diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/e1000/e1000_hw.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/e1000/e1000_hw.c')
-rw-r--r-- | drivers/net/e1000/e1000_hw.c | 5405 |
1 files changed, 5405 insertions, 0 deletions
diff --git a/drivers/net/e1000/e1000_hw.c b/drivers/net/e1000/e1000_hw.c new file mode 100644 index 000000000000..786a9b935659 --- /dev/null +++ b/drivers/net/e1000/e1000_hw.c | |||
@@ -0,0 +1,5405 @@ | |||
1 | /******************************************************************************* | ||
2 | |||
3 | |||
4 | Copyright(c) 1999 - 2004 Intel Corporation. All rights reserved. | ||
5 | |||
6 | This program is free software; you can redistribute it and/or modify it | ||
7 | under the terms of the GNU General Public License as published by the Free | ||
8 | Software Foundation; either version 2 of the License, or (at your option) | ||
9 | any later version. | ||
10 | |||
11 | This program is distributed in the hope that it will be useful, but WITHOUT | ||
12 | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
13 | FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for | ||
14 | more details. | ||
15 | |||
16 | You should have received a copy of the GNU General Public License along with | ||
17 | this program; if not, write to the Free Software Foundation, Inc., 59 | ||
18 | Temple Place - Suite 330, Boston, MA 02111-1307, USA. | ||
19 | |||
20 | The full GNU General Public License is included in this distribution in the | ||
21 | file called LICENSE. | ||
22 | |||
23 | Contact Information: | ||
24 | Linux NICS <linux.nics@intel.com> | ||
25 | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | ||
26 | |||
27 | *******************************************************************************/ | ||
28 | |||
29 | /* e1000_hw.c | ||
30 | * Shared functions for accessing and configuring the MAC | ||
31 | */ | ||
32 | |||
33 | #include "e1000_hw.h" | ||
34 | |||
35 | static int32_t e1000_set_phy_type(struct e1000_hw *hw); | ||
36 | static void e1000_phy_init_script(struct e1000_hw *hw); | ||
37 | static int32_t e1000_setup_copper_link(struct e1000_hw *hw); | ||
38 | static int32_t e1000_setup_fiber_serdes_link(struct e1000_hw *hw); | ||
39 | static int32_t e1000_adjust_serdes_amplitude(struct e1000_hw *hw); | ||
40 | static int32_t e1000_phy_force_speed_duplex(struct e1000_hw *hw); | ||
41 | static int32_t e1000_config_mac_to_phy(struct e1000_hw *hw); | ||
42 | static void e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); | ||
43 | static void e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t *ctrl); | ||
44 | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, | ||
45 | uint16_t count); | ||
46 | static uint16_t e1000_shift_in_mdi_bits(struct e1000_hw *hw); | ||
47 | static int32_t e1000_phy_reset_dsp(struct e1000_hw *hw); | ||
48 | static int32_t e1000_write_eeprom_spi(struct e1000_hw *hw, uint16_t offset, | ||
49 | uint16_t words, uint16_t *data); | ||
50 | static int32_t e1000_write_eeprom_microwire(struct e1000_hw *hw, | ||
51 | uint16_t offset, uint16_t words, | ||
52 | uint16_t *data); | ||
53 | static int32_t e1000_spi_eeprom_ready(struct e1000_hw *hw); | ||
54 | static void e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t *eecd); | ||
55 | static void e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t *eecd); | ||
56 | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, | ||
57 | uint16_t count); | ||
58 | static int32_t e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, | ||
59 | uint16_t phy_data); | ||
60 | static int32_t e1000_read_phy_reg_ex(struct e1000_hw *hw,uint32_t reg_addr, | ||
61 | uint16_t *phy_data); | ||
62 | static uint16_t e1000_shift_in_ee_bits(struct e1000_hw *hw, uint16_t count); | ||
63 | static int32_t e1000_acquire_eeprom(struct e1000_hw *hw); | ||
64 | static void e1000_release_eeprom(struct e1000_hw *hw); | ||
65 | static void e1000_standby_eeprom(struct e1000_hw *hw); | ||
66 | static int32_t e1000_id_led_init(struct e1000_hw * hw); | ||
67 | static int32_t e1000_set_vco_speed(struct e1000_hw *hw); | ||
68 | static int32_t e1000_polarity_reversal_workaround(struct e1000_hw *hw); | ||
69 | static int32_t e1000_set_phy_mode(struct e1000_hw *hw); | ||
70 | |||
71 | /* IGP cable length table */ | ||
72 | static const | ||
73 | uint16_t e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | ||
74 | { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | ||
75 | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | ||
76 | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | ||
77 | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | ||
78 | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | ||
79 | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | ||
80 | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | ||
81 | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | ||
82 | |||
83 | |||
84 | /****************************************************************************** | ||
85 | * Set the phy type member in the hw struct. | ||
86 | * | ||
87 | * hw - Struct containing variables accessed by shared code | ||
88 | *****************************************************************************/ | ||
89 | int32_t | ||
90 | e1000_set_phy_type(struct e1000_hw *hw) | ||
91 | { | ||
92 | DEBUGFUNC("e1000_set_phy_type"); | ||
93 | |||
94 | switch(hw->phy_id) { | ||
95 | case M88E1000_E_PHY_ID: | ||
96 | case M88E1000_I_PHY_ID: | ||
97 | case M88E1011_I_PHY_ID: | ||
98 | hw->phy_type = e1000_phy_m88; | ||
99 | break; | ||
100 | case IGP01E1000_I_PHY_ID: | ||
101 | if(hw->mac_type == e1000_82541 || | ||
102 | hw->mac_type == e1000_82541_rev_2 || | ||
103 | hw->mac_type == e1000_82547 || | ||
104 | hw->mac_type == e1000_82547_rev_2) { | ||
105 | hw->phy_type = e1000_phy_igp; | ||
106 | break; | ||
107 | } | ||
108 | /* Fall Through */ | ||
109 | default: | ||
110 | /* Should never have loaded on this device */ | ||
111 | hw->phy_type = e1000_phy_undefined; | ||
112 | return -E1000_ERR_PHY_TYPE; | ||
113 | } | ||
114 | |||
115 | return E1000_SUCCESS; | ||
116 | } | ||
117 | |||
118 | /****************************************************************************** | ||
119 | * IGP phy init script - initializes the GbE PHY | ||
120 | * | ||
121 | * hw - Struct containing variables accessed by shared code | ||
122 | *****************************************************************************/ | ||
123 | static void | ||
124 | e1000_phy_init_script(struct e1000_hw *hw) | ||
125 | { | ||
126 | uint32_t ret_val; | ||
127 | uint16_t phy_saved_data; | ||
128 | |||
129 | DEBUGFUNC("e1000_phy_init_script"); | ||
130 | |||
131 | |||
132 | if(hw->phy_init_script) { | ||
133 | msec_delay(20); | ||
134 | |||
135 | /* Save off the current value of register 0x2F5B to be restored at | ||
136 | * the end of this routine. */ | ||
137 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
138 | |||
139 | /* Disabled the PHY transmitter */ | ||
140 | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
141 | |||
142 | msec_delay(20); | ||
143 | |||
144 | e1000_write_phy_reg(hw,0x0000,0x0140); | ||
145 | |||
146 | msec_delay(5); | ||
147 | |||
148 | switch(hw->mac_type) { | ||
149 | case e1000_82541: | ||
150 | case e1000_82547: | ||
151 | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | ||
152 | |||
153 | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | ||
154 | |||
155 | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | ||
156 | |||
157 | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | ||
158 | |||
159 | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | ||
160 | |||
161 | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | ||
162 | |||
163 | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | ||
164 | |||
165 | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | ||
166 | |||
167 | e1000_write_phy_reg(hw, 0x2010, 0x0008); | ||
168 | break; | ||
169 | |||
170 | case e1000_82541_rev_2: | ||
171 | case e1000_82547_rev_2: | ||
172 | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | ||
173 | break; | ||
174 | default: | ||
175 | break; | ||
176 | } | ||
177 | |||
178 | e1000_write_phy_reg(hw, 0x0000, 0x3300); | ||
179 | |||
180 | msec_delay(20); | ||
181 | |||
182 | /* Now enable the transmitter */ | ||
183 | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
184 | |||
185 | if(hw->mac_type == e1000_82547) { | ||
186 | uint16_t fused, fine, coarse; | ||
187 | |||
188 | /* Move to analog registers page */ | ||
189 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); | ||
190 | |||
191 | if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | ||
192 | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); | ||
193 | |||
194 | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | ||
195 | coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | ||
196 | |||
197 | if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | ||
198 | coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; | ||
199 | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | ||
200 | } else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | ||
201 | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | ||
202 | |||
203 | fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | ||
204 | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | ||
205 | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); | ||
206 | |||
207 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); | ||
208 | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, | ||
209 | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | ||
210 | } | ||
211 | } | ||
212 | } | ||
213 | } | ||
214 | |||
215 | /****************************************************************************** | ||
216 | * Set the mac type member in the hw struct. | ||
217 | * | ||
218 | * hw - Struct containing variables accessed by shared code | ||
219 | *****************************************************************************/ | ||
220 | int32_t | ||
221 | e1000_set_mac_type(struct e1000_hw *hw) | ||
222 | { | ||
223 | DEBUGFUNC("e1000_set_mac_type"); | ||
224 | |||
225 | switch (hw->device_id) { | ||
226 | case E1000_DEV_ID_82542: | ||
227 | switch (hw->revision_id) { | ||
228 | case E1000_82542_2_0_REV_ID: | ||
229 | hw->mac_type = e1000_82542_rev2_0; | ||
230 | break; | ||
231 | case E1000_82542_2_1_REV_ID: | ||
232 | hw->mac_type = e1000_82542_rev2_1; | ||
233 | break; | ||
234 | default: | ||
235 | /* Invalid 82542 revision ID */ | ||
236 | return -E1000_ERR_MAC_TYPE; | ||
237 | } | ||
238 | break; | ||
239 | case E1000_DEV_ID_82543GC_FIBER: | ||
240 | case E1000_DEV_ID_82543GC_COPPER: | ||
241 | hw->mac_type = e1000_82543; | ||
242 | break; | ||
243 | case E1000_DEV_ID_82544EI_COPPER: | ||
244 | case E1000_DEV_ID_82544EI_FIBER: | ||
245 | case E1000_DEV_ID_82544GC_COPPER: | ||
246 | case E1000_DEV_ID_82544GC_LOM: | ||
247 | hw->mac_type = e1000_82544; | ||
248 | break; | ||
249 | case E1000_DEV_ID_82540EM: | ||
250 | case E1000_DEV_ID_82540EM_LOM: | ||
251 | case E1000_DEV_ID_82540EP: | ||
252 | case E1000_DEV_ID_82540EP_LOM: | ||
253 | case E1000_DEV_ID_82540EP_LP: | ||
254 | hw->mac_type = e1000_82540; | ||
255 | break; | ||
256 | case E1000_DEV_ID_82545EM_COPPER: | ||
257 | case E1000_DEV_ID_82545EM_FIBER: | ||
258 | hw->mac_type = e1000_82545; | ||
259 | break; | ||
260 | case E1000_DEV_ID_82545GM_COPPER: | ||
261 | case E1000_DEV_ID_82545GM_FIBER: | ||
262 | case E1000_DEV_ID_82545GM_SERDES: | ||
263 | hw->mac_type = e1000_82545_rev_3; | ||
264 | break; | ||
265 | case E1000_DEV_ID_82546EB_COPPER: | ||
266 | case E1000_DEV_ID_82546EB_FIBER: | ||
267 | case E1000_DEV_ID_82546EB_QUAD_COPPER: | ||
268 | hw->mac_type = e1000_82546; | ||
269 | break; | ||
270 | case E1000_DEV_ID_82546GB_COPPER: | ||
271 | case E1000_DEV_ID_82546GB_FIBER: | ||
272 | case E1000_DEV_ID_82546GB_SERDES: | ||
273 | case E1000_DEV_ID_82546GB_PCIE: | ||
274 | hw->mac_type = e1000_82546_rev_3; | ||
275 | break; | ||
276 | case E1000_DEV_ID_82541EI: | ||
277 | case E1000_DEV_ID_82541EI_MOBILE: | ||
278 | hw->mac_type = e1000_82541; | ||
279 | break; | ||
280 | case E1000_DEV_ID_82541ER: | ||
281 | case E1000_DEV_ID_82541GI: | ||
282 | case E1000_DEV_ID_82541GI_LF: | ||
283 | case E1000_DEV_ID_82541GI_MOBILE: | ||
284 | hw->mac_type = e1000_82541_rev_2; | ||
285 | break; | ||
286 | case E1000_DEV_ID_82547EI: | ||
287 | hw->mac_type = e1000_82547; | ||
288 | break; | ||
289 | case E1000_DEV_ID_82547GI: | ||
290 | hw->mac_type = e1000_82547_rev_2; | ||
291 | break; | ||
292 | default: | ||
293 | /* Should never have loaded on this device */ | ||
294 | return -E1000_ERR_MAC_TYPE; | ||
295 | } | ||
296 | |||
297 | switch(hw->mac_type) { | ||
298 | case e1000_82541: | ||
299 | case e1000_82547: | ||
300 | case e1000_82541_rev_2: | ||
301 | case e1000_82547_rev_2: | ||
302 | hw->asf_firmware_present = TRUE; | ||
303 | break; | ||
304 | default: | ||
305 | break; | ||
306 | } | ||
307 | |||
308 | return E1000_SUCCESS; | ||
309 | } | ||
310 | |||
311 | /***************************************************************************** | ||
312 | * Set media type and TBI compatibility. | ||
313 | * | ||
314 | * hw - Struct containing variables accessed by shared code | ||
315 | * **************************************************************************/ | ||
316 | void | ||
317 | e1000_set_media_type(struct e1000_hw *hw) | ||
318 | { | ||
319 | uint32_t status; | ||
320 | |||
321 | DEBUGFUNC("e1000_set_media_type"); | ||
322 | |||
323 | if(hw->mac_type != e1000_82543) { | ||
324 | /* tbi_compatibility is only valid on 82543 */ | ||
325 | hw->tbi_compatibility_en = FALSE; | ||
326 | } | ||
327 | |||
328 | switch (hw->device_id) { | ||
329 | case E1000_DEV_ID_82545GM_SERDES: | ||
330 | case E1000_DEV_ID_82546GB_SERDES: | ||
331 | hw->media_type = e1000_media_type_internal_serdes; | ||
332 | break; | ||
333 | default: | ||
334 | if(hw->mac_type >= e1000_82543) { | ||
335 | status = E1000_READ_REG(hw, STATUS); | ||
336 | if(status & E1000_STATUS_TBIMODE) { | ||
337 | hw->media_type = e1000_media_type_fiber; | ||
338 | /* tbi_compatibility not valid on fiber */ | ||
339 | hw->tbi_compatibility_en = FALSE; | ||
340 | } else { | ||
341 | hw->media_type = e1000_media_type_copper; | ||
342 | } | ||
343 | } else { | ||
344 | /* This is an 82542 (fiber only) */ | ||
345 | hw->media_type = e1000_media_type_fiber; | ||
346 | } | ||
347 | } | ||
348 | } | ||
349 | |||
350 | /****************************************************************************** | ||
351 | * Reset the transmit and receive units; mask and clear all interrupts. | ||
352 | * | ||
353 | * hw - Struct containing variables accessed by shared code | ||
354 | *****************************************************************************/ | ||
355 | int32_t | ||
356 | e1000_reset_hw(struct e1000_hw *hw) | ||
357 | { | ||
358 | uint32_t ctrl; | ||
359 | uint32_t ctrl_ext; | ||
360 | uint32_t icr; | ||
361 | uint32_t manc; | ||
362 | uint32_t led_ctrl; | ||
363 | |||
364 | DEBUGFUNC("e1000_reset_hw"); | ||
365 | |||
366 | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | ||
367 | if(hw->mac_type == e1000_82542_rev2_0) { | ||
368 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | ||
369 | e1000_pci_clear_mwi(hw); | ||
370 | } | ||
371 | |||
372 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
373 | DEBUGOUT("Masking off all interrupts\n"); | ||
374 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | ||
375 | |||
376 | /* Disable the Transmit and Receive units. Then delay to allow | ||
377 | * any pending transactions to complete before we hit the MAC with | ||
378 | * the global reset. | ||
379 | */ | ||
380 | E1000_WRITE_REG(hw, RCTL, 0); | ||
381 | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); | ||
382 | E1000_WRITE_FLUSH(hw); | ||
383 | |||
384 | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | ||
385 | hw->tbi_compatibility_on = FALSE; | ||
386 | |||
387 | /* Delay to allow any outstanding PCI transactions to complete before | ||
388 | * resetting the device | ||
389 | */ | ||
390 | msec_delay(10); | ||
391 | |||
392 | ctrl = E1000_READ_REG(hw, CTRL); | ||
393 | |||
394 | /* Must reset the PHY before resetting the MAC */ | ||
395 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
396 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST)); | ||
397 | msec_delay(5); | ||
398 | } | ||
399 | |||
400 | /* Issue a global reset to the MAC. This will reset the chip's | ||
401 | * transmit, receive, DMA, and link units. It will not effect | ||
402 | * the current PCI configuration. The global reset bit is self- | ||
403 | * clearing, and should clear within a microsecond. | ||
404 | */ | ||
405 | DEBUGOUT("Issuing a global reset to MAC\n"); | ||
406 | |||
407 | switch(hw->mac_type) { | ||
408 | case e1000_82544: | ||
409 | case e1000_82540: | ||
410 | case e1000_82545: | ||
411 | case e1000_82546: | ||
412 | case e1000_82541: | ||
413 | case e1000_82541_rev_2: | ||
414 | /* These controllers can't ack the 64-bit write when issuing the | ||
415 | * reset, so use IO-mapping as a workaround to issue the reset */ | ||
416 | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
417 | break; | ||
418 | case e1000_82545_rev_3: | ||
419 | case e1000_82546_rev_3: | ||
420 | /* Reset is performed on a shadow of the control register */ | ||
421 | E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST)); | ||
422 | break; | ||
423 | default: | ||
424 | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | ||
425 | break; | ||
426 | } | ||
427 | |||
428 | /* After MAC reset, force reload of EEPROM to restore power-on settings to | ||
429 | * device. Later controllers reload the EEPROM automatically, so just wait | ||
430 | * for reload to complete. | ||
431 | */ | ||
432 | switch(hw->mac_type) { | ||
433 | case e1000_82542_rev2_0: | ||
434 | case e1000_82542_rev2_1: | ||
435 | case e1000_82543: | ||
436 | case e1000_82544: | ||
437 | /* Wait for reset to complete */ | ||
438 | udelay(10); | ||
439 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
440 | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | ||
441 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
442 | E1000_WRITE_FLUSH(hw); | ||
443 | /* Wait for EEPROM reload */ | ||
444 | msec_delay(2); | ||
445 | break; | ||
446 | case e1000_82541: | ||
447 | case e1000_82541_rev_2: | ||
448 | case e1000_82547: | ||
449 | case e1000_82547_rev_2: | ||
450 | /* Wait for EEPROM reload */ | ||
451 | msec_delay(20); | ||
452 | break; | ||
453 | default: | ||
454 | /* Wait for EEPROM reload (it happens automatically) */ | ||
455 | msec_delay(5); | ||
456 | break; | ||
457 | } | ||
458 | |||
459 | /* Disable HW ARPs on ASF enabled adapters */ | ||
460 | if(hw->mac_type >= e1000_82540) { | ||
461 | manc = E1000_READ_REG(hw, MANC); | ||
462 | manc &= ~(E1000_MANC_ARP_EN); | ||
463 | E1000_WRITE_REG(hw, MANC, manc); | ||
464 | } | ||
465 | |||
466 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
467 | e1000_phy_init_script(hw); | ||
468 | |||
469 | /* Configure activity LED after PHY reset */ | ||
470 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
471 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
472 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
473 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
474 | } | ||
475 | |||
476 | /* Clear interrupt mask to stop board from generating interrupts */ | ||
477 | DEBUGOUT("Masking off all interrupts\n"); | ||
478 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | ||
479 | |||
480 | /* Clear any pending interrupt events. */ | ||
481 | icr = E1000_READ_REG(hw, ICR); | ||
482 | |||
483 | /* If MWI was previously enabled, reenable it. */ | ||
484 | if(hw->mac_type == e1000_82542_rev2_0) { | ||
485 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) | ||
486 | e1000_pci_set_mwi(hw); | ||
487 | } | ||
488 | |||
489 | return E1000_SUCCESS; | ||
490 | } | ||
491 | |||
492 | /****************************************************************************** | ||
493 | * Performs basic configuration of the adapter. | ||
494 | * | ||
495 | * hw - Struct containing variables accessed by shared code | ||
496 | * | ||
497 | * Assumes that the controller has previously been reset and is in a | ||
498 | * post-reset uninitialized state. Initializes the receive address registers, | ||
499 | * multicast table, and VLAN filter table. Calls routines to setup link | ||
500 | * configuration and flow control settings. Clears all on-chip counters. Leaves | ||
501 | * the transmit and receive units disabled and uninitialized. | ||
502 | *****************************************************************************/ | ||
503 | int32_t | ||
504 | e1000_init_hw(struct e1000_hw *hw) | ||
505 | { | ||
506 | uint32_t ctrl; | ||
507 | uint32_t i; | ||
508 | int32_t ret_val; | ||
509 | uint16_t pcix_cmd_word; | ||
510 | uint16_t pcix_stat_hi_word; | ||
511 | uint16_t cmd_mmrbc; | ||
512 | uint16_t stat_mmrbc; | ||
513 | DEBUGFUNC("e1000_init_hw"); | ||
514 | |||
515 | /* Initialize Identification LED */ | ||
516 | ret_val = e1000_id_led_init(hw); | ||
517 | if(ret_val) { | ||
518 | DEBUGOUT("Error Initializing Identification LED\n"); | ||
519 | return ret_val; | ||
520 | } | ||
521 | |||
522 | /* Set the media type and TBI compatibility */ | ||
523 | e1000_set_media_type(hw); | ||
524 | |||
525 | /* Disabling VLAN filtering. */ | ||
526 | DEBUGOUT("Initializing the IEEE VLAN\n"); | ||
527 | E1000_WRITE_REG(hw, VET, 0); | ||
528 | |||
529 | e1000_clear_vfta(hw); | ||
530 | |||
531 | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | ||
532 | if(hw->mac_type == e1000_82542_rev2_0) { | ||
533 | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | ||
534 | e1000_pci_clear_mwi(hw); | ||
535 | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); | ||
536 | E1000_WRITE_FLUSH(hw); | ||
537 | msec_delay(5); | ||
538 | } | ||
539 | |||
540 | /* Setup the receive address. This involves initializing all of the Receive | ||
541 | * Address Registers (RARs 0 - 15). | ||
542 | */ | ||
543 | e1000_init_rx_addrs(hw); | ||
544 | |||
545 | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | ||
546 | if(hw->mac_type == e1000_82542_rev2_0) { | ||
547 | E1000_WRITE_REG(hw, RCTL, 0); | ||
548 | E1000_WRITE_FLUSH(hw); | ||
549 | msec_delay(1); | ||
550 | if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE) | ||
551 | e1000_pci_set_mwi(hw); | ||
552 | } | ||
553 | |||
554 | /* Zero out the Multicast HASH table */ | ||
555 | DEBUGOUT("Zeroing the MTA\n"); | ||
556 | for(i = 0; i < E1000_MC_TBL_SIZE; i++) | ||
557 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | ||
558 | |||
559 | /* Set the PCI priority bit correctly in the CTRL register. This | ||
560 | * determines if the adapter gives priority to receives, or if it | ||
561 | * gives equal priority to transmits and receives. | ||
562 | */ | ||
563 | if(hw->dma_fairness) { | ||
564 | ctrl = E1000_READ_REG(hw, CTRL); | ||
565 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); | ||
566 | } | ||
567 | |||
568 | switch(hw->mac_type) { | ||
569 | case e1000_82545_rev_3: | ||
570 | case e1000_82546_rev_3: | ||
571 | break; | ||
572 | default: | ||
573 | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | ||
574 | if(hw->bus_type == e1000_bus_type_pcix) { | ||
575 | e1000_read_pci_cfg(hw, PCIX_COMMAND_REGISTER, &pcix_cmd_word); | ||
576 | e1000_read_pci_cfg(hw, PCIX_STATUS_REGISTER_HI, | ||
577 | &pcix_stat_hi_word); | ||
578 | cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> | ||
579 | PCIX_COMMAND_MMRBC_SHIFT; | ||
580 | stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> | ||
581 | PCIX_STATUS_HI_MMRBC_SHIFT; | ||
582 | if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) | ||
583 | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; | ||
584 | if(cmd_mmrbc > stat_mmrbc) { | ||
585 | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; | ||
586 | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; | ||
587 | e1000_write_pci_cfg(hw, PCIX_COMMAND_REGISTER, | ||
588 | &pcix_cmd_word); | ||
589 | } | ||
590 | } | ||
591 | break; | ||
592 | } | ||
593 | |||
594 | /* Call a subroutine to configure the link and setup flow control. */ | ||
595 | ret_val = e1000_setup_link(hw); | ||
596 | |||
597 | /* Set the transmit descriptor write-back policy */ | ||
598 | if(hw->mac_type > e1000_82544) { | ||
599 | ctrl = E1000_READ_REG(hw, TXDCTL); | ||
600 | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | ||
601 | E1000_WRITE_REG(hw, TXDCTL, ctrl); | ||
602 | } | ||
603 | |||
604 | /* Clear all of the statistics registers (clear on read). It is | ||
605 | * important that we do this after we have tried to establish link | ||
606 | * because the symbol error count will increment wildly if there | ||
607 | * is no link. | ||
608 | */ | ||
609 | e1000_clear_hw_cntrs(hw); | ||
610 | |||
611 | return ret_val; | ||
612 | } | ||
613 | |||
614 | /****************************************************************************** | ||
615 | * Adjust SERDES output amplitude based on EEPROM setting. | ||
616 | * | ||
617 | * hw - Struct containing variables accessed by shared code. | ||
618 | *****************************************************************************/ | ||
619 | static int32_t | ||
620 | e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | ||
621 | { | ||
622 | uint16_t eeprom_data; | ||
623 | int32_t ret_val; | ||
624 | |||
625 | DEBUGFUNC("e1000_adjust_serdes_amplitude"); | ||
626 | |||
627 | if(hw->media_type != e1000_media_type_internal_serdes) | ||
628 | return E1000_SUCCESS; | ||
629 | |||
630 | switch(hw->mac_type) { | ||
631 | case e1000_82545_rev_3: | ||
632 | case e1000_82546_rev_3: | ||
633 | break; | ||
634 | default: | ||
635 | return E1000_SUCCESS; | ||
636 | } | ||
637 | |||
638 | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); | ||
639 | if (ret_val) { | ||
640 | return ret_val; | ||
641 | } | ||
642 | |||
643 | if(eeprom_data != EEPROM_RESERVED_WORD) { | ||
644 | /* Adjust SERDES output amplitude only. */ | ||
645 | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | ||
646 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | ||
647 | if(ret_val) | ||
648 | return ret_val; | ||
649 | } | ||
650 | |||
651 | return E1000_SUCCESS; | ||
652 | } | ||
653 | |||
654 | /****************************************************************************** | ||
655 | * Configures flow control and link settings. | ||
656 | * | ||
657 | * hw - Struct containing variables accessed by shared code | ||
658 | * | ||
659 | * Determines which flow control settings to use. Calls the apropriate media- | ||
660 | * specific link configuration function. Configures the flow control settings. | ||
661 | * Assuming the adapter has a valid link partner, a valid link should be | ||
662 | * established. Assumes the hardware has previously been reset and the | ||
663 | * transmitter and receiver are not enabled. | ||
664 | *****************************************************************************/ | ||
665 | int32_t | ||
666 | e1000_setup_link(struct e1000_hw *hw) | ||
667 | { | ||
668 | uint32_t ctrl_ext; | ||
669 | int32_t ret_val; | ||
670 | uint16_t eeprom_data; | ||
671 | |||
672 | DEBUGFUNC("e1000_setup_link"); | ||
673 | |||
674 | /* Read and store word 0x0F of the EEPROM. This word contains bits | ||
675 | * that determine the hardware's default PAUSE (flow control) mode, | ||
676 | * a bit that determines whether the HW defaults to enabling or | ||
677 | * disabling auto-negotiation, and the direction of the | ||
678 | * SW defined pins. If there is no SW over-ride of the flow | ||
679 | * control setting, then the variable hw->fc will | ||
680 | * be initialized based on a value in the EEPROM. | ||
681 | */ | ||
682 | if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) { | ||
683 | DEBUGOUT("EEPROM Read Error\n"); | ||
684 | return -E1000_ERR_EEPROM; | ||
685 | } | ||
686 | |||
687 | if(hw->fc == e1000_fc_default) { | ||
688 | if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | ||
689 | hw->fc = e1000_fc_none; | ||
690 | else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | ||
691 | EEPROM_WORD0F_ASM_DIR) | ||
692 | hw->fc = e1000_fc_tx_pause; | ||
693 | else | ||
694 | hw->fc = e1000_fc_full; | ||
695 | } | ||
696 | |||
697 | /* We want to save off the original Flow Control configuration just | ||
698 | * in case we get disconnected and then reconnected into a different | ||
699 | * hub or switch with different Flow Control capabilities. | ||
700 | */ | ||
701 | if(hw->mac_type == e1000_82542_rev2_0) | ||
702 | hw->fc &= (~e1000_fc_tx_pause); | ||
703 | |||
704 | if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | ||
705 | hw->fc &= (~e1000_fc_rx_pause); | ||
706 | |||
707 | hw->original_fc = hw->fc; | ||
708 | |||
709 | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | ||
710 | |||
711 | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | ||
712 | * polarity value for the SW controlled pins, and setup the | ||
713 | * Extended Device Control reg with that info. | ||
714 | * This is needed because one of the SW controlled pins is used for | ||
715 | * signal detection. So this should be done before e1000_setup_pcs_link() | ||
716 | * or e1000_phy_setup() is called. | ||
717 | */ | ||
718 | if(hw->mac_type == e1000_82543) { | ||
719 | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | ||
720 | SWDPIO__EXT_SHIFT); | ||
721 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
722 | } | ||
723 | |||
724 | /* Call the necessary subroutine to configure the link. */ | ||
725 | ret_val = (hw->media_type == e1000_media_type_copper) ? | ||
726 | e1000_setup_copper_link(hw) : | ||
727 | e1000_setup_fiber_serdes_link(hw); | ||
728 | |||
729 | /* Initialize the flow control address, type, and PAUSE timer | ||
730 | * registers to their default values. This is done even if flow | ||
731 | * control is disabled, because it does not hurt anything to | ||
732 | * initialize these registers. | ||
733 | */ | ||
734 | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | ||
735 | |||
736 | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | ||
737 | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | ||
738 | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | ||
739 | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | ||
740 | |||
741 | /* Set the flow control receive threshold registers. Normally, | ||
742 | * these registers will be set to a default threshold that may be | ||
743 | * adjusted later by the driver's runtime code. However, if the | ||
744 | * ability to transmit pause frames in not enabled, then these | ||
745 | * registers will be set to 0. | ||
746 | */ | ||
747 | if(!(hw->fc & e1000_fc_tx_pause)) { | ||
748 | E1000_WRITE_REG(hw, FCRTL, 0); | ||
749 | E1000_WRITE_REG(hw, FCRTH, 0); | ||
750 | } else { | ||
751 | /* We need to set up the Receive Threshold high and low water marks | ||
752 | * as well as (optionally) enabling the transmission of XON frames. | ||
753 | */ | ||
754 | if(hw->fc_send_xon) { | ||
755 | E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | ||
756 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | ||
757 | } else { | ||
758 | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); | ||
759 | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | ||
760 | } | ||
761 | } | ||
762 | return ret_val; | ||
763 | } | ||
764 | |||
765 | /****************************************************************************** | ||
766 | * Sets up link for a fiber based or serdes based adapter | ||
767 | * | ||
768 | * hw - Struct containing variables accessed by shared code | ||
769 | * | ||
770 | * Manipulates Physical Coding Sublayer functions in order to configure | ||
771 | * link. Assumes the hardware has been previously reset and the transmitter | ||
772 | * and receiver are not enabled. | ||
773 | *****************************************************************************/ | ||
774 | static int32_t | ||
775 | e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | ||
776 | { | ||
777 | uint32_t ctrl; | ||
778 | uint32_t status; | ||
779 | uint32_t txcw = 0; | ||
780 | uint32_t i; | ||
781 | uint32_t signal = 0; | ||
782 | int32_t ret_val; | ||
783 | |||
784 | DEBUGFUNC("e1000_setup_fiber_serdes_link"); | ||
785 | |||
786 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | ||
787 | * set when the optics detect a signal. On older adapters, it will be | ||
788 | * cleared when there is a signal. This applies to fiber media only. | ||
789 | * If we're on serdes media, adjust the output amplitude to value set in | ||
790 | * the EEPROM. | ||
791 | */ | ||
792 | ctrl = E1000_READ_REG(hw, CTRL); | ||
793 | if(hw->media_type == e1000_media_type_fiber) | ||
794 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | ||
795 | |||
796 | ret_val = e1000_adjust_serdes_amplitude(hw); | ||
797 | if(ret_val) | ||
798 | return ret_val; | ||
799 | |||
800 | /* Take the link out of reset */ | ||
801 | ctrl &= ~(E1000_CTRL_LRST); | ||
802 | |||
803 | /* Adjust VCO speed to improve BER performance */ | ||
804 | ret_val = e1000_set_vco_speed(hw); | ||
805 | if(ret_val) | ||
806 | return ret_val; | ||
807 | |||
808 | e1000_config_collision_dist(hw); | ||
809 | |||
810 | /* Check for a software override of the flow control settings, and setup | ||
811 | * the device accordingly. If auto-negotiation is enabled, then software | ||
812 | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | ||
813 | * Config Word Register (TXCW) and re-start auto-negotiation. However, if | ||
814 | * auto-negotiation is disabled, then software will have to manually | ||
815 | * configure the two flow control enable bits in the CTRL register. | ||
816 | * | ||
817 | * The possible values of the "fc" parameter are: | ||
818 | * 0: Flow control is completely disabled | ||
819 | * 1: Rx flow control is enabled (we can receive pause frames, but | ||
820 | * not send pause frames). | ||
821 | * 2: Tx flow control is enabled (we can send pause frames but we do | ||
822 | * not support receiving pause frames). | ||
823 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
824 | */ | ||
825 | switch (hw->fc) { | ||
826 | case e1000_fc_none: | ||
827 | /* Flow control is completely disabled by a software over-ride. */ | ||
828 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | ||
829 | break; | ||
830 | case e1000_fc_rx_pause: | ||
831 | /* RX Flow control is enabled and TX Flow control is disabled by a | ||
832 | * software over-ride. Since there really isn't a way to advertise | ||
833 | * that we are capable of RX Pause ONLY, we will advertise that we | ||
834 | * support both symmetric and asymmetric RX PAUSE. Later, we will | ||
835 | * disable the adapter's ability to send PAUSE frames. | ||
836 | */ | ||
837 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
838 | break; | ||
839 | case e1000_fc_tx_pause: | ||
840 | /* TX Flow control is enabled, and RX Flow control is disabled, by a | ||
841 | * software over-ride. | ||
842 | */ | ||
843 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | ||
844 | break; | ||
845 | case e1000_fc_full: | ||
846 | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | ||
847 | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | ||
848 | break; | ||
849 | default: | ||
850 | DEBUGOUT("Flow control param set incorrectly\n"); | ||
851 | return -E1000_ERR_CONFIG; | ||
852 | break; | ||
853 | } | ||
854 | |||
855 | /* Since auto-negotiation is enabled, take the link out of reset (the link | ||
856 | * will be in reset, because we previously reset the chip). This will | ||
857 | * restart auto-negotiation. If auto-neogtiation is successful then the | ||
858 | * link-up status bit will be set and the flow control enable bits (RFCE | ||
859 | * and TFCE) will be set according to their negotiated value. | ||
860 | */ | ||
861 | DEBUGOUT("Auto-negotiation enabled\n"); | ||
862 | |||
863 | E1000_WRITE_REG(hw, TXCW, txcw); | ||
864 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
865 | E1000_WRITE_FLUSH(hw); | ||
866 | |||
867 | hw->txcw = txcw; | ||
868 | msec_delay(1); | ||
869 | |||
870 | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | ||
871 | * indication in the Device Status Register. Time-out if a link isn't | ||
872 | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | ||
873 | * less than 500 milliseconds even if the other end is doing it in SW). | ||
874 | * For internal serdes, we just assume a signal is present, then poll. | ||
875 | */ | ||
876 | if(hw->media_type == e1000_media_type_internal_serdes || | ||
877 | (E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { | ||
878 | DEBUGOUT("Looking for Link\n"); | ||
879 | for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | ||
880 | msec_delay(10); | ||
881 | status = E1000_READ_REG(hw, STATUS); | ||
882 | if(status & E1000_STATUS_LU) break; | ||
883 | } | ||
884 | if(i == (LINK_UP_TIMEOUT / 10)) { | ||
885 | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | ||
886 | hw->autoneg_failed = 1; | ||
887 | /* AutoNeg failed to achieve a link, so we'll call | ||
888 | * e1000_check_for_link. This routine will force the link up if | ||
889 | * we detect a signal. This will allow us to communicate with | ||
890 | * non-autonegotiating link partners. | ||
891 | */ | ||
892 | ret_val = e1000_check_for_link(hw); | ||
893 | if(ret_val) { | ||
894 | DEBUGOUT("Error while checking for link\n"); | ||
895 | return ret_val; | ||
896 | } | ||
897 | hw->autoneg_failed = 0; | ||
898 | } else { | ||
899 | hw->autoneg_failed = 0; | ||
900 | DEBUGOUT("Valid Link Found\n"); | ||
901 | } | ||
902 | } else { | ||
903 | DEBUGOUT("No Signal Detected\n"); | ||
904 | } | ||
905 | return E1000_SUCCESS; | ||
906 | } | ||
907 | |||
908 | /****************************************************************************** | ||
909 | * Detects which PHY is present and the speed and duplex | ||
910 | * | ||
911 | * hw - Struct containing variables accessed by shared code | ||
912 | ******************************************************************************/ | ||
913 | static int32_t | ||
914 | e1000_setup_copper_link(struct e1000_hw *hw) | ||
915 | { | ||
916 | uint32_t ctrl; | ||
917 | uint32_t led_ctrl; | ||
918 | int32_t ret_val; | ||
919 | uint16_t i; | ||
920 | uint16_t phy_data; | ||
921 | |||
922 | DEBUGFUNC("e1000_setup_copper_link"); | ||
923 | |||
924 | ctrl = E1000_READ_REG(hw, CTRL); | ||
925 | /* With 82543, we need to force speed and duplex on the MAC equal to what | ||
926 | * the PHY speed and duplex configuration is. In addition, we need to | ||
927 | * perform a hardware reset on the PHY to take it out of reset. | ||
928 | */ | ||
929 | if(hw->mac_type > e1000_82543) { | ||
930 | ctrl |= E1000_CTRL_SLU; | ||
931 | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
932 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
933 | } else { | ||
934 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | ||
935 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
936 | e1000_phy_hw_reset(hw); | ||
937 | } | ||
938 | |||
939 | /* Make sure we have a valid PHY */ | ||
940 | ret_val = e1000_detect_gig_phy(hw); | ||
941 | if(ret_val) { | ||
942 | DEBUGOUT("Error, did not detect valid phy.\n"); | ||
943 | return ret_val; | ||
944 | } | ||
945 | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | ||
946 | |||
947 | /* Set PHY to class A mode (if necessary) */ | ||
948 | ret_val = e1000_set_phy_mode(hw); | ||
949 | if(ret_val) | ||
950 | return ret_val; | ||
951 | |||
952 | if((hw->mac_type == e1000_82545_rev_3) || | ||
953 | (hw->mac_type == e1000_82546_rev_3)) { | ||
954 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
955 | phy_data |= 0x00000008; | ||
956 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
957 | } | ||
958 | |||
959 | if(hw->mac_type <= e1000_82543 || | ||
960 | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | ||
961 | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | ||
962 | hw->phy_reset_disable = FALSE; | ||
963 | |||
964 | if(!hw->phy_reset_disable) { | ||
965 | if (hw->phy_type == e1000_phy_igp) { | ||
966 | |||
967 | ret_val = e1000_phy_reset(hw); | ||
968 | if(ret_val) { | ||
969 | DEBUGOUT("Error Resetting the PHY\n"); | ||
970 | return ret_val; | ||
971 | } | ||
972 | |||
973 | /* Wait 10ms for MAC to configure PHY from eeprom settings */ | ||
974 | msec_delay(15); | ||
975 | |||
976 | /* Configure activity LED after PHY reset */ | ||
977 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
978 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
979 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
980 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
981 | |||
982 | /* disable lplu d3 during driver init */ | ||
983 | ret_val = e1000_set_d3_lplu_state(hw, FALSE); | ||
984 | if(ret_val) { | ||
985 | DEBUGOUT("Error Disabling LPLU D3\n"); | ||
986 | return ret_val; | ||
987 | } | ||
988 | |||
989 | /* Configure mdi-mdix settings */ | ||
990 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
991 | &phy_data); | ||
992 | if(ret_val) | ||
993 | return ret_val; | ||
994 | |||
995 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
996 | hw->dsp_config_state = e1000_dsp_config_disabled; | ||
997 | /* Force MDI for earlier revs of the IGP PHY */ | ||
998 | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | | ||
999 | IGP01E1000_PSCR_FORCE_MDI_MDIX); | ||
1000 | hw->mdix = 1; | ||
1001 | |||
1002 | } else { | ||
1003 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
1004 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1005 | |||
1006 | switch (hw->mdix) { | ||
1007 | case 1: | ||
1008 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1009 | break; | ||
1010 | case 2: | ||
1011 | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1012 | break; | ||
1013 | case 0: | ||
1014 | default: | ||
1015 | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | ||
1016 | break; | ||
1017 | } | ||
1018 | } | ||
1019 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, | ||
1020 | phy_data); | ||
1021 | if(ret_val) | ||
1022 | return ret_val; | ||
1023 | |||
1024 | /* set auto-master slave resolution settings */ | ||
1025 | if(hw->autoneg) { | ||
1026 | e1000_ms_type phy_ms_setting = hw->master_slave; | ||
1027 | |||
1028 | if(hw->ffe_config_state == e1000_ffe_config_active) | ||
1029 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
1030 | |||
1031 | if(hw->dsp_config_state == e1000_dsp_config_activated) | ||
1032 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
1033 | |||
1034 | /* when autonegotiation advertisment is only 1000Mbps then we | ||
1035 | * should disable SmartSpeed and enable Auto MasterSlave | ||
1036 | * resolution as hardware default. */ | ||
1037 | if(hw->autoneg_advertised == ADVERTISE_1000_FULL) { | ||
1038 | /* Disable SmartSpeed */ | ||
1039 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
1040 | &phy_data); | ||
1041 | if(ret_val) | ||
1042 | return ret_val; | ||
1043 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
1044 | ret_val = e1000_write_phy_reg(hw, | ||
1045 | IGP01E1000_PHY_PORT_CONFIG, | ||
1046 | phy_data); | ||
1047 | if(ret_val) | ||
1048 | return ret_val; | ||
1049 | /* Set auto Master/Slave resolution process */ | ||
1050 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1051 | if(ret_val) | ||
1052 | return ret_val; | ||
1053 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1054 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1055 | if(ret_val) | ||
1056 | return ret_val; | ||
1057 | } | ||
1058 | |||
1059 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | ||
1060 | if(ret_val) | ||
1061 | return ret_val; | ||
1062 | |||
1063 | /* load defaults for future use */ | ||
1064 | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | ||
1065 | ((phy_data & CR_1000T_MS_VALUE) ? | ||
1066 | e1000_ms_force_master : | ||
1067 | e1000_ms_force_slave) : | ||
1068 | e1000_ms_auto; | ||
1069 | |||
1070 | switch (phy_ms_setting) { | ||
1071 | case e1000_ms_force_master: | ||
1072 | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | ||
1073 | break; | ||
1074 | case e1000_ms_force_slave: | ||
1075 | phy_data |= CR_1000T_MS_ENABLE; | ||
1076 | phy_data &= ~(CR_1000T_MS_VALUE); | ||
1077 | break; | ||
1078 | case e1000_ms_auto: | ||
1079 | phy_data &= ~CR_1000T_MS_ENABLE; | ||
1080 | default: | ||
1081 | break; | ||
1082 | } | ||
1083 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | ||
1084 | if(ret_val) | ||
1085 | return ret_val; | ||
1086 | } | ||
1087 | } else { | ||
1088 | /* Enable CRS on TX. This must be set for half-duplex operation. */ | ||
1089 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1090 | &phy_data); | ||
1091 | if(ret_val) | ||
1092 | return ret_val; | ||
1093 | |||
1094 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1095 | |||
1096 | /* Options: | ||
1097 | * MDI/MDI-X = 0 (default) | ||
1098 | * 0 - Auto for all speeds | ||
1099 | * 1 - MDI mode | ||
1100 | * 2 - MDI-X mode | ||
1101 | * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | ||
1102 | */ | ||
1103 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1104 | |||
1105 | switch (hw->mdix) { | ||
1106 | case 1: | ||
1107 | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | ||
1108 | break; | ||
1109 | case 2: | ||
1110 | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | ||
1111 | break; | ||
1112 | case 3: | ||
1113 | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | ||
1114 | break; | ||
1115 | case 0: | ||
1116 | default: | ||
1117 | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | ||
1118 | break; | ||
1119 | } | ||
1120 | |||
1121 | /* Options: | ||
1122 | * disable_polarity_correction = 0 (default) | ||
1123 | * Automatic Correction for Reversed Cable Polarity | ||
1124 | * 0 - Disabled | ||
1125 | * 1 - Enabled | ||
1126 | */ | ||
1127 | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | ||
1128 | if(hw->disable_polarity_correction == 1) | ||
1129 | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | ||
1130 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, | ||
1131 | phy_data); | ||
1132 | if(ret_val) | ||
1133 | return ret_val; | ||
1134 | |||
1135 | /* Force TX_CLK in the Extended PHY Specific Control Register | ||
1136 | * to 25MHz clock. | ||
1137 | */ | ||
1138 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1139 | &phy_data); | ||
1140 | if(ret_val) | ||
1141 | return ret_val; | ||
1142 | |||
1143 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1144 | |||
1145 | if (hw->phy_revision < M88E1011_I_REV_4) { | ||
1146 | /* Configure Master and Slave downshift values */ | ||
1147 | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | ||
1148 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | ||
1149 | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | ||
1150 | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | ||
1151 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, | ||
1152 | phy_data); | ||
1153 | if(ret_val) | ||
1154 | return ret_val; | ||
1155 | } | ||
1156 | |||
1157 | /* SW Reset the PHY so all changes take effect */ | ||
1158 | ret_val = e1000_phy_reset(hw); | ||
1159 | if(ret_val) { | ||
1160 | DEBUGOUT("Error Resetting the PHY\n"); | ||
1161 | return ret_val; | ||
1162 | } | ||
1163 | } | ||
1164 | |||
1165 | /* Options: | ||
1166 | * autoneg = 1 (default) | ||
1167 | * PHY will advertise value(s) parsed from | ||
1168 | * autoneg_advertised and fc | ||
1169 | * autoneg = 0 | ||
1170 | * PHY will be set to 10H, 10F, 100H, or 100F | ||
1171 | * depending on value parsed from forced_speed_duplex. | ||
1172 | */ | ||
1173 | |||
1174 | /* Is autoneg enabled? This is enabled by default or by software | ||
1175 | * override. If so, call e1000_phy_setup_autoneg routine to parse the | ||
1176 | * autoneg_advertised and fc options. If autoneg is NOT enabled, then | ||
1177 | * the user should have provided a speed/duplex override. If so, then | ||
1178 | * call e1000_phy_force_speed_duplex to parse and set this up. | ||
1179 | */ | ||
1180 | if(hw->autoneg) { | ||
1181 | /* Perform some bounds checking on the hw->autoneg_advertised | ||
1182 | * parameter. If this variable is zero, then set it to the default. | ||
1183 | */ | ||
1184 | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1185 | |||
1186 | /* If autoneg_advertised is zero, we assume it was not defaulted | ||
1187 | * by the calling code so we set to advertise full capability. | ||
1188 | */ | ||
1189 | if(hw->autoneg_advertised == 0) | ||
1190 | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | ||
1191 | |||
1192 | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | ||
1193 | ret_val = e1000_phy_setup_autoneg(hw); | ||
1194 | if(ret_val) { | ||
1195 | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | ||
1196 | return ret_val; | ||
1197 | } | ||
1198 | DEBUGOUT("Restarting Auto-Neg\n"); | ||
1199 | |||
1200 | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | ||
1201 | * the Auto Neg Restart bit in the PHY control register. | ||
1202 | */ | ||
1203 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
1204 | if(ret_val) | ||
1205 | return ret_val; | ||
1206 | |||
1207 | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | ||
1208 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
1209 | if(ret_val) | ||
1210 | return ret_val; | ||
1211 | |||
1212 | /* Does the user want to wait for Auto-Neg to complete here, or | ||
1213 | * check at a later time (for example, callback routine). | ||
1214 | */ | ||
1215 | if(hw->wait_autoneg_complete) { | ||
1216 | ret_val = e1000_wait_autoneg(hw); | ||
1217 | if(ret_val) { | ||
1218 | DEBUGOUT("Error while waiting for autoneg to complete\n"); | ||
1219 | return ret_val; | ||
1220 | } | ||
1221 | } | ||
1222 | hw->get_link_status = TRUE; | ||
1223 | } else { | ||
1224 | DEBUGOUT("Forcing speed and duplex\n"); | ||
1225 | ret_val = e1000_phy_force_speed_duplex(hw); | ||
1226 | if(ret_val) { | ||
1227 | DEBUGOUT("Error Forcing Speed and Duplex\n"); | ||
1228 | return ret_val; | ||
1229 | } | ||
1230 | } | ||
1231 | } /* !hw->phy_reset_disable */ | ||
1232 | |||
1233 | /* Check link status. Wait up to 100 microseconds for link to become | ||
1234 | * valid. | ||
1235 | */ | ||
1236 | for(i = 0; i < 10; i++) { | ||
1237 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
1238 | if(ret_val) | ||
1239 | return ret_val; | ||
1240 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
1241 | if(ret_val) | ||
1242 | return ret_val; | ||
1243 | |||
1244 | if(phy_data & MII_SR_LINK_STATUS) { | ||
1245 | /* We have link, so we need to finish the config process: | ||
1246 | * 1) Set up the MAC to the current PHY speed/duplex | ||
1247 | * if we are on 82543. If we | ||
1248 | * are on newer silicon, we only need to configure | ||
1249 | * collision distance in the Transmit Control Register. | ||
1250 | * 2) Set up flow control on the MAC to that established with | ||
1251 | * the link partner. | ||
1252 | */ | ||
1253 | if(hw->mac_type >= e1000_82544) { | ||
1254 | e1000_config_collision_dist(hw); | ||
1255 | } else { | ||
1256 | ret_val = e1000_config_mac_to_phy(hw); | ||
1257 | if(ret_val) { | ||
1258 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
1259 | return ret_val; | ||
1260 | } | ||
1261 | } | ||
1262 | ret_val = e1000_config_fc_after_link_up(hw); | ||
1263 | if(ret_val) { | ||
1264 | DEBUGOUT("Error Configuring Flow Control\n"); | ||
1265 | return ret_val; | ||
1266 | } | ||
1267 | DEBUGOUT("Valid link established!!!\n"); | ||
1268 | |||
1269 | if(hw->phy_type == e1000_phy_igp) { | ||
1270 | ret_val = e1000_config_dsp_after_link_change(hw, TRUE); | ||
1271 | if(ret_val) { | ||
1272 | DEBUGOUT("Error Configuring DSP after link up\n"); | ||
1273 | return ret_val; | ||
1274 | } | ||
1275 | } | ||
1276 | DEBUGOUT("Valid link established!!!\n"); | ||
1277 | return E1000_SUCCESS; | ||
1278 | } | ||
1279 | udelay(10); | ||
1280 | } | ||
1281 | |||
1282 | DEBUGOUT("Unable to establish link!!!\n"); | ||
1283 | return E1000_SUCCESS; | ||
1284 | } | ||
1285 | |||
1286 | /****************************************************************************** | ||
1287 | * Configures PHY autoneg and flow control advertisement settings | ||
1288 | * | ||
1289 | * hw - Struct containing variables accessed by shared code | ||
1290 | ******************************************************************************/ | ||
1291 | int32_t | ||
1292 | e1000_phy_setup_autoneg(struct e1000_hw *hw) | ||
1293 | { | ||
1294 | int32_t ret_val; | ||
1295 | uint16_t mii_autoneg_adv_reg; | ||
1296 | uint16_t mii_1000t_ctrl_reg; | ||
1297 | |||
1298 | DEBUGFUNC("e1000_phy_setup_autoneg"); | ||
1299 | |||
1300 | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | ||
1301 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | ||
1302 | if(ret_val) | ||
1303 | return ret_val; | ||
1304 | |||
1305 | /* Read the MII 1000Base-T Control Register (Address 9). */ | ||
1306 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | ||
1307 | if(ret_val) | ||
1308 | return ret_val; | ||
1309 | |||
1310 | /* Need to parse both autoneg_advertised and fc and set up | ||
1311 | * the appropriate PHY registers. First we will parse for | ||
1312 | * autoneg_advertised software override. Since we can advertise | ||
1313 | * a plethora of combinations, we need to check each bit | ||
1314 | * individually. | ||
1315 | */ | ||
1316 | |||
1317 | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | ||
1318 | * Advertisement Register (Address 4) and the 1000 mb speed bits in | ||
1319 | * the 1000Base-T Control Register (Address 9). | ||
1320 | */ | ||
1321 | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | ||
1322 | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | ||
1323 | |||
1324 | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | ||
1325 | |||
1326 | /* Do we want to advertise 10 Mb Half Duplex? */ | ||
1327 | if(hw->autoneg_advertised & ADVERTISE_10_HALF) { | ||
1328 | DEBUGOUT("Advertise 10mb Half duplex\n"); | ||
1329 | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | ||
1330 | } | ||
1331 | |||
1332 | /* Do we want to advertise 10 Mb Full Duplex? */ | ||
1333 | if(hw->autoneg_advertised & ADVERTISE_10_FULL) { | ||
1334 | DEBUGOUT("Advertise 10mb Full duplex\n"); | ||
1335 | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | ||
1336 | } | ||
1337 | |||
1338 | /* Do we want to advertise 100 Mb Half Duplex? */ | ||
1339 | if(hw->autoneg_advertised & ADVERTISE_100_HALF) { | ||
1340 | DEBUGOUT("Advertise 100mb Half duplex\n"); | ||
1341 | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | ||
1342 | } | ||
1343 | |||
1344 | /* Do we want to advertise 100 Mb Full Duplex? */ | ||
1345 | if(hw->autoneg_advertised & ADVERTISE_100_FULL) { | ||
1346 | DEBUGOUT("Advertise 100mb Full duplex\n"); | ||
1347 | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | ||
1348 | } | ||
1349 | |||
1350 | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | ||
1351 | if(hw->autoneg_advertised & ADVERTISE_1000_HALF) { | ||
1352 | DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); | ||
1353 | } | ||
1354 | |||
1355 | /* Do we want to advertise 1000 Mb Full Duplex? */ | ||
1356 | if(hw->autoneg_advertised & ADVERTISE_1000_FULL) { | ||
1357 | DEBUGOUT("Advertise 1000mb Full duplex\n"); | ||
1358 | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | ||
1359 | } | ||
1360 | |||
1361 | /* Check for a software override of the flow control settings, and | ||
1362 | * setup the PHY advertisement registers accordingly. If | ||
1363 | * auto-negotiation is enabled, then software will have to set the | ||
1364 | * "PAUSE" bits to the correct value in the Auto-Negotiation | ||
1365 | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | ||
1366 | * | ||
1367 | * The possible values of the "fc" parameter are: | ||
1368 | * 0: Flow control is completely disabled | ||
1369 | * 1: Rx flow control is enabled (we can receive pause frames | ||
1370 | * but not send pause frames). | ||
1371 | * 2: Tx flow control is enabled (we can send pause frames | ||
1372 | * but we do not support receiving pause frames). | ||
1373 | * 3: Both Rx and TX flow control (symmetric) are enabled. | ||
1374 | * other: No software override. The flow control configuration | ||
1375 | * in the EEPROM is used. | ||
1376 | */ | ||
1377 | switch (hw->fc) { | ||
1378 | case e1000_fc_none: /* 0 */ | ||
1379 | /* Flow control (RX & TX) is completely disabled by a | ||
1380 | * software over-ride. | ||
1381 | */ | ||
1382 | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1383 | break; | ||
1384 | case e1000_fc_rx_pause: /* 1 */ | ||
1385 | /* RX Flow control is enabled, and TX Flow control is | ||
1386 | * disabled, by a software over-ride. | ||
1387 | */ | ||
1388 | /* Since there really isn't a way to advertise that we are | ||
1389 | * capable of RX Pause ONLY, we will advertise that we | ||
1390 | * support both symmetric and asymmetric RX PAUSE. Later | ||
1391 | * (in e1000_config_fc_after_link_up) we will disable the | ||
1392 | *hw's ability to send PAUSE frames. | ||
1393 | */ | ||
1394 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1395 | break; | ||
1396 | case e1000_fc_tx_pause: /* 2 */ | ||
1397 | /* TX Flow control is enabled, and RX Flow control is | ||
1398 | * disabled, by a software over-ride. | ||
1399 | */ | ||
1400 | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | ||
1401 | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | ||
1402 | break; | ||
1403 | case e1000_fc_full: /* 3 */ | ||
1404 | /* Flow control (both RX and TX) is enabled by a software | ||
1405 | * over-ride. | ||
1406 | */ | ||
1407 | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | ||
1408 | break; | ||
1409 | default: | ||
1410 | DEBUGOUT("Flow control param set incorrectly\n"); | ||
1411 | return -E1000_ERR_CONFIG; | ||
1412 | } | ||
1413 | |||
1414 | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | ||
1415 | if(ret_val) | ||
1416 | return ret_val; | ||
1417 | |||
1418 | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | ||
1419 | |||
1420 | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | ||
1421 | if(ret_val) | ||
1422 | return ret_val; | ||
1423 | |||
1424 | return E1000_SUCCESS; | ||
1425 | } | ||
1426 | |||
1427 | /****************************************************************************** | ||
1428 | * Force PHY speed and duplex settings to hw->forced_speed_duplex | ||
1429 | * | ||
1430 | * hw - Struct containing variables accessed by shared code | ||
1431 | ******************************************************************************/ | ||
1432 | static int32_t | ||
1433 | e1000_phy_force_speed_duplex(struct e1000_hw *hw) | ||
1434 | { | ||
1435 | uint32_t ctrl; | ||
1436 | int32_t ret_val; | ||
1437 | uint16_t mii_ctrl_reg; | ||
1438 | uint16_t mii_status_reg; | ||
1439 | uint16_t phy_data; | ||
1440 | uint16_t i; | ||
1441 | |||
1442 | DEBUGFUNC("e1000_phy_force_speed_duplex"); | ||
1443 | |||
1444 | /* Turn off Flow control if we are forcing speed and duplex. */ | ||
1445 | hw->fc = e1000_fc_none; | ||
1446 | |||
1447 | DEBUGOUT1("hw->fc = %d\n", hw->fc); | ||
1448 | |||
1449 | /* Read the Device Control Register. */ | ||
1450 | ctrl = E1000_READ_REG(hw, CTRL); | ||
1451 | |||
1452 | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | ||
1453 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1454 | ctrl &= ~(DEVICE_SPEED_MASK); | ||
1455 | |||
1456 | /* Clear the Auto Speed Detect Enable bit. */ | ||
1457 | ctrl &= ~E1000_CTRL_ASDE; | ||
1458 | |||
1459 | /* Read the MII Control Register. */ | ||
1460 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | ||
1461 | if(ret_val) | ||
1462 | return ret_val; | ||
1463 | |||
1464 | /* We need to disable autoneg in order to force link and duplex. */ | ||
1465 | |||
1466 | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | ||
1467 | |||
1468 | /* Are we forcing Full or Half Duplex? */ | ||
1469 | if(hw->forced_speed_duplex == e1000_100_full || | ||
1470 | hw->forced_speed_duplex == e1000_10_full) { | ||
1471 | /* We want to force full duplex so we SET the full duplex bits in the | ||
1472 | * Device and MII Control Registers. | ||
1473 | */ | ||
1474 | ctrl |= E1000_CTRL_FD; | ||
1475 | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | ||
1476 | DEBUGOUT("Full Duplex\n"); | ||
1477 | } else { | ||
1478 | /* We want to force half duplex so we CLEAR the full duplex bits in | ||
1479 | * the Device and MII Control Registers. | ||
1480 | */ | ||
1481 | ctrl &= ~E1000_CTRL_FD; | ||
1482 | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | ||
1483 | DEBUGOUT("Half Duplex\n"); | ||
1484 | } | ||
1485 | |||
1486 | /* Are we forcing 100Mbps??? */ | ||
1487 | if(hw->forced_speed_duplex == e1000_100_full || | ||
1488 | hw->forced_speed_duplex == e1000_100_half) { | ||
1489 | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | ||
1490 | ctrl |= E1000_CTRL_SPD_100; | ||
1491 | mii_ctrl_reg |= MII_CR_SPEED_100; | ||
1492 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | ||
1493 | DEBUGOUT("Forcing 100mb "); | ||
1494 | } else { | ||
1495 | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | ||
1496 | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | ||
1497 | mii_ctrl_reg |= MII_CR_SPEED_10; | ||
1498 | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | ||
1499 | DEBUGOUT("Forcing 10mb "); | ||
1500 | } | ||
1501 | |||
1502 | e1000_config_collision_dist(hw); | ||
1503 | |||
1504 | /* Write the configured values back to the Device Control Reg. */ | ||
1505 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
1506 | |||
1507 | if (hw->phy_type == e1000_phy_m88) { | ||
1508 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1509 | if(ret_val) | ||
1510 | return ret_val; | ||
1511 | |||
1512 | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | ||
1513 | * forced whenever speed are duplex are forced. | ||
1514 | */ | ||
1515 | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | ||
1516 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1517 | if(ret_val) | ||
1518 | return ret_val; | ||
1519 | |||
1520 | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | ||
1521 | |||
1522 | /* Need to reset the PHY or these changes will be ignored */ | ||
1523 | mii_ctrl_reg |= MII_CR_RESET; | ||
1524 | } else { | ||
1525 | /* Clear Auto-Crossover to force MDI manually. IGP requires MDI | ||
1526 | * forced whenever speed or duplex are forced. | ||
1527 | */ | ||
1528 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | ||
1529 | if(ret_val) | ||
1530 | return ret_val; | ||
1531 | |||
1532 | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | ||
1533 | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | ||
1534 | |||
1535 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | ||
1536 | if(ret_val) | ||
1537 | return ret_val; | ||
1538 | } | ||
1539 | |||
1540 | /* Write back the modified PHY MII control register. */ | ||
1541 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | ||
1542 | if(ret_val) | ||
1543 | return ret_val; | ||
1544 | |||
1545 | udelay(1); | ||
1546 | |||
1547 | /* The wait_autoneg_complete flag may be a little misleading here. | ||
1548 | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | ||
1549 | * But we do want to delay for a period while forcing only so we | ||
1550 | * don't generate false No Link messages. So we will wait here | ||
1551 | * only if the user has set wait_autoneg_complete to 1, which is | ||
1552 | * the default. | ||
1553 | */ | ||
1554 | if(hw->wait_autoneg_complete) { | ||
1555 | /* We will wait for autoneg to complete. */ | ||
1556 | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | ||
1557 | mii_status_reg = 0; | ||
1558 | |||
1559 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | ||
1560 | for(i = PHY_FORCE_TIME; i > 0; i--) { | ||
1561 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | ||
1562 | * to be set. | ||
1563 | */ | ||
1564 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1565 | if(ret_val) | ||
1566 | return ret_val; | ||
1567 | |||
1568 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1569 | if(ret_val) | ||
1570 | return ret_val; | ||
1571 | |||
1572 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | ||
1573 | msec_delay(100); | ||
1574 | } | ||
1575 | if((i == 0) && | ||
1576 | (hw->phy_type == e1000_phy_m88)) { | ||
1577 | /* We didn't get link. Reset the DSP and wait again for link. */ | ||
1578 | ret_val = e1000_phy_reset_dsp(hw); | ||
1579 | if(ret_val) { | ||
1580 | DEBUGOUT("Error Resetting PHY DSP\n"); | ||
1581 | return ret_val; | ||
1582 | } | ||
1583 | } | ||
1584 | /* This loop will early-out if the link condition has been met. */ | ||
1585 | for(i = PHY_FORCE_TIME; i > 0; i--) { | ||
1586 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | ||
1587 | msec_delay(100); | ||
1588 | /* Read the MII Status Register and wait for Auto-Neg Complete bit | ||
1589 | * to be set. | ||
1590 | */ | ||
1591 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1592 | if(ret_val) | ||
1593 | return ret_val; | ||
1594 | |||
1595 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1596 | if(ret_val) | ||
1597 | return ret_val; | ||
1598 | } | ||
1599 | } | ||
1600 | |||
1601 | if (hw->phy_type == e1000_phy_m88) { | ||
1602 | /* Because we reset the PHY above, we need to re-force TX_CLK in the | ||
1603 | * Extended PHY Specific Control Register to 25MHz clock. This value | ||
1604 | * defaults back to a 2.5MHz clock when the PHY is reset. | ||
1605 | */ | ||
1606 | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | ||
1607 | if(ret_val) | ||
1608 | return ret_val; | ||
1609 | |||
1610 | phy_data |= M88E1000_EPSCR_TX_CLK_25; | ||
1611 | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | ||
1612 | if(ret_val) | ||
1613 | return ret_val; | ||
1614 | |||
1615 | /* In addition, because of the s/w reset above, we need to enable CRS on | ||
1616 | * TX. This must be set for both full and half duplex operation. | ||
1617 | */ | ||
1618 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
1619 | if(ret_val) | ||
1620 | return ret_val; | ||
1621 | |||
1622 | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | ||
1623 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | ||
1624 | if(ret_val) | ||
1625 | return ret_val; | ||
1626 | |||
1627 | if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | ||
1628 | (!hw->autoneg) && | ||
1629 | (hw->forced_speed_duplex == e1000_10_full || | ||
1630 | hw->forced_speed_duplex == e1000_10_half)) { | ||
1631 | ret_val = e1000_polarity_reversal_workaround(hw); | ||
1632 | if(ret_val) | ||
1633 | return ret_val; | ||
1634 | } | ||
1635 | } | ||
1636 | return E1000_SUCCESS; | ||
1637 | } | ||
1638 | |||
1639 | /****************************************************************************** | ||
1640 | * Sets the collision distance in the Transmit Control register | ||
1641 | * | ||
1642 | * hw - Struct containing variables accessed by shared code | ||
1643 | * | ||
1644 | * Link should have been established previously. Reads the speed and duplex | ||
1645 | * information from the Device Status register. | ||
1646 | ******************************************************************************/ | ||
1647 | void | ||
1648 | e1000_config_collision_dist(struct e1000_hw *hw) | ||
1649 | { | ||
1650 | uint32_t tctl; | ||
1651 | |||
1652 | DEBUGFUNC("e1000_config_collision_dist"); | ||
1653 | |||
1654 | tctl = E1000_READ_REG(hw, TCTL); | ||
1655 | |||
1656 | tctl &= ~E1000_TCTL_COLD; | ||
1657 | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | ||
1658 | |||
1659 | E1000_WRITE_REG(hw, TCTL, tctl); | ||
1660 | E1000_WRITE_FLUSH(hw); | ||
1661 | } | ||
1662 | |||
1663 | /****************************************************************************** | ||
1664 | * Sets MAC speed and duplex settings to reflect the those in the PHY | ||
1665 | * | ||
1666 | * hw - Struct containing variables accessed by shared code | ||
1667 | * mii_reg - data to write to the MII control register | ||
1668 | * | ||
1669 | * The contents of the PHY register containing the needed information need to | ||
1670 | * be passed in. | ||
1671 | ******************************************************************************/ | ||
1672 | static int32_t | ||
1673 | e1000_config_mac_to_phy(struct e1000_hw *hw) | ||
1674 | { | ||
1675 | uint32_t ctrl; | ||
1676 | int32_t ret_val; | ||
1677 | uint16_t phy_data; | ||
1678 | |||
1679 | DEBUGFUNC("e1000_config_mac_to_phy"); | ||
1680 | |||
1681 | /* Read the Device Control Register and set the bits to Force Speed | ||
1682 | * and Duplex. | ||
1683 | */ | ||
1684 | ctrl = E1000_READ_REG(hw, CTRL); | ||
1685 | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | ||
1686 | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | ||
1687 | |||
1688 | /* Set up duplex in the Device Control and Transmit Control | ||
1689 | * registers depending on negotiated values. | ||
1690 | */ | ||
1691 | if (hw->phy_type == e1000_phy_igp) { | ||
1692 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
1693 | &phy_data); | ||
1694 | if(ret_val) | ||
1695 | return ret_val; | ||
1696 | |||
1697 | if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD; | ||
1698 | else ctrl &= ~E1000_CTRL_FD; | ||
1699 | |||
1700 | e1000_config_collision_dist(hw); | ||
1701 | |||
1702 | /* Set up speed in the Device Control register depending on | ||
1703 | * negotiated values. | ||
1704 | */ | ||
1705 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1706 | IGP01E1000_PSSR_SPEED_1000MBPS) | ||
1707 | ctrl |= E1000_CTRL_SPD_1000; | ||
1708 | else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
1709 | IGP01E1000_PSSR_SPEED_100MBPS) | ||
1710 | ctrl |= E1000_CTRL_SPD_100; | ||
1711 | } else { | ||
1712 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
1713 | &phy_data); | ||
1714 | if(ret_val) | ||
1715 | return ret_val; | ||
1716 | |||
1717 | if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD; | ||
1718 | else ctrl &= ~E1000_CTRL_FD; | ||
1719 | |||
1720 | e1000_config_collision_dist(hw); | ||
1721 | |||
1722 | /* Set up speed in the Device Control register depending on | ||
1723 | * negotiated values. | ||
1724 | */ | ||
1725 | if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | ||
1726 | ctrl |= E1000_CTRL_SPD_1000; | ||
1727 | else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | ||
1728 | ctrl |= E1000_CTRL_SPD_100; | ||
1729 | } | ||
1730 | /* Write the configured values back to the Device Control Reg. */ | ||
1731 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
1732 | return E1000_SUCCESS; | ||
1733 | } | ||
1734 | |||
1735 | /****************************************************************************** | ||
1736 | * Forces the MAC's flow control settings. | ||
1737 | * | ||
1738 | * hw - Struct containing variables accessed by shared code | ||
1739 | * | ||
1740 | * Sets the TFCE and RFCE bits in the device control register to reflect | ||
1741 | * the adapter settings. TFCE and RFCE need to be explicitly set by | ||
1742 | * software when a Copper PHY is used because autonegotiation is managed | ||
1743 | * by the PHY rather than the MAC. Software must also configure these | ||
1744 | * bits when link is forced on a fiber connection. | ||
1745 | *****************************************************************************/ | ||
1746 | int32_t | ||
1747 | e1000_force_mac_fc(struct e1000_hw *hw) | ||
1748 | { | ||
1749 | uint32_t ctrl; | ||
1750 | |||
1751 | DEBUGFUNC("e1000_force_mac_fc"); | ||
1752 | |||
1753 | /* Get the current configuration of the Device Control Register */ | ||
1754 | ctrl = E1000_READ_REG(hw, CTRL); | ||
1755 | |||
1756 | /* Because we didn't get link via the internal auto-negotiation | ||
1757 | * mechanism (we either forced link or we got link via PHY | ||
1758 | * auto-neg), we have to manually enable/disable transmit an | ||
1759 | * receive flow control. | ||
1760 | * | ||
1761 | * The "Case" statement below enables/disable flow control | ||
1762 | * according to the "hw->fc" parameter. | ||
1763 | * | ||
1764 | * The possible values of the "fc" parameter are: | ||
1765 | * 0: Flow control is completely disabled | ||
1766 | * 1: Rx flow control is enabled (we can receive pause | ||
1767 | * frames but not send pause frames). | ||
1768 | * 2: Tx flow control is enabled (we can send pause frames | ||
1769 | * frames but we do not receive pause frames). | ||
1770 | * 3: Both Rx and TX flow control (symmetric) is enabled. | ||
1771 | * other: No other values should be possible at this point. | ||
1772 | */ | ||
1773 | |||
1774 | switch (hw->fc) { | ||
1775 | case e1000_fc_none: | ||
1776 | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | ||
1777 | break; | ||
1778 | case e1000_fc_rx_pause: | ||
1779 | ctrl &= (~E1000_CTRL_TFCE); | ||
1780 | ctrl |= E1000_CTRL_RFCE; | ||
1781 | break; | ||
1782 | case e1000_fc_tx_pause: | ||
1783 | ctrl &= (~E1000_CTRL_RFCE); | ||
1784 | ctrl |= E1000_CTRL_TFCE; | ||
1785 | break; | ||
1786 | case e1000_fc_full: | ||
1787 | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | ||
1788 | break; | ||
1789 | default: | ||
1790 | DEBUGOUT("Flow control param set incorrectly\n"); | ||
1791 | return -E1000_ERR_CONFIG; | ||
1792 | } | ||
1793 | |||
1794 | /* Disable TX Flow Control for 82542 (rev 2.0) */ | ||
1795 | if(hw->mac_type == e1000_82542_rev2_0) | ||
1796 | ctrl &= (~E1000_CTRL_TFCE); | ||
1797 | |||
1798 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
1799 | return E1000_SUCCESS; | ||
1800 | } | ||
1801 | |||
1802 | /****************************************************************************** | ||
1803 | * Configures flow control settings after link is established | ||
1804 | * | ||
1805 | * hw - Struct containing variables accessed by shared code | ||
1806 | * | ||
1807 | * Should be called immediately after a valid link has been established. | ||
1808 | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | ||
1809 | * and autonegotiation is enabled, the MAC flow control settings will be set | ||
1810 | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | ||
1811 | * and RFCE bits will be automaticaly set to the negotiated flow control mode. | ||
1812 | *****************************************************************************/ | ||
1813 | int32_t | ||
1814 | e1000_config_fc_after_link_up(struct e1000_hw *hw) | ||
1815 | { | ||
1816 | int32_t ret_val; | ||
1817 | uint16_t mii_status_reg; | ||
1818 | uint16_t mii_nway_adv_reg; | ||
1819 | uint16_t mii_nway_lp_ability_reg; | ||
1820 | uint16_t speed; | ||
1821 | uint16_t duplex; | ||
1822 | |||
1823 | DEBUGFUNC("e1000_config_fc_after_link_up"); | ||
1824 | |||
1825 | /* Check for the case where we have fiber media and auto-neg failed | ||
1826 | * so we had to force link. In this case, we need to force the | ||
1827 | * configuration of the MAC to match the "fc" parameter. | ||
1828 | */ | ||
1829 | if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || | ||
1830 | ((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed)) || | ||
1831 | ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { | ||
1832 | ret_val = e1000_force_mac_fc(hw); | ||
1833 | if(ret_val) { | ||
1834 | DEBUGOUT("Error forcing flow control settings\n"); | ||
1835 | return ret_val; | ||
1836 | } | ||
1837 | } | ||
1838 | |||
1839 | /* Check for the case where we have copper media and auto-neg is | ||
1840 | * enabled. In this case, we need to check and see if Auto-Neg | ||
1841 | * has completed, and if so, how the PHY and link partner has | ||
1842 | * flow control configured. | ||
1843 | */ | ||
1844 | if((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | ||
1845 | /* Read the MII Status Register and check to see if AutoNeg | ||
1846 | * has completed. We read this twice because this reg has | ||
1847 | * some "sticky" (latched) bits. | ||
1848 | */ | ||
1849 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1850 | if(ret_val) | ||
1851 | return ret_val; | ||
1852 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
1853 | if(ret_val) | ||
1854 | return ret_val; | ||
1855 | |||
1856 | if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | ||
1857 | /* The AutoNeg process has completed, so we now need to | ||
1858 | * read both the Auto Negotiation Advertisement Register | ||
1859 | * (Address 4) and the Auto_Negotiation Base Page Ability | ||
1860 | * Register (Address 5) to determine how flow control was | ||
1861 | * negotiated. | ||
1862 | */ | ||
1863 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | ||
1864 | &mii_nway_adv_reg); | ||
1865 | if(ret_val) | ||
1866 | return ret_val; | ||
1867 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | ||
1868 | &mii_nway_lp_ability_reg); | ||
1869 | if(ret_val) | ||
1870 | return ret_val; | ||
1871 | |||
1872 | /* Two bits in the Auto Negotiation Advertisement Register | ||
1873 | * (Address 4) and two bits in the Auto Negotiation Base | ||
1874 | * Page Ability Register (Address 5) determine flow control | ||
1875 | * for both the PHY and the link partner. The following | ||
1876 | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | ||
1877 | * 1999, describes these PAUSE resolution bits and how flow | ||
1878 | * control is determined based upon these settings. | ||
1879 | * NOTE: DC = Don't Care | ||
1880 | * | ||
1881 | * LOCAL DEVICE | LINK PARTNER | ||
1882 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | ||
1883 | *-------|---------|-------|---------|-------------------- | ||
1884 | * 0 | 0 | DC | DC | e1000_fc_none | ||
1885 | * 0 | 1 | 0 | DC | e1000_fc_none | ||
1886 | * 0 | 1 | 1 | 0 | e1000_fc_none | ||
1887 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1888 | * 1 | 0 | 0 | DC | e1000_fc_none | ||
1889 | * 1 | DC | 1 | DC | e1000_fc_full | ||
1890 | * 1 | 1 | 0 | 0 | e1000_fc_none | ||
1891 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1892 | * | ||
1893 | */ | ||
1894 | /* Are both PAUSE bits set to 1? If so, this implies | ||
1895 | * Symmetric Flow Control is enabled at both ends. The | ||
1896 | * ASM_DIR bits are irrelevant per the spec. | ||
1897 | * | ||
1898 | * For Symmetric Flow Control: | ||
1899 | * | ||
1900 | * LOCAL DEVICE | LINK PARTNER | ||
1901 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1902 | *-------|---------|-------|---------|-------------------- | ||
1903 | * 1 | DC | 1 | DC | e1000_fc_full | ||
1904 | * | ||
1905 | */ | ||
1906 | if((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1907 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | ||
1908 | /* Now we need to check if the user selected RX ONLY | ||
1909 | * of pause frames. In this case, we had to advertise | ||
1910 | * FULL flow control because we could not advertise RX | ||
1911 | * ONLY. Hence, we must now check to see if we need to | ||
1912 | * turn OFF the TRANSMISSION of PAUSE frames. | ||
1913 | */ | ||
1914 | if(hw->original_fc == e1000_fc_full) { | ||
1915 | hw->fc = e1000_fc_full; | ||
1916 | DEBUGOUT("Flow Control = FULL.\r\n"); | ||
1917 | } else { | ||
1918 | hw->fc = e1000_fc_rx_pause; | ||
1919 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | ||
1920 | } | ||
1921 | } | ||
1922 | /* For receiving PAUSE frames ONLY. | ||
1923 | * | ||
1924 | * LOCAL DEVICE | LINK PARTNER | ||
1925 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1926 | *-------|---------|-------|---------|-------------------- | ||
1927 | * 0 | 1 | 1 | 1 | e1000_fc_tx_pause | ||
1928 | * | ||
1929 | */ | ||
1930 | else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1931 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1932 | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1933 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1934 | hw->fc = e1000_fc_tx_pause; | ||
1935 | DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n"); | ||
1936 | } | ||
1937 | /* For transmitting PAUSE frames ONLY. | ||
1938 | * | ||
1939 | * LOCAL DEVICE | LINK PARTNER | ||
1940 | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | ||
1941 | *-------|---------|-------|---------|-------------------- | ||
1942 | * 1 | 1 | 0 | 1 | e1000_fc_rx_pause | ||
1943 | * | ||
1944 | */ | ||
1945 | else if((mii_nway_adv_reg & NWAY_AR_PAUSE) && | ||
1946 | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | ||
1947 | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | ||
1948 | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | ||
1949 | hw->fc = e1000_fc_rx_pause; | ||
1950 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | ||
1951 | } | ||
1952 | /* Per the IEEE spec, at this point flow control should be | ||
1953 | * disabled. However, we want to consider that we could | ||
1954 | * be connected to a legacy switch that doesn't advertise | ||
1955 | * desired flow control, but can be forced on the link | ||
1956 | * partner. So if we advertised no flow control, that is | ||
1957 | * what we will resolve to. If we advertised some kind of | ||
1958 | * receive capability (Rx Pause Only or Full Flow Control) | ||
1959 | * and the link partner advertised none, we will configure | ||
1960 | * ourselves to enable Rx Flow Control only. We can do | ||
1961 | * this safely for two reasons: If the link partner really | ||
1962 | * didn't want flow control enabled, and we enable Rx, no | ||
1963 | * harm done since we won't be receiving any PAUSE frames | ||
1964 | * anyway. If the intent on the link partner was to have | ||
1965 | * flow control enabled, then by us enabling RX only, we | ||
1966 | * can at least receive pause frames and process them. | ||
1967 | * This is a good idea because in most cases, since we are | ||
1968 | * predominantly a server NIC, more times than not we will | ||
1969 | * be asked to delay transmission of packets than asking | ||
1970 | * our link partner to pause transmission of frames. | ||
1971 | */ | ||
1972 | else if((hw->original_fc == e1000_fc_none || | ||
1973 | hw->original_fc == e1000_fc_tx_pause) || | ||
1974 | hw->fc_strict_ieee) { | ||
1975 | hw->fc = e1000_fc_none; | ||
1976 | DEBUGOUT("Flow Control = NONE.\r\n"); | ||
1977 | } else { | ||
1978 | hw->fc = e1000_fc_rx_pause; | ||
1979 | DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n"); | ||
1980 | } | ||
1981 | |||
1982 | /* Now we need to do one last check... If we auto- | ||
1983 | * negotiated to HALF DUPLEX, flow control should not be | ||
1984 | * enabled per IEEE 802.3 spec. | ||
1985 | */ | ||
1986 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
1987 | if(ret_val) { | ||
1988 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
1989 | return ret_val; | ||
1990 | } | ||
1991 | |||
1992 | if(duplex == HALF_DUPLEX) | ||
1993 | hw->fc = e1000_fc_none; | ||
1994 | |||
1995 | /* Now we call a subroutine to actually force the MAC | ||
1996 | * controller to use the correct flow control settings. | ||
1997 | */ | ||
1998 | ret_val = e1000_force_mac_fc(hw); | ||
1999 | if(ret_val) { | ||
2000 | DEBUGOUT("Error forcing flow control settings\n"); | ||
2001 | return ret_val; | ||
2002 | } | ||
2003 | } else { | ||
2004 | DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n"); | ||
2005 | } | ||
2006 | } | ||
2007 | return E1000_SUCCESS; | ||
2008 | } | ||
2009 | |||
2010 | /****************************************************************************** | ||
2011 | * Checks to see if the link status of the hardware has changed. | ||
2012 | * | ||
2013 | * hw - Struct containing variables accessed by shared code | ||
2014 | * | ||
2015 | * Called by any function that needs to check the link status of the adapter. | ||
2016 | *****************************************************************************/ | ||
2017 | int32_t | ||
2018 | e1000_check_for_link(struct e1000_hw *hw) | ||
2019 | { | ||
2020 | uint32_t rxcw = 0; | ||
2021 | uint32_t ctrl; | ||
2022 | uint32_t status; | ||
2023 | uint32_t rctl; | ||
2024 | uint32_t icr; | ||
2025 | uint32_t signal = 0; | ||
2026 | int32_t ret_val; | ||
2027 | uint16_t phy_data; | ||
2028 | |||
2029 | DEBUGFUNC("e1000_check_for_link"); | ||
2030 | |||
2031 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2032 | status = E1000_READ_REG(hw, STATUS); | ||
2033 | |||
2034 | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | ||
2035 | * set when the optics detect a signal. On older adapters, it will be | ||
2036 | * cleared when there is a signal. This applies to fiber media only. | ||
2037 | */ | ||
2038 | if((hw->media_type == e1000_media_type_fiber) || | ||
2039 | (hw->media_type == e1000_media_type_internal_serdes)) { | ||
2040 | rxcw = E1000_READ_REG(hw, RXCW); | ||
2041 | |||
2042 | if(hw->media_type == e1000_media_type_fiber) { | ||
2043 | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | ||
2044 | if(status & E1000_STATUS_LU) | ||
2045 | hw->get_link_status = FALSE; | ||
2046 | } | ||
2047 | } | ||
2048 | |||
2049 | /* If we have a copper PHY then we only want to go out to the PHY | ||
2050 | * registers to see if Auto-Neg has completed and/or if our link | ||
2051 | * status has changed. The get_link_status flag will be set if we | ||
2052 | * receive a Link Status Change interrupt or we have Rx Sequence | ||
2053 | * Errors. | ||
2054 | */ | ||
2055 | if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | ||
2056 | /* First we want to see if the MII Status Register reports | ||
2057 | * link. If so, then we want to get the current speed/duplex | ||
2058 | * of the PHY. | ||
2059 | * Read the register twice since the link bit is sticky. | ||
2060 | */ | ||
2061 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2062 | if(ret_val) | ||
2063 | return ret_val; | ||
2064 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2065 | if(ret_val) | ||
2066 | return ret_val; | ||
2067 | |||
2068 | if(phy_data & MII_SR_LINK_STATUS) { | ||
2069 | hw->get_link_status = FALSE; | ||
2070 | /* Check if there was DownShift, must be checked immediately after | ||
2071 | * link-up */ | ||
2072 | e1000_check_downshift(hw); | ||
2073 | |||
2074 | /* If we are on 82544 or 82543 silicon and speed/duplex | ||
2075 | * are forced to 10H or 10F, then we will implement the polarity | ||
2076 | * reversal workaround. We disable interrupts first, and upon | ||
2077 | * returning, place the devices interrupt state to its previous | ||
2078 | * value except for the link status change interrupt which will | ||
2079 | * happen due to the execution of this workaround. | ||
2080 | */ | ||
2081 | |||
2082 | if((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | ||
2083 | (!hw->autoneg) && | ||
2084 | (hw->forced_speed_duplex == e1000_10_full || | ||
2085 | hw->forced_speed_duplex == e1000_10_half)) { | ||
2086 | E1000_WRITE_REG(hw, IMC, 0xffffffff); | ||
2087 | ret_val = e1000_polarity_reversal_workaround(hw); | ||
2088 | icr = E1000_READ_REG(hw, ICR); | ||
2089 | E1000_WRITE_REG(hw, ICS, (icr & ~E1000_ICS_LSC)); | ||
2090 | E1000_WRITE_REG(hw, IMS, IMS_ENABLE_MASK); | ||
2091 | } | ||
2092 | |||
2093 | } else { | ||
2094 | /* No link detected */ | ||
2095 | e1000_config_dsp_after_link_change(hw, FALSE); | ||
2096 | return 0; | ||
2097 | } | ||
2098 | |||
2099 | /* If we are forcing speed/duplex, then we simply return since | ||
2100 | * we have already determined whether we have link or not. | ||
2101 | */ | ||
2102 | if(!hw->autoneg) return -E1000_ERR_CONFIG; | ||
2103 | |||
2104 | /* optimize the dsp settings for the igp phy */ | ||
2105 | e1000_config_dsp_after_link_change(hw, TRUE); | ||
2106 | |||
2107 | /* We have a M88E1000 PHY and Auto-Neg is enabled. If we | ||
2108 | * have Si on board that is 82544 or newer, Auto | ||
2109 | * Speed Detection takes care of MAC speed/duplex | ||
2110 | * configuration. So we only need to configure Collision | ||
2111 | * Distance in the MAC. Otherwise, we need to force | ||
2112 | * speed/duplex on the MAC to the current PHY speed/duplex | ||
2113 | * settings. | ||
2114 | */ | ||
2115 | if(hw->mac_type >= e1000_82544) | ||
2116 | e1000_config_collision_dist(hw); | ||
2117 | else { | ||
2118 | ret_val = e1000_config_mac_to_phy(hw); | ||
2119 | if(ret_val) { | ||
2120 | DEBUGOUT("Error configuring MAC to PHY settings\n"); | ||
2121 | return ret_val; | ||
2122 | } | ||
2123 | } | ||
2124 | |||
2125 | /* Configure Flow Control now that Auto-Neg has completed. First, we | ||
2126 | * need to restore the desired flow control settings because we may | ||
2127 | * have had to re-autoneg with a different link partner. | ||
2128 | */ | ||
2129 | ret_val = e1000_config_fc_after_link_up(hw); | ||
2130 | if(ret_val) { | ||
2131 | DEBUGOUT("Error configuring flow control\n"); | ||
2132 | return ret_val; | ||
2133 | } | ||
2134 | |||
2135 | /* At this point we know that we are on copper and we have | ||
2136 | * auto-negotiated link. These are conditions for checking the link | ||
2137 | * partner capability register. We use the link speed to determine if | ||
2138 | * TBI compatibility needs to be turned on or off. If the link is not | ||
2139 | * at gigabit speed, then TBI compatibility is not needed. If we are | ||
2140 | * at gigabit speed, we turn on TBI compatibility. | ||
2141 | */ | ||
2142 | if(hw->tbi_compatibility_en) { | ||
2143 | uint16_t speed, duplex; | ||
2144 | e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
2145 | if(speed != SPEED_1000) { | ||
2146 | /* If link speed is not set to gigabit speed, we do not need | ||
2147 | * to enable TBI compatibility. | ||
2148 | */ | ||
2149 | if(hw->tbi_compatibility_on) { | ||
2150 | /* If we previously were in the mode, turn it off. */ | ||
2151 | rctl = E1000_READ_REG(hw, RCTL); | ||
2152 | rctl &= ~E1000_RCTL_SBP; | ||
2153 | E1000_WRITE_REG(hw, RCTL, rctl); | ||
2154 | hw->tbi_compatibility_on = FALSE; | ||
2155 | } | ||
2156 | } else { | ||
2157 | /* If TBI compatibility is was previously off, turn it on. For | ||
2158 | * compatibility with a TBI link partner, we will store bad | ||
2159 | * packets. Some frames have an additional byte on the end and | ||
2160 | * will look like CRC errors to to the hardware. | ||
2161 | */ | ||
2162 | if(!hw->tbi_compatibility_on) { | ||
2163 | hw->tbi_compatibility_on = TRUE; | ||
2164 | rctl = E1000_READ_REG(hw, RCTL); | ||
2165 | rctl |= E1000_RCTL_SBP; | ||
2166 | E1000_WRITE_REG(hw, RCTL, rctl); | ||
2167 | } | ||
2168 | } | ||
2169 | } | ||
2170 | } | ||
2171 | /* If we don't have link (auto-negotiation failed or link partner cannot | ||
2172 | * auto-negotiate), the cable is plugged in (we have signal), and our | ||
2173 | * link partner is not trying to auto-negotiate with us (we are receiving | ||
2174 | * idles or data), we need to force link up. We also need to give | ||
2175 | * auto-negotiation time to complete, in case the cable was just plugged | ||
2176 | * in. The autoneg_failed flag does this. | ||
2177 | */ | ||
2178 | else if((((hw->media_type == e1000_media_type_fiber) && | ||
2179 | ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || | ||
2180 | (hw->media_type == e1000_media_type_internal_serdes)) && | ||
2181 | (!(status & E1000_STATUS_LU)) && | ||
2182 | (!(rxcw & E1000_RXCW_C))) { | ||
2183 | if(hw->autoneg_failed == 0) { | ||
2184 | hw->autoneg_failed = 1; | ||
2185 | return 0; | ||
2186 | } | ||
2187 | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); | ||
2188 | |||
2189 | /* Disable auto-negotiation in the TXCW register */ | ||
2190 | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | ||
2191 | |||
2192 | /* Force link-up and also force full-duplex. */ | ||
2193 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2194 | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | ||
2195 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
2196 | |||
2197 | /* Configure Flow Control after forcing link up. */ | ||
2198 | ret_val = e1000_config_fc_after_link_up(hw); | ||
2199 | if(ret_val) { | ||
2200 | DEBUGOUT("Error configuring flow control\n"); | ||
2201 | return ret_val; | ||
2202 | } | ||
2203 | } | ||
2204 | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable | ||
2205 | * auto-negotiation in the TXCW register and disable forced link in the | ||
2206 | * Device Control register in an attempt to auto-negotiate with our link | ||
2207 | * partner. | ||
2208 | */ | ||
2209 | else if(((hw->media_type == e1000_media_type_fiber) || | ||
2210 | (hw->media_type == e1000_media_type_internal_serdes)) && | ||
2211 | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | ||
2212 | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); | ||
2213 | E1000_WRITE_REG(hw, TXCW, hw->txcw); | ||
2214 | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); | ||
2215 | |||
2216 | hw->serdes_link_down = FALSE; | ||
2217 | } | ||
2218 | /* If we force link for non-auto-negotiation switch, check link status | ||
2219 | * based on MAC synchronization for internal serdes media type. | ||
2220 | */ | ||
2221 | else if((hw->media_type == e1000_media_type_internal_serdes) && | ||
2222 | !(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { | ||
2223 | /* SYNCH bit and IV bit are sticky. */ | ||
2224 | udelay(10); | ||
2225 | if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) { | ||
2226 | if(!(rxcw & E1000_RXCW_IV)) { | ||
2227 | hw->serdes_link_down = FALSE; | ||
2228 | DEBUGOUT("SERDES: Link is up.\n"); | ||
2229 | } | ||
2230 | } else { | ||
2231 | hw->serdes_link_down = TRUE; | ||
2232 | DEBUGOUT("SERDES: Link is down.\n"); | ||
2233 | } | ||
2234 | } | ||
2235 | if((hw->media_type == e1000_media_type_internal_serdes) && | ||
2236 | (E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) { | ||
2237 | hw->serdes_link_down = !(E1000_STATUS_LU & E1000_READ_REG(hw, STATUS)); | ||
2238 | } | ||
2239 | return E1000_SUCCESS; | ||
2240 | } | ||
2241 | |||
2242 | /****************************************************************************** | ||
2243 | * Detects the current speed and duplex settings of the hardware. | ||
2244 | * | ||
2245 | * hw - Struct containing variables accessed by shared code | ||
2246 | * speed - Speed of the connection | ||
2247 | * duplex - Duplex setting of the connection | ||
2248 | *****************************************************************************/ | ||
2249 | int32_t | ||
2250 | e1000_get_speed_and_duplex(struct e1000_hw *hw, | ||
2251 | uint16_t *speed, | ||
2252 | uint16_t *duplex) | ||
2253 | { | ||
2254 | uint32_t status; | ||
2255 | int32_t ret_val; | ||
2256 | uint16_t phy_data; | ||
2257 | |||
2258 | DEBUGFUNC("e1000_get_speed_and_duplex"); | ||
2259 | |||
2260 | if(hw->mac_type >= e1000_82543) { | ||
2261 | status = E1000_READ_REG(hw, STATUS); | ||
2262 | if(status & E1000_STATUS_SPEED_1000) { | ||
2263 | *speed = SPEED_1000; | ||
2264 | DEBUGOUT("1000 Mbs, "); | ||
2265 | } else if(status & E1000_STATUS_SPEED_100) { | ||
2266 | *speed = SPEED_100; | ||
2267 | DEBUGOUT("100 Mbs, "); | ||
2268 | } else { | ||
2269 | *speed = SPEED_10; | ||
2270 | DEBUGOUT("10 Mbs, "); | ||
2271 | } | ||
2272 | |||
2273 | if(status & E1000_STATUS_FD) { | ||
2274 | *duplex = FULL_DUPLEX; | ||
2275 | DEBUGOUT("Full Duplex\r\n"); | ||
2276 | } else { | ||
2277 | *duplex = HALF_DUPLEX; | ||
2278 | DEBUGOUT(" Half Duplex\r\n"); | ||
2279 | } | ||
2280 | } else { | ||
2281 | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); | ||
2282 | *speed = SPEED_1000; | ||
2283 | *duplex = FULL_DUPLEX; | ||
2284 | } | ||
2285 | |||
2286 | /* IGP01 PHY may advertise full duplex operation after speed downgrade even | ||
2287 | * if it is operating at half duplex. Here we set the duplex settings to | ||
2288 | * match the duplex in the link partner's capabilities. | ||
2289 | */ | ||
2290 | if(hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | ||
2291 | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | ||
2292 | if(ret_val) | ||
2293 | return ret_val; | ||
2294 | |||
2295 | if(!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | ||
2296 | *duplex = HALF_DUPLEX; | ||
2297 | else { | ||
2298 | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | ||
2299 | if(ret_val) | ||
2300 | return ret_val; | ||
2301 | if((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || | ||
2302 | (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | ||
2303 | *duplex = HALF_DUPLEX; | ||
2304 | } | ||
2305 | } | ||
2306 | |||
2307 | return E1000_SUCCESS; | ||
2308 | } | ||
2309 | |||
2310 | /****************************************************************************** | ||
2311 | * Blocks until autoneg completes or times out (~4.5 seconds) | ||
2312 | * | ||
2313 | * hw - Struct containing variables accessed by shared code | ||
2314 | ******************************************************************************/ | ||
2315 | int32_t | ||
2316 | e1000_wait_autoneg(struct e1000_hw *hw) | ||
2317 | { | ||
2318 | int32_t ret_val; | ||
2319 | uint16_t i; | ||
2320 | uint16_t phy_data; | ||
2321 | |||
2322 | DEBUGFUNC("e1000_wait_autoneg"); | ||
2323 | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | ||
2324 | |||
2325 | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | ||
2326 | for(i = PHY_AUTO_NEG_TIME; i > 0; i--) { | ||
2327 | /* Read the MII Status Register and wait for Auto-Neg | ||
2328 | * Complete bit to be set. | ||
2329 | */ | ||
2330 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2331 | if(ret_val) | ||
2332 | return ret_val; | ||
2333 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
2334 | if(ret_val) | ||
2335 | return ret_val; | ||
2336 | if(phy_data & MII_SR_AUTONEG_COMPLETE) { | ||
2337 | return E1000_SUCCESS; | ||
2338 | } | ||
2339 | msec_delay(100); | ||
2340 | } | ||
2341 | return E1000_SUCCESS; | ||
2342 | } | ||
2343 | |||
2344 | /****************************************************************************** | ||
2345 | * Raises the Management Data Clock | ||
2346 | * | ||
2347 | * hw - Struct containing variables accessed by shared code | ||
2348 | * ctrl - Device control register's current value | ||
2349 | ******************************************************************************/ | ||
2350 | static void | ||
2351 | e1000_raise_mdi_clk(struct e1000_hw *hw, | ||
2352 | uint32_t *ctrl) | ||
2353 | { | ||
2354 | /* Raise the clock input to the Management Data Clock (by setting the MDC | ||
2355 | * bit), and then delay 10 microseconds. | ||
2356 | */ | ||
2357 | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); | ||
2358 | E1000_WRITE_FLUSH(hw); | ||
2359 | udelay(10); | ||
2360 | } | ||
2361 | |||
2362 | /****************************************************************************** | ||
2363 | * Lowers the Management Data Clock | ||
2364 | * | ||
2365 | * hw - Struct containing variables accessed by shared code | ||
2366 | * ctrl - Device control register's current value | ||
2367 | ******************************************************************************/ | ||
2368 | static void | ||
2369 | e1000_lower_mdi_clk(struct e1000_hw *hw, | ||
2370 | uint32_t *ctrl) | ||
2371 | { | ||
2372 | /* Lower the clock input to the Management Data Clock (by clearing the MDC | ||
2373 | * bit), and then delay 10 microseconds. | ||
2374 | */ | ||
2375 | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); | ||
2376 | E1000_WRITE_FLUSH(hw); | ||
2377 | udelay(10); | ||
2378 | } | ||
2379 | |||
2380 | /****************************************************************************** | ||
2381 | * Shifts data bits out to the PHY | ||
2382 | * | ||
2383 | * hw - Struct containing variables accessed by shared code | ||
2384 | * data - Data to send out to the PHY | ||
2385 | * count - Number of bits to shift out | ||
2386 | * | ||
2387 | * Bits are shifted out in MSB to LSB order. | ||
2388 | ******************************************************************************/ | ||
2389 | static void | ||
2390 | e1000_shift_out_mdi_bits(struct e1000_hw *hw, | ||
2391 | uint32_t data, | ||
2392 | uint16_t count) | ||
2393 | { | ||
2394 | uint32_t ctrl; | ||
2395 | uint32_t mask; | ||
2396 | |||
2397 | /* We need to shift "count" number of bits out to the PHY. So, the value | ||
2398 | * in the "data" parameter will be shifted out to the PHY one bit at a | ||
2399 | * time. In order to do this, "data" must be broken down into bits. | ||
2400 | */ | ||
2401 | mask = 0x01; | ||
2402 | mask <<= (count - 1); | ||
2403 | |||
2404 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2405 | |||
2406 | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | ||
2407 | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | ||
2408 | |||
2409 | while(mask) { | ||
2410 | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | ||
2411 | * then raising and lowering the Management Data Clock. A "0" is | ||
2412 | * shifted out to the PHY by setting the MDIO bit to "0" and then | ||
2413 | * raising and lowering the clock. | ||
2414 | */ | ||
2415 | if(data & mask) ctrl |= E1000_CTRL_MDIO; | ||
2416 | else ctrl &= ~E1000_CTRL_MDIO; | ||
2417 | |||
2418 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
2419 | E1000_WRITE_FLUSH(hw); | ||
2420 | |||
2421 | udelay(10); | ||
2422 | |||
2423 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2424 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2425 | |||
2426 | mask = mask >> 1; | ||
2427 | } | ||
2428 | } | ||
2429 | |||
2430 | /****************************************************************************** | ||
2431 | * Shifts data bits in from the PHY | ||
2432 | * | ||
2433 | * hw - Struct containing variables accessed by shared code | ||
2434 | * | ||
2435 | * Bits are shifted in in MSB to LSB order. | ||
2436 | ******************************************************************************/ | ||
2437 | static uint16_t | ||
2438 | e1000_shift_in_mdi_bits(struct e1000_hw *hw) | ||
2439 | { | ||
2440 | uint32_t ctrl; | ||
2441 | uint16_t data = 0; | ||
2442 | uint8_t i; | ||
2443 | |||
2444 | /* In order to read a register from the PHY, we need to shift in a total | ||
2445 | * of 18 bits from the PHY. The first two bit (turnaround) times are used | ||
2446 | * to avoid contention on the MDIO pin when a read operation is performed. | ||
2447 | * These two bits are ignored by us and thrown away. Bits are "shifted in" | ||
2448 | * by raising the input to the Management Data Clock (setting the MDC bit), | ||
2449 | * and then reading the value of the MDIO bit. | ||
2450 | */ | ||
2451 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2452 | |||
2453 | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | ||
2454 | ctrl &= ~E1000_CTRL_MDIO_DIR; | ||
2455 | ctrl &= ~E1000_CTRL_MDIO; | ||
2456 | |||
2457 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
2458 | E1000_WRITE_FLUSH(hw); | ||
2459 | |||
2460 | /* Raise and Lower the clock before reading in the data. This accounts for | ||
2461 | * the turnaround bits. The first clock occurred when we clocked out the | ||
2462 | * last bit of the Register Address. | ||
2463 | */ | ||
2464 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2465 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2466 | |||
2467 | for(data = 0, i = 0; i < 16; i++) { | ||
2468 | data = data << 1; | ||
2469 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2470 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2471 | /* Check to see if we shifted in a "1". */ | ||
2472 | if(ctrl & E1000_CTRL_MDIO) data |= 1; | ||
2473 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2474 | } | ||
2475 | |||
2476 | e1000_raise_mdi_clk(hw, &ctrl); | ||
2477 | e1000_lower_mdi_clk(hw, &ctrl); | ||
2478 | |||
2479 | return data; | ||
2480 | } | ||
2481 | |||
2482 | /***************************************************************************** | ||
2483 | * Reads the value from a PHY register, if the value is on a specific non zero | ||
2484 | * page, sets the page first. | ||
2485 | * hw - Struct containing variables accessed by shared code | ||
2486 | * reg_addr - address of the PHY register to read | ||
2487 | ******************************************************************************/ | ||
2488 | int32_t | ||
2489 | e1000_read_phy_reg(struct e1000_hw *hw, | ||
2490 | uint32_t reg_addr, | ||
2491 | uint16_t *phy_data) | ||
2492 | { | ||
2493 | uint32_t ret_val; | ||
2494 | |||
2495 | DEBUGFUNC("e1000_read_phy_reg"); | ||
2496 | |||
2497 | |||
2498 | if(hw->phy_type == e1000_phy_igp && | ||
2499 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
2500 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
2501 | (uint16_t)reg_addr); | ||
2502 | if(ret_val) { | ||
2503 | return ret_val; | ||
2504 | } | ||
2505 | } | ||
2506 | |||
2507 | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
2508 | phy_data); | ||
2509 | |||
2510 | return ret_val; | ||
2511 | } | ||
2512 | |||
2513 | int32_t | ||
2514 | e1000_read_phy_reg_ex(struct e1000_hw *hw, | ||
2515 | uint32_t reg_addr, | ||
2516 | uint16_t *phy_data) | ||
2517 | { | ||
2518 | uint32_t i; | ||
2519 | uint32_t mdic = 0; | ||
2520 | const uint32_t phy_addr = 1; | ||
2521 | |||
2522 | DEBUGFUNC("e1000_read_phy_reg_ex"); | ||
2523 | |||
2524 | if(reg_addr > MAX_PHY_REG_ADDRESS) { | ||
2525 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||
2526 | return -E1000_ERR_PARAM; | ||
2527 | } | ||
2528 | |||
2529 | if(hw->mac_type > e1000_82543) { | ||
2530 | /* Set up Op-code, Phy Address, and register address in the MDI | ||
2531 | * Control register. The MAC will take care of interfacing with the | ||
2532 | * PHY to retrieve the desired data. | ||
2533 | */ | ||
2534 | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | ||
2535 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
2536 | (E1000_MDIC_OP_READ)); | ||
2537 | |||
2538 | E1000_WRITE_REG(hw, MDIC, mdic); | ||
2539 | |||
2540 | /* Poll the ready bit to see if the MDI read completed */ | ||
2541 | for(i = 0; i < 64; i++) { | ||
2542 | udelay(50); | ||
2543 | mdic = E1000_READ_REG(hw, MDIC); | ||
2544 | if(mdic & E1000_MDIC_READY) break; | ||
2545 | } | ||
2546 | if(!(mdic & E1000_MDIC_READY)) { | ||
2547 | DEBUGOUT("MDI Read did not complete\n"); | ||
2548 | return -E1000_ERR_PHY; | ||
2549 | } | ||
2550 | if(mdic & E1000_MDIC_ERROR) { | ||
2551 | DEBUGOUT("MDI Error\n"); | ||
2552 | return -E1000_ERR_PHY; | ||
2553 | } | ||
2554 | *phy_data = (uint16_t) mdic; | ||
2555 | } else { | ||
2556 | /* We must first send a preamble through the MDIO pin to signal the | ||
2557 | * beginning of an MII instruction. This is done by sending 32 | ||
2558 | * consecutive "1" bits. | ||
2559 | */ | ||
2560 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | ||
2561 | |||
2562 | /* Now combine the next few fields that are required for a read | ||
2563 | * operation. We use this method instead of calling the | ||
2564 | * e1000_shift_out_mdi_bits routine five different times. The format of | ||
2565 | * a MII read instruction consists of a shift out of 14 bits and is | ||
2566 | * defined as follows: | ||
2567 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | ||
2568 | * followed by a shift in of 18 bits. This first two bits shifted in | ||
2569 | * are TurnAround bits used to avoid contention on the MDIO pin when a | ||
2570 | * READ operation is performed. These two bits are thrown away | ||
2571 | * followed by a shift in of 16 bits which contains the desired data. | ||
2572 | */ | ||
2573 | mdic = ((reg_addr) | (phy_addr << 5) | | ||
2574 | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | ||
2575 | |||
2576 | e1000_shift_out_mdi_bits(hw, mdic, 14); | ||
2577 | |||
2578 | /* Now that we've shifted out the read command to the MII, we need to | ||
2579 | * "shift in" the 16-bit value (18 total bits) of the requested PHY | ||
2580 | * register address. | ||
2581 | */ | ||
2582 | *phy_data = e1000_shift_in_mdi_bits(hw); | ||
2583 | } | ||
2584 | return E1000_SUCCESS; | ||
2585 | } | ||
2586 | |||
2587 | /****************************************************************************** | ||
2588 | * Writes a value to a PHY register | ||
2589 | * | ||
2590 | * hw - Struct containing variables accessed by shared code | ||
2591 | * reg_addr - address of the PHY register to write | ||
2592 | * data - data to write to the PHY | ||
2593 | ******************************************************************************/ | ||
2594 | int32_t | ||
2595 | e1000_write_phy_reg(struct e1000_hw *hw, | ||
2596 | uint32_t reg_addr, | ||
2597 | uint16_t phy_data) | ||
2598 | { | ||
2599 | uint32_t ret_val; | ||
2600 | |||
2601 | DEBUGFUNC("e1000_write_phy_reg"); | ||
2602 | |||
2603 | |||
2604 | if(hw->phy_type == e1000_phy_igp && | ||
2605 | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | ||
2606 | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | ||
2607 | (uint16_t)reg_addr); | ||
2608 | if(ret_val) { | ||
2609 | return ret_val; | ||
2610 | } | ||
2611 | } | ||
2612 | |||
2613 | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | ||
2614 | phy_data); | ||
2615 | |||
2616 | return ret_val; | ||
2617 | } | ||
2618 | |||
2619 | int32_t | ||
2620 | e1000_write_phy_reg_ex(struct e1000_hw *hw, | ||
2621 | uint32_t reg_addr, | ||
2622 | uint16_t phy_data) | ||
2623 | { | ||
2624 | uint32_t i; | ||
2625 | uint32_t mdic = 0; | ||
2626 | const uint32_t phy_addr = 1; | ||
2627 | |||
2628 | DEBUGFUNC("e1000_write_phy_reg_ex"); | ||
2629 | |||
2630 | if(reg_addr > MAX_PHY_REG_ADDRESS) { | ||
2631 | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | ||
2632 | return -E1000_ERR_PARAM; | ||
2633 | } | ||
2634 | |||
2635 | if(hw->mac_type > e1000_82543) { | ||
2636 | /* Set up Op-code, Phy Address, register address, and data intended | ||
2637 | * for the PHY register in the MDI Control register. The MAC will take | ||
2638 | * care of interfacing with the PHY to send the desired data. | ||
2639 | */ | ||
2640 | mdic = (((uint32_t) phy_data) | | ||
2641 | (reg_addr << E1000_MDIC_REG_SHIFT) | | ||
2642 | (phy_addr << E1000_MDIC_PHY_SHIFT) | | ||
2643 | (E1000_MDIC_OP_WRITE)); | ||
2644 | |||
2645 | E1000_WRITE_REG(hw, MDIC, mdic); | ||
2646 | |||
2647 | /* Poll the ready bit to see if the MDI read completed */ | ||
2648 | for(i = 0; i < 640; i++) { | ||
2649 | udelay(5); | ||
2650 | mdic = E1000_READ_REG(hw, MDIC); | ||
2651 | if(mdic & E1000_MDIC_READY) break; | ||
2652 | } | ||
2653 | if(!(mdic & E1000_MDIC_READY)) { | ||
2654 | DEBUGOUT("MDI Write did not complete\n"); | ||
2655 | return -E1000_ERR_PHY; | ||
2656 | } | ||
2657 | } else { | ||
2658 | /* We'll need to use the SW defined pins to shift the write command | ||
2659 | * out to the PHY. We first send a preamble to the PHY to signal the | ||
2660 | * beginning of the MII instruction. This is done by sending 32 | ||
2661 | * consecutive "1" bits. | ||
2662 | */ | ||
2663 | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | ||
2664 | |||
2665 | /* Now combine the remaining required fields that will indicate a | ||
2666 | * write operation. We use this method instead of calling the | ||
2667 | * e1000_shift_out_mdi_bits routine for each field in the command. The | ||
2668 | * format of a MII write instruction is as follows: | ||
2669 | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | ||
2670 | */ | ||
2671 | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | ||
2672 | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | ||
2673 | mdic <<= 16; | ||
2674 | mdic |= (uint32_t) phy_data; | ||
2675 | |||
2676 | e1000_shift_out_mdi_bits(hw, mdic, 32); | ||
2677 | } | ||
2678 | |||
2679 | return E1000_SUCCESS; | ||
2680 | } | ||
2681 | |||
2682 | /****************************************************************************** | ||
2683 | * Returns the PHY to the power-on reset state | ||
2684 | * | ||
2685 | * hw - Struct containing variables accessed by shared code | ||
2686 | ******************************************************************************/ | ||
2687 | void | ||
2688 | e1000_phy_hw_reset(struct e1000_hw *hw) | ||
2689 | { | ||
2690 | uint32_t ctrl, ctrl_ext; | ||
2691 | uint32_t led_ctrl; | ||
2692 | |||
2693 | DEBUGFUNC("e1000_phy_hw_reset"); | ||
2694 | |||
2695 | DEBUGOUT("Resetting Phy...\n"); | ||
2696 | |||
2697 | if(hw->mac_type > e1000_82543) { | ||
2698 | /* Read the device control register and assert the E1000_CTRL_PHY_RST | ||
2699 | * bit. Then, take it out of reset. | ||
2700 | */ | ||
2701 | ctrl = E1000_READ_REG(hw, CTRL); | ||
2702 | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); | ||
2703 | E1000_WRITE_FLUSH(hw); | ||
2704 | msec_delay(10); | ||
2705 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
2706 | E1000_WRITE_FLUSH(hw); | ||
2707 | } else { | ||
2708 | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | ||
2709 | * bit to put the PHY into reset. Then, take it out of reset. | ||
2710 | */ | ||
2711 | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | ||
2712 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | ||
2713 | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | ||
2714 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
2715 | E1000_WRITE_FLUSH(hw); | ||
2716 | msec_delay(10); | ||
2717 | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | ||
2718 | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | ||
2719 | E1000_WRITE_FLUSH(hw); | ||
2720 | } | ||
2721 | udelay(150); | ||
2722 | |||
2723 | if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | ||
2724 | /* Configure activity LED after PHY reset */ | ||
2725 | led_ctrl = E1000_READ_REG(hw, LEDCTL); | ||
2726 | led_ctrl &= IGP_ACTIVITY_LED_MASK; | ||
2727 | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | ||
2728 | E1000_WRITE_REG(hw, LEDCTL, led_ctrl); | ||
2729 | } | ||
2730 | } | ||
2731 | |||
2732 | /****************************************************************************** | ||
2733 | * Resets the PHY | ||
2734 | * | ||
2735 | * hw - Struct containing variables accessed by shared code | ||
2736 | * | ||
2737 | * Sets bit 15 of the MII Control regiser | ||
2738 | ******************************************************************************/ | ||
2739 | int32_t | ||
2740 | e1000_phy_reset(struct e1000_hw *hw) | ||
2741 | { | ||
2742 | int32_t ret_val; | ||
2743 | uint16_t phy_data; | ||
2744 | |||
2745 | DEBUGFUNC("e1000_phy_reset"); | ||
2746 | |||
2747 | if(hw->mac_type != e1000_82541_rev_2) { | ||
2748 | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | ||
2749 | if(ret_val) | ||
2750 | return ret_val; | ||
2751 | |||
2752 | phy_data |= MII_CR_RESET; | ||
2753 | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | ||
2754 | if(ret_val) | ||
2755 | return ret_val; | ||
2756 | |||
2757 | udelay(1); | ||
2758 | } else e1000_phy_hw_reset(hw); | ||
2759 | |||
2760 | if(hw->phy_type == e1000_phy_igp) | ||
2761 | e1000_phy_init_script(hw); | ||
2762 | |||
2763 | return E1000_SUCCESS; | ||
2764 | } | ||
2765 | |||
2766 | /****************************************************************************** | ||
2767 | * Probes the expected PHY address for known PHY IDs | ||
2768 | * | ||
2769 | * hw - Struct containing variables accessed by shared code | ||
2770 | ******************************************************************************/ | ||
2771 | int32_t | ||
2772 | e1000_detect_gig_phy(struct e1000_hw *hw) | ||
2773 | { | ||
2774 | int32_t phy_init_status, ret_val; | ||
2775 | uint16_t phy_id_high, phy_id_low; | ||
2776 | boolean_t match = FALSE; | ||
2777 | |||
2778 | DEBUGFUNC("e1000_detect_gig_phy"); | ||
2779 | |||
2780 | /* Read the PHY ID Registers to identify which PHY is onboard. */ | ||
2781 | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | ||
2782 | if(ret_val) | ||
2783 | return ret_val; | ||
2784 | |||
2785 | hw->phy_id = (uint32_t) (phy_id_high << 16); | ||
2786 | udelay(20); | ||
2787 | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | ||
2788 | if(ret_val) | ||
2789 | return ret_val; | ||
2790 | |||
2791 | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); | ||
2792 | hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK; | ||
2793 | |||
2794 | switch(hw->mac_type) { | ||
2795 | case e1000_82543: | ||
2796 | if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE; | ||
2797 | break; | ||
2798 | case e1000_82544: | ||
2799 | if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE; | ||
2800 | break; | ||
2801 | case e1000_82540: | ||
2802 | case e1000_82545: | ||
2803 | case e1000_82545_rev_3: | ||
2804 | case e1000_82546: | ||
2805 | case e1000_82546_rev_3: | ||
2806 | if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE; | ||
2807 | break; | ||
2808 | case e1000_82541: | ||
2809 | case e1000_82541_rev_2: | ||
2810 | case e1000_82547: | ||
2811 | case e1000_82547_rev_2: | ||
2812 | if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE; | ||
2813 | break; | ||
2814 | default: | ||
2815 | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | ||
2816 | return -E1000_ERR_CONFIG; | ||
2817 | } | ||
2818 | phy_init_status = e1000_set_phy_type(hw); | ||
2819 | |||
2820 | if ((match) && (phy_init_status == E1000_SUCCESS)) { | ||
2821 | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | ||
2822 | return E1000_SUCCESS; | ||
2823 | } | ||
2824 | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | ||
2825 | return -E1000_ERR_PHY; | ||
2826 | } | ||
2827 | |||
2828 | /****************************************************************************** | ||
2829 | * Resets the PHY's DSP | ||
2830 | * | ||
2831 | * hw - Struct containing variables accessed by shared code | ||
2832 | ******************************************************************************/ | ||
2833 | static int32_t | ||
2834 | e1000_phy_reset_dsp(struct e1000_hw *hw) | ||
2835 | { | ||
2836 | int32_t ret_val; | ||
2837 | DEBUGFUNC("e1000_phy_reset_dsp"); | ||
2838 | |||
2839 | do { | ||
2840 | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | ||
2841 | if(ret_val) break; | ||
2842 | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | ||
2843 | if(ret_val) break; | ||
2844 | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | ||
2845 | if(ret_val) break; | ||
2846 | ret_val = E1000_SUCCESS; | ||
2847 | } while(0); | ||
2848 | |||
2849 | return ret_val; | ||
2850 | } | ||
2851 | |||
2852 | /****************************************************************************** | ||
2853 | * Get PHY information from various PHY registers for igp PHY only. | ||
2854 | * | ||
2855 | * hw - Struct containing variables accessed by shared code | ||
2856 | * phy_info - PHY information structure | ||
2857 | ******************************************************************************/ | ||
2858 | int32_t | ||
2859 | e1000_phy_igp_get_info(struct e1000_hw *hw, | ||
2860 | struct e1000_phy_info *phy_info) | ||
2861 | { | ||
2862 | int32_t ret_val; | ||
2863 | uint16_t phy_data, polarity, min_length, max_length, average; | ||
2864 | |||
2865 | DEBUGFUNC("e1000_phy_igp_get_info"); | ||
2866 | |||
2867 | /* The downshift status is checked only once, after link is established, | ||
2868 | * and it stored in the hw->speed_downgraded parameter. */ | ||
2869 | phy_info->downshift = hw->speed_downgraded; | ||
2870 | |||
2871 | /* IGP01E1000 does not need to support it. */ | ||
2872 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | ||
2873 | |||
2874 | /* IGP01E1000 always correct polarity reversal */ | ||
2875 | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | ||
2876 | |||
2877 | /* Check polarity status */ | ||
2878 | ret_val = e1000_check_polarity(hw, &polarity); | ||
2879 | if(ret_val) | ||
2880 | return ret_val; | ||
2881 | |||
2882 | phy_info->cable_polarity = polarity; | ||
2883 | |||
2884 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | ||
2885 | if(ret_val) | ||
2886 | return ret_val; | ||
2887 | |||
2888 | phy_info->mdix_mode = (phy_data & IGP01E1000_PSSR_MDIX) >> | ||
2889 | IGP01E1000_PSSR_MDIX_SHIFT; | ||
2890 | |||
2891 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
2892 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
2893 | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | ||
2894 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
2895 | if(ret_val) | ||
2896 | return ret_val; | ||
2897 | |||
2898 | phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> | ||
2899 | SR_1000T_LOCAL_RX_STATUS_SHIFT; | ||
2900 | phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> | ||
2901 | SR_1000T_REMOTE_RX_STATUS_SHIFT; | ||
2902 | |||
2903 | /* Get cable length */ | ||
2904 | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | ||
2905 | if(ret_val) | ||
2906 | return ret_val; | ||
2907 | |||
2908 | /* transalte to old method */ | ||
2909 | average = (max_length + min_length) / 2; | ||
2910 | |||
2911 | if(average <= e1000_igp_cable_length_50) | ||
2912 | phy_info->cable_length = e1000_cable_length_50; | ||
2913 | else if(average <= e1000_igp_cable_length_80) | ||
2914 | phy_info->cable_length = e1000_cable_length_50_80; | ||
2915 | else if(average <= e1000_igp_cable_length_110) | ||
2916 | phy_info->cable_length = e1000_cable_length_80_110; | ||
2917 | else if(average <= e1000_igp_cable_length_140) | ||
2918 | phy_info->cable_length = e1000_cable_length_110_140; | ||
2919 | else | ||
2920 | phy_info->cable_length = e1000_cable_length_140; | ||
2921 | } | ||
2922 | |||
2923 | return E1000_SUCCESS; | ||
2924 | } | ||
2925 | |||
2926 | /****************************************************************************** | ||
2927 | * Get PHY information from various PHY registers fot m88 PHY only. | ||
2928 | * | ||
2929 | * hw - Struct containing variables accessed by shared code | ||
2930 | * phy_info - PHY information structure | ||
2931 | ******************************************************************************/ | ||
2932 | int32_t | ||
2933 | e1000_phy_m88_get_info(struct e1000_hw *hw, | ||
2934 | struct e1000_phy_info *phy_info) | ||
2935 | { | ||
2936 | int32_t ret_val; | ||
2937 | uint16_t phy_data, polarity; | ||
2938 | |||
2939 | DEBUGFUNC("e1000_phy_m88_get_info"); | ||
2940 | |||
2941 | /* The downshift status is checked only once, after link is established, | ||
2942 | * and it stored in the hw->speed_downgraded parameter. */ | ||
2943 | phy_info->downshift = hw->speed_downgraded; | ||
2944 | |||
2945 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | ||
2946 | if(ret_val) | ||
2947 | return ret_val; | ||
2948 | |||
2949 | phy_info->extended_10bt_distance = | ||
2950 | (phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | ||
2951 | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT; | ||
2952 | phy_info->polarity_correction = | ||
2953 | (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | ||
2954 | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT; | ||
2955 | |||
2956 | /* Check polarity status */ | ||
2957 | ret_val = e1000_check_polarity(hw, &polarity); | ||
2958 | if(ret_val) | ||
2959 | return ret_val; | ||
2960 | phy_info->cable_polarity = polarity; | ||
2961 | |||
2962 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | ||
2963 | if(ret_val) | ||
2964 | return ret_val; | ||
2965 | |||
2966 | phy_info->mdix_mode = (phy_data & M88E1000_PSSR_MDIX) >> | ||
2967 | M88E1000_PSSR_MDIX_SHIFT; | ||
2968 | |||
2969 | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | ||
2970 | /* Cable Length Estimation and Local/Remote Receiver Information | ||
2971 | * are only valid at 1000 Mbps. | ||
2972 | */ | ||
2973 | phy_info->cable_length = ((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
2974 | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | ||
2975 | |||
2976 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | ||
2977 | if(ret_val) | ||
2978 | return ret_val; | ||
2979 | |||
2980 | phy_info->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) >> | ||
2981 | SR_1000T_LOCAL_RX_STATUS_SHIFT; | ||
2982 | |||
2983 | phy_info->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) >> | ||
2984 | SR_1000T_REMOTE_RX_STATUS_SHIFT; | ||
2985 | } | ||
2986 | |||
2987 | return E1000_SUCCESS; | ||
2988 | } | ||
2989 | |||
2990 | /****************************************************************************** | ||
2991 | * Get PHY information from various PHY registers | ||
2992 | * | ||
2993 | * hw - Struct containing variables accessed by shared code | ||
2994 | * phy_info - PHY information structure | ||
2995 | ******************************************************************************/ | ||
2996 | int32_t | ||
2997 | e1000_phy_get_info(struct e1000_hw *hw, | ||
2998 | struct e1000_phy_info *phy_info) | ||
2999 | { | ||
3000 | int32_t ret_val; | ||
3001 | uint16_t phy_data; | ||
3002 | |||
3003 | DEBUGFUNC("e1000_phy_get_info"); | ||
3004 | |||
3005 | phy_info->cable_length = e1000_cable_length_undefined; | ||
3006 | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | ||
3007 | phy_info->cable_polarity = e1000_rev_polarity_undefined; | ||
3008 | phy_info->downshift = e1000_downshift_undefined; | ||
3009 | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | ||
3010 | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | ||
3011 | phy_info->local_rx = e1000_1000t_rx_status_undefined; | ||
3012 | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | ||
3013 | |||
3014 | if(hw->media_type != e1000_media_type_copper) { | ||
3015 | DEBUGOUT("PHY info is only valid for copper media\n"); | ||
3016 | return -E1000_ERR_CONFIG; | ||
3017 | } | ||
3018 | |||
3019 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3020 | if(ret_val) | ||
3021 | return ret_val; | ||
3022 | |||
3023 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | ||
3024 | if(ret_val) | ||
3025 | return ret_val; | ||
3026 | |||
3027 | if((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | ||
3028 | DEBUGOUT("PHY info is only valid if link is up\n"); | ||
3029 | return -E1000_ERR_CONFIG; | ||
3030 | } | ||
3031 | |||
3032 | if(hw->phy_type == e1000_phy_igp) | ||
3033 | return e1000_phy_igp_get_info(hw, phy_info); | ||
3034 | else | ||
3035 | return e1000_phy_m88_get_info(hw, phy_info); | ||
3036 | } | ||
3037 | |||
3038 | int32_t | ||
3039 | e1000_validate_mdi_setting(struct e1000_hw *hw) | ||
3040 | { | ||
3041 | DEBUGFUNC("e1000_validate_mdi_settings"); | ||
3042 | |||
3043 | if(!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | ||
3044 | DEBUGOUT("Invalid MDI setting detected\n"); | ||
3045 | hw->mdix = 1; | ||
3046 | return -E1000_ERR_CONFIG; | ||
3047 | } | ||
3048 | return E1000_SUCCESS; | ||
3049 | } | ||
3050 | |||
3051 | |||
3052 | /****************************************************************************** | ||
3053 | * Sets up eeprom variables in the hw struct. Must be called after mac_type | ||
3054 | * is configured. | ||
3055 | * | ||
3056 | * hw - Struct containing variables accessed by shared code | ||
3057 | *****************************************************************************/ | ||
3058 | void | ||
3059 | e1000_init_eeprom_params(struct e1000_hw *hw) | ||
3060 | { | ||
3061 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3062 | uint32_t eecd = E1000_READ_REG(hw, EECD); | ||
3063 | uint16_t eeprom_size; | ||
3064 | |||
3065 | DEBUGFUNC("e1000_init_eeprom_params"); | ||
3066 | |||
3067 | switch (hw->mac_type) { | ||
3068 | case e1000_82542_rev2_0: | ||
3069 | case e1000_82542_rev2_1: | ||
3070 | case e1000_82543: | ||
3071 | case e1000_82544: | ||
3072 | eeprom->type = e1000_eeprom_microwire; | ||
3073 | eeprom->word_size = 64; | ||
3074 | eeprom->opcode_bits = 3; | ||
3075 | eeprom->address_bits = 6; | ||
3076 | eeprom->delay_usec = 50; | ||
3077 | break; | ||
3078 | case e1000_82540: | ||
3079 | case e1000_82545: | ||
3080 | case e1000_82545_rev_3: | ||
3081 | case e1000_82546: | ||
3082 | case e1000_82546_rev_3: | ||
3083 | eeprom->type = e1000_eeprom_microwire; | ||
3084 | eeprom->opcode_bits = 3; | ||
3085 | eeprom->delay_usec = 50; | ||
3086 | if(eecd & E1000_EECD_SIZE) { | ||
3087 | eeprom->word_size = 256; | ||
3088 | eeprom->address_bits = 8; | ||
3089 | } else { | ||
3090 | eeprom->word_size = 64; | ||
3091 | eeprom->address_bits = 6; | ||
3092 | } | ||
3093 | break; | ||
3094 | case e1000_82541: | ||
3095 | case e1000_82541_rev_2: | ||
3096 | case e1000_82547: | ||
3097 | case e1000_82547_rev_2: | ||
3098 | if (eecd & E1000_EECD_TYPE) { | ||
3099 | eeprom->type = e1000_eeprom_spi; | ||
3100 | eeprom->opcode_bits = 8; | ||
3101 | eeprom->delay_usec = 1; | ||
3102 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3103 | eeprom->page_size = 32; | ||
3104 | eeprom->address_bits = 16; | ||
3105 | } else { | ||
3106 | eeprom->page_size = 8; | ||
3107 | eeprom->address_bits = 8; | ||
3108 | } | ||
3109 | } else { | ||
3110 | eeprom->type = e1000_eeprom_microwire; | ||
3111 | eeprom->opcode_bits = 3; | ||
3112 | eeprom->delay_usec = 50; | ||
3113 | if (eecd & E1000_EECD_ADDR_BITS) { | ||
3114 | eeprom->word_size = 256; | ||
3115 | eeprom->address_bits = 8; | ||
3116 | } else { | ||
3117 | eeprom->word_size = 64; | ||
3118 | eeprom->address_bits = 6; | ||
3119 | } | ||
3120 | } | ||
3121 | break; | ||
3122 | default: | ||
3123 | break; | ||
3124 | } | ||
3125 | |||
3126 | if (eeprom->type == e1000_eeprom_spi) { | ||
3127 | eeprom->word_size = 64; | ||
3128 | if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) { | ||
3129 | eeprom_size &= EEPROM_SIZE_MASK; | ||
3130 | |||
3131 | switch (eeprom_size) { | ||
3132 | case EEPROM_SIZE_16KB: | ||
3133 | eeprom->word_size = 8192; | ||
3134 | break; | ||
3135 | case EEPROM_SIZE_8KB: | ||
3136 | eeprom->word_size = 4096; | ||
3137 | break; | ||
3138 | case EEPROM_SIZE_4KB: | ||
3139 | eeprom->word_size = 2048; | ||
3140 | break; | ||
3141 | case EEPROM_SIZE_2KB: | ||
3142 | eeprom->word_size = 1024; | ||
3143 | break; | ||
3144 | case EEPROM_SIZE_1KB: | ||
3145 | eeprom->word_size = 512; | ||
3146 | break; | ||
3147 | case EEPROM_SIZE_512B: | ||
3148 | eeprom->word_size = 256; | ||
3149 | break; | ||
3150 | case EEPROM_SIZE_128B: | ||
3151 | default: | ||
3152 | eeprom->word_size = 64; | ||
3153 | break; | ||
3154 | } | ||
3155 | } | ||
3156 | } | ||
3157 | } | ||
3158 | |||
3159 | /****************************************************************************** | ||
3160 | * Raises the EEPROM's clock input. | ||
3161 | * | ||
3162 | * hw - Struct containing variables accessed by shared code | ||
3163 | * eecd - EECD's current value | ||
3164 | *****************************************************************************/ | ||
3165 | static void | ||
3166 | e1000_raise_ee_clk(struct e1000_hw *hw, | ||
3167 | uint32_t *eecd) | ||
3168 | { | ||
3169 | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | ||
3170 | * wait <delay> microseconds. | ||
3171 | */ | ||
3172 | *eecd = *eecd | E1000_EECD_SK; | ||
3173 | E1000_WRITE_REG(hw, EECD, *eecd); | ||
3174 | E1000_WRITE_FLUSH(hw); | ||
3175 | udelay(hw->eeprom.delay_usec); | ||
3176 | } | ||
3177 | |||
3178 | /****************************************************************************** | ||
3179 | * Lowers the EEPROM's clock input. | ||
3180 | * | ||
3181 | * hw - Struct containing variables accessed by shared code | ||
3182 | * eecd - EECD's current value | ||
3183 | *****************************************************************************/ | ||
3184 | static void | ||
3185 | e1000_lower_ee_clk(struct e1000_hw *hw, | ||
3186 | uint32_t *eecd) | ||
3187 | { | ||
3188 | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | ||
3189 | * wait 50 microseconds. | ||
3190 | */ | ||
3191 | *eecd = *eecd & ~E1000_EECD_SK; | ||
3192 | E1000_WRITE_REG(hw, EECD, *eecd); | ||
3193 | E1000_WRITE_FLUSH(hw); | ||
3194 | udelay(hw->eeprom.delay_usec); | ||
3195 | } | ||
3196 | |||
3197 | /****************************************************************************** | ||
3198 | * Shift data bits out to the EEPROM. | ||
3199 | * | ||
3200 | * hw - Struct containing variables accessed by shared code | ||
3201 | * data - data to send to the EEPROM | ||
3202 | * count - number of bits to shift out | ||
3203 | *****************************************************************************/ | ||
3204 | static void | ||
3205 | e1000_shift_out_ee_bits(struct e1000_hw *hw, | ||
3206 | uint16_t data, | ||
3207 | uint16_t count) | ||
3208 | { | ||
3209 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3210 | uint32_t eecd; | ||
3211 | uint32_t mask; | ||
3212 | |||
3213 | /* We need to shift "count" bits out to the EEPROM. So, value in the | ||
3214 | * "data" parameter will be shifted out to the EEPROM one bit at a time. | ||
3215 | * In order to do this, "data" must be broken down into bits. | ||
3216 | */ | ||
3217 | mask = 0x01 << (count - 1); | ||
3218 | eecd = E1000_READ_REG(hw, EECD); | ||
3219 | if (eeprom->type == e1000_eeprom_microwire) { | ||
3220 | eecd &= ~E1000_EECD_DO; | ||
3221 | } else if (eeprom->type == e1000_eeprom_spi) { | ||
3222 | eecd |= E1000_EECD_DO; | ||
3223 | } | ||
3224 | do { | ||
3225 | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | ||
3226 | * and then raising and then lowering the clock (the SK bit controls | ||
3227 | * the clock input to the EEPROM). A "0" is shifted out to the EEPROM | ||
3228 | * by setting "DI" to "0" and then raising and then lowering the clock. | ||
3229 | */ | ||
3230 | eecd &= ~E1000_EECD_DI; | ||
3231 | |||
3232 | if(data & mask) | ||
3233 | eecd |= E1000_EECD_DI; | ||
3234 | |||
3235 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3236 | E1000_WRITE_FLUSH(hw); | ||
3237 | |||
3238 | udelay(eeprom->delay_usec); | ||
3239 | |||
3240 | e1000_raise_ee_clk(hw, &eecd); | ||
3241 | e1000_lower_ee_clk(hw, &eecd); | ||
3242 | |||
3243 | mask = mask >> 1; | ||
3244 | |||
3245 | } while(mask); | ||
3246 | |||
3247 | /* We leave the "DI" bit set to "0" when we leave this routine. */ | ||
3248 | eecd &= ~E1000_EECD_DI; | ||
3249 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3250 | } | ||
3251 | |||
3252 | /****************************************************************************** | ||
3253 | * Shift data bits in from the EEPROM | ||
3254 | * | ||
3255 | * hw - Struct containing variables accessed by shared code | ||
3256 | *****************************************************************************/ | ||
3257 | static uint16_t | ||
3258 | e1000_shift_in_ee_bits(struct e1000_hw *hw, | ||
3259 | uint16_t count) | ||
3260 | { | ||
3261 | uint32_t eecd; | ||
3262 | uint32_t i; | ||
3263 | uint16_t data; | ||
3264 | |||
3265 | /* In order to read a register from the EEPROM, we need to shift 'count' | ||
3266 | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | ||
3267 | * input to the EEPROM (setting the SK bit), and then reading the value of | ||
3268 | * the "DO" bit. During this "shifting in" process the "DI" bit should | ||
3269 | * always be clear. | ||
3270 | */ | ||
3271 | |||
3272 | eecd = E1000_READ_REG(hw, EECD); | ||
3273 | |||
3274 | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | ||
3275 | data = 0; | ||
3276 | |||
3277 | for(i = 0; i < count; i++) { | ||
3278 | data = data << 1; | ||
3279 | e1000_raise_ee_clk(hw, &eecd); | ||
3280 | |||
3281 | eecd = E1000_READ_REG(hw, EECD); | ||
3282 | |||
3283 | eecd &= ~(E1000_EECD_DI); | ||
3284 | if(eecd & E1000_EECD_DO) | ||
3285 | data |= 1; | ||
3286 | |||
3287 | e1000_lower_ee_clk(hw, &eecd); | ||
3288 | } | ||
3289 | |||
3290 | return data; | ||
3291 | } | ||
3292 | |||
3293 | /****************************************************************************** | ||
3294 | * Prepares EEPROM for access | ||
3295 | * | ||
3296 | * hw - Struct containing variables accessed by shared code | ||
3297 | * | ||
3298 | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | ||
3299 | * function should be called before issuing a command to the EEPROM. | ||
3300 | *****************************************************************************/ | ||
3301 | static int32_t | ||
3302 | e1000_acquire_eeprom(struct e1000_hw *hw) | ||
3303 | { | ||
3304 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3305 | uint32_t eecd, i=0; | ||
3306 | |||
3307 | DEBUGFUNC("e1000_acquire_eeprom"); | ||
3308 | |||
3309 | eecd = E1000_READ_REG(hw, EECD); | ||
3310 | |||
3311 | /* Request EEPROM Access */ | ||
3312 | if(hw->mac_type > e1000_82544) { | ||
3313 | eecd |= E1000_EECD_REQ; | ||
3314 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3315 | eecd = E1000_READ_REG(hw, EECD); | ||
3316 | while((!(eecd & E1000_EECD_GNT)) && | ||
3317 | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | ||
3318 | i++; | ||
3319 | udelay(5); | ||
3320 | eecd = E1000_READ_REG(hw, EECD); | ||
3321 | } | ||
3322 | if(!(eecd & E1000_EECD_GNT)) { | ||
3323 | eecd &= ~E1000_EECD_REQ; | ||
3324 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3325 | DEBUGOUT("Could not acquire EEPROM grant\n"); | ||
3326 | return -E1000_ERR_EEPROM; | ||
3327 | } | ||
3328 | } | ||
3329 | |||
3330 | /* Setup EEPROM for Read/Write */ | ||
3331 | |||
3332 | if (eeprom->type == e1000_eeprom_microwire) { | ||
3333 | /* Clear SK and DI */ | ||
3334 | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | ||
3335 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3336 | |||
3337 | /* Set CS */ | ||
3338 | eecd |= E1000_EECD_CS; | ||
3339 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3340 | } else if (eeprom->type == e1000_eeprom_spi) { | ||
3341 | /* Clear SK and CS */ | ||
3342 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
3343 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3344 | udelay(1); | ||
3345 | } | ||
3346 | |||
3347 | return E1000_SUCCESS; | ||
3348 | } | ||
3349 | |||
3350 | /****************************************************************************** | ||
3351 | * Returns EEPROM to a "standby" state | ||
3352 | * | ||
3353 | * hw - Struct containing variables accessed by shared code | ||
3354 | *****************************************************************************/ | ||
3355 | static void | ||
3356 | e1000_standby_eeprom(struct e1000_hw *hw) | ||
3357 | { | ||
3358 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3359 | uint32_t eecd; | ||
3360 | |||
3361 | eecd = E1000_READ_REG(hw, EECD); | ||
3362 | |||
3363 | if(eeprom->type == e1000_eeprom_microwire) { | ||
3364 | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | ||
3365 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3366 | E1000_WRITE_FLUSH(hw); | ||
3367 | udelay(eeprom->delay_usec); | ||
3368 | |||
3369 | /* Clock high */ | ||
3370 | eecd |= E1000_EECD_SK; | ||
3371 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3372 | E1000_WRITE_FLUSH(hw); | ||
3373 | udelay(eeprom->delay_usec); | ||
3374 | |||
3375 | /* Select EEPROM */ | ||
3376 | eecd |= E1000_EECD_CS; | ||
3377 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3378 | E1000_WRITE_FLUSH(hw); | ||
3379 | udelay(eeprom->delay_usec); | ||
3380 | |||
3381 | /* Clock low */ | ||
3382 | eecd &= ~E1000_EECD_SK; | ||
3383 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3384 | E1000_WRITE_FLUSH(hw); | ||
3385 | udelay(eeprom->delay_usec); | ||
3386 | } else if(eeprom->type == e1000_eeprom_spi) { | ||
3387 | /* Toggle CS to flush commands */ | ||
3388 | eecd |= E1000_EECD_CS; | ||
3389 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3390 | E1000_WRITE_FLUSH(hw); | ||
3391 | udelay(eeprom->delay_usec); | ||
3392 | eecd &= ~E1000_EECD_CS; | ||
3393 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3394 | E1000_WRITE_FLUSH(hw); | ||
3395 | udelay(eeprom->delay_usec); | ||
3396 | } | ||
3397 | } | ||
3398 | |||
3399 | /****************************************************************************** | ||
3400 | * Terminates a command by inverting the EEPROM's chip select pin | ||
3401 | * | ||
3402 | * hw - Struct containing variables accessed by shared code | ||
3403 | *****************************************************************************/ | ||
3404 | static void | ||
3405 | e1000_release_eeprom(struct e1000_hw *hw) | ||
3406 | { | ||
3407 | uint32_t eecd; | ||
3408 | |||
3409 | DEBUGFUNC("e1000_release_eeprom"); | ||
3410 | |||
3411 | eecd = E1000_READ_REG(hw, EECD); | ||
3412 | |||
3413 | if (hw->eeprom.type == e1000_eeprom_spi) { | ||
3414 | eecd |= E1000_EECD_CS; /* Pull CS high */ | ||
3415 | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | ||
3416 | |||
3417 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3418 | |||
3419 | udelay(hw->eeprom.delay_usec); | ||
3420 | } else if(hw->eeprom.type == e1000_eeprom_microwire) { | ||
3421 | /* cleanup eeprom */ | ||
3422 | |||
3423 | /* CS on Microwire is active-high */ | ||
3424 | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | ||
3425 | |||
3426 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3427 | |||
3428 | /* Rising edge of clock */ | ||
3429 | eecd |= E1000_EECD_SK; | ||
3430 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3431 | E1000_WRITE_FLUSH(hw); | ||
3432 | udelay(hw->eeprom.delay_usec); | ||
3433 | |||
3434 | /* Falling edge of clock */ | ||
3435 | eecd &= ~E1000_EECD_SK; | ||
3436 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3437 | E1000_WRITE_FLUSH(hw); | ||
3438 | udelay(hw->eeprom.delay_usec); | ||
3439 | } | ||
3440 | |||
3441 | /* Stop requesting EEPROM access */ | ||
3442 | if(hw->mac_type > e1000_82544) { | ||
3443 | eecd &= ~E1000_EECD_REQ; | ||
3444 | E1000_WRITE_REG(hw, EECD, eecd); | ||
3445 | } | ||
3446 | } | ||
3447 | |||
3448 | /****************************************************************************** | ||
3449 | * Reads a 16 bit word from the EEPROM. | ||
3450 | * | ||
3451 | * hw - Struct containing variables accessed by shared code | ||
3452 | *****************************************************************************/ | ||
3453 | int32_t | ||
3454 | e1000_spi_eeprom_ready(struct e1000_hw *hw) | ||
3455 | { | ||
3456 | uint16_t retry_count = 0; | ||
3457 | uint8_t spi_stat_reg; | ||
3458 | |||
3459 | DEBUGFUNC("e1000_spi_eeprom_ready"); | ||
3460 | |||
3461 | /* Read "Status Register" repeatedly until the LSB is cleared. The | ||
3462 | * EEPROM will signal that the command has been completed by clearing | ||
3463 | * bit 0 of the internal status register. If it's not cleared within | ||
3464 | * 5 milliseconds, then error out. | ||
3465 | */ | ||
3466 | retry_count = 0; | ||
3467 | do { | ||
3468 | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | ||
3469 | hw->eeprom.opcode_bits); | ||
3470 | spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8); | ||
3471 | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | ||
3472 | break; | ||
3473 | |||
3474 | udelay(5); | ||
3475 | retry_count += 5; | ||
3476 | |||
3477 | e1000_standby_eeprom(hw); | ||
3478 | } while(retry_count < EEPROM_MAX_RETRY_SPI); | ||
3479 | |||
3480 | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | ||
3481 | * only 0-5mSec on 5V devices) | ||
3482 | */ | ||
3483 | if(retry_count >= EEPROM_MAX_RETRY_SPI) { | ||
3484 | DEBUGOUT("SPI EEPROM Status error\n"); | ||
3485 | return -E1000_ERR_EEPROM; | ||
3486 | } | ||
3487 | |||
3488 | return E1000_SUCCESS; | ||
3489 | } | ||
3490 | |||
3491 | /****************************************************************************** | ||
3492 | * Reads a 16 bit word from the EEPROM. | ||
3493 | * | ||
3494 | * hw - Struct containing variables accessed by shared code | ||
3495 | * offset - offset of word in the EEPROM to read | ||
3496 | * data - word read from the EEPROM | ||
3497 | * words - number of words to read | ||
3498 | *****************************************************************************/ | ||
3499 | int32_t | ||
3500 | e1000_read_eeprom(struct e1000_hw *hw, | ||
3501 | uint16_t offset, | ||
3502 | uint16_t words, | ||
3503 | uint16_t *data) | ||
3504 | { | ||
3505 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3506 | uint32_t i = 0; | ||
3507 | |||
3508 | DEBUGFUNC("e1000_read_eeprom"); | ||
3509 | /* A check for invalid values: offset too large, too many words, and not | ||
3510 | * enough words. | ||
3511 | */ | ||
3512 | if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | ||
3513 | (words == 0)) { | ||
3514 | DEBUGOUT("\"words\" parameter out of bounds\n"); | ||
3515 | return -E1000_ERR_EEPROM; | ||
3516 | } | ||
3517 | |||
3518 | /* Prepare the EEPROM for reading */ | ||
3519 | if(e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3520 | return -E1000_ERR_EEPROM; | ||
3521 | |||
3522 | if(eeprom->type == e1000_eeprom_spi) { | ||
3523 | uint16_t word_in; | ||
3524 | uint8_t read_opcode = EEPROM_READ_OPCODE_SPI; | ||
3525 | |||
3526 | if(e1000_spi_eeprom_ready(hw)) { | ||
3527 | e1000_release_eeprom(hw); | ||
3528 | return -E1000_ERR_EEPROM; | ||
3529 | } | ||
3530 | |||
3531 | e1000_standby_eeprom(hw); | ||
3532 | |||
3533 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | ||
3534 | if((eeprom->address_bits == 8) && (offset >= 128)) | ||
3535 | read_opcode |= EEPROM_A8_OPCODE_SPI; | ||
3536 | |||
3537 | /* Send the READ command (opcode + addr) */ | ||
3538 | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | ||
3539 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits); | ||
3540 | |||
3541 | /* Read the data. The address of the eeprom internally increments with | ||
3542 | * each byte (spi) being read, saving on the overhead of eeprom setup | ||
3543 | * and tear-down. The address counter will roll over if reading beyond | ||
3544 | * the size of the eeprom, thus allowing the entire memory to be read | ||
3545 | * starting from any offset. */ | ||
3546 | for (i = 0; i < words; i++) { | ||
3547 | word_in = e1000_shift_in_ee_bits(hw, 16); | ||
3548 | data[i] = (word_in >> 8) | (word_in << 8); | ||
3549 | } | ||
3550 | } else if(eeprom->type == e1000_eeprom_microwire) { | ||
3551 | for (i = 0; i < words; i++) { | ||
3552 | /* Send the READ command (opcode + addr) */ | ||
3553 | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, | ||
3554 | eeprom->opcode_bits); | ||
3555 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i), | ||
3556 | eeprom->address_bits); | ||
3557 | |||
3558 | /* Read the data. For microwire, each word requires the overhead | ||
3559 | * of eeprom setup and tear-down. */ | ||
3560 | data[i] = e1000_shift_in_ee_bits(hw, 16); | ||
3561 | e1000_standby_eeprom(hw); | ||
3562 | } | ||
3563 | } | ||
3564 | |||
3565 | /* End this read operation */ | ||
3566 | e1000_release_eeprom(hw); | ||
3567 | |||
3568 | return E1000_SUCCESS; | ||
3569 | } | ||
3570 | |||
3571 | /****************************************************************************** | ||
3572 | * Verifies that the EEPROM has a valid checksum | ||
3573 | * | ||
3574 | * hw - Struct containing variables accessed by shared code | ||
3575 | * | ||
3576 | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | ||
3577 | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | ||
3578 | * valid. | ||
3579 | *****************************************************************************/ | ||
3580 | int32_t | ||
3581 | e1000_validate_eeprom_checksum(struct e1000_hw *hw) | ||
3582 | { | ||
3583 | uint16_t checksum = 0; | ||
3584 | uint16_t i, eeprom_data; | ||
3585 | |||
3586 | DEBUGFUNC("e1000_validate_eeprom_checksum"); | ||
3587 | |||
3588 | for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | ||
3589 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
3590 | DEBUGOUT("EEPROM Read Error\n"); | ||
3591 | return -E1000_ERR_EEPROM; | ||
3592 | } | ||
3593 | checksum += eeprom_data; | ||
3594 | } | ||
3595 | |||
3596 | if(checksum == (uint16_t) EEPROM_SUM) | ||
3597 | return E1000_SUCCESS; | ||
3598 | else { | ||
3599 | DEBUGOUT("EEPROM Checksum Invalid\n"); | ||
3600 | return -E1000_ERR_EEPROM; | ||
3601 | } | ||
3602 | } | ||
3603 | |||
3604 | /****************************************************************************** | ||
3605 | * Calculates the EEPROM checksum and writes it to the EEPROM | ||
3606 | * | ||
3607 | * hw - Struct containing variables accessed by shared code | ||
3608 | * | ||
3609 | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | ||
3610 | * Writes the difference to word offset 63 of the EEPROM. | ||
3611 | *****************************************************************************/ | ||
3612 | int32_t | ||
3613 | e1000_update_eeprom_checksum(struct e1000_hw *hw) | ||
3614 | { | ||
3615 | uint16_t checksum = 0; | ||
3616 | uint16_t i, eeprom_data; | ||
3617 | |||
3618 | DEBUGFUNC("e1000_update_eeprom_checksum"); | ||
3619 | |||
3620 | for(i = 0; i < EEPROM_CHECKSUM_REG; i++) { | ||
3621 | if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | ||
3622 | DEBUGOUT("EEPROM Read Error\n"); | ||
3623 | return -E1000_ERR_EEPROM; | ||
3624 | } | ||
3625 | checksum += eeprom_data; | ||
3626 | } | ||
3627 | checksum = (uint16_t) EEPROM_SUM - checksum; | ||
3628 | if(e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | ||
3629 | DEBUGOUT("EEPROM Write Error\n"); | ||
3630 | return -E1000_ERR_EEPROM; | ||
3631 | } | ||
3632 | return E1000_SUCCESS; | ||
3633 | } | ||
3634 | |||
3635 | /****************************************************************************** | ||
3636 | * Parent function for writing words to the different EEPROM types. | ||
3637 | * | ||
3638 | * hw - Struct containing variables accessed by shared code | ||
3639 | * offset - offset within the EEPROM to be written to | ||
3640 | * words - number of words to write | ||
3641 | * data - 16 bit word to be written to the EEPROM | ||
3642 | * | ||
3643 | * If e1000_update_eeprom_checksum is not called after this function, the | ||
3644 | * EEPROM will most likely contain an invalid checksum. | ||
3645 | *****************************************************************************/ | ||
3646 | int32_t | ||
3647 | e1000_write_eeprom(struct e1000_hw *hw, | ||
3648 | uint16_t offset, | ||
3649 | uint16_t words, | ||
3650 | uint16_t *data) | ||
3651 | { | ||
3652 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3653 | int32_t status = 0; | ||
3654 | |||
3655 | DEBUGFUNC("e1000_write_eeprom"); | ||
3656 | |||
3657 | /* A check for invalid values: offset too large, too many words, and not | ||
3658 | * enough words. | ||
3659 | */ | ||
3660 | if((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | ||
3661 | (words == 0)) { | ||
3662 | DEBUGOUT("\"words\" parameter out of bounds\n"); | ||
3663 | return -E1000_ERR_EEPROM; | ||
3664 | } | ||
3665 | |||
3666 | /* Prepare the EEPROM for writing */ | ||
3667 | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | ||
3668 | return -E1000_ERR_EEPROM; | ||
3669 | |||
3670 | if(eeprom->type == e1000_eeprom_microwire) { | ||
3671 | status = e1000_write_eeprom_microwire(hw, offset, words, data); | ||
3672 | } else { | ||
3673 | status = e1000_write_eeprom_spi(hw, offset, words, data); | ||
3674 | msec_delay(10); | ||
3675 | } | ||
3676 | |||
3677 | /* Done with writing */ | ||
3678 | e1000_release_eeprom(hw); | ||
3679 | |||
3680 | return status; | ||
3681 | } | ||
3682 | |||
3683 | /****************************************************************************** | ||
3684 | * Writes a 16 bit word to a given offset in an SPI EEPROM. | ||
3685 | * | ||
3686 | * hw - Struct containing variables accessed by shared code | ||
3687 | * offset - offset within the EEPROM to be written to | ||
3688 | * words - number of words to write | ||
3689 | * data - pointer to array of 8 bit words to be written to the EEPROM | ||
3690 | * | ||
3691 | *****************************************************************************/ | ||
3692 | int32_t | ||
3693 | e1000_write_eeprom_spi(struct e1000_hw *hw, | ||
3694 | uint16_t offset, | ||
3695 | uint16_t words, | ||
3696 | uint16_t *data) | ||
3697 | { | ||
3698 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3699 | uint16_t widx = 0; | ||
3700 | |||
3701 | DEBUGFUNC("e1000_write_eeprom_spi"); | ||
3702 | |||
3703 | while (widx < words) { | ||
3704 | uint8_t write_opcode = EEPROM_WRITE_OPCODE_SPI; | ||
3705 | |||
3706 | if(e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; | ||
3707 | |||
3708 | e1000_standby_eeprom(hw); | ||
3709 | |||
3710 | /* Send the WRITE ENABLE command (8 bit opcode ) */ | ||
3711 | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | ||
3712 | eeprom->opcode_bits); | ||
3713 | |||
3714 | e1000_standby_eeprom(hw); | ||
3715 | |||
3716 | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | ||
3717 | if((eeprom->address_bits == 8) && (offset >= 128)) | ||
3718 | write_opcode |= EEPROM_A8_OPCODE_SPI; | ||
3719 | |||
3720 | /* Send the Write command (8-bit opcode + addr) */ | ||
3721 | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | ||
3722 | |||
3723 | e1000_shift_out_ee_bits(hw, (uint16_t)((offset + widx)*2), | ||
3724 | eeprom->address_bits); | ||
3725 | |||
3726 | /* Send the data */ | ||
3727 | |||
3728 | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | ||
3729 | while (widx < words) { | ||
3730 | uint16_t word_out = data[widx]; | ||
3731 | word_out = (word_out >> 8) | (word_out << 8); | ||
3732 | e1000_shift_out_ee_bits(hw, word_out, 16); | ||
3733 | widx++; | ||
3734 | |||
3735 | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | ||
3736 | * operation, while the smaller eeproms are capable of an 8-byte | ||
3737 | * PAGE WRITE operation. Break the inner loop to pass new address | ||
3738 | */ | ||
3739 | if((((offset + widx)*2) % eeprom->page_size) == 0) { | ||
3740 | e1000_standby_eeprom(hw); | ||
3741 | break; | ||
3742 | } | ||
3743 | } | ||
3744 | } | ||
3745 | |||
3746 | return E1000_SUCCESS; | ||
3747 | } | ||
3748 | |||
3749 | /****************************************************************************** | ||
3750 | * Writes a 16 bit word to a given offset in a Microwire EEPROM. | ||
3751 | * | ||
3752 | * hw - Struct containing variables accessed by shared code | ||
3753 | * offset - offset within the EEPROM to be written to | ||
3754 | * words - number of words to write | ||
3755 | * data - pointer to array of 16 bit words to be written to the EEPROM | ||
3756 | * | ||
3757 | *****************************************************************************/ | ||
3758 | int32_t | ||
3759 | e1000_write_eeprom_microwire(struct e1000_hw *hw, | ||
3760 | uint16_t offset, | ||
3761 | uint16_t words, | ||
3762 | uint16_t *data) | ||
3763 | { | ||
3764 | struct e1000_eeprom_info *eeprom = &hw->eeprom; | ||
3765 | uint32_t eecd; | ||
3766 | uint16_t words_written = 0; | ||
3767 | uint16_t i = 0; | ||
3768 | |||
3769 | DEBUGFUNC("e1000_write_eeprom_microwire"); | ||
3770 | |||
3771 | /* Send the write enable command to the EEPROM (3-bit opcode plus | ||
3772 | * 6/8-bit dummy address beginning with 11). It's less work to include | ||
3773 | * the 11 of the dummy address as part of the opcode than it is to shift | ||
3774 | * it over the correct number of bits for the address. This puts the | ||
3775 | * EEPROM into write/erase mode. | ||
3776 | */ | ||
3777 | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | ||
3778 | (uint16_t)(eeprom->opcode_bits + 2)); | ||
3779 | |||
3780 | e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); | ||
3781 | |||
3782 | /* Prepare the EEPROM */ | ||
3783 | e1000_standby_eeprom(hw); | ||
3784 | |||
3785 | while (words_written < words) { | ||
3786 | /* Send the Write command (3-bit opcode + addr) */ | ||
3787 | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | ||
3788 | eeprom->opcode_bits); | ||
3789 | |||
3790 | e1000_shift_out_ee_bits(hw, (uint16_t)(offset + words_written), | ||
3791 | eeprom->address_bits); | ||
3792 | |||
3793 | /* Send the data */ | ||
3794 | e1000_shift_out_ee_bits(hw, data[words_written], 16); | ||
3795 | |||
3796 | /* Toggle the CS line. This in effect tells the EEPROM to execute | ||
3797 | * the previous command. | ||
3798 | */ | ||
3799 | e1000_standby_eeprom(hw); | ||
3800 | |||
3801 | /* Read DO repeatedly until it is high (equal to '1'). The EEPROM will | ||
3802 | * signal that the command has been completed by raising the DO signal. | ||
3803 | * If DO does not go high in 10 milliseconds, then error out. | ||
3804 | */ | ||
3805 | for(i = 0; i < 200; i++) { | ||
3806 | eecd = E1000_READ_REG(hw, EECD); | ||
3807 | if(eecd & E1000_EECD_DO) break; | ||
3808 | udelay(50); | ||
3809 | } | ||
3810 | if(i == 200) { | ||
3811 | DEBUGOUT("EEPROM Write did not complete\n"); | ||
3812 | return -E1000_ERR_EEPROM; | ||
3813 | } | ||
3814 | |||
3815 | /* Recover from write */ | ||
3816 | e1000_standby_eeprom(hw); | ||
3817 | |||
3818 | words_written++; | ||
3819 | } | ||
3820 | |||
3821 | /* Send the write disable command to the EEPROM (3-bit opcode plus | ||
3822 | * 6/8-bit dummy address beginning with 10). It's less work to include | ||
3823 | * the 10 of the dummy address as part of the opcode than it is to shift | ||
3824 | * it over the correct number of bits for the address. This takes the | ||
3825 | * EEPROM out of write/erase mode. | ||
3826 | */ | ||
3827 | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | ||
3828 | (uint16_t)(eeprom->opcode_bits + 2)); | ||
3829 | |||
3830 | e1000_shift_out_ee_bits(hw, 0, (uint16_t)(eeprom->address_bits - 2)); | ||
3831 | |||
3832 | return E1000_SUCCESS; | ||
3833 | } | ||
3834 | |||
3835 | /****************************************************************************** | ||
3836 | * Reads the adapter's part number from the EEPROM | ||
3837 | * | ||
3838 | * hw - Struct containing variables accessed by shared code | ||
3839 | * part_num - Adapter's part number | ||
3840 | *****************************************************************************/ | ||
3841 | int32_t | ||
3842 | e1000_read_part_num(struct e1000_hw *hw, | ||
3843 | uint32_t *part_num) | ||
3844 | { | ||
3845 | uint16_t offset = EEPROM_PBA_BYTE_1; | ||
3846 | uint16_t eeprom_data; | ||
3847 | |||
3848 | DEBUGFUNC("e1000_read_part_num"); | ||
3849 | |||
3850 | /* Get word 0 from EEPROM */ | ||
3851 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | ||
3852 | DEBUGOUT("EEPROM Read Error\n"); | ||
3853 | return -E1000_ERR_EEPROM; | ||
3854 | } | ||
3855 | /* Save word 0 in upper half of part_num */ | ||
3856 | *part_num = (uint32_t) (eeprom_data << 16); | ||
3857 | |||
3858 | /* Get word 1 from EEPROM */ | ||
3859 | if(e1000_read_eeprom(hw, ++offset, 1, &eeprom_data) < 0) { | ||
3860 | DEBUGOUT("EEPROM Read Error\n"); | ||
3861 | return -E1000_ERR_EEPROM; | ||
3862 | } | ||
3863 | /* Save word 1 in lower half of part_num */ | ||
3864 | *part_num |= eeprom_data; | ||
3865 | |||
3866 | return E1000_SUCCESS; | ||
3867 | } | ||
3868 | |||
3869 | /****************************************************************************** | ||
3870 | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | ||
3871 | * second function of dual function devices | ||
3872 | * | ||
3873 | * hw - Struct containing variables accessed by shared code | ||
3874 | *****************************************************************************/ | ||
3875 | int32_t | ||
3876 | e1000_read_mac_addr(struct e1000_hw * hw) | ||
3877 | { | ||
3878 | uint16_t offset; | ||
3879 | uint16_t eeprom_data, i; | ||
3880 | |||
3881 | DEBUGFUNC("e1000_read_mac_addr"); | ||
3882 | |||
3883 | for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | ||
3884 | offset = i >> 1; | ||
3885 | if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | ||
3886 | DEBUGOUT("EEPROM Read Error\n"); | ||
3887 | return -E1000_ERR_EEPROM; | ||
3888 | } | ||
3889 | hw->perm_mac_addr[i] = (uint8_t) (eeprom_data & 0x00FF); | ||
3890 | hw->perm_mac_addr[i+1] = (uint8_t) (eeprom_data >> 8); | ||
3891 | } | ||
3892 | if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) && | ||
3893 | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) | ||
3894 | hw->perm_mac_addr[5] ^= 0x01; | ||
3895 | |||
3896 | for(i = 0; i < NODE_ADDRESS_SIZE; i++) | ||
3897 | hw->mac_addr[i] = hw->perm_mac_addr[i]; | ||
3898 | return E1000_SUCCESS; | ||
3899 | } | ||
3900 | |||
3901 | /****************************************************************************** | ||
3902 | * Initializes receive address filters. | ||
3903 | * | ||
3904 | * hw - Struct containing variables accessed by shared code | ||
3905 | * | ||
3906 | * Places the MAC address in receive address register 0 and clears the rest | ||
3907 | * of the receive addresss registers. Clears the multicast table. Assumes | ||
3908 | * the receiver is in reset when the routine is called. | ||
3909 | *****************************************************************************/ | ||
3910 | void | ||
3911 | e1000_init_rx_addrs(struct e1000_hw *hw) | ||
3912 | { | ||
3913 | uint32_t i; | ||
3914 | |||
3915 | DEBUGFUNC("e1000_init_rx_addrs"); | ||
3916 | |||
3917 | /* Setup the receive address. */ | ||
3918 | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | ||
3919 | |||
3920 | e1000_rar_set(hw, hw->mac_addr, 0); | ||
3921 | |||
3922 | /* Zero out the other 15 receive addresses. */ | ||
3923 | DEBUGOUT("Clearing RAR[1-15]\n"); | ||
3924 | for(i = 1; i < E1000_RAR_ENTRIES; i++) { | ||
3925 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | ||
3926 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | ||
3927 | } | ||
3928 | } | ||
3929 | |||
3930 | /****************************************************************************** | ||
3931 | * Updates the MAC's list of multicast addresses. | ||
3932 | * | ||
3933 | * hw - Struct containing variables accessed by shared code | ||
3934 | * mc_addr_list - the list of new multicast addresses | ||
3935 | * mc_addr_count - number of addresses | ||
3936 | * pad - number of bytes between addresses in the list | ||
3937 | * rar_used_count - offset where to start adding mc addresses into the RAR's | ||
3938 | * | ||
3939 | * The given list replaces any existing list. Clears the last 15 receive | ||
3940 | * address registers and the multicast table. Uses receive address registers | ||
3941 | * for the first 15 multicast addresses, and hashes the rest into the | ||
3942 | * multicast table. | ||
3943 | *****************************************************************************/ | ||
3944 | void | ||
3945 | e1000_mc_addr_list_update(struct e1000_hw *hw, | ||
3946 | uint8_t *mc_addr_list, | ||
3947 | uint32_t mc_addr_count, | ||
3948 | uint32_t pad, | ||
3949 | uint32_t rar_used_count) | ||
3950 | { | ||
3951 | uint32_t hash_value; | ||
3952 | uint32_t i; | ||
3953 | |||
3954 | DEBUGFUNC("e1000_mc_addr_list_update"); | ||
3955 | |||
3956 | /* Set the new number of MC addresses that we are being requested to use. */ | ||
3957 | hw->num_mc_addrs = mc_addr_count; | ||
3958 | |||
3959 | /* Clear RAR[1-15] */ | ||
3960 | DEBUGOUT(" Clearing RAR[1-15]\n"); | ||
3961 | for(i = rar_used_count; i < E1000_RAR_ENTRIES; i++) { | ||
3962 | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | ||
3963 | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | ||
3964 | } | ||
3965 | |||
3966 | /* Clear the MTA */ | ||
3967 | DEBUGOUT(" Clearing MTA\n"); | ||
3968 | for(i = 0; i < E1000_NUM_MTA_REGISTERS; i++) { | ||
3969 | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | ||
3970 | } | ||
3971 | |||
3972 | /* Add the new addresses */ | ||
3973 | for(i = 0; i < mc_addr_count; i++) { | ||
3974 | DEBUGOUT(" Adding the multicast addresses:\n"); | ||
3975 | DEBUGOUT7(" MC Addr #%d =%.2X %.2X %.2X %.2X %.2X %.2X\n", i, | ||
3976 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad)], | ||
3977 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 1], | ||
3978 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 2], | ||
3979 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 3], | ||
3980 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 4], | ||
3981 | mc_addr_list[i * (ETH_LENGTH_OF_ADDRESS + pad) + 5]); | ||
3982 | |||
3983 | hash_value = e1000_hash_mc_addr(hw, | ||
3984 | mc_addr_list + | ||
3985 | (i * (ETH_LENGTH_OF_ADDRESS + pad))); | ||
3986 | |||
3987 | DEBUGOUT1(" Hash value = 0x%03X\n", hash_value); | ||
3988 | |||
3989 | /* Place this multicast address in the RAR if there is room, * | ||
3990 | * else put it in the MTA | ||
3991 | */ | ||
3992 | if(rar_used_count < E1000_RAR_ENTRIES) { | ||
3993 | e1000_rar_set(hw, | ||
3994 | mc_addr_list + (i * (ETH_LENGTH_OF_ADDRESS + pad)), | ||
3995 | rar_used_count); | ||
3996 | rar_used_count++; | ||
3997 | } else { | ||
3998 | e1000_mta_set(hw, hash_value); | ||
3999 | } | ||
4000 | } | ||
4001 | DEBUGOUT("MC Update Complete\n"); | ||
4002 | } | ||
4003 | |||
4004 | /****************************************************************************** | ||
4005 | * Hashes an address to determine its location in the multicast table | ||
4006 | * | ||
4007 | * hw - Struct containing variables accessed by shared code | ||
4008 | * mc_addr - the multicast address to hash | ||
4009 | *****************************************************************************/ | ||
4010 | uint32_t | ||
4011 | e1000_hash_mc_addr(struct e1000_hw *hw, | ||
4012 | uint8_t *mc_addr) | ||
4013 | { | ||
4014 | uint32_t hash_value = 0; | ||
4015 | |||
4016 | /* The portion of the address that is used for the hash table is | ||
4017 | * determined by the mc_filter_type setting. | ||
4018 | */ | ||
4019 | switch (hw->mc_filter_type) { | ||
4020 | /* [0] [1] [2] [3] [4] [5] | ||
4021 | * 01 AA 00 12 34 56 | ||
4022 | * LSB MSB | ||
4023 | */ | ||
4024 | case 0: | ||
4025 | /* [47:36] i.e. 0x563 for above example address */ | ||
4026 | hash_value = ((mc_addr[4] >> 4) | (((uint16_t) mc_addr[5]) << 4)); | ||
4027 | break; | ||
4028 | case 1: | ||
4029 | /* [46:35] i.e. 0xAC6 for above example address */ | ||
4030 | hash_value = ((mc_addr[4] >> 3) | (((uint16_t) mc_addr[5]) << 5)); | ||
4031 | break; | ||
4032 | case 2: | ||
4033 | /* [45:34] i.e. 0x5D8 for above example address */ | ||
4034 | hash_value = ((mc_addr[4] >> 2) | (((uint16_t) mc_addr[5]) << 6)); | ||
4035 | break; | ||
4036 | case 3: | ||
4037 | /* [43:32] i.e. 0x634 for above example address */ | ||
4038 | hash_value = ((mc_addr[4]) | (((uint16_t) mc_addr[5]) << 8)); | ||
4039 | break; | ||
4040 | } | ||
4041 | |||
4042 | hash_value &= 0xFFF; | ||
4043 | return hash_value; | ||
4044 | } | ||
4045 | |||
4046 | /****************************************************************************** | ||
4047 | * Sets the bit in the multicast table corresponding to the hash value. | ||
4048 | * | ||
4049 | * hw - Struct containing variables accessed by shared code | ||
4050 | * hash_value - Multicast address hash value | ||
4051 | *****************************************************************************/ | ||
4052 | void | ||
4053 | e1000_mta_set(struct e1000_hw *hw, | ||
4054 | uint32_t hash_value) | ||
4055 | { | ||
4056 | uint32_t hash_bit, hash_reg; | ||
4057 | uint32_t mta; | ||
4058 | uint32_t temp; | ||
4059 | |||
4060 | /* The MTA is a register array of 128 32-bit registers. | ||
4061 | * It is treated like an array of 4096 bits. We want to set | ||
4062 | * bit BitArray[hash_value]. So we figure out what register | ||
4063 | * the bit is in, read it, OR in the new bit, then write | ||
4064 | * back the new value. The register is determined by the | ||
4065 | * upper 7 bits of the hash value and the bit within that | ||
4066 | * register are determined by the lower 5 bits of the value. | ||
4067 | */ | ||
4068 | hash_reg = (hash_value >> 5) & 0x7F; | ||
4069 | hash_bit = hash_value & 0x1F; | ||
4070 | |||
4071 | mta = E1000_READ_REG_ARRAY(hw, MTA, hash_reg); | ||
4072 | |||
4073 | mta |= (1 << hash_bit); | ||
4074 | |||
4075 | /* If we are on an 82544 and we are trying to write an odd offset | ||
4076 | * in the MTA, save off the previous entry before writing and | ||
4077 | * restore the old value after writing. | ||
4078 | */ | ||
4079 | if((hw->mac_type == e1000_82544) && ((hash_reg & 0x1) == 1)) { | ||
4080 | temp = E1000_READ_REG_ARRAY(hw, MTA, (hash_reg - 1)); | ||
4081 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | ||
4082 | E1000_WRITE_REG_ARRAY(hw, MTA, (hash_reg - 1), temp); | ||
4083 | } else { | ||
4084 | E1000_WRITE_REG_ARRAY(hw, MTA, hash_reg, mta); | ||
4085 | } | ||
4086 | } | ||
4087 | |||
4088 | /****************************************************************************** | ||
4089 | * Puts an ethernet address into a receive address register. | ||
4090 | * | ||
4091 | * hw - Struct containing variables accessed by shared code | ||
4092 | * addr - Address to put into receive address register | ||
4093 | * index - Receive address register to write | ||
4094 | *****************************************************************************/ | ||
4095 | void | ||
4096 | e1000_rar_set(struct e1000_hw *hw, | ||
4097 | uint8_t *addr, | ||
4098 | uint32_t index) | ||
4099 | { | ||
4100 | uint32_t rar_low, rar_high; | ||
4101 | |||
4102 | /* HW expects these in little endian so we reverse the byte order | ||
4103 | * from network order (big endian) to little endian | ||
4104 | */ | ||
4105 | rar_low = ((uint32_t) addr[0] | | ||
4106 | ((uint32_t) addr[1] << 8) | | ||
4107 | ((uint32_t) addr[2] << 16) | ((uint32_t) addr[3] << 24)); | ||
4108 | |||
4109 | rar_high = ((uint32_t) addr[4] | ((uint32_t) addr[5] << 8) | E1000_RAH_AV); | ||
4110 | |||
4111 | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | ||
4112 | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | ||
4113 | } | ||
4114 | |||
4115 | /****************************************************************************** | ||
4116 | * Writes a value to the specified offset in the VLAN filter table. | ||
4117 | * | ||
4118 | * hw - Struct containing variables accessed by shared code | ||
4119 | * offset - Offset in VLAN filer table to write | ||
4120 | * value - Value to write into VLAN filter table | ||
4121 | *****************************************************************************/ | ||
4122 | void | ||
4123 | e1000_write_vfta(struct e1000_hw *hw, | ||
4124 | uint32_t offset, | ||
4125 | uint32_t value) | ||
4126 | { | ||
4127 | uint32_t temp; | ||
4128 | |||
4129 | if((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | ||
4130 | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | ||
4131 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | ||
4132 | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | ||
4133 | } else { | ||
4134 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | ||
4135 | } | ||
4136 | } | ||
4137 | |||
4138 | /****************************************************************************** | ||
4139 | * Clears the VLAN filer table | ||
4140 | * | ||
4141 | * hw - Struct containing variables accessed by shared code | ||
4142 | *****************************************************************************/ | ||
4143 | void | ||
4144 | e1000_clear_vfta(struct e1000_hw *hw) | ||
4145 | { | ||
4146 | uint32_t offset; | ||
4147 | |||
4148 | for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) | ||
4149 | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); | ||
4150 | } | ||
4151 | |||
4152 | static int32_t | ||
4153 | e1000_id_led_init(struct e1000_hw * hw) | ||
4154 | { | ||
4155 | uint32_t ledctl; | ||
4156 | const uint32_t ledctl_mask = 0x000000FF; | ||
4157 | const uint32_t ledctl_on = E1000_LEDCTL_MODE_LED_ON; | ||
4158 | const uint32_t ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | ||
4159 | uint16_t eeprom_data, i, temp; | ||
4160 | const uint16_t led_mask = 0x0F; | ||
4161 | |||
4162 | DEBUGFUNC("e1000_id_led_init"); | ||
4163 | |||
4164 | if(hw->mac_type < e1000_82540) { | ||
4165 | /* Nothing to do */ | ||
4166 | return E1000_SUCCESS; | ||
4167 | } | ||
4168 | |||
4169 | ledctl = E1000_READ_REG(hw, LEDCTL); | ||
4170 | hw->ledctl_default = ledctl; | ||
4171 | hw->ledctl_mode1 = hw->ledctl_default; | ||
4172 | hw->ledctl_mode2 = hw->ledctl_default; | ||
4173 | |||
4174 | if(e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | ||
4175 | DEBUGOUT("EEPROM Read Error\n"); | ||
4176 | return -E1000_ERR_EEPROM; | ||
4177 | } | ||
4178 | if((eeprom_data== ID_LED_RESERVED_0000) || | ||
4179 | (eeprom_data == ID_LED_RESERVED_FFFF)) eeprom_data = ID_LED_DEFAULT; | ||
4180 | for(i = 0; i < 4; i++) { | ||
4181 | temp = (eeprom_data >> (i << 2)) & led_mask; | ||
4182 | switch(temp) { | ||
4183 | case ID_LED_ON1_DEF2: | ||
4184 | case ID_LED_ON1_ON2: | ||
4185 | case ID_LED_ON1_OFF2: | ||
4186 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
4187 | hw->ledctl_mode1 |= ledctl_on << (i << 3); | ||
4188 | break; | ||
4189 | case ID_LED_OFF1_DEF2: | ||
4190 | case ID_LED_OFF1_ON2: | ||
4191 | case ID_LED_OFF1_OFF2: | ||
4192 | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | ||
4193 | hw->ledctl_mode1 |= ledctl_off << (i << 3); | ||
4194 | break; | ||
4195 | default: | ||
4196 | /* Do nothing */ | ||
4197 | break; | ||
4198 | } | ||
4199 | switch(temp) { | ||
4200 | case ID_LED_DEF1_ON2: | ||
4201 | case ID_LED_ON1_ON2: | ||
4202 | case ID_LED_OFF1_ON2: | ||
4203 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
4204 | hw->ledctl_mode2 |= ledctl_on << (i << 3); | ||
4205 | break; | ||
4206 | case ID_LED_DEF1_OFF2: | ||
4207 | case ID_LED_ON1_OFF2: | ||
4208 | case ID_LED_OFF1_OFF2: | ||
4209 | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | ||
4210 | hw->ledctl_mode2 |= ledctl_off << (i << 3); | ||
4211 | break; | ||
4212 | default: | ||
4213 | /* Do nothing */ | ||
4214 | break; | ||
4215 | } | ||
4216 | } | ||
4217 | return E1000_SUCCESS; | ||
4218 | } | ||
4219 | |||
4220 | /****************************************************************************** | ||
4221 | * Prepares SW controlable LED for use and saves the current state of the LED. | ||
4222 | * | ||
4223 | * hw - Struct containing variables accessed by shared code | ||
4224 | *****************************************************************************/ | ||
4225 | int32_t | ||
4226 | e1000_setup_led(struct e1000_hw *hw) | ||
4227 | { | ||
4228 | uint32_t ledctl; | ||
4229 | int32_t ret_val = E1000_SUCCESS; | ||
4230 | |||
4231 | DEBUGFUNC("e1000_setup_led"); | ||
4232 | |||
4233 | switch(hw->mac_type) { | ||
4234 | case e1000_82542_rev2_0: | ||
4235 | case e1000_82542_rev2_1: | ||
4236 | case e1000_82543: | ||
4237 | case e1000_82544: | ||
4238 | /* No setup necessary */ | ||
4239 | break; | ||
4240 | case e1000_82541: | ||
4241 | case e1000_82547: | ||
4242 | case e1000_82541_rev_2: | ||
4243 | case e1000_82547_rev_2: | ||
4244 | /* Turn off PHY Smart Power Down (if enabled) */ | ||
4245 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4246 | &hw->phy_spd_default); | ||
4247 | if(ret_val) | ||
4248 | return ret_val; | ||
4249 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4250 | (uint16_t)(hw->phy_spd_default & | ||
4251 | ~IGP01E1000_GMII_SPD)); | ||
4252 | if(ret_val) | ||
4253 | return ret_val; | ||
4254 | /* Fall Through */ | ||
4255 | default: | ||
4256 | if(hw->media_type == e1000_media_type_fiber) { | ||
4257 | ledctl = E1000_READ_REG(hw, LEDCTL); | ||
4258 | /* Save current LEDCTL settings */ | ||
4259 | hw->ledctl_default = ledctl; | ||
4260 | /* Turn off LED0 */ | ||
4261 | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | ||
4262 | E1000_LEDCTL_LED0_BLINK | | ||
4263 | E1000_LEDCTL_LED0_MODE_MASK); | ||
4264 | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | ||
4265 | E1000_LEDCTL_LED0_MODE_SHIFT); | ||
4266 | E1000_WRITE_REG(hw, LEDCTL, ledctl); | ||
4267 | } else if(hw->media_type == e1000_media_type_copper) | ||
4268 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | ||
4269 | break; | ||
4270 | } | ||
4271 | |||
4272 | return E1000_SUCCESS; | ||
4273 | } | ||
4274 | |||
4275 | /****************************************************************************** | ||
4276 | * Restores the saved state of the SW controlable LED. | ||
4277 | * | ||
4278 | * hw - Struct containing variables accessed by shared code | ||
4279 | *****************************************************************************/ | ||
4280 | int32_t | ||
4281 | e1000_cleanup_led(struct e1000_hw *hw) | ||
4282 | { | ||
4283 | int32_t ret_val = E1000_SUCCESS; | ||
4284 | |||
4285 | DEBUGFUNC("e1000_cleanup_led"); | ||
4286 | |||
4287 | switch(hw->mac_type) { | ||
4288 | case e1000_82542_rev2_0: | ||
4289 | case e1000_82542_rev2_1: | ||
4290 | case e1000_82543: | ||
4291 | case e1000_82544: | ||
4292 | /* No cleanup necessary */ | ||
4293 | break; | ||
4294 | case e1000_82541: | ||
4295 | case e1000_82547: | ||
4296 | case e1000_82541_rev_2: | ||
4297 | case e1000_82547_rev_2: | ||
4298 | /* Turn on PHY Smart Power Down (if previously enabled) */ | ||
4299 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | ||
4300 | hw->phy_spd_default); | ||
4301 | if(ret_val) | ||
4302 | return ret_val; | ||
4303 | /* Fall Through */ | ||
4304 | default: | ||
4305 | /* Restore LEDCTL settings */ | ||
4306 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_default); | ||
4307 | break; | ||
4308 | } | ||
4309 | |||
4310 | return E1000_SUCCESS; | ||
4311 | } | ||
4312 | |||
4313 | /****************************************************************************** | ||
4314 | * Turns on the software controllable LED | ||
4315 | * | ||
4316 | * hw - Struct containing variables accessed by shared code | ||
4317 | *****************************************************************************/ | ||
4318 | int32_t | ||
4319 | e1000_led_on(struct e1000_hw *hw) | ||
4320 | { | ||
4321 | uint32_t ctrl = E1000_READ_REG(hw, CTRL); | ||
4322 | |||
4323 | DEBUGFUNC("e1000_led_on"); | ||
4324 | |||
4325 | switch(hw->mac_type) { | ||
4326 | case e1000_82542_rev2_0: | ||
4327 | case e1000_82542_rev2_1: | ||
4328 | case e1000_82543: | ||
4329 | /* Set SW Defineable Pin 0 to turn on the LED */ | ||
4330 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4331 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4332 | break; | ||
4333 | case e1000_82544: | ||
4334 | if(hw->media_type == e1000_media_type_fiber) { | ||
4335 | /* Set SW Defineable Pin 0 to turn on the LED */ | ||
4336 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4337 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4338 | } else { | ||
4339 | /* Clear SW Defineable Pin 0 to turn on the LED */ | ||
4340 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4341 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4342 | } | ||
4343 | break; | ||
4344 | default: | ||
4345 | if(hw->media_type == e1000_media_type_fiber) { | ||
4346 | /* Clear SW Defineable Pin 0 to turn on the LED */ | ||
4347 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4348 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4349 | } else if(hw->media_type == e1000_media_type_copper) { | ||
4350 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode2); | ||
4351 | return E1000_SUCCESS; | ||
4352 | } | ||
4353 | break; | ||
4354 | } | ||
4355 | |||
4356 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
4357 | |||
4358 | return E1000_SUCCESS; | ||
4359 | } | ||
4360 | |||
4361 | /****************************************************************************** | ||
4362 | * Turns off the software controllable LED | ||
4363 | * | ||
4364 | * hw - Struct containing variables accessed by shared code | ||
4365 | *****************************************************************************/ | ||
4366 | int32_t | ||
4367 | e1000_led_off(struct e1000_hw *hw) | ||
4368 | { | ||
4369 | uint32_t ctrl = E1000_READ_REG(hw, CTRL); | ||
4370 | |||
4371 | DEBUGFUNC("e1000_led_off"); | ||
4372 | |||
4373 | switch(hw->mac_type) { | ||
4374 | case e1000_82542_rev2_0: | ||
4375 | case e1000_82542_rev2_1: | ||
4376 | case e1000_82543: | ||
4377 | /* Clear SW Defineable Pin 0 to turn off the LED */ | ||
4378 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4379 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4380 | break; | ||
4381 | case e1000_82544: | ||
4382 | if(hw->media_type == e1000_media_type_fiber) { | ||
4383 | /* Clear SW Defineable Pin 0 to turn off the LED */ | ||
4384 | ctrl &= ~E1000_CTRL_SWDPIN0; | ||
4385 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4386 | } else { | ||
4387 | /* Set SW Defineable Pin 0 to turn off the LED */ | ||
4388 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4389 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4390 | } | ||
4391 | break; | ||
4392 | default: | ||
4393 | if(hw->media_type == e1000_media_type_fiber) { | ||
4394 | /* Set SW Defineable Pin 0 to turn off the LED */ | ||
4395 | ctrl |= E1000_CTRL_SWDPIN0; | ||
4396 | ctrl |= E1000_CTRL_SWDPIO0; | ||
4397 | } else if(hw->media_type == e1000_media_type_copper) { | ||
4398 | E1000_WRITE_REG(hw, LEDCTL, hw->ledctl_mode1); | ||
4399 | return E1000_SUCCESS; | ||
4400 | } | ||
4401 | break; | ||
4402 | } | ||
4403 | |||
4404 | E1000_WRITE_REG(hw, CTRL, ctrl); | ||
4405 | |||
4406 | return E1000_SUCCESS; | ||
4407 | } | ||
4408 | |||
4409 | /****************************************************************************** | ||
4410 | * Clears all hardware statistics counters. | ||
4411 | * | ||
4412 | * hw - Struct containing variables accessed by shared code | ||
4413 | *****************************************************************************/ | ||
4414 | void | ||
4415 | e1000_clear_hw_cntrs(struct e1000_hw *hw) | ||
4416 | { | ||
4417 | volatile uint32_t temp; | ||
4418 | |||
4419 | temp = E1000_READ_REG(hw, CRCERRS); | ||
4420 | temp = E1000_READ_REG(hw, SYMERRS); | ||
4421 | temp = E1000_READ_REG(hw, MPC); | ||
4422 | temp = E1000_READ_REG(hw, SCC); | ||
4423 | temp = E1000_READ_REG(hw, ECOL); | ||
4424 | temp = E1000_READ_REG(hw, MCC); | ||
4425 | temp = E1000_READ_REG(hw, LATECOL); | ||
4426 | temp = E1000_READ_REG(hw, COLC); | ||
4427 | temp = E1000_READ_REG(hw, DC); | ||
4428 | temp = E1000_READ_REG(hw, SEC); | ||
4429 | temp = E1000_READ_REG(hw, RLEC); | ||
4430 | temp = E1000_READ_REG(hw, XONRXC); | ||
4431 | temp = E1000_READ_REG(hw, XONTXC); | ||
4432 | temp = E1000_READ_REG(hw, XOFFRXC); | ||
4433 | temp = E1000_READ_REG(hw, XOFFTXC); | ||
4434 | temp = E1000_READ_REG(hw, FCRUC); | ||
4435 | temp = E1000_READ_REG(hw, PRC64); | ||
4436 | temp = E1000_READ_REG(hw, PRC127); | ||
4437 | temp = E1000_READ_REG(hw, PRC255); | ||
4438 | temp = E1000_READ_REG(hw, PRC511); | ||
4439 | temp = E1000_READ_REG(hw, PRC1023); | ||
4440 | temp = E1000_READ_REG(hw, PRC1522); | ||
4441 | temp = E1000_READ_REG(hw, GPRC); | ||
4442 | temp = E1000_READ_REG(hw, BPRC); | ||
4443 | temp = E1000_READ_REG(hw, MPRC); | ||
4444 | temp = E1000_READ_REG(hw, GPTC); | ||
4445 | temp = E1000_READ_REG(hw, GORCL); | ||
4446 | temp = E1000_READ_REG(hw, GORCH); | ||
4447 | temp = E1000_READ_REG(hw, GOTCL); | ||
4448 | temp = E1000_READ_REG(hw, GOTCH); | ||
4449 | temp = E1000_READ_REG(hw, RNBC); | ||
4450 | temp = E1000_READ_REG(hw, RUC); | ||
4451 | temp = E1000_READ_REG(hw, RFC); | ||
4452 | temp = E1000_READ_REG(hw, ROC); | ||
4453 | temp = E1000_READ_REG(hw, RJC); | ||
4454 | temp = E1000_READ_REG(hw, TORL); | ||
4455 | temp = E1000_READ_REG(hw, TORH); | ||
4456 | temp = E1000_READ_REG(hw, TOTL); | ||
4457 | temp = E1000_READ_REG(hw, TOTH); | ||
4458 | temp = E1000_READ_REG(hw, TPR); | ||
4459 | temp = E1000_READ_REG(hw, TPT); | ||
4460 | temp = E1000_READ_REG(hw, PTC64); | ||
4461 | temp = E1000_READ_REG(hw, PTC127); | ||
4462 | temp = E1000_READ_REG(hw, PTC255); | ||
4463 | temp = E1000_READ_REG(hw, PTC511); | ||
4464 | temp = E1000_READ_REG(hw, PTC1023); | ||
4465 | temp = E1000_READ_REG(hw, PTC1522); | ||
4466 | temp = E1000_READ_REG(hw, MPTC); | ||
4467 | temp = E1000_READ_REG(hw, BPTC); | ||
4468 | |||
4469 | if(hw->mac_type < e1000_82543) return; | ||
4470 | |||
4471 | temp = E1000_READ_REG(hw, ALGNERRC); | ||
4472 | temp = E1000_READ_REG(hw, RXERRC); | ||
4473 | temp = E1000_READ_REG(hw, TNCRS); | ||
4474 | temp = E1000_READ_REG(hw, CEXTERR); | ||
4475 | temp = E1000_READ_REG(hw, TSCTC); | ||
4476 | temp = E1000_READ_REG(hw, TSCTFC); | ||
4477 | |||
4478 | if(hw->mac_type <= e1000_82544) return; | ||
4479 | |||
4480 | temp = E1000_READ_REG(hw, MGTPRC); | ||
4481 | temp = E1000_READ_REG(hw, MGTPDC); | ||
4482 | temp = E1000_READ_REG(hw, MGTPTC); | ||
4483 | } | ||
4484 | |||
4485 | /****************************************************************************** | ||
4486 | * Resets Adaptive IFS to its default state. | ||
4487 | * | ||
4488 | * hw - Struct containing variables accessed by shared code | ||
4489 | * | ||
4490 | * Call this after e1000_init_hw. You may override the IFS defaults by setting | ||
4491 | * hw->ifs_params_forced to TRUE. However, you must initialize hw-> | ||
4492 | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | ||
4493 | * before calling this function. | ||
4494 | *****************************************************************************/ | ||
4495 | void | ||
4496 | e1000_reset_adaptive(struct e1000_hw *hw) | ||
4497 | { | ||
4498 | DEBUGFUNC("e1000_reset_adaptive"); | ||
4499 | |||
4500 | if(hw->adaptive_ifs) { | ||
4501 | if(!hw->ifs_params_forced) { | ||
4502 | hw->current_ifs_val = 0; | ||
4503 | hw->ifs_min_val = IFS_MIN; | ||
4504 | hw->ifs_max_val = IFS_MAX; | ||
4505 | hw->ifs_step_size = IFS_STEP; | ||
4506 | hw->ifs_ratio = IFS_RATIO; | ||
4507 | } | ||
4508 | hw->in_ifs_mode = FALSE; | ||
4509 | E1000_WRITE_REG(hw, AIT, 0); | ||
4510 | } else { | ||
4511 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | ||
4512 | } | ||
4513 | } | ||
4514 | |||
4515 | /****************************************************************************** | ||
4516 | * Called during the callback/watchdog routine to update IFS value based on | ||
4517 | * the ratio of transmits to collisions. | ||
4518 | * | ||
4519 | * hw - Struct containing variables accessed by shared code | ||
4520 | * tx_packets - Number of transmits since last callback | ||
4521 | * total_collisions - Number of collisions since last callback | ||
4522 | *****************************************************************************/ | ||
4523 | void | ||
4524 | e1000_update_adaptive(struct e1000_hw *hw) | ||
4525 | { | ||
4526 | DEBUGFUNC("e1000_update_adaptive"); | ||
4527 | |||
4528 | if(hw->adaptive_ifs) { | ||
4529 | if((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { | ||
4530 | if(hw->tx_packet_delta > MIN_NUM_XMITS) { | ||
4531 | hw->in_ifs_mode = TRUE; | ||
4532 | if(hw->current_ifs_val < hw->ifs_max_val) { | ||
4533 | if(hw->current_ifs_val == 0) | ||
4534 | hw->current_ifs_val = hw->ifs_min_val; | ||
4535 | else | ||
4536 | hw->current_ifs_val += hw->ifs_step_size; | ||
4537 | E1000_WRITE_REG(hw, AIT, hw->current_ifs_val); | ||
4538 | } | ||
4539 | } | ||
4540 | } else { | ||
4541 | if(hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | ||
4542 | hw->current_ifs_val = 0; | ||
4543 | hw->in_ifs_mode = FALSE; | ||
4544 | E1000_WRITE_REG(hw, AIT, 0); | ||
4545 | } | ||
4546 | } | ||
4547 | } else { | ||
4548 | DEBUGOUT("Not in Adaptive IFS mode!\n"); | ||
4549 | } | ||
4550 | } | ||
4551 | |||
4552 | /****************************************************************************** | ||
4553 | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | ||
4554 | * | ||
4555 | * hw - Struct containing variables accessed by shared code | ||
4556 | * frame_len - The length of the frame in question | ||
4557 | * mac_addr - The Ethernet destination address of the frame in question | ||
4558 | *****************************************************************************/ | ||
4559 | void | ||
4560 | e1000_tbi_adjust_stats(struct e1000_hw *hw, | ||
4561 | struct e1000_hw_stats *stats, | ||
4562 | uint32_t frame_len, | ||
4563 | uint8_t *mac_addr) | ||
4564 | { | ||
4565 | uint64_t carry_bit; | ||
4566 | |||
4567 | /* First adjust the frame length. */ | ||
4568 | frame_len--; | ||
4569 | /* We need to adjust the statistics counters, since the hardware | ||
4570 | * counters overcount this packet as a CRC error and undercount | ||
4571 | * the packet as a good packet | ||
4572 | */ | ||
4573 | /* This packet should not be counted as a CRC error. */ | ||
4574 | stats->crcerrs--; | ||
4575 | /* This packet does count as a Good Packet Received. */ | ||
4576 | stats->gprc++; | ||
4577 | |||
4578 | /* Adjust the Good Octets received counters */ | ||
4579 | carry_bit = 0x80000000 & stats->gorcl; | ||
4580 | stats->gorcl += frame_len; | ||
4581 | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | ||
4582 | * Received Count) was one before the addition, | ||
4583 | * AND it is zero after, then we lost the carry out, | ||
4584 | * need to add one to Gorch (Good Octets Received Count High). | ||
4585 | * This could be simplified if all environments supported | ||
4586 | * 64-bit integers. | ||
4587 | */ | ||
4588 | if(carry_bit && ((stats->gorcl & 0x80000000) == 0)) | ||
4589 | stats->gorch++; | ||
4590 | /* Is this a broadcast or multicast? Check broadcast first, | ||
4591 | * since the test for a multicast frame will test positive on | ||
4592 | * a broadcast frame. | ||
4593 | */ | ||
4594 | if((mac_addr[0] == (uint8_t) 0xff) && (mac_addr[1] == (uint8_t) 0xff)) | ||
4595 | /* Broadcast packet */ | ||
4596 | stats->bprc++; | ||
4597 | else if(*mac_addr & 0x01) | ||
4598 | /* Multicast packet */ | ||
4599 | stats->mprc++; | ||
4600 | |||
4601 | if(frame_len == hw->max_frame_size) { | ||
4602 | /* In this case, the hardware has overcounted the number of | ||
4603 | * oversize frames. | ||
4604 | */ | ||
4605 | if(stats->roc > 0) | ||
4606 | stats->roc--; | ||
4607 | } | ||
4608 | |||
4609 | /* Adjust the bin counters when the extra byte put the frame in the | ||
4610 | * wrong bin. Remember that the frame_len was adjusted above. | ||
4611 | */ | ||
4612 | if(frame_len == 64) { | ||
4613 | stats->prc64++; | ||
4614 | stats->prc127--; | ||
4615 | } else if(frame_len == 127) { | ||
4616 | stats->prc127++; | ||
4617 | stats->prc255--; | ||
4618 | } else if(frame_len == 255) { | ||
4619 | stats->prc255++; | ||
4620 | stats->prc511--; | ||
4621 | } else if(frame_len == 511) { | ||
4622 | stats->prc511++; | ||
4623 | stats->prc1023--; | ||
4624 | } else if(frame_len == 1023) { | ||
4625 | stats->prc1023++; | ||
4626 | stats->prc1522--; | ||
4627 | } else if(frame_len == 1522) { | ||
4628 | stats->prc1522++; | ||
4629 | } | ||
4630 | } | ||
4631 | |||
4632 | /****************************************************************************** | ||
4633 | * Gets the current PCI bus type, speed, and width of the hardware | ||
4634 | * | ||
4635 | * hw - Struct containing variables accessed by shared code | ||
4636 | *****************************************************************************/ | ||
4637 | void | ||
4638 | e1000_get_bus_info(struct e1000_hw *hw) | ||
4639 | { | ||
4640 | uint32_t status; | ||
4641 | |||
4642 | switch (hw->mac_type) { | ||
4643 | case e1000_82542_rev2_0: | ||
4644 | case e1000_82542_rev2_1: | ||
4645 | hw->bus_type = e1000_bus_type_unknown; | ||
4646 | hw->bus_speed = e1000_bus_speed_unknown; | ||
4647 | hw->bus_width = e1000_bus_width_unknown; | ||
4648 | break; | ||
4649 | default: | ||
4650 | status = E1000_READ_REG(hw, STATUS); | ||
4651 | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | ||
4652 | e1000_bus_type_pcix : e1000_bus_type_pci; | ||
4653 | |||
4654 | if(hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | ||
4655 | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | ||
4656 | e1000_bus_speed_66 : e1000_bus_speed_120; | ||
4657 | } else if(hw->bus_type == e1000_bus_type_pci) { | ||
4658 | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | ||
4659 | e1000_bus_speed_66 : e1000_bus_speed_33; | ||
4660 | } else { | ||
4661 | switch (status & E1000_STATUS_PCIX_SPEED) { | ||
4662 | case E1000_STATUS_PCIX_SPEED_66: | ||
4663 | hw->bus_speed = e1000_bus_speed_66; | ||
4664 | break; | ||
4665 | case E1000_STATUS_PCIX_SPEED_100: | ||
4666 | hw->bus_speed = e1000_bus_speed_100; | ||
4667 | break; | ||
4668 | case E1000_STATUS_PCIX_SPEED_133: | ||
4669 | hw->bus_speed = e1000_bus_speed_133; | ||
4670 | break; | ||
4671 | default: | ||
4672 | hw->bus_speed = e1000_bus_speed_reserved; | ||
4673 | break; | ||
4674 | } | ||
4675 | } | ||
4676 | hw->bus_width = (status & E1000_STATUS_BUS64) ? | ||
4677 | e1000_bus_width_64 : e1000_bus_width_32; | ||
4678 | break; | ||
4679 | } | ||
4680 | } | ||
4681 | /****************************************************************************** | ||
4682 | * Reads a value from one of the devices registers using port I/O (as opposed | ||
4683 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | ||
4684 | * | ||
4685 | * hw - Struct containing variables accessed by shared code | ||
4686 | * offset - offset to read from | ||
4687 | *****************************************************************************/ | ||
4688 | uint32_t | ||
4689 | e1000_read_reg_io(struct e1000_hw *hw, | ||
4690 | uint32_t offset) | ||
4691 | { | ||
4692 | unsigned long io_addr = hw->io_base; | ||
4693 | unsigned long io_data = hw->io_base + 4; | ||
4694 | |||
4695 | e1000_io_write(hw, io_addr, offset); | ||
4696 | return e1000_io_read(hw, io_data); | ||
4697 | } | ||
4698 | |||
4699 | /****************************************************************************** | ||
4700 | * Writes a value to one of the devices registers using port I/O (as opposed to | ||
4701 | * memory mapped I/O). Only 82544 and newer devices support port I/O. | ||
4702 | * | ||
4703 | * hw - Struct containing variables accessed by shared code | ||
4704 | * offset - offset to write to | ||
4705 | * value - value to write | ||
4706 | *****************************************************************************/ | ||
4707 | void | ||
4708 | e1000_write_reg_io(struct e1000_hw *hw, | ||
4709 | uint32_t offset, | ||
4710 | uint32_t value) | ||
4711 | { | ||
4712 | unsigned long io_addr = hw->io_base; | ||
4713 | unsigned long io_data = hw->io_base + 4; | ||
4714 | |||
4715 | e1000_io_write(hw, io_addr, offset); | ||
4716 | e1000_io_write(hw, io_data, value); | ||
4717 | } | ||
4718 | |||
4719 | |||
4720 | /****************************************************************************** | ||
4721 | * Estimates the cable length. | ||
4722 | * | ||
4723 | * hw - Struct containing variables accessed by shared code | ||
4724 | * min_length - The estimated minimum length | ||
4725 | * max_length - The estimated maximum length | ||
4726 | * | ||
4727 | * returns: - E1000_ERR_XXX | ||
4728 | * E1000_SUCCESS | ||
4729 | * | ||
4730 | * This function always returns a ranged length (minimum & maximum). | ||
4731 | * So for M88 phy's, this function interprets the one value returned from the | ||
4732 | * register to the minimum and maximum range. | ||
4733 | * For IGP phy's, the function calculates the range by the AGC registers. | ||
4734 | *****************************************************************************/ | ||
4735 | int32_t | ||
4736 | e1000_get_cable_length(struct e1000_hw *hw, | ||
4737 | uint16_t *min_length, | ||
4738 | uint16_t *max_length) | ||
4739 | { | ||
4740 | int32_t ret_val; | ||
4741 | uint16_t agc_value = 0; | ||
4742 | uint16_t cur_agc, min_agc = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | ||
4743 | uint16_t i, phy_data; | ||
4744 | uint16_t cable_length; | ||
4745 | |||
4746 | DEBUGFUNC("e1000_get_cable_length"); | ||
4747 | |||
4748 | *min_length = *max_length = 0; | ||
4749 | |||
4750 | /* Use old method for Phy older than IGP */ | ||
4751 | if(hw->phy_type == e1000_phy_m88) { | ||
4752 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
4753 | &phy_data); | ||
4754 | if(ret_val) | ||
4755 | return ret_val; | ||
4756 | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | ||
4757 | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | ||
4758 | |||
4759 | /* Convert the enum value to ranged values */ | ||
4760 | switch (cable_length) { | ||
4761 | case e1000_cable_length_50: | ||
4762 | *min_length = 0; | ||
4763 | *max_length = e1000_igp_cable_length_50; | ||
4764 | break; | ||
4765 | case e1000_cable_length_50_80: | ||
4766 | *min_length = e1000_igp_cable_length_50; | ||
4767 | *max_length = e1000_igp_cable_length_80; | ||
4768 | break; | ||
4769 | case e1000_cable_length_80_110: | ||
4770 | *min_length = e1000_igp_cable_length_80; | ||
4771 | *max_length = e1000_igp_cable_length_110; | ||
4772 | break; | ||
4773 | case e1000_cable_length_110_140: | ||
4774 | *min_length = e1000_igp_cable_length_110; | ||
4775 | *max_length = e1000_igp_cable_length_140; | ||
4776 | break; | ||
4777 | case e1000_cable_length_140: | ||
4778 | *min_length = e1000_igp_cable_length_140; | ||
4779 | *max_length = e1000_igp_cable_length_170; | ||
4780 | break; | ||
4781 | default: | ||
4782 | return -E1000_ERR_PHY; | ||
4783 | break; | ||
4784 | } | ||
4785 | } else if(hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | ||
4786 | uint16_t agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | ||
4787 | {IGP01E1000_PHY_AGC_A, | ||
4788 | IGP01E1000_PHY_AGC_B, | ||
4789 | IGP01E1000_PHY_AGC_C, | ||
4790 | IGP01E1000_PHY_AGC_D}; | ||
4791 | /* Read the AGC registers for all channels */ | ||
4792 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
4793 | |||
4794 | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | ||
4795 | if(ret_val) | ||
4796 | return ret_val; | ||
4797 | |||
4798 | cur_agc = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | ||
4799 | |||
4800 | /* Array bound check. */ | ||
4801 | if((cur_agc >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | ||
4802 | (cur_agc == 0)) | ||
4803 | return -E1000_ERR_PHY; | ||
4804 | |||
4805 | agc_value += cur_agc; | ||
4806 | |||
4807 | /* Update minimal AGC value. */ | ||
4808 | if(min_agc > cur_agc) | ||
4809 | min_agc = cur_agc; | ||
4810 | } | ||
4811 | |||
4812 | /* Remove the minimal AGC result for length < 50m */ | ||
4813 | if(agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | ||
4814 | agc_value -= min_agc; | ||
4815 | |||
4816 | /* Get the average length of the remaining 3 channels */ | ||
4817 | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | ||
4818 | } else { | ||
4819 | /* Get the average length of all the 4 channels. */ | ||
4820 | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | ||
4821 | } | ||
4822 | |||
4823 | /* Set the range of the calculated length. */ | ||
4824 | *min_length = ((e1000_igp_cable_length_table[agc_value] - | ||
4825 | IGP01E1000_AGC_RANGE) > 0) ? | ||
4826 | (e1000_igp_cable_length_table[agc_value] - | ||
4827 | IGP01E1000_AGC_RANGE) : 0; | ||
4828 | *max_length = e1000_igp_cable_length_table[agc_value] + | ||
4829 | IGP01E1000_AGC_RANGE; | ||
4830 | } | ||
4831 | |||
4832 | return E1000_SUCCESS; | ||
4833 | } | ||
4834 | |||
4835 | /****************************************************************************** | ||
4836 | * Check the cable polarity | ||
4837 | * | ||
4838 | * hw - Struct containing variables accessed by shared code | ||
4839 | * polarity - output parameter : 0 - Polarity is not reversed | ||
4840 | * 1 - Polarity is reversed. | ||
4841 | * | ||
4842 | * returns: - E1000_ERR_XXX | ||
4843 | * E1000_SUCCESS | ||
4844 | * | ||
4845 | * For phy's older then IGP, this function simply reads the polarity bit in the | ||
4846 | * Phy Status register. For IGP phy's, this bit is valid only if link speed is | ||
4847 | * 10 Mbps. If the link speed is 100 Mbps there is no polarity so this bit will | ||
4848 | * return 0. If the link speed is 1000 Mbps the polarity status is in the | ||
4849 | * IGP01E1000_PHY_PCS_INIT_REG. | ||
4850 | *****************************************************************************/ | ||
4851 | int32_t | ||
4852 | e1000_check_polarity(struct e1000_hw *hw, | ||
4853 | uint16_t *polarity) | ||
4854 | { | ||
4855 | int32_t ret_val; | ||
4856 | uint16_t phy_data; | ||
4857 | |||
4858 | DEBUGFUNC("e1000_check_polarity"); | ||
4859 | |||
4860 | if(hw->phy_type == e1000_phy_m88) { | ||
4861 | /* return the Polarity bit in the Status register. */ | ||
4862 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
4863 | &phy_data); | ||
4864 | if(ret_val) | ||
4865 | return ret_val; | ||
4866 | *polarity = (phy_data & M88E1000_PSSR_REV_POLARITY) >> | ||
4867 | M88E1000_PSSR_REV_POLARITY_SHIFT; | ||
4868 | } else if(hw->phy_type == e1000_phy_igp) { | ||
4869 | /* Read the Status register to check the speed */ | ||
4870 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | ||
4871 | &phy_data); | ||
4872 | if(ret_val) | ||
4873 | return ret_val; | ||
4874 | |||
4875 | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | ||
4876 | * find the polarity status */ | ||
4877 | if((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | ||
4878 | IGP01E1000_PSSR_SPEED_1000MBPS) { | ||
4879 | |||
4880 | /* Read the GIG initialization PCS register (0x00B4) */ | ||
4881 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | ||
4882 | &phy_data); | ||
4883 | if(ret_val) | ||
4884 | return ret_val; | ||
4885 | |||
4886 | /* Check the polarity bits */ | ||
4887 | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? 1 : 0; | ||
4888 | } else { | ||
4889 | /* For 10 Mbps, read the polarity bit in the status register. (for | ||
4890 | * 100 Mbps this bit is always 0) */ | ||
4891 | *polarity = phy_data & IGP01E1000_PSSR_POLARITY_REVERSED; | ||
4892 | } | ||
4893 | } | ||
4894 | return E1000_SUCCESS; | ||
4895 | } | ||
4896 | |||
4897 | /****************************************************************************** | ||
4898 | * Check if Downshift occured | ||
4899 | * | ||
4900 | * hw - Struct containing variables accessed by shared code | ||
4901 | * downshift - output parameter : 0 - No Downshift ocured. | ||
4902 | * 1 - Downshift ocured. | ||
4903 | * | ||
4904 | * returns: - E1000_ERR_XXX | ||
4905 | * E1000_SUCCESS | ||
4906 | * | ||
4907 | * For phy's older then IGP, this function reads the Downshift bit in the Phy | ||
4908 | * Specific Status register. For IGP phy's, it reads the Downgrade bit in the | ||
4909 | * Link Health register. In IGP this bit is latched high, so the driver must | ||
4910 | * read it immediately after link is established. | ||
4911 | *****************************************************************************/ | ||
4912 | int32_t | ||
4913 | e1000_check_downshift(struct e1000_hw *hw) | ||
4914 | { | ||
4915 | int32_t ret_val; | ||
4916 | uint16_t phy_data; | ||
4917 | |||
4918 | DEBUGFUNC("e1000_check_downshift"); | ||
4919 | |||
4920 | if(hw->phy_type == e1000_phy_igp) { | ||
4921 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | ||
4922 | &phy_data); | ||
4923 | if(ret_val) | ||
4924 | return ret_val; | ||
4925 | |||
4926 | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | ||
4927 | } else if(hw->phy_type == e1000_phy_m88) { | ||
4928 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | ||
4929 | &phy_data); | ||
4930 | if(ret_val) | ||
4931 | return ret_val; | ||
4932 | |||
4933 | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | ||
4934 | M88E1000_PSSR_DOWNSHIFT_SHIFT; | ||
4935 | } | ||
4936 | return E1000_SUCCESS; | ||
4937 | } | ||
4938 | |||
4939 | /***************************************************************************** | ||
4940 | * | ||
4941 | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | ||
4942 | * gigabit link is achieved to improve link quality. | ||
4943 | * | ||
4944 | * hw: Struct containing variables accessed by shared code | ||
4945 | * | ||
4946 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
4947 | * E1000_SUCCESS at any other case. | ||
4948 | * | ||
4949 | ****************************************************************************/ | ||
4950 | |||
4951 | int32_t | ||
4952 | e1000_config_dsp_after_link_change(struct e1000_hw *hw, | ||
4953 | boolean_t link_up) | ||
4954 | { | ||
4955 | int32_t ret_val; | ||
4956 | uint16_t phy_data, phy_saved_data, speed, duplex, i; | ||
4957 | uint16_t dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | ||
4958 | {IGP01E1000_PHY_AGC_PARAM_A, | ||
4959 | IGP01E1000_PHY_AGC_PARAM_B, | ||
4960 | IGP01E1000_PHY_AGC_PARAM_C, | ||
4961 | IGP01E1000_PHY_AGC_PARAM_D}; | ||
4962 | uint16_t min_length, max_length; | ||
4963 | |||
4964 | DEBUGFUNC("e1000_config_dsp_after_link_change"); | ||
4965 | |||
4966 | if(hw->phy_type != e1000_phy_igp) | ||
4967 | return E1000_SUCCESS; | ||
4968 | |||
4969 | if(link_up) { | ||
4970 | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | ||
4971 | if(ret_val) { | ||
4972 | DEBUGOUT("Error getting link speed and duplex\n"); | ||
4973 | return ret_val; | ||
4974 | } | ||
4975 | |||
4976 | if(speed == SPEED_1000) { | ||
4977 | |||
4978 | e1000_get_cable_length(hw, &min_length, &max_length); | ||
4979 | |||
4980 | if((hw->dsp_config_state == e1000_dsp_config_enabled) && | ||
4981 | min_length >= e1000_igp_cable_length_50) { | ||
4982 | |||
4983 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
4984 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], | ||
4985 | &phy_data); | ||
4986 | if(ret_val) | ||
4987 | return ret_val; | ||
4988 | |||
4989 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
4990 | |||
4991 | ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], | ||
4992 | phy_data); | ||
4993 | if(ret_val) | ||
4994 | return ret_val; | ||
4995 | } | ||
4996 | hw->dsp_config_state = e1000_dsp_config_activated; | ||
4997 | } | ||
4998 | |||
4999 | if((hw->ffe_config_state == e1000_ffe_config_enabled) && | ||
5000 | (min_length < e1000_igp_cable_length_50)) { | ||
5001 | |||
5002 | uint16_t ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; | ||
5003 | uint32_t idle_errs = 0; | ||
5004 | |||
5005 | /* clear previous idle error counts */ | ||
5006 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | ||
5007 | &phy_data); | ||
5008 | if(ret_val) | ||
5009 | return ret_val; | ||
5010 | |||
5011 | for(i = 0; i < ffe_idle_err_timeout; i++) { | ||
5012 | udelay(1000); | ||
5013 | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | ||
5014 | &phy_data); | ||
5015 | if(ret_val) | ||
5016 | return ret_val; | ||
5017 | |||
5018 | idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); | ||
5019 | if(idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { | ||
5020 | hw->ffe_config_state = e1000_ffe_config_active; | ||
5021 | |||
5022 | ret_val = e1000_write_phy_reg(hw, | ||
5023 | IGP01E1000_PHY_DSP_FFE, | ||
5024 | IGP01E1000_PHY_DSP_FFE_CM_CP); | ||
5025 | if(ret_val) | ||
5026 | return ret_val; | ||
5027 | break; | ||
5028 | } | ||
5029 | |||
5030 | if(idle_errs) | ||
5031 | ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; | ||
5032 | } | ||
5033 | } | ||
5034 | } | ||
5035 | } else { | ||
5036 | if(hw->dsp_config_state == e1000_dsp_config_activated) { | ||
5037 | /* Save off the current value of register 0x2F5B to be restored at | ||
5038 | * the end of the routines. */ | ||
5039 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
5040 | |||
5041 | if(ret_val) | ||
5042 | return ret_val; | ||
5043 | |||
5044 | /* Disable the PHY transmitter */ | ||
5045 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
5046 | |||
5047 | if(ret_val) | ||
5048 | return ret_val; | ||
5049 | |||
5050 | msec_delay(20); | ||
5051 | |||
5052 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5053 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5054 | if(ret_val) | ||
5055 | return ret_val; | ||
5056 | for(i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | ||
5057 | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); | ||
5058 | if(ret_val) | ||
5059 | return ret_val; | ||
5060 | |||
5061 | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | ||
5062 | phy_data |= IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | ||
5063 | |||
5064 | ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); | ||
5065 | if(ret_val) | ||
5066 | return ret_val; | ||
5067 | } | ||
5068 | |||
5069 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5070 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
5071 | if(ret_val) | ||
5072 | return ret_val; | ||
5073 | |||
5074 | msec_delay(20); | ||
5075 | |||
5076 | /* Now enable the transmitter */ | ||
5077 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
5078 | |||
5079 | if(ret_val) | ||
5080 | return ret_val; | ||
5081 | |||
5082 | hw->dsp_config_state = e1000_dsp_config_enabled; | ||
5083 | } | ||
5084 | |||
5085 | if(hw->ffe_config_state == e1000_ffe_config_active) { | ||
5086 | /* Save off the current value of register 0x2F5B to be restored at | ||
5087 | * the end of the routines. */ | ||
5088 | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | ||
5089 | |||
5090 | if(ret_val) | ||
5091 | return ret_val; | ||
5092 | |||
5093 | /* Disable the PHY transmitter */ | ||
5094 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | ||
5095 | |||
5096 | if(ret_val) | ||
5097 | return ret_val; | ||
5098 | |||
5099 | msec_delay(20); | ||
5100 | |||
5101 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5102 | IGP01E1000_IEEE_FORCE_GIGA); | ||
5103 | if(ret_val) | ||
5104 | return ret_val; | ||
5105 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | ||
5106 | IGP01E1000_PHY_DSP_FFE_DEFAULT); | ||
5107 | if(ret_val) | ||
5108 | return ret_val; | ||
5109 | |||
5110 | ret_val = e1000_write_phy_reg(hw, 0x0000, | ||
5111 | IGP01E1000_IEEE_RESTART_AUTONEG); | ||
5112 | if(ret_val) | ||
5113 | return ret_val; | ||
5114 | |||
5115 | msec_delay(20); | ||
5116 | |||
5117 | /* Now enable the transmitter */ | ||
5118 | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | ||
5119 | |||
5120 | if(ret_val) | ||
5121 | return ret_val; | ||
5122 | |||
5123 | hw->ffe_config_state = e1000_ffe_config_enabled; | ||
5124 | } | ||
5125 | } | ||
5126 | return E1000_SUCCESS; | ||
5127 | } | ||
5128 | |||
5129 | /***************************************************************************** | ||
5130 | * Set PHY to class A mode | ||
5131 | * Assumes the following operations will follow to enable the new class mode. | ||
5132 | * 1. Do a PHY soft reset | ||
5133 | * 2. Restart auto-negotiation or force link. | ||
5134 | * | ||
5135 | * hw - Struct containing variables accessed by shared code | ||
5136 | ****************************************************************************/ | ||
5137 | static int32_t | ||
5138 | e1000_set_phy_mode(struct e1000_hw *hw) | ||
5139 | { | ||
5140 | int32_t ret_val; | ||
5141 | uint16_t eeprom_data; | ||
5142 | |||
5143 | DEBUGFUNC("e1000_set_phy_mode"); | ||
5144 | |||
5145 | if((hw->mac_type == e1000_82545_rev_3) && | ||
5146 | (hw->media_type == e1000_media_type_copper)) { | ||
5147 | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); | ||
5148 | if(ret_val) { | ||
5149 | return ret_val; | ||
5150 | } | ||
5151 | |||
5152 | if((eeprom_data != EEPROM_RESERVED_WORD) && | ||
5153 | (eeprom_data & EEPROM_PHY_CLASS_A)) { | ||
5154 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); | ||
5155 | if(ret_val) | ||
5156 | return ret_val; | ||
5157 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); | ||
5158 | if(ret_val) | ||
5159 | return ret_val; | ||
5160 | |||
5161 | hw->phy_reset_disable = FALSE; | ||
5162 | } | ||
5163 | } | ||
5164 | |||
5165 | return E1000_SUCCESS; | ||
5166 | } | ||
5167 | |||
5168 | /***************************************************************************** | ||
5169 | * | ||
5170 | * This function sets the lplu state according to the active flag. When | ||
5171 | * activating lplu this function also disables smart speed and vise versa. | ||
5172 | * lplu will not be activated unless the device autonegotiation advertisment | ||
5173 | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | ||
5174 | * hw: Struct containing variables accessed by shared code | ||
5175 | * active - true to enable lplu false to disable lplu. | ||
5176 | * | ||
5177 | * returns: - E1000_ERR_PHY if fail to read/write the PHY | ||
5178 | * E1000_SUCCESS at any other case. | ||
5179 | * | ||
5180 | ****************************************************************************/ | ||
5181 | |||
5182 | int32_t | ||
5183 | e1000_set_d3_lplu_state(struct e1000_hw *hw, | ||
5184 | boolean_t active) | ||
5185 | { | ||
5186 | int32_t ret_val; | ||
5187 | uint16_t phy_data; | ||
5188 | DEBUGFUNC("e1000_set_d3_lplu_state"); | ||
5189 | |||
5190 | if(!((hw->mac_type == e1000_82541_rev_2) || | ||
5191 | (hw->mac_type == e1000_82547_rev_2))) | ||
5192 | return E1000_SUCCESS; | ||
5193 | |||
5194 | /* During driver activity LPLU should not be used or it will attain link | ||
5195 | * from the lowest speeds starting from 10Mbps. The capability is used for | ||
5196 | * Dx transitions and states */ | ||
5197 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | ||
5198 | if(ret_val) | ||
5199 | return ret_val; | ||
5200 | |||
5201 | if(!active) { | ||
5202 | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | ||
5203 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5204 | if(ret_val) | ||
5205 | return ret_val; | ||
5206 | |||
5207 | /* LPLU and SmartSpeed are mutually exclusive. LPLU is used during | ||
5208 | * Dx states where the power conservation is most important. During | ||
5209 | * driver activity we should enable SmartSpeed, so performance is | ||
5210 | * maintained. */ | ||
5211 | if (hw->smart_speed == e1000_smart_speed_on) { | ||
5212 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5213 | &phy_data); | ||
5214 | if(ret_val) | ||
5215 | return ret_val; | ||
5216 | |||
5217 | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | ||
5218 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5219 | phy_data); | ||
5220 | if(ret_val) | ||
5221 | return ret_val; | ||
5222 | } else if (hw->smart_speed == e1000_smart_speed_off) { | ||
5223 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5224 | &phy_data); | ||
5225 | if (ret_val) | ||
5226 | return ret_val; | ||
5227 | |||
5228 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5229 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | ||
5230 | phy_data); | ||
5231 | if(ret_val) | ||
5232 | return ret_val; | ||
5233 | } | ||
5234 | |||
5235 | } else if((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || | ||
5236 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | ||
5237 | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | ||
5238 | |||
5239 | phy_data |= IGP01E1000_GMII_FLEX_SPD; | ||
5240 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | ||
5241 | if(ret_val) | ||
5242 | return ret_val; | ||
5243 | |||
5244 | /* When LPLU is enabled we should disable SmartSpeed */ | ||
5245 | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | ||
5246 | if(ret_val) | ||
5247 | return ret_val; | ||
5248 | |||
5249 | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | ||
5250 | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | ||
5251 | if(ret_val) | ||
5252 | return ret_val; | ||
5253 | |||
5254 | } | ||
5255 | return E1000_SUCCESS; | ||
5256 | } | ||
5257 | |||
5258 | /****************************************************************************** | ||
5259 | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | ||
5260 | * | ||
5261 | * hw - Struct containing variables accessed by shared code | ||
5262 | *****************************************************************************/ | ||
5263 | static int32_t | ||
5264 | e1000_set_vco_speed(struct e1000_hw *hw) | ||
5265 | { | ||
5266 | int32_t ret_val; | ||
5267 | uint16_t default_page = 0; | ||
5268 | uint16_t phy_data; | ||
5269 | |||
5270 | DEBUGFUNC("e1000_set_vco_speed"); | ||
5271 | |||
5272 | switch(hw->mac_type) { | ||
5273 | case e1000_82545_rev_3: | ||
5274 | case e1000_82546_rev_3: | ||
5275 | break; | ||
5276 | default: | ||
5277 | return E1000_SUCCESS; | ||
5278 | } | ||
5279 | |||
5280 | /* Set PHY register 30, page 5, bit 8 to 0 */ | ||
5281 | |||
5282 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | ||
5283 | if(ret_val) | ||
5284 | return ret_val; | ||
5285 | |||
5286 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | ||
5287 | if(ret_val) | ||
5288 | return ret_val; | ||
5289 | |||
5290 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | ||
5291 | if(ret_val) | ||
5292 | return ret_val; | ||
5293 | |||
5294 | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | ||
5295 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | ||
5296 | if(ret_val) | ||
5297 | return ret_val; | ||
5298 | |||
5299 | /* Set PHY register 30, page 4, bit 11 to 1 */ | ||
5300 | |||
5301 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | ||
5302 | if(ret_val) | ||
5303 | return ret_val; | ||
5304 | |||
5305 | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | ||
5306 | if(ret_val) | ||
5307 | return ret_val; | ||
5308 | |||
5309 | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | ||
5310 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | ||
5311 | if(ret_val) | ||
5312 | return ret_val; | ||
5313 | |||
5314 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | ||
5315 | if(ret_val) | ||
5316 | return ret_val; | ||
5317 | |||
5318 | return E1000_SUCCESS; | ||
5319 | } | ||
5320 | |||
5321 | static int32_t | ||
5322 | e1000_polarity_reversal_workaround(struct e1000_hw *hw) | ||
5323 | { | ||
5324 | int32_t ret_val; | ||
5325 | uint16_t mii_status_reg; | ||
5326 | uint16_t i; | ||
5327 | |||
5328 | /* Polarity reversal workaround for forced 10F/10H links. */ | ||
5329 | |||
5330 | /* Disable the transmitter on the PHY */ | ||
5331 | |||
5332 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
5333 | if(ret_val) | ||
5334 | return ret_val; | ||
5335 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | ||
5336 | if(ret_val) | ||
5337 | return ret_val; | ||
5338 | |||
5339 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
5340 | if(ret_val) | ||
5341 | return ret_val; | ||
5342 | |||
5343 | /* This loop will early-out if the NO link condition has been met. */ | ||
5344 | for(i = PHY_FORCE_TIME; i > 0; i--) { | ||
5345 | /* Read the MII Status Register and wait for Link Status bit | ||
5346 | * to be clear. | ||
5347 | */ | ||
5348 | |||
5349 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5350 | if(ret_val) | ||
5351 | return ret_val; | ||
5352 | |||
5353 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5354 | if(ret_val) | ||
5355 | return ret_val; | ||
5356 | |||
5357 | if((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; | ||
5358 | msec_delay_irq(100); | ||
5359 | } | ||
5360 | |||
5361 | /* Recommended delay time after link has been lost */ | ||
5362 | msec_delay_irq(1000); | ||
5363 | |||
5364 | /* Now we will re-enable th transmitter on the PHY */ | ||
5365 | |||
5366 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | ||
5367 | if(ret_val) | ||
5368 | return ret_val; | ||
5369 | msec_delay_irq(50); | ||
5370 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | ||
5371 | if(ret_val) | ||
5372 | return ret_val; | ||
5373 | msec_delay_irq(50); | ||
5374 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | ||
5375 | if(ret_val) | ||
5376 | return ret_val; | ||
5377 | msec_delay_irq(50); | ||
5378 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | ||
5379 | if(ret_val) | ||
5380 | return ret_val; | ||
5381 | |||
5382 | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | ||
5383 | if(ret_val) | ||
5384 | return ret_val; | ||
5385 | |||
5386 | /* This loop will early-out if the link condition has been met. */ | ||
5387 | for(i = PHY_FORCE_TIME; i > 0; i--) { | ||
5388 | /* Read the MII Status Register and wait for Link Status bit | ||
5389 | * to be set. | ||
5390 | */ | ||
5391 | |||
5392 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5393 | if(ret_val) | ||
5394 | return ret_val; | ||
5395 | |||
5396 | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | ||
5397 | if(ret_val) | ||
5398 | return ret_val; | ||
5399 | |||
5400 | if(mii_status_reg & MII_SR_LINK_STATUS) break; | ||
5401 | msec_delay_irq(100); | ||
5402 | } | ||
5403 | return E1000_SUCCESS; | ||
5404 | } | ||
5405 | |||