aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/intel/e1000e/ich8lan.c
diff options
context:
space:
mode:
authorJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-04-07 10:42:33 -0400
committerJeff Kirsher <jeffrey.t.kirsher@intel.com>2011-08-10 23:03:27 -0400
commitdee1ad47f2ee75f5146d83ca757c1b7861c34c3b (patch)
tree47cbdefe3d0f9b729724e378ad6a96eaddfd5fbc /drivers/net/ethernet/intel/e1000e/ich8lan.c
parentf7917c009c28c941ba151ee66f04dc7f6a2e1e0b (diff)
intel: Move the Intel wired LAN drivers
Moves the Intel wired LAN drivers into drivers/net/ethernet/intel/ and the necessary Kconfig and Makefile changes. Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/ethernet/intel/e1000e/ich8lan.c')
-rw-r--r--drivers/net/ethernet/intel/e1000e/ich8lan.c4111
1 files changed, 4111 insertions, 0 deletions
diff --git a/drivers/net/ethernet/intel/e1000e/ich8lan.c b/drivers/net/ethernet/intel/e1000e/ich8lan.c
new file mode 100644
index 000000000000..4e36978b8fd8
--- /dev/null
+++ b/drivers/net/ethernet/intel/e1000e/ich8lan.c
@@ -0,0 +1,4111 @@
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/*
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
57 */
58
59#include "e1000.h"
60
61#define ICH_FLASH_GFPREG 0x0000
62#define ICH_FLASH_HSFSTS 0x0004
63#define ICH_FLASH_HSFCTL 0x0006
64#define ICH_FLASH_FADDR 0x0008
65#define ICH_FLASH_FDATA0 0x0010
66#define ICH_FLASH_PR0 0x0074
67
68#define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69#define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70#define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71#define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72#define ICH_FLASH_CYCLE_REPEAT_COUNT 10
73
74#define ICH_CYCLE_READ 0
75#define ICH_CYCLE_WRITE 2
76#define ICH_CYCLE_ERASE 3
77
78#define FLASH_GFPREG_BASE_MASK 0x1FFF
79#define FLASH_SECTOR_ADDR_SHIFT 12
80
81#define ICH_FLASH_SEG_SIZE_256 256
82#define ICH_FLASH_SEG_SIZE_4K 4096
83#define ICH_FLASH_SEG_SIZE_8K 8192
84#define ICH_FLASH_SEG_SIZE_64K 65536
85
86
87#define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88/* FW established a valid mode */
89#define E1000_ICH_FWSM_FW_VALID 0x00008000
90
91#define E1000_ICH_MNG_IAMT_MODE 0x2
92
93#define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
96 (ID_LED_DEF1_DEF2))
97
98#define E1000_ICH_NVM_SIG_WORD 0x13
99#define E1000_ICH_NVM_SIG_MASK 0xC000
100#define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101#define E1000_ICH_NVM_SIG_VALUE 0x80
102
103#define E1000_ICH8_LAN_INIT_TIMEOUT 1500
104
105#define E1000_FEXTNVM_SW_CONFIG 1
106#define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
107
108#define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109#define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110#define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
111
112#define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
113
114#define E1000_ICH_RAR_ENTRIES 7
115
116#define PHY_PAGE_SHIFT 5
117#define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119#define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120#define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
121
122#define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123#define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124#define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
125
126#define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
127
128#define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
129
130/* SMBus Address Phy Register */
131#define HV_SMB_ADDR PHY_REG(768, 26)
132#define HV_SMB_ADDR_MASK 0x007F
133#define HV_SMB_ADDR_PEC_EN 0x0200
134#define HV_SMB_ADDR_VALID 0x0080
135
136/* PHY Power Management Control */
137#define HV_PM_CTRL PHY_REG(770, 17)
138
139/* PHY Low Power Idle Control */
140#define I82579_LPI_CTRL PHY_REG(772, 20)
141#define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142
143/* EMI Registers */
144#define I82579_EMI_ADDR 0x10
145#define I82579_EMI_DATA 0x11
146#define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
147
148/* Strapping Option Register - RO */
149#define E1000_STRAP 0x0000C
150#define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
151#define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
152
153/* OEM Bits Phy Register */
154#define HV_OEM_BITS PHY_REG(768, 25)
155#define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
156#define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
157#define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
158
159#define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
160#define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
161
162/* KMRN Mode Control */
163#define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
164#define HV_KMRN_MDIO_SLOW 0x0400
165
166/* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
167/* Offset 04h HSFSTS */
168union ich8_hws_flash_status {
169 struct ich8_hsfsts {
170 u16 flcdone :1; /* bit 0 Flash Cycle Done */
171 u16 flcerr :1; /* bit 1 Flash Cycle Error */
172 u16 dael :1; /* bit 2 Direct Access error Log */
173 u16 berasesz :2; /* bit 4:3 Sector Erase Size */
174 u16 flcinprog :1; /* bit 5 flash cycle in Progress */
175 u16 reserved1 :2; /* bit 13:6 Reserved */
176 u16 reserved2 :6; /* bit 13:6 Reserved */
177 u16 fldesvalid :1; /* bit 14 Flash Descriptor Valid */
178 u16 flockdn :1; /* bit 15 Flash Config Lock-Down */
179 } hsf_status;
180 u16 regval;
181};
182
183/* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
184/* Offset 06h FLCTL */
185union ich8_hws_flash_ctrl {
186 struct ich8_hsflctl {
187 u16 flcgo :1; /* 0 Flash Cycle Go */
188 u16 flcycle :2; /* 2:1 Flash Cycle */
189 u16 reserved :5; /* 7:3 Reserved */
190 u16 fldbcount :2; /* 9:8 Flash Data Byte Count */
191 u16 flockdn :6; /* 15:10 Reserved */
192 } hsf_ctrl;
193 u16 regval;
194};
195
196/* ICH Flash Region Access Permissions */
197union ich8_hws_flash_regacc {
198 struct ich8_flracc {
199 u32 grra :8; /* 0:7 GbE region Read Access */
200 u32 grwa :8; /* 8:15 GbE region Write Access */
201 u32 gmrag :8; /* 23:16 GbE Master Read Access Grant */
202 u32 gmwag :8; /* 31:24 GbE Master Write Access Grant */
203 } hsf_flregacc;
204 u16 regval;
205};
206
207/* ICH Flash Protected Region */
208union ich8_flash_protected_range {
209 struct ich8_pr {
210 u32 base:13; /* 0:12 Protected Range Base */
211 u32 reserved1:2; /* 13:14 Reserved */
212 u32 rpe:1; /* 15 Read Protection Enable */
213 u32 limit:13; /* 16:28 Protected Range Limit */
214 u32 reserved2:2; /* 29:30 Reserved */
215 u32 wpe:1; /* 31 Write Protection Enable */
216 } range;
217 u32 regval;
218};
219
220static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw);
221static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
222static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
223static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
224static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
225 u32 offset, u8 byte);
226static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
227 u8 *data);
228static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
229 u16 *data);
230static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
231 u8 size, u16 *data);
232static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw);
233static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
234static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw);
235static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
236static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
237static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
238static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
239static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
240static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
241static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
242static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
243static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
244static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
245static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
246static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
247static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
248static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
249static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
250static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
251static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
252
253static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
254{
255 return readw(hw->flash_address + reg);
256}
257
258static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
259{
260 return readl(hw->flash_address + reg);
261}
262
263static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
264{
265 writew(val, hw->flash_address + reg);
266}
267
268static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
269{
270 writel(val, hw->flash_address + reg);
271}
272
273#define er16flash(reg) __er16flash(hw, (reg))
274#define er32flash(reg) __er32flash(hw, (reg))
275#define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
276#define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
277
278static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw *hw)
279{
280 u32 ctrl;
281
282 ctrl = er32(CTRL);
283 ctrl |= E1000_CTRL_LANPHYPC_OVERRIDE;
284 ctrl &= ~E1000_CTRL_LANPHYPC_VALUE;
285 ew32(CTRL, ctrl);
286 e1e_flush();
287 udelay(10);
288 ctrl &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
289 ew32(CTRL, ctrl);
290}
291
292/**
293 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
294 * @hw: pointer to the HW structure
295 *
296 * Initialize family-specific PHY parameters and function pointers.
297 **/
298static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
299{
300 struct e1000_phy_info *phy = &hw->phy;
301 u32 fwsm;
302 s32 ret_val = 0;
303
304 phy->addr = 1;
305 phy->reset_delay_us = 100;
306
307 phy->ops.set_page = e1000_set_page_igp;
308 phy->ops.read_reg = e1000_read_phy_reg_hv;
309 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
310 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
311 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
312 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
313 phy->ops.write_reg = e1000_write_phy_reg_hv;
314 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
315 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
316 phy->ops.power_up = e1000_power_up_phy_copper;
317 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
318 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
319
320 /*
321 * The MAC-PHY interconnect may still be in SMBus mode
322 * after Sx->S0. If the manageability engine (ME) is
323 * disabled, then toggle the LANPHYPC Value bit to force
324 * the interconnect to PCIe mode.
325 */
326 fwsm = er32(FWSM);
327 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) && !e1000_check_reset_block(hw)) {
328 e1000_toggle_lanphypc_value_ich8lan(hw);
329 msleep(50);
330
331 /*
332 * Gate automatic PHY configuration by hardware on
333 * non-managed 82579
334 */
335 if (hw->mac.type == e1000_pch2lan)
336 e1000_gate_hw_phy_config_ich8lan(hw, true);
337 }
338
339 /*
340 * Reset the PHY before any access to it. Doing so, ensures that
341 * the PHY is in a known good state before we read/write PHY registers.
342 * The generic reset is sufficient here, because we haven't determined
343 * the PHY type yet.
344 */
345 ret_val = e1000e_phy_hw_reset_generic(hw);
346 if (ret_val)
347 goto out;
348
349 /* Ungate automatic PHY configuration on non-managed 82579 */
350 if ((hw->mac.type == e1000_pch2lan) &&
351 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
352 usleep_range(10000, 20000);
353 e1000_gate_hw_phy_config_ich8lan(hw, false);
354 }
355
356 phy->id = e1000_phy_unknown;
357 switch (hw->mac.type) {
358 default:
359 ret_val = e1000e_get_phy_id(hw);
360 if (ret_val)
361 goto out;
362 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
363 break;
364 /* fall-through */
365 case e1000_pch2lan:
366 /*
367 * In case the PHY needs to be in mdio slow mode,
368 * set slow mode and try to get the PHY id again.
369 */
370 ret_val = e1000_set_mdio_slow_mode_hv(hw);
371 if (ret_val)
372 goto out;
373 ret_val = e1000e_get_phy_id(hw);
374 if (ret_val)
375 goto out;
376 break;
377 }
378 phy->type = e1000e_get_phy_type_from_id(phy->id);
379
380 switch (phy->type) {
381 case e1000_phy_82577:
382 case e1000_phy_82579:
383 phy->ops.check_polarity = e1000_check_polarity_82577;
384 phy->ops.force_speed_duplex =
385 e1000_phy_force_speed_duplex_82577;
386 phy->ops.get_cable_length = e1000_get_cable_length_82577;
387 phy->ops.get_info = e1000_get_phy_info_82577;
388 phy->ops.commit = e1000e_phy_sw_reset;
389 break;
390 case e1000_phy_82578:
391 phy->ops.check_polarity = e1000_check_polarity_m88;
392 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
393 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
394 phy->ops.get_info = e1000e_get_phy_info_m88;
395 break;
396 default:
397 ret_val = -E1000_ERR_PHY;
398 break;
399 }
400
401out:
402 return ret_val;
403}
404
405/**
406 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
407 * @hw: pointer to the HW structure
408 *
409 * Initialize family-specific PHY parameters and function pointers.
410 **/
411static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
412{
413 struct e1000_phy_info *phy = &hw->phy;
414 s32 ret_val;
415 u16 i = 0;
416
417 phy->addr = 1;
418 phy->reset_delay_us = 100;
419
420 phy->ops.power_up = e1000_power_up_phy_copper;
421 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
422
423 /*
424 * We may need to do this twice - once for IGP and if that fails,
425 * we'll set BM func pointers and try again
426 */
427 ret_val = e1000e_determine_phy_address(hw);
428 if (ret_val) {
429 phy->ops.write_reg = e1000e_write_phy_reg_bm;
430 phy->ops.read_reg = e1000e_read_phy_reg_bm;
431 ret_val = e1000e_determine_phy_address(hw);
432 if (ret_val) {
433 e_dbg("Cannot determine PHY addr. Erroring out\n");
434 return ret_val;
435 }
436 }
437
438 phy->id = 0;
439 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
440 (i++ < 100)) {
441 usleep_range(1000, 2000);
442 ret_val = e1000e_get_phy_id(hw);
443 if (ret_val)
444 return ret_val;
445 }
446
447 /* Verify phy id */
448 switch (phy->id) {
449 case IGP03E1000_E_PHY_ID:
450 phy->type = e1000_phy_igp_3;
451 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
452 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
453 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
454 phy->ops.get_info = e1000e_get_phy_info_igp;
455 phy->ops.check_polarity = e1000_check_polarity_igp;
456 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
457 break;
458 case IFE_E_PHY_ID:
459 case IFE_PLUS_E_PHY_ID:
460 case IFE_C_E_PHY_ID:
461 phy->type = e1000_phy_ife;
462 phy->autoneg_mask = E1000_ALL_NOT_GIG;
463 phy->ops.get_info = e1000_get_phy_info_ife;
464 phy->ops.check_polarity = e1000_check_polarity_ife;
465 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
466 break;
467 case BME1000_E_PHY_ID:
468 phy->type = e1000_phy_bm;
469 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
470 phy->ops.read_reg = e1000e_read_phy_reg_bm;
471 phy->ops.write_reg = e1000e_write_phy_reg_bm;
472 phy->ops.commit = e1000e_phy_sw_reset;
473 phy->ops.get_info = e1000e_get_phy_info_m88;
474 phy->ops.check_polarity = e1000_check_polarity_m88;
475 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
476 break;
477 default:
478 return -E1000_ERR_PHY;
479 break;
480 }
481
482 return 0;
483}
484
485/**
486 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
487 * @hw: pointer to the HW structure
488 *
489 * Initialize family-specific NVM parameters and function
490 * pointers.
491 **/
492static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
493{
494 struct e1000_nvm_info *nvm = &hw->nvm;
495 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
496 u32 gfpreg, sector_base_addr, sector_end_addr;
497 u16 i;
498
499 /* Can't read flash registers if the register set isn't mapped. */
500 if (!hw->flash_address) {
501 e_dbg("ERROR: Flash registers not mapped\n");
502 return -E1000_ERR_CONFIG;
503 }
504
505 nvm->type = e1000_nvm_flash_sw;
506
507 gfpreg = er32flash(ICH_FLASH_GFPREG);
508
509 /*
510 * sector_X_addr is a "sector"-aligned address (4096 bytes)
511 * Add 1 to sector_end_addr since this sector is included in
512 * the overall size.
513 */
514 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
515 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
516
517 /* flash_base_addr is byte-aligned */
518 nvm->flash_base_addr = sector_base_addr << FLASH_SECTOR_ADDR_SHIFT;
519
520 /*
521 * find total size of the NVM, then cut in half since the total
522 * size represents two separate NVM banks.
523 */
524 nvm->flash_bank_size = (sector_end_addr - sector_base_addr)
525 << FLASH_SECTOR_ADDR_SHIFT;
526 nvm->flash_bank_size /= 2;
527 /* Adjust to word count */
528 nvm->flash_bank_size /= sizeof(u16);
529
530 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
531
532 /* Clear shadow ram */
533 for (i = 0; i < nvm->word_size; i++) {
534 dev_spec->shadow_ram[i].modified = false;
535 dev_spec->shadow_ram[i].value = 0xFFFF;
536 }
537
538 return 0;
539}
540
541/**
542 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
543 * @hw: pointer to the HW structure
544 *
545 * Initialize family-specific MAC parameters and function
546 * pointers.
547 **/
548static s32 e1000_init_mac_params_ich8lan(struct e1000_adapter *adapter)
549{
550 struct e1000_hw *hw = &adapter->hw;
551 struct e1000_mac_info *mac = &hw->mac;
552
553 /* Set media type function pointer */
554 hw->phy.media_type = e1000_media_type_copper;
555
556 /* Set mta register count */
557 mac->mta_reg_count = 32;
558 /* Set rar entry count */
559 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
560 if (mac->type == e1000_ich8lan)
561 mac->rar_entry_count--;
562 /* FWSM register */
563 mac->has_fwsm = true;
564 /* ARC subsystem not supported */
565 mac->arc_subsystem_valid = false;
566 /* Adaptive IFS supported */
567 mac->adaptive_ifs = true;
568
569 /* LED operations */
570 switch (mac->type) {
571 case e1000_ich8lan:
572 case e1000_ich9lan:
573 case e1000_ich10lan:
574 /* check management mode */
575 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
576 /* ID LED init */
577 mac->ops.id_led_init = e1000e_id_led_init;
578 /* blink LED */
579 mac->ops.blink_led = e1000e_blink_led_generic;
580 /* setup LED */
581 mac->ops.setup_led = e1000e_setup_led_generic;
582 /* cleanup LED */
583 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
584 /* turn on/off LED */
585 mac->ops.led_on = e1000_led_on_ich8lan;
586 mac->ops.led_off = e1000_led_off_ich8lan;
587 break;
588 case e1000_pchlan:
589 case e1000_pch2lan:
590 /* check management mode */
591 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
592 /* ID LED init */
593 mac->ops.id_led_init = e1000_id_led_init_pchlan;
594 /* setup LED */
595 mac->ops.setup_led = e1000_setup_led_pchlan;
596 /* cleanup LED */
597 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
598 /* turn on/off LED */
599 mac->ops.led_on = e1000_led_on_pchlan;
600 mac->ops.led_off = e1000_led_off_pchlan;
601 break;
602 default:
603 break;
604 }
605
606 /* Enable PCS Lock-loss workaround for ICH8 */
607 if (mac->type == e1000_ich8lan)
608 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
609
610 /* Gate automatic PHY configuration by hardware on managed 82579 */
611 if ((mac->type == e1000_pch2lan) &&
612 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
613 e1000_gate_hw_phy_config_ich8lan(hw, true);
614
615 return 0;
616}
617
618/**
619 * e1000_set_eee_pchlan - Enable/disable EEE support
620 * @hw: pointer to the HW structure
621 *
622 * Enable/disable EEE based on setting in dev_spec structure. The bits in
623 * the LPI Control register will remain set only if/when link is up.
624 **/
625static s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
626{
627 s32 ret_val = 0;
628 u16 phy_reg;
629
630 if (hw->phy.type != e1000_phy_82579)
631 goto out;
632
633 ret_val = e1e_rphy(hw, I82579_LPI_CTRL, &phy_reg);
634 if (ret_val)
635 goto out;
636
637 if (hw->dev_spec.ich8lan.eee_disable)
638 phy_reg &= ~I82579_LPI_CTRL_ENABLE_MASK;
639 else
640 phy_reg |= I82579_LPI_CTRL_ENABLE_MASK;
641
642 ret_val = e1e_wphy(hw, I82579_LPI_CTRL, phy_reg);
643out:
644 return ret_val;
645}
646
647/**
648 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
649 * @hw: pointer to the HW structure
650 *
651 * Checks to see of the link status of the hardware has changed. If a
652 * change in link status has been detected, then we read the PHY registers
653 * to get the current speed/duplex if link exists.
654 **/
655static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
656{
657 struct e1000_mac_info *mac = &hw->mac;
658 s32 ret_val;
659 bool link;
660
661 /*
662 * We only want to go out to the PHY registers to see if Auto-Neg
663 * has completed and/or if our link status has changed. The
664 * get_link_status flag is set upon receiving a Link Status
665 * Change or Rx Sequence Error interrupt.
666 */
667 if (!mac->get_link_status) {
668 ret_val = 0;
669 goto out;
670 }
671
672 /*
673 * First we want to see if the MII Status Register reports
674 * link. If so, then we want to get the current speed/duplex
675 * of the PHY.
676 */
677 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
678 if (ret_val)
679 goto out;
680
681 if (hw->mac.type == e1000_pchlan) {
682 ret_val = e1000_k1_gig_workaround_hv(hw, link);
683 if (ret_val)
684 goto out;
685 }
686
687 if (!link)
688 goto out; /* No link detected */
689
690 mac->get_link_status = false;
691
692 if (hw->phy.type == e1000_phy_82578) {
693 ret_val = e1000_link_stall_workaround_hv(hw);
694 if (ret_val)
695 goto out;
696 }
697
698 if (hw->mac.type == e1000_pch2lan) {
699 ret_val = e1000_k1_workaround_lv(hw);
700 if (ret_val)
701 goto out;
702 }
703
704 /*
705 * Check if there was DownShift, must be checked
706 * immediately after link-up
707 */
708 e1000e_check_downshift(hw);
709
710 /* Enable/Disable EEE after link up */
711 ret_val = e1000_set_eee_pchlan(hw);
712 if (ret_val)
713 goto out;
714
715 /*
716 * If we are forcing speed/duplex, then we simply return since
717 * we have already determined whether we have link or not.
718 */
719 if (!mac->autoneg) {
720 ret_val = -E1000_ERR_CONFIG;
721 goto out;
722 }
723
724 /*
725 * Auto-Neg is enabled. Auto Speed Detection takes care
726 * of MAC speed/duplex configuration. So we only need to
727 * configure Collision Distance in the MAC.
728 */
729 e1000e_config_collision_dist(hw);
730
731 /*
732 * Configure Flow Control now that Auto-Neg has completed.
733 * First, we need to restore the desired flow control
734 * settings because we may have had to re-autoneg with a
735 * different link partner.
736 */
737 ret_val = e1000e_config_fc_after_link_up(hw);
738 if (ret_val)
739 e_dbg("Error configuring flow control\n");
740
741out:
742 return ret_val;
743}
744
745static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
746{
747 struct e1000_hw *hw = &adapter->hw;
748 s32 rc;
749
750 rc = e1000_init_mac_params_ich8lan(adapter);
751 if (rc)
752 return rc;
753
754 rc = e1000_init_nvm_params_ich8lan(hw);
755 if (rc)
756 return rc;
757
758 switch (hw->mac.type) {
759 case e1000_ich8lan:
760 case e1000_ich9lan:
761 case e1000_ich10lan:
762 rc = e1000_init_phy_params_ich8lan(hw);
763 break;
764 case e1000_pchlan:
765 case e1000_pch2lan:
766 rc = e1000_init_phy_params_pchlan(hw);
767 break;
768 default:
769 break;
770 }
771 if (rc)
772 return rc;
773
774 /*
775 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
776 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
777 */
778 if ((adapter->hw.phy.type == e1000_phy_ife) ||
779 ((adapter->hw.mac.type >= e1000_pch2lan) &&
780 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
781 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
782 adapter->max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN;
783
784 hw->mac.ops.blink_led = NULL;
785 }
786
787 if ((adapter->hw.mac.type == e1000_ich8lan) &&
788 (adapter->hw.phy.type == e1000_phy_igp_3))
789 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
790
791 /* Disable EEE by default until IEEE802.3az spec is finalized */
792 if (adapter->flags2 & FLAG2_HAS_EEE)
793 adapter->hw.dev_spec.ich8lan.eee_disable = true;
794
795 return 0;
796}
797
798static DEFINE_MUTEX(nvm_mutex);
799
800/**
801 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
802 * @hw: pointer to the HW structure
803 *
804 * Acquires the mutex for performing NVM operations.
805 **/
806static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw *hw)
807{
808 mutex_lock(&nvm_mutex);
809
810 return 0;
811}
812
813/**
814 * e1000_release_nvm_ich8lan - Release NVM mutex
815 * @hw: pointer to the HW structure
816 *
817 * Releases the mutex used while performing NVM operations.
818 **/
819static void e1000_release_nvm_ich8lan(struct e1000_hw *hw)
820{
821 mutex_unlock(&nvm_mutex);
822}
823
824static DEFINE_MUTEX(swflag_mutex);
825
826/**
827 * e1000_acquire_swflag_ich8lan - Acquire software control flag
828 * @hw: pointer to the HW structure
829 *
830 * Acquires the software control flag for performing PHY and select
831 * MAC CSR accesses.
832 **/
833static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
834{
835 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
836 s32 ret_val = 0;
837
838 mutex_lock(&swflag_mutex);
839
840 while (timeout) {
841 extcnf_ctrl = er32(EXTCNF_CTRL);
842 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
843 break;
844
845 mdelay(1);
846 timeout--;
847 }
848
849 if (!timeout) {
850 e_dbg("SW/FW/HW has locked the resource for too long.\n");
851 ret_val = -E1000_ERR_CONFIG;
852 goto out;
853 }
854
855 timeout = SW_FLAG_TIMEOUT;
856
857 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
858 ew32(EXTCNF_CTRL, extcnf_ctrl);
859
860 while (timeout) {
861 extcnf_ctrl = er32(EXTCNF_CTRL);
862 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
863 break;
864
865 mdelay(1);
866 timeout--;
867 }
868
869 if (!timeout) {
870 e_dbg("Failed to acquire the semaphore.\n");
871 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
872 ew32(EXTCNF_CTRL, extcnf_ctrl);
873 ret_val = -E1000_ERR_CONFIG;
874 goto out;
875 }
876
877out:
878 if (ret_val)
879 mutex_unlock(&swflag_mutex);
880
881 return ret_val;
882}
883
884/**
885 * e1000_release_swflag_ich8lan - Release software control flag
886 * @hw: pointer to the HW structure
887 *
888 * Releases the software control flag for performing PHY and select
889 * MAC CSR accesses.
890 **/
891static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
892{
893 u32 extcnf_ctrl;
894
895 extcnf_ctrl = er32(EXTCNF_CTRL);
896
897 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
898 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
899 ew32(EXTCNF_CTRL, extcnf_ctrl);
900 } else {
901 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
902 }
903
904 mutex_unlock(&swflag_mutex);
905}
906
907/**
908 * e1000_check_mng_mode_ich8lan - Checks management mode
909 * @hw: pointer to the HW structure
910 *
911 * This checks if the adapter has any manageability enabled.
912 * This is a function pointer entry point only called by read/write
913 * routines for the PHY and NVM parts.
914 **/
915static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
916{
917 u32 fwsm;
918
919 fwsm = er32(FWSM);
920 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
921 ((fwsm & E1000_FWSM_MODE_MASK) ==
922 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
923}
924
925/**
926 * e1000_check_mng_mode_pchlan - Checks management mode
927 * @hw: pointer to the HW structure
928 *
929 * This checks if the adapter has iAMT enabled.
930 * This is a function pointer entry point only called by read/write
931 * routines for the PHY and NVM parts.
932 **/
933static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
934{
935 u32 fwsm;
936
937 fwsm = er32(FWSM);
938 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
939 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
940}
941
942/**
943 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
944 * @hw: pointer to the HW structure
945 *
946 * Checks if firmware is blocking the reset of the PHY.
947 * This is a function pointer entry point only called by
948 * reset routines.
949 **/
950static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
951{
952 u32 fwsm;
953
954 fwsm = er32(FWSM);
955
956 return (fwsm & E1000_ICH_FWSM_RSPCIPHY) ? 0 : E1000_BLK_PHY_RESET;
957}
958
959/**
960 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
961 * @hw: pointer to the HW structure
962 *
963 * Assumes semaphore already acquired.
964 *
965 **/
966static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
967{
968 u16 phy_data;
969 u32 strap = er32(STRAP);
970 s32 ret_val = 0;
971
972 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
973
974 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
975 if (ret_val)
976 goto out;
977
978 phy_data &= ~HV_SMB_ADDR_MASK;
979 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
980 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
981 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
982
983out:
984 return ret_val;
985}
986
987/**
988 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
989 * @hw: pointer to the HW structure
990 *
991 * SW should configure the LCD from the NVM extended configuration region
992 * as a workaround for certain parts.
993 **/
994static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
995{
996 struct e1000_phy_info *phy = &hw->phy;
997 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
998 s32 ret_val = 0;
999 u16 word_addr, reg_data, reg_addr, phy_page = 0;
1000
1001 /*
1002 * Initialize the PHY from the NVM on ICH platforms. This
1003 * is needed due to an issue where the NVM configuration is
1004 * not properly autoloaded after power transitions.
1005 * Therefore, after each PHY reset, we will load the
1006 * configuration data out of the NVM manually.
1007 */
1008 switch (hw->mac.type) {
1009 case e1000_ich8lan:
1010 if (phy->type != e1000_phy_igp_3)
1011 return ret_val;
1012
1013 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
1014 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
1015 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
1016 break;
1017 }
1018 /* Fall-thru */
1019 case e1000_pchlan:
1020 case e1000_pch2lan:
1021 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
1022 break;
1023 default:
1024 return ret_val;
1025 }
1026
1027 ret_val = hw->phy.ops.acquire(hw);
1028 if (ret_val)
1029 return ret_val;
1030
1031 data = er32(FEXTNVM);
1032 if (!(data & sw_cfg_mask))
1033 goto out;
1034
1035 /*
1036 * Make sure HW does not configure LCD from PHY
1037 * extended configuration before SW configuration
1038 */
1039 data = er32(EXTCNF_CTRL);
1040 if (!(hw->mac.type == e1000_pch2lan)) {
1041 if (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE)
1042 goto out;
1043 }
1044
1045 cnf_size = er32(EXTCNF_SIZE);
1046 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
1047 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
1048 if (!cnf_size)
1049 goto out;
1050
1051 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
1052 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
1053
1054 if ((!(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE) &&
1055 (hw->mac.type == e1000_pchlan)) ||
1056 (hw->mac.type == e1000_pch2lan)) {
1057 /*
1058 * HW configures the SMBus address and LEDs when the
1059 * OEM and LCD Write Enable bits are set in the NVM.
1060 * When both NVM bits are cleared, SW will configure
1061 * them instead.
1062 */
1063 ret_val = e1000_write_smbus_addr(hw);
1064 if (ret_val)
1065 goto out;
1066
1067 data = er32(LEDCTL);
1068 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
1069 (u16)data);
1070 if (ret_val)
1071 goto out;
1072 }
1073
1074 /* Configure LCD from extended configuration region. */
1075
1076 /* cnf_base_addr is in DWORD */
1077 word_addr = (u16)(cnf_base_addr << 1);
1078
1079 for (i = 0; i < cnf_size; i++) {
1080 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1,
1081 &reg_data);
1082 if (ret_val)
1083 goto out;
1084
1085 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
1086 1, &reg_addr);
1087 if (ret_val)
1088 goto out;
1089
1090 /* Save off the PHY page for future writes. */
1091 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
1092 phy_page = reg_data;
1093 continue;
1094 }
1095
1096 reg_addr &= PHY_REG_MASK;
1097 reg_addr |= phy_page;
1098
1099 ret_val = phy->ops.write_reg_locked(hw, (u32)reg_addr,
1100 reg_data);
1101 if (ret_val)
1102 goto out;
1103 }
1104
1105out:
1106 hw->phy.ops.release(hw);
1107 return ret_val;
1108}
1109
1110/**
1111 * e1000_k1_gig_workaround_hv - K1 Si workaround
1112 * @hw: pointer to the HW structure
1113 * @link: link up bool flag
1114 *
1115 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1116 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1117 * If link is down, the function will restore the default K1 setting located
1118 * in the NVM.
1119 **/
1120static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
1121{
1122 s32 ret_val = 0;
1123 u16 status_reg = 0;
1124 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
1125
1126 if (hw->mac.type != e1000_pchlan)
1127 goto out;
1128
1129 /* Wrap the whole flow with the sw flag */
1130 ret_val = hw->phy.ops.acquire(hw);
1131 if (ret_val)
1132 goto out;
1133
1134 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1135 if (link) {
1136 if (hw->phy.type == e1000_phy_82578) {
1137 ret_val = hw->phy.ops.read_reg_locked(hw, BM_CS_STATUS,
1138 &status_reg);
1139 if (ret_val)
1140 goto release;
1141
1142 status_reg &= BM_CS_STATUS_LINK_UP |
1143 BM_CS_STATUS_RESOLVED |
1144 BM_CS_STATUS_SPEED_MASK;
1145
1146 if (status_reg == (BM_CS_STATUS_LINK_UP |
1147 BM_CS_STATUS_RESOLVED |
1148 BM_CS_STATUS_SPEED_1000))
1149 k1_enable = false;
1150 }
1151
1152 if (hw->phy.type == e1000_phy_82577) {
1153 ret_val = hw->phy.ops.read_reg_locked(hw, HV_M_STATUS,
1154 &status_reg);
1155 if (ret_val)
1156 goto release;
1157
1158 status_reg &= HV_M_STATUS_LINK_UP |
1159 HV_M_STATUS_AUTONEG_COMPLETE |
1160 HV_M_STATUS_SPEED_MASK;
1161
1162 if (status_reg == (HV_M_STATUS_LINK_UP |
1163 HV_M_STATUS_AUTONEG_COMPLETE |
1164 HV_M_STATUS_SPEED_1000))
1165 k1_enable = false;
1166 }
1167
1168 /* Link stall fix for link up */
1169 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1170 0x0100);
1171 if (ret_val)
1172 goto release;
1173
1174 } else {
1175 /* Link stall fix for link down */
1176 ret_val = hw->phy.ops.write_reg_locked(hw, PHY_REG(770, 19),
1177 0x4100);
1178 if (ret_val)
1179 goto release;
1180 }
1181
1182 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
1183
1184release:
1185 hw->phy.ops.release(hw);
1186out:
1187 return ret_val;
1188}
1189
1190/**
1191 * e1000_configure_k1_ich8lan - Configure K1 power state
1192 * @hw: pointer to the HW structure
1193 * @enable: K1 state to configure
1194 *
1195 * Configure the K1 power state based on the provided parameter.
1196 * Assumes semaphore already acquired.
1197 *
1198 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1199 **/
1200s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
1201{
1202 s32 ret_val = 0;
1203 u32 ctrl_reg = 0;
1204 u32 ctrl_ext = 0;
1205 u32 reg = 0;
1206 u16 kmrn_reg = 0;
1207
1208 ret_val = e1000e_read_kmrn_reg_locked(hw,
1209 E1000_KMRNCTRLSTA_K1_CONFIG,
1210 &kmrn_reg);
1211 if (ret_val)
1212 goto out;
1213
1214 if (k1_enable)
1215 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
1216 else
1217 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
1218
1219 ret_val = e1000e_write_kmrn_reg_locked(hw,
1220 E1000_KMRNCTRLSTA_K1_CONFIG,
1221 kmrn_reg);
1222 if (ret_val)
1223 goto out;
1224
1225 udelay(20);
1226 ctrl_ext = er32(CTRL_EXT);
1227 ctrl_reg = er32(CTRL);
1228
1229 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1230 reg |= E1000_CTRL_FRCSPD;
1231 ew32(CTRL, reg);
1232
1233 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
1234 e1e_flush();
1235 udelay(20);
1236 ew32(CTRL, ctrl_reg);
1237 ew32(CTRL_EXT, ctrl_ext);
1238 e1e_flush();
1239 udelay(20);
1240
1241out:
1242 return ret_val;
1243}
1244
1245/**
1246 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1247 * @hw: pointer to the HW structure
1248 * @d0_state: boolean if entering d0 or d3 device state
1249 *
1250 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1251 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1252 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1253 **/
1254static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
1255{
1256 s32 ret_val = 0;
1257 u32 mac_reg;
1258 u16 oem_reg;
1259
1260 if ((hw->mac.type != e1000_pch2lan) && (hw->mac.type != e1000_pchlan))
1261 return ret_val;
1262
1263 ret_val = hw->phy.ops.acquire(hw);
1264 if (ret_val)
1265 return ret_val;
1266
1267 if (!(hw->mac.type == e1000_pch2lan)) {
1268 mac_reg = er32(EXTCNF_CTRL);
1269 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
1270 goto out;
1271 }
1272
1273 mac_reg = er32(FEXTNVM);
1274 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
1275 goto out;
1276
1277 mac_reg = er32(PHY_CTRL);
1278
1279 ret_val = hw->phy.ops.read_reg_locked(hw, HV_OEM_BITS, &oem_reg);
1280 if (ret_val)
1281 goto out;
1282
1283 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
1284
1285 if (d0_state) {
1286 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
1287 oem_reg |= HV_OEM_BITS_GBE_DIS;
1288
1289 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
1290 oem_reg |= HV_OEM_BITS_LPLU;
1291 } else {
1292 if (mac_reg & E1000_PHY_CTRL_NOND0A_GBE_DISABLE)
1293 oem_reg |= HV_OEM_BITS_GBE_DIS;
1294
1295 if (mac_reg & E1000_PHY_CTRL_NOND0A_LPLU)
1296 oem_reg |= HV_OEM_BITS_LPLU;
1297 }
1298 /* Restart auto-neg to activate the bits */
1299 if (!e1000_check_reset_block(hw))
1300 oem_reg |= HV_OEM_BITS_RESTART_AN;
1301 ret_val = hw->phy.ops.write_reg_locked(hw, HV_OEM_BITS, oem_reg);
1302
1303out:
1304 hw->phy.ops.release(hw);
1305
1306 return ret_val;
1307}
1308
1309
1310/**
1311 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1312 * @hw: pointer to the HW structure
1313 **/
1314static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
1315{
1316 s32 ret_val;
1317 u16 data;
1318
1319 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
1320 if (ret_val)
1321 return ret_val;
1322
1323 data |= HV_KMRN_MDIO_SLOW;
1324
1325 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
1326
1327 return ret_val;
1328}
1329
1330/**
1331 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1332 * done after every PHY reset.
1333 **/
1334static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1335{
1336 s32 ret_val = 0;
1337 u16 phy_data;
1338
1339 if (hw->mac.type != e1000_pchlan)
1340 return ret_val;
1341
1342 /* Set MDIO slow mode before any other MDIO access */
1343 if (hw->phy.type == e1000_phy_82577) {
1344 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1345 if (ret_val)
1346 goto out;
1347 }
1348
1349 if (((hw->phy.type == e1000_phy_82577) &&
1350 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
1351 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
1352 /* Disable generation of early preamble */
1353 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
1354 if (ret_val)
1355 return ret_val;
1356
1357 /* Preamble tuning for SSC */
1358 ret_val = e1e_wphy(hw, PHY_REG(770, 16), 0xA204);
1359 if (ret_val)
1360 return ret_val;
1361 }
1362
1363 if (hw->phy.type == e1000_phy_82578) {
1364 /*
1365 * Return registers to default by doing a soft reset then
1366 * writing 0x3140 to the control register.
1367 */
1368 if (hw->phy.revision < 2) {
1369 e1000e_phy_sw_reset(hw);
1370 ret_val = e1e_wphy(hw, PHY_CONTROL, 0x3140);
1371 }
1372 }
1373
1374 /* Select page 0 */
1375 ret_val = hw->phy.ops.acquire(hw);
1376 if (ret_val)
1377 return ret_val;
1378
1379 hw->phy.addr = 1;
1380 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
1381 hw->phy.ops.release(hw);
1382 if (ret_val)
1383 goto out;
1384
1385 /*
1386 * Configure the K1 Si workaround during phy reset assuming there is
1387 * link so that it disables K1 if link is in 1Gbps.
1388 */
1389 ret_val = e1000_k1_gig_workaround_hv(hw, true);
1390 if (ret_val)
1391 goto out;
1392
1393 /* Workaround for link disconnects on a busy hub in half duplex */
1394 ret_val = hw->phy.ops.acquire(hw);
1395 if (ret_val)
1396 goto out;
1397 ret_val = hw->phy.ops.read_reg_locked(hw, BM_PORT_GEN_CFG, &phy_data);
1398 if (ret_val)
1399 goto release;
1400 ret_val = hw->phy.ops.write_reg_locked(hw, BM_PORT_GEN_CFG,
1401 phy_data & 0x00FF);
1402release:
1403 hw->phy.ops.release(hw);
1404out:
1405 return ret_val;
1406}
1407
1408/**
1409 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1410 * @hw: pointer to the HW structure
1411 **/
1412void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
1413{
1414 u32 mac_reg;
1415 u16 i, phy_reg = 0;
1416 s32 ret_val;
1417
1418 ret_val = hw->phy.ops.acquire(hw);
1419 if (ret_val)
1420 return;
1421 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1422 if (ret_val)
1423 goto release;
1424
1425 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1426 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1427 mac_reg = er32(RAL(i));
1428 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
1429 (u16)(mac_reg & 0xFFFF));
1430 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
1431 (u16)((mac_reg >> 16) & 0xFFFF));
1432
1433 mac_reg = er32(RAH(i));
1434 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
1435 (u16)(mac_reg & 0xFFFF));
1436 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
1437 (u16)((mac_reg & E1000_RAH_AV)
1438 >> 16));
1439 }
1440
1441 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
1442
1443release:
1444 hw->phy.ops.release(hw);
1445}
1446
1447/**
1448 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1449 * with 82579 PHY
1450 * @hw: pointer to the HW structure
1451 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1452 **/
1453s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
1454{
1455 s32 ret_val = 0;
1456 u16 phy_reg, data;
1457 u32 mac_reg;
1458 u16 i;
1459
1460 if (hw->mac.type != e1000_pch2lan)
1461 goto out;
1462
1463 /* disable Rx path while enabling/disabling workaround */
1464 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
1465 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | (1 << 14));
1466 if (ret_val)
1467 goto out;
1468
1469 if (enable) {
1470 /*
1471 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1472 * SHRAL/H) and initial CRC values to the MAC
1473 */
1474 for (i = 0; i < (hw->mac.rar_entry_count + 4); i++) {
1475 u8 mac_addr[ETH_ALEN] = {0};
1476 u32 addr_high, addr_low;
1477
1478 addr_high = er32(RAH(i));
1479 if (!(addr_high & E1000_RAH_AV))
1480 continue;
1481 addr_low = er32(RAL(i));
1482 mac_addr[0] = (addr_low & 0xFF);
1483 mac_addr[1] = ((addr_low >> 8) & 0xFF);
1484 mac_addr[2] = ((addr_low >> 16) & 0xFF);
1485 mac_addr[3] = ((addr_low >> 24) & 0xFF);
1486 mac_addr[4] = (addr_high & 0xFF);
1487 mac_addr[5] = ((addr_high >> 8) & 0xFF);
1488
1489 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
1490 }
1491
1492 /* Write Rx addresses to the PHY */
1493 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
1494
1495 /* Enable jumbo frame workaround in the MAC */
1496 mac_reg = er32(FFLT_DBG);
1497 mac_reg &= ~(1 << 14);
1498 mac_reg |= (7 << 15);
1499 ew32(FFLT_DBG, mac_reg);
1500
1501 mac_reg = er32(RCTL);
1502 mac_reg |= E1000_RCTL_SECRC;
1503 ew32(RCTL, mac_reg);
1504
1505 ret_val = e1000e_read_kmrn_reg(hw,
1506 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1507 &data);
1508 if (ret_val)
1509 goto out;
1510 ret_val = e1000e_write_kmrn_reg(hw,
1511 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1512 data | (1 << 0));
1513 if (ret_val)
1514 goto out;
1515 ret_val = e1000e_read_kmrn_reg(hw,
1516 E1000_KMRNCTRLSTA_HD_CTRL,
1517 &data);
1518 if (ret_val)
1519 goto out;
1520 data &= ~(0xF << 8);
1521 data |= (0xB << 8);
1522 ret_val = e1000e_write_kmrn_reg(hw,
1523 E1000_KMRNCTRLSTA_HD_CTRL,
1524 data);
1525 if (ret_val)
1526 goto out;
1527
1528 /* Enable jumbo frame workaround in the PHY */
1529 e1e_rphy(hw, PHY_REG(769, 23), &data);
1530 data &= ~(0x7F << 5);
1531 data |= (0x37 << 5);
1532 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1533 if (ret_val)
1534 goto out;
1535 e1e_rphy(hw, PHY_REG(769, 16), &data);
1536 data &= ~(1 << 13);
1537 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1538 if (ret_val)
1539 goto out;
1540 e1e_rphy(hw, PHY_REG(776, 20), &data);
1541 data &= ~(0x3FF << 2);
1542 data |= (0x1A << 2);
1543 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1544 if (ret_val)
1545 goto out;
1546 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xFE00);
1547 if (ret_val)
1548 goto out;
1549 e1e_rphy(hw, HV_PM_CTRL, &data);
1550 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | (1 << 10));
1551 if (ret_val)
1552 goto out;
1553 } else {
1554 /* Write MAC register values back to h/w defaults */
1555 mac_reg = er32(FFLT_DBG);
1556 mac_reg &= ~(0xF << 14);
1557 ew32(FFLT_DBG, mac_reg);
1558
1559 mac_reg = er32(RCTL);
1560 mac_reg &= ~E1000_RCTL_SECRC;
1561 ew32(RCTL, mac_reg);
1562
1563 ret_val = e1000e_read_kmrn_reg(hw,
1564 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1565 &data);
1566 if (ret_val)
1567 goto out;
1568 ret_val = e1000e_write_kmrn_reg(hw,
1569 E1000_KMRNCTRLSTA_CTRL_OFFSET,
1570 data & ~(1 << 0));
1571 if (ret_val)
1572 goto out;
1573 ret_val = e1000e_read_kmrn_reg(hw,
1574 E1000_KMRNCTRLSTA_HD_CTRL,
1575 &data);
1576 if (ret_val)
1577 goto out;
1578 data &= ~(0xF << 8);
1579 data |= (0xB << 8);
1580 ret_val = e1000e_write_kmrn_reg(hw,
1581 E1000_KMRNCTRLSTA_HD_CTRL,
1582 data);
1583 if (ret_val)
1584 goto out;
1585
1586 /* Write PHY register values back to h/w defaults */
1587 e1e_rphy(hw, PHY_REG(769, 23), &data);
1588 data &= ~(0x7F << 5);
1589 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
1590 if (ret_val)
1591 goto out;
1592 e1e_rphy(hw, PHY_REG(769, 16), &data);
1593 data |= (1 << 13);
1594 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
1595 if (ret_val)
1596 goto out;
1597 e1e_rphy(hw, PHY_REG(776, 20), &data);
1598 data &= ~(0x3FF << 2);
1599 data |= (0x8 << 2);
1600 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
1601 if (ret_val)
1602 goto out;
1603 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
1604 if (ret_val)
1605 goto out;
1606 e1e_rphy(hw, HV_PM_CTRL, &data);
1607 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~(1 << 10));
1608 if (ret_val)
1609 goto out;
1610 }
1611
1612 /* re-enable Rx path after enabling/disabling workaround */
1613 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~(1 << 14));
1614
1615out:
1616 return ret_val;
1617}
1618
1619/**
1620 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1621 * done after every PHY reset.
1622 **/
1623static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
1624{
1625 s32 ret_val = 0;
1626
1627 if (hw->mac.type != e1000_pch2lan)
1628 goto out;
1629
1630 /* Set MDIO slow mode before any other MDIO access */
1631 ret_val = e1000_set_mdio_slow_mode_hv(hw);
1632
1633out:
1634 return ret_val;
1635}
1636
1637/**
1638 * e1000_k1_gig_workaround_lv - K1 Si workaround
1639 * @hw: pointer to the HW structure
1640 *
1641 * Workaround to set the K1 beacon duration for 82579 parts
1642 **/
1643static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
1644{
1645 s32 ret_val = 0;
1646 u16 status_reg = 0;
1647 u32 mac_reg;
1648
1649 if (hw->mac.type != e1000_pch2lan)
1650 goto out;
1651
1652 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1653 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
1654 if (ret_val)
1655 goto out;
1656
1657 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
1658 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
1659 mac_reg = er32(FEXTNVM4);
1660 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1661
1662 if (status_reg & HV_M_STATUS_SPEED_1000)
1663 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1664 else
1665 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
1666
1667 ew32(FEXTNVM4, mac_reg);
1668 }
1669
1670out:
1671 return ret_val;
1672}
1673
1674/**
1675 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1676 * @hw: pointer to the HW structure
1677 * @gate: boolean set to true to gate, false to ungate
1678 *
1679 * Gate/ungate the automatic PHY configuration via hardware; perform
1680 * the configuration via software instead.
1681 **/
1682static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
1683{
1684 u32 extcnf_ctrl;
1685
1686 if (hw->mac.type != e1000_pch2lan)
1687 return;
1688
1689 extcnf_ctrl = er32(EXTCNF_CTRL);
1690
1691 if (gate)
1692 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1693 else
1694 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
1695
1696 ew32(EXTCNF_CTRL, extcnf_ctrl);
1697 return;
1698}
1699
1700/**
1701 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1702 * @hw: pointer to the HW structure
1703 *
1704 * Check the appropriate indication the MAC has finished configuring the
1705 * PHY after a software reset.
1706 **/
1707static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
1708{
1709 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
1710
1711 /* Wait for basic configuration completes before proceeding */
1712 do {
1713 data = er32(STATUS);
1714 data &= E1000_STATUS_LAN_INIT_DONE;
1715 udelay(100);
1716 } while ((!data) && --loop);
1717
1718 /*
1719 * If basic configuration is incomplete before the above loop
1720 * count reaches 0, loading the configuration from NVM will
1721 * leave the PHY in a bad state possibly resulting in no link.
1722 */
1723 if (loop == 0)
1724 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1725
1726 /* Clear the Init Done bit for the next init event */
1727 data = er32(STATUS);
1728 data &= ~E1000_STATUS_LAN_INIT_DONE;
1729 ew32(STATUS, data);
1730}
1731
1732/**
1733 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1734 * @hw: pointer to the HW structure
1735 **/
1736static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
1737{
1738 s32 ret_val = 0;
1739 u16 reg;
1740
1741 if (e1000_check_reset_block(hw))
1742 goto out;
1743
1744 /* Allow time for h/w to get to quiescent state after reset */
1745 usleep_range(10000, 20000);
1746
1747 /* Perform any necessary post-reset workarounds */
1748 switch (hw->mac.type) {
1749 case e1000_pchlan:
1750 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
1751 if (ret_val)
1752 goto out;
1753 break;
1754 case e1000_pch2lan:
1755 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
1756 if (ret_val)
1757 goto out;
1758 break;
1759 default:
1760 break;
1761 }
1762
1763 /* Clear the host wakeup bit after lcd reset */
1764 if (hw->mac.type >= e1000_pchlan) {
1765 e1e_rphy(hw, BM_PORT_GEN_CFG, &reg);
1766 reg &= ~BM_WUC_HOST_WU_BIT;
1767 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
1768 }
1769
1770 /* Configure the LCD with the extended configuration region in NVM */
1771 ret_val = e1000_sw_lcd_config_ich8lan(hw);
1772 if (ret_val)
1773 goto out;
1774
1775 /* Configure the LCD with the OEM bits in NVM */
1776 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
1777
1778 if (hw->mac.type == e1000_pch2lan) {
1779 /* Ungate automatic PHY configuration on non-managed 82579 */
1780 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
1781 usleep_range(10000, 20000);
1782 e1000_gate_hw_phy_config_ich8lan(hw, false);
1783 }
1784
1785 /* Set EEE LPI Update Timer to 200usec */
1786 ret_val = hw->phy.ops.acquire(hw);
1787 if (ret_val)
1788 goto out;
1789 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_ADDR,
1790 I82579_LPI_UPDATE_TIMER);
1791 if (ret_val)
1792 goto release;
1793 ret_val = hw->phy.ops.write_reg_locked(hw, I82579_EMI_DATA,
1794 0x1387);
1795release:
1796 hw->phy.ops.release(hw);
1797 }
1798
1799out:
1800 return ret_val;
1801}
1802
1803/**
1804 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1805 * @hw: pointer to the HW structure
1806 *
1807 * Resets the PHY
1808 * This is a function pointer entry point called by drivers
1809 * or other shared routines.
1810 **/
1811static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
1812{
1813 s32 ret_val = 0;
1814
1815 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1816 if ((hw->mac.type == e1000_pch2lan) &&
1817 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1818 e1000_gate_hw_phy_config_ich8lan(hw, true);
1819
1820 ret_val = e1000e_phy_hw_reset_generic(hw);
1821 if (ret_val)
1822 goto out;
1823
1824 ret_val = e1000_post_phy_reset_ich8lan(hw);
1825
1826out:
1827 return ret_val;
1828}
1829
1830/**
1831 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1832 * @hw: pointer to the HW structure
1833 * @active: true to enable LPLU, false to disable
1834 *
1835 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1836 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1837 * the phy speed. This function will manually set the LPLU bit and restart
1838 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1839 * since it configures the same bit.
1840 **/
1841static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
1842{
1843 s32 ret_val = 0;
1844 u16 oem_reg;
1845
1846 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
1847 if (ret_val)
1848 goto out;
1849
1850 if (active)
1851 oem_reg |= HV_OEM_BITS_LPLU;
1852 else
1853 oem_reg &= ~HV_OEM_BITS_LPLU;
1854
1855 oem_reg |= HV_OEM_BITS_RESTART_AN;
1856 ret_val = e1e_wphy(hw, HV_OEM_BITS, oem_reg);
1857
1858out:
1859 return ret_val;
1860}
1861
1862/**
1863 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1864 * @hw: pointer to the HW structure
1865 * @active: true to enable LPLU, false to disable
1866 *
1867 * Sets the LPLU D0 state according to the active flag. When
1868 * activating LPLU this function also disables smart speed
1869 * and vice versa. LPLU will not be activated unless the
1870 * device autonegotiation advertisement meets standards of
1871 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1872 * This is a function pointer entry point only called by
1873 * PHY setup routines.
1874 **/
1875static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1876{
1877 struct e1000_phy_info *phy = &hw->phy;
1878 u32 phy_ctrl;
1879 s32 ret_val = 0;
1880 u16 data;
1881
1882 if (phy->type == e1000_phy_ife)
1883 return ret_val;
1884
1885 phy_ctrl = er32(PHY_CTRL);
1886
1887 if (active) {
1888 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
1889 ew32(PHY_CTRL, phy_ctrl);
1890
1891 if (phy->type != e1000_phy_igp_3)
1892 return 0;
1893
1894 /*
1895 * Call gig speed drop workaround on LPLU before accessing
1896 * any PHY registers
1897 */
1898 if (hw->mac.type == e1000_ich8lan)
1899 e1000e_gig_downshift_workaround_ich8lan(hw);
1900
1901 /* When LPLU is enabled, we should disable SmartSpeed */
1902 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
1903 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1904 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
1905 if (ret_val)
1906 return ret_val;
1907 } else {
1908 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
1909 ew32(PHY_CTRL, phy_ctrl);
1910
1911 if (phy->type != e1000_phy_igp_3)
1912 return 0;
1913
1914 /*
1915 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1916 * during Dx states where the power conservation is most
1917 * important. During driver activity we should enable
1918 * SmartSpeed, so performance is maintained.
1919 */
1920 if (phy->smart_speed == e1000_smart_speed_on) {
1921 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1922 &data);
1923 if (ret_val)
1924 return ret_val;
1925
1926 data |= IGP01E1000_PSCFR_SMART_SPEED;
1927 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1928 data);
1929 if (ret_val)
1930 return ret_val;
1931 } else if (phy->smart_speed == e1000_smart_speed_off) {
1932 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1933 &data);
1934 if (ret_val)
1935 return ret_val;
1936
1937 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1938 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1939 data);
1940 if (ret_val)
1941 return ret_val;
1942 }
1943 }
1944
1945 return 0;
1946}
1947
1948/**
1949 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1950 * @hw: pointer to the HW structure
1951 * @active: true to enable LPLU, false to disable
1952 *
1953 * Sets the LPLU D3 state according to the active flag. When
1954 * activating LPLU this function also disables smart speed
1955 * and vice versa. LPLU will not be activated unless the
1956 * device autonegotiation advertisement meets standards of
1957 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1958 * This is a function pointer entry point only called by
1959 * PHY setup routines.
1960 **/
1961static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
1962{
1963 struct e1000_phy_info *phy = &hw->phy;
1964 u32 phy_ctrl;
1965 s32 ret_val;
1966 u16 data;
1967
1968 phy_ctrl = er32(PHY_CTRL);
1969
1970 if (!active) {
1971 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
1972 ew32(PHY_CTRL, phy_ctrl);
1973
1974 if (phy->type != e1000_phy_igp_3)
1975 return 0;
1976
1977 /*
1978 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1979 * during Dx states where the power conservation is most
1980 * important. During driver activity we should enable
1981 * SmartSpeed, so performance is maintained.
1982 */
1983 if (phy->smart_speed == e1000_smart_speed_on) {
1984 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1985 &data);
1986 if (ret_val)
1987 return ret_val;
1988
1989 data |= IGP01E1000_PSCFR_SMART_SPEED;
1990 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1991 data);
1992 if (ret_val)
1993 return ret_val;
1994 } else if (phy->smart_speed == e1000_smart_speed_off) {
1995 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
1996 &data);
1997 if (ret_val)
1998 return ret_val;
1999
2000 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2001 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
2002 data);
2003 if (ret_val)
2004 return ret_val;
2005 }
2006 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
2007 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
2008 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
2009 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
2010 ew32(PHY_CTRL, phy_ctrl);
2011
2012 if (phy->type != e1000_phy_igp_3)
2013 return 0;
2014
2015 /*
2016 * Call gig speed drop workaround on LPLU before accessing
2017 * any PHY registers
2018 */
2019 if (hw->mac.type == e1000_ich8lan)
2020 e1000e_gig_downshift_workaround_ich8lan(hw);
2021
2022 /* When LPLU is enabled, we should disable SmartSpeed */
2023 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
2024 if (ret_val)
2025 return ret_val;
2026
2027 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
2028 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
2029 }
2030
2031 return 0;
2032}
2033
2034/**
2035 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2036 * @hw: pointer to the HW structure
2037 * @bank: pointer to the variable that returns the active bank
2038 *
2039 * Reads signature byte from the NVM using the flash access registers.
2040 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2041 **/
2042static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
2043{
2044 u32 eecd;
2045 struct e1000_nvm_info *nvm = &hw->nvm;
2046 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
2047 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
2048 u8 sig_byte = 0;
2049 s32 ret_val = 0;
2050
2051 switch (hw->mac.type) {
2052 case e1000_ich8lan:
2053 case e1000_ich9lan:
2054 eecd = er32(EECD);
2055 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
2056 E1000_EECD_SEC1VAL_VALID_MASK) {
2057 if (eecd & E1000_EECD_SEC1VAL)
2058 *bank = 1;
2059 else
2060 *bank = 0;
2061
2062 return 0;
2063 }
2064 e_dbg("Unable to determine valid NVM bank via EEC - "
2065 "reading flash signature\n");
2066 /* fall-thru */
2067 default:
2068 /* set bank to 0 in case flash read fails */
2069 *bank = 0;
2070
2071 /* Check bank 0 */
2072 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
2073 &sig_byte);
2074 if (ret_val)
2075 return ret_val;
2076 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2077 E1000_ICH_NVM_SIG_VALUE) {
2078 *bank = 0;
2079 return 0;
2080 }
2081
2082 /* Check bank 1 */
2083 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
2084 bank1_offset,
2085 &sig_byte);
2086 if (ret_val)
2087 return ret_val;
2088 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
2089 E1000_ICH_NVM_SIG_VALUE) {
2090 *bank = 1;
2091 return 0;
2092 }
2093
2094 e_dbg("ERROR: No valid NVM bank present\n");
2095 return -E1000_ERR_NVM;
2096 }
2097
2098 return 0;
2099}
2100
2101/**
2102 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2103 * @hw: pointer to the HW structure
2104 * @offset: The offset (in bytes) of the word(s) to read.
2105 * @words: Size of data to read in words
2106 * @data: Pointer to the word(s) to read at offset.
2107 *
2108 * Reads a word(s) from the NVM using the flash access registers.
2109 **/
2110static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2111 u16 *data)
2112{
2113 struct e1000_nvm_info *nvm = &hw->nvm;
2114 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2115 u32 act_offset;
2116 s32 ret_val = 0;
2117 u32 bank = 0;
2118 u16 i, word;
2119
2120 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2121 (words == 0)) {
2122 e_dbg("nvm parameter(s) out of bounds\n");
2123 ret_val = -E1000_ERR_NVM;
2124 goto out;
2125 }
2126
2127 nvm->ops.acquire(hw);
2128
2129 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2130 if (ret_val) {
2131 e_dbg("Could not detect valid bank, assuming bank 0\n");
2132 bank = 0;
2133 }
2134
2135 act_offset = (bank) ? nvm->flash_bank_size : 0;
2136 act_offset += offset;
2137
2138 ret_val = 0;
2139 for (i = 0; i < words; i++) {
2140 if (dev_spec->shadow_ram[offset+i].modified) {
2141 data[i] = dev_spec->shadow_ram[offset+i].value;
2142 } else {
2143 ret_val = e1000_read_flash_word_ich8lan(hw,
2144 act_offset + i,
2145 &word);
2146 if (ret_val)
2147 break;
2148 data[i] = word;
2149 }
2150 }
2151
2152 nvm->ops.release(hw);
2153
2154out:
2155 if (ret_val)
2156 e_dbg("NVM read error: %d\n", ret_val);
2157
2158 return ret_val;
2159}
2160
2161/**
2162 * e1000_flash_cycle_init_ich8lan - Initialize flash
2163 * @hw: pointer to the HW structure
2164 *
2165 * This function does initial flash setup so that a new read/write/erase cycle
2166 * can be started.
2167 **/
2168static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
2169{
2170 union ich8_hws_flash_status hsfsts;
2171 s32 ret_val = -E1000_ERR_NVM;
2172
2173 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2174
2175 /* Check if the flash descriptor is valid */
2176 if (hsfsts.hsf_status.fldesvalid == 0) {
2177 e_dbg("Flash descriptor invalid. "
2178 "SW Sequencing must be used.\n");
2179 return -E1000_ERR_NVM;
2180 }
2181
2182 /* Clear FCERR and DAEL in hw status by writing 1 */
2183 hsfsts.hsf_status.flcerr = 1;
2184 hsfsts.hsf_status.dael = 1;
2185
2186 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2187
2188 /*
2189 * Either we should have a hardware SPI cycle in progress
2190 * bit to check against, in order to start a new cycle or
2191 * FDONE bit should be changed in the hardware so that it
2192 * is 1 after hardware reset, which can then be used as an
2193 * indication whether a cycle is in progress or has been
2194 * completed.
2195 */
2196
2197 if (hsfsts.hsf_status.flcinprog == 0) {
2198 /*
2199 * There is no cycle running at present,
2200 * so we can start a cycle.
2201 * Begin by setting Flash Cycle Done.
2202 */
2203 hsfsts.hsf_status.flcdone = 1;
2204 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2205 ret_val = 0;
2206 } else {
2207 s32 i = 0;
2208
2209 /*
2210 * Otherwise poll for sometime so the current
2211 * cycle has a chance to end before giving up.
2212 */
2213 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
2214 hsfsts.regval = __er16flash(hw, ICH_FLASH_HSFSTS);
2215 if (hsfsts.hsf_status.flcinprog == 0) {
2216 ret_val = 0;
2217 break;
2218 }
2219 udelay(1);
2220 }
2221 if (ret_val == 0) {
2222 /*
2223 * Successful in waiting for previous cycle to timeout,
2224 * now set the Flash Cycle Done.
2225 */
2226 hsfsts.hsf_status.flcdone = 1;
2227 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2228 } else {
2229 e_dbg("Flash controller busy, cannot get access\n");
2230 }
2231 }
2232
2233 return ret_val;
2234}
2235
2236/**
2237 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2238 * @hw: pointer to the HW structure
2239 * @timeout: maximum time to wait for completion
2240 *
2241 * This function starts a flash cycle and waits for its completion.
2242 **/
2243static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
2244{
2245 union ich8_hws_flash_ctrl hsflctl;
2246 union ich8_hws_flash_status hsfsts;
2247 s32 ret_val = -E1000_ERR_NVM;
2248 u32 i = 0;
2249
2250 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2251 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2252 hsflctl.hsf_ctrl.flcgo = 1;
2253 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2254
2255 /* wait till FDONE bit is set to 1 */
2256 do {
2257 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2258 if (hsfsts.hsf_status.flcdone == 1)
2259 break;
2260 udelay(1);
2261 } while (i++ < timeout);
2262
2263 if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0)
2264 return 0;
2265
2266 return ret_val;
2267}
2268
2269/**
2270 * e1000_read_flash_word_ich8lan - Read word from flash
2271 * @hw: pointer to the HW structure
2272 * @offset: offset to data location
2273 * @data: pointer to the location for storing the data
2274 *
2275 * Reads the flash word at offset into data. Offset is converted
2276 * to bytes before read.
2277 **/
2278static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
2279 u16 *data)
2280{
2281 /* Must convert offset into bytes. */
2282 offset <<= 1;
2283
2284 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
2285}
2286
2287/**
2288 * e1000_read_flash_byte_ich8lan - Read byte from flash
2289 * @hw: pointer to the HW structure
2290 * @offset: The offset of the byte to read.
2291 * @data: Pointer to a byte to store the value read.
2292 *
2293 * Reads a single byte from the NVM using the flash access registers.
2294 **/
2295static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2296 u8 *data)
2297{
2298 s32 ret_val;
2299 u16 word = 0;
2300
2301 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
2302 if (ret_val)
2303 return ret_val;
2304
2305 *data = (u8)word;
2306
2307 return 0;
2308}
2309
2310/**
2311 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2312 * @hw: pointer to the HW structure
2313 * @offset: The offset (in bytes) of the byte or word to read.
2314 * @size: Size of data to read, 1=byte 2=word
2315 * @data: Pointer to the word to store the value read.
2316 *
2317 * Reads a byte or word from the NVM using the flash access registers.
2318 **/
2319static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2320 u8 size, u16 *data)
2321{
2322 union ich8_hws_flash_status hsfsts;
2323 union ich8_hws_flash_ctrl hsflctl;
2324 u32 flash_linear_addr;
2325 u32 flash_data = 0;
2326 s32 ret_val = -E1000_ERR_NVM;
2327 u8 count = 0;
2328
2329 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
2330 return -E1000_ERR_NVM;
2331
2332 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2333 hw->nvm.flash_base_addr;
2334
2335 do {
2336 udelay(1);
2337 /* Steps */
2338 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2339 if (ret_val != 0)
2340 break;
2341
2342 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2343 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2344 hsflctl.hsf_ctrl.fldbcount = size - 1;
2345 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
2346 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2347
2348 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2349
2350 ret_val = e1000_flash_cycle_ich8lan(hw,
2351 ICH_FLASH_READ_COMMAND_TIMEOUT);
2352
2353 /*
2354 * Check if FCERR is set to 1, if set to 1, clear it
2355 * and try the whole sequence a few more times, else
2356 * read in (shift in) the Flash Data0, the order is
2357 * least significant byte first msb to lsb
2358 */
2359 if (ret_val == 0) {
2360 flash_data = er32flash(ICH_FLASH_FDATA0);
2361 if (size == 1)
2362 *data = (u8)(flash_data & 0x000000FF);
2363 else if (size == 2)
2364 *data = (u16)(flash_data & 0x0000FFFF);
2365 break;
2366 } else {
2367 /*
2368 * If we've gotten here, then things are probably
2369 * completely hosed, but if the error condition is
2370 * detected, it won't hurt to give it another try...
2371 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2372 */
2373 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2374 if (hsfsts.hsf_status.flcerr == 1) {
2375 /* Repeat for some time before giving up. */
2376 continue;
2377 } else if (hsfsts.hsf_status.flcdone == 0) {
2378 e_dbg("Timeout error - flash cycle "
2379 "did not complete.\n");
2380 break;
2381 }
2382 }
2383 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2384
2385 return ret_val;
2386}
2387
2388/**
2389 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2390 * @hw: pointer to the HW structure
2391 * @offset: The offset (in bytes) of the word(s) to write.
2392 * @words: Size of data to write in words
2393 * @data: Pointer to the word(s) to write at offset.
2394 *
2395 * Writes a byte or word to the NVM using the flash access registers.
2396 **/
2397static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
2398 u16 *data)
2399{
2400 struct e1000_nvm_info *nvm = &hw->nvm;
2401 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2402 u16 i;
2403
2404 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
2405 (words == 0)) {
2406 e_dbg("nvm parameter(s) out of bounds\n");
2407 return -E1000_ERR_NVM;
2408 }
2409
2410 nvm->ops.acquire(hw);
2411
2412 for (i = 0; i < words; i++) {
2413 dev_spec->shadow_ram[offset+i].modified = true;
2414 dev_spec->shadow_ram[offset+i].value = data[i];
2415 }
2416
2417 nvm->ops.release(hw);
2418
2419 return 0;
2420}
2421
2422/**
2423 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2424 * @hw: pointer to the HW structure
2425 *
2426 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2427 * which writes the checksum to the shadow ram. The changes in the shadow
2428 * ram are then committed to the EEPROM by processing each bank at a time
2429 * checking for the modified bit and writing only the pending changes.
2430 * After a successful commit, the shadow ram is cleared and is ready for
2431 * future writes.
2432 **/
2433static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
2434{
2435 struct e1000_nvm_info *nvm = &hw->nvm;
2436 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
2437 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
2438 s32 ret_val;
2439 u16 data;
2440
2441 ret_val = e1000e_update_nvm_checksum_generic(hw);
2442 if (ret_val)
2443 goto out;
2444
2445 if (nvm->type != e1000_nvm_flash_sw)
2446 goto out;
2447
2448 nvm->ops.acquire(hw);
2449
2450 /*
2451 * We're writing to the opposite bank so if we're on bank 1,
2452 * write to bank 0 etc. We also need to erase the segment that
2453 * is going to be written
2454 */
2455 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
2456 if (ret_val) {
2457 e_dbg("Could not detect valid bank, assuming bank 0\n");
2458 bank = 0;
2459 }
2460
2461 if (bank == 0) {
2462 new_bank_offset = nvm->flash_bank_size;
2463 old_bank_offset = 0;
2464 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
2465 if (ret_val)
2466 goto release;
2467 } else {
2468 old_bank_offset = nvm->flash_bank_size;
2469 new_bank_offset = 0;
2470 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
2471 if (ret_val)
2472 goto release;
2473 }
2474
2475 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2476 /*
2477 * Determine whether to write the value stored
2478 * in the other NVM bank or a modified value stored
2479 * in the shadow RAM
2480 */
2481 if (dev_spec->shadow_ram[i].modified) {
2482 data = dev_spec->shadow_ram[i].value;
2483 } else {
2484 ret_val = e1000_read_flash_word_ich8lan(hw, i +
2485 old_bank_offset,
2486 &data);
2487 if (ret_val)
2488 break;
2489 }
2490
2491 /*
2492 * If the word is 0x13, then make sure the signature bits
2493 * (15:14) are 11b until the commit has completed.
2494 * This will allow us to write 10b which indicates the
2495 * signature is valid. We want to do this after the write
2496 * has completed so that we don't mark the segment valid
2497 * while the write is still in progress
2498 */
2499 if (i == E1000_ICH_NVM_SIG_WORD)
2500 data |= E1000_ICH_NVM_SIG_MASK;
2501
2502 /* Convert offset to bytes. */
2503 act_offset = (i + new_bank_offset) << 1;
2504
2505 udelay(100);
2506 /* Write the bytes to the new bank. */
2507 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2508 act_offset,
2509 (u8)data);
2510 if (ret_val)
2511 break;
2512
2513 udelay(100);
2514 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2515 act_offset + 1,
2516 (u8)(data >> 8));
2517 if (ret_val)
2518 break;
2519 }
2520
2521 /*
2522 * Don't bother writing the segment valid bits if sector
2523 * programming failed.
2524 */
2525 if (ret_val) {
2526 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2527 e_dbg("Flash commit failed.\n");
2528 goto release;
2529 }
2530
2531 /*
2532 * Finally validate the new segment by setting bit 15:14
2533 * to 10b in word 0x13 , this can be done without an
2534 * erase as well since these bits are 11 to start with
2535 * and we need to change bit 14 to 0b
2536 */
2537 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
2538 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
2539 if (ret_val)
2540 goto release;
2541
2542 data &= 0xBFFF;
2543 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
2544 act_offset * 2 + 1,
2545 (u8)(data >> 8));
2546 if (ret_val)
2547 goto release;
2548
2549 /*
2550 * And invalidate the previously valid segment by setting
2551 * its signature word (0x13) high_byte to 0b. This can be
2552 * done without an erase because flash erase sets all bits
2553 * to 1's. We can write 1's to 0's without an erase
2554 */
2555 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
2556 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
2557 if (ret_val)
2558 goto release;
2559
2560 /* Great! Everything worked, we can now clear the cached entries. */
2561 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
2562 dev_spec->shadow_ram[i].modified = false;
2563 dev_spec->shadow_ram[i].value = 0xFFFF;
2564 }
2565
2566release:
2567 nvm->ops.release(hw);
2568
2569 /*
2570 * Reload the EEPROM, or else modifications will not appear
2571 * until after the next adapter reset.
2572 */
2573 if (!ret_val) {
2574 e1000e_reload_nvm(hw);
2575 usleep_range(10000, 20000);
2576 }
2577
2578out:
2579 if (ret_val)
2580 e_dbg("NVM update error: %d\n", ret_val);
2581
2582 return ret_val;
2583}
2584
2585/**
2586 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2587 * @hw: pointer to the HW structure
2588 *
2589 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2590 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2591 * calculated, in which case we need to calculate the checksum and set bit 6.
2592 **/
2593static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
2594{
2595 s32 ret_val;
2596 u16 data;
2597
2598 /*
2599 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2600 * needs to be fixed. This bit is an indication that the NVM
2601 * was prepared by OEM software and did not calculate the
2602 * checksum...a likely scenario.
2603 */
2604 ret_val = e1000_read_nvm(hw, 0x19, 1, &data);
2605 if (ret_val)
2606 return ret_val;
2607
2608 if ((data & 0x40) == 0) {
2609 data |= 0x40;
2610 ret_val = e1000_write_nvm(hw, 0x19, 1, &data);
2611 if (ret_val)
2612 return ret_val;
2613 ret_val = e1000e_update_nvm_checksum(hw);
2614 if (ret_val)
2615 return ret_val;
2616 }
2617
2618 return e1000e_validate_nvm_checksum_generic(hw);
2619}
2620
2621/**
2622 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2623 * @hw: pointer to the HW structure
2624 *
2625 * To prevent malicious write/erase of the NVM, set it to be read-only
2626 * so that the hardware ignores all write/erase cycles of the NVM via
2627 * the flash control registers. The shadow-ram copy of the NVM will
2628 * still be updated, however any updates to this copy will not stick
2629 * across driver reloads.
2630 **/
2631void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
2632{
2633 struct e1000_nvm_info *nvm = &hw->nvm;
2634 union ich8_flash_protected_range pr0;
2635 union ich8_hws_flash_status hsfsts;
2636 u32 gfpreg;
2637
2638 nvm->ops.acquire(hw);
2639
2640 gfpreg = er32flash(ICH_FLASH_GFPREG);
2641
2642 /* Write-protect GbE Sector of NVM */
2643 pr0.regval = er32flash(ICH_FLASH_PR0);
2644 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
2645 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
2646 pr0.range.wpe = true;
2647 ew32flash(ICH_FLASH_PR0, pr0.regval);
2648
2649 /*
2650 * Lock down a subset of GbE Flash Control Registers, e.g.
2651 * PR0 to prevent the write-protection from being lifted.
2652 * Once FLOCKDN is set, the registers protected by it cannot
2653 * be written until FLOCKDN is cleared by a hardware reset.
2654 */
2655 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2656 hsfsts.hsf_status.flockdn = true;
2657 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
2658
2659 nvm->ops.release(hw);
2660}
2661
2662/**
2663 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2664 * @hw: pointer to the HW structure
2665 * @offset: The offset (in bytes) of the byte/word to read.
2666 * @size: Size of data to read, 1=byte 2=word
2667 * @data: The byte(s) to write to the NVM.
2668 *
2669 * Writes one/two bytes to the NVM using the flash access registers.
2670 **/
2671static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
2672 u8 size, u16 data)
2673{
2674 union ich8_hws_flash_status hsfsts;
2675 union ich8_hws_flash_ctrl hsflctl;
2676 u32 flash_linear_addr;
2677 u32 flash_data = 0;
2678 s32 ret_val;
2679 u8 count = 0;
2680
2681 if (size < 1 || size > 2 || data > size * 0xff ||
2682 offset > ICH_FLASH_LINEAR_ADDR_MASK)
2683 return -E1000_ERR_NVM;
2684
2685 flash_linear_addr = (ICH_FLASH_LINEAR_ADDR_MASK & offset) +
2686 hw->nvm.flash_base_addr;
2687
2688 do {
2689 udelay(1);
2690 /* Steps */
2691 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2692 if (ret_val)
2693 break;
2694
2695 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2696 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2697 hsflctl.hsf_ctrl.fldbcount = size -1;
2698 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
2699 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2700
2701 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2702
2703 if (size == 1)
2704 flash_data = (u32)data & 0x00FF;
2705 else
2706 flash_data = (u32)data;
2707
2708 ew32flash(ICH_FLASH_FDATA0, flash_data);
2709
2710 /*
2711 * check if FCERR is set to 1 , if set to 1, clear it
2712 * and try the whole sequence a few more times else done
2713 */
2714 ret_val = e1000_flash_cycle_ich8lan(hw,
2715 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
2716 if (!ret_val)
2717 break;
2718
2719 /*
2720 * If we're here, then things are most likely
2721 * completely hosed, but if the error condition
2722 * is detected, it won't hurt to give it another
2723 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2724 */
2725 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2726 if (hsfsts.hsf_status.flcerr == 1)
2727 /* Repeat for some time before giving up. */
2728 continue;
2729 if (hsfsts.hsf_status.flcdone == 0) {
2730 e_dbg("Timeout error - flash cycle "
2731 "did not complete.");
2732 break;
2733 }
2734 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
2735
2736 return ret_val;
2737}
2738
2739/**
2740 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2741 * @hw: pointer to the HW structure
2742 * @offset: The index of the byte to read.
2743 * @data: The byte to write to the NVM.
2744 *
2745 * Writes a single byte to the NVM using the flash access registers.
2746 **/
2747static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
2748 u8 data)
2749{
2750 u16 word = (u16)data;
2751
2752 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
2753}
2754
2755/**
2756 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2757 * @hw: pointer to the HW structure
2758 * @offset: The offset of the byte to write.
2759 * @byte: The byte to write to the NVM.
2760 *
2761 * Writes a single byte to the NVM using the flash access registers.
2762 * Goes through a retry algorithm before giving up.
2763 **/
2764static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
2765 u32 offset, u8 byte)
2766{
2767 s32 ret_val;
2768 u16 program_retries;
2769
2770 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2771 if (!ret_val)
2772 return ret_val;
2773
2774 for (program_retries = 0; program_retries < 100; program_retries++) {
2775 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
2776 udelay(100);
2777 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
2778 if (!ret_val)
2779 break;
2780 }
2781 if (program_retries == 100)
2782 return -E1000_ERR_NVM;
2783
2784 return 0;
2785}
2786
2787/**
2788 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2789 * @hw: pointer to the HW structure
2790 * @bank: 0 for first bank, 1 for second bank, etc.
2791 *
2792 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2793 * bank N is 4096 * N + flash_reg_addr.
2794 **/
2795static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
2796{
2797 struct e1000_nvm_info *nvm = &hw->nvm;
2798 union ich8_hws_flash_status hsfsts;
2799 union ich8_hws_flash_ctrl hsflctl;
2800 u32 flash_linear_addr;
2801 /* bank size is in 16bit words - adjust to bytes */
2802 u32 flash_bank_size = nvm->flash_bank_size * 2;
2803 s32 ret_val;
2804 s32 count = 0;
2805 s32 j, iteration, sector_size;
2806
2807 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2808
2809 /*
2810 * Determine HW Sector size: Read BERASE bits of hw flash status
2811 * register
2812 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2813 * consecutive sectors. The start index for the nth Hw sector
2814 * can be calculated as = bank * 4096 + n * 256
2815 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2816 * The start index for the nth Hw sector can be calculated
2817 * as = bank * 4096
2818 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2819 * (ich9 only, otherwise error condition)
2820 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2821 */
2822 switch (hsfsts.hsf_status.berasesz) {
2823 case 0:
2824 /* Hw sector size 256 */
2825 sector_size = ICH_FLASH_SEG_SIZE_256;
2826 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
2827 break;
2828 case 1:
2829 sector_size = ICH_FLASH_SEG_SIZE_4K;
2830 iteration = 1;
2831 break;
2832 case 2:
2833 sector_size = ICH_FLASH_SEG_SIZE_8K;
2834 iteration = 1;
2835 break;
2836 case 3:
2837 sector_size = ICH_FLASH_SEG_SIZE_64K;
2838 iteration = 1;
2839 break;
2840 default:
2841 return -E1000_ERR_NVM;
2842 }
2843
2844 /* Start with the base address, then add the sector offset. */
2845 flash_linear_addr = hw->nvm.flash_base_addr;
2846 flash_linear_addr += (bank) ? flash_bank_size : 0;
2847
2848 for (j = 0; j < iteration ; j++) {
2849 do {
2850 /* Steps */
2851 ret_val = e1000_flash_cycle_init_ich8lan(hw);
2852 if (ret_val)
2853 return ret_val;
2854
2855 /*
2856 * Write a value 11 (block Erase) in Flash
2857 * Cycle field in hw flash control
2858 */
2859 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
2860 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
2861 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
2862
2863 /*
2864 * Write the last 24 bits of an index within the
2865 * block into Flash Linear address field in Flash
2866 * Address.
2867 */
2868 flash_linear_addr += (j * sector_size);
2869 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
2870
2871 ret_val = e1000_flash_cycle_ich8lan(hw,
2872 ICH_FLASH_ERASE_COMMAND_TIMEOUT);
2873 if (ret_val == 0)
2874 break;
2875
2876 /*
2877 * Check if FCERR is set to 1. If 1,
2878 * clear it and try the whole sequence
2879 * a few more times else Done
2880 */
2881 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
2882 if (hsfsts.hsf_status.flcerr == 1)
2883 /* repeat for some time before giving up */
2884 continue;
2885 else if (hsfsts.hsf_status.flcdone == 0)
2886 return ret_val;
2887 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
2888 }
2889
2890 return 0;
2891}
2892
2893/**
2894 * e1000_valid_led_default_ich8lan - Set the default LED settings
2895 * @hw: pointer to the HW structure
2896 * @data: Pointer to the LED settings
2897 *
2898 * Reads the LED default settings from the NVM to data. If the NVM LED
2899 * settings is all 0's or F's, set the LED default to a valid LED default
2900 * setting.
2901 **/
2902static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
2903{
2904 s32 ret_val;
2905
2906 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
2907 if (ret_val) {
2908 e_dbg("NVM Read Error\n");
2909 return ret_val;
2910 }
2911
2912 if (*data == ID_LED_RESERVED_0000 ||
2913 *data == ID_LED_RESERVED_FFFF)
2914 *data = ID_LED_DEFAULT_ICH8LAN;
2915
2916 return 0;
2917}
2918
2919/**
2920 * e1000_id_led_init_pchlan - store LED configurations
2921 * @hw: pointer to the HW structure
2922 *
2923 * PCH does not control LEDs via the LEDCTL register, rather it uses
2924 * the PHY LED configuration register.
2925 *
2926 * PCH also does not have an "always on" or "always off" mode which
2927 * complicates the ID feature. Instead of using the "on" mode to indicate
2928 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2929 * use "link_up" mode. The LEDs will still ID on request if there is no
2930 * link based on logic in e1000_led_[on|off]_pchlan().
2931 **/
2932static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
2933{
2934 struct e1000_mac_info *mac = &hw->mac;
2935 s32 ret_val;
2936 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
2937 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
2938 u16 data, i, temp, shift;
2939
2940 /* Get default ID LED modes */
2941 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
2942 if (ret_val)
2943 goto out;
2944
2945 mac->ledctl_default = er32(LEDCTL);
2946 mac->ledctl_mode1 = mac->ledctl_default;
2947 mac->ledctl_mode2 = mac->ledctl_default;
2948
2949 for (i = 0; i < 4; i++) {
2950 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
2951 shift = (i * 5);
2952 switch (temp) {
2953 case ID_LED_ON1_DEF2:
2954 case ID_LED_ON1_ON2:
2955 case ID_LED_ON1_OFF2:
2956 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2957 mac->ledctl_mode1 |= (ledctl_on << shift);
2958 break;
2959 case ID_LED_OFF1_DEF2:
2960 case ID_LED_OFF1_ON2:
2961 case ID_LED_OFF1_OFF2:
2962 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
2963 mac->ledctl_mode1 |= (ledctl_off << shift);
2964 break;
2965 default:
2966 /* Do nothing */
2967 break;
2968 }
2969 switch (temp) {
2970 case ID_LED_DEF1_ON2:
2971 case ID_LED_ON1_ON2:
2972 case ID_LED_OFF1_ON2:
2973 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2974 mac->ledctl_mode2 |= (ledctl_on << shift);
2975 break;
2976 case ID_LED_DEF1_OFF2:
2977 case ID_LED_ON1_OFF2:
2978 case ID_LED_OFF1_OFF2:
2979 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
2980 mac->ledctl_mode2 |= (ledctl_off << shift);
2981 break;
2982 default:
2983 /* Do nothing */
2984 break;
2985 }
2986 }
2987
2988out:
2989 return ret_val;
2990}
2991
2992/**
2993 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
2994 * @hw: pointer to the HW structure
2995 *
2996 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
2997 * register, so the the bus width is hard coded.
2998 **/
2999static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
3000{
3001 struct e1000_bus_info *bus = &hw->bus;
3002 s32 ret_val;
3003
3004 ret_val = e1000e_get_bus_info_pcie(hw);
3005
3006 /*
3007 * ICH devices are "PCI Express"-ish. They have
3008 * a configuration space, but do not contain
3009 * PCI Express Capability registers, so bus width
3010 * must be hardcoded.
3011 */
3012 if (bus->width == e1000_bus_width_unknown)
3013 bus->width = e1000_bus_width_pcie_x1;
3014
3015 return ret_val;
3016}
3017
3018/**
3019 * e1000_reset_hw_ich8lan - Reset the hardware
3020 * @hw: pointer to the HW structure
3021 *
3022 * Does a full reset of the hardware which includes a reset of the PHY and
3023 * MAC.
3024 **/
3025static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
3026{
3027 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3028 u16 reg;
3029 u32 ctrl, kab;
3030 s32 ret_val;
3031
3032 /*
3033 * Prevent the PCI-E bus from sticking if there is no TLP connection
3034 * on the last TLP read/write transaction when MAC is reset.
3035 */
3036 ret_val = e1000e_disable_pcie_master(hw);
3037 if (ret_val)
3038 e_dbg("PCI-E Master disable polling has failed.\n");
3039
3040 e_dbg("Masking off all interrupts\n");
3041 ew32(IMC, 0xffffffff);
3042
3043 /*
3044 * Disable the Transmit and Receive units. Then delay to allow
3045 * any pending transactions to complete before we hit the MAC
3046 * with the global reset.
3047 */
3048 ew32(RCTL, 0);
3049 ew32(TCTL, E1000_TCTL_PSP);
3050 e1e_flush();
3051
3052 usleep_range(10000, 20000);
3053
3054 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3055 if (hw->mac.type == e1000_ich8lan) {
3056 /* Set Tx and Rx buffer allocation to 8k apiece. */
3057 ew32(PBA, E1000_PBA_8K);
3058 /* Set Packet Buffer Size to 16k. */
3059 ew32(PBS, E1000_PBS_16K);
3060 }
3061
3062 if (hw->mac.type == e1000_pchlan) {
3063 /* Save the NVM K1 bit setting*/
3064 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &reg);
3065 if (ret_val)
3066 return ret_val;
3067
3068 if (reg & E1000_NVM_K1_ENABLE)
3069 dev_spec->nvm_k1_enabled = true;
3070 else
3071 dev_spec->nvm_k1_enabled = false;
3072 }
3073
3074 ctrl = er32(CTRL);
3075
3076 if (!e1000_check_reset_block(hw)) {
3077 /*
3078 * Full-chip reset requires MAC and PHY reset at the same
3079 * time to make sure the interface between MAC and the
3080 * external PHY is reset.
3081 */
3082 ctrl |= E1000_CTRL_PHY_RST;
3083
3084 /*
3085 * Gate automatic PHY configuration by hardware on
3086 * non-managed 82579
3087 */
3088 if ((hw->mac.type == e1000_pch2lan) &&
3089 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
3090 e1000_gate_hw_phy_config_ich8lan(hw, true);
3091 }
3092 ret_val = e1000_acquire_swflag_ich8lan(hw);
3093 e_dbg("Issuing a global reset to ich8lan\n");
3094 ew32(CTRL, (ctrl | E1000_CTRL_RST));
3095 /* cannot issue a flush here because it hangs the hardware */
3096 msleep(20);
3097
3098 if (!ret_val)
3099 mutex_unlock(&swflag_mutex);
3100
3101 if (ctrl & E1000_CTRL_PHY_RST) {
3102 ret_val = hw->phy.ops.get_cfg_done(hw);
3103 if (ret_val)
3104 goto out;
3105
3106 ret_val = e1000_post_phy_reset_ich8lan(hw);
3107 if (ret_val)
3108 goto out;
3109 }
3110
3111 /*
3112 * For PCH, this write will make sure that any noise
3113 * will be detected as a CRC error and be dropped rather than show up
3114 * as a bad packet to the DMA engine.
3115 */
3116 if (hw->mac.type == e1000_pchlan)
3117 ew32(CRC_OFFSET, 0x65656565);
3118
3119 ew32(IMC, 0xffffffff);
3120 er32(ICR);
3121
3122 kab = er32(KABGTXD);
3123 kab |= E1000_KABGTXD_BGSQLBIAS;
3124 ew32(KABGTXD, kab);
3125
3126out:
3127 return ret_val;
3128}
3129
3130/**
3131 * e1000_init_hw_ich8lan - Initialize the hardware
3132 * @hw: pointer to the HW structure
3133 *
3134 * Prepares the hardware for transmit and receive by doing the following:
3135 * - initialize hardware bits
3136 * - initialize LED identification
3137 * - setup receive address registers
3138 * - setup flow control
3139 * - setup transmit descriptors
3140 * - clear statistics
3141 **/
3142static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
3143{
3144 struct e1000_mac_info *mac = &hw->mac;
3145 u32 ctrl_ext, txdctl, snoop;
3146 s32 ret_val;
3147 u16 i;
3148
3149 e1000_initialize_hw_bits_ich8lan(hw);
3150
3151 /* Initialize identification LED */
3152 ret_val = mac->ops.id_led_init(hw);
3153 if (ret_val)
3154 e_dbg("Error initializing identification LED\n");
3155 /* This is not fatal and we should not stop init due to this */
3156
3157 /* Setup the receive address. */
3158 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
3159
3160 /* Zero out the Multicast HASH table */
3161 e_dbg("Zeroing the MTA\n");
3162 for (i = 0; i < mac->mta_reg_count; i++)
3163 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
3164
3165 /*
3166 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3167 * the ME. Disable wakeup by clearing the host wakeup bit.
3168 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3169 */
3170 if (hw->phy.type == e1000_phy_82578) {
3171 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
3172 i &= ~BM_WUC_HOST_WU_BIT;
3173 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
3174 ret_val = e1000_phy_hw_reset_ich8lan(hw);
3175 if (ret_val)
3176 return ret_val;
3177 }
3178
3179 /* Setup link and flow control */
3180 ret_val = e1000_setup_link_ich8lan(hw);
3181
3182 /* Set the transmit descriptor write-back policy for both queues */
3183 txdctl = er32(TXDCTL(0));
3184 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3185 E1000_TXDCTL_FULL_TX_DESC_WB;
3186 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3187 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3188 ew32(TXDCTL(0), txdctl);
3189 txdctl = er32(TXDCTL(1));
3190 txdctl = (txdctl & ~E1000_TXDCTL_WTHRESH) |
3191 E1000_TXDCTL_FULL_TX_DESC_WB;
3192 txdctl = (txdctl & ~E1000_TXDCTL_PTHRESH) |
3193 E1000_TXDCTL_MAX_TX_DESC_PREFETCH;
3194 ew32(TXDCTL(1), txdctl);
3195
3196 /*
3197 * ICH8 has opposite polarity of no_snoop bits.
3198 * By default, we should use snoop behavior.
3199 */
3200 if (mac->type == e1000_ich8lan)
3201 snoop = PCIE_ICH8_SNOOP_ALL;
3202 else
3203 snoop = (u32) ~(PCIE_NO_SNOOP_ALL);
3204 e1000e_set_pcie_no_snoop(hw, snoop);
3205
3206 ctrl_ext = er32(CTRL_EXT);
3207 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
3208 ew32(CTRL_EXT, ctrl_ext);
3209
3210 /*
3211 * Clear all of the statistics registers (clear on read). It is
3212 * important that we do this after we have tried to establish link
3213 * because the symbol error count will increment wildly if there
3214 * is no link.
3215 */
3216 e1000_clear_hw_cntrs_ich8lan(hw);
3217
3218 return 0;
3219}
3220/**
3221 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3222 * @hw: pointer to the HW structure
3223 *
3224 * Sets/Clears required hardware bits necessary for correctly setting up the
3225 * hardware for transmit and receive.
3226 **/
3227static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
3228{
3229 u32 reg;
3230
3231 /* Extended Device Control */
3232 reg = er32(CTRL_EXT);
3233 reg |= (1 << 22);
3234 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3235 if (hw->mac.type >= e1000_pchlan)
3236 reg |= E1000_CTRL_EXT_PHYPDEN;
3237 ew32(CTRL_EXT, reg);
3238
3239 /* Transmit Descriptor Control 0 */
3240 reg = er32(TXDCTL(0));
3241 reg |= (1 << 22);
3242 ew32(TXDCTL(0), reg);
3243
3244 /* Transmit Descriptor Control 1 */
3245 reg = er32(TXDCTL(1));
3246 reg |= (1 << 22);
3247 ew32(TXDCTL(1), reg);
3248
3249 /* Transmit Arbitration Control 0 */
3250 reg = er32(TARC(0));
3251 if (hw->mac.type == e1000_ich8lan)
3252 reg |= (1 << 28) | (1 << 29);
3253 reg |= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3254 ew32(TARC(0), reg);
3255
3256 /* Transmit Arbitration Control 1 */
3257 reg = er32(TARC(1));
3258 if (er32(TCTL) & E1000_TCTL_MULR)
3259 reg &= ~(1 << 28);
3260 else
3261 reg |= (1 << 28);
3262 reg |= (1 << 24) | (1 << 26) | (1 << 30);
3263 ew32(TARC(1), reg);
3264
3265 /* Device Status */
3266 if (hw->mac.type == e1000_ich8lan) {
3267 reg = er32(STATUS);
3268 reg &= ~(1 << 31);
3269 ew32(STATUS, reg);
3270 }
3271
3272 /*
3273 * work-around descriptor data corruption issue during nfs v2 udp
3274 * traffic, just disable the nfs filtering capability
3275 */
3276 reg = er32(RFCTL);
3277 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
3278 ew32(RFCTL, reg);
3279}
3280
3281/**
3282 * e1000_setup_link_ich8lan - Setup flow control and link settings
3283 * @hw: pointer to the HW structure
3284 *
3285 * Determines which flow control settings to use, then configures flow
3286 * control. Calls the appropriate media-specific link configuration
3287 * function. Assuming the adapter has a valid link partner, a valid link
3288 * should be established. Assumes the hardware has previously been reset
3289 * and the transmitter and receiver are not enabled.
3290 **/
3291static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
3292{
3293 s32 ret_val;
3294
3295 if (e1000_check_reset_block(hw))
3296 return 0;
3297
3298 /*
3299 * ICH parts do not have a word in the NVM to determine
3300 * the default flow control setting, so we explicitly
3301 * set it to full.
3302 */
3303 if (hw->fc.requested_mode == e1000_fc_default) {
3304 /* Workaround h/w hang when Tx flow control enabled */
3305 if (hw->mac.type == e1000_pchlan)
3306 hw->fc.requested_mode = e1000_fc_rx_pause;
3307 else
3308 hw->fc.requested_mode = e1000_fc_full;
3309 }
3310
3311 /*
3312 * Save off the requested flow control mode for use later. Depending
3313 * on the link partner's capabilities, we may or may not use this mode.
3314 */
3315 hw->fc.current_mode = hw->fc.requested_mode;
3316
3317 e_dbg("After fix-ups FlowControl is now = %x\n",
3318 hw->fc.current_mode);
3319
3320 /* Continue to configure the copper link. */
3321 ret_val = e1000_setup_copper_link_ich8lan(hw);
3322 if (ret_val)
3323 return ret_val;
3324
3325 ew32(FCTTV, hw->fc.pause_time);
3326 if ((hw->phy.type == e1000_phy_82578) ||
3327 (hw->phy.type == e1000_phy_82579) ||
3328 (hw->phy.type == e1000_phy_82577)) {
3329 ew32(FCRTV_PCH, hw->fc.refresh_time);
3330
3331 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
3332 hw->fc.pause_time);
3333 if (ret_val)
3334 return ret_val;
3335 }
3336
3337 return e1000e_set_fc_watermarks(hw);
3338}
3339
3340/**
3341 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3342 * @hw: pointer to the HW structure
3343 *
3344 * Configures the kumeran interface to the PHY to wait the appropriate time
3345 * when polling the PHY, then call the generic setup_copper_link to finish
3346 * configuring the copper link.
3347 **/
3348static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
3349{
3350 u32 ctrl;
3351 s32 ret_val;
3352 u16 reg_data;
3353
3354 ctrl = er32(CTRL);
3355 ctrl |= E1000_CTRL_SLU;
3356 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
3357 ew32(CTRL, ctrl);
3358
3359 /*
3360 * Set the mac to wait the maximum time between each iteration
3361 * and increase the max iterations when polling the phy;
3362 * this fixes erroneous timeouts at 10Mbps.
3363 */
3364 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
3365 if (ret_val)
3366 return ret_val;
3367 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3368 &reg_data);
3369 if (ret_val)
3370 return ret_val;
3371 reg_data |= 0x3F;
3372 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
3373 reg_data);
3374 if (ret_val)
3375 return ret_val;
3376
3377 switch (hw->phy.type) {
3378 case e1000_phy_igp_3:
3379 ret_val = e1000e_copper_link_setup_igp(hw);
3380 if (ret_val)
3381 return ret_val;
3382 break;
3383 case e1000_phy_bm:
3384 case e1000_phy_82578:
3385 ret_val = e1000e_copper_link_setup_m88(hw);
3386 if (ret_val)
3387 return ret_val;
3388 break;
3389 case e1000_phy_82577:
3390 case e1000_phy_82579:
3391 ret_val = e1000_copper_link_setup_82577(hw);
3392 if (ret_val)
3393 return ret_val;
3394 break;
3395 case e1000_phy_ife:
3396 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, &reg_data);
3397 if (ret_val)
3398 return ret_val;
3399
3400 reg_data &= ~IFE_PMC_AUTO_MDIX;
3401
3402 switch (hw->phy.mdix) {
3403 case 1:
3404 reg_data &= ~IFE_PMC_FORCE_MDIX;
3405 break;
3406 case 2:
3407 reg_data |= IFE_PMC_FORCE_MDIX;
3408 break;
3409 case 0:
3410 default:
3411 reg_data |= IFE_PMC_AUTO_MDIX;
3412 break;
3413 }
3414 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
3415 if (ret_val)
3416 return ret_val;
3417 break;
3418 default:
3419 break;
3420 }
3421 return e1000e_setup_copper_link(hw);
3422}
3423
3424/**
3425 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3426 * @hw: pointer to the HW structure
3427 * @speed: pointer to store current link speed
3428 * @duplex: pointer to store the current link duplex
3429 *
3430 * Calls the generic get_speed_and_duplex to retrieve the current link
3431 * information and then calls the Kumeran lock loss workaround for links at
3432 * gigabit speeds.
3433 **/
3434static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
3435 u16 *duplex)
3436{
3437 s32 ret_val;
3438
3439 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
3440 if (ret_val)
3441 return ret_val;
3442
3443 if ((hw->mac.type == e1000_ich8lan) &&
3444 (hw->phy.type == e1000_phy_igp_3) &&
3445 (*speed == SPEED_1000)) {
3446 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
3447 }
3448
3449 return ret_val;
3450}
3451
3452/**
3453 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3454 * @hw: pointer to the HW structure
3455 *
3456 * Work-around for 82566 Kumeran PCS lock loss:
3457 * On link status change (i.e. PCI reset, speed change) and link is up and
3458 * speed is gigabit-
3459 * 0) if workaround is optionally disabled do nothing
3460 * 1) wait 1ms for Kumeran link to come up
3461 * 2) check Kumeran Diagnostic register PCS lock loss bit
3462 * 3) if not set the link is locked (all is good), otherwise...
3463 * 4) reset the PHY
3464 * 5) repeat up to 10 times
3465 * Note: this is only called for IGP3 copper when speed is 1gb.
3466 **/
3467static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
3468{
3469 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3470 u32 phy_ctrl;
3471 s32 ret_val;
3472 u16 i, data;
3473 bool link;
3474
3475 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
3476 return 0;
3477
3478 /*
3479 * Make sure link is up before proceeding. If not just return.
3480 * Attempting this while link is negotiating fouled up link
3481 * stability
3482 */
3483 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
3484 if (!link)
3485 return 0;
3486
3487 for (i = 0; i < 10; i++) {
3488 /* read once to clear */
3489 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3490 if (ret_val)
3491 return ret_val;
3492 /* and again to get new status */
3493 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
3494 if (ret_val)
3495 return ret_val;
3496
3497 /* check for PCS lock */
3498 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
3499 return 0;
3500
3501 /* Issue PHY reset */
3502 e1000_phy_hw_reset(hw);
3503 mdelay(5);
3504 }
3505 /* Disable GigE link negotiation */
3506 phy_ctrl = er32(PHY_CTRL);
3507 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
3508 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3509 ew32(PHY_CTRL, phy_ctrl);
3510
3511 /*
3512 * Call gig speed drop workaround on Gig disable before accessing
3513 * any PHY registers
3514 */
3515 e1000e_gig_downshift_workaround_ich8lan(hw);
3516
3517 /* unable to acquire PCS lock */
3518 return -E1000_ERR_PHY;
3519}
3520
3521/**
3522 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3523 * @hw: pointer to the HW structure
3524 * @state: boolean value used to set the current Kumeran workaround state
3525 *
3526 * If ICH8, set the current Kumeran workaround state (enabled - true
3527 * /disabled - false).
3528 **/
3529void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
3530 bool state)
3531{
3532 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3533
3534 if (hw->mac.type != e1000_ich8lan) {
3535 e_dbg("Workaround applies to ICH8 only.\n");
3536 return;
3537 }
3538
3539 dev_spec->kmrn_lock_loss_workaround_enabled = state;
3540}
3541
3542/**
3543 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3544 * @hw: pointer to the HW structure
3545 *
3546 * Workaround for 82566 power-down on D3 entry:
3547 * 1) disable gigabit link
3548 * 2) write VR power-down enable
3549 * 3) read it back
3550 * Continue if successful, else issue LCD reset and repeat
3551 **/
3552void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
3553{
3554 u32 reg;
3555 u16 data;
3556 u8 retry = 0;
3557
3558 if (hw->phy.type != e1000_phy_igp_3)
3559 return;
3560
3561 /* Try the workaround twice (if needed) */
3562 do {
3563 /* Disable link */
3564 reg = er32(PHY_CTRL);
3565 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
3566 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
3567 ew32(PHY_CTRL, reg);
3568
3569 /*
3570 * Call gig speed drop workaround on Gig disable before
3571 * accessing any PHY registers
3572 */
3573 if (hw->mac.type == e1000_ich8lan)
3574 e1000e_gig_downshift_workaround_ich8lan(hw);
3575
3576 /* Write VR power-down enable */
3577 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3578 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3579 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
3580
3581 /* Read it back and test */
3582 e1e_rphy(hw, IGP3_VR_CTRL, &data);
3583 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
3584 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
3585 break;
3586
3587 /* Issue PHY reset and repeat at most one more time */
3588 reg = er32(CTRL);
3589 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
3590 retry++;
3591 } while (retry);
3592}
3593
3594/**
3595 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3596 * @hw: pointer to the HW structure
3597 *
3598 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3599 * LPLU, Gig disable, MDIC PHY reset):
3600 * 1) Set Kumeran Near-end loopback
3601 * 2) Clear Kumeran Near-end loopback
3602 * Should only be called for ICH8[m] devices with IGP_3 Phy.
3603 **/
3604void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
3605{
3606 s32 ret_val;
3607 u16 reg_data;
3608
3609 if ((hw->mac.type != e1000_ich8lan) ||
3610 (hw->phy.type != e1000_phy_igp_3))
3611 return;
3612
3613 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3614 &reg_data);
3615 if (ret_val)
3616 return;
3617 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
3618 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3619 reg_data);
3620 if (ret_val)
3621 return;
3622 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
3623 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
3624 reg_data);
3625}
3626
3627/**
3628 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3629 * @hw: pointer to the HW structure
3630 *
3631 * During S0 to Sx transition, it is possible the link remains at gig
3632 * instead of negotiating to a lower speed. Before going to Sx, set
3633 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3634 * to a lower speed. For PCH and newer parts, the OEM bits PHY register
3635 * (LED, GbE disable and LPLU configurations) also needs to be written.
3636 **/
3637void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
3638{
3639 u32 phy_ctrl;
3640 s32 ret_val;
3641
3642 phy_ctrl = er32(PHY_CTRL);
3643 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU | E1000_PHY_CTRL_GBE_DISABLE;
3644 ew32(PHY_CTRL, phy_ctrl);
3645
3646 if (hw->mac.type >= e1000_pchlan) {
3647 e1000_oem_bits_config_ich8lan(hw, false);
3648 ret_val = hw->phy.ops.acquire(hw);
3649 if (ret_val)
3650 return;
3651 e1000_write_smbus_addr(hw);
3652 hw->phy.ops.release(hw);
3653 }
3654}
3655
3656/**
3657 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3658 * @hw: pointer to the HW structure
3659 *
3660 * During Sx to S0 transitions on non-managed devices or managed devices
3661 * on which PHY resets are not blocked, if the PHY registers cannot be
3662 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3663 * the PHY.
3664 **/
3665void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
3666{
3667 u32 fwsm;
3668
3669 if (hw->mac.type != e1000_pch2lan)
3670 return;
3671
3672 fwsm = er32(FWSM);
3673 if (!(fwsm & E1000_ICH_FWSM_FW_VALID) || !e1000_check_reset_block(hw)) {
3674 u16 phy_id1, phy_id2;
3675 s32 ret_val;
3676
3677 ret_val = hw->phy.ops.acquire(hw);
3678 if (ret_val) {
3679 e_dbg("Failed to acquire PHY semaphore in resume\n");
3680 return;
3681 }
3682
3683 /* Test access to the PHY registers by reading the ID regs */
3684 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID1, &phy_id1);
3685 if (ret_val)
3686 goto release;
3687 ret_val = hw->phy.ops.read_reg_locked(hw, PHY_ID2, &phy_id2);
3688 if (ret_val)
3689 goto release;
3690
3691 if (hw->phy.id == ((u32)(phy_id1 << 16) |
3692 (u32)(phy_id2 & PHY_REVISION_MASK)))
3693 goto release;
3694
3695 e1000_toggle_lanphypc_value_ich8lan(hw);
3696
3697 hw->phy.ops.release(hw);
3698 msleep(50);
3699 e1000_phy_hw_reset(hw);
3700 msleep(50);
3701 return;
3702 }
3703
3704release:
3705 hw->phy.ops.release(hw);
3706
3707 return;
3708}
3709
3710/**
3711 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3712 * @hw: pointer to the HW structure
3713 *
3714 * Return the LED back to the default configuration.
3715 **/
3716static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
3717{
3718 if (hw->phy.type == e1000_phy_ife)
3719 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
3720
3721 ew32(LEDCTL, hw->mac.ledctl_default);
3722 return 0;
3723}
3724
3725/**
3726 * e1000_led_on_ich8lan - Turn LEDs on
3727 * @hw: pointer to the HW structure
3728 *
3729 * Turn on the LEDs.
3730 **/
3731static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
3732{
3733 if (hw->phy.type == e1000_phy_ife)
3734 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3735 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
3736
3737 ew32(LEDCTL, hw->mac.ledctl_mode2);
3738 return 0;
3739}
3740
3741/**
3742 * e1000_led_off_ich8lan - Turn LEDs off
3743 * @hw: pointer to the HW structure
3744 *
3745 * Turn off the LEDs.
3746 **/
3747static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
3748{
3749 if (hw->phy.type == e1000_phy_ife)
3750 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
3751 (IFE_PSCL_PROBE_MODE |
3752 IFE_PSCL_PROBE_LEDS_OFF));
3753
3754 ew32(LEDCTL, hw->mac.ledctl_mode1);
3755 return 0;
3756}
3757
3758/**
3759 * e1000_setup_led_pchlan - Configures SW controllable LED
3760 * @hw: pointer to the HW structure
3761 *
3762 * This prepares the SW controllable LED for use.
3763 **/
3764static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
3765{
3766 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
3767}
3768
3769/**
3770 * e1000_cleanup_led_pchlan - Restore the default LED operation
3771 * @hw: pointer to the HW structure
3772 *
3773 * Return the LED back to the default configuration.
3774 **/
3775static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
3776{
3777 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
3778}
3779
3780/**
3781 * e1000_led_on_pchlan - Turn LEDs on
3782 * @hw: pointer to the HW structure
3783 *
3784 * Turn on the LEDs.
3785 **/
3786static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
3787{
3788 u16 data = (u16)hw->mac.ledctl_mode2;
3789 u32 i, led;
3790
3791 /*
3792 * If no link, then turn LED on by setting the invert bit
3793 * for each LED that's mode is "link_up" in ledctl_mode2.
3794 */
3795 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3796 for (i = 0; i < 3; i++) {
3797 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3798 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3799 E1000_LEDCTL_MODE_LINK_UP)
3800 continue;
3801 if (led & E1000_PHY_LED0_IVRT)
3802 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3803 else
3804 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3805 }
3806 }
3807
3808 return e1e_wphy(hw, HV_LED_CONFIG, data);
3809}
3810
3811/**
3812 * e1000_led_off_pchlan - Turn LEDs off
3813 * @hw: pointer to the HW structure
3814 *
3815 * Turn off the LEDs.
3816 **/
3817static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
3818{
3819 u16 data = (u16)hw->mac.ledctl_mode1;
3820 u32 i, led;
3821
3822 /*
3823 * If no link, then turn LED off by clearing the invert bit
3824 * for each LED that's mode is "link_up" in ledctl_mode1.
3825 */
3826 if (!(er32(STATUS) & E1000_STATUS_LU)) {
3827 for (i = 0; i < 3; i++) {
3828 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
3829 if ((led & E1000_PHY_LED0_MODE_MASK) !=
3830 E1000_LEDCTL_MODE_LINK_UP)
3831 continue;
3832 if (led & E1000_PHY_LED0_IVRT)
3833 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
3834 else
3835 data |= (E1000_PHY_LED0_IVRT << (i * 5));
3836 }
3837 }
3838
3839 return e1e_wphy(hw, HV_LED_CONFIG, data);
3840}
3841
3842/**
3843 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3844 * @hw: pointer to the HW structure
3845 *
3846 * Read appropriate register for the config done bit for completion status
3847 * and configure the PHY through s/w for EEPROM-less parts.
3848 *
3849 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3850 * config done bit, so only an error is logged and continues. If we were
3851 * to return with error, EEPROM-less silicon would not be able to be reset
3852 * or change link.
3853 **/
3854static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
3855{
3856 s32 ret_val = 0;
3857 u32 bank = 0;
3858 u32 status;
3859
3860 e1000e_get_cfg_done(hw);
3861
3862 /* Wait for indication from h/w that it has completed basic config */
3863 if (hw->mac.type >= e1000_ich10lan) {
3864 e1000_lan_init_done_ich8lan(hw);
3865 } else {
3866 ret_val = e1000e_get_auto_rd_done(hw);
3867 if (ret_val) {
3868 /*
3869 * When auto config read does not complete, do not
3870 * return with an error. This can happen in situations
3871 * where there is no eeprom and prevents getting link.
3872 */
3873 e_dbg("Auto Read Done did not complete\n");
3874 ret_val = 0;
3875 }
3876 }
3877
3878 /* Clear PHY Reset Asserted bit */
3879 status = er32(STATUS);
3880 if (status & E1000_STATUS_PHYRA)
3881 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
3882 else
3883 e_dbg("PHY Reset Asserted not set - needs delay\n");
3884
3885 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3886 if (hw->mac.type <= e1000_ich9lan) {
3887 if (((er32(EECD) & E1000_EECD_PRES) == 0) &&
3888 (hw->phy.type == e1000_phy_igp_3)) {
3889 e1000e_phy_init_script_igp3(hw);
3890 }
3891 } else {
3892 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
3893 /* Maybe we should do a basic PHY config */
3894 e_dbg("EEPROM not present\n");
3895 ret_val = -E1000_ERR_CONFIG;
3896 }
3897 }
3898
3899 return ret_val;
3900}
3901
3902/**
3903 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3904 * @hw: pointer to the HW structure
3905 *
3906 * In the case of a PHY power down to save power, or to turn off link during a
3907 * driver unload, or wake on lan is not enabled, remove the link.
3908 **/
3909static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
3910{
3911 /* If the management interface is not enabled, then power down */
3912 if (!(hw->mac.ops.check_mng_mode(hw) ||
3913 hw->phy.ops.check_reset_block(hw)))
3914 e1000_power_down_phy_copper(hw);
3915}
3916
3917/**
3918 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3919 * @hw: pointer to the HW structure
3920 *
3921 * Clears hardware counters specific to the silicon family and calls
3922 * clear_hw_cntrs_generic to clear all general purpose counters.
3923 **/
3924static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
3925{
3926 u16 phy_data;
3927 s32 ret_val;
3928
3929 e1000e_clear_hw_cntrs_base(hw);
3930
3931 er32(ALGNERRC);
3932 er32(RXERRC);
3933 er32(TNCRS);
3934 er32(CEXTERR);
3935 er32(TSCTC);
3936 er32(TSCTFC);
3937
3938 er32(MGTPRC);
3939 er32(MGTPDC);
3940 er32(MGTPTC);
3941
3942 er32(IAC);
3943 er32(ICRXOC);
3944
3945 /* Clear PHY statistics registers */
3946 if ((hw->phy.type == e1000_phy_82578) ||
3947 (hw->phy.type == e1000_phy_82579) ||
3948 (hw->phy.type == e1000_phy_82577)) {
3949 ret_val = hw->phy.ops.acquire(hw);
3950 if (ret_val)
3951 return;
3952 ret_val = hw->phy.ops.set_page(hw,
3953 HV_STATS_PAGE << IGP_PAGE_SHIFT);
3954 if (ret_val)
3955 goto release;
3956 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
3957 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
3958 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
3959 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
3960 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
3961 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
3962 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
3963 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
3964 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
3965 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
3966 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
3967 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
3968 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
3969 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
3970release:
3971 hw->phy.ops.release(hw);
3972 }
3973}
3974
3975static struct e1000_mac_operations ich8_mac_ops = {
3976 .id_led_init = e1000e_id_led_init,
3977 /* check_mng_mode dependent on mac type */
3978 .check_for_link = e1000_check_for_copper_link_ich8lan,
3979 /* cleanup_led dependent on mac type */
3980 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
3981 .get_bus_info = e1000_get_bus_info_ich8lan,
3982 .set_lan_id = e1000_set_lan_id_single_port,
3983 .get_link_up_info = e1000_get_link_up_info_ich8lan,
3984 /* led_on dependent on mac type */
3985 /* led_off dependent on mac type */
3986 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
3987 .reset_hw = e1000_reset_hw_ich8lan,
3988 .init_hw = e1000_init_hw_ich8lan,
3989 .setup_link = e1000_setup_link_ich8lan,
3990 .setup_physical_interface= e1000_setup_copper_link_ich8lan,
3991 /* id_led_init dependent on mac type */
3992};
3993
3994static struct e1000_phy_operations ich8_phy_ops = {
3995 .acquire = e1000_acquire_swflag_ich8lan,
3996 .check_reset_block = e1000_check_reset_block_ich8lan,
3997 .commit = NULL,
3998 .get_cfg_done = e1000_get_cfg_done_ich8lan,
3999 .get_cable_length = e1000e_get_cable_length_igp_2,
4000 .read_reg = e1000e_read_phy_reg_igp,
4001 .release = e1000_release_swflag_ich8lan,
4002 .reset = e1000_phy_hw_reset_ich8lan,
4003 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
4004 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
4005 .write_reg = e1000e_write_phy_reg_igp,
4006};
4007
4008static struct e1000_nvm_operations ich8_nvm_ops = {
4009 .acquire = e1000_acquire_nvm_ich8lan,
4010 .read = e1000_read_nvm_ich8lan,
4011 .release = e1000_release_nvm_ich8lan,
4012 .update = e1000_update_nvm_checksum_ich8lan,
4013 .valid_led_default = e1000_valid_led_default_ich8lan,
4014 .validate = e1000_validate_nvm_checksum_ich8lan,
4015 .write = e1000_write_nvm_ich8lan,
4016};
4017
4018struct e1000_info e1000_ich8_info = {
4019 .mac = e1000_ich8lan,
4020 .flags = FLAG_HAS_WOL
4021 | FLAG_IS_ICH
4022 | FLAG_RX_CSUM_ENABLED
4023 | FLAG_HAS_CTRLEXT_ON_LOAD
4024 | FLAG_HAS_AMT
4025 | FLAG_HAS_FLASH
4026 | FLAG_APME_IN_WUC,
4027 .pba = 8,
4028 .max_hw_frame_size = ETH_FRAME_LEN + ETH_FCS_LEN,
4029 .get_variants = e1000_get_variants_ich8lan,
4030 .mac_ops = &ich8_mac_ops,
4031 .phy_ops = &ich8_phy_ops,
4032 .nvm_ops = &ich8_nvm_ops,
4033};
4034
4035struct e1000_info e1000_ich9_info = {
4036 .mac = e1000_ich9lan,
4037 .flags = FLAG_HAS_JUMBO_FRAMES
4038 | FLAG_IS_ICH
4039 | FLAG_HAS_WOL
4040 | FLAG_RX_CSUM_ENABLED
4041 | FLAG_HAS_CTRLEXT_ON_LOAD
4042 | FLAG_HAS_AMT
4043 | FLAG_HAS_ERT
4044 | FLAG_HAS_FLASH
4045 | FLAG_APME_IN_WUC,
4046 .pba = 10,
4047 .max_hw_frame_size = DEFAULT_JUMBO,
4048 .get_variants = e1000_get_variants_ich8lan,
4049 .mac_ops = &ich8_mac_ops,
4050 .phy_ops = &ich8_phy_ops,
4051 .nvm_ops = &ich8_nvm_ops,
4052};
4053
4054struct e1000_info e1000_ich10_info = {
4055 .mac = e1000_ich10lan,
4056 .flags = FLAG_HAS_JUMBO_FRAMES
4057 | FLAG_IS_ICH
4058 | FLAG_HAS_WOL
4059 | FLAG_RX_CSUM_ENABLED
4060 | FLAG_HAS_CTRLEXT_ON_LOAD
4061 | FLAG_HAS_AMT
4062 | FLAG_HAS_ERT
4063 | FLAG_HAS_FLASH
4064 | FLAG_APME_IN_WUC,
4065 .pba = 10,
4066 .max_hw_frame_size = DEFAULT_JUMBO,
4067 .get_variants = e1000_get_variants_ich8lan,
4068 .mac_ops = &ich8_mac_ops,
4069 .phy_ops = &ich8_phy_ops,
4070 .nvm_ops = &ich8_nvm_ops,
4071};
4072
4073struct e1000_info e1000_pch_info = {
4074 .mac = e1000_pchlan,
4075 .flags = FLAG_IS_ICH
4076 | FLAG_HAS_WOL
4077 | FLAG_RX_CSUM_ENABLED
4078 | FLAG_HAS_CTRLEXT_ON_LOAD
4079 | FLAG_HAS_AMT
4080 | FLAG_HAS_FLASH
4081 | FLAG_HAS_JUMBO_FRAMES
4082 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
4083 | FLAG_APME_IN_WUC,
4084 .flags2 = FLAG2_HAS_PHY_STATS,
4085 .pba = 26,
4086 .max_hw_frame_size = 4096,
4087 .get_variants = e1000_get_variants_ich8lan,
4088 .mac_ops = &ich8_mac_ops,
4089 .phy_ops = &ich8_phy_ops,
4090 .nvm_ops = &ich8_nvm_ops,
4091};
4092
4093struct e1000_info e1000_pch2_info = {
4094 .mac = e1000_pch2lan,
4095 .flags = FLAG_IS_ICH
4096 | FLAG_HAS_WOL
4097 | FLAG_RX_CSUM_ENABLED
4098 | FLAG_HAS_CTRLEXT_ON_LOAD
4099 | FLAG_HAS_AMT
4100 | FLAG_HAS_FLASH
4101 | FLAG_HAS_JUMBO_FRAMES
4102 | FLAG_APME_IN_WUC,
4103 .flags2 = FLAG2_HAS_PHY_STATS
4104 | FLAG2_HAS_EEE,
4105 .pba = 26,
4106 .max_hw_frame_size = DEFAULT_JUMBO,
4107 .get_variants = e1000_get_variants_ich8lan,
4108 .mac_ops = &ich8_mac_ops,
4109 .phy_ops = &ich8_phy_ops,
4110 .nvm_ops = &ich8_nvm_ops,
4111};