aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/e1000/e1000_ethtool.c
diff options
context:
space:
mode:
authorJesse Brandeburg <jesse.brandeburg@intel.com>2006-01-18 16:01:39 -0500
committerJeff Garzik <jgarzik@pobox.com>2006-01-18 16:17:58 -0500
commit96838a40f02950f4ff501f62a7e59ac4d508e8b7 (patch)
tree9a86ecbe58a1d63159fc6c8c10223efa0344586d /drivers/net/e1000/e1000_ethtool.c
parent6150f038158ad8ad4b74d6b76a67e2f68fd1d8e2 (diff)
[PATCH] e1000: Fix whitespace
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com> Signed-off-by: John Ronciak <john.ronciak@intel.com> Signed-off-by: Jeff Garzik <jgarzik@pobox.com>
Diffstat (limited to 'drivers/net/e1000/e1000_ethtool.c')
-rw-r--r--drivers/net/e1000/e1000_ethtool.c307
1 files changed, 153 insertions, 154 deletions
diff --git a/drivers/net/e1000/e1000_ethtool.c b/drivers/net/e1000/e1000_ethtool.c
index d252297e4db0..5cedc81786e3 100644
--- a/drivers/net/e1000/e1000_ethtool.c
+++ b/drivers/net/e1000/e1000_ethtool.c
@@ -121,7 +121,7 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
121 struct e1000_adapter *adapter = netdev_priv(netdev); 121 struct e1000_adapter *adapter = netdev_priv(netdev);
122 struct e1000_hw *hw = &adapter->hw; 122 struct e1000_hw *hw = &adapter->hw;
123 123
124 if(hw->media_type == e1000_media_type_copper) { 124 if (hw->media_type == e1000_media_type_copper) {
125 125
126 ecmd->supported = (SUPPORTED_10baseT_Half | 126 ecmd->supported = (SUPPORTED_10baseT_Half |
127 SUPPORTED_10baseT_Full | 127 SUPPORTED_10baseT_Full |
@@ -133,7 +133,7 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
133 133
134 ecmd->advertising = ADVERTISED_TP; 134 ecmd->advertising = ADVERTISED_TP;
135 135
136 if(hw->autoneg == 1) { 136 if (hw->autoneg == 1) {
137 ecmd->advertising |= ADVERTISED_Autoneg; 137 ecmd->advertising |= ADVERTISED_Autoneg;
138 138
139 /* the e1000 autoneg seems to match ethtool nicely */ 139 /* the e1000 autoneg seems to match ethtool nicely */
@@ -144,7 +144,7 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
144 ecmd->port = PORT_TP; 144 ecmd->port = PORT_TP;
145 ecmd->phy_address = hw->phy_addr; 145 ecmd->phy_address = hw->phy_addr;
146 146
147 if(hw->mac_type == e1000_82543) 147 if (hw->mac_type == e1000_82543)
148 ecmd->transceiver = XCVR_EXTERNAL; 148 ecmd->transceiver = XCVR_EXTERNAL;
149 else 149 else
150 ecmd->transceiver = XCVR_INTERNAL; 150 ecmd->transceiver = XCVR_INTERNAL;
@@ -160,13 +160,13 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
160 160
161 ecmd->port = PORT_FIBRE; 161 ecmd->port = PORT_FIBRE;
162 162
163 if(hw->mac_type >= e1000_82545) 163 if (hw->mac_type >= e1000_82545)
164 ecmd->transceiver = XCVR_INTERNAL; 164 ecmd->transceiver = XCVR_INTERNAL;
165 else 165 else
166 ecmd->transceiver = XCVR_EXTERNAL; 166 ecmd->transceiver = XCVR_EXTERNAL;
167 } 167 }
168 168
169 if(netif_carrier_ok(adapter->netdev)) { 169 if (netif_carrier_ok(adapter->netdev)) {
170 170
171 e1000_get_speed_and_duplex(hw, &adapter->link_speed, 171 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
172 &adapter->link_duplex); 172 &adapter->link_duplex);
@@ -175,7 +175,7 @@ e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
175 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL 175 /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
176 * and HALF_DUPLEX != DUPLEX_HALF */ 176 * and HALF_DUPLEX != DUPLEX_HALF */
177 177
178 if(adapter->link_duplex == FULL_DUPLEX) 178 if (adapter->link_duplex == FULL_DUPLEX)
179 ecmd->duplex = DUPLEX_FULL; 179 ecmd->duplex = DUPLEX_FULL;
180 else 180 else
181 ecmd->duplex = DUPLEX_HALF; 181 ecmd->duplex = DUPLEX_HALF;
@@ -205,11 +205,11 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
205 205
206 if (ecmd->autoneg == AUTONEG_ENABLE) { 206 if (ecmd->autoneg == AUTONEG_ENABLE) {
207 hw->autoneg = 1; 207 hw->autoneg = 1;
208 if(hw->media_type == e1000_media_type_fiber) 208 if (hw->media_type == e1000_media_type_fiber)
209 hw->autoneg_advertised = ADVERTISED_1000baseT_Full | 209 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
210 ADVERTISED_FIBRE | 210 ADVERTISED_FIBRE |
211 ADVERTISED_Autoneg; 211 ADVERTISED_Autoneg;
212 else 212 else
213 hw->autoneg_advertised = ADVERTISED_10baseT_Half | 213 hw->autoneg_advertised = ADVERTISED_10baseT_Half |
214 ADVERTISED_10baseT_Full | 214 ADVERTISED_10baseT_Full |
215 ADVERTISED_100baseT_Half | 215 ADVERTISED_100baseT_Half |
@@ -219,12 +219,12 @@ e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
219 ADVERTISED_TP; 219 ADVERTISED_TP;
220 ecmd->advertising = hw->autoneg_advertised; 220 ecmd->advertising = hw->autoneg_advertised;
221 } else 221 } else
222 if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) 222 if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
223 return -EINVAL; 223 return -EINVAL;
224 224
225 /* reset the link */ 225 /* reset the link */
226 226
227 if(netif_running(adapter->netdev)) { 227 if (netif_running(adapter->netdev)) {
228 e1000_down(adapter); 228 e1000_down(adapter);
229 e1000_reset(adapter); 229 e1000_reset(adapter);
230 e1000_up(adapter); 230 e1000_up(adapter);
@@ -241,14 +241,14 @@ e1000_get_pauseparam(struct net_device *netdev,
241 struct e1000_adapter *adapter = netdev_priv(netdev); 241 struct e1000_adapter *adapter = netdev_priv(netdev);
242 struct e1000_hw *hw = &adapter->hw; 242 struct e1000_hw *hw = &adapter->hw;
243 243
244 pause->autoneg = 244 pause->autoneg =
245 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); 245 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
246 246
247 if(hw->fc == e1000_fc_rx_pause) 247 if (hw->fc == e1000_fc_rx_pause)
248 pause->rx_pause = 1; 248 pause->rx_pause = 1;
249 else if(hw->fc == e1000_fc_tx_pause) 249 else if (hw->fc == e1000_fc_tx_pause)
250 pause->tx_pause = 1; 250 pause->tx_pause = 1;
251 else if(hw->fc == e1000_fc_full) { 251 else if (hw->fc == e1000_fc_full) {
252 pause->rx_pause = 1; 252 pause->rx_pause = 1;
253 pause->tx_pause = 1; 253 pause->tx_pause = 1;
254 } 254 }
@@ -260,31 +260,30 @@ e1000_set_pauseparam(struct net_device *netdev,
260{ 260{
261 struct e1000_adapter *adapter = netdev_priv(netdev); 261 struct e1000_adapter *adapter = netdev_priv(netdev);
262 struct e1000_hw *hw = &adapter->hw; 262 struct e1000_hw *hw = &adapter->hw;
263 263
264 adapter->fc_autoneg = pause->autoneg; 264 adapter->fc_autoneg = pause->autoneg;
265 265
266 if(pause->rx_pause && pause->tx_pause) 266 if (pause->rx_pause && pause->tx_pause)
267 hw->fc = e1000_fc_full; 267 hw->fc = e1000_fc_full;
268 else if(pause->rx_pause && !pause->tx_pause) 268 else if (pause->rx_pause && !pause->tx_pause)
269 hw->fc = e1000_fc_rx_pause; 269 hw->fc = e1000_fc_rx_pause;
270 else if(!pause->rx_pause && pause->tx_pause) 270 else if (!pause->rx_pause && pause->tx_pause)
271 hw->fc = e1000_fc_tx_pause; 271 hw->fc = e1000_fc_tx_pause;
272 else if(!pause->rx_pause && !pause->tx_pause) 272 else if (!pause->rx_pause && !pause->tx_pause)
273 hw->fc = e1000_fc_none; 273 hw->fc = e1000_fc_none;
274 274
275 hw->original_fc = hw->fc; 275 hw->original_fc = hw->fc;
276 276
277 if(adapter->fc_autoneg == AUTONEG_ENABLE) { 277 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
278 if(netif_running(adapter->netdev)) { 278 if (netif_running(adapter->netdev)) {
279 e1000_down(adapter); 279 e1000_down(adapter);
280 e1000_up(adapter); 280 e1000_up(adapter);
281 } else 281 } else
282 e1000_reset(adapter); 282 e1000_reset(adapter);
283 } 283 } else
284 else
285 return ((hw->media_type == e1000_media_type_fiber) ? 284 return ((hw->media_type == e1000_media_type_fiber) ?
286 e1000_setup_link(hw) : e1000_force_mac_fc(hw)); 285 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
287 286
288 return 0; 287 return 0;
289} 288}
290 289
@@ -301,14 +300,14 @@ e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
301 struct e1000_adapter *adapter = netdev_priv(netdev); 300 struct e1000_adapter *adapter = netdev_priv(netdev);
302 adapter->rx_csum = data; 301 adapter->rx_csum = data;
303 302
304 if(netif_running(netdev)) { 303 if (netif_running(netdev)) {
305 e1000_down(adapter); 304 e1000_down(adapter);
306 e1000_up(adapter); 305 e1000_up(adapter);
307 } else 306 } else
308 e1000_reset(adapter); 307 e1000_reset(adapter);
309 return 0; 308 return 0;
310} 309}
311 310
312static uint32_t 311static uint32_t
313e1000_get_tx_csum(struct net_device *netdev) 312e1000_get_tx_csum(struct net_device *netdev)
314{ 313{
@@ -320,7 +319,7 @@ e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
320{ 319{
321 struct e1000_adapter *adapter = netdev_priv(netdev); 320 struct e1000_adapter *adapter = netdev_priv(netdev);
322 321
323 if(adapter->hw.mac_type < e1000_82543) { 322 if (adapter->hw.mac_type < e1000_82543) {
324 if (!data) 323 if (!data)
325 return -EINVAL; 324 return -EINVAL;
326 return 0; 325 return 0;
@@ -339,8 +338,8 @@ static int
339e1000_set_tso(struct net_device *netdev, uint32_t data) 338e1000_set_tso(struct net_device *netdev, uint32_t data)
340{ 339{
341 struct e1000_adapter *adapter = netdev_priv(netdev); 340 struct e1000_adapter *adapter = netdev_priv(netdev);
342 if((adapter->hw.mac_type < e1000_82544) || 341 if ((adapter->hw.mac_type < e1000_82544) ||
343 (adapter->hw.mac_type == e1000_82547)) 342 (adapter->hw.mac_type == e1000_82547))
344 return data ? -EINVAL : 0; 343 return data ? -EINVAL : 0;
345 344
346 if (data) 345 if (data)
@@ -348,7 +347,7 @@ e1000_set_tso(struct net_device *netdev, uint32_t data)
348 else 347 else
349 netdev->features &= ~NETIF_F_TSO; 348 netdev->features &= ~NETIF_F_TSO;
350 return 0; 349 return 0;
351} 350}
352#endif /* NETIF_F_TSO */ 351#endif /* NETIF_F_TSO */
353 352
354static uint32_t 353static uint32_t
@@ -365,7 +364,7 @@ e1000_set_msglevel(struct net_device *netdev, uint32_t data)
365 adapter->msg_enable = data; 364 adapter->msg_enable = data;
366} 365}
367 366
368static int 367static int
369e1000_get_regs_len(struct net_device *netdev) 368e1000_get_regs_len(struct net_device *netdev)
370{ 369{
371#define E1000_REGS_LEN 32 370#define E1000_REGS_LEN 32
@@ -401,7 +400,7 @@ e1000_get_regs(struct net_device *netdev,
401 regs_buff[11] = E1000_READ_REG(hw, TIDV); 400 regs_buff[11] = E1000_READ_REG(hw, TIDV);
402 401
403 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */ 402 regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
404 if(hw->phy_type == e1000_phy_igp) { 403 if (hw->phy_type == e1000_phy_igp) {
405 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 404 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
406 IGP01E1000_PHY_AGC_A); 405 IGP01E1000_PHY_AGC_A);
407 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & 406 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
@@ -455,7 +454,7 @@ e1000_get_regs(struct net_device *netdev,
455 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); 454 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
456 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */ 455 regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
457 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */ 456 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
458 if(hw->mac_type >= e1000_82540 && 457 if (hw->mac_type >= e1000_82540 &&
459 hw->media_type == e1000_media_type_copper) { 458 hw->media_type == e1000_media_type_copper) {
460 regs_buff[26] = E1000_READ_REG(hw, MANC); 459 regs_buff[26] = E1000_READ_REG(hw, MANC);
461 } 460 }
@@ -479,7 +478,7 @@ e1000_get_eeprom(struct net_device *netdev,
479 int ret_val = 0; 478 int ret_val = 0;
480 uint16_t i; 479 uint16_t i;
481 480
482 if(eeprom->len == 0) 481 if (eeprom->len == 0)
483 return -EINVAL; 482 return -EINVAL;
484 483
485 eeprom->magic = hw->vendor_id | (hw->device_id << 16); 484 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
@@ -489,16 +488,16 @@ e1000_get_eeprom(struct net_device *netdev,
489 488
490 eeprom_buff = kmalloc(sizeof(uint16_t) * 489 eeprom_buff = kmalloc(sizeof(uint16_t) *
491 (last_word - first_word + 1), GFP_KERNEL); 490 (last_word - first_word + 1), GFP_KERNEL);
492 if(!eeprom_buff) 491 if (!eeprom_buff)
493 return -ENOMEM; 492 return -ENOMEM;
494 493
495 if(hw->eeprom.type == e1000_eeprom_spi) 494 if (hw->eeprom.type == e1000_eeprom_spi)
496 ret_val = e1000_read_eeprom(hw, first_word, 495 ret_val = e1000_read_eeprom(hw, first_word,
497 last_word - first_word + 1, 496 last_word - first_word + 1,
498 eeprom_buff); 497 eeprom_buff);
499 else { 498 else {
500 for (i = 0; i < last_word - first_word + 1; i++) 499 for (i = 0; i < last_word - first_word + 1; i++)
501 if((ret_val = e1000_read_eeprom(hw, first_word + i, 1, 500 if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
502 &eeprom_buff[i]))) 501 &eeprom_buff[i])))
503 break; 502 break;
504 } 503 }
@@ -525,10 +524,10 @@ e1000_set_eeprom(struct net_device *netdev,
525 int max_len, first_word, last_word, ret_val = 0; 524 int max_len, first_word, last_word, ret_val = 0;
526 uint16_t i; 525 uint16_t i;
527 526
528 if(eeprom->len == 0) 527 if (eeprom->len == 0)
529 return -EOPNOTSUPP; 528 return -EOPNOTSUPP;
530 529
531 if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) 530 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
532 return -EFAULT; 531 return -EFAULT;
533 532
534 max_len = hw->eeprom.word_size * 2; 533 max_len = hw->eeprom.word_size * 2;
@@ -536,19 +535,19 @@ e1000_set_eeprom(struct net_device *netdev,
536 first_word = eeprom->offset >> 1; 535 first_word = eeprom->offset >> 1;
537 last_word = (eeprom->offset + eeprom->len - 1) >> 1; 536 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
538 eeprom_buff = kmalloc(max_len, GFP_KERNEL); 537 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
539 if(!eeprom_buff) 538 if (!eeprom_buff)
540 return -ENOMEM; 539 return -ENOMEM;
541 540
542 ptr = (void *)eeprom_buff; 541 ptr = (void *)eeprom_buff;
543 542
544 if(eeprom->offset & 1) { 543 if (eeprom->offset & 1) {
545 /* need read/modify/write of first changed EEPROM word */ 544 /* need read/modify/write of first changed EEPROM word */
546 /* only the second byte of the word is being modified */ 545 /* only the second byte of the word is being modified */
547 ret_val = e1000_read_eeprom(hw, first_word, 1, 546 ret_val = e1000_read_eeprom(hw, first_word, 1,
548 &eeprom_buff[0]); 547 &eeprom_buff[0]);
549 ptr++; 548 ptr++;
550 } 549 }
551 if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { 550 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
552 /* need read/modify/write of last changed EEPROM word */ 551 /* need read/modify/write of last changed EEPROM word */
553 /* only the first byte of the word is being modified */ 552 /* only the first byte of the word is being modified */
554 ret_val = e1000_read_eeprom(hw, last_word, 1, 553 ret_val = e1000_read_eeprom(hw, last_word, 1,
@@ -567,9 +566,9 @@ e1000_set_eeprom(struct net_device *netdev,
567 ret_val = e1000_write_eeprom(hw, first_word, 566 ret_val = e1000_write_eeprom(hw, first_word,
568 last_word - first_word + 1, eeprom_buff); 567 last_word - first_word + 1, eeprom_buff);
569 568
570 /* Update the checksum over the first part of the EEPROM if needed 569 /* Update the checksum over the first part of the EEPROM if needed
571 * and flush shadow RAM for 82573 conrollers */ 570 * and flush shadow RAM for 82573 conrollers */
572 if((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || 571 if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) ||
573 (hw->mac_type == e1000_82573))) 572 (hw->mac_type == e1000_82573)))
574 e1000_update_eeprom_checksum(hw); 573 e1000_update_eeprom_checksum(hw);
575 574
@@ -633,7 +632,7 @@ e1000_get_ringparam(struct net_device *netdev,
633 ring->rx_jumbo_pending = 0; 632 ring->rx_jumbo_pending = 0;
634} 633}
635 634
636static int 635static int
637e1000_set_ringparam(struct net_device *netdev, 636e1000_set_ringparam(struct net_device *netdev,
638 struct ethtool_ringparam *ring) 637 struct ethtool_ringparam *ring)
639{ 638{
@@ -670,25 +669,25 @@ e1000_set_ringparam(struct net_device *netdev,
670 txdr = adapter->tx_ring; 669 txdr = adapter->tx_ring;
671 rxdr = adapter->rx_ring; 670 rxdr = adapter->rx_ring;
672 671
673 if((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) 672 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
674 return -EINVAL; 673 return -EINVAL;
675 674
676 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); 675 rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
677 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? 676 rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
678 E1000_MAX_RXD : E1000_MAX_82544_RXD)); 677 E1000_MAX_RXD : E1000_MAX_82544_RXD));
679 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); 678 E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
680 679
681 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); 680 txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
682 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? 681 txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
683 E1000_MAX_TXD : E1000_MAX_82544_TXD)); 682 E1000_MAX_TXD : E1000_MAX_82544_TXD));
684 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); 683 E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
685 684
686 for (i = 0; i < adapter->num_tx_queues; i++) 685 for (i = 0; i < adapter->num_tx_queues; i++)
687 txdr[i].count = txdr->count; 686 txdr[i].count = txdr->count;
688 for (i = 0; i < adapter->num_rx_queues; i++) 687 for (i = 0; i < adapter->num_rx_queues; i++)
689 rxdr[i].count = rxdr->count; 688 rxdr[i].count = rxdr->count;
690 689
691 if(netif_running(adapter->netdev)) { 690 if (netif_running(adapter->netdev)) {
692 /* Try to get new resources before deleting old */ 691 /* Try to get new resources before deleting old */
693 if ((err = e1000_setup_all_rx_resources(adapter))) 692 if ((err = e1000_setup_all_rx_resources(adapter)))
694 goto err_setup_rx; 693 goto err_setup_rx;
@@ -708,7 +707,7 @@ e1000_set_ringparam(struct net_device *netdev,
708 kfree(rx_old); 707 kfree(rx_old);
709 adapter->rx_ring = rx_new; 708 adapter->rx_ring = rx_new;
710 adapter->tx_ring = tx_new; 709 adapter->tx_ring = tx_new;
711 if((err = e1000_up(adapter))) 710 if ((err = e1000_up(adapter)))
712 return err; 711 return err;
713 } 712 }
714 713
@@ -727,10 +726,10 @@ err_setup_rx:
727 uint32_t pat, value; \ 726 uint32_t pat, value; \
728 uint32_t test[] = \ 727 uint32_t test[] = \
729 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \ 728 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
730 for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \ 729 for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
731 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \ 730 E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
732 value = E1000_READ_REG(&adapter->hw, R); \ 731 value = E1000_READ_REG(&adapter->hw, R); \
733 if(value != (test[pat] & W & M)) { \ 732 if (value != (test[pat] & W & M)) { \
734 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \ 733 DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
735 "0x%08X expected 0x%08X\n", \ 734 "0x%08X expected 0x%08X\n", \
736 E1000_##R, value, (test[pat] & W & M)); \ 735 E1000_##R, value, (test[pat] & W & M)); \
@@ -746,7 +745,7 @@ err_setup_rx:
746 uint32_t value; \ 745 uint32_t value; \
747 E1000_WRITE_REG(&adapter->hw, R, W & M); \ 746 E1000_WRITE_REG(&adapter->hw, R, W & M); \
748 value = E1000_READ_REG(&adapter->hw, R); \ 747 value = E1000_READ_REG(&adapter->hw, R); \
749 if((W & M) != (value & M)) { \ 748 if ((W & M) != (value & M)) { \
750 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\ 749 DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
751 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \ 750 "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
752 *data = (adapter->hw.mac_type < e1000_82543) ? \ 751 *data = (adapter->hw.mac_type < e1000_82543) ? \
@@ -782,7 +781,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
782 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle); 781 value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
783 E1000_WRITE_REG(&adapter->hw, STATUS, toggle); 782 E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
784 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle; 783 after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
785 if(value != after) { 784 if (value != after) {
786 DPRINTK(DRV, ERR, "failed STATUS register test got: " 785 DPRINTK(DRV, ERR, "failed STATUS register test got: "
787 "0x%08X expected: 0x%08X\n", after, value); 786 "0x%08X expected: 0x%08X\n", after, value);
788 *data = 1; 787 *data = 1;
@@ -810,7 +809,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
810 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); 809 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
811 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); 810 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
812 811
813 if(adapter->hw.mac_type >= e1000_82543) { 812 if (adapter->hw.mac_type >= e1000_82543) {
814 813
815 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); 814 REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
816 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 815 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
@@ -818,7 +817,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
818 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); 817 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
819 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); 818 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
820 819
821 for(i = 0; i < E1000_RAR_ENTRIES; i++) { 820 for (i = 0; i < E1000_RAR_ENTRIES; i++) {
822 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, 821 REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
823 0xFFFFFFFF); 822 0xFFFFFFFF);
824 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, 823 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
@@ -834,7 +833,7 @@ e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
834 833
835 } 834 }
836 835
837 for(i = 0; i < E1000_MC_TBL_SIZE; i++) 836 for (i = 0; i < E1000_MC_TBL_SIZE; i++)
838 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); 837 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
839 838
840 *data = 0; 839 *data = 0;
@@ -850,8 +849,8 @@ e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
850 849
851 *data = 0; 850 *data = 0;
852 /* Read and add up the contents of the EEPROM */ 851 /* Read and add up the contents of the EEPROM */
853 for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { 852 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
854 if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { 853 if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
855 *data = 1; 854 *data = 1;
856 break; 855 break;
857 } 856 }
@@ -859,7 +858,7 @@ e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
859 } 858 }
860 859
861 /* If Checksum is not Correct return error else test passed */ 860 /* If Checksum is not Correct return error else test passed */
862 if((checksum != (uint16_t) EEPROM_SUM) && !(*data)) 861 if ((checksum != (uint16_t) EEPROM_SUM) && !(*data))
863 *data = 2; 862 *data = 2;
864 863
865 return *data; 864 return *data;
@@ -888,9 +887,9 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
888 *data = 0; 887 *data = 0;
889 888
890 /* Hook up test interrupt handler just for this test */ 889 /* Hook up test interrupt handler just for this test */
891 if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { 890 if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
892 shared_int = FALSE; 891 shared_int = FALSE;
893 } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ, 892 } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ,
894 netdev->name, netdev)){ 893 netdev->name, netdev)){
895 *data = 1; 894 *data = 1;
896 return -1; 895 return -1;
@@ -901,12 +900,12 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
901 msec_delay(10); 900 msec_delay(10);
902 901
903 /* Test each interrupt */ 902 /* Test each interrupt */
904 for(; i < 10; i++) { 903 for (; i < 10; i++) {
905 904
906 /* Interrupt to test */ 905 /* Interrupt to test */
907 mask = 1 << i; 906 mask = 1 << i;
908 907
909 if(!shared_int) { 908 if (!shared_int) {
910 /* Disable the interrupt to be reported in 909 /* Disable the interrupt to be reported in
911 * the cause register and then force the same 910 * the cause register and then force the same
912 * interrupt and see if one gets posted. If 911 * interrupt and see if one gets posted. If
@@ -917,8 +916,8 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
917 E1000_WRITE_REG(&adapter->hw, IMC, mask); 916 E1000_WRITE_REG(&adapter->hw, IMC, mask);
918 E1000_WRITE_REG(&adapter->hw, ICS, mask); 917 E1000_WRITE_REG(&adapter->hw, ICS, mask);
919 msec_delay(10); 918 msec_delay(10);
920 919
921 if(adapter->test_icr & mask) { 920 if (adapter->test_icr & mask) {
922 *data = 3; 921 *data = 3;
923 break; 922 break;
924 } 923 }
@@ -935,12 +934,12 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
935 E1000_WRITE_REG(&adapter->hw, ICS, mask); 934 E1000_WRITE_REG(&adapter->hw, ICS, mask);
936 msec_delay(10); 935 msec_delay(10);
937 936
938 if(!(adapter->test_icr & mask)) { 937 if (!(adapter->test_icr & mask)) {
939 *data = 4; 938 *data = 4;
940 break; 939 break;
941 } 940 }
942 941
943 if(!shared_int) { 942 if (!shared_int) {
944 /* Disable the other interrupts to be reported in 943 /* Disable the other interrupts to be reported in
945 * the cause register and then force the other 944 * the cause register and then force the other
946 * interrupts and see if any get posted. If 945 * interrupts and see if any get posted. If
@@ -952,7 +951,7 @@ e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
952 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF); 951 E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
953 msec_delay(10); 952 msec_delay(10);
954 953
955 if(adapter->test_icr) { 954 if (adapter->test_icr) {
956 *data = 5; 955 *data = 5;
957 break; 956 break;
958 } 957 }
@@ -977,24 +976,24 @@ e1000_free_desc_rings(struct e1000_adapter *adapter)
977 struct pci_dev *pdev = adapter->pdev; 976 struct pci_dev *pdev = adapter->pdev;
978 int i; 977 int i;
979 978
980 if(txdr->desc && txdr->buffer_info) { 979 if (txdr->desc && txdr->buffer_info) {
981 for(i = 0; i < txdr->count; i++) { 980 for (i = 0; i < txdr->count; i++) {
982 if(txdr->buffer_info[i].dma) 981 if (txdr->buffer_info[i].dma)
983 pci_unmap_single(pdev, txdr->buffer_info[i].dma, 982 pci_unmap_single(pdev, txdr->buffer_info[i].dma,
984 txdr->buffer_info[i].length, 983 txdr->buffer_info[i].length,
985 PCI_DMA_TODEVICE); 984 PCI_DMA_TODEVICE);
986 if(txdr->buffer_info[i].skb) 985 if (txdr->buffer_info[i].skb)
987 dev_kfree_skb(txdr->buffer_info[i].skb); 986 dev_kfree_skb(txdr->buffer_info[i].skb);
988 } 987 }
989 } 988 }
990 989
991 if(rxdr->desc && rxdr->buffer_info) { 990 if (rxdr->desc && rxdr->buffer_info) {
992 for(i = 0; i < rxdr->count; i++) { 991 for (i = 0; i < rxdr->count; i++) {
993 if(rxdr->buffer_info[i].dma) 992 if (rxdr->buffer_info[i].dma)
994 pci_unmap_single(pdev, rxdr->buffer_info[i].dma, 993 pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
995 rxdr->buffer_info[i].length, 994 rxdr->buffer_info[i].length,
996 PCI_DMA_FROMDEVICE); 995 PCI_DMA_FROMDEVICE);
997 if(rxdr->buffer_info[i].skb) 996 if (rxdr->buffer_info[i].skb)
998 dev_kfree_skb(rxdr->buffer_info[i].skb); 997 dev_kfree_skb(rxdr->buffer_info[i].skb);
999 } 998 }
1000 } 999 }
@@ -1027,11 +1026,11 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
1027 1026
1028 /* Setup Tx descriptor ring and Tx buffers */ 1027 /* Setup Tx descriptor ring and Tx buffers */
1029 1028
1030 if(!txdr->count) 1029 if (!txdr->count)
1031 txdr->count = E1000_DEFAULT_TXD; 1030 txdr->count = E1000_DEFAULT_TXD;
1032 1031
1033 size = txdr->count * sizeof(struct e1000_buffer); 1032 size = txdr->count * sizeof(struct e1000_buffer);
1034 if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { 1033 if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1035 ret_val = 1; 1034 ret_val = 1;
1036 goto err_nomem; 1035 goto err_nomem;
1037 } 1036 }
@@ -1039,7 +1038,7 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
1039 1038
1040 txdr->size = txdr->count * sizeof(struct e1000_tx_desc); 1039 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1041 E1000_ROUNDUP(txdr->size, 4096); 1040 E1000_ROUNDUP(txdr->size, 4096);
1042 if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { 1041 if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
1043 ret_val = 2; 1042 ret_val = 2;
1044 goto err_nomem; 1043 goto err_nomem;
1045 } 1044 }
@@ -1058,12 +1057,12 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
1058 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | 1057 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1059 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); 1058 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1060 1059
1061 for(i = 0; i < txdr->count; i++) { 1060 for (i = 0; i < txdr->count; i++) {
1062 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); 1061 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1063 struct sk_buff *skb; 1062 struct sk_buff *skb;
1064 unsigned int size = 1024; 1063 unsigned int size = 1024;
1065 1064
1066 if(!(skb = alloc_skb(size, GFP_KERNEL))) { 1065 if (!(skb = alloc_skb(size, GFP_KERNEL))) {
1067 ret_val = 3; 1066 ret_val = 3;
1068 goto err_nomem; 1067 goto err_nomem;
1069 } 1068 }
@@ -1083,18 +1082,18 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
1083 1082
1084 /* Setup Rx descriptor ring and Rx buffers */ 1083 /* Setup Rx descriptor ring and Rx buffers */
1085 1084
1086 if(!rxdr->count) 1085 if (!rxdr->count)
1087 rxdr->count = E1000_DEFAULT_RXD; 1086 rxdr->count = E1000_DEFAULT_RXD;
1088 1087
1089 size = rxdr->count * sizeof(struct e1000_buffer); 1088 size = rxdr->count * sizeof(struct e1000_buffer);
1090 if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { 1089 if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
1091 ret_val = 4; 1090 ret_val = 4;
1092 goto err_nomem; 1091 goto err_nomem;
1093 } 1092 }
1094 memset(rxdr->buffer_info, 0, size); 1093 memset(rxdr->buffer_info, 0, size);
1095 1094
1096 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); 1095 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1097 if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { 1096 if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
1098 ret_val = 5; 1097 ret_val = 5;
1099 goto err_nomem; 1098 goto err_nomem;
1100 } 1099 }
@@ -1114,11 +1113,11 @@ e1000_setup_desc_rings(struct e1000_adapter *adapter)
1114 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); 1113 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1115 E1000_WRITE_REG(&adapter->hw, RCTL, rctl); 1114 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1116 1115
1117 for(i = 0; i < rxdr->count; i++) { 1116 for (i = 0; i < rxdr->count; i++) {
1118 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); 1117 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1119 struct sk_buff *skb; 1118 struct sk_buff *skb;
1120 1119
1121 if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, 1120 if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
1122 GFP_KERNEL))) { 1121 GFP_KERNEL))) {
1123 ret_val = 6; 1122 ret_val = 6;
1124 goto err_nomem; 1123 goto err_nomem;
@@ -1227,15 +1226,15 @@ e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1227 1226
1228 /* Check Phy Configuration */ 1227 /* Check Phy Configuration */
1229 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); 1228 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
1230 if(phy_reg != 0x4100) 1229 if (phy_reg != 0x4100)
1231 return 9; 1230 return 9;
1232 1231
1233 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); 1232 e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1234 if(phy_reg != 0x0070) 1233 if (phy_reg != 0x0070)
1235 return 10; 1234 return 10;
1236 1235
1237 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); 1236 e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
1238 if(phy_reg != 0x001A) 1237 if (phy_reg != 0x001A)
1239 return 11; 1238 return 11;
1240 1239
1241 return 0; 1240 return 0;
@@ -1249,7 +1248,7 @@ e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1249 1248
1250 adapter->hw.autoneg = FALSE; 1249 adapter->hw.autoneg = FALSE;
1251 1250
1252 if(adapter->hw.phy_type == e1000_phy_m88) { 1251 if (adapter->hw.phy_type == e1000_phy_m88) {
1253 /* Auto-MDI/MDIX Off */ 1252 /* Auto-MDI/MDIX Off */
1254 e1000_write_phy_reg(&adapter->hw, 1253 e1000_write_phy_reg(&adapter->hw,
1255 M88E1000_PHY_SPEC_CTRL, 0x0808); 1254 M88E1000_PHY_SPEC_CTRL, 0x0808);
@@ -1269,14 +1268,14 @@ e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1269 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ 1268 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1270 E1000_CTRL_FD); /* Force Duplex to FULL */ 1269 E1000_CTRL_FD); /* Force Duplex to FULL */
1271 1270
1272 if(adapter->hw.media_type == e1000_media_type_copper && 1271 if (adapter->hw.media_type == e1000_media_type_copper &&
1273 adapter->hw.phy_type == e1000_phy_m88) { 1272 adapter->hw.phy_type == e1000_phy_m88) {
1274 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ 1273 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1275 } else { 1274 } else {
1276 /* Set the ILOS bit on the fiber Nic is half 1275 /* Set the ILOS bit on the fiber Nic is half
1277 * duplex link is detected. */ 1276 * duplex link is detected. */
1278 stat_reg = E1000_READ_REG(&adapter->hw, STATUS); 1277 stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
1279 if((stat_reg & E1000_STATUS_FD) == 0) 1278 if ((stat_reg & E1000_STATUS_FD) == 0)
1280 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); 1279 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1281 } 1280 }
1282 1281
@@ -1285,7 +1284,7 @@ e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1285 /* Disable the receiver on the PHY so when a cable is plugged in, the 1284 /* Disable the receiver on the PHY so when a cable is plugged in, the
1286 * PHY does not begin to autoneg when a cable is reconnected to the NIC. 1285 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1287 */ 1286 */
1288 if(adapter->hw.phy_type == e1000_phy_m88) 1287 if (adapter->hw.phy_type == e1000_phy_m88)
1289 e1000_phy_disable_receiver(adapter); 1288 e1000_phy_disable_receiver(adapter);
1290 1289
1291 udelay(500); 1290 udelay(500);
@@ -1301,14 +1300,14 @@ e1000_set_phy_loopback(struct e1000_adapter *adapter)
1301 1300
1302 switch (adapter->hw.mac_type) { 1301 switch (adapter->hw.mac_type) {
1303 case e1000_82543: 1302 case e1000_82543:
1304 if(adapter->hw.media_type == e1000_media_type_copper) { 1303 if (adapter->hw.media_type == e1000_media_type_copper) {
1305 /* Attempt to setup Loopback mode on Non-integrated PHY. 1304 /* Attempt to setup Loopback mode on Non-integrated PHY.
1306 * Some PHY registers get corrupted at random, so 1305 * Some PHY registers get corrupted at random, so
1307 * attempt this 10 times. 1306 * attempt this 10 times.
1308 */ 1307 */
1309 while(e1000_nonintegrated_phy_loopback(adapter) && 1308 while (e1000_nonintegrated_phy_loopback(adapter) &&
1310 count++ < 10); 1309 count++ < 10);
1311 if(count < 11) 1310 if (count < 11)
1312 return 0; 1311 return 0;
1313 } 1312 }
1314 break; 1313 break;
@@ -1430,8 +1429,8 @@ static int
1430e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) 1429e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
1431{ 1430{
1432 frame_size &= ~1; 1431 frame_size &= ~1;
1433 if(*(skb->data + 3) == 0xFF) { 1432 if (*(skb->data + 3) == 0xFF) {
1434 if((*(skb->data + frame_size / 2 + 10) == 0xBE) && 1433 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1435 (*(skb->data + frame_size / 2 + 12) == 0xAF)) { 1434 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1436 return 0; 1435 return 0;
1437 } 1436 }
@@ -1450,53 +1449,53 @@ e1000_run_loopback_test(struct e1000_adapter *adapter)
1450 1449
1451 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); 1450 E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
1452 1451
1453 /* Calculate the loop count based on the largest descriptor ring 1452 /* Calculate the loop count based on the largest descriptor ring
1454 * The idea is to wrap the largest ring a number of times using 64 1453 * The idea is to wrap the largest ring a number of times using 64
1455 * send/receive pairs during each loop 1454 * send/receive pairs during each loop
1456 */ 1455 */
1457 1456
1458 if(rxdr->count <= txdr->count) 1457 if (rxdr->count <= txdr->count)
1459 lc = ((txdr->count / 64) * 2) + 1; 1458 lc = ((txdr->count / 64) * 2) + 1;
1460 else 1459 else
1461 lc = ((rxdr->count / 64) * 2) + 1; 1460 lc = ((rxdr->count / 64) * 2) + 1;
1462 1461
1463 k = l = 0; 1462 k = l = 0;
1464 for(j = 0; j <= lc; j++) { /* loop count loop */ 1463 for (j = 0; j <= lc; j++) { /* loop count loop */
1465 for(i = 0; i < 64; i++) { /* send the packets */ 1464 for (i = 0; i < 64; i++) { /* send the packets */
1466 e1000_create_lbtest_frame(txdr->buffer_info[i].skb, 1465 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1467 1024); 1466 1024);
1468 pci_dma_sync_single_for_device(pdev, 1467 pci_dma_sync_single_for_device(pdev,
1469 txdr->buffer_info[k].dma, 1468 txdr->buffer_info[k].dma,
1470 txdr->buffer_info[k].length, 1469 txdr->buffer_info[k].length,
1471 PCI_DMA_TODEVICE); 1470 PCI_DMA_TODEVICE);
1472 if(unlikely(++k == txdr->count)) k = 0; 1471 if (unlikely(++k == txdr->count)) k = 0;
1473 } 1472 }
1474 E1000_WRITE_REG(&adapter->hw, TDT, k); 1473 E1000_WRITE_REG(&adapter->hw, TDT, k);
1475 msec_delay(200); 1474 msec_delay(200);
1476 time = jiffies; /* set the start time for the receive */ 1475 time = jiffies; /* set the start time for the receive */
1477 good_cnt = 0; 1476 good_cnt = 0;
1478 do { /* receive the sent packets */ 1477 do { /* receive the sent packets */
1479 pci_dma_sync_single_for_cpu(pdev, 1478 pci_dma_sync_single_for_cpu(pdev,
1480 rxdr->buffer_info[l].dma, 1479 rxdr->buffer_info[l].dma,
1481 rxdr->buffer_info[l].length, 1480 rxdr->buffer_info[l].length,
1482 PCI_DMA_FROMDEVICE); 1481 PCI_DMA_FROMDEVICE);
1483 1482
1484 ret_val = e1000_check_lbtest_frame( 1483 ret_val = e1000_check_lbtest_frame(
1485 rxdr->buffer_info[l].skb, 1484 rxdr->buffer_info[l].skb,
1486 1024); 1485 1024);
1487 if(!ret_val) 1486 if (!ret_val)
1488 good_cnt++; 1487 good_cnt++;
1489 if(unlikely(++l == rxdr->count)) l = 0; 1488 if (unlikely(++l == rxdr->count)) l = 0;
1490 /* time + 20 msecs (200 msecs on 2.4) is more than 1489 /* time + 20 msecs (200 msecs on 2.4) is more than
1491 * enough time to complete the receives, if it's 1490 * enough time to complete the receives, if it's
1492 * exceeded, break and error off 1491 * exceeded, break and error off
1493 */ 1492 */
1494 } while (good_cnt < 64 && jiffies < (time + 20)); 1493 } while (good_cnt < 64 && jiffies < (time + 20));
1495 if(good_cnt != 64) { 1494 if (good_cnt != 64) {
1496 ret_val = 13; /* ret_val is the same as mis-compare */ 1495 ret_val = 13; /* ret_val is the same as mis-compare */
1497 break; 1496 break;
1498 } 1497 }
1499 if(jiffies >= (time + 2)) { 1498 if (jiffies >= (time + 2)) {
1500 ret_val = 14; /* error code for time out error */ 1499 ret_val = 14; /* error code for time out error */
1501 break; 1500 break;
1502 } 1501 }
@@ -1549,17 +1548,17 @@ e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
1549 *data = 1; 1548 *data = 1;
1550 } else { 1549 } else {
1551 e1000_check_for_link(&adapter->hw); 1550 e1000_check_for_link(&adapter->hw);
1552 if(adapter->hw.autoneg) /* if auto_neg is set wait for it */ 1551 if (adapter->hw.autoneg) /* if auto_neg is set wait for it */
1553 msec_delay(4000); 1552 msec_delay(4000);
1554 1553
1555 if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { 1554 if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
1556 *data = 1; 1555 *data = 1;
1557 } 1556 }
1558 } 1557 }
1559 return *data; 1558 return *data;
1560} 1559}
1561 1560
1562static int 1561static int
1563e1000_diag_test_count(struct net_device *netdev) 1562e1000_diag_test_count(struct net_device *netdev)
1564{ 1563{
1565 return E1000_TEST_LEN; 1564 return E1000_TEST_LEN;
@@ -1572,7 +1571,7 @@ e1000_diag_test(struct net_device *netdev,
1572 struct e1000_adapter *adapter = netdev_priv(netdev); 1571 struct e1000_adapter *adapter = netdev_priv(netdev);
1573 boolean_t if_running = netif_running(netdev); 1572 boolean_t if_running = netif_running(netdev);
1574 1573
1575 if(eth_test->flags == ETH_TEST_FL_OFFLINE) { 1574 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1576 /* Offline tests */ 1575 /* Offline tests */
1577 1576
1578 /* save speed, duplex, autoneg settings */ 1577 /* save speed, duplex, autoneg settings */
@@ -1582,27 +1581,27 @@ e1000_diag_test(struct net_device *netdev,
1582 1581
1583 /* Link test performed before hardware reset so autoneg doesn't 1582 /* Link test performed before hardware reset so autoneg doesn't
1584 * interfere with test result */ 1583 * interfere with test result */
1585 if(e1000_link_test(adapter, &data[4])) 1584 if (e1000_link_test(adapter, &data[4]))
1586 eth_test->flags |= ETH_TEST_FL_FAILED; 1585 eth_test->flags |= ETH_TEST_FL_FAILED;
1587 1586
1588 if(if_running) 1587 if (if_running)
1589 e1000_down(adapter); 1588 e1000_down(adapter);
1590 else 1589 else
1591 e1000_reset(adapter); 1590 e1000_reset(adapter);
1592 1591
1593 if(e1000_reg_test(adapter, &data[0])) 1592 if (e1000_reg_test(adapter, &data[0]))
1594 eth_test->flags |= ETH_TEST_FL_FAILED; 1593 eth_test->flags |= ETH_TEST_FL_FAILED;
1595 1594
1596 e1000_reset(adapter); 1595 e1000_reset(adapter);
1597 if(e1000_eeprom_test(adapter, &data[1])) 1596 if (e1000_eeprom_test(adapter, &data[1]))
1598 eth_test->flags |= ETH_TEST_FL_FAILED; 1597 eth_test->flags |= ETH_TEST_FL_FAILED;
1599 1598
1600 e1000_reset(adapter); 1599 e1000_reset(adapter);
1601 if(e1000_intr_test(adapter, &data[2])) 1600 if (e1000_intr_test(adapter, &data[2]))
1602 eth_test->flags |= ETH_TEST_FL_FAILED; 1601 eth_test->flags |= ETH_TEST_FL_FAILED;
1603 1602
1604 e1000_reset(adapter); 1603 e1000_reset(adapter);
1605 if(e1000_loopback_test(adapter, &data[3])) 1604 if (e1000_loopback_test(adapter, &data[3]))
1606 eth_test->flags |= ETH_TEST_FL_FAILED; 1605 eth_test->flags |= ETH_TEST_FL_FAILED;
1607 1606
1608 /* restore speed, duplex, autoneg settings */ 1607 /* restore speed, duplex, autoneg settings */
@@ -1611,11 +1610,11 @@ e1000_diag_test(struct net_device *netdev,
1611 adapter->hw.autoneg = autoneg; 1610 adapter->hw.autoneg = autoneg;
1612 1611
1613 e1000_reset(adapter); 1612 e1000_reset(adapter);
1614 if(if_running) 1613 if (if_running)
1615 e1000_up(adapter); 1614 e1000_up(adapter);
1616 } else { 1615 } else {
1617 /* Online tests */ 1616 /* Online tests */
1618 if(e1000_link_test(adapter, &data[4])) 1617 if (e1000_link_test(adapter, &data[4]))
1619 eth_test->flags |= ETH_TEST_FL_FAILED; 1618 eth_test->flags |= ETH_TEST_FL_FAILED;
1620 1619
1621 /* Offline tests aren't run; pass by default */ 1620 /* Offline tests aren't run; pass by default */
@@ -1633,7 +1632,7 @@ e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1633 struct e1000_adapter *adapter = netdev_priv(netdev); 1632 struct e1000_adapter *adapter = netdev_priv(netdev);
1634 struct e1000_hw *hw = &adapter->hw; 1633 struct e1000_hw *hw = &adapter->hw;
1635 1634
1636 switch(adapter->hw.device_id) { 1635 switch (adapter->hw.device_id) {
1637 case E1000_DEV_ID_82542: 1636 case E1000_DEV_ID_82542:
1638 case E1000_DEV_ID_82543GC_FIBER: 1637 case E1000_DEV_ID_82543GC_FIBER:
1639 case E1000_DEV_ID_82543GC_COPPER: 1638 case E1000_DEV_ID_82543GC_COPPER:
@@ -1649,7 +1648,7 @@ e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1649 case E1000_DEV_ID_82546GB_FIBER: 1648 case E1000_DEV_ID_82546GB_FIBER:
1650 case E1000_DEV_ID_82571EB_FIBER: 1649 case E1000_DEV_ID_82571EB_FIBER:
1651 /* Wake events only supported on port A for dual fiber */ 1650 /* Wake events only supported on port A for dual fiber */
1652 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { 1651 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
1653 wol->supported = 0; 1652 wol->supported = 0;
1654 wol->wolopts = 0; 1653 wol->wolopts = 0;
1655 return; 1654 return;
@@ -1661,13 +1660,13 @@ e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1661 WAKE_BCAST | WAKE_MAGIC; 1660 WAKE_BCAST | WAKE_MAGIC;
1662 1661
1663 wol->wolopts = 0; 1662 wol->wolopts = 0;
1664 if(adapter->wol & E1000_WUFC_EX) 1663 if (adapter->wol & E1000_WUFC_EX)
1665 wol->wolopts |= WAKE_UCAST; 1664 wol->wolopts |= WAKE_UCAST;
1666 if(adapter->wol & E1000_WUFC_MC) 1665 if (adapter->wol & E1000_WUFC_MC)
1667 wol->wolopts |= WAKE_MCAST; 1666 wol->wolopts |= WAKE_MCAST;
1668 if(adapter->wol & E1000_WUFC_BC) 1667 if (adapter->wol & E1000_WUFC_BC)
1669 wol->wolopts |= WAKE_BCAST; 1668 wol->wolopts |= WAKE_BCAST;
1670 if(adapter->wol & E1000_WUFC_MAG) 1669 if (adapter->wol & E1000_WUFC_MAG)
1671 wol->wolopts |= WAKE_MAGIC; 1670 wol->wolopts |= WAKE_MAGIC;
1672 return; 1671 return;
1673 } 1672 }
@@ -1679,7 +1678,7 @@ e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1679 struct e1000_adapter *adapter = netdev_priv(netdev); 1678 struct e1000_adapter *adapter = netdev_priv(netdev);
1680 struct e1000_hw *hw = &adapter->hw; 1679 struct e1000_hw *hw = &adapter->hw;
1681 1680
1682 switch(adapter->hw.device_id) { 1681 switch (adapter->hw.device_id) {
1683 case E1000_DEV_ID_82542: 1682 case E1000_DEV_ID_82542:
1684 case E1000_DEV_ID_82543GC_FIBER: 1683 case E1000_DEV_ID_82543GC_FIBER:
1685 case E1000_DEV_ID_82543GC_COPPER: 1684 case E1000_DEV_ID_82543GC_COPPER:
@@ -1693,23 +1692,23 @@ e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1693 case E1000_DEV_ID_82546GB_FIBER: 1692 case E1000_DEV_ID_82546GB_FIBER:
1694 case E1000_DEV_ID_82571EB_FIBER: 1693 case E1000_DEV_ID_82571EB_FIBER:
1695 /* Wake events only supported on port A for dual fiber */ 1694 /* Wake events only supported on port A for dual fiber */
1696 if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) 1695 if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
1697 return wol->wolopts ? -EOPNOTSUPP : 0; 1696 return wol->wolopts ? -EOPNOTSUPP : 0;
1698 /* Fall Through */ 1697 /* Fall Through */
1699 1698
1700 default: 1699 default:
1701 if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) 1700 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1702 return -EOPNOTSUPP; 1701 return -EOPNOTSUPP;
1703 1702
1704 adapter->wol = 0; 1703 adapter->wol = 0;
1705 1704
1706 if(wol->wolopts & WAKE_UCAST) 1705 if (wol->wolopts & WAKE_UCAST)
1707 adapter->wol |= E1000_WUFC_EX; 1706 adapter->wol |= E1000_WUFC_EX;
1708 if(wol->wolopts & WAKE_MCAST) 1707 if (wol->wolopts & WAKE_MCAST)
1709 adapter->wol |= E1000_WUFC_MC; 1708 adapter->wol |= E1000_WUFC_MC;
1710 if(wol->wolopts & WAKE_BCAST) 1709 if (wol->wolopts & WAKE_BCAST)
1711 adapter->wol |= E1000_WUFC_BC; 1710 adapter->wol |= E1000_WUFC_BC;
1712 if(wol->wolopts & WAKE_MAGIC) 1711 if (wol->wolopts & WAKE_MAGIC)
1713 adapter->wol |= E1000_WUFC_MAG; 1712 adapter->wol |= E1000_WUFC_MAG;
1714 } 1713 }
1715 1714
@@ -1727,7 +1726,7 @@ e1000_led_blink_callback(unsigned long data)
1727{ 1726{
1728 struct e1000_adapter *adapter = (struct e1000_adapter *) data; 1727 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
1729 1728
1730 if(test_and_change_bit(E1000_LED_ON, &adapter->led_status)) 1729 if (test_and_change_bit(E1000_LED_ON, &adapter->led_status))
1731 e1000_led_off(&adapter->hw); 1730 e1000_led_off(&adapter->hw);
1732 else 1731 else
1733 e1000_led_on(&adapter->hw); 1732 e1000_led_on(&adapter->hw);
@@ -1740,11 +1739,11 @@ e1000_phys_id(struct net_device *netdev, uint32_t data)
1740{ 1739{
1741 struct e1000_adapter *adapter = netdev_priv(netdev); 1740 struct e1000_adapter *adapter = netdev_priv(netdev);
1742 1741
1743 if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) 1742 if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
1744 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); 1743 data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
1745 1744
1746 if(adapter->hw.mac_type < e1000_82571) { 1745 if (adapter->hw.mac_type < e1000_82571) {
1747 if(!adapter->blink_timer.function) { 1746 if (!adapter->blink_timer.function) {
1748 init_timer(&adapter->blink_timer); 1747 init_timer(&adapter->blink_timer);
1749 adapter->blink_timer.function = e1000_led_blink_callback; 1748 adapter->blink_timer.function = e1000_led_blink_callback;
1750 adapter->blink_timer.data = (unsigned long) adapter; 1749 adapter->blink_timer.data = (unsigned long) adapter;
@@ -1782,21 +1781,21 @@ static int
1782e1000_nway_reset(struct net_device *netdev) 1781e1000_nway_reset(struct net_device *netdev)
1783{ 1782{
1784 struct e1000_adapter *adapter = netdev_priv(netdev); 1783 struct e1000_adapter *adapter = netdev_priv(netdev);
1785 if(netif_running(netdev)) { 1784 if (netif_running(netdev)) {
1786 e1000_down(adapter); 1785 e1000_down(adapter);
1787 e1000_up(adapter); 1786 e1000_up(adapter);
1788 } 1787 }
1789 return 0; 1788 return 0;
1790} 1789}
1791 1790
1792static int 1791static int
1793e1000_get_stats_count(struct net_device *netdev) 1792e1000_get_stats_count(struct net_device *netdev)
1794{ 1793{
1795 return E1000_STATS_LEN; 1794 return E1000_STATS_LEN;
1796} 1795}
1797 1796
1798static void 1797static void
1799e1000_get_ethtool_stats(struct net_device *netdev, 1798e1000_get_ethtool_stats(struct net_device *netdev,
1800 struct ethtool_stats *stats, uint64_t *data) 1799 struct ethtool_stats *stats, uint64_t *data)
1801{ 1800{
1802 struct e1000_adapter *adapter = netdev_priv(netdev); 1801 struct e1000_adapter *adapter = netdev_priv(netdev);
@@ -1830,7 +1829,7 @@ e1000_get_ethtool_stats(struct net_device *netdev,
1830/* BUG_ON(i != E1000_STATS_LEN); */ 1829/* BUG_ON(i != E1000_STATS_LEN); */
1831} 1830}
1832 1831
1833static void 1832static void
1834e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) 1833e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1835{ 1834{
1836#ifdef CONFIG_E1000_MQ 1835#ifdef CONFIG_E1000_MQ
@@ -1839,9 +1838,9 @@ e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
1839 uint8_t *p = data; 1838 uint8_t *p = data;
1840 int i; 1839 int i;
1841 1840
1842 switch(stringset) { 1841 switch (stringset) {
1843 case ETH_SS_TEST: 1842 case ETH_SS_TEST:
1844 memcpy(data, *e1000_gstrings_test, 1843 memcpy(data, *e1000_gstrings_test,
1845 E1000_TEST_LEN*ETH_GSTRING_LEN); 1844 E1000_TEST_LEN*ETH_GSTRING_LEN);
1846 break; 1845 break;
1847 case ETH_SS_STATS: 1846 case ETH_SS_STATS: