | if (ret_val) | ||
2580 | e_dbg("NVM update error: %d\n", ret_val); | ||
2581 | |||
2582 | return ret_val; | ||
2583 | } | ||
2584 | |||
2585 | /** | ||
2586 | * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum | ||
2587 | * @hw: pointer to the HW structure | ||
2588 | * | ||
2589 | * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19. | ||
2590 | * If the bit is 0, that the EEPROM had been modified, but the checksum was not | ||
2591 | * calculated, in which case we need to calculate the checksum and set bit 6. | ||
2592 | **/ | ||
2593 | static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw) | ||
2594 | { | ||
2595 | s32 ret_val; | ||
2596 | u16 data; | ||
2597 | |||
2598 | /* | ||
2599 | * Read 0x19 and check bit 6. If this bit is 0, the checksum | ||
2600 | * needs to be fixed. This bit is an indication that the NVM | ||
2601 | * was prepared by OEM software and did not calculate the | ||
2602 | * checksum...a likely scenario. | ||
2603 | */ | ||
2604 | ret_val = e1000_read_nvm(hw, 0x19, 1, &data); | ||
2605 | if (ret_val) | ||
2606 | return ret_val; | ||
2607 | |||
2608 | if ((data & 0x40) == 0) { | ||
2609 | data |= 0x40; | ||
2610 | ret_val = e1000_write_nvm(hw, 0x19, 1, &data); | ||
2611 | if (ret_val) | ||
2612 | return ret_val; | ||
2613 | ret_val = e1000e_update_nvm_checksum(hw); | ||
2614 | if (ret_val) | ||
2615 | return ret_val; | ||
2616 | } | ||
2617 | |||
2618 | return e1000e_validate_nvm_checksum_generic(hw); | ||
2619 | } | ||
2620 | |||
2621 | /** | ||
2622 | * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only | ||
2623 | * @hw: pointer to the HW structure | ||
2624 | * | ||
2625 | * To prevent malicious write/erase of the NVM, set it to be read-only | ||
2626 | * so that the hardware ignores all write/erase cycles of the NVM via | ||
2627 | * the flash control registers. The shadow-ram copy of the NVM will | ||
2628 | * still be updated, however any updates to this copy will not stick | ||
2629 | * across driver reloads. | ||
2630 | **/ | ||
2631 | void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw) | ||
2632 | { | ||
2633 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
2634 | union ich8_flash_protected_range pr0; | ||
2635 | union ich8_hws_flash_status hsfsts; | ||
2636 | u32 gfpreg; | ||
2637 | |||
2638 | nvm->ops.acquire(hw); | ||
2639 | |||
2640 | gfpreg = er32flash(ICH_FLASH_GFPREG); | ||
2641 | |||
2642 | /* Write-protect GbE Sector of NVM */ | ||
2643 | pr0.regval = er32flash(ICH_FLASH_PR0); | ||
2644 | pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK; | ||
2645 | pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK); | ||
2646 | pr0.range.wpe = true; | ||
2647 | ew32flash(ICH_FLASH_PR0, pr0.regval); | ||
2648 | |||
2649 | /* | ||
2650 | * Lock down a subset of GbE Flash Control Registers, e.g. | ||
2651 | * PR0 to prevent the write-protection from being lifted. | ||
2652 | * Once FLOCKDN is set, the registers protected by it cannot | ||
2653 | * be written until FLOCKDN is cleared by a hardware reset. | ||
2654 | */ | ||
2655 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
2656 | hsfsts.hsf_status.flockdn = true; | ||
2657 | ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval); | ||
2658 | |||
2659 | nvm->ops.release(hw); | ||
2660 | } | ||
2661 | |||
2662 | /** | ||
2663 | * e1000_write_flash_data_ich8lan - Writes bytes to the NVM | ||
2664 | * @hw: pointer to the HW structure | ||
2665 | * @offset: The offset (in bytes) of the byte/word to read. | ||
2666 | * @size: Size of data to read, 1=byte 2=word | ||
2667 | * @data: The byte(s) to write to the NVM. | ||
2668 | * | ||
2669 | * Writes one/two bytes to the NVM using the flash access registers. | ||
2670 | **/ | ||
2671 | static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset, | ||
2672 | u8 size, u16 data) | ||
2673 | { | ||
2674 | union ich8_hws_flash_status hsfsts; | ||
2675 | union ich8_hws_flash_ctrl hsflctl; | ||
2676 | u32 flash_linear_addr; | ||
2677 | u32 flash_data = 0; | ||
2678 | s32 ret_val; | ||
2679 | u8 count = 0; | ||
2680 | |||
2681 | if (size < 1 || size > 2 || data > size * 0xff || | ||
2682 | offset > ICH_FLASH_LINEAR_ADDR_MASK) | ||
2683 | return -E1000_ERR_NVM; | ||
2684 | |||
2685 | flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) + | ||
2686 | hw->nvm.flash_base_addr; | ||
2687 | |||
2688 | do { | ||
2689 | udelay(1); | ||
2690 | /* Steps */ | ||
2691 | ret_val = e1000_flash_cycle_init_ich8lan(hw); | ||
2692 | if (ret_val) | ||
2693 | break; | ||
2694 | |||
2695 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | ||
2696 | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | ||
2697 | hsflctl.hsf_ctrl.fldbcount = size -1; | ||
2698 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; | ||
2699 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | ||
2700 | |||
2701 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | ||
2702 | |||
2703 | if (size == 1) | ||
2704 | flash_data = (u32)data & 0x00FF; | ||
2705 | else | ||
2706 | flash_data = (u32)data; | ||
2707 | |||
2708 | ew32flash(ICH_FLASH_FDATA0, flash_data); | ||
2709 | |||
2710 | /* | ||
2711 | * check if FCERR is set to 1 , if set to 1, clear it | ||
2712 | * and try the whole sequence a few more times else done | ||
2713 | */ | ||
2714 | ret_val = e1000_flash_cycle_ich8lan(hw, | ||
2715 | ICH_FLASH_WRITE_COMMAND_TIMEOUT); | ||
2716 | if (!ret_val) | ||
2717 | break; | ||
2718 | |||
2719 | /* | ||
2720 | * If we're here, then things are most likely | ||
2721 | * completely hosed, but if the error condition | ||
2722 | * is detected, it won't hurt to give it another | ||
2723 | * try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | ||
2724 | */ | ||
2725 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
2726 | if (hsfsts.hsf_status.flcerr == 1) | ||
2727 | /* Repeat for some time before giving up. */ | ||
2728 | continue; | ||
2729 | if (hsfsts.hsf_status.flcdone == 0) { | ||
2730 | e_dbg("Timeout error - flash cycle " | ||
2731 | "did not complete."); | ||
2732 | break; | ||
2733 | } | ||
2734 | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
2735 | |||
2736 | return ret_val; | ||
2737 | } | ||
2738 | |||
2739 | /** | ||
2740 | * e1000_write_flash_byte_ich8lan - Write a single byte to NVM | ||
2741 | * @hw: pointer to the HW structure | ||
2742 | * @offset: The index of the byte to read. | ||
2743 | * @data: The byte to write to the NVM. | ||
2744 | * | ||
2745 | * Writes a single byte to the NVM using the flash access registers. | ||
2746 | **/ | ||
2747 | static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset, | ||
2748 | u8 data) | ||
2749 | { | ||
2750 | u16 word = (u16)data; | ||
2751 | |||
2752 | return e1000_write_flash_data_ich8lan(hw, offset, 1, word); | ||
2753 | } | ||
2754 | |||
2755 | /** | ||
2756 | * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM | ||
2757 | * @hw: pointer to the HW structure | ||
2758 | * @offset: The offset of the byte to write. | ||
2759 | * @byte: The byte to write to the NVM. | ||
2760 | * | ||
2761 | * Writes a single byte to the NVM using the flash access registers. | ||
2762 | * Goes through a retry algorithm before giving up. | ||
2763 | **/ | ||
2764 | static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw, | ||
2765 | u32 offset, u8 byte) | ||
2766 | { | ||
2767 | s32 ret_val; | ||
2768 | u16 program_retries; | ||
2769 | |||
2770 | ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); | ||
2771 | if (!ret_val) | ||
2772 | return ret_val; | ||
2773 | |||
2774 | for (program_retries = 0; program_retries < 100; program_retries++) { | ||
2775 | e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset); | ||
2776 | udelay(100); | ||
2777 | ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte); | ||
2778 | if (!ret_val) | ||
2779 | break; | ||
2780 | } | ||
2781 | if (program_retries == 100) | ||
2782 | return -E1000_ERR_NVM; | ||
2783 | |||
2784 | return 0; | ||
2785 | } | ||
2786 | |||
2787 | /** | ||
2788 | * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM | ||
2789 | * @hw: pointer to the HW structure | ||
2790 | * @bank: 0 for first bank, 1 for second bank, etc. | ||
2791 | * | ||
2792 | * Erases the bank specified. Each bank is a 4k block. Banks are 0 based. | ||
2793 | * bank N is 4096 * N + flash_reg_addr. | ||
2794 | **/ | ||
2795 | static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank) | ||
2796 | { | ||
2797 | struct e1000_nvm_info *nvm = &hw->nvm; | ||
2798 | union ich8_hws_flash_status hsfsts; | ||
2799 | union ich8_hws_flash_ctrl hsflctl; | ||
2800 | u32 flash_linear_addr; | ||
2801 | /* bank size is in 16bit words - adjust to bytes */ | ||
2802 | u32 flash_bank_size = nvm->flash_bank_size * 2; | ||
2803 | s32 ret_val; | ||
2804 | s32 count = 0; | ||
2805 | s32 j, iteration, sector_size; | ||
2806 | |||
2807 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
2808 | |||
2809 | /* | ||
2810 | * Determine HW Sector size: Read BERASE bits of hw flash status | ||
2811 | * register | ||
2812 | * 00: The Hw sector is 256 bytes, hence we need to erase 16 | ||
2813 | * consecutive sectors. The start index for the nth Hw sector | ||
2814 | * can be calculated as = bank * 4096 + n * 256 | ||
2815 | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | ||
2816 | * The start index for the nth Hw sector can be calculated | ||
2817 | * as = bank * 4096 | ||
2818 | * 10: The Hw sector is 8K bytes, nth sector = bank * 8192 | ||
2819 | * (ich9 only, otherwise error condition) | ||
2820 | * 11: The Hw sector is 64K bytes, nth sector = bank * 65536 | ||
2821 | */ | ||
2822 | switch (hsfsts.hsf_status.berasesz) { | ||
2823 | case 0: | ||
2824 | /* Hw sector size 256 */ | ||
2825 | sector_size = ICH_FLASH_SEG_SIZE_256; | ||
2826 | iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256; | ||
2827 | break; | ||
2828 | case 1: | ||
2829 | sector_size = ICH_FLASH_SEG_SIZE_4K; | ||
2830 | iteration = 1; | ||
2831 | break; | ||
2832 | case 2: | ||
2833 | sector_size = ICH_FLASH_SEG_SIZE_8K; | ||
2834 | iteration = 1; | ||
2835 | break; | ||
2836 | case 3: | ||
2837 | sector_size = ICH_FLASH_SEG_SIZE_64K; | ||
2838 | iteration = 1; | ||
2839 | break; | ||
2840 | default: | ||
2841 | return -E1000_ERR_NVM; | ||
2842 | } | ||
2843 | |||
2844 | /* Start with the base address, then add the sector offset. */ | ||
2845 | flash_linear_addr = hw->nvm.flash_base_addr; | ||
2846 | flash_linear_addr += (bank) ? flash_bank_size : 0; | ||
2847 | |||
2848 | for (j = 0; j < iteration ; j++) { | ||
2849 | do { | ||
2850 | /* Steps */ | ||
2851 | ret_val = e1000_flash_cycle_init_ich8lan(hw); | ||
2852 | if (ret_val) | ||
2853 | return ret_val; | ||
2854 | |||
2855 | /* | ||
2856 | * Write a value 11 (block Erase) in Flash | ||
2857 | * Cycle field in hw flash control | ||
2858 | */ | ||
2859 | hsflctl.regval = er16flash(ICH_FLASH_HSFCTL); | ||
2860 | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; | ||
2861 | ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval); | ||
2862 | |||
2863 | /* | ||
2864 | * Write the last 24 bits of an index within the | ||
2865 | * block into Flash Linear address field in Flash | ||
2866 | * Address. | ||
2867 | */ | ||
2868 | flash_linear_addr += (j * sector_size); | ||
2869 | ew32flash(ICH_FLASH_FADDR, flash_linear_addr); | ||
2870 | |||
2871 | ret_val = e1000_flash_cycle_ich8lan(hw, | ||
2872 | ICH_FLASH_ERASE_COMMAND_TIMEOUT); | ||
2873 | if (ret_val == 0) | ||
2874 | break; | ||
2875 | |||
2876 | /* | ||
2877 | * Check if FCERR is set to 1. If 1, | ||
2878 | * clear it and try the whole sequence | ||
2879 | * a few more times else Done | ||
2880 | */ | ||
2881 | hsfsts.regval = er16flash(ICH_FLASH_HSFSTS); | ||
2882 | if (hsfsts.hsf_status.flcerr == 1) | ||
2883 | /* repeat for some time before giving up */ | ||
2884 | continue; | ||
2885 | else if (hsfsts.hsf_status.flcdone == 0) | ||
2886 | return ret_val; | ||
2887 | } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT); | ||
2888 | } | ||
2889 | |||
2890 | return 0; | ||
2891 | } | ||
2892 | |||
2893 | /** | ||
2894 | * e1000_valid_led_default_ich8lan - Set the default LED settings | ||
2895 | * @hw: pointer to the HW structure | ||
2896 | * @data: Pointer to the LED settings | ||
2897 | * | ||
2898 | * Reads the LED default settings from the NVM to data. If the NVM LED | ||
2899 | * settings is all 0's or F's, set the LED default to a valid LED default | ||
2900 | * setting. | ||
2901 | **/ | ||
2902 | static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data) | ||
2903 | { | ||
2904 | s32 ret_val; | ||
2905 | |||
2906 | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | ||
2907 | if (ret_val) { | ||
2908 | e_dbg("NVM Read Error\n"); | ||
2909 | return ret_val; | ||
2910 | } | ||
2911 | |||
2912 | if (*data == ID_LED_RESERVED_0000 || | ||
2913 | *data == ID_LED_RESERVED_FFFF) | ||
2914 | *data = ID_LED_DEFAULT_ICH8LAN; | ||
2915 | |||
2916 | return 0; | ||
2917 | } | ||
2918 | |||
2919 | /** | ||
2920 | * e1000_id_led_init_pchlan - store LED configurations | ||
2921 | * @hw: pointer to the HW structure | ||
2922 | * | ||
2923 | * PCH does not control LEDs via the LEDCTL register, rather it uses | ||
2924 | * the PHY LED configuration register. | ||
2925 | * | ||
2926 | * PCH also does not have an "always on" or "always off" mode which | ||
2927 | * complicates the ID feature. Instead of using the "on" mode to indicate | ||
2928 | * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()), | ||
2929 | * use "link_up" mode. The LEDs will still ID on request if there is no | ||
2930 | * link based on logic in e1000_led_[on|off]_pchlan(). | ||
2931 | **/ | ||
2932 | static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw) | ||
2933 | { | ||
2934 | struct e1000_mac_info *mac = &hw->mac; | ||
2935 | s32 ret_val; | ||
2936 | const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP; | ||
2937 | const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT; | ||
2938 | u16 data, i, temp, shift; | ||
2939 | |||
2940 | /* Get default ID LED modes */ | ||
2941 | ret_val = hw->nvm.ops.valid_led_default(hw, &data); | ||
2942 | if (ret_val) | ||
2943 | goto out; | ||
2944 | |||
2945 | mac->ledctl_default = er32(LEDCTL); | ||
2946 | mac->ledctl_mode1 = mac->ledctl_default; | ||
2947 | mac->ledctl_mode2 = mac->ledctl_default; | ||
2948 | |||
2949 | for (i = 0; i < 4; i++) { | ||
2950 | temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK; | ||
2951 | shift = (i * 5); | ||
2952 | switch (temp) { | ||
2953 | case ID_LED_ON1_DEF2: | ||
2954 | case ID_LED_ON1_ON2: | ||
2955 | case ID_LED_ON1_OFF2: | ||
2956 | mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); | ||
2957 | mac->ledctl_mode1 |= (ledctl_on << shift); | ||
2958 | break; | ||
2959 | case ID_LED_OFF1_DEF2: | ||
2960 | case ID_LED_OFF1_ON2: | ||
2961 | case ID_LED_OFF1_OFF2: | ||
2962 | mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift); | ||
2963 | mac->ledctl_mode1 |= (ledctl_off << shift); | ||
2964 | break; | ||
2965 | default: | ||
2966 | /* Do nothing */ | ||
2967 | break; | ||
2968 | } | ||
2969 | switch (temp) { | ||
2970 | case ID_LED_DEF1_ON2: | ||
2971 | case ID_LED_ON1_ON2: | ||
2972 | case ID_LED_OFF1_ON2: | ||
2973 | mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); | ||
2974 | mac->ledctl_mode2 |= (ledctl_on << shift); | ||
2975 | break; | ||
2976 | case ID_LED_DEF1_OFF2: | ||
2977 | case ID_LED_ON1_OFF2: | ||
2978 | case ID_LED_OFF1_OFF2: | ||
2979 | mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift); | ||
2980 | mac->ledctl_mode2 |= (ledctl_off << shift); | ||
2981 | break; | ||
2982 | default: | ||
2983 | /* Do nothing */ | ||
2984 | break; | ||
2985 | } | ||
2986 | } | ||
2987 | |||
2988 | out: | ||
2989 | return ret_val; | ||
2990 | } | ||
2991 | |||
2992 | /** | ||
2993 | * e1000_get_bus_info_ich8lan - Get/Set the bus type and width | ||
2994 | * @hw: pointer to the HW structure | ||
2995 | * | ||
2996 | * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability | ||
2997 | * register, so the the bus width is hard coded. | ||
2998 | **/ | ||
2999 | static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw) | ||
3000 | { | ||
3001 | struct e1000_bus_info *bus = &hw->bus; | ||
3002 | s32 ret_val; | ||
3003 | |||
3004 | ret_val = e1000e_get_bus_info_pcie(hw); | ||
3005 | |||
3006 | /* | ||
3007 | * ICH devices are "PCI Express"-ish. They have | ||
3008 | * a configuration space, but do not contain | ||
3009 | * PCI Express Capability registers, so bus width | ||
3010 | * must be hardcoded. | ||
3011 | */ | ||
3012 | if (bus->width == e1000_bus_width_unknown) | ||
3013 | bus->width = e1000_bus_width_pcie_x1; | ||
3014 | |||
3015 | return ret_val; | ||
3016 | } | ||
3017 | |||
3018 | /** | ||
3019 | * e1000_reset_hw_ich8lan - Reset the hardware | ||
3020 | * @hw: pointer to the HW structure | ||
3021 | * | ||
3022 | * Does a full reset of the hardware which includes a reset of the PHY and | ||
3023 | * MAC. | ||
3024 | **/ | ||
3025 | static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw) | ||
3026 | { | ||
3027 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
3028 | u16 reg; | ||
3029 | u32 ctrl, kab; | ||
3030 | s32 ret_val; | ||
3031 | |||
3032 | /* | ||
3033 | * Prevent the PCI-E bus from sticking if there is no TLP connection | ||
3034 | * on the last TLP read/write transaction when MAC is reset. | ||
3035 | */ | ||
3036 | ret_val = e1000e_disable_pcie_master(hw); | ||
3037 | if (ret_val) | ||
3038 | e_dbg("PCI-E Master disable polling has failed.\n"); | ||
3039 | |||
3040 | e_dbg("Masking off all interrupts\n"); | ||
3041 | ew32(IMC, 0xffffffff); | ||
3042 | |||
3043 | /* | ||
3044 | * Disable the Transmit and Receive units. Then delay to allow | ||
3045 | * any pending transactions to complete before we hit the MAC | ||
3046 | * with the global reset. | ||
3047 | */ | ||
3048 | ew32(RCTL, 0); | ||
3049 | ew32(TCTL, E1000_TCTL_PSP); | ||
3050 | e1e_flush(); | ||
3051 | |||
3052 | usleep_range(10000, 20000); | ||
3053 | |||
3054 | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | ||
3055 | if (hw->mac.type == e1000_ich8lan) { | ||
3056 | /* Set Tx and Rx buffer allocation to 8k apiece. */ | ||
3057 | ew32(PBA, E1000_PBA_8K); | ||
3058 | /* Set Packet Buffer Size to 16k. */ | ||
3059 | ew32(PBS, E1000_PBS_16K); | ||
3060 | } | ||
3061 | |||
3062 | if (hw->mac.type == e1000_pchlan) { | ||
3063 | /* Save the NVM K1 bit setting*/ | ||
3064 | ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, ®); | ||
3065 | if (ret_val) | ||
3066 | return ret_val; | ||
3067 | |||
3068 | if (reg & E1000_NVM_K1_ENABLE) | ||
3069 | dev_spec->nvm_k1_enabled = true; | ||
3070 | else | ||
3071 | dev_spec->nvm_k1_enabled = false; | ||
3072 | } | ||
3073 | |||
3074 | ctrl = er32(CTRL); | ||
3075 | |||
3076 | if (!e1000_check_reset_block(hw)) { | ||
3077 | /* | ||
3078 | * Full-chip reset requires MAC and PHY reset at the same | ||
3079 | * time to make sure the interface between MAC and the | ||
3080 | * external PHY is reset. | ||
3081 | */ | ||
3082 | ctrl |= E1000_CTRL_PHY_RST; | ||
3083 | |||
3084 | /* | ||
3085 | * Gate automatic PHY configuration by hardware on | ||
3086 | * non-managed 82579 | ||
3087 | */ | ||
3088 | if ((hw->mac.type == e1000_pch2lan) && | ||
3089 | !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) | ||
3090 | e1000_gate_hw_phy_config_ich8lan(hw, true); | ||
3091 | } | ||
3092 | ret_val = e1000_acquire_swflag_ich8lan(hw); | ||
3093 | e_dbg("Issuing a global reset to ich8lan\n"); | ||
3094 | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | ||
3095 | /* cannot issue a flush here because it hangs the hardware */ | ||
3096 | msleep(20); | ||
3097 | |||
3098 | if (!ret_val) | ||
3099 | mutex_unlock(&swflag_mutex); | ||
3100 | |||
3101 | if (ctrl & E1000_CTRL_PHY_RST) { | ||
3102 | ret_val = hw->phy.ops.get_cfg_done(hw); | ||
3103 | if (ret_val) | ||
3104 | goto out; | ||
3105 | |||
3106 | ret_val = e1000_post_phy_reset_ich8lan(hw); | ||
3107 | if (ret_val) | ||
3108 | goto out; | ||
3109 | } | ||
3110 | |||
3111 | /* | ||
3112 | * For PCH, this write will make sure that any noise | ||
3113 | * will be detected as a CRC error and be dropped rather than show up | ||
3114 | * as a bad packet to the DMA engine. | ||
3115 | */ | ||
3116 | if (hw->mac.type == e1000_pchlan) | ||
3117 | ew32(CRC_OFFSET, 0x65656565); | ||
3118 | |||
3119 | ew32(IMC, 0xffffffff); | ||
3120 | er32(ICR); | ||
3121 | |||
3122 | kab = er32(KABGTXD); | ||
3123 | kab |= E1000_KABGTXD_BGSQLBIAS; | ||
3124 | ew32(KABGTXD, kab); | ||
3125 | |||
3126 | out: | ||
3127 | return ret_val; | ||
3128 | } | ||
3129 | |||
3130 | /** | ||
3131 | * e1000_init_hw_ich8lan - Initialize the hardware | ||
3132 | * @hw: pointer to the HW structure | ||
3133 | * | ||
3134 | * Prepares the hardware for transmit and receive by doing the following: | ||
3135 | * - initialize hardware bits | ||
3136 | * - initialize LED identification | ||
3137 | * - setup receive address registers | ||
3138 | * - setup flow control | ||
3139 | * - setup transmit descriptors | ||
3140 | * - clear statistics | ||
3141 | **/ | ||
3142 | static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw) | ||
3143 | { | ||
3144 | struct e1000_mac_info *mac = &hw->mac; | ||
3145 | u32 ctrl_ext, txdctl, snoop; | ||
3146 | s32 ret_val; | ||
3147 | u16 i; | ||
3148 | |||
3149 | e1000_initialize_hw_bits_ich8lan(hw); | ||
3150 | |||
3151 | /* Initialize identification LED */ | ||
3152 | ret_val = mac->ops.id_led_init(hw); | ||
3153 | if (ret_val) | ||
3154 | e_dbg("Error initializing identification LED\n"); | ||
3155 | /* This is not fatal and we should not stop init due to this */ | ||
3156 | |||
3157 | /* Setup the receive address. */ | ||
3158 | e1000e_init_rx_addrs(hw, mac->rar_entry_count); | ||
3159 | |||
3160 | /* Zero out the Multicast HASH table */ | ||
3161 | e_dbg("Zeroing the MTA\n"); | ||
3162 | for (i = 0; i < mac->mta_reg_count; i++) | ||
3163 | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | ||
3164 | |||
3165 | /* | ||
3166 | * The 82578 Rx buffer will stall if wakeup is enabled in host and | ||
3167 | * the ME. Disable wakeup by clearing the host wakeup bit. | ||
3168 | * Reset the phy after disabling host wakeup to reset the Rx buffer. | ||
3169 | */ | ||
3170 | if (hw->phy.type == e1000_phy_82578) { | ||
3171 | e1e_rphy(hw, BM_PORT_GEN_CFG, &i); | ||
3172 | i &= ~BM_WUC_HOST_WU_BIT; | ||
3173 | e1e_wphy(hw, BM_PORT_GEN_CFG, i); | ||
3174 | ret_val = e1000_phy_hw_reset_ich8lan(hw); | ||
3175 | if (ret_val) | ||
3176 | return ret_val; | ||
3177 | } | ||
3178 | |||
3179 | /* Setup link and flow control */ | ||
3180 | ret_val = e1000_setup_link_ich8lan(hw); | ||
3181 | |||
3182 | /* Set the transmit descriptor write-back policy for both queues */ | ||
3183 | txdctl = er32(TXDCTL(0)); | ||
3184 | txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | | ||
3185 | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
3186 | txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | | ||
3187 | E1000_TXDCTL_MAX_TX_DESC_PREFETCH; | ||
3188 | ew32(TXDCTL(0), txdctl); | ||
3189 | txdctl = er32(TXDCTL(1)); | ||
3190 | txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) | | ||
3191 | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
3192 | txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) | | ||
3193 | E1000_TXDCTL_MAX_TX_DESC_PREFETCH; | ||
3194 | ew32(TXDCTL(1), txdctl); | ||
3195 | |||
3196 | /* | ||
3197 | * ICH8 has opposite polarity of no_snoop bits. | ||
3198 | * By default, we should use snoop behavior. | ||
3199 | */ | ||
3200 | if (mac->type == e1000_ich8lan) | ||
3201 | snoop = PCIE_ICH8_SNOOP_ALL; | ||
3202 | else | ||
3203 | snoop = (u32) ~(PCIE_NO_SNOOP_ALL); | ||
3204 | e1000e_set_pcie_no_snoop(hw, snoop); | ||
3205 | |||
3206 | ctrl_ext = er32(CTRL_EXT); | ||
3207 | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | ||
3208 | ew32(CTRL_EXT, ctrl_ext); | ||
3209 | |||
3210 | /* | ||
3211 | * Clear all of the statistics registers (clear on read). It is | ||
3212 | * important that we do this after we have tried to establish link | ||
3213 | * because the symbol error count will increment wildly if there | ||
3214 | * is no link. | ||
3215 | */ | ||
3216 | e1000_clear_hw_cntrs_ich8lan(hw); | ||
3217 | |||
3218 | return 0; | ||
3219 | } | ||
3220 | /** | ||
3221 | * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits | ||
3222 | * @hw: pointer to the HW structure | ||
3223 | * | ||
3224 | * Sets/Clears required hardware bits necessary for correctly setting up the | ||
3225 | * hardware for transmit and receive. | ||
3226 | **/ | ||
3227 | static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw) | ||
3228 | { | ||
3229 | u32 reg; | ||
3230 | |||
3231 | /* Extended Device Control */ | ||
3232 | reg = er32(CTRL_EXT); | ||
3233 | reg |= (1 << 22); | ||
3234 | /* Enable PHY low-power state when MAC is at D3 w/o WoL */ | ||
3235 | if (hw->mac.type >= e1000_pchlan) | ||
3236 | reg |= E1000_CTRL_EXT_PHYPDEN; | ||
3237 | ew32(CTRL_EXT, reg); | ||
3238 | |||
3239 | /* Transmit Descriptor Control 0 */ | ||
3240 | reg = er32(TXDCTL(0)); | ||
3241 | reg |= (1 << 22); | ||
3242 | ew32(TXDCTL(0), reg); | ||
3243 | |||
3244 | /* Transmit Descriptor Control 1 */ | ||
3245 | reg = er32(TXDCTL(1)); | ||
3246 | reg |= (1 << 22); | ||
3247 | ew32(TXDCTL(1), reg); | ||
3248 | |||
3249 | /* Transmit Arbitration Control 0 */ | ||
3250 | reg = er32(TARC(0)); | ||
3251 | if (hw->mac.type == e1000_ich8lan) | ||
3252 | reg |= (1 << 28) | (1 << 29); | ||
3253 | reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27); | ||
3254 | ew32(TARC(0), reg); | ||
3255 | |||
3256 | /* Transmit Arbitration Control 1 */ | ||
3257 | reg = er32(TARC(1)); | ||
3258 | if (er32(TCTL) & E1000_TCTL_MULR) | ||
3259 | reg &= ~(1 << 28); | ||
3260 | else | ||
3261 | reg |= (1 << 28); | ||
3262 | reg |= (1 << 24) | (1 << 26) | (1 << 30); | ||
3263 | ew32(TARC(1), reg); | ||
3264 | |||
3265 | /* Device Status */ | ||
3266 | if (hw->mac.type == e1000_ich8lan) { | ||
3267 | reg = er32(STATUS); | ||
3268 | reg &= ~(1 << 31); | ||
3269 | ew32(STATUS, reg); | ||
3270 | } | ||
3271 | |||
3272 | /* | ||
3273 | * work-around descriptor data corruption issue during nfs v2 udp | ||
3274 | * traffic, just disable the nfs filtering capability | ||
3275 | */ | ||
3276 | reg = er32(RFCTL); | ||
3277 | reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS); | ||
3278 | ew32(RFCTL, reg); | ||
3279 | } | ||
3280 | |||
3281 | /** | ||
3282 | * e1000_setup_link_ich8lan - Setup flow control and link settings | ||
3283 | * @hw: pointer to the HW structure | ||
3284 | * | ||
3285 | * Determines which flow control settings to use, then configures flow | ||
3286 | * control. Calls the appropriate media-specific link configuration | ||
3287 | * function. Assuming the adapter has a valid link partner, a valid link | ||
3288 | * should be established. Assumes the hardware has previously been reset | ||
3289 | * and the transmitter and receiver are not enabled. | ||
3290 | **/ | ||
3291 | static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw) | ||
3292 | { | ||
3293 | s32 ret_val; | ||
3294 | |||
3295 | if (e1000_check_reset_block(hw)) | ||
3296 | return 0; | ||
3297 | |||
3298 | /* | ||
3299 | * ICH parts do not have a word in the NVM to determine | ||
3300 | * the default flow control setting, so we explicitly | ||
3301 | * set it to full. | ||
3302 | */ | ||
3303 | if (hw->fc.requested_mode == e1000_fc_default) { | ||
3304 | /* Workaround h/w hang when Tx flow control enabled */ | ||
3305 | if (hw->mac.type == e1000_pchlan) | ||
3306 | hw->fc.requested_mode = e1000_fc_rx_pause; | ||
3307 | else | ||
3308 | hw->fc.requested_mode = e1000_fc_full; | ||
3309 | } | ||
3310 | |||
3311 | /* | ||
3312 | * Save off the requested flow control mode for use later. Depending | ||
3313 | * on the link partner's capabilities, we may or may not use this mode. | ||
3314 | */ | ||
3315 | hw->fc.current_mode = hw->fc.requested_mode; | ||
3316 | |||
3317 | e_dbg("After fix-ups FlowControl is now = %x\n", | ||
3318 | hw->fc.current_mode); | ||
3319 | |||
3320 | /* Continue to configure the copper link. */ | ||
3321 | ret_val = e1000_setup_copper_link_ich8lan(hw); | ||
3322 | if (ret_val) | ||
3323 | return ret_val; | ||
3324 | |||
3325 | ew32(FCTTV, hw->fc.pause_time); | ||
3326 | if ((hw->phy.type == e1000_phy_82578) || | ||
3327 | (hw->phy.type == e1000_phy_82579) || | ||
3328 | (hw->phy.type == e1000_phy_82577)) { | ||
3329 | ew32(FCRTV_PCH, hw->fc.refresh_time); | ||
3330 | |||
3331 | ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27), | ||
3332 | hw->fc.pause_time); | ||
3333 | if (ret_val) | ||
3334 | return ret_val; | ||
3335 | } | ||
3336 | |||
3337 | return e1000e_set_fc_watermarks(hw); | ||
3338 | } | ||
3339 | |||
3340 | /** | ||
3341 | * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface | ||
3342 | * @hw: pointer to the HW structure | ||
3343 | * | ||
3344 | * Configures the kumeran interface to the PHY to wait the appropriate time | ||
3345 | * when polling the PHY, then call the generic setup_copper_link to finish | ||
3346 | * configuring the copper link. | ||
3347 | **/ | ||
3348 | static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw) | ||
3349 | { | ||
3350 | u32 ctrl; | ||
3351 | s32 ret_val; | ||
3352 | u16 reg_data; | ||
3353 | |||
3354 | ctrl = er32(CTRL); | ||
3355 | ctrl |= E1000_CTRL_SLU; | ||
3356 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
3357 | ew32(CTRL, ctrl); | ||
3358 | |||
3359 | /* | ||
3360 | * Set the mac to wait the maximum time between each iteration | ||
3361 | * and increase the max iterations when polling the phy; | ||
3362 | * this fixes erroneous timeouts at 10Mbps. | ||
3363 | */ | ||
3364 | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF); | ||
3365 | if (ret_val) | ||
3366 | return ret_val; | ||
3367 | ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, | ||
3368 | ®_data); | ||
3369 | if (ret_val) | ||
3370 | return ret_val; | ||
3371 | reg_data |= 0x3F; | ||
3372 | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM, | ||
3373 | reg_data); | ||
3374 | if (ret_val) | ||
3375 | return ret_val; | ||
3376 | |||
3377 | switch (hw->phy.type) { | ||
3378 | case e1000_phy_igp_3: | ||
3379 | ret_val = e1000e_copper_link_setup_igp(hw); | ||
3380 | if (ret_val) | ||
3381 | return ret_val; | ||
3382 | break; | ||
3383 | case e1000_phy_bm: | ||
3384 | case e1000_phy_82578: | ||
3385 | ret_val = e1000e_copper_link_setup_m88(hw); | ||
3386 | if (ret_val) | ||
3387 | return ret_val; | ||
3388 | break; | ||
3389 | case e1000_phy_82577: | ||
3390 | case e1000_phy_82579: | ||
3391 | ret_val = e1000_copper_link_setup_82577(hw); | ||
3392 | if (ret_val) | ||
3393 | return ret_val; | ||
3394 | break; | ||
3395 | case e1000_phy_ife: | ||
3396 | ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data); | ||
3397 | if (ret_val) | ||
3398 | return ret_val; | ||
3399 | |||
3400 | reg_data &= ~IFE_PMC_AUTO_MDIX; | ||
3401 | |||
3402 | switch (hw->phy.mdix) { | ||
3403 | case 1: | ||
3404 | reg_data &= ~IFE_PMC_FORCE_MDIX; | ||
3405 | break; | ||
3406 | case 2: | ||
3407 | reg_data |= IFE_PMC_FORCE_MDIX; | ||
3408 | break; | ||
3409 | case 0: | ||
3410 | default: | ||
3411 | reg_data |= IFE_PMC_AUTO_MDIX; | ||
3412 | break; | ||
3413 | } | ||
3414 | ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data); | ||
3415 | if (ret_val) | ||
3416 | return ret_val; | ||
3417 | break; | ||
3418 | default: | ||
3419 | break; | ||
3420 | } | ||
3421 | return e1000e_setup_copper_link(hw); | ||
3422 | } | ||
3423 | |||
3424 | /** | ||
3425 | * e1000_get_link_up_info_ich8lan - Get current link speed and duplex | ||
3426 | * @hw: pointer to the HW structure | ||
3427 | * @speed: pointer to store current link speed | ||
3428 | * @duplex: pointer to store the current link duplex | ||
3429 | * | ||
3430 | * Calls the generic get_speed_and_duplex to retrieve the current link | ||
3431 | * information and then calls the Kumeran lock loss workaround for links at | ||
3432 | * gigabit speeds. | ||
3433 | **/ | ||
3434 | static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed, | ||
3435 | u16 *duplex) | ||
3436 | { | ||
3437 | s32 ret_val; | ||
3438 | |||
3439 | ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex); | ||
3440 | if (ret_val) | ||
3441 | return ret_val; | ||
3442 | |||
3443 | if ((hw->mac.type == e1000_ich8lan) && | ||
3444 | (hw->phy.type == e1000_phy_igp_3) && | ||
3445 | (*speed == SPEED_1000)) { | ||
3446 | ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw); | ||
3447 | } | ||
3448 | |||
3449 | return ret_val; | ||
3450 | } | ||
3451 | |||
3452 | /** | ||
3453 | * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround | ||
3454 | * @hw: pointer to the HW structure | ||
3455 | * | ||
3456 | * Work-around for 82566 Kumeran PCS lock loss: | ||
3457 | * On link status change (i.e. PCI reset, speed change) and link is up and | ||
3458 | * speed is gigabit- | ||
3459 | * 0) if workaround is optionally disabled do nothing | ||
3460 | * 1) wait 1ms for Kumeran link to come up | ||
3461 | * 2) check Kumeran Diagnostic register PCS lock loss bit | ||
3462 | * 3) if not set the link is locked (all is good), otherwise... | ||
3463 | * 4) reset the PHY | ||
3464 | * 5) repeat up to 10 times | ||
3465 | * Note: this is only called for IGP3 copper when speed is 1gb. | ||
3466 | **/ | ||
3467 | static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw) | ||
3468 | { | ||
3469 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
3470 | u32 phy_ctrl; | ||
3471 | s32 ret_val; | ||
3472 | u16 i, data; | ||
3473 | bool link; | ||
3474 | |||
3475 | if (!dev_spec->kmrn_lock_loss_workaround_enabled) | ||
3476 | return 0; | ||
3477 | |||
3478 | /* | ||
3479 | * Make sure link is up before proceeding. If not just return. | ||
3480 | * Attempting this while link is negotiating fouled up link | ||
3481 | * stability | ||
3482 | */ | ||
3483 | ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link); | ||
3484 | if (!link) | ||
3485 | return 0; | ||
3486 | |||
3487 | for (i = 0; i < 10; i++) { | ||
3488 | /* read once to clear */ | ||
3489 | ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); | ||
3490 | if (ret_val) | ||
3491 | return ret_val; | ||
3492 | /* and again to get new status */ | ||
3493 | ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data); | ||
3494 | if (ret_val) | ||
3495 | return ret_val; | ||
3496 | |||
3497 | /* check for PCS lock */ | ||
3498 | if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | ||
3499 | return 0; | ||
3500 | |||
3501 | /* Issue PHY reset */ | ||
3502 | e1000_phy_hw_reset(hw); | ||
3503 | mdelay(5); | ||
3504 | } | ||
3505 | /* Disable GigE link negotiation */ | ||
3506 | phy_ctrl = er32(PHY_CTRL); | ||
3507 | phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE | | ||
3508 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3509 | ew32(PHY_CTRL, phy_ctrl); | ||
3510 | |||
3511 | /* | ||
3512 | * Call gig speed drop workaround on Gig disable before accessing | ||
3513 | * any PHY registers | ||
3514 | */ | ||
3515 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
3516 | |||
3517 | /* unable to acquire PCS lock */ | ||
3518 | return -E1000_ERR_PHY; | ||
3519 | } | ||
3520 | |||
3521 | /** | ||
3522 | * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state | ||
3523 | * @hw: pointer to the HW structure | ||
3524 | * @state: boolean value used to set the current Kumeran workaround state | ||
3525 | * | ||
3526 | * If ICH8, set the current Kumeran workaround state (enabled - true | ||
3527 | * /disabled - false). | ||
3528 | **/ | ||
3529 | void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw, | ||
3530 | bool state) | ||
3531 | { | ||
3532 | struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan; | ||
3533 | |||
3534 | if (hw->mac.type != e1000_ich8lan) { | ||
3535 | e_dbg("Workaround applies to ICH8 only.\n"); | ||
3536 | return; | ||
3537 | } | ||
3538 | |||
3539 | dev_spec->kmrn_lock_loss_workaround_enabled = state; | ||
3540 | } | ||
3541 | |||
3542 | /** | ||
3543 | * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3 | ||
3544 | * @hw: pointer to the HW structure | ||
3545 | * | ||
3546 | * Workaround for 82566 power-down on D3 entry: | ||
3547 | * 1) disable gigabit link | ||
3548 | * 2) write VR power-down enable | ||
3549 | * 3) read it back | ||
3550 | * Continue if successful, else issue LCD reset and repeat | ||
3551 | **/ | ||
3552 | void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw) | ||
3553 | { | ||
3554 | u32 reg; | ||
3555 | u16 data; | ||
3556 | u8 retry = 0; | ||
3557 | |||
3558 | if (hw->phy.type != e1000_phy_igp_3) | ||
3559 | return; | ||
3560 | |||
3561 | /* Try the workaround twice (if needed) */ | ||
3562 | do { | ||
3563 | /* Disable link */ | ||
3564 | reg = er32(PHY_CTRL); | ||
3565 | reg |= (E1000_PHY_CTRL_GBE_DISABLE | | ||
3566 | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | ||
3567 | ew32(PHY_CTRL, reg); | ||
3568 | |||
3569 | /* | ||
3570 | * Call gig speed drop workaround on Gig disable before | ||
3571 | * accessing any PHY registers | ||
3572 | */ | ||
3573 | if (hw->mac.type == e1000_ich8lan) | ||
3574 | e1000e_gig_downshift_workaround_ich8lan(hw); | ||
3575 | |||
3576 | /* Write VR power-down enable */ | ||
3577 | e1e_rphy(hw, IGP3_VR_CTRL, &data); | ||
3578 | data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; | ||
3579 | e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN); | ||
3580 | |||
3581 | /* Read it back and test */ | ||
3582 | e1e_rphy(hw, IGP3_VR_CTRL, &data); | ||
3583 | data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK; | ||
3584 | if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry) | ||
3585 | break; | ||
3586 | |||
3587 | /* Issue PHY reset and repeat at most one more time */ | ||
3588 | reg = er32(CTRL); | ||
3589 | ew32(CTRL, reg | E1000_CTRL_PHY_RST); | ||
3590 | retry++; | ||
3591 | } while (retry); | ||
3592 | } | ||
3593 | |||
3594 | /** | ||
3595 | * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working | ||
3596 | * @hw: pointer to the HW structure | ||
3597 | * | ||
3598 | * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC), | ||
3599 | * LPLU, Gig disable, MDIC PHY reset): | ||
3600 | * 1) Set Kumeran Near-end loopback | ||
3601 | * 2) Clear Kumeran Near-end loopback | ||
3602 | * Should only be called for ICH8[m] devices with IGP_3 Phy. | ||
3603 | **/ | ||
3604 | void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw) | ||
3605 | { | ||
3606 | s32 ret_val; | ||
3607 | u16 reg_data; | ||
3608 | |||
3609 | if ((hw->mac.type != e1000_ich8lan) || | ||
3610 | (hw->phy.type != e1000_phy_igp_3)) | ||
3611 | return; | ||
3612 | |||
3613 | ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | ||
3614 | ®_data); | ||
3615 | if (ret_val) | ||
3616 | return; | ||
3617 | reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK; | ||
3618 | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | ||
3619 | reg_data); | ||
3620 | if (ret_val) | ||
3621 | return; | ||
3622 | reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK; | ||
3623 | ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, | ||
3624 | reg_data); | ||
3625 | } | ||
3626 | |||
3627 | /** | ||
3628 | * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx | ||
3629 | * @hw: pointer to the HW structure | ||
3630 | * | ||
3631 | * During S0 to Sx transition, it is possible the link remains at gig | ||
3632 | * instead of negotiating to a lower speed. Before going to Sx, set | ||
3633 | * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation | ||
3634 | * to a lower speed. For PCH and newer parts, the OEM bits PHY register | ||
3635 | * (LED, GbE disable and LPLU configurations) also needs to be written. | ||
3636 | **/ | ||
3637 | void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw) | ||
3638 | { | ||
3639 | u32 phy_ctrl; | ||
3640 | s32 ret_val; | ||
3641 | |||
3642 | phy_ctrl = er32(PHY_CTRL); | ||
3643 | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE; | ||
3644 | ew32(PHY_CTRL, phy_ctrl); | ||
3645 | |||
3646 | if (hw->mac.type >= e1000_pchlan) { | ||
3647 | e1000_oem_bits_config_ich8lan(hw, false); | ||
3648 | ret_val = hw->phy.ops.acquire(hw); | ||
3649 | if (ret_val) | ||
3650 | return; | ||
3651 | e1000_write_smbus_addr(hw); | ||
3652 | hw->phy.ops.release(hw); | ||
3653 | } | ||
3654 | } | ||
3655 | |||
3656 | /** | ||
3657 | * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0 | ||
3658 | * @hw: pointer to the HW structure | ||
3659 | * | ||
3660 | * During Sx to S0 transitions on non-managed devices or managed devices | ||
3661 | * on which PHY resets are not blocked, if the PHY registers cannot be | ||
3662 | * accessed properly by the s/w toggle the LANPHYPC value to power cycle | ||
3663 | * the PHY. | ||
3664 | **/ | ||
3665 | void e1000_resume_workarounds_pchlan(struct e1000_hw *hw) | ||
3666 | { | ||
3667 | u32 fwsm; | ||
3668 | |||
3669 | if (hw->mac.type != e1000_pch2lan) | ||
3670 | return; | ||
3671 | |||
3672 | fwsm = er32(FWSM); | ||
3673 | if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) { | ||
3674 | u16 phy_id1, phy_id2; | ||
3675 | s32 ret_val; | ||
3676 | |||
3677 | ret_val = hw->phy.ops.acquire(hw); | ||
3678 | if (ret_val) { | ||
3679 | e_dbg("Failed to acquire PHY semaphore in resume\n"); | ||
3680 | return; | ||
3681 | } | ||
3682 | |||
3683 | /* Test access to the PHY registers by reading the ID regs */ | ||
3684 | ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1); | ||
3685 | if (ret_val) | ||
3686 | goto release; | ||
3687 | ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2); | ||
3688 | if (ret_val) | ||
3689 | goto release; | ||
3690 | |||
3691 | if (hw->phy.id == ((u32)(phy_id1 << 16) | | ||
3692 | (u32)(phy_id2 & PHY_REVISION_MASK))) | ||
3693 | goto release; | ||
3694 | |||
3695 | e1000_toggle_lanphypc_value_ich8lan(hw); | ||
3696 | |||
3697 | hw->phy.ops.release(hw); | ||
3698 | msleep(50); | ||
3699 | e1000_phy_hw_reset(hw); | ||
3700 | msleep(50); | ||
3701 | return; | ||
3702 | } | ||
3703 | |||
3704 | release: | ||
3705 | hw->phy.ops.release(hw); | ||
3706 | |||
3707 | return; | ||
3708 | } | ||
3709 | |||
3710 | /** | ||
3711 | * e1000_cleanup_led_ich8lan - Restore the default LED operation | ||
3712 | * @hw: pointer to the HW structure | ||
3713 | * | ||
3714 | * Return the LED back to the default configuration. | ||
3715 | **/ | ||
3716 | static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw) | ||
3717 | { | ||
3718 | if (hw->phy.type == e1000_phy_ife) | ||
3719 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | ||
3720 | |||
3721 | ew32(LEDCTL, hw->mac.ledctl_default); | ||
3722 | return 0; | ||
3723 | } | ||
3724 | |||
3725 | /** | ||
3726 | * e1000_led_on_ich8lan - Turn LEDs on | ||
3727 | * @hw: pointer to the HW structure | ||
3728 | * | ||
3729 | * Turn on the LEDs. | ||
3730 | **/ | ||
3731 | static s32 e1000_led_on_ich8lan(struct e1000_hw *hw) | ||
3732 | { | ||
3733 | if (hw->phy.type == e1000_phy_ife) | ||
3734 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
3735 | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | ||
3736 | |||
3737 | ew32(LEDCTL, hw->mac.ledctl_mode2); | ||
3738 | return 0; | ||
3739 | } | ||
3740 | |||
3741 | /** | ||
3742 | * e1000_led_off_ich8lan - Turn LEDs off | ||
3743 | * @hw: pointer to the HW structure | ||
3744 | * | ||
3745 | * Turn off the LEDs. | ||
3746 | **/ | ||
3747 | static s32 e1000_led_off_ich8lan(struct e1000_hw *hw) | ||
3748 | { | ||
3749 | if (hw->phy.type == e1000_phy_ife) | ||
3750 | return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, | ||
3751 | (IFE_PSCL_PROBE_MODE | | ||
3752 | IFE_PSCL_PROBE_LEDS_OFF)); | ||
3753 | |||
3754 | ew32(LEDCTL, hw->mac.ledctl_mode1); | ||
3755 | return 0; | ||
3756 | } | ||
3757 | |||
3758 | /** | ||
3759 | * e1000_setup_led_pchlan - Configures SW controllable LED | ||
3760 | * @hw: pointer to the HW structure | ||
3761 | * | ||
3762 | * This prepares the SW controllable LED for use. | ||
3763 | **/ | ||
3764 | static s32 e1000_setup_led_pchlan(struct e1000_hw *hw) | ||
3765 | { | ||
3766 | return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1); | ||
3767 | } | ||
3768 | |||
3769 | /** | ||
3770 | * e1000_cleanup_led_pchlan - Restore the default LED operation | ||
3771 | * @hw: pointer to the HW structure | ||
3772 | * | ||
3773 | * Return the LED back to the default configuration. | ||
3774 | **/ | ||
3775 | static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw) | ||
3776 | { | ||
3777 | return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default); | ||
3778 | } | ||
3779 | |||
3780 | /** | ||
3781 | * e1000_led_on_pchlan - Turn LEDs on | ||
3782 | * @hw: pointer to the HW structure | ||
3783 | * | ||
3784 | * Turn on the LEDs. | ||
3785 | **/ | ||
3786 | static s32 e1000_led_on_pchlan(struct e1000_hw *hw) | ||
3787 | { | ||
3788 | u16 data = (u16)hw->mac.ledctl_mode2; | ||
3789 | u32 i, led; | ||
3790 | |||
3791 | /* | ||
3792 | * If no link, then turn LED on by setting the invert bit | ||
3793 | * for each LED that's mode is "link_up" in ledctl_mode2. | ||
3794 | */ | ||
3795 | if (!(er32(STATUS) & E1000_STATUS_LU)) { | ||
3796 | for (i = 0; i < 3; i++) { | ||
3797 | led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; | ||
3798 | if ((led & E1000_PHY_LED0_MODE_MASK) != | ||
3799 | E1000_LEDCTL_MODE_LINK_UP) | ||
3800 | continue; | ||
3801 | if (led & E1000_PHY_LED0_IVRT) | ||
3802 | data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); | ||
3803 | else | ||
3804 | data |= (E1000_PHY_LED0_IVRT << (i * 5)); | ||
3805 | } | ||
3806 | } | ||
3807 | |||
3808 | return e1e_wphy(hw, HV_LED_CONFIG, data); | ||
3809 | } | ||
3810 | |||
3811 | /** | ||
3812 | * e1000_led_off_pchlan - Turn LEDs off | ||
3813 | * @hw: pointer to the HW structure | ||
3814 | * | ||
3815 | * Turn off the LEDs. | ||
3816 | **/ | ||
3817 | static s32 e1000_led_off_pchlan(struct e1000_hw *hw) | ||
3818 | { | ||
3819 | u16 data = (u16)hw->mac.ledctl_mode1; | ||
3820 | u32 i, led; | ||
3821 | |||
3822 | /* | ||
3823 | * If no link, then turn LED off by clearing the invert bit | ||
3824 | * for each LED that's mode is "link_up" in ledctl_mode1. | ||
3825 | */ | ||
3826 | if (!(er32(STATUS) & E1000_STATUS_LU)) { | ||
3827 | for (i = 0; i < 3; i++) { | ||
3828 | led = (data >> (i * 5)) & E1000_PHY_LED0_MASK; | ||
3829 | if ((led & E1000_PHY_LED0_MODE_MASK) != | ||
3830 | E1000_LEDCTL_MODE_LINK_UP) | ||
3831 | continue; | ||
3832 | if (led & E1000_PHY_LED0_IVRT) | ||
3833 | data &= ~(E1000_PHY_LED0_IVRT << (i * 5)); | ||
3834 | else | ||
3835 | data |= (E1000_PHY_LED0_IVRT << (i * 5)); | ||
3836 | } | ||
3837 | } | ||
3838 | |||
3839 | return e1e_wphy(hw, HV_LED_CONFIG, data); | ||
3840 | } | ||
3841 | |||
3842 | /** | ||
3843 | * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset | ||
3844 | * @hw: pointer to the HW structure | ||
3845 | * | ||
3846 | * Read appropriate register for the config done bit for completion status | ||
3847 | * and configure the PHY through s/w for EEPROM-less parts. | ||
3848 | * | ||
3849 | * NOTE: some silicon which is EEPROM-less will fail trying to read the | ||
3850 | * config done bit, so only an error is logged and continues. If we were | ||
3851 | * to return with error, EEPROM-less silicon would not be able to be reset | ||
3852 | * or change link. | ||
3853 | **/ | ||
3854 | static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw) | ||
3855 | { | ||
3856 | s32 ret_val = 0; | ||
3857 | u32 bank = 0; | ||
3858 | u32 status; | ||
3859 | |||
3860 | e1000e_get_cfg_done(hw); | ||
3861 | |||
3862 | /* Wait for indication from h/w that it has completed basic config */ | ||
3863 | if (hw->mac.type >= e1000_ich10lan) { | ||
3864 | e1000_lan_init_done_ich8lan(hw); | ||
3865 | } else { | ||
3866 | ret_val = e1000e_get_auto_rd_done(hw); | ||
3867 | if (ret_val) { | ||
3868 | /* | ||
3869 | * When auto config read does not complete, do not | ||
3870 | * return with an error. This can happen in situations | ||
3871 | * where there is no eeprom and prevents getting link. | ||
3872 | */ | ||
3873 | e_dbg("Auto Read Done did not complete\n"); | ||
3874 | ret_val = 0; | ||
3875 | } | ||
3876 | } | ||
3877 | |||
3878 | /* Clear PHY Reset Asserted bit */ | ||
3879 | status = er32(STATUS); | ||
3880 | if (status & E1000_STATUS_PHYRA) | ||
3881 | ew32(STATUS, status & ~E1000_STATUS_PHYRA); | ||
3882 | else | ||
3883 | e_dbg("PHY Reset Asserted not set - needs delay\n"); | ||
3884 | |||
3885 | /* If EEPROM is not marked present, init the IGP 3 PHY manually */ | ||
3886 | if (hw->mac.type <= e1000_ich9lan) { | ||
3887 | if (((er32(EECD) & E1000_EECD_PRES) == 0) && | ||
3888 | (hw->phy.type == e1000_phy_igp_3)) { | ||
3889 | e1000e_phy_init_script_igp3(hw); | ||
3890 | } | ||
3891 | } else { | ||
3892 | if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) { | ||
3893 | /* Maybe we should do a basic PHY config */ | ||
3894 | e_dbg("EEPROM not present\n"); | ||
3895 | ret_val = -E1000_ERR_CONFIG; | ||
3896 | } | ||
3897 | } | ||
3898 | |||
3899 | return ret_val; | ||
3900 | } | ||
3901 | |||
3902 | /** | ||
3903 | * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down | ||
3904 | * @hw: pointer to the HW structure | ||
3905 | * | ||
3906 | * In the case of a PHY power down to save power, or to turn off link during a | ||
3907 | * driver unload, or wake on lan is not enabled, remove the link. | ||
3908 | **/ | ||
3909 | static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw) | ||
3910 | { | ||
3911 | /* If the management interface is not enabled, then power down */ | ||
3912 | if (!(hw->mac.ops.check_mng_mode(hw) || | ||
3913 | hw->phy.ops.check_reset_block(hw))) | ||
3914 | e1000_power_down_phy_copper(hw); | ||
3915 | } | ||
3916 | |||
3917 | /** | ||
3918 | * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters | ||
3919 | * @hw: pointer to the HW structure | ||
3920 | * | ||
3921 | * Clears hardware counters specific to the silicon family and calls | ||
3922 | * clear_hw_cntrs_generic to clear all general purpose counters. | ||
3923 | **/ | ||
3924 | static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw) | ||
3925 | { | ||
3926 | u16 phy_data; | ||
3927 | s32 ret_val; | ||
3928 | |||
3929 | e1000e_clear_hw_cntrs_base(hw); | ||
3930 | |||
3931 | er32(ALGNERRC); | ||
3932 | er32(RXERRC); | ||
3933 | er32(TNCRS); | ||
3934 | er32(CEXTERR); | ||
3935 | er32(TSCTC); | ||
3936 | er32(TSCTFC); | ||
3937 | |||
3938 | er32(MGTPRC); | ||
3939 | er32(MGTPDC); | ||
3940 | er32(MGTPTC); | ||
3941 | |||
3942 | er32(IAC); | ||
3943 | er32(ICRXOC); | ||
3944 | |||
3945 | /* Clear PHY statistics registers */ | ||
3946 | if ((hw->phy.type == e1000_phy_82578) || | ||
3947 | (hw->phy.type == e1000_phy_82579) || | ||
3948 | (hw->phy.type == e1000_phy_82577)) { | ||
3949 | ret_val = hw->phy.ops.acquire(hw); | ||
3950 | if (ret_val) | ||
3951 | return; | ||
3952 | ret_val = hw->phy.ops.set_page(hw, | ||
3953 | HV_STATS_PAGE << IGP_PAGE_SHIFT); | ||
3954 | if (ret_val) | ||
3955 | goto release; | ||
3956 | hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data); | ||
3957 | hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data); | ||
3958 | hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data); | ||
3959 | hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data); | ||
3960 | hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data); | ||
3961 | hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data); | ||
3962 | hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data); | ||
3963 | hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data); | ||
3964 | hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data); | ||
3965 | hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data); | ||
3966 | hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data); | ||
3967 | hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data); | ||
3968 | hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data); | ||
3969 | hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data); | ||
3970 | release: | ||
3971 | hw->phy.ops.release(hw); | ||
3972 | } | ||
3973 | } | ||
3974 | |||
3975 | static struct e1000_mac_operations ich8_mac_ops = { | ||
3976 | .id_led_init = e1000e_id_led_init, | ||
3977 | /* check_mng_mode dependent on mac type */ | ||
3978 | .check_for_link = e1000_check_for_copper_link_ich8lan, | ||
3979 | /* cleanup_led dependent on mac type */ | ||
3980 | .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan, | ||
3981 | .get_bus_info = e1000_get_bus_info_ich8lan, | ||
3982 | .set_lan_id = e1000_set_lan_id_single_port, | ||
3983 | .get_link_up_info = e1000_get_link_up_info_ich8lan, | ||
3984 | /* led_on dependent on mac type */ | ||
3985 | /* led_off dependent on mac type */ | ||
3986 | .update_mc_addr_list = e1000e_update_mc_addr_list_generic, | ||
3987 | .reset_hw = e1000_reset_hw_ich8lan, | ||
3988 | .init_hw = e1000_init_hw_ich8lan, | ||
3989 | .setup_link = e1000_setup_link_ich8lan, | ||
3990 | .setup_physical_interface= e1000_setup_copper_link_ich8lan, | ||
3991 | /* id_led_init dependent on mac type */ | ||
3992 | }; | ||
3993 | |||
3994 | static struct e1000_phy_operations ich8_phy_ops = { | ||
3995 | .acquire = e1000_acquire_swflag_ich8lan, | ||
3996 | .check_reset_block = e1000_check_reset_block_ich8lan, | ||
3997 | .commit = NULL, | ||
3998 | .get_cfg_done = e1000_get_cfg_done_ich8lan, | ||
3999 | .get_cable_length = e1000e_get_cable_length_igp_2, | ||
4000 | .read_reg = e1000e_read_phy_reg_igp, | ||
4001 | .release = e1000_release_swflag_ich8lan, | ||
4002 | .reset = e1000_phy_hw_reset_ich8lan, | ||
4003 | .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan, | ||
4004 | .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan, | ||
4005 | .write_reg = e1000e_write_phy_reg_igp, | ||
4006 | }; | ||
4007 | |||
4008 | static struct e1000_nvm_operations ich8_nvm_ops = { | ||
4009 | .acquire = e1000_acquire_nvm_ich8lan, | ||
4010 | .read = e1000_read_nvm_ich8lan, | ||
4011 | .release = e1000_release_nvm_ich8lan, | ||
4012 | .update = e1000_update_nvm_checksum_ich8lan, | ||
4013 | .valid_led_default = e1000_valid_led_default_ich8lan, | ||
4014 | .validate = e1000_validate_nvm_checksum_ich8lan, | ||
4015 | .write = e1000_write_nvm_ich8lan, | ||
4016 | }; | ||
4017 | |||
4018 | struct e1000_info e1000_ich8_info = { | ||
4019 | .mac = e1000_ich8lan, | ||
4020 | .flags = FLAG_HAS_WOL | ||
4021 | | FLAG_IS_ICH | ||
4022 | | FLAG_RX_CSUM_ENABLED | ||
4023 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
4024 | | FLAG_HAS_AMT | ||
4025 | | FLAG_HAS_FLASH | ||
4026 | | FLAG_APME_IN_WUC, | ||
4027 | .pba = 8, | ||
4028 | .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN, | ||
4029 | .get_variants = e1000_get_variants_ich8lan, | ||
4030 | .mac_ops = &ich8_mac_ops, | ||
4031 | .phy_ops = &ich8_phy_ops, | ||
4032 | .nvm_ops = &ich8_nvm_ops, | ||
4033 | }; | ||
4034 | |||
4035 | struct e1000_info e1000_ich9_info = { | ||
4036 | .mac = e1000_ich9lan, | ||
4037 | .flags = FLAG_HAS_JUMBO_FRAMES | ||
4038 | | FLAG_IS_ICH | ||
4039 | | FLAG_HAS_WOL | ||
4040 | | FLAG_RX_CSUM_ENABLED | ||
4041 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
4042 | | FLAG_HAS_AMT | ||
4043 | | FLAG_HAS_ERT | ||
4044 | | FLAG_HAS_FLASH | ||
4045 | | FLAG_APME_IN_WUC, | ||
4046 | .pba = 10, | ||
4047 | .max_hw_frame_size = DEFAULT_JUMBO, | ||
4048 | .get_variants = e1000_get_variants_ich8lan, | ||
4049 | .mac_ops = &ich8_mac_ops, | ||
4050 | .phy_ops = &ich8_phy_ops, | ||
4051 | .nvm_ops = &ich8_nvm_ops, | ||
4052 | }; | ||
4053 | |||
4054 | struct e1000_info e1000_ich10_info = { | ||
4055 | .mac = e1000_ich10lan, | ||
4056 | .flags = FLAG_HAS_JUMBO_FRAMES | ||
4057 | | FLAG_IS_ICH | ||
4058 | | FLAG_HAS_WOL | ||
4059 | | FLAG_RX_CSUM_ENABLED | ||
4060 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
4061 | | FLAG_HAS_AMT | ||
4062 | | FLAG_HAS_ERT | ||
4063 | | FLAG_HAS_FLASH | ||
4064 | | FLAG_APME_IN_WUC, | ||
4065 | .pba = 10, | ||
4066 | .max_hw_frame_size = DEFAULT_JUMBO, | ||
4067 | .get_variants = e1000_get_variants_ich8lan, | ||
4068 | .mac_ops = &ich8_mac_ops, | ||
4069 | .phy_ops = &ich8_phy_ops, | ||
4070 | .nvm_ops = &ich8_nvm_ops, | ||
4071 | }; | ||
4072 | |||
4073 | struct e1000_info e1000_pch_info = { | ||
4074 | .mac = e1000_pchlan, | ||
4075 | .flags = FLAG_IS_ICH | ||
4076 | | FLAG_HAS_WOL | ||
4077 | | FLAG_RX_CSUM_ENABLED | ||
4078 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
4079 | | FLAG_HAS_AMT | ||
4080 | | FLAG_HAS_FLASH | ||
4081 | | FLAG_HAS_JUMBO_FRAMES | ||
4082 | | FLAG_DISABLE_FC_PAUSE_TIME /* errata */ | ||
4083 | | FLAG_APME_IN_WUC, | ||
4084 | .flags2 = FLAG2_HAS_PHY_STATS, | ||
4085 | .pba = 26, | ||
4086 | .max_hw_frame_size = 4096, | ||
4087 | .get_variants = e1000_get_variants_ich8lan, | ||
4088 | .mac_ops = &ich8_mac_ops, | ||
4089 | .phy_ops = &ich8_phy_ops, | ||
4090 | .nvm_ops = &ich8_nvm_ops, | ||
4091 | }; | ||
4092 | |||
4093 | struct e1000_info e1000_pch2_info = { | ||
4094 | .mac = e1000_pch2lan, | ||
4095 | .flags = FLAG_IS_ICH | ||
4096 | | FLAG_HAS_WOL | ||
4097 | | FLAG_RX_CSUM_ENABLED | ||
4098 | | FLAG_HAS_CTRLEXT_ON_LOAD | ||
4099 | | FLAG_HAS_AMT | ||
4100 | | FLAG_HAS_FLASH | ||
4101 | | FLAG_HAS_JUMBO_FRAMES | ||
4102 | | FLAG_APME_IN_WUC, | ||
4103 | .flags2 = FLAG2_HAS_PHY_STATS | ||
4104 | | FLAG2_HAS_EEE, | ||
4105 | .pba = 26, | ||
4106 | .max_hw_frame_size = DEFAULT_JUMBO, | ||
4107 | .get_variants = e1000_get_variants_ich8lan, | ||
4108 | .mac_ops = &ich8_mac_ops, | ||
4109 | .phy_ops = &ich8_phy_ops, | ||
4110 | .nvm_ops = &ich8_nvm_ops, | ||
4111 | }; | ||