diff options
author | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-07-31 03:06:29 -0400 |
---|---|---|
committer | Jeff Kirsher <jeffrey.t.kirsher@intel.com> | 2011-08-27 03:58:13 -0400 |
commit | 33f810b2036f13f1b123062a9e5c1794d400ce81 (patch) | |
tree | 370b55026f4bd856e96842f86af631ca2bab3da2 /drivers/net/defxx.c | |
parent | 3cd0999d134235d64b175edd2eb1d46ebc97b377 (diff) |
fddi: Move the FDDI drivers
Move the FDDI drivers into drivers/net/fddi/ and make the
necessary Kconfig and Makefile changes.
CC: "Maciej W. Rozycki" <macro@linux-mips.org>
CC: Christoph Goos <cgoos@syskonnect.de>
CC: <linux@syskonnect.de>
Signed-off-by: Jeff Kirsher <jeffrey.t.kirsher@intel.com>
Diffstat (limited to 'drivers/net/defxx.c')
-rw-r--r-- | drivers/net/defxx.c | 3739 |
1 files changed, 0 insertions, 3739 deletions
diff --git a/drivers/net/defxx.c b/drivers/net/defxx.c deleted file mode 100644 index 4ad80f771099..000000000000 --- a/drivers/net/defxx.c +++ /dev/null | |||
@@ -1,3739 +0,0 @@ | |||
1 | /* | ||
2 | * File Name: | ||
3 | * defxx.c | ||
4 | * | ||
5 | * Copyright Information: | ||
6 | * Copyright Digital Equipment Corporation 1996. | ||
7 | * | ||
8 | * This software may be used and distributed according to the terms of | ||
9 | * the GNU General Public License, incorporated herein by reference. | ||
10 | * | ||
11 | * Abstract: | ||
12 | * A Linux device driver supporting the Digital Equipment Corporation | ||
13 | * FDDI TURBOchannel, EISA and PCI controller families. Supported | ||
14 | * adapters include: | ||
15 | * | ||
16 | * DEC FDDIcontroller/TURBOchannel (DEFTA) | ||
17 | * DEC FDDIcontroller/EISA (DEFEA) | ||
18 | * DEC FDDIcontroller/PCI (DEFPA) | ||
19 | * | ||
20 | * The original author: | ||
21 | * LVS Lawrence V. Stefani <lstefani@yahoo.com> | ||
22 | * | ||
23 | * Maintainers: | ||
24 | * macro Maciej W. Rozycki <macro@linux-mips.org> | ||
25 | * | ||
26 | * Credits: | ||
27 | * I'd like to thank Patricia Cross for helping me get started with | ||
28 | * Linux, David Davies for a lot of help upgrading and configuring | ||
29 | * my development system and for answering many OS and driver | ||
30 | * development questions, and Alan Cox for recommendations and | ||
31 | * integration help on getting FDDI support into Linux. LVS | ||
32 | * | ||
33 | * Driver Architecture: | ||
34 | * The driver architecture is largely based on previous driver work | ||
35 | * for other operating systems. The upper edge interface and | ||
36 | * functions were largely taken from existing Linux device drivers | ||
37 | * such as David Davies' DE4X5.C driver and Donald Becker's TULIP.C | ||
38 | * driver. | ||
39 | * | ||
40 | * Adapter Probe - | ||
41 | * The driver scans for supported EISA adapters by reading the | ||
42 | * SLOT ID register for each EISA slot and making a match | ||
43 | * against the expected value. | ||
44 | * | ||
45 | * Bus-Specific Initialization - | ||
46 | * This driver currently supports both EISA and PCI controller | ||
47 | * families. While the custom DMA chip and FDDI logic is similar | ||
48 | * or identical, the bus logic is very different. After | ||
49 | * initialization, the only bus-specific differences is in how the | ||
50 | * driver enables and disables interrupts. Other than that, the | ||
51 | * run-time critical code behaves the same on both families. | ||
52 | * It's important to note that both adapter families are configured | ||
53 | * to I/O map, rather than memory map, the adapter registers. | ||
54 | * | ||
55 | * Driver Open/Close - | ||
56 | * In the driver open routine, the driver ISR (interrupt service | ||
57 | * routine) is registered and the adapter is brought to an | ||
58 | * operational state. In the driver close routine, the opposite | ||
59 | * occurs; the driver ISR is deregistered and the adapter is | ||
60 | * brought to a safe, but closed state. Users may use consecutive | ||
61 | * commands to bring the adapter up and down as in the following | ||
62 | * example: | ||
63 | * ifconfig fddi0 up | ||
64 | * ifconfig fddi0 down | ||
65 | * ifconfig fddi0 up | ||
66 | * | ||
67 | * Driver Shutdown - | ||
68 | * Apparently, there is no shutdown or halt routine support under | ||
69 | * Linux. This routine would be called during "reboot" or | ||
70 | * "shutdown" to allow the driver to place the adapter in a safe | ||
71 | * state before a warm reboot occurs. To be really safe, the user | ||
72 | * should close the adapter before shutdown (eg. ifconfig fddi0 down) | ||
73 | * to ensure that the adapter DMA engine is taken off-line. However, | ||
74 | * the current driver code anticipates this problem and always issues | ||
75 | * a soft reset of the adapter at the beginning of driver initialization. | ||
76 | * A future driver enhancement in this area may occur in 2.1.X where | ||
77 | * Alan indicated that a shutdown handler may be implemented. | ||
78 | * | ||
79 | * Interrupt Service Routine - | ||
80 | * The driver supports shared interrupts, so the ISR is registered for | ||
81 | * each board with the appropriate flag and the pointer to that board's | ||
82 | * device structure. This provides the context during interrupt | ||
83 | * processing to support shared interrupts and multiple boards. | ||
84 | * | ||
85 | * Interrupt enabling/disabling can occur at many levels. At the host | ||
86 | * end, you can disable system interrupts, or disable interrupts at the | ||
87 | * PIC (on Intel systems). Across the bus, both EISA and PCI adapters | ||
88 | * have a bus-logic chip interrupt enable/disable as well as a DMA | ||
89 | * controller interrupt enable/disable. | ||
90 | * | ||
91 | * The driver currently enables and disables adapter interrupts at the | ||
92 | * bus-logic chip and assumes that Linux will take care of clearing or | ||
93 | * acknowledging any host-based interrupt chips. | ||
94 | * | ||
95 | * Control Functions - | ||
96 | * Control functions are those used to support functions such as adding | ||
97 | * or deleting multicast addresses, enabling or disabling packet | ||
98 | * reception filters, or other custom/proprietary commands. Presently, | ||
99 | * the driver supports the "get statistics", "set multicast list", and | ||
100 | * "set mac address" functions defined by Linux. A list of possible | ||
101 | * enhancements include: | ||
102 | * | ||
103 | * - Custom ioctl interface for executing port interface commands | ||
104 | * - Custom ioctl interface for adding unicast addresses to | ||
105 | * adapter CAM (to support bridge functions). | ||
106 | * - Custom ioctl interface for supporting firmware upgrades. | ||
107 | * | ||
108 | * Hardware (port interface) Support Routines - | ||
109 | * The driver function names that start with "dfx_hw_" represent | ||
110 | * low-level port interface routines that are called frequently. They | ||
111 | * include issuing a DMA or port control command to the adapter, | ||
112 | * resetting the adapter, or reading the adapter state. Since the | ||
113 | * driver initialization and run-time code must make calls into the | ||
114 | * port interface, these routines were written to be as generic and | ||
115 | * usable as possible. | ||
116 | * | ||
117 | * Receive Path - | ||
118 | * The adapter DMA engine supports a 256 entry receive descriptor block | ||
119 | * of which up to 255 entries can be used at any given time. The | ||
120 | * architecture is a standard producer, consumer, completion model in | ||
121 | * which the driver "produces" receive buffers to the adapter, the | ||
122 | * adapter "consumes" the receive buffers by DMAing incoming packet data, | ||
123 | * and the driver "completes" the receive buffers by servicing the | ||
124 | * incoming packet, then "produces" a new buffer and starts the cycle | ||
125 | * again. Receive buffers can be fragmented in up to 16 fragments | ||
126 | * (descriptor entries). For simplicity, this driver posts | ||
127 | * single-fragment receive buffers of 4608 bytes, then allocates a | ||
128 | * sk_buff, copies the data, then reposts the buffer. To reduce CPU | ||
129 | * utilization, a better approach would be to pass up the receive | ||
130 | * buffer (no extra copy) then allocate and post a replacement buffer. | ||
131 | * This is a performance enhancement that should be looked into at | ||
132 | * some point. | ||
133 | * | ||
134 | * Transmit Path - | ||
135 | * Like the receive path, the adapter DMA engine supports a 256 entry | ||
136 | * transmit descriptor block of which up to 255 entries can be used at | ||
137 | * any given time. Transmit buffers can be fragmented in up to 255 | ||
138 | * fragments (descriptor entries). This driver always posts one | ||
139 | * fragment per transmit packet request. | ||
140 | * | ||
141 | * The fragment contains the entire packet from FC to end of data. | ||
142 | * Before posting the buffer to the adapter, the driver sets a three-byte | ||
143 | * packet request header (PRH) which is required by the Motorola MAC chip | ||
144 | * used on the adapters. The PRH tells the MAC the type of token to | ||
145 | * receive/send, whether or not to generate and append the CRC, whether | ||
146 | * synchronous or asynchronous framing is used, etc. Since the PRH | ||
147 | * definition is not necessarily consistent across all FDDI chipsets, | ||
148 | * the driver, rather than the common FDDI packet handler routines, | ||
149 | * sets these bytes. | ||
150 | * | ||
151 | * To reduce the amount of descriptor fetches needed per transmit request, | ||
152 | * the driver takes advantage of the fact that there are at least three | ||
153 | * bytes available before the skb->data field on the outgoing transmit | ||
154 | * request. This is guaranteed by having fddi_setup() in net_init.c set | ||
155 | * dev->hard_header_len to 24 bytes. 21 bytes accounts for the largest | ||
156 | * header in an 802.2 SNAP frame. The other 3 bytes are the extra "pad" | ||
157 | * bytes which we'll use to store the PRH. | ||
158 | * | ||
159 | * There's a subtle advantage to adding these pad bytes to the | ||
160 | * hard_header_len, it ensures that the data portion of the packet for | ||
161 | * an 802.2 SNAP frame is longword aligned. Other FDDI driver | ||
162 | * implementations may not need the extra padding and can start copying | ||
163 | * or DMAing directly from the FC byte which starts at skb->data. Should | ||
164 | * another driver implementation need ADDITIONAL padding, the net_init.c | ||
165 | * module should be updated and dev->hard_header_len should be increased. | ||
166 | * NOTE: To maintain the alignment on the data portion of the packet, | ||
167 | * dev->hard_header_len should always be evenly divisible by 4 and at | ||
168 | * least 24 bytes in size. | ||
169 | * | ||
170 | * Modification History: | ||
171 | * Date Name Description | ||
172 | * 16-Aug-96 LVS Created. | ||
173 | * 20-Aug-96 LVS Updated dfx_probe so that version information | ||
174 | * string is only displayed if 1 or more cards are | ||
175 | * found. Changed dfx_rcv_queue_process to copy | ||
176 | * 3 NULL bytes before FC to ensure that data is | ||
177 | * longword aligned in receive buffer. | ||
178 | * 09-Sep-96 LVS Updated dfx_ctl_set_multicast_list to enable | ||
179 | * LLC group promiscuous mode if multicast list | ||
180 | * is too large. LLC individual/group promiscuous | ||
181 | * mode is now disabled if IFF_PROMISC flag not set. | ||
182 | * dfx_xmt_queue_pkt no longer checks for NULL skb | ||
183 | * on Alan Cox recommendation. Added node address | ||
184 | * override support. | ||
185 | * 12-Sep-96 LVS Reset current address to factory address during | ||
186 | * device open. Updated transmit path to post a | ||
187 | * single fragment which includes PRH->end of data. | ||
188 | * Mar 2000 AC Did various cleanups for 2.3.x | ||
189 | * Jun 2000 jgarzik PCI and resource alloc cleanups | ||
190 | * Jul 2000 tjeerd Much cleanup and some bug fixes | ||
191 | * Sep 2000 tjeerd Fix leak on unload, cosmetic code cleanup | ||
192 | * Feb 2001 Skb allocation fixes | ||
193 | * Feb 2001 davej PCI enable cleanups. | ||
194 | * 04 Aug 2003 macro Converted to the DMA API. | ||
195 | * 14 Aug 2004 macro Fix device names reported. | ||
196 | * 14 Jun 2005 macro Use irqreturn_t. | ||
197 | * 23 Oct 2006 macro Big-endian host support. | ||
198 | * 14 Dec 2006 macro TURBOchannel support. | ||
199 | */ | ||
200 | |||
201 | /* Include files */ | ||
202 | #include <linux/bitops.h> | ||
203 | #include <linux/compiler.h> | ||
204 | #include <linux/delay.h> | ||
205 | #include <linux/dma-mapping.h> | ||
206 | #include <linux/eisa.h> | ||
207 | #include <linux/errno.h> | ||
208 | #include <linux/fddidevice.h> | ||
209 | #include <linux/init.h> | ||
210 | #include <linux/interrupt.h> | ||
211 | #include <linux/ioport.h> | ||
212 | #include <linux/kernel.h> | ||
213 | #include <linux/module.h> | ||
214 | #include <linux/netdevice.h> | ||
215 | #include <linux/pci.h> | ||
216 | #include <linux/skbuff.h> | ||
217 | #include <linux/slab.h> | ||
218 | #include <linux/string.h> | ||
219 | #include <linux/tc.h> | ||
220 | |||
221 | #include <asm/byteorder.h> | ||
222 | #include <asm/io.h> | ||
223 | |||
224 | #include "defxx.h" | ||
225 | |||
226 | /* Version information string should be updated prior to each new release! */ | ||
227 | #define DRV_NAME "defxx" | ||
228 | #define DRV_VERSION "v1.10" | ||
229 | #define DRV_RELDATE "2006/12/14" | ||
230 | |||
231 | static char version[] __devinitdata = | ||
232 | DRV_NAME ": " DRV_VERSION " " DRV_RELDATE | ||
233 | " Lawrence V. Stefani and others\n"; | ||
234 | |||
235 | #define DYNAMIC_BUFFERS 1 | ||
236 | |||
237 | #define SKBUFF_RX_COPYBREAK 200 | ||
238 | /* | ||
239 | * NEW_SKB_SIZE = PI_RCV_DATA_K_SIZE_MAX+128 to allow 128 byte | ||
240 | * alignment for compatibility with old EISA boards. | ||
241 | */ | ||
242 | #define NEW_SKB_SIZE (PI_RCV_DATA_K_SIZE_MAX+128) | ||
243 | |||
244 | #ifdef CONFIG_PCI | ||
245 | #define DFX_BUS_PCI(dev) (dev->bus == &pci_bus_type) | ||
246 | #else | ||
247 | #define DFX_BUS_PCI(dev) 0 | ||
248 | #endif | ||
249 | |||
250 | #ifdef CONFIG_EISA | ||
251 | #define DFX_BUS_EISA(dev) (dev->bus == &eisa_bus_type) | ||
252 | #else | ||
253 | #define DFX_BUS_EISA(dev) 0 | ||
254 | #endif | ||
255 | |||
256 | #ifdef CONFIG_TC | ||
257 | #define DFX_BUS_TC(dev) (dev->bus == &tc_bus_type) | ||
258 | #else | ||
259 | #define DFX_BUS_TC(dev) 0 | ||
260 | #endif | ||
261 | |||
262 | #ifdef CONFIG_DEFXX_MMIO | ||
263 | #define DFX_MMIO 1 | ||
264 | #else | ||
265 | #define DFX_MMIO 0 | ||
266 | #endif | ||
267 | |||
268 | /* Define module-wide (static) routines */ | ||
269 | |||
270 | static void dfx_bus_init(struct net_device *dev); | ||
271 | static void dfx_bus_uninit(struct net_device *dev); | ||
272 | static void dfx_bus_config_check(DFX_board_t *bp); | ||
273 | |||
274 | static int dfx_driver_init(struct net_device *dev, | ||
275 | const char *print_name, | ||
276 | resource_size_t bar_start); | ||
277 | static int dfx_adap_init(DFX_board_t *bp, int get_buffers); | ||
278 | |||
279 | static int dfx_open(struct net_device *dev); | ||
280 | static int dfx_close(struct net_device *dev); | ||
281 | |||
282 | static void dfx_int_pr_halt_id(DFX_board_t *bp); | ||
283 | static void dfx_int_type_0_process(DFX_board_t *bp); | ||
284 | static void dfx_int_common(struct net_device *dev); | ||
285 | static irqreturn_t dfx_interrupt(int irq, void *dev_id); | ||
286 | |||
287 | static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev); | ||
288 | static void dfx_ctl_set_multicast_list(struct net_device *dev); | ||
289 | static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr); | ||
290 | static int dfx_ctl_update_cam(DFX_board_t *bp); | ||
291 | static int dfx_ctl_update_filters(DFX_board_t *bp); | ||
292 | |||
293 | static int dfx_hw_dma_cmd_req(DFX_board_t *bp); | ||
294 | static int dfx_hw_port_ctrl_req(DFX_board_t *bp, PI_UINT32 command, PI_UINT32 data_a, PI_UINT32 data_b, PI_UINT32 *host_data); | ||
295 | static void dfx_hw_adap_reset(DFX_board_t *bp, PI_UINT32 type); | ||
296 | static int dfx_hw_adap_state_rd(DFX_board_t *bp); | ||
297 | static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type); | ||
298 | |||
299 | static int dfx_rcv_init(DFX_board_t *bp, int get_buffers); | ||
300 | static void dfx_rcv_queue_process(DFX_board_t *bp); | ||
301 | static void dfx_rcv_flush(DFX_board_t *bp); | ||
302 | |||
303 | static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, | ||
304 | struct net_device *dev); | ||
305 | static int dfx_xmt_done(DFX_board_t *bp); | ||
306 | static void dfx_xmt_flush(DFX_board_t *bp); | ||
307 | |||
308 | /* Define module-wide (static) variables */ | ||
309 | |||
310 | static struct pci_driver dfx_pci_driver; | ||
311 | static struct eisa_driver dfx_eisa_driver; | ||
312 | static struct tc_driver dfx_tc_driver; | ||
313 | |||
314 | |||
315 | /* | ||
316 | * ======================= | ||
317 | * = dfx_port_write_long = | ||
318 | * = dfx_port_read_long = | ||
319 | * ======================= | ||
320 | * | ||
321 | * Overview: | ||
322 | * Routines for reading and writing values from/to adapter | ||
323 | * | ||
324 | * Returns: | ||
325 | * None | ||
326 | * | ||
327 | * Arguments: | ||
328 | * bp - pointer to board information | ||
329 | * offset - register offset from base I/O address | ||
330 | * data - for dfx_port_write_long, this is a value to write; | ||
331 | * for dfx_port_read_long, this is a pointer to store | ||
332 | * the read value | ||
333 | * | ||
334 | * Functional Description: | ||
335 | * These routines perform the correct operation to read or write | ||
336 | * the adapter register. | ||
337 | * | ||
338 | * EISA port block base addresses are based on the slot number in which the | ||
339 | * controller is installed. For example, if the EISA controller is installed | ||
340 | * in slot 4, the port block base address is 0x4000. If the controller is | ||
341 | * installed in slot 2, the port block base address is 0x2000, and so on. | ||
342 | * This port block can be used to access PDQ, ESIC, and DEFEA on-board | ||
343 | * registers using the register offsets defined in DEFXX.H. | ||
344 | * | ||
345 | * PCI port block base addresses are assigned by the PCI BIOS or system | ||
346 | * firmware. There is one 128 byte port block which can be accessed. It | ||
347 | * allows for I/O mapping of both PDQ and PFI registers using the register | ||
348 | * offsets defined in DEFXX.H. | ||
349 | * | ||
350 | * Return Codes: | ||
351 | * None | ||
352 | * | ||
353 | * Assumptions: | ||
354 | * bp->base is a valid base I/O address for this adapter. | ||
355 | * offset is a valid register offset for this adapter. | ||
356 | * | ||
357 | * Side Effects: | ||
358 | * Rather than produce macros for these functions, these routines | ||
359 | * are defined using "inline" to ensure that the compiler will | ||
360 | * generate inline code and not waste a procedure call and return. | ||
361 | * This provides all the benefits of macros, but with the | ||
362 | * advantage of strict data type checking. | ||
363 | */ | ||
364 | |||
365 | static inline void dfx_writel(DFX_board_t *bp, int offset, u32 data) | ||
366 | { | ||
367 | writel(data, bp->base.mem + offset); | ||
368 | mb(); | ||
369 | } | ||
370 | |||
371 | static inline void dfx_outl(DFX_board_t *bp, int offset, u32 data) | ||
372 | { | ||
373 | outl(data, bp->base.port + offset); | ||
374 | } | ||
375 | |||
376 | static void dfx_port_write_long(DFX_board_t *bp, int offset, u32 data) | ||
377 | { | ||
378 | struct device __maybe_unused *bdev = bp->bus_dev; | ||
379 | int dfx_bus_tc = DFX_BUS_TC(bdev); | ||
380 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | ||
381 | |||
382 | if (dfx_use_mmio) | ||
383 | dfx_writel(bp, offset, data); | ||
384 | else | ||
385 | dfx_outl(bp, offset, data); | ||
386 | } | ||
387 | |||
388 | |||
389 | static inline void dfx_readl(DFX_board_t *bp, int offset, u32 *data) | ||
390 | { | ||
391 | mb(); | ||
392 | *data = readl(bp->base.mem + offset); | ||
393 | } | ||
394 | |||
395 | static inline void dfx_inl(DFX_board_t *bp, int offset, u32 *data) | ||
396 | { | ||
397 | *data = inl(bp->base.port + offset); | ||
398 | } | ||
399 | |||
400 | static void dfx_port_read_long(DFX_board_t *bp, int offset, u32 *data) | ||
401 | { | ||
402 | struct device __maybe_unused *bdev = bp->bus_dev; | ||
403 | int dfx_bus_tc = DFX_BUS_TC(bdev); | ||
404 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | ||
405 | |||
406 | if (dfx_use_mmio) | ||
407 | dfx_readl(bp, offset, data); | ||
408 | else | ||
409 | dfx_inl(bp, offset, data); | ||
410 | } | ||
411 | |||
412 | |||
413 | /* | ||
414 | * ================ | ||
415 | * = dfx_get_bars = | ||
416 | * ================ | ||
417 | * | ||
418 | * Overview: | ||
419 | * Retrieves the address range used to access control and status | ||
420 | * registers. | ||
421 | * | ||
422 | * Returns: | ||
423 | * None | ||
424 | * | ||
425 | * Arguments: | ||
426 | * bdev - pointer to device information | ||
427 | * bar_start - pointer to store the start address | ||
428 | * bar_len - pointer to store the length of the area | ||
429 | * | ||
430 | * Assumptions: | ||
431 | * I am sure there are some. | ||
432 | * | ||
433 | * Side Effects: | ||
434 | * None | ||
435 | */ | ||
436 | static void dfx_get_bars(struct device *bdev, | ||
437 | resource_size_t *bar_start, resource_size_t *bar_len) | ||
438 | { | ||
439 | int dfx_bus_pci = DFX_BUS_PCI(bdev); | ||
440 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); | ||
441 | int dfx_bus_tc = DFX_BUS_TC(bdev); | ||
442 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | ||
443 | |||
444 | if (dfx_bus_pci) { | ||
445 | int num = dfx_use_mmio ? 0 : 1; | ||
446 | |||
447 | *bar_start = pci_resource_start(to_pci_dev(bdev), num); | ||
448 | *bar_len = pci_resource_len(to_pci_dev(bdev), num); | ||
449 | } | ||
450 | if (dfx_bus_eisa) { | ||
451 | unsigned long base_addr = to_eisa_device(bdev)->base_addr; | ||
452 | resource_size_t bar; | ||
453 | |||
454 | if (dfx_use_mmio) { | ||
455 | bar = inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_2); | ||
456 | bar <<= 8; | ||
457 | bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_1); | ||
458 | bar <<= 8; | ||
459 | bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_CMP_0); | ||
460 | bar <<= 16; | ||
461 | *bar_start = bar; | ||
462 | bar = inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_2); | ||
463 | bar <<= 8; | ||
464 | bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_1); | ||
465 | bar <<= 8; | ||
466 | bar |= inb(base_addr + PI_ESIC_K_MEM_ADD_MASK_0); | ||
467 | bar <<= 16; | ||
468 | *bar_len = (bar | PI_MEM_ADD_MASK_M) + 1; | ||
469 | } else { | ||
470 | *bar_start = base_addr; | ||
471 | *bar_len = PI_ESIC_K_CSR_IO_LEN; | ||
472 | } | ||
473 | } | ||
474 | if (dfx_bus_tc) { | ||
475 | *bar_start = to_tc_dev(bdev)->resource.start + | ||
476 | PI_TC_K_CSR_OFFSET; | ||
477 | *bar_len = PI_TC_K_CSR_LEN; | ||
478 | } | ||
479 | } | ||
480 | |||
481 | static const struct net_device_ops dfx_netdev_ops = { | ||
482 | .ndo_open = dfx_open, | ||
483 | .ndo_stop = dfx_close, | ||
484 | .ndo_start_xmit = dfx_xmt_queue_pkt, | ||
485 | .ndo_get_stats = dfx_ctl_get_stats, | ||
486 | .ndo_set_rx_mode = dfx_ctl_set_multicast_list, | ||
487 | .ndo_set_mac_address = dfx_ctl_set_mac_address, | ||
488 | }; | ||
489 | |||
490 | /* | ||
491 | * ================ | ||
492 | * = dfx_register = | ||
493 | * ================ | ||
494 | * | ||
495 | * Overview: | ||
496 | * Initializes a supported FDDI controller | ||
497 | * | ||
498 | * Returns: | ||
499 | * Condition code | ||
500 | * | ||
501 | * Arguments: | ||
502 | * bdev - pointer to device information | ||
503 | * | ||
504 | * Functional Description: | ||
505 | * | ||
506 | * Return Codes: | ||
507 | * 0 - This device (fddi0, fddi1, etc) configured successfully | ||
508 | * -EBUSY - Failed to get resources, or dfx_driver_init failed. | ||
509 | * | ||
510 | * Assumptions: | ||
511 | * It compiles so it should work :-( (PCI cards do :-) | ||
512 | * | ||
513 | * Side Effects: | ||
514 | * Device structures for FDDI adapters (fddi0, fddi1, etc) are | ||
515 | * initialized and the board resources are read and stored in | ||
516 | * the device structure. | ||
517 | */ | ||
518 | static int __devinit dfx_register(struct device *bdev) | ||
519 | { | ||
520 | static int version_disp; | ||
521 | int dfx_bus_pci = DFX_BUS_PCI(bdev); | ||
522 | int dfx_bus_tc = DFX_BUS_TC(bdev); | ||
523 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | ||
524 | const char *print_name = dev_name(bdev); | ||
525 | struct net_device *dev; | ||
526 | DFX_board_t *bp; /* board pointer */ | ||
527 | resource_size_t bar_start = 0; /* pointer to port */ | ||
528 | resource_size_t bar_len = 0; /* resource length */ | ||
529 | int alloc_size; /* total buffer size used */ | ||
530 | struct resource *region; | ||
531 | int err = 0; | ||
532 | |||
533 | if (!version_disp) { /* display version info if adapter is found */ | ||
534 | version_disp = 1; /* set display flag to TRUE so that */ | ||
535 | printk(version); /* we only display this string ONCE */ | ||
536 | } | ||
537 | |||
538 | dev = alloc_fddidev(sizeof(*bp)); | ||
539 | if (!dev) { | ||
540 | printk(KERN_ERR "%s: Unable to allocate fddidev, aborting\n", | ||
541 | print_name); | ||
542 | return -ENOMEM; | ||
543 | } | ||
544 | |||
545 | /* Enable PCI device. */ | ||
546 | if (dfx_bus_pci && pci_enable_device(to_pci_dev(bdev))) { | ||
547 | printk(KERN_ERR "%s: Cannot enable PCI device, aborting\n", | ||
548 | print_name); | ||
549 | goto err_out; | ||
550 | } | ||
551 | |||
552 | SET_NETDEV_DEV(dev, bdev); | ||
553 | |||
554 | bp = netdev_priv(dev); | ||
555 | bp->bus_dev = bdev; | ||
556 | dev_set_drvdata(bdev, dev); | ||
557 | |||
558 | dfx_get_bars(bdev, &bar_start, &bar_len); | ||
559 | |||
560 | if (dfx_use_mmio) | ||
561 | region = request_mem_region(bar_start, bar_len, print_name); | ||
562 | else | ||
563 | region = request_region(bar_start, bar_len, print_name); | ||
564 | if (!region) { | ||
565 | printk(KERN_ERR "%s: Cannot reserve I/O resource " | ||
566 | "0x%lx @ 0x%lx, aborting\n", | ||
567 | print_name, (long)bar_len, (long)bar_start); | ||
568 | err = -EBUSY; | ||
569 | goto err_out_disable; | ||
570 | } | ||
571 | |||
572 | /* Set up I/O base address. */ | ||
573 | if (dfx_use_mmio) { | ||
574 | bp->base.mem = ioremap_nocache(bar_start, bar_len); | ||
575 | if (!bp->base.mem) { | ||
576 | printk(KERN_ERR "%s: Cannot map MMIO\n", print_name); | ||
577 | err = -ENOMEM; | ||
578 | goto err_out_region; | ||
579 | } | ||
580 | } else { | ||
581 | bp->base.port = bar_start; | ||
582 | dev->base_addr = bar_start; | ||
583 | } | ||
584 | |||
585 | /* Initialize new device structure */ | ||
586 | dev->netdev_ops = &dfx_netdev_ops; | ||
587 | |||
588 | if (dfx_bus_pci) | ||
589 | pci_set_master(to_pci_dev(bdev)); | ||
590 | |||
591 | if (dfx_driver_init(dev, print_name, bar_start) != DFX_K_SUCCESS) { | ||
592 | err = -ENODEV; | ||
593 | goto err_out_unmap; | ||
594 | } | ||
595 | |||
596 | err = register_netdev(dev); | ||
597 | if (err) | ||
598 | goto err_out_kfree; | ||
599 | |||
600 | printk("%s: registered as %s\n", print_name, dev->name); | ||
601 | return 0; | ||
602 | |||
603 | err_out_kfree: | ||
604 | alloc_size = sizeof(PI_DESCR_BLOCK) + | ||
605 | PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + | ||
606 | #ifndef DYNAMIC_BUFFERS | ||
607 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | ||
608 | #endif | ||
609 | sizeof(PI_CONSUMER_BLOCK) + | ||
610 | (PI_ALIGN_K_DESC_BLK - 1); | ||
611 | if (bp->kmalloced) | ||
612 | dma_free_coherent(bdev, alloc_size, | ||
613 | bp->kmalloced, bp->kmalloced_dma); | ||
614 | |||
615 | err_out_unmap: | ||
616 | if (dfx_use_mmio) | ||
617 | iounmap(bp->base.mem); | ||
618 | |||
619 | err_out_region: | ||
620 | if (dfx_use_mmio) | ||
621 | release_mem_region(bar_start, bar_len); | ||
622 | else | ||
623 | release_region(bar_start, bar_len); | ||
624 | |||
625 | err_out_disable: | ||
626 | if (dfx_bus_pci) | ||
627 | pci_disable_device(to_pci_dev(bdev)); | ||
628 | |||
629 | err_out: | ||
630 | free_netdev(dev); | ||
631 | return err; | ||
632 | } | ||
633 | |||
634 | |||
635 | /* | ||
636 | * ================ | ||
637 | * = dfx_bus_init = | ||
638 | * ================ | ||
639 | * | ||
640 | * Overview: | ||
641 | * Initializes the bus-specific controller logic. | ||
642 | * | ||
643 | * Returns: | ||
644 | * None | ||
645 | * | ||
646 | * Arguments: | ||
647 | * dev - pointer to device information | ||
648 | * | ||
649 | * Functional Description: | ||
650 | * Determine and save adapter IRQ in device table, | ||
651 | * then perform bus-specific logic initialization. | ||
652 | * | ||
653 | * Return Codes: | ||
654 | * None | ||
655 | * | ||
656 | * Assumptions: | ||
657 | * bp->base has already been set with the proper | ||
658 | * base I/O address for this device. | ||
659 | * | ||
660 | * Side Effects: | ||
661 | * Interrupts are enabled at the adapter bus-specific logic. | ||
662 | * Note: Interrupts at the DMA engine (PDQ chip) are not | ||
663 | * enabled yet. | ||
664 | */ | ||
665 | |||
666 | static void __devinit dfx_bus_init(struct net_device *dev) | ||
667 | { | ||
668 | DFX_board_t *bp = netdev_priv(dev); | ||
669 | struct device *bdev = bp->bus_dev; | ||
670 | int dfx_bus_pci = DFX_BUS_PCI(bdev); | ||
671 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); | ||
672 | int dfx_bus_tc = DFX_BUS_TC(bdev); | ||
673 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | ||
674 | u8 val; | ||
675 | |||
676 | DBG_printk("In dfx_bus_init...\n"); | ||
677 | |||
678 | /* Initialize a pointer back to the net_device struct */ | ||
679 | bp->dev = dev; | ||
680 | |||
681 | /* Initialize adapter based on bus type */ | ||
682 | |||
683 | if (dfx_bus_tc) | ||
684 | dev->irq = to_tc_dev(bdev)->interrupt; | ||
685 | if (dfx_bus_eisa) { | ||
686 | unsigned long base_addr = to_eisa_device(bdev)->base_addr; | ||
687 | |||
688 | /* Get the interrupt level from the ESIC chip. */ | ||
689 | val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | ||
690 | val &= PI_CONFIG_STAT_0_M_IRQ; | ||
691 | val >>= PI_CONFIG_STAT_0_V_IRQ; | ||
692 | |||
693 | switch (val) { | ||
694 | case PI_CONFIG_STAT_0_IRQ_K_9: | ||
695 | dev->irq = 9; | ||
696 | break; | ||
697 | |||
698 | case PI_CONFIG_STAT_0_IRQ_K_10: | ||
699 | dev->irq = 10; | ||
700 | break; | ||
701 | |||
702 | case PI_CONFIG_STAT_0_IRQ_K_11: | ||
703 | dev->irq = 11; | ||
704 | break; | ||
705 | |||
706 | case PI_CONFIG_STAT_0_IRQ_K_15: | ||
707 | dev->irq = 15; | ||
708 | break; | ||
709 | } | ||
710 | |||
711 | /* | ||
712 | * Enable memory decoding (MEMCS0) and/or port decoding | ||
713 | * (IOCS1/IOCS0) as appropriate in Function Control | ||
714 | * Register. One of the port chip selects seems to be | ||
715 | * used for the Burst Holdoff register, but this bit of | ||
716 | * documentation is missing and as yet it has not been | ||
717 | * determined which of the two. This is also the reason | ||
718 | * the size of the decoded port range is twice as large | ||
719 | * as one required by the PDQ. | ||
720 | */ | ||
721 | |||
722 | /* Set the decode range of the board. */ | ||
723 | val = ((bp->base.port >> 12) << PI_IO_CMP_V_SLOT); | ||
724 | outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_1, val); | ||
725 | outb(base_addr + PI_ESIC_K_IO_ADD_CMP_0_0, 0); | ||
726 | outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_1, val); | ||
727 | outb(base_addr + PI_ESIC_K_IO_ADD_CMP_1_0, 0); | ||
728 | val = PI_ESIC_K_CSR_IO_LEN - 1; | ||
729 | outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_1, (val >> 8) & 0xff); | ||
730 | outb(base_addr + PI_ESIC_K_IO_ADD_MASK_0_0, val & 0xff); | ||
731 | outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_1, (val >> 8) & 0xff); | ||
732 | outb(base_addr + PI_ESIC_K_IO_ADD_MASK_1_0, val & 0xff); | ||
733 | |||
734 | /* Enable the decoders. */ | ||
735 | val = PI_FUNCTION_CNTRL_M_IOCS1 | PI_FUNCTION_CNTRL_M_IOCS0; | ||
736 | if (dfx_use_mmio) | ||
737 | val |= PI_FUNCTION_CNTRL_M_MEMCS0; | ||
738 | outb(base_addr + PI_ESIC_K_FUNCTION_CNTRL, val); | ||
739 | |||
740 | /* | ||
741 | * Enable access to the rest of the module | ||
742 | * (including PDQ and packet memory). | ||
743 | */ | ||
744 | val = PI_SLOT_CNTRL_M_ENB; | ||
745 | outb(base_addr + PI_ESIC_K_SLOT_CNTRL, val); | ||
746 | |||
747 | /* | ||
748 | * Map PDQ registers into memory or port space. This is | ||
749 | * done with a bit in the Burst Holdoff register. | ||
750 | */ | ||
751 | val = inb(base_addr + PI_DEFEA_K_BURST_HOLDOFF); | ||
752 | if (dfx_use_mmio) | ||
753 | val |= PI_BURST_HOLDOFF_V_MEM_MAP; | ||
754 | else | ||
755 | val &= ~PI_BURST_HOLDOFF_V_MEM_MAP; | ||
756 | outb(base_addr + PI_DEFEA_K_BURST_HOLDOFF, val); | ||
757 | |||
758 | /* Enable interrupts at EISA bus interface chip (ESIC) */ | ||
759 | val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | ||
760 | val |= PI_CONFIG_STAT_0_M_INT_ENB; | ||
761 | outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); | ||
762 | } | ||
763 | if (dfx_bus_pci) { | ||
764 | struct pci_dev *pdev = to_pci_dev(bdev); | ||
765 | |||
766 | /* Get the interrupt level from the PCI Configuration Table */ | ||
767 | |||
768 | dev->irq = pdev->irq; | ||
769 | |||
770 | /* Check Latency Timer and set if less than minimal */ | ||
771 | |||
772 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &val); | ||
773 | if (val < PFI_K_LAT_TIMER_MIN) { | ||
774 | val = PFI_K_LAT_TIMER_DEF; | ||
775 | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, val); | ||
776 | } | ||
777 | |||
778 | /* Enable interrupts at PCI bus interface chip (PFI) */ | ||
779 | val = PFI_MODE_M_PDQ_INT_ENB | PFI_MODE_M_DMA_ENB; | ||
780 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, val); | ||
781 | } | ||
782 | } | ||
783 | |||
784 | /* | ||
785 | * ================== | ||
786 | * = dfx_bus_uninit = | ||
787 | * ================== | ||
788 | * | ||
789 | * Overview: | ||
790 | * Uninitializes the bus-specific controller logic. | ||
791 | * | ||
792 | * Returns: | ||
793 | * None | ||
794 | * | ||
795 | * Arguments: | ||
796 | * dev - pointer to device information | ||
797 | * | ||
798 | * Functional Description: | ||
799 | * Perform bus-specific logic uninitialization. | ||
800 | * | ||
801 | * Return Codes: | ||
802 | * None | ||
803 | * | ||
804 | * Assumptions: | ||
805 | * bp->base has already been set with the proper | ||
806 | * base I/O address for this device. | ||
807 | * | ||
808 | * Side Effects: | ||
809 | * Interrupts are disabled at the adapter bus-specific logic. | ||
810 | */ | ||
811 | |||
812 | static void __devexit dfx_bus_uninit(struct net_device *dev) | ||
813 | { | ||
814 | DFX_board_t *bp = netdev_priv(dev); | ||
815 | struct device *bdev = bp->bus_dev; | ||
816 | int dfx_bus_pci = DFX_BUS_PCI(bdev); | ||
817 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); | ||
818 | u8 val; | ||
819 | |||
820 | DBG_printk("In dfx_bus_uninit...\n"); | ||
821 | |||
822 | /* Uninitialize adapter based on bus type */ | ||
823 | |||
824 | if (dfx_bus_eisa) { | ||
825 | unsigned long base_addr = to_eisa_device(bdev)->base_addr; | ||
826 | |||
827 | /* Disable interrupts at EISA bus interface chip (ESIC) */ | ||
828 | val = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | ||
829 | val &= ~PI_CONFIG_STAT_0_M_INT_ENB; | ||
830 | outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, val); | ||
831 | } | ||
832 | if (dfx_bus_pci) { | ||
833 | /* Disable interrupts at PCI bus interface chip (PFI) */ | ||
834 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, 0); | ||
835 | } | ||
836 | } | ||
837 | |||
838 | |||
839 | /* | ||
840 | * ======================== | ||
841 | * = dfx_bus_config_check = | ||
842 | * ======================== | ||
843 | * | ||
844 | * Overview: | ||
845 | * Checks the configuration (burst size, full-duplex, etc.) If any parameters | ||
846 | * are illegal, then this routine will set new defaults. | ||
847 | * | ||
848 | * Returns: | ||
849 | * None | ||
850 | * | ||
851 | * Arguments: | ||
852 | * bp - pointer to board information | ||
853 | * | ||
854 | * Functional Description: | ||
855 | * For Revision 1 FDDI EISA, Revision 2 or later FDDI EISA with rev E or later | ||
856 | * PDQ, and all FDDI PCI controllers, all values are legal. | ||
857 | * | ||
858 | * Return Codes: | ||
859 | * None | ||
860 | * | ||
861 | * Assumptions: | ||
862 | * dfx_adap_init has NOT been called yet so burst size and other items have | ||
863 | * not been set. | ||
864 | * | ||
865 | * Side Effects: | ||
866 | * None | ||
867 | */ | ||
868 | |||
869 | static void __devinit dfx_bus_config_check(DFX_board_t *bp) | ||
870 | { | ||
871 | struct device __maybe_unused *bdev = bp->bus_dev; | ||
872 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); | ||
873 | int status; /* return code from adapter port control call */ | ||
874 | u32 host_data; /* LW data returned from port control call */ | ||
875 | |||
876 | DBG_printk("In dfx_bus_config_check...\n"); | ||
877 | |||
878 | /* Configuration check only valid for EISA adapter */ | ||
879 | |||
880 | if (dfx_bus_eisa) { | ||
881 | /* | ||
882 | * First check if revision 2 EISA controller. Rev. 1 cards used | ||
883 | * PDQ revision B, so no workaround needed in this case. Rev. 3 | ||
884 | * cards used PDQ revision E, so no workaround needed in this | ||
885 | * case, either. Only Rev. 2 cards used either Rev. D or E | ||
886 | * chips, so we must verify the chip revision on Rev. 2 cards. | ||
887 | */ | ||
888 | if (to_eisa_device(bdev)->id.driver_data == DEFEA_PROD_ID_2) { | ||
889 | /* | ||
890 | * Revision 2 FDDI EISA controller found, | ||
891 | * so let's check PDQ revision of adapter. | ||
892 | */ | ||
893 | status = dfx_hw_port_ctrl_req(bp, | ||
894 | PI_PCTRL_M_SUB_CMD, | ||
895 | PI_SUB_CMD_K_PDQ_REV_GET, | ||
896 | 0, | ||
897 | &host_data); | ||
898 | if ((status != DFX_K_SUCCESS) || (host_data == 2)) | ||
899 | { | ||
900 | /* | ||
901 | * Either we couldn't determine the PDQ revision, or | ||
902 | * we determined that it is at revision D. In either case, | ||
903 | * we need to implement the workaround. | ||
904 | */ | ||
905 | |||
906 | /* Ensure that the burst size is set to 8 longwords or less */ | ||
907 | |||
908 | switch (bp->burst_size) | ||
909 | { | ||
910 | case PI_PDATA_B_DMA_BURST_SIZE_32: | ||
911 | case PI_PDATA_B_DMA_BURST_SIZE_16: | ||
912 | bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_8; | ||
913 | break; | ||
914 | |||
915 | default: | ||
916 | break; | ||
917 | } | ||
918 | |||
919 | /* Ensure that full-duplex mode is not enabled */ | ||
920 | |||
921 | bp->full_duplex_enb = PI_SNMP_K_FALSE; | ||
922 | } | ||
923 | } | ||
924 | } | ||
925 | } | ||
926 | |||
927 | |||
928 | /* | ||
929 | * =================== | ||
930 | * = dfx_driver_init = | ||
931 | * =================== | ||
932 | * | ||
933 | * Overview: | ||
934 | * Initializes remaining adapter board structure information | ||
935 | * and makes sure adapter is in a safe state prior to dfx_open(). | ||
936 | * | ||
937 | * Returns: | ||
938 | * Condition code | ||
939 | * | ||
940 | * Arguments: | ||
941 | * dev - pointer to device information | ||
942 | * print_name - printable device name | ||
943 | * | ||
944 | * Functional Description: | ||
945 | * This function allocates additional resources such as the host memory | ||
946 | * blocks needed by the adapter (eg. descriptor and consumer blocks). | ||
947 | * Remaining bus initialization steps are also completed. The adapter | ||
948 | * is also reset so that it is in the DMA_UNAVAILABLE state. The OS | ||
949 | * must call dfx_open() to open the adapter and bring it on-line. | ||
950 | * | ||
951 | * Return Codes: | ||
952 | * DFX_K_SUCCESS - initialization succeeded | ||
953 | * DFX_K_FAILURE - initialization failed - could not allocate memory | ||
954 | * or read adapter MAC address | ||
955 | * | ||
956 | * Assumptions: | ||
957 | * Memory allocated from pci_alloc_consistent() call is physically | ||
958 | * contiguous, locked memory. | ||
959 | * | ||
960 | * Side Effects: | ||
961 | * Adapter is reset and should be in DMA_UNAVAILABLE state before | ||
962 | * returning from this routine. | ||
963 | */ | ||
964 | |||
965 | static int __devinit dfx_driver_init(struct net_device *dev, | ||
966 | const char *print_name, | ||
967 | resource_size_t bar_start) | ||
968 | { | ||
969 | DFX_board_t *bp = netdev_priv(dev); | ||
970 | struct device *bdev = bp->bus_dev; | ||
971 | int dfx_bus_pci = DFX_BUS_PCI(bdev); | ||
972 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); | ||
973 | int dfx_bus_tc = DFX_BUS_TC(bdev); | ||
974 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | ||
975 | int alloc_size; /* total buffer size needed */ | ||
976 | char *top_v, *curr_v; /* virtual addrs into memory block */ | ||
977 | dma_addr_t top_p, curr_p; /* physical addrs into memory block */ | ||
978 | u32 data; /* host data register value */ | ||
979 | __le32 le32; | ||
980 | char *board_name = NULL; | ||
981 | |||
982 | DBG_printk("In dfx_driver_init...\n"); | ||
983 | |||
984 | /* Initialize bus-specific hardware registers */ | ||
985 | |||
986 | dfx_bus_init(dev); | ||
987 | |||
988 | /* | ||
989 | * Initialize default values for configurable parameters | ||
990 | * | ||
991 | * Note: All of these parameters are ones that a user may | ||
992 | * want to customize. It'd be nice to break these | ||
993 | * out into Space.c or someplace else that's more | ||
994 | * accessible/understandable than this file. | ||
995 | */ | ||
996 | |||
997 | bp->full_duplex_enb = PI_SNMP_K_FALSE; | ||
998 | bp->req_ttrt = 8 * 12500; /* 8ms in 80 nanosec units */ | ||
999 | bp->burst_size = PI_PDATA_B_DMA_BURST_SIZE_DEF; | ||
1000 | bp->rcv_bufs_to_post = RCV_BUFS_DEF; | ||
1001 | |||
1002 | /* | ||
1003 | * Ensure that HW configuration is OK | ||
1004 | * | ||
1005 | * Note: Depending on the hardware revision, we may need to modify | ||
1006 | * some of the configurable parameters to workaround hardware | ||
1007 | * limitations. We'll perform this configuration check AFTER | ||
1008 | * setting the parameters to their default values. | ||
1009 | */ | ||
1010 | |||
1011 | dfx_bus_config_check(bp); | ||
1012 | |||
1013 | /* Disable PDQ interrupts first */ | ||
1014 | |||
1015 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | ||
1016 | |||
1017 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | ||
1018 | |||
1019 | (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); | ||
1020 | |||
1021 | /* Read the factory MAC address from the adapter then save it */ | ||
1022 | |||
1023 | if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_LO, 0, | ||
1024 | &data) != DFX_K_SUCCESS) { | ||
1025 | printk("%s: Could not read adapter factory MAC address!\n", | ||
1026 | print_name); | ||
1027 | return DFX_K_FAILURE; | ||
1028 | } | ||
1029 | le32 = cpu_to_le32(data); | ||
1030 | memcpy(&bp->factory_mac_addr[0], &le32, sizeof(u32)); | ||
1031 | |||
1032 | if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_MLA, PI_PDATA_A_MLA_K_HI, 0, | ||
1033 | &data) != DFX_K_SUCCESS) { | ||
1034 | printk("%s: Could not read adapter factory MAC address!\n", | ||
1035 | print_name); | ||
1036 | return DFX_K_FAILURE; | ||
1037 | } | ||
1038 | le32 = cpu_to_le32(data); | ||
1039 | memcpy(&bp->factory_mac_addr[4], &le32, sizeof(u16)); | ||
1040 | |||
1041 | /* | ||
1042 | * Set current address to factory address | ||
1043 | * | ||
1044 | * Note: Node address override support is handled through | ||
1045 | * dfx_ctl_set_mac_address. | ||
1046 | */ | ||
1047 | |||
1048 | memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); | ||
1049 | if (dfx_bus_tc) | ||
1050 | board_name = "DEFTA"; | ||
1051 | if (dfx_bus_eisa) | ||
1052 | board_name = "DEFEA"; | ||
1053 | if (dfx_bus_pci) | ||
1054 | board_name = "DEFPA"; | ||
1055 | pr_info("%s: %s at %saddr = 0x%llx, IRQ = %d, Hardware addr = %pMF\n", | ||
1056 | print_name, board_name, dfx_use_mmio ? "" : "I/O ", | ||
1057 | (long long)bar_start, dev->irq, dev->dev_addr); | ||
1058 | |||
1059 | /* | ||
1060 | * Get memory for descriptor block, consumer block, and other buffers | ||
1061 | * that need to be DMA read or written to by the adapter. | ||
1062 | */ | ||
1063 | |||
1064 | alloc_size = sizeof(PI_DESCR_BLOCK) + | ||
1065 | PI_CMD_REQ_K_SIZE_MAX + | ||
1066 | PI_CMD_RSP_K_SIZE_MAX + | ||
1067 | #ifndef DYNAMIC_BUFFERS | ||
1068 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | ||
1069 | #endif | ||
1070 | sizeof(PI_CONSUMER_BLOCK) + | ||
1071 | (PI_ALIGN_K_DESC_BLK - 1); | ||
1072 | bp->kmalloced = top_v = dma_alloc_coherent(bp->bus_dev, alloc_size, | ||
1073 | &bp->kmalloced_dma, | ||
1074 | GFP_ATOMIC); | ||
1075 | if (top_v == NULL) { | ||
1076 | printk("%s: Could not allocate memory for host buffers " | ||
1077 | "and structures!\n", print_name); | ||
1078 | return DFX_K_FAILURE; | ||
1079 | } | ||
1080 | memset(top_v, 0, alloc_size); /* zero out memory before continuing */ | ||
1081 | top_p = bp->kmalloced_dma; /* get physical address of buffer */ | ||
1082 | |||
1083 | /* | ||
1084 | * To guarantee the 8K alignment required for the descriptor block, 8K - 1 | ||
1085 | * plus the amount of memory needed was allocated. The physical address | ||
1086 | * is now 8K aligned. By carving up the memory in a specific order, | ||
1087 | * we'll guarantee the alignment requirements for all other structures. | ||
1088 | * | ||
1089 | * Note: If the assumptions change regarding the non-paged, non-cached, | ||
1090 | * physically contiguous nature of the memory block or the address | ||
1091 | * alignments, then we'll need to implement a different algorithm | ||
1092 | * for allocating the needed memory. | ||
1093 | */ | ||
1094 | |||
1095 | curr_p = ALIGN(top_p, PI_ALIGN_K_DESC_BLK); | ||
1096 | curr_v = top_v + (curr_p - top_p); | ||
1097 | |||
1098 | /* Reserve space for descriptor block */ | ||
1099 | |||
1100 | bp->descr_block_virt = (PI_DESCR_BLOCK *) curr_v; | ||
1101 | bp->descr_block_phys = curr_p; | ||
1102 | curr_v += sizeof(PI_DESCR_BLOCK); | ||
1103 | curr_p += sizeof(PI_DESCR_BLOCK); | ||
1104 | |||
1105 | /* Reserve space for command request buffer */ | ||
1106 | |||
1107 | bp->cmd_req_virt = (PI_DMA_CMD_REQ *) curr_v; | ||
1108 | bp->cmd_req_phys = curr_p; | ||
1109 | curr_v += PI_CMD_REQ_K_SIZE_MAX; | ||
1110 | curr_p += PI_CMD_REQ_K_SIZE_MAX; | ||
1111 | |||
1112 | /* Reserve space for command response buffer */ | ||
1113 | |||
1114 | bp->cmd_rsp_virt = (PI_DMA_CMD_RSP *) curr_v; | ||
1115 | bp->cmd_rsp_phys = curr_p; | ||
1116 | curr_v += PI_CMD_RSP_K_SIZE_MAX; | ||
1117 | curr_p += PI_CMD_RSP_K_SIZE_MAX; | ||
1118 | |||
1119 | /* Reserve space for the LLC host receive queue buffers */ | ||
1120 | |||
1121 | bp->rcv_block_virt = curr_v; | ||
1122 | bp->rcv_block_phys = curr_p; | ||
1123 | |||
1124 | #ifndef DYNAMIC_BUFFERS | ||
1125 | curr_v += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); | ||
1126 | curr_p += (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX); | ||
1127 | #endif | ||
1128 | |||
1129 | /* Reserve space for the consumer block */ | ||
1130 | |||
1131 | bp->cons_block_virt = (PI_CONSUMER_BLOCK *) curr_v; | ||
1132 | bp->cons_block_phys = curr_p; | ||
1133 | |||
1134 | /* Display virtual and physical addresses if debug driver */ | ||
1135 | |||
1136 | DBG_printk("%s: Descriptor block virt = %0lX, phys = %0X\n", | ||
1137 | print_name, | ||
1138 | (long)bp->descr_block_virt, bp->descr_block_phys); | ||
1139 | DBG_printk("%s: Command Request buffer virt = %0lX, phys = %0X\n", | ||
1140 | print_name, (long)bp->cmd_req_virt, bp->cmd_req_phys); | ||
1141 | DBG_printk("%s: Command Response buffer virt = %0lX, phys = %0X\n", | ||
1142 | print_name, (long)bp->cmd_rsp_virt, bp->cmd_rsp_phys); | ||
1143 | DBG_printk("%s: Receive buffer block virt = %0lX, phys = %0X\n", | ||
1144 | print_name, (long)bp->rcv_block_virt, bp->rcv_block_phys); | ||
1145 | DBG_printk("%s: Consumer block virt = %0lX, phys = %0X\n", | ||
1146 | print_name, (long)bp->cons_block_virt, bp->cons_block_phys); | ||
1147 | |||
1148 | return DFX_K_SUCCESS; | ||
1149 | } | ||
1150 | |||
1151 | |||
1152 | /* | ||
1153 | * ================= | ||
1154 | * = dfx_adap_init = | ||
1155 | * ================= | ||
1156 | * | ||
1157 | * Overview: | ||
1158 | * Brings the adapter to the link avail/link unavailable state. | ||
1159 | * | ||
1160 | * Returns: | ||
1161 | * Condition code | ||
1162 | * | ||
1163 | * Arguments: | ||
1164 | * bp - pointer to board information | ||
1165 | * get_buffers - non-zero if buffers to be allocated | ||
1166 | * | ||
1167 | * Functional Description: | ||
1168 | * Issues the low-level firmware/hardware calls necessary to bring | ||
1169 | * the adapter up, or to properly reset and restore adapter during | ||
1170 | * run-time. | ||
1171 | * | ||
1172 | * Return Codes: | ||
1173 | * DFX_K_SUCCESS - Adapter brought up successfully | ||
1174 | * DFX_K_FAILURE - Adapter initialization failed | ||
1175 | * | ||
1176 | * Assumptions: | ||
1177 | * bp->reset_type should be set to a valid reset type value before | ||
1178 | * calling this routine. | ||
1179 | * | ||
1180 | * Side Effects: | ||
1181 | * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state | ||
1182 | * upon a successful return of this routine. | ||
1183 | */ | ||
1184 | |||
1185 | static int dfx_adap_init(DFX_board_t *bp, int get_buffers) | ||
1186 | { | ||
1187 | DBG_printk("In dfx_adap_init...\n"); | ||
1188 | |||
1189 | /* Disable PDQ interrupts first */ | ||
1190 | |||
1191 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | ||
1192 | |||
1193 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | ||
1194 | |||
1195 | if (dfx_hw_dma_uninit(bp, bp->reset_type) != DFX_K_SUCCESS) | ||
1196 | { | ||
1197 | printk("%s: Could not uninitialize/reset adapter!\n", bp->dev->name); | ||
1198 | return DFX_K_FAILURE; | ||
1199 | } | ||
1200 | |||
1201 | /* | ||
1202 | * When the PDQ is reset, some false Type 0 interrupts may be pending, | ||
1203 | * so we'll acknowledge all Type 0 interrupts now before continuing. | ||
1204 | */ | ||
1205 | |||
1206 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, PI_HOST_INT_K_ACK_ALL_TYPE_0); | ||
1207 | |||
1208 | /* | ||
1209 | * Clear Type 1 and Type 2 registers before going to DMA_AVAILABLE state | ||
1210 | * | ||
1211 | * Note: We only need to clear host copies of these registers. The PDQ reset | ||
1212 | * takes care of the on-board register values. | ||
1213 | */ | ||
1214 | |||
1215 | bp->cmd_req_reg.lword = 0; | ||
1216 | bp->cmd_rsp_reg.lword = 0; | ||
1217 | bp->rcv_xmt_reg.lword = 0; | ||
1218 | |||
1219 | /* Clear consumer block before going to DMA_AVAILABLE state */ | ||
1220 | |||
1221 | memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); | ||
1222 | |||
1223 | /* Initialize the DMA Burst Size */ | ||
1224 | |||
1225 | if (dfx_hw_port_ctrl_req(bp, | ||
1226 | PI_PCTRL_M_SUB_CMD, | ||
1227 | PI_SUB_CMD_K_BURST_SIZE_SET, | ||
1228 | bp->burst_size, | ||
1229 | NULL) != DFX_K_SUCCESS) | ||
1230 | { | ||
1231 | printk("%s: Could not set adapter burst size!\n", bp->dev->name); | ||
1232 | return DFX_K_FAILURE; | ||
1233 | } | ||
1234 | |||
1235 | /* | ||
1236 | * Set base address of Consumer Block | ||
1237 | * | ||
1238 | * Assumption: 32-bit physical address of consumer block is 64 byte | ||
1239 | * aligned. That is, bits 0-5 of the address must be zero. | ||
1240 | */ | ||
1241 | |||
1242 | if (dfx_hw_port_ctrl_req(bp, | ||
1243 | PI_PCTRL_M_CONS_BLOCK, | ||
1244 | bp->cons_block_phys, | ||
1245 | 0, | ||
1246 | NULL) != DFX_K_SUCCESS) | ||
1247 | { | ||
1248 | printk("%s: Could not set consumer block address!\n", bp->dev->name); | ||
1249 | return DFX_K_FAILURE; | ||
1250 | } | ||
1251 | |||
1252 | /* | ||
1253 | * Set the base address of Descriptor Block and bring adapter | ||
1254 | * to DMA_AVAILABLE state. | ||
1255 | * | ||
1256 | * Note: We also set the literal and data swapping requirements | ||
1257 | * in this command. | ||
1258 | * | ||
1259 | * Assumption: 32-bit physical address of descriptor block | ||
1260 | * is 8Kbyte aligned. | ||
1261 | */ | ||
1262 | if (dfx_hw_port_ctrl_req(bp, PI_PCTRL_M_INIT, | ||
1263 | (u32)(bp->descr_block_phys | | ||
1264 | PI_PDATA_A_INIT_M_BSWAP_INIT), | ||
1265 | 0, NULL) != DFX_K_SUCCESS) { | ||
1266 | printk("%s: Could not set descriptor block address!\n", | ||
1267 | bp->dev->name); | ||
1268 | return DFX_K_FAILURE; | ||
1269 | } | ||
1270 | |||
1271 | /* Set transmit flush timeout value */ | ||
1272 | |||
1273 | bp->cmd_req_virt->cmd_type = PI_CMD_K_CHARS_SET; | ||
1274 | bp->cmd_req_virt->char_set.item[0].item_code = PI_ITEM_K_FLUSH_TIME; | ||
1275 | bp->cmd_req_virt->char_set.item[0].value = 3; /* 3 seconds */ | ||
1276 | bp->cmd_req_virt->char_set.item[0].item_index = 0; | ||
1277 | bp->cmd_req_virt->char_set.item[1].item_code = PI_ITEM_K_EOL; | ||
1278 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | ||
1279 | { | ||
1280 | printk("%s: DMA command request failed!\n", bp->dev->name); | ||
1281 | return DFX_K_FAILURE; | ||
1282 | } | ||
1283 | |||
1284 | /* Set the initial values for eFDXEnable and MACTReq MIB objects */ | ||
1285 | |||
1286 | bp->cmd_req_virt->cmd_type = PI_CMD_K_SNMP_SET; | ||
1287 | bp->cmd_req_virt->snmp_set.item[0].item_code = PI_ITEM_K_FDX_ENB_DIS; | ||
1288 | bp->cmd_req_virt->snmp_set.item[0].value = bp->full_duplex_enb; | ||
1289 | bp->cmd_req_virt->snmp_set.item[0].item_index = 0; | ||
1290 | bp->cmd_req_virt->snmp_set.item[1].item_code = PI_ITEM_K_MAC_T_REQ; | ||
1291 | bp->cmd_req_virt->snmp_set.item[1].value = bp->req_ttrt; | ||
1292 | bp->cmd_req_virt->snmp_set.item[1].item_index = 0; | ||
1293 | bp->cmd_req_virt->snmp_set.item[2].item_code = PI_ITEM_K_EOL; | ||
1294 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | ||
1295 | { | ||
1296 | printk("%s: DMA command request failed!\n", bp->dev->name); | ||
1297 | return DFX_K_FAILURE; | ||
1298 | } | ||
1299 | |||
1300 | /* Initialize adapter CAM */ | ||
1301 | |||
1302 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) | ||
1303 | { | ||
1304 | printk("%s: Adapter CAM update failed!\n", bp->dev->name); | ||
1305 | return DFX_K_FAILURE; | ||
1306 | } | ||
1307 | |||
1308 | /* Initialize adapter filters */ | ||
1309 | |||
1310 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | ||
1311 | { | ||
1312 | printk("%s: Adapter filters update failed!\n", bp->dev->name); | ||
1313 | return DFX_K_FAILURE; | ||
1314 | } | ||
1315 | |||
1316 | /* | ||
1317 | * Remove any existing dynamic buffers (i.e. if the adapter is being | ||
1318 | * reinitialized) | ||
1319 | */ | ||
1320 | |||
1321 | if (get_buffers) | ||
1322 | dfx_rcv_flush(bp); | ||
1323 | |||
1324 | /* Initialize receive descriptor block and produce buffers */ | ||
1325 | |||
1326 | if (dfx_rcv_init(bp, get_buffers)) | ||
1327 | { | ||
1328 | printk("%s: Receive buffer allocation failed\n", bp->dev->name); | ||
1329 | if (get_buffers) | ||
1330 | dfx_rcv_flush(bp); | ||
1331 | return DFX_K_FAILURE; | ||
1332 | } | ||
1333 | |||
1334 | /* Issue START command and bring adapter to LINK_(UN)AVAILABLE state */ | ||
1335 | |||
1336 | bp->cmd_req_virt->cmd_type = PI_CMD_K_START; | ||
1337 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | ||
1338 | { | ||
1339 | printk("%s: Start command failed\n", bp->dev->name); | ||
1340 | if (get_buffers) | ||
1341 | dfx_rcv_flush(bp); | ||
1342 | return DFX_K_FAILURE; | ||
1343 | } | ||
1344 | |||
1345 | /* Initialization succeeded, reenable PDQ interrupts */ | ||
1346 | |||
1347 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_ENABLE_DEF_INTS); | ||
1348 | return DFX_K_SUCCESS; | ||
1349 | } | ||
1350 | |||
1351 | |||
1352 | /* | ||
1353 | * ============ | ||
1354 | * = dfx_open = | ||
1355 | * ============ | ||
1356 | * | ||
1357 | * Overview: | ||
1358 | * Opens the adapter | ||
1359 | * | ||
1360 | * Returns: | ||
1361 | * Condition code | ||
1362 | * | ||
1363 | * Arguments: | ||
1364 | * dev - pointer to device information | ||
1365 | * | ||
1366 | * Functional Description: | ||
1367 | * This function brings the adapter to an operational state. | ||
1368 | * | ||
1369 | * Return Codes: | ||
1370 | * 0 - Adapter was successfully opened | ||
1371 | * -EAGAIN - Could not register IRQ or adapter initialization failed | ||
1372 | * | ||
1373 | * Assumptions: | ||
1374 | * This routine should only be called for a device that was | ||
1375 | * initialized successfully. | ||
1376 | * | ||
1377 | * Side Effects: | ||
1378 | * Adapter should be in LINK_AVAILABLE or LINK_UNAVAILABLE state | ||
1379 | * if the open is successful. | ||
1380 | */ | ||
1381 | |||
1382 | static int dfx_open(struct net_device *dev) | ||
1383 | { | ||
1384 | DFX_board_t *bp = netdev_priv(dev); | ||
1385 | int ret; | ||
1386 | |||
1387 | DBG_printk("In dfx_open...\n"); | ||
1388 | |||
1389 | /* Register IRQ - support shared interrupts by passing device ptr */ | ||
1390 | |||
1391 | ret = request_irq(dev->irq, dfx_interrupt, IRQF_SHARED, dev->name, | ||
1392 | dev); | ||
1393 | if (ret) { | ||
1394 | printk(KERN_ERR "%s: Requested IRQ %d is busy\n", dev->name, dev->irq); | ||
1395 | return ret; | ||
1396 | } | ||
1397 | |||
1398 | /* | ||
1399 | * Set current address to factory MAC address | ||
1400 | * | ||
1401 | * Note: We've already done this step in dfx_driver_init. | ||
1402 | * However, it's possible that a user has set a node | ||
1403 | * address override, then closed and reopened the | ||
1404 | * adapter. Unless we reset the device address field | ||
1405 | * now, we'll continue to use the existing modified | ||
1406 | * address. | ||
1407 | */ | ||
1408 | |||
1409 | memcpy(dev->dev_addr, bp->factory_mac_addr, FDDI_K_ALEN); | ||
1410 | |||
1411 | /* Clear local unicast/multicast address tables and counts */ | ||
1412 | |||
1413 | memset(bp->uc_table, 0, sizeof(bp->uc_table)); | ||
1414 | memset(bp->mc_table, 0, sizeof(bp->mc_table)); | ||
1415 | bp->uc_count = 0; | ||
1416 | bp->mc_count = 0; | ||
1417 | |||
1418 | /* Disable promiscuous filter settings */ | ||
1419 | |||
1420 | bp->ind_group_prom = PI_FSTATE_K_BLOCK; | ||
1421 | bp->group_prom = PI_FSTATE_K_BLOCK; | ||
1422 | |||
1423 | spin_lock_init(&bp->lock); | ||
1424 | |||
1425 | /* Reset and initialize adapter */ | ||
1426 | |||
1427 | bp->reset_type = PI_PDATA_A_RESET_M_SKIP_ST; /* skip self-test */ | ||
1428 | if (dfx_adap_init(bp, 1) != DFX_K_SUCCESS) | ||
1429 | { | ||
1430 | printk(KERN_ERR "%s: Adapter open failed!\n", dev->name); | ||
1431 | free_irq(dev->irq, dev); | ||
1432 | return -EAGAIN; | ||
1433 | } | ||
1434 | |||
1435 | /* Set device structure info */ | ||
1436 | netif_start_queue(dev); | ||
1437 | return 0; | ||
1438 | } | ||
1439 | |||
1440 | |||
1441 | /* | ||
1442 | * ============= | ||
1443 | * = dfx_close = | ||
1444 | * ============= | ||
1445 | * | ||
1446 | * Overview: | ||
1447 | * Closes the device/module. | ||
1448 | * | ||
1449 | * Returns: | ||
1450 | * Condition code | ||
1451 | * | ||
1452 | * Arguments: | ||
1453 | * dev - pointer to device information | ||
1454 | * | ||
1455 | * Functional Description: | ||
1456 | * This routine closes the adapter and brings it to a safe state. | ||
1457 | * The interrupt service routine is deregistered with the OS. | ||
1458 | * The adapter can be opened again with another call to dfx_open(). | ||
1459 | * | ||
1460 | * Return Codes: | ||
1461 | * Always return 0. | ||
1462 | * | ||
1463 | * Assumptions: | ||
1464 | * No further requests for this adapter are made after this routine is | ||
1465 | * called. dfx_open() can be called to reset and reinitialize the | ||
1466 | * adapter. | ||
1467 | * | ||
1468 | * Side Effects: | ||
1469 | * Adapter should be in DMA_UNAVAILABLE state upon completion of this | ||
1470 | * routine. | ||
1471 | */ | ||
1472 | |||
1473 | static int dfx_close(struct net_device *dev) | ||
1474 | { | ||
1475 | DFX_board_t *bp = netdev_priv(dev); | ||
1476 | |||
1477 | DBG_printk("In dfx_close...\n"); | ||
1478 | |||
1479 | /* Disable PDQ interrupts first */ | ||
1480 | |||
1481 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | ||
1482 | |||
1483 | /* Place adapter in DMA_UNAVAILABLE state by resetting adapter */ | ||
1484 | |||
1485 | (void) dfx_hw_dma_uninit(bp, PI_PDATA_A_RESET_M_SKIP_ST); | ||
1486 | |||
1487 | /* | ||
1488 | * Flush any pending transmit buffers | ||
1489 | * | ||
1490 | * Note: It's important that we flush the transmit buffers | ||
1491 | * BEFORE we clear our copy of the Type 2 register. | ||
1492 | * Otherwise, we'll have no idea how many buffers | ||
1493 | * we need to free. | ||
1494 | */ | ||
1495 | |||
1496 | dfx_xmt_flush(bp); | ||
1497 | |||
1498 | /* | ||
1499 | * Clear Type 1 and Type 2 registers after adapter reset | ||
1500 | * | ||
1501 | * Note: Even though we're closing the adapter, it's | ||
1502 | * possible that an interrupt will occur after | ||
1503 | * dfx_close is called. Without some assurance to | ||
1504 | * the contrary we want to make sure that we don't | ||
1505 | * process receive and transmit LLC frames and update | ||
1506 | * the Type 2 register with bad information. | ||
1507 | */ | ||
1508 | |||
1509 | bp->cmd_req_reg.lword = 0; | ||
1510 | bp->cmd_rsp_reg.lword = 0; | ||
1511 | bp->rcv_xmt_reg.lword = 0; | ||
1512 | |||
1513 | /* Clear consumer block for the same reason given above */ | ||
1514 | |||
1515 | memset(bp->cons_block_virt, 0, sizeof(PI_CONSUMER_BLOCK)); | ||
1516 | |||
1517 | /* Release all dynamically allocate skb in the receive ring. */ | ||
1518 | |||
1519 | dfx_rcv_flush(bp); | ||
1520 | |||
1521 | /* Clear device structure flags */ | ||
1522 | |||
1523 | netif_stop_queue(dev); | ||
1524 | |||
1525 | /* Deregister (free) IRQ */ | ||
1526 | |||
1527 | free_irq(dev->irq, dev); | ||
1528 | |||
1529 | return 0; | ||
1530 | } | ||
1531 | |||
1532 | |||
1533 | /* | ||
1534 | * ====================== | ||
1535 | * = dfx_int_pr_halt_id = | ||
1536 | * ====================== | ||
1537 | * | ||
1538 | * Overview: | ||
1539 | * Displays halt id's in string form. | ||
1540 | * | ||
1541 | * Returns: | ||
1542 | * None | ||
1543 | * | ||
1544 | * Arguments: | ||
1545 | * bp - pointer to board information | ||
1546 | * | ||
1547 | * Functional Description: | ||
1548 | * Determine current halt id and display appropriate string. | ||
1549 | * | ||
1550 | * Return Codes: | ||
1551 | * None | ||
1552 | * | ||
1553 | * Assumptions: | ||
1554 | * None | ||
1555 | * | ||
1556 | * Side Effects: | ||
1557 | * None | ||
1558 | */ | ||
1559 | |||
1560 | static void dfx_int_pr_halt_id(DFX_board_t *bp) | ||
1561 | { | ||
1562 | PI_UINT32 port_status; /* PDQ port status register value */ | ||
1563 | PI_UINT32 halt_id; /* PDQ port status halt ID */ | ||
1564 | |||
1565 | /* Read the latest port status */ | ||
1566 | |||
1567 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | ||
1568 | |||
1569 | /* Display halt state transition information */ | ||
1570 | |||
1571 | halt_id = (port_status & PI_PSTATUS_M_HALT_ID) >> PI_PSTATUS_V_HALT_ID; | ||
1572 | switch (halt_id) | ||
1573 | { | ||
1574 | case PI_HALT_ID_K_SELFTEST_TIMEOUT: | ||
1575 | printk("%s: Halt ID: Selftest Timeout\n", bp->dev->name); | ||
1576 | break; | ||
1577 | |||
1578 | case PI_HALT_ID_K_PARITY_ERROR: | ||
1579 | printk("%s: Halt ID: Host Bus Parity Error\n", bp->dev->name); | ||
1580 | break; | ||
1581 | |||
1582 | case PI_HALT_ID_K_HOST_DIR_HALT: | ||
1583 | printk("%s: Halt ID: Host-Directed Halt\n", bp->dev->name); | ||
1584 | break; | ||
1585 | |||
1586 | case PI_HALT_ID_K_SW_FAULT: | ||
1587 | printk("%s: Halt ID: Adapter Software Fault\n", bp->dev->name); | ||
1588 | break; | ||
1589 | |||
1590 | case PI_HALT_ID_K_HW_FAULT: | ||
1591 | printk("%s: Halt ID: Adapter Hardware Fault\n", bp->dev->name); | ||
1592 | break; | ||
1593 | |||
1594 | case PI_HALT_ID_K_PC_TRACE: | ||
1595 | printk("%s: Halt ID: FDDI Network PC Trace Path Test\n", bp->dev->name); | ||
1596 | break; | ||
1597 | |||
1598 | case PI_HALT_ID_K_DMA_ERROR: | ||
1599 | printk("%s: Halt ID: Adapter DMA Error\n", bp->dev->name); | ||
1600 | break; | ||
1601 | |||
1602 | case PI_HALT_ID_K_IMAGE_CRC_ERROR: | ||
1603 | printk("%s: Halt ID: Firmware Image CRC Error\n", bp->dev->name); | ||
1604 | break; | ||
1605 | |||
1606 | case PI_HALT_ID_K_BUS_EXCEPTION: | ||
1607 | printk("%s: Halt ID: 68000 Bus Exception\n", bp->dev->name); | ||
1608 | break; | ||
1609 | |||
1610 | default: | ||
1611 | printk("%s: Halt ID: Unknown (code = %X)\n", bp->dev->name, halt_id); | ||
1612 | break; | ||
1613 | } | ||
1614 | } | ||
1615 | |||
1616 | |||
1617 | /* | ||
1618 | * ========================== | ||
1619 | * = dfx_int_type_0_process = | ||
1620 | * ========================== | ||
1621 | * | ||
1622 | * Overview: | ||
1623 | * Processes Type 0 interrupts. | ||
1624 | * | ||
1625 | * Returns: | ||
1626 | * None | ||
1627 | * | ||
1628 | * Arguments: | ||
1629 | * bp - pointer to board information | ||
1630 | * | ||
1631 | * Functional Description: | ||
1632 | * Processes all enabled Type 0 interrupts. If the reason for the interrupt | ||
1633 | * is a serious fault on the adapter, then an error message is displayed | ||
1634 | * and the adapter is reset. | ||
1635 | * | ||
1636 | * One tricky potential timing window is the rapid succession of "link avail" | ||
1637 | * "link unavail" state change interrupts. The acknowledgement of the Type 0 | ||
1638 | * interrupt must be done before reading the state from the Port Status | ||
1639 | * register. This is true because a state change could occur after reading | ||
1640 | * the data, but before acknowledging the interrupt. If this state change | ||
1641 | * does happen, it would be lost because the driver is using the old state, | ||
1642 | * and it will never know about the new state because it subsequently | ||
1643 | * acknowledges the state change interrupt. | ||
1644 | * | ||
1645 | * INCORRECT CORRECT | ||
1646 | * read type 0 int reasons read type 0 int reasons | ||
1647 | * read adapter state ack type 0 interrupts | ||
1648 | * ack type 0 interrupts read adapter state | ||
1649 | * ... process interrupt ... ... process interrupt ... | ||
1650 | * | ||
1651 | * Return Codes: | ||
1652 | * None | ||
1653 | * | ||
1654 | * Assumptions: | ||
1655 | * None | ||
1656 | * | ||
1657 | * Side Effects: | ||
1658 | * An adapter reset may occur if the adapter has any Type 0 error interrupts | ||
1659 | * or if the port status indicates that the adapter is halted. The driver | ||
1660 | * is responsible for reinitializing the adapter with the current CAM | ||
1661 | * contents and adapter filter settings. | ||
1662 | */ | ||
1663 | |||
1664 | static void dfx_int_type_0_process(DFX_board_t *bp) | ||
1665 | |||
1666 | { | ||
1667 | PI_UINT32 type_0_status; /* Host Interrupt Type 0 register */ | ||
1668 | PI_UINT32 state; /* current adap state (from port status) */ | ||
1669 | |||
1670 | /* | ||
1671 | * Read host interrupt Type 0 register to determine which Type 0 | ||
1672 | * interrupts are pending. Immediately write it back out to clear | ||
1673 | * those interrupts. | ||
1674 | */ | ||
1675 | |||
1676 | dfx_port_read_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, &type_0_status); | ||
1677 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_0_STATUS, type_0_status); | ||
1678 | |||
1679 | /* Check for Type 0 error interrupts */ | ||
1680 | |||
1681 | if (type_0_status & (PI_TYPE_0_STAT_M_NXM | | ||
1682 | PI_TYPE_0_STAT_M_PM_PAR_ERR | | ||
1683 | PI_TYPE_0_STAT_M_BUS_PAR_ERR)) | ||
1684 | { | ||
1685 | /* Check for Non-Existent Memory error */ | ||
1686 | |||
1687 | if (type_0_status & PI_TYPE_0_STAT_M_NXM) | ||
1688 | printk("%s: Non-Existent Memory Access Error\n", bp->dev->name); | ||
1689 | |||
1690 | /* Check for Packet Memory Parity error */ | ||
1691 | |||
1692 | if (type_0_status & PI_TYPE_0_STAT_M_PM_PAR_ERR) | ||
1693 | printk("%s: Packet Memory Parity Error\n", bp->dev->name); | ||
1694 | |||
1695 | /* Check for Host Bus Parity error */ | ||
1696 | |||
1697 | if (type_0_status & PI_TYPE_0_STAT_M_BUS_PAR_ERR) | ||
1698 | printk("%s: Host Bus Parity Error\n", bp->dev->name); | ||
1699 | |||
1700 | /* Reset adapter and bring it back on-line */ | ||
1701 | |||
1702 | bp->link_available = PI_K_FALSE; /* link is no longer available */ | ||
1703 | bp->reset_type = 0; /* rerun on-board diagnostics */ | ||
1704 | printk("%s: Resetting adapter...\n", bp->dev->name); | ||
1705 | if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) | ||
1706 | { | ||
1707 | printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); | ||
1708 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | ||
1709 | return; | ||
1710 | } | ||
1711 | printk("%s: Adapter reset successful!\n", bp->dev->name); | ||
1712 | return; | ||
1713 | } | ||
1714 | |||
1715 | /* Check for transmit flush interrupt */ | ||
1716 | |||
1717 | if (type_0_status & PI_TYPE_0_STAT_M_XMT_FLUSH) | ||
1718 | { | ||
1719 | /* Flush any pending xmt's and acknowledge the flush interrupt */ | ||
1720 | |||
1721 | bp->link_available = PI_K_FALSE; /* link is no longer available */ | ||
1722 | dfx_xmt_flush(bp); /* flush any outstanding packets */ | ||
1723 | (void) dfx_hw_port_ctrl_req(bp, | ||
1724 | PI_PCTRL_M_XMT_DATA_FLUSH_DONE, | ||
1725 | 0, | ||
1726 | 0, | ||
1727 | NULL); | ||
1728 | } | ||
1729 | |||
1730 | /* Check for adapter state change */ | ||
1731 | |||
1732 | if (type_0_status & PI_TYPE_0_STAT_M_STATE_CHANGE) | ||
1733 | { | ||
1734 | /* Get latest adapter state */ | ||
1735 | |||
1736 | state = dfx_hw_adap_state_rd(bp); /* get adapter state */ | ||
1737 | if (state == PI_STATE_K_HALTED) | ||
1738 | { | ||
1739 | /* | ||
1740 | * Adapter has transitioned to HALTED state, try to reset | ||
1741 | * adapter to bring it back on-line. If reset fails, | ||
1742 | * leave the adapter in the broken state. | ||
1743 | */ | ||
1744 | |||
1745 | printk("%s: Controller has transitioned to HALTED state!\n", bp->dev->name); | ||
1746 | dfx_int_pr_halt_id(bp); /* display halt id as string */ | ||
1747 | |||
1748 | /* Reset adapter and bring it back on-line */ | ||
1749 | |||
1750 | bp->link_available = PI_K_FALSE; /* link is no longer available */ | ||
1751 | bp->reset_type = 0; /* rerun on-board diagnostics */ | ||
1752 | printk("%s: Resetting adapter...\n", bp->dev->name); | ||
1753 | if (dfx_adap_init(bp, 0) != DFX_K_SUCCESS) | ||
1754 | { | ||
1755 | printk("%s: Adapter reset failed! Disabling adapter interrupts.\n", bp->dev->name); | ||
1756 | dfx_port_write_long(bp, PI_PDQ_K_REG_HOST_INT_ENB, PI_HOST_INT_K_DISABLE_ALL_INTS); | ||
1757 | return; | ||
1758 | } | ||
1759 | printk("%s: Adapter reset successful!\n", bp->dev->name); | ||
1760 | } | ||
1761 | else if (state == PI_STATE_K_LINK_AVAIL) | ||
1762 | { | ||
1763 | bp->link_available = PI_K_TRUE; /* set link available flag */ | ||
1764 | } | ||
1765 | } | ||
1766 | } | ||
1767 | |||
1768 | |||
1769 | /* | ||
1770 | * ================== | ||
1771 | * = dfx_int_common = | ||
1772 | * ================== | ||
1773 | * | ||
1774 | * Overview: | ||
1775 | * Interrupt service routine (ISR) | ||
1776 | * | ||
1777 | * Returns: | ||
1778 | * None | ||
1779 | * | ||
1780 | * Arguments: | ||
1781 | * bp - pointer to board information | ||
1782 | * | ||
1783 | * Functional Description: | ||
1784 | * This is the ISR which processes incoming adapter interrupts. | ||
1785 | * | ||
1786 | * Return Codes: | ||
1787 | * None | ||
1788 | * | ||
1789 | * Assumptions: | ||
1790 | * This routine assumes PDQ interrupts have not been disabled. | ||
1791 | * When interrupts are disabled at the PDQ, the Port Status register | ||
1792 | * is automatically cleared. This routine uses the Port Status | ||
1793 | * register value to determine whether a Type 0 interrupt occurred, | ||
1794 | * so it's important that adapter interrupts are not normally | ||
1795 | * enabled/disabled at the PDQ. | ||
1796 | * | ||
1797 | * It's vital that this routine is NOT reentered for the | ||
1798 | * same board and that the OS is not in another section of | ||
1799 | * code (eg. dfx_xmt_queue_pkt) for the same board on a | ||
1800 | * different thread. | ||
1801 | * | ||
1802 | * Side Effects: | ||
1803 | * Pending interrupts are serviced. Depending on the type of | ||
1804 | * interrupt, acknowledging and clearing the interrupt at the | ||
1805 | * PDQ involves writing a register to clear the interrupt bit | ||
1806 | * or updating completion indices. | ||
1807 | */ | ||
1808 | |||
1809 | static void dfx_int_common(struct net_device *dev) | ||
1810 | { | ||
1811 | DFX_board_t *bp = netdev_priv(dev); | ||
1812 | PI_UINT32 port_status; /* Port Status register */ | ||
1813 | |||
1814 | /* Process xmt interrupts - frequent case, so always call this routine */ | ||
1815 | |||
1816 | if(dfx_xmt_done(bp)) /* free consumed xmt packets */ | ||
1817 | netif_wake_queue(dev); | ||
1818 | |||
1819 | /* Process rcv interrupts - frequent case, so always call this routine */ | ||
1820 | |||
1821 | dfx_rcv_queue_process(bp); /* service received LLC frames */ | ||
1822 | |||
1823 | /* | ||
1824 | * Transmit and receive producer and completion indices are updated on the | ||
1825 | * adapter by writing to the Type 2 Producer register. Since the frequent | ||
1826 | * case is that we'll be processing either LLC transmit or receive buffers, | ||
1827 | * we'll optimize I/O writes by doing a single register write here. | ||
1828 | */ | ||
1829 | |||
1830 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | ||
1831 | |||
1832 | /* Read PDQ Port Status register to find out which interrupts need processing */ | ||
1833 | |||
1834 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | ||
1835 | |||
1836 | /* Process Type 0 interrupts (if any) - infrequent, so only call when needed */ | ||
1837 | |||
1838 | if (port_status & PI_PSTATUS_M_TYPE_0_PENDING) | ||
1839 | dfx_int_type_0_process(bp); /* process Type 0 interrupts */ | ||
1840 | } | ||
1841 | |||
1842 | |||
1843 | /* | ||
1844 | * ================= | ||
1845 | * = dfx_interrupt = | ||
1846 | * ================= | ||
1847 | * | ||
1848 | * Overview: | ||
1849 | * Interrupt processing routine | ||
1850 | * | ||
1851 | * Returns: | ||
1852 | * Whether a valid interrupt was seen. | ||
1853 | * | ||
1854 | * Arguments: | ||
1855 | * irq - interrupt vector | ||
1856 | * dev_id - pointer to device information | ||
1857 | * | ||
1858 | * Functional Description: | ||
1859 | * This routine calls the interrupt processing routine for this adapter. It | ||
1860 | * disables and reenables adapter interrupts, as appropriate. We can support | ||
1861 | * shared interrupts since the incoming dev_id pointer provides our device | ||
1862 | * structure context. | ||
1863 | * | ||
1864 | * Return Codes: | ||
1865 | * IRQ_HANDLED - an IRQ was handled. | ||
1866 | * IRQ_NONE - no IRQ was handled. | ||
1867 | * | ||
1868 | * Assumptions: | ||
1869 | * The interrupt acknowledgement at the hardware level (eg. ACKing the PIC | ||
1870 | * on Intel-based systems) is done by the operating system outside this | ||
1871 | * routine. | ||
1872 | * | ||
1873 | * System interrupts are enabled through this call. | ||
1874 | * | ||
1875 | * Side Effects: | ||
1876 | * Interrupts are disabled, then reenabled at the adapter. | ||
1877 | */ | ||
1878 | |||
1879 | static irqreturn_t dfx_interrupt(int irq, void *dev_id) | ||
1880 | { | ||
1881 | struct net_device *dev = dev_id; | ||
1882 | DFX_board_t *bp = netdev_priv(dev); | ||
1883 | struct device *bdev = bp->bus_dev; | ||
1884 | int dfx_bus_pci = DFX_BUS_PCI(bdev); | ||
1885 | int dfx_bus_eisa = DFX_BUS_EISA(bdev); | ||
1886 | int dfx_bus_tc = DFX_BUS_TC(bdev); | ||
1887 | |||
1888 | /* Service adapter interrupts */ | ||
1889 | |||
1890 | if (dfx_bus_pci) { | ||
1891 | u32 status; | ||
1892 | |||
1893 | dfx_port_read_long(bp, PFI_K_REG_STATUS, &status); | ||
1894 | if (!(status & PFI_STATUS_M_PDQ_INT)) | ||
1895 | return IRQ_NONE; | ||
1896 | |||
1897 | spin_lock(&bp->lock); | ||
1898 | |||
1899 | /* Disable PDQ-PFI interrupts at PFI */ | ||
1900 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, | ||
1901 | PFI_MODE_M_DMA_ENB); | ||
1902 | |||
1903 | /* Call interrupt service routine for this adapter */ | ||
1904 | dfx_int_common(dev); | ||
1905 | |||
1906 | /* Clear PDQ interrupt status bit and reenable interrupts */ | ||
1907 | dfx_port_write_long(bp, PFI_K_REG_STATUS, | ||
1908 | PFI_STATUS_M_PDQ_INT); | ||
1909 | dfx_port_write_long(bp, PFI_K_REG_MODE_CTRL, | ||
1910 | (PFI_MODE_M_PDQ_INT_ENB | | ||
1911 | PFI_MODE_M_DMA_ENB)); | ||
1912 | |||
1913 | spin_unlock(&bp->lock); | ||
1914 | } | ||
1915 | if (dfx_bus_eisa) { | ||
1916 | unsigned long base_addr = to_eisa_device(bdev)->base_addr; | ||
1917 | u8 status; | ||
1918 | |||
1919 | status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | ||
1920 | if (!(status & PI_CONFIG_STAT_0_M_PEND)) | ||
1921 | return IRQ_NONE; | ||
1922 | |||
1923 | spin_lock(&bp->lock); | ||
1924 | |||
1925 | /* Disable interrupts at the ESIC */ | ||
1926 | status &= ~PI_CONFIG_STAT_0_M_INT_ENB; | ||
1927 | outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); | ||
1928 | |||
1929 | /* Call interrupt service routine for this adapter */ | ||
1930 | dfx_int_common(dev); | ||
1931 | |||
1932 | /* Reenable interrupts at the ESIC */ | ||
1933 | status = inb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0); | ||
1934 | status |= PI_CONFIG_STAT_0_M_INT_ENB; | ||
1935 | outb(base_addr + PI_ESIC_K_IO_CONFIG_STAT_0, status); | ||
1936 | |||
1937 | spin_unlock(&bp->lock); | ||
1938 | } | ||
1939 | if (dfx_bus_tc) { | ||
1940 | u32 status; | ||
1941 | |||
1942 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &status); | ||
1943 | if (!(status & (PI_PSTATUS_M_RCV_DATA_PENDING | | ||
1944 | PI_PSTATUS_M_XMT_DATA_PENDING | | ||
1945 | PI_PSTATUS_M_SMT_HOST_PENDING | | ||
1946 | PI_PSTATUS_M_UNSOL_PENDING | | ||
1947 | PI_PSTATUS_M_CMD_RSP_PENDING | | ||
1948 | PI_PSTATUS_M_CMD_REQ_PENDING | | ||
1949 | PI_PSTATUS_M_TYPE_0_PENDING))) | ||
1950 | return IRQ_NONE; | ||
1951 | |||
1952 | spin_lock(&bp->lock); | ||
1953 | |||
1954 | /* Call interrupt service routine for this adapter */ | ||
1955 | dfx_int_common(dev); | ||
1956 | |||
1957 | spin_unlock(&bp->lock); | ||
1958 | } | ||
1959 | |||
1960 | return IRQ_HANDLED; | ||
1961 | } | ||
1962 | |||
1963 | |||
1964 | /* | ||
1965 | * ===================== | ||
1966 | * = dfx_ctl_get_stats = | ||
1967 | * ===================== | ||
1968 | * | ||
1969 | * Overview: | ||
1970 | * Get statistics for FDDI adapter | ||
1971 | * | ||
1972 | * Returns: | ||
1973 | * Pointer to FDDI statistics structure | ||
1974 | * | ||
1975 | * Arguments: | ||
1976 | * dev - pointer to device information | ||
1977 | * | ||
1978 | * Functional Description: | ||
1979 | * Gets current MIB objects from adapter, then | ||
1980 | * returns FDDI statistics structure as defined | ||
1981 | * in if_fddi.h. | ||
1982 | * | ||
1983 | * Note: Since the FDDI statistics structure is | ||
1984 | * still new and the device structure doesn't | ||
1985 | * have an FDDI-specific get statistics handler, | ||
1986 | * we'll return the FDDI statistics structure as | ||
1987 | * a pointer to an Ethernet statistics structure. | ||
1988 | * That way, at least the first part of the statistics | ||
1989 | * structure can be decoded properly, and it allows | ||
1990 | * "smart" applications to perform a second cast to | ||
1991 | * decode the FDDI-specific statistics. | ||
1992 | * | ||
1993 | * We'll have to pay attention to this routine as the | ||
1994 | * device structure becomes more mature and LAN media | ||
1995 | * independent. | ||
1996 | * | ||
1997 | * Return Codes: | ||
1998 | * None | ||
1999 | * | ||
2000 | * Assumptions: | ||
2001 | * None | ||
2002 | * | ||
2003 | * Side Effects: | ||
2004 | * None | ||
2005 | */ | ||
2006 | |||
2007 | static struct net_device_stats *dfx_ctl_get_stats(struct net_device *dev) | ||
2008 | { | ||
2009 | DFX_board_t *bp = netdev_priv(dev); | ||
2010 | |||
2011 | /* Fill the bp->stats structure with driver-maintained counters */ | ||
2012 | |||
2013 | bp->stats.gen.rx_packets = bp->rcv_total_frames; | ||
2014 | bp->stats.gen.tx_packets = bp->xmt_total_frames; | ||
2015 | bp->stats.gen.rx_bytes = bp->rcv_total_bytes; | ||
2016 | bp->stats.gen.tx_bytes = bp->xmt_total_bytes; | ||
2017 | bp->stats.gen.rx_errors = bp->rcv_crc_errors + | ||
2018 | bp->rcv_frame_status_errors + | ||
2019 | bp->rcv_length_errors; | ||
2020 | bp->stats.gen.tx_errors = bp->xmt_length_errors; | ||
2021 | bp->stats.gen.rx_dropped = bp->rcv_discards; | ||
2022 | bp->stats.gen.tx_dropped = bp->xmt_discards; | ||
2023 | bp->stats.gen.multicast = bp->rcv_multicast_frames; | ||
2024 | bp->stats.gen.collisions = 0; /* always zero (0) for FDDI */ | ||
2025 | |||
2026 | /* Get FDDI SMT MIB objects */ | ||
2027 | |||
2028 | bp->cmd_req_virt->cmd_type = PI_CMD_K_SMT_MIB_GET; | ||
2029 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | ||
2030 | return (struct net_device_stats *)&bp->stats; | ||
2031 | |||
2032 | /* Fill the bp->stats structure with the SMT MIB object values */ | ||
2033 | |||
2034 | memcpy(bp->stats.smt_station_id, &bp->cmd_rsp_virt->smt_mib_get.smt_station_id, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_station_id)); | ||
2035 | bp->stats.smt_op_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_op_version_id; | ||
2036 | bp->stats.smt_hi_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_hi_version_id; | ||
2037 | bp->stats.smt_lo_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_lo_version_id; | ||
2038 | memcpy(bp->stats.smt_user_data, &bp->cmd_rsp_virt->smt_mib_get.smt_user_data, sizeof(bp->cmd_rsp_virt->smt_mib_get.smt_user_data)); | ||
2039 | bp->stats.smt_mib_version_id = bp->cmd_rsp_virt->smt_mib_get.smt_mib_version_id; | ||
2040 | bp->stats.smt_mac_cts = bp->cmd_rsp_virt->smt_mib_get.smt_mac_ct; | ||
2041 | bp->stats.smt_non_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_non_master_ct; | ||
2042 | bp->stats.smt_master_cts = bp->cmd_rsp_virt->smt_mib_get.smt_master_ct; | ||
2043 | bp->stats.smt_available_paths = bp->cmd_rsp_virt->smt_mib_get.smt_available_paths; | ||
2044 | bp->stats.smt_config_capabilities = bp->cmd_rsp_virt->smt_mib_get.smt_config_capabilities; | ||
2045 | bp->stats.smt_config_policy = bp->cmd_rsp_virt->smt_mib_get.smt_config_policy; | ||
2046 | bp->stats.smt_connection_policy = bp->cmd_rsp_virt->smt_mib_get.smt_connection_policy; | ||
2047 | bp->stats.smt_t_notify = bp->cmd_rsp_virt->smt_mib_get.smt_t_notify; | ||
2048 | bp->stats.smt_stat_rpt_policy = bp->cmd_rsp_virt->smt_mib_get.smt_stat_rpt_policy; | ||
2049 | bp->stats.smt_trace_max_expiration = bp->cmd_rsp_virt->smt_mib_get.smt_trace_max_expiration; | ||
2050 | bp->stats.smt_bypass_present = bp->cmd_rsp_virt->smt_mib_get.smt_bypass_present; | ||
2051 | bp->stats.smt_ecm_state = bp->cmd_rsp_virt->smt_mib_get.smt_ecm_state; | ||
2052 | bp->stats.smt_cf_state = bp->cmd_rsp_virt->smt_mib_get.smt_cf_state; | ||
2053 | bp->stats.smt_remote_disconnect_flag = bp->cmd_rsp_virt->smt_mib_get.smt_remote_disconnect_flag; | ||
2054 | bp->stats.smt_station_status = bp->cmd_rsp_virt->smt_mib_get.smt_station_status; | ||
2055 | bp->stats.smt_peer_wrap_flag = bp->cmd_rsp_virt->smt_mib_get.smt_peer_wrap_flag; | ||
2056 | bp->stats.smt_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_msg_time_stamp.ls; | ||
2057 | bp->stats.smt_transition_time_stamp = bp->cmd_rsp_virt->smt_mib_get.smt_transition_time_stamp.ls; | ||
2058 | bp->stats.mac_frame_status_functions = bp->cmd_rsp_virt->smt_mib_get.mac_frame_status_functions; | ||
2059 | bp->stats.mac_t_max_capability = bp->cmd_rsp_virt->smt_mib_get.mac_t_max_capability; | ||
2060 | bp->stats.mac_tvx_capability = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_capability; | ||
2061 | bp->stats.mac_available_paths = bp->cmd_rsp_virt->smt_mib_get.mac_available_paths; | ||
2062 | bp->stats.mac_current_path = bp->cmd_rsp_virt->smt_mib_get.mac_current_path; | ||
2063 | memcpy(bp->stats.mac_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_upstream_nbr, FDDI_K_ALEN); | ||
2064 | memcpy(bp->stats.mac_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_downstream_nbr, FDDI_K_ALEN); | ||
2065 | memcpy(bp->stats.mac_old_upstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_upstream_nbr, FDDI_K_ALEN); | ||
2066 | memcpy(bp->stats.mac_old_downstream_nbr, &bp->cmd_rsp_virt->smt_mib_get.mac_old_downstream_nbr, FDDI_K_ALEN); | ||
2067 | bp->stats.mac_dup_address_test = bp->cmd_rsp_virt->smt_mib_get.mac_dup_address_test; | ||
2068 | bp->stats.mac_requested_paths = bp->cmd_rsp_virt->smt_mib_get.mac_requested_paths; | ||
2069 | bp->stats.mac_downstream_port_type = bp->cmd_rsp_virt->smt_mib_get.mac_downstream_port_type; | ||
2070 | memcpy(bp->stats.mac_smt_address, &bp->cmd_rsp_virt->smt_mib_get.mac_smt_address, FDDI_K_ALEN); | ||
2071 | bp->stats.mac_t_req = bp->cmd_rsp_virt->smt_mib_get.mac_t_req; | ||
2072 | bp->stats.mac_t_neg = bp->cmd_rsp_virt->smt_mib_get.mac_t_neg; | ||
2073 | bp->stats.mac_t_max = bp->cmd_rsp_virt->smt_mib_get.mac_t_max; | ||
2074 | bp->stats.mac_tvx_value = bp->cmd_rsp_virt->smt_mib_get.mac_tvx_value; | ||
2075 | bp->stats.mac_frame_error_threshold = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_threshold; | ||
2076 | bp->stats.mac_frame_error_ratio = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_ratio; | ||
2077 | bp->stats.mac_rmt_state = bp->cmd_rsp_virt->smt_mib_get.mac_rmt_state; | ||
2078 | bp->stats.mac_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_da_flag; | ||
2079 | bp->stats.mac_una_da_flag = bp->cmd_rsp_virt->smt_mib_get.mac_unda_flag; | ||
2080 | bp->stats.mac_frame_error_flag = bp->cmd_rsp_virt->smt_mib_get.mac_frame_error_flag; | ||
2081 | bp->stats.mac_ma_unitdata_available = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_available; | ||
2082 | bp->stats.mac_hardware_present = bp->cmd_rsp_virt->smt_mib_get.mac_hardware_present; | ||
2083 | bp->stats.mac_ma_unitdata_enable = bp->cmd_rsp_virt->smt_mib_get.mac_ma_unitdata_enable; | ||
2084 | bp->stats.path_tvx_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_tvx_lower_bound; | ||
2085 | bp->stats.path_t_max_lower_bound = bp->cmd_rsp_virt->smt_mib_get.path_t_max_lower_bound; | ||
2086 | bp->stats.path_max_t_req = bp->cmd_rsp_virt->smt_mib_get.path_max_t_req; | ||
2087 | memcpy(bp->stats.path_configuration, &bp->cmd_rsp_virt->smt_mib_get.path_configuration, sizeof(bp->cmd_rsp_virt->smt_mib_get.path_configuration)); | ||
2088 | bp->stats.port_my_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[0]; | ||
2089 | bp->stats.port_my_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_my_type[1]; | ||
2090 | bp->stats.port_neighbor_type[0] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[0]; | ||
2091 | bp->stats.port_neighbor_type[1] = bp->cmd_rsp_virt->smt_mib_get.port_neighbor_type[1]; | ||
2092 | bp->stats.port_connection_policies[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[0]; | ||
2093 | bp->stats.port_connection_policies[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_policies[1]; | ||
2094 | bp->stats.port_mac_indicated[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[0]; | ||
2095 | bp->stats.port_mac_indicated[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_indicated[1]; | ||
2096 | bp->stats.port_current_path[0] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[0]; | ||
2097 | bp->stats.port_current_path[1] = bp->cmd_rsp_virt->smt_mib_get.port_current_path[1]; | ||
2098 | memcpy(&bp->stats.port_requested_paths[0*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[0], 3); | ||
2099 | memcpy(&bp->stats.port_requested_paths[1*3], &bp->cmd_rsp_virt->smt_mib_get.port_requested_paths[1], 3); | ||
2100 | bp->stats.port_mac_placement[0] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[0]; | ||
2101 | bp->stats.port_mac_placement[1] = bp->cmd_rsp_virt->smt_mib_get.port_mac_placement[1]; | ||
2102 | bp->stats.port_available_paths[0] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[0]; | ||
2103 | bp->stats.port_available_paths[1] = bp->cmd_rsp_virt->smt_mib_get.port_available_paths[1]; | ||
2104 | bp->stats.port_pmd_class[0] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[0]; | ||
2105 | bp->stats.port_pmd_class[1] = bp->cmd_rsp_virt->smt_mib_get.port_pmd_class[1]; | ||
2106 | bp->stats.port_connection_capabilities[0] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[0]; | ||
2107 | bp->stats.port_connection_capabilities[1] = bp->cmd_rsp_virt->smt_mib_get.port_connection_capabilities[1]; | ||
2108 | bp->stats.port_bs_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[0]; | ||
2109 | bp->stats.port_bs_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_bs_flag[1]; | ||
2110 | bp->stats.port_ler_estimate[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[0]; | ||
2111 | bp->stats.port_ler_estimate[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_estimate[1]; | ||
2112 | bp->stats.port_ler_cutoff[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[0]; | ||
2113 | bp->stats.port_ler_cutoff[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_cutoff[1]; | ||
2114 | bp->stats.port_ler_alarm[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[0]; | ||
2115 | bp->stats.port_ler_alarm[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_alarm[1]; | ||
2116 | bp->stats.port_connect_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[0]; | ||
2117 | bp->stats.port_connect_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_connect_state[1]; | ||
2118 | bp->stats.port_pcm_state[0] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[0]; | ||
2119 | bp->stats.port_pcm_state[1] = bp->cmd_rsp_virt->smt_mib_get.port_pcm_state[1]; | ||
2120 | bp->stats.port_pc_withhold[0] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[0]; | ||
2121 | bp->stats.port_pc_withhold[1] = bp->cmd_rsp_virt->smt_mib_get.port_pc_withhold[1]; | ||
2122 | bp->stats.port_ler_flag[0] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[0]; | ||
2123 | bp->stats.port_ler_flag[1] = bp->cmd_rsp_virt->smt_mib_get.port_ler_flag[1]; | ||
2124 | bp->stats.port_hardware_present[0] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[0]; | ||
2125 | bp->stats.port_hardware_present[1] = bp->cmd_rsp_virt->smt_mib_get.port_hardware_present[1]; | ||
2126 | |||
2127 | /* Get FDDI counters */ | ||
2128 | |||
2129 | bp->cmd_req_virt->cmd_type = PI_CMD_K_CNTRS_GET; | ||
2130 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | ||
2131 | return (struct net_device_stats *)&bp->stats; | ||
2132 | |||
2133 | /* Fill the bp->stats structure with the FDDI counter values */ | ||
2134 | |||
2135 | bp->stats.mac_frame_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.frame_cnt.ls; | ||
2136 | bp->stats.mac_copied_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.copied_cnt.ls; | ||
2137 | bp->stats.mac_transmit_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.transmit_cnt.ls; | ||
2138 | bp->stats.mac_error_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.error_cnt.ls; | ||
2139 | bp->stats.mac_lost_cts = bp->cmd_rsp_virt->cntrs_get.cntrs.lost_cnt.ls; | ||
2140 | bp->stats.port_lct_fail_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[0].ls; | ||
2141 | bp->stats.port_lct_fail_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lct_rejects[1].ls; | ||
2142 | bp->stats.port_lem_reject_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[0].ls; | ||
2143 | bp->stats.port_lem_reject_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.lem_rejects[1].ls; | ||
2144 | bp->stats.port_lem_cts[0] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[0].ls; | ||
2145 | bp->stats.port_lem_cts[1] = bp->cmd_rsp_virt->cntrs_get.cntrs.link_errors[1].ls; | ||
2146 | |||
2147 | return (struct net_device_stats *)&bp->stats; | ||
2148 | } | ||
2149 | |||
2150 | |||
2151 | /* | ||
2152 | * ============================== | ||
2153 | * = dfx_ctl_set_multicast_list = | ||
2154 | * ============================== | ||
2155 | * | ||
2156 | * Overview: | ||
2157 | * Enable/Disable LLC frame promiscuous mode reception | ||
2158 | * on the adapter and/or update multicast address table. | ||
2159 | * | ||
2160 | * Returns: | ||
2161 | * None | ||
2162 | * | ||
2163 | * Arguments: | ||
2164 | * dev - pointer to device information | ||
2165 | * | ||
2166 | * Functional Description: | ||
2167 | * This routine follows a fairly simple algorithm for setting the | ||
2168 | * adapter filters and CAM: | ||
2169 | * | ||
2170 | * if IFF_PROMISC flag is set | ||
2171 | * enable LLC individual/group promiscuous mode | ||
2172 | * else | ||
2173 | * disable LLC individual/group promiscuous mode | ||
2174 | * if number of incoming multicast addresses > | ||
2175 | * (CAM max size - number of unicast addresses in CAM) | ||
2176 | * enable LLC group promiscuous mode | ||
2177 | * set driver-maintained multicast address count to zero | ||
2178 | * else | ||
2179 | * disable LLC group promiscuous mode | ||
2180 | * set driver-maintained multicast address count to incoming count | ||
2181 | * update adapter CAM | ||
2182 | * update adapter filters | ||
2183 | * | ||
2184 | * Return Codes: | ||
2185 | * None | ||
2186 | * | ||
2187 | * Assumptions: | ||
2188 | * Multicast addresses are presented in canonical (LSB) format. | ||
2189 | * | ||
2190 | * Side Effects: | ||
2191 | * On-board adapter CAM and filters are updated. | ||
2192 | */ | ||
2193 | |||
2194 | static void dfx_ctl_set_multicast_list(struct net_device *dev) | ||
2195 | { | ||
2196 | DFX_board_t *bp = netdev_priv(dev); | ||
2197 | int i; /* used as index in for loop */ | ||
2198 | struct netdev_hw_addr *ha; | ||
2199 | |||
2200 | /* Enable LLC frame promiscuous mode, if necessary */ | ||
2201 | |||
2202 | if (dev->flags & IFF_PROMISC) | ||
2203 | bp->ind_group_prom = PI_FSTATE_K_PASS; /* Enable LLC ind/group prom mode */ | ||
2204 | |||
2205 | /* Else, update multicast address table */ | ||
2206 | |||
2207 | else | ||
2208 | { | ||
2209 | bp->ind_group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC ind/group prom mode */ | ||
2210 | /* | ||
2211 | * Check whether incoming multicast address count exceeds table size | ||
2212 | * | ||
2213 | * Note: The adapters utilize an on-board 64 entry CAM for | ||
2214 | * supporting perfect filtering of multicast packets | ||
2215 | * and bridge functions when adding unicast addresses. | ||
2216 | * There is no hash function available. To support | ||
2217 | * additional multicast addresses, the all multicast | ||
2218 | * filter (LLC group promiscuous mode) must be enabled. | ||
2219 | * | ||
2220 | * The firmware reserves two CAM entries for SMT-related | ||
2221 | * multicast addresses, which leaves 62 entries available. | ||
2222 | * The following code ensures that we're not being asked | ||
2223 | * to add more than 62 addresses to the CAM. If we are, | ||
2224 | * the driver will enable the all multicast filter. | ||
2225 | * Should the number of multicast addresses drop below | ||
2226 | * the high water mark, the filter will be disabled and | ||
2227 | * perfect filtering will be used. | ||
2228 | */ | ||
2229 | |||
2230 | if (netdev_mc_count(dev) > (PI_CMD_ADDR_FILTER_K_SIZE - bp->uc_count)) | ||
2231 | { | ||
2232 | bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ | ||
2233 | bp->mc_count = 0; /* Don't add mc addrs to CAM */ | ||
2234 | } | ||
2235 | else | ||
2236 | { | ||
2237 | bp->group_prom = PI_FSTATE_K_BLOCK; /* Disable LLC group prom mode */ | ||
2238 | bp->mc_count = netdev_mc_count(dev); /* Add mc addrs to CAM */ | ||
2239 | } | ||
2240 | |||
2241 | /* Copy addresses to multicast address table, then update adapter CAM */ | ||
2242 | |||
2243 | i = 0; | ||
2244 | netdev_for_each_mc_addr(ha, dev) | ||
2245 | memcpy(&bp->mc_table[i++ * FDDI_K_ALEN], | ||
2246 | ha->addr, FDDI_K_ALEN); | ||
2247 | |||
2248 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) | ||
2249 | { | ||
2250 | DBG_printk("%s: Could not update multicast address table!\n", dev->name); | ||
2251 | } | ||
2252 | else | ||
2253 | { | ||
2254 | DBG_printk("%s: Multicast address table updated! Added %d addresses.\n", dev->name, bp->mc_count); | ||
2255 | } | ||
2256 | } | ||
2257 | |||
2258 | /* Update adapter filters */ | ||
2259 | |||
2260 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | ||
2261 | { | ||
2262 | DBG_printk("%s: Could not update adapter filters!\n", dev->name); | ||
2263 | } | ||
2264 | else | ||
2265 | { | ||
2266 | DBG_printk("%s: Adapter filters updated!\n", dev->name); | ||
2267 | } | ||
2268 | } | ||
2269 | |||
2270 | |||
2271 | /* | ||
2272 | * =========================== | ||
2273 | * = dfx_ctl_set_mac_address = | ||
2274 | * =========================== | ||
2275 | * | ||
2276 | * Overview: | ||
2277 | * Add node address override (unicast address) to adapter | ||
2278 | * CAM and update dev_addr field in device table. | ||
2279 | * | ||
2280 | * Returns: | ||
2281 | * None | ||
2282 | * | ||
2283 | * Arguments: | ||
2284 | * dev - pointer to device information | ||
2285 | * addr - pointer to sockaddr structure containing unicast address to add | ||
2286 | * | ||
2287 | * Functional Description: | ||
2288 | * The adapter supports node address overrides by adding one or more | ||
2289 | * unicast addresses to the adapter CAM. This is similar to adding | ||
2290 | * multicast addresses. In this routine we'll update the driver and | ||
2291 | * device structures with the new address, then update the adapter CAM | ||
2292 | * to ensure that the adapter will copy and strip frames destined and | ||
2293 | * sourced by that address. | ||
2294 | * | ||
2295 | * Return Codes: | ||
2296 | * Always returns zero. | ||
2297 | * | ||
2298 | * Assumptions: | ||
2299 | * The address pointed to by addr->sa_data is a valid unicast | ||
2300 | * address and is presented in canonical (LSB) format. | ||
2301 | * | ||
2302 | * Side Effects: | ||
2303 | * On-board adapter CAM is updated. On-board adapter filters | ||
2304 | * may be updated. | ||
2305 | */ | ||
2306 | |||
2307 | static int dfx_ctl_set_mac_address(struct net_device *dev, void *addr) | ||
2308 | { | ||
2309 | struct sockaddr *p_sockaddr = (struct sockaddr *)addr; | ||
2310 | DFX_board_t *bp = netdev_priv(dev); | ||
2311 | |||
2312 | /* Copy unicast address to driver-maintained structs and update count */ | ||
2313 | |||
2314 | memcpy(dev->dev_addr, p_sockaddr->sa_data, FDDI_K_ALEN); /* update device struct */ | ||
2315 | memcpy(&bp->uc_table[0], p_sockaddr->sa_data, FDDI_K_ALEN); /* update driver struct */ | ||
2316 | bp->uc_count = 1; | ||
2317 | |||
2318 | /* | ||
2319 | * Verify we're not exceeding the CAM size by adding unicast address | ||
2320 | * | ||
2321 | * Note: It's possible that before entering this routine we've | ||
2322 | * already filled the CAM with 62 multicast addresses. | ||
2323 | * Since we need to place the node address override into | ||
2324 | * the CAM, we have to check to see that we're not | ||
2325 | * exceeding the CAM size. If we are, we have to enable | ||
2326 | * the LLC group (multicast) promiscuous mode filter as | ||
2327 | * in dfx_ctl_set_multicast_list. | ||
2328 | */ | ||
2329 | |||
2330 | if ((bp->uc_count + bp->mc_count) > PI_CMD_ADDR_FILTER_K_SIZE) | ||
2331 | { | ||
2332 | bp->group_prom = PI_FSTATE_K_PASS; /* Enable LLC group prom mode */ | ||
2333 | bp->mc_count = 0; /* Don't add mc addrs to CAM */ | ||
2334 | |||
2335 | /* Update adapter filters */ | ||
2336 | |||
2337 | if (dfx_ctl_update_filters(bp) != DFX_K_SUCCESS) | ||
2338 | { | ||
2339 | DBG_printk("%s: Could not update adapter filters!\n", dev->name); | ||
2340 | } | ||
2341 | else | ||
2342 | { | ||
2343 | DBG_printk("%s: Adapter filters updated!\n", dev->name); | ||
2344 | } | ||
2345 | } | ||
2346 | |||
2347 | /* Update adapter CAM with new unicast address */ | ||
2348 | |||
2349 | if (dfx_ctl_update_cam(bp) != DFX_K_SUCCESS) | ||
2350 | { | ||
2351 | DBG_printk("%s: Could not set new MAC address!\n", dev->name); | ||
2352 | } | ||
2353 | else | ||
2354 | { | ||
2355 | DBG_printk("%s: Adapter CAM updated with new MAC address\n", dev->name); | ||
2356 | } | ||
2357 | return 0; /* always return zero */ | ||
2358 | } | ||
2359 | |||
2360 | |||
2361 | /* | ||
2362 | * ====================== | ||
2363 | * = dfx_ctl_update_cam = | ||
2364 | * ====================== | ||
2365 | * | ||
2366 | * Overview: | ||
2367 | * Procedure to update adapter CAM (Content Addressable Memory) | ||
2368 | * with desired unicast and multicast address entries. | ||
2369 | * | ||
2370 | * Returns: | ||
2371 | * Condition code | ||
2372 | * | ||
2373 | * Arguments: | ||
2374 | * bp - pointer to board information | ||
2375 | * | ||
2376 | * Functional Description: | ||
2377 | * Updates adapter CAM with current contents of board structure | ||
2378 | * unicast and multicast address tables. Since there are only 62 | ||
2379 | * free entries in CAM, this routine ensures that the command | ||
2380 | * request buffer is not overrun. | ||
2381 | * | ||
2382 | * Return Codes: | ||
2383 | * DFX_K_SUCCESS - Request succeeded | ||
2384 | * DFX_K_FAILURE - Request failed | ||
2385 | * | ||
2386 | * Assumptions: | ||
2387 | * All addresses being added (unicast and multicast) are in canonical | ||
2388 | * order. | ||
2389 | * | ||
2390 | * Side Effects: | ||
2391 | * On-board adapter CAM is updated. | ||
2392 | */ | ||
2393 | |||
2394 | static int dfx_ctl_update_cam(DFX_board_t *bp) | ||
2395 | { | ||
2396 | int i; /* used as index */ | ||
2397 | PI_LAN_ADDR *p_addr; /* pointer to CAM entry */ | ||
2398 | |||
2399 | /* | ||
2400 | * Fill in command request information | ||
2401 | * | ||
2402 | * Note: Even though both the unicast and multicast address | ||
2403 | * table entries are stored as contiguous 6 byte entries, | ||
2404 | * the firmware address filter set command expects each | ||
2405 | * entry to be two longwords (8 bytes total). We must be | ||
2406 | * careful to only copy the six bytes of each unicast and | ||
2407 | * multicast table entry into each command entry. This | ||
2408 | * is also why we must first clear the entire command | ||
2409 | * request buffer. | ||
2410 | */ | ||
2411 | |||
2412 | memset(bp->cmd_req_virt, 0, PI_CMD_REQ_K_SIZE_MAX); /* first clear buffer */ | ||
2413 | bp->cmd_req_virt->cmd_type = PI_CMD_K_ADDR_FILTER_SET; | ||
2414 | p_addr = &bp->cmd_req_virt->addr_filter_set.entry[0]; | ||
2415 | |||
2416 | /* Now add unicast addresses to command request buffer, if any */ | ||
2417 | |||
2418 | for (i=0; i < (int)bp->uc_count; i++) | ||
2419 | { | ||
2420 | if (i < PI_CMD_ADDR_FILTER_K_SIZE) | ||
2421 | { | ||
2422 | memcpy(p_addr, &bp->uc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); | ||
2423 | p_addr++; /* point to next command entry */ | ||
2424 | } | ||
2425 | } | ||
2426 | |||
2427 | /* Now add multicast addresses to command request buffer, if any */ | ||
2428 | |||
2429 | for (i=0; i < (int)bp->mc_count; i++) | ||
2430 | { | ||
2431 | if ((i + bp->uc_count) < PI_CMD_ADDR_FILTER_K_SIZE) | ||
2432 | { | ||
2433 | memcpy(p_addr, &bp->mc_table[i*FDDI_K_ALEN], FDDI_K_ALEN); | ||
2434 | p_addr++; /* point to next command entry */ | ||
2435 | } | ||
2436 | } | ||
2437 | |||
2438 | /* Issue command to update adapter CAM, then return */ | ||
2439 | |||
2440 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | ||
2441 | return DFX_K_FAILURE; | ||
2442 | return DFX_K_SUCCESS; | ||
2443 | } | ||
2444 | |||
2445 | |||
2446 | /* | ||
2447 | * ========================== | ||
2448 | * = dfx_ctl_update_filters = | ||
2449 | * ========================== | ||
2450 | * | ||
2451 | * Overview: | ||
2452 | * Procedure to update adapter filters with desired | ||
2453 | * filter settings. | ||
2454 | * | ||
2455 | * Returns: | ||
2456 | * Condition code | ||
2457 | * | ||
2458 | * Arguments: | ||
2459 | * bp - pointer to board information | ||
2460 | * | ||
2461 | * Functional Description: | ||
2462 | * Enables or disables filter using current filter settings. | ||
2463 | * | ||
2464 | * Return Codes: | ||
2465 | * DFX_K_SUCCESS - Request succeeded. | ||
2466 | * DFX_K_FAILURE - Request failed. | ||
2467 | * | ||
2468 | * Assumptions: | ||
2469 | * We must always pass up packets destined to the broadcast | ||
2470 | * address (FF-FF-FF-FF-FF-FF), so we'll always keep the | ||
2471 | * broadcast filter enabled. | ||
2472 | * | ||
2473 | * Side Effects: | ||
2474 | * On-board adapter filters are updated. | ||
2475 | */ | ||
2476 | |||
2477 | static int dfx_ctl_update_filters(DFX_board_t *bp) | ||
2478 | { | ||
2479 | int i = 0; /* used as index */ | ||
2480 | |||
2481 | /* Fill in command request information */ | ||
2482 | |||
2483 | bp->cmd_req_virt->cmd_type = PI_CMD_K_FILTERS_SET; | ||
2484 | |||
2485 | /* Initialize Broadcast filter - * ALWAYS ENABLED * */ | ||
2486 | |||
2487 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_BROADCAST; | ||
2488 | bp->cmd_req_virt->filter_set.item[i++].value = PI_FSTATE_K_PASS; | ||
2489 | |||
2490 | /* Initialize LLC Individual/Group Promiscuous filter */ | ||
2491 | |||
2492 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_IND_GROUP_PROM; | ||
2493 | bp->cmd_req_virt->filter_set.item[i++].value = bp->ind_group_prom; | ||
2494 | |||
2495 | /* Initialize LLC Group Promiscuous filter */ | ||
2496 | |||
2497 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_GROUP_PROM; | ||
2498 | bp->cmd_req_virt->filter_set.item[i++].value = bp->group_prom; | ||
2499 | |||
2500 | /* Terminate the item code list */ | ||
2501 | |||
2502 | bp->cmd_req_virt->filter_set.item[i].item_code = PI_ITEM_K_EOL; | ||
2503 | |||
2504 | /* Issue command to update adapter filters, then return */ | ||
2505 | |||
2506 | if (dfx_hw_dma_cmd_req(bp) != DFX_K_SUCCESS) | ||
2507 | return DFX_K_FAILURE; | ||
2508 | return DFX_K_SUCCESS; | ||
2509 | } | ||
2510 | |||
2511 | |||
2512 | /* | ||
2513 | * ====================== | ||
2514 | * = dfx_hw_dma_cmd_req = | ||
2515 | * ====================== | ||
2516 | * | ||
2517 | * Overview: | ||
2518 | * Sends PDQ DMA command to adapter firmware | ||
2519 | * | ||
2520 | * Returns: | ||
2521 | * Condition code | ||
2522 | * | ||
2523 | * Arguments: | ||
2524 | * bp - pointer to board information | ||
2525 | * | ||
2526 | * Functional Description: | ||
2527 | * The command request and response buffers are posted to the adapter in the manner | ||
2528 | * described in the PDQ Port Specification: | ||
2529 | * | ||
2530 | * 1. Command Response Buffer is posted to adapter. | ||
2531 | * 2. Command Request Buffer is posted to adapter. | ||
2532 | * 3. Command Request consumer index is polled until it indicates that request | ||
2533 | * buffer has been DMA'd to adapter. | ||
2534 | * 4. Command Response consumer index is polled until it indicates that response | ||
2535 | * buffer has been DMA'd from adapter. | ||
2536 | * | ||
2537 | * This ordering ensures that a response buffer is already available for the firmware | ||
2538 | * to use once it's done processing the request buffer. | ||
2539 | * | ||
2540 | * Return Codes: | ||
2541 | * DFX_K_SUCCESS - DMA command succeeded | ||
2542 | * DFX_K_OUTSTATE - Adapter is NOT in proper state | ||
2543 | * DFX_K_HW_TIMEOUT - DMA command timed out | ||
2544 | * | ||
2545 | * Assumptions: | ||
2546 | * Command request buffer has already been filled with desired DMA command. | ||
2547 | * | ||
2548 | * Side Effects: | ||
2549 | * None | ||
2550 | */ | ||
2551 | |||
2552 | static int dfx_hw_dma_cmd_req(DFX_board_t *bp) | ||
2553 | { | ||
2554 | int status; /* adapter status */ | ||
2555 | int timeout_cnt; /* used in for loops */ | ||
2556 | |||
2557 | /* Make sure the adapter is in a state that we can issue the DMA command in */ | ||
2558 | |||
2559 | status = dfx_hw_adap_state_rd(bp); | ||
2560 | if ((status == PI_STATE_K_RESET) || | ||
2561 | (status == PI_STATE_K_HALTED) || | ||
2562 | (status == PI_STATE_K_DMA_UNAVAIL) || | ||
2563 | (status == PI_STATE_K_UPGRADE)) | ||
2564 | return DFX_K_OUTSTATE; | ||
2565 | |||
2566 | /* Put response buffer on the command response queue */ | ||
2567 | |||
2568 | bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_0 = (u32) (PI_RCV_DESCR_M_SOP | | ||
2569 | ((PI_CMD_RSP_K_SIZE_MAX / PI_ALIGN_K_CMD_RSP_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); | ||
2570 | bp->descr_block_virt->cmd_rsp[bp->cmd_rsp_reg.index.prod].long_1 = bp->cmd_rsp_phys; | ||
2571 | |||
2572 | /* Bump (and wrap) the producer index and write out to register */ | ||
2573 | |||
2574 | bp->cmd_rsp_reg.index.prod += 1; | ||
2575 | bp->cmd_rsp_reg.index.prod &= PI_CMD_RSP_K_NUM_ENTRIES-1; | ||
2576 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); | ||
2577 | |||
2578 | /* Put request buffer on the command request queue */ | ||
2579 | |||
2580 | bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_0 = (u32) (PI_XMT_DESCR_M_SOP | | ||
2581 | PI_XMT_DESCR_M_EOP | (PI_CMD_REQ_K_SIZE_MAX << PI_XMT_DESCR_V_SEG_LEN)); | ||
2582 | bp->descr_block_virt->cmd_req[bp->cmd_req_reg.index.prod].long_1 = bp->cmd_req_phys; | ||
2583 | |||
2584 | /* Bump (and wrap) the producer index and write out to register */ | ||
2585 | |||
2586 | bp->cmd_req_reg.index.prod += 1; | ||
2587 | bp->cmd_req_reg.index.prod &= PI_CMD_REQ_K_NUM_ENTRIES-1; | ||
2588 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); | ||
2589 | |||
2590 | /* | ||
2591 | * Here we wait for the command request consumer index to be equal | ||
2592 | * to the producer, indicating that the adapter has DMAed the request. | ||
2593 | */ | ||
2594 | |||
2595 | for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) | ||
2596 | { | ||
2597 | if (bp->cmd_req_reg.index.prod == (u8)(bp->cons_block_virt->cmd_req)) | ||
2598 | break; | ||
2599 | udelay(100); /* wait for 100 microseconds */ | ||
2600 | } | ||
2601 | if (timeout_cnt == 0) | ||
2602 | return DFX_K_HW_TIMEOUT; | ||
2603 | |||
2604 | /* Bump (and wrap) the completion index and write out to register */ | ||
2605 | |||
2606 | bp->cmd_req_reg.index.comp += 1; | ||
2607 | bp->cmd_req_reg.index.comp &= PI_CMD_REQ_K_NUM_ENTRIES-1; | ||
2608 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_REQ_PROD, bp->cmd_req_reg.lword); | ||
2609 | |||
2610 | /* | ||
2611 | * Here we wait for the command response consumer index to be equal | ||
2612 | * to the producer, indicating that the adapter has DMAed the response. | ||
2613 | */ | ||
2614 | |||
2615 | for (timeout_cnt = 20000; timeout_cnt > 0; timeout_cnt--) | ||
2616 | { | ||
2617 | if (bp->cmd_rsp_reg.index.prod == (u8)(bp->cons_block_virt->cmd_rsp)) | ||
2618 | break; | ||
2619 | udelay(100); /* wait for 100 microseconds */ | ||
2620 | } | ||
2621 | if (timeout_cnt == 0) | ||
2622 | return DFX_K_HW_TIMEOUT; | ||
2623 | |||
2624 | /* Bump (and wrap) the completion index and write out to register */ | ||
2625 | |||
2626 | bp->cmd_rsp_reg.index.comp += 1; | ||
2627 | bp->cmd_rsp_reg.index.comp &= PI_CMD_RSP_K_NUM_ENTRIES-1; | ||
2628 | dfx_port_write_long(bp, PI_PDQ_K_REG_CMD_RSP_PROD, bp->cmd_rsp_reg.lword); | ||
2629 | return DFX_K_SUCCESS; | ||
2630 | } | ||
2631 | |||
2632 | |||
2633 | /* | ||
2634 | * ======================== | ||
2635 | * = dfx_hw_port_ctrl_req = | ||
2636 | * ======================== | ||
2637 | * | ||
2638 | * Overview: | ||
2639 | * Sends PDQ port control command to adapter firmware | ||
2640 | * | ||
2641 | * Returns: | ||
2642 | * Host data register value in host_data if ptr is not NULL | ||
2643 | * | ||
2644 | * Arguments: | ||
2645 | * bp - pointer to board information | ||
2646 | * command - port control command | ||
2647 | * data_a - port data A register value | ||
2648 | * data_b - port data B register value | ||
2649 | * host_data - ptr to host data register value | ||
2650 | * | ||
2651 | * Functional Description: | ||
2652 | * Send generic port control command to adapter by writing | ||
2653 | * to various PDQ port registers, then polling for completion. | ||
2654 | * | ||
2655 | * Return Codes: | ||
2656 | * DFX_K_SUCCESS - port control command succeeded | ||
2657 | * DFX_K_HW_TIMEOUT - port control command timed out | ||
2658 | * | ||
2659 | * Assumptions: | ||
2660 | * None | ||
2661 | * | ||
2662 | * Side Effects: | ||
2663 | * None | ||
2664 | */ | ||
2665 | |||
2666 | static int dfx_hw_port_ctrl_req( | ||
2667 | DFX_board_t *bp, | ||
2668 | PI_UINT32 command, | ||
2669 | PI_UINT32 data_a, | ||
2670 | PI_UINT32 data_b, | ||
2671 | PI_UINT32 *host_data | ||
2672 | ) | ||
2673 | |||
2674 | { | ||
2675 | PI_UINT32 port_cmd; /* Port Control command register value */ | ||
2676 | int timeout_cnt; /* used in for loops */ | ||
2677 | |||
2678 | /* Set Command Error bit in command longword */ | ||
2679 | |||
2680 | port_cmd = (PI_UINT32) (command | PI_PCTRL_M_CMD_ERROR); | ||
2681 | |||
2682 | /* Issue port command to the adapter */ | ||
2683 | |||
2684 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, data_a); | ||
2685 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_B, data_b); | ||
2686 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_CTRL, port_cmd); | ||
2687 | |||
2688 | /* Now wait for command to complete */ | ||
2689 | |||
2690 | if (command == PI_PCTRL_M_BLAST_FLASH) | ||
2691 | timeout_cnt = 600000; /* set command timeout count to 60 seconds */ | ||
2692 | else | ||
2693 | timeout_cnt = 20000; /* set command timeout count to 2 seconds */ | ||
2694 | |||
2695 | for (; timeout_cnt > 0; timeout_cnt--) | ||
2696 | { | ||
2697 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_CTRL, &port_cmd); | ||
2698 | if (!(port_cmd & PI_PCTRL_M_CMD_ERROR)) | ||
2699 | break; | ||
2700 | udelay(100); /* wait for 100 microseconds */ | ||
2701 | } | ||
2702 | if (timeout_cnt == 0) | ||
2703 | return DFX_K_HW_TIMEOUT; | ||
2704 | |||
2705 | /* | ||
2706 | * If the address of host_data is non-zero, assume caller has supplied a | ||
2707 | * non NULL pointer, and return the contents of the HOST_DATA register in | ||
2708 | * it. | ||
2709 | */ | ||
2710 | |||
2711 | if (host_data != NULL) | ||
2712 | dfx_port_read_long(bp, PI_PDQ_K_REG_HOST_DATA, host_data); | ||
2713 | return DFX_K_SUCCESS; | ||
2714 | } | ||
2715 | |||
2716 | |||
2717 | /* | ||
2718 | * ===================== | ||
2719 | * = dfx_hw_adap_reset = | ||
2720 | * ===================== | ||
2721 | * | ||
2722 | * Overview: | ||
2723 | * Resets adapter | ||
2724 | * | ||
2725 | * Returns: | ||
2726 | * None | ||
2727 | * | ||
2728 | * Arguments: | ||
2729 | * bp - pointer to board information | ||
2730 | * type - type of reset to perform | ||
2731 | * | ||
2732 | * Functional Description: | ||
2733 | * Issue soft reset to adapter by writing to PDQ Port Reset | ||
2734 | * register. Use incoming reset type to tell adapter what | ||
2735 | * kind of reset operation to perform. | ||
2736 | * | ||
2737 | * Return Codes: | ||
2738 | * None | ||
2739 | * | ||
2740 | * Assumptions: | ||
2741 | * This routine merely issues a soft reset to the adapter. | ||
2742 | * It is expected that after this routine returns, the caller | ||
2743 | * will appropriately poll the Port Status register for the | ||
2744 | * adapter to enter the proper state. | ||
2745 | * | ||
2746 | * Side Effects: | ||
2747 | * Internal adapter registers are cleared. | ||
2748 | */ | ||
2749 | |||
2750 | static void dfx_hw_adap_reset( | ||
2751 | DFX_board_t *bp, | ||
2752 | PI_UINT32 type | ||
2753 | ) | ||
2754 | |||
2755 | { | ||
2756 | /* Set Reset type and assert reset */ | ||
2757 | |||
2758 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_DATA_A, type); /* tell adapter type of reset */ | ||
2759 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, PI_RESET_M_ASSERT_RESET); | ||
2760 | |||
2761 | /* Wait for at least 1 Microsecond according to the spec. We wait 20 just to be safe */ | ||
2762 | |||
2763 | udelay(20); | ||
2764 | |||
2765 | /* Deassert reset */ | ||
2766 | |||
2767 | dfx_port_write_long(bp, PI_PDQ_K_REG_PORT_RESET, 0); | ||
2768 | } | ||
2769 | |||
2770 | |||
2771 | /* | ||
2772 | * ======================== | ||
2773 | * = dfx_hw_adap_state_rd = | ||
2774 | * ======================== | ||
2775 | * | ||
2776 | * Overview: | ||
2777 | * Returns current adapter state | ||
2778 | * | ||
2779 | * Returns: | ||
2780 | * Adapter state per PDQ Port Specification | ||
2781 | * | ||
2782 | * Arguments: | ||
2783 | * bp - pointer to board information | ||
2784 | * | ||
2785 | * Functional Description: | ||
2786 | * Reads PDQ Port Status register and returns adapter state. | ||
2787 | * | ||
2788 | * Return Codes: | ||
2789 | * None | ||
2790 | * | ||
2791 | * Assumptions: | ||
2792 | * None | ||
2793 | * | ||
2794 | * Side Effects: | ||
2795 | * None | ||
2796 | */ | ||
2797 | |||
2798 | static int dfx_hw_adap_state_rd(DFX_board_t *bp) | ||
2799 | { | ||
2800 | PI_UINT32 port_status; /* Port Status register value */ | ||
2801 | |||
2802 | dfx_port_read_long(bp, PI_PDQ_K_REG_PORT_STATUS, &port_status); | ||
2803 | return (port_status & PI_PSTATUS_M_STATE) >> PI_PSTATUS_V_STATE; | ||
2804 | } | ||
2805 | |||
2806 | |||
2807 | /* | ||
2808 | * ===================== | ||
2809 | * = dfx_hw_dma_uninit = | ||
2810 | * ===================== | ||
2811 | * | ||
2812 | * Overview: | ||
2813 | * Brings adapter to DMA_UNAVAILABLE state | ||
2814 | * | ||
2815 | * Returns: | ||
2816 | * Condition code | ||
2817 | * | ||
2818 | * Arguments: | ||
2819 | * bp - pointer to board information | ||
2820 | * type - type of reset to perform | ||
2821 | * | ||
2822 | * Functional Description: | ||
2823 | * Bring adapter to DMA_UNAVAILABLE state by performing the following: | ||
2824 | * 1. Set reset type bit in Port Data A Register then reset adapter. | ||
2825 | * 2. Check that adapter is in DMA_UNAVAILABLE state. | ||
2826 | * | ||
2827 | * Return Codes: | ||
2828 | * DFX_K_SUCCESS - adapter is in DMA_UNAVAILABLE state | ||
2829 | * DFX_K_HW_TIMEOUT - adapter did not reset properly | ||
2830 | * | ||
2831 | * Assumptions: | ||
2832 | * None | ||
2833 | * | ||
2834 | * Side Effects: | ||
2835 | * Internal adapter registers are cleared. | ||
2836 | */ | ||
2837 | |||
2838 | static int dfx_hw_dma_uninit(DFX_board_t *bp, PI_UINT32 type) | ||
2839 | { | ||
2840 | int timeout_cnt; /* used in for loops */ | ||
2841 | |||
2842 | /* Set reset type bit and reset adapter */ | ||
2843 | |||
2844 | dfx_hw_adap_reset(bp, type); | ||
2845 | |||
2846 | /* Now wait for adapter to enter DMA_UNAVAILABLE state */ | ||
2847 | |||
2848 | for (timeout_cnt = 100000; timeout_cnt > 0; timeout_cnt--) | ||
2849 | { | ||
2850 | if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_DMA_UNAVAIL) | ||
2851 | break; | ||
2852 | udelay(100); /* wait for 100 microseconds */ | ||
2853 | } | ||
2854 | if (timeout_cnt == 0) | ||
2855 | return DFX_K_HW_TIMEOUT; | ||
2856 | return DFX_K_SUCCESS; | ||
2857 | } | ||
2858 | |||
2859 | /* | ||
2860 | * Align an sk_buff to a boundary power of 2 | ||
2861 | * | ||
2862 | */ | ||
2863 | |||
2864 | static void my_skb_align(struct sk_buff *skb, int n) | ||
2865 | { | ||
2866 | unsigned long x = (unsigned long)skb->data; | ||
2867 | unsigned long v; | ||
2868 | |||
2869 | v = ALIGN(x, n); /* Where we want to be */ | ||
2870 | |||
2871 | skb_reserve(skb, v - x); | ||
2872 | } | ||
2873 | |||
2874 | |||
2875 | /* | ||
2876 | * ================ | ||
2877 | * = dfx_rcv_init = | ||
2878 | * ================ | ||
2879 | * | ||
2880 | * Overview: | ||
2881 | * Produces buffers to adapter LLC Host receive descriptor block | ||
2882 | * | ||
2883 | * Returns: | ||
2884 | * None | ||
2885 | * | ||
2886 | * Arguments: | ||
2887 | * bp - pointer to board information | ||
2888 | * get_buffers - non-zero if buffers to be allocated | ||
2889 | * | ||
2890 | * Functional Description: | ||
2891 | * This routine can be called during dfx_adap_init() or during an adapter | ||
2892 | * reset. It initializes the descriptor block and produces all allocated | ||
2893 | * LLC Host queue receive buffers. | ||
2894 | * | ||
2895 | * Return Codes: | ||
2896 | * Return 0 on success or -ENOMEM if buffer allocation failed (when using | ||
2897 | * dynamic buffer allocation). If the buffer allocation failed, the | ||
2898 | * already allocated buffers will not be released and the caller should do | ||
2899 | * this. | ||
2900 | * | ||
2901 | * Assumptions: | ||
2902 | * The PDQ has been reset and the adapter and driver maintained Type 2 | ||
2903 | * register indices are cleared. | ||
2904 | * | ||
2905 | * Side Effects: | ||
2906 | * Receive buffers are posted to the adapter LLC queue and the adapter | ||
2907 | * is notified. | ||
2908 | */ | ||
2909 | |||
2910 | static int dfx_rcv_init(DFX_board_t *bp, int get_buffers) | ||
2911 | { | ||
2912 | int i, j; /* used in for loop */ | ||
2913 | |||
2914 | /* | ||
2915 | * Since each receive buffer is a single fragment of same length, initialize | ||
2916 | * first longword in each receive descriptor for entire LLC Host descriptor | ||
2917 | * block. Also initialize second longword in each receive descriptor with | ||
2918 | * physical address of receive buffer. We'll always allocate receive | ||
2919 | * buffers in powers of 2 so that we can easily fill the 256 entry descriptor | ||
2920 | * block and produce new receive buffers by simply updating the receive | ||
2921 | * producer index. | ||
2922 | * | ||
2923 | * Assumptions: | ||
2924 | * To support all shipping versions of PDQ, the receive buffer size | ||
2925 | * must be mod 128 in length and the physical address must be 128 byte | ||
2926 | * aligned. In other words, bits 0-6 of the length and address must | ||
2927 | * be zero for the following descriptor field entries to be correct on | ||
2928 | * all PDQ-based boards. We guaranteed both requirements during | ||
2929 | * driver initialization when we allocated memory for the receive buffers. | ||
2930 | */ | ||
2931 | |||
2932 | if (get_buffers) { | ||
2933 | #ifdef DYNAMIC_BUFFERS | ||
2934 | for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) | ||
2935 | for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | ||
2936 | { | ||
2937 | struct sk_buff *newskb = __netdev_alloc_skb(bp->dev, NEW_SKB_SIZE, GFP_NOIO); | ||
2938 | if (!newskb) | ||
2939 | return -ENOMEM; | ||
2940 | bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | | ||
2941 | ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); | ||
2942 | /* | ||
2943 | * align to 128 bytes for compatibility with | ||
2944 | * the old EISA boards. | ||
2945 | */ | ||
2946 | |||
2947 | my_skb_align(newskb, 128); | ||
2948 | bp->descr_block_virt->rcv_data[i + j].long_1 = | ||
2949 | (u32)dma_map_single(bp->bus_dev, newskb->data, | ||
2950 | NEW_SKB_SIZE, | ||
2951 | DMA_FROM_DEVICE); | ||
2952 | /* | ||
2953 | * p_rcv_buff_va is only used inside the | ||
2954 | * kernel so we put the skb pointer here. | ||
2955 | */ | ||
2956 | bp->p_rcv_buff_va[i+j] = (char *) newskb; | ||
2957 | } | ||
2958 | #else | ||
2959 | for (i=0; i < (int)(bp->rcv_bufs_to_post); i++) | ||
2960 | for (j=0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | ||
2961 | { | ||
2962 | bp->descr_block_virt->rcv_data[i+j].long_0 = (u32) (PI_RCV_DESCR_M_SOP | | ||
2963 | ((PI_RCV_DATA_K_SIZE_MAX / PI_ALIGN_K_RCV_DATA_BUFF) << PI_RCV_DESCR_V_SEG_LEN)); | ||
2964 | bp->descr_block_virt->rcv_data[i+j].long_1 = (u32) (bp->rcv_block_phys + (i * PI_RCV_DATA_K_SIZE_MAX)); | ||
2965 | bp->p_rcv_buff_va[i+j] = (char *) (bp->rcv_block_virt + (i * PI_RCV_DATA_K_SIZE_MAX)); | ||
2966 | } | ||
2967 | #endif | ||
2968 | } | ||
2969 | |||
2970 | /* Update receive producer and Type 2 register */ | ||
2971 | |||
2972 | bp->rcv_xmt_reg.index.rcv_prod = bp->rcv_bufs_to_post; | ||
2973 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | ||
2974 | return 0; | ||
2975 | } | ||
2976 | |||
2977 | |||
2978 | /* | ||
2979 | * ========================= | ||
2980 | * = dfx_rcv_queue_process = | ||
2981 | * ========================= | ||
2982 | * | ||
2983 | * Overview: | ||
2984 | * Process received LLC frames. | ||
2985 | * | ||
2986 | * Returns: | ||
2987 | * None | ||
2988 | * | ||
2989 | * Arguments: | ||
2990 | * bp - pointer to board information | ||
2991 | * | ||
2992 | * Functional Description: | ||
2993 | * Received LLC frames are processed until there are no more consumed frames. | ||
2994 | * Once all frames are processed, the receive buffers are returned to the | ||
2995 | * adapter. Note that this algorithm fixes the length of time that can be spent | ||
2996 | * in this routine, because there are a fixed number of receive buffers to | ||
2997 | * process and buffers are not produced until this routine exits and returns | ||
2998 | * to the ISR. | ||
2999 | * | ||
3000 | * Return Codes: | ||
3001 | * None | ||
3002 | * | ||
3003 | * Assumptions: | ||
3004 | * None | ||
3005 | * | ||
3006 | * Side Effects: | ||
3007 | * None | ||
3008 | */ | ||
3009 | |||
3010 | static void dfx_rcv_queue_process( | ||
3011 | DFX_board_t *bp | ||
3012 | ) | ||
3013 | |||
3014 | { | ||
3015 | PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ | ||
3016 | char *p_buff; /* ptr to start of packet receive buffer (FMC descriptor) */ | ||
3017 | u32 descr, pkt_len; /* FMC descriptor field and packet length */ | ||
3018 | struct sk_buff *skb; /* pointer to a sk_buff to hold incoming packet data */ | ||
3019 | |||
3020 | /* Service all consumed LLC receive frames */ | ||
3021 | |||
3022 | p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); | ||
3023 | while (bp->rcv_xmt_reg.index.rcv_comp != p_type_2_cons->index.rcv_cons) | ||
3024 | { | ||
3025 | /* Process any errors */ | ||
3026 | |||
3027 | int entry; | ||
3028 | |||
3029 | entry = bp->rcv_xmt_reg.index.rcv_comp; | ||
3030 | #ifdef DYNAMIC_BUFFERS | ||
3031 | p_buff = (char *) (((struct sk_buff *)bp->p_rcv_buff_va[entry])->data); | ||
3032 | #else | ||
3033 | p_buff = (char *) bp->p_rcv_buff_va[entry]; | ||
3034 | #endif | ||
3035 | memcpy(&descr, p_buff + RCV_BUFF_K_DESCR, sizeof(u32)); | ||
3036 | |||
3037 | if (descr & PI_FMC_DESCR_M_RCC_FLUSH) | ||
3038 | { | ||
3039 | if (descr & PI_FMC_DESCR_M_RCC_CRC) | ||
3040 | bp->rcv_crc_errors++; | ||
3041 | else | ||
3042 | bp->rcv_frame_status_errors++; | ||
3043 | } | ||
3044 | else | ||
3045 | { | ||
3046 | int rx_in_place = 0; | ||
3047 | |||
3048 | /* The frame was received without errors - verify packet length */ | ||
3049 | |||
3050 | pkt_len = (u32)((descr & PI_FMC_DESCR_M_LEN) >> PI_FMC_DESCR_V_LEN); | ||
3051 | pkt_len -= 4; /* subtract 4 byte CRC */ | ||
3052 | if (!IN_RANGE(pkt_len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) | ||
3053 | bp->rcv_length_errors++; | ||
3054 | else{ | ||
3055 | #ifdef DYNAMIC_BUFFERS | ||
3056 | if (pkt_len > SKBUFF_RX_COPYBREAK) { | ||
3057 | struct sk_buff *newskb; | ||
3058 | |||
3059 | newskb = dev_alloc_skb(NEW_SKB_SIZE); | ||
3060 | if (newskb){ | ||
3061 | rx_in_place = 1; | ||
3062 | |||
3063 | my_skb_align(newskb, 128); | ||
3064 | skb = (struct sk_buff *)bp->p_rcv_buff_va[entry]; | ||
3065 | dma_unmap_single(bp->bus_dev, | ||
3066 | bp->descr_block_virt->rcv_data[entry].long_1, | ||
3067 | NEW_SKB_SIZE, | ||
3068 | DMA_FROM_DEVICE); | ||
3069 | skb_reserve(skb, RCV_BUFF_K_PADDING); | ||
3070 | bp->p_rcv_buff_va[entry] = (char *)newskb; | ||
3071 | bp->descr_block_virt->rcv_data[entry].long_1 = | ||
3072 | (u32)dma_map_single(bp->bus_dev, | ||
3073 | newskb->data, | ||
3074 | NEW_SKB_SIZE, | ||
3075 | DMA_FROM_DEVICE); | ||
3076 | } else | ||
3077 | skb = NULL; | ||
3078 | } else | ||
3079 | #endif | ||
3080 | skb = dev_alloc_skb(pkt_len+3); /* alloc new buffer to pass up, add room for PRH */ | ||
3081 | if (skb == NULL) | ||
3082 | { | ||
3083 | printk("%s: Could not allocate receive buffer. Dropping packet.\n", bp->dev->name); | ||
3084 | bp->rcv_discards++; | ||
3085 | break; | ||
3086 | } | ||
3087 | else { | ||
3088 | #ifndef DYNAMIC_BUFFERS | ||
3089 | if (! rx_in_place) | ||
3090 | #endif | ||
3091 | { | ||
3092 | /* Receive buffer allocated, pass receive packet up */ | ||
3093 | |||
3094 | skb_copy_to_linear_data(skb, | ||
3095 | p_buff + RCV_BUFF_K_PADDING, | ||
3096 | pkt_len + 3); | ||
3097 | } | ||
3098 | |||
3099 | skb_reserve(skb,3); /* adjust data field so that it points to FC byte */ | ||
3100 | skb_put(skb, pkt_len); /* pass up packet length, NOT including CRC */ | ||
3101 | skb->protocol = fddi_type_trans(skb, bp->dev); | ||
3102 | bp->rcv_total_bytes += skb->len; | ||
3103 | netif_rx(skb); | ||
3104 | |||
3105 | /* Update the rcv counters */ | ||
3106 | bp->rcv_total_frames++; | ||
3107 | if (*(p_buff + RCV_BUFF_K_DA) & 0x01) | ||
3108 | bp->rcv_multicast_frames++; | ||
3109 | } | ||
3110 | } | ||
3111 | } | ||
3112 | |||
3113 | /* | ||
3114 | * Advance the producer (for recycling) and advance the completion | ||
3115 | * (for servicing received frames). Note that it is okay to | ||
3116 | * advance the producer without checking that it passes the | ||
3117 | * completion index because they are both advanced at the same | ||
3118 | * rate. | ||
3119 | */ | ||
3120 | |||
3121 | bp->rcv_xmt_reg.index.rcv_prod += 1; | ||
3122 | bp->rcv_xmt_reg.index.rcv_comp += 1; | ||
3123 | } | ||
3124 | } | ||
3125 | |||
3126 | |||
3127 | /* | ||
3128 | * ===================== | ||
3129 | * = dfx_xmt_queue_pkt = | ||
3130 | * ===================== | ||
3131 | * | ||
3132 | * Overview: | ||
3133 | * Queues packets for transmission | ||
3134 | * | ||
3135 | * Returns: | ||
3136 | * Condition code | ||
3137 | * | ||
3138 | * Arguments: | ||
3139 | * skb - pointer to sk_buff to queue for transmission | ||
3140 | * dev - pointer to device information | ||
3141 | * | ||
3142 | * Functional Description: | ||
3143 | * Here we assume that an incoming skb transmit request | ||
3144 | * is contained in a single physically contiguous buffer | ||
3145 | * in which the virtual address of the start of packet | ||
3146 | * (skb->data) can be converted to a physical address | ||
3147 | * by using pci_map_single(). | ||
3148 | * | ||
3149 | * Since the adapter architecture requires a three byte | ||
3150 | * packet request header to prepend the start of packet, | ||
3151 | * we'll write the three byte field immediately prior to | ||
3152 | * the FC byte. This assumption is valid because we've | ||
3153 | * ensured that dev->hard_header_len includes three pad | ||
3154 | * bytes. By posting a single fragment to the adapter, | ||
3155 | * we'll reduce the number of descriptor fetches and | ||
3156 | * bus traffic needed to send the request. | ||
3157 | * | ||
3158 | * Also, we can't free the skb until after it's been DMA'd | ||
3159 | * out by the adapter, so we'll queue it in the driver and | ||
3160 | * return it in dfx_xmt_done. | ||
3161 | * | ||
3162 | * Return Codes: | ||
3163 | * 0 - driver queued packet, link is unavailable, or skbuff was bad | ||
3164 | * 1 - caller should requeue the sk_buff for later transmission | ||
3165 | * | ||
3166 | * Assumptions: | ||
3167 | * First and foremost, we assume the incoming skb pointer | ||
3168 | * is NOT NULL and is pointing to a valid sk_buff structure. | ||
3169 | * | ||
3170 | * The outgoing packet is complete, starting with the | ||
3171 | * frame control byte including the last byte of data, | ||
3172 | * but NOT including the 4 byte CRC. We'll let the | ||
3173 | * adapter hardware generate and append the CRC. | ||
3174 | * | ||
3175 | * The entire packet is stored in one physically | ||
3176 | * contiguous buffer which is not cached and whose | ||
3177 | * 32-bit physical address can be determined. | ||
3178 | * | ||
3179 | * It's vital that this routine is NOT reentered for the | ||
3180 | * same board and that the OS is not in another section of | ||
3181 | * code (eg. dfx_int_common) for the same board on a | ||
3182 | * different thread. | ||
3183 | * | ||
3184 | * Side Effects: | ||
3185 | * None | ||
3186 | */ | ||
3187 | |||
3188 | static netdev_tx_t dfx_xmt_queue_pkt(struct sk_buff *skb, | ||
3189 | struct net_device *dev) | ||
3190 | { | ||
3191 | DFX_board_t *bp = netdev_priv(dev); | ||
3192 | u8 prod; /* local transmit producer index */ | ||
3193 | PI_XMT_DESCR *p_xmt_descr; /* ptr to transmit descriptor block entry */ | ||
3194 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ | ||
3195 | unsigned long flags; | ||
3196 | |||
3197 | netif_stop_queue(dev); | ||
3198 | |||
3199 | /* | ||
3200 | * Verify that incoming transmit request is OK | ||
3201 | * | ||
3202 | * Note: The packet size check is consistent with other | ||
3203 | * Linux device drivers, although the correct packet | ||
3204 | * size should be verified before calling the | ||
3205 | * transmit routine. | ||
3206 | */ | ||
3207 | |||
3208 | if (!IN_RANGE(skb->len, FDDI_K_LLC_ZLEN, FDDI_K_LLC_LEN)) | ||
3209 | { | ||
3210 | printk("%s: Invalid packet length - %u bytes\n", | ||
3211 | dev->name, skb->len); | ||
3212 | bp->xmt_length_errors++; /* bump error counter */ | ||
3213 | netif_wake_queue(dev); | ||
3214 | dev_kfree_skb(skb); | ||
3215 | return NETDEV_TX_OK; /* return "success" */ | ||
3216 | } | ||
3217 | /* | ||
3218 | * See if adapter link is available, if not, free buffer | ||
3219 | * | ||
3220 | * Note: If the link isn't available, free buffer and return 0 | ||
3221 | * rather than tell the upper layer to requeue the packet. | ||
3222 | * The methodology here is that by the time the link | ||
3223 | * becomes available, the packet to be sent will be | ||
3224 | * fairly stale. By simply dropping the packet, the | ||
3225 | * higher layer protocols will eventually time out | ||
3226 | * waiting for response packets which it won't receive. | ||
3227 | */ | ||
3228 | |||
3229 | if (bp->link_available == PI_K_FALSE) | ||
3230 | { | ||
3231 | if (dfx_hw_adap_state_rd(bp) == PI_STATE_K_LINK_AVAIL) /* is link really available? */ | ||
3232 | bp->link_available = PI_K_TRUE; /* if so, set flag and continue */ | ||
3233 | else | ||
3234 | { | ||
3235 | bp->xmt_discards++; /* bump error counter */ | ||
3236 | dev_kfree_skb(skb); /* free sk_buff now */ | ||
3237 | netif_wake_queue(dev); | ||
3238 | return NETDEV_TX_OK; /* return "success" */ | ||
3239 | } | ||
3240 | } | ||
3241 | |||
3242 | spin_lock_irqsave(&bp->lock, flags); | ||
3243 | |||
3244 | /* Get the current producer and the next free xmt data descriptor */ | ||
3245 | |||
3246 | prod = bp->rcv_xmt_reg.index.xmt_prod; | ||
3247 | p_xmt_descr = &(bp->descr_block_virt->xmt_data[prod]); | ||
3248 | |||
3249 | /* | ||
3250 | * Get pointer to auxiliary queue entry to contain information | ||
3251 | * for this packet. | ||
3252 | * | ||
3253 | * Note: The current xmt producer index will become the | ||
3254 | * current xmt completion index when we complete this | ||
3255 | * packet later on. So, we'll get the pointer to the | ||
3256 | * next auxiliary queue entry now before we bump the | ||
3257 | * producer index. | ||
3258 | */ | ||
3259 | |||
3260 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[prod++]); /* also bump producer index */ | ||
3261 | |||
3262 | /* Write the three PRH bytes immediately before the FC byte */ | ||
3263 | |||
3264 | skb_push(skb,3); | ||
3265 | skb->data[0] = DFX_PRH0_BYTE; /* these byte values are defined */ | ||
3266 | skb->data[1] = DFX_PRH1_BYTE; /* in the Motorola FDDI MAC chip */ | ||
3267 | skb->data[2] = DFX_PRH2_BYTE; /* specification */ | ||
3268 | |||
3269 | /* | ||
3270 | * Write the descriptor with buffer info and bump producer | ||
3271 | * | ||
3272 | * Note: Since we need to start DMA from the packet request | ||
3273 | * header, we'll add 3 bytes to the DMA buffer length, | ||
3274 | * and we'll determine the physical address of the | ||
3275 | * buffer from the PRH, not skb->data. | ||
3276 | * | ||
3277 | * Assumptions: | ||
3278 | * 1. Packet starts with the frame control (FC) byte | ||
3279 | * at skb->data. | ||
3280 | * 2. The 4-byte CRC is not appended to the buffer or | ||
3281 | * included in the length. | ||
3282 | * 3. Packet length (skb->len) is from FC to end of | ||
3283 | * data, inclusive. | ||
3284 | * 4. The packet length does not exceed the maximum | ||
3285 | * FDDI LLC frame length of 4491 bytes. | ||
3286 | * 5. The entire packet is contained in a physically | ||
3287 | * contiguous, non-cached, locked memory space | ||
3288 | * comprised of a single buffer pointed to by | ||
3289 | * skb->data. | ||
3290 | * 6. The physical address of the start of packet | ||
3291 | * can be determined from the virtual address | ||
3292 | * by using pci_map_single() and is only 32-bits | ||
3293 | * wide. | ||
3294 | */ | ||
3295 | |||
3296 | p_xmt_descr->long_0 = (u32) (PI_XMT_DESCR_M_SOP | PI_XMT_DESCR_M_EOP | ((skb->len) << PI_XMT_DESCR_V_SEG_LEN)); | ||
3297 | p_xmt_descr->long_1 = (u32)dma_map_single(bp->bus_dev, skb->data, | ||
3298 | skb->len, DMA_TO_DEVICE); | ||
3299 | |||
3300 | /* | ||
3301 | * Verify that descriptor is actually available | ||
3302 | * | ||
3303 | * Note: If descriptor isn't available, return 1 which tells | ||
3304 | * the upper layer to requeue the packet for later | ||
3305 | * transmission. | ||
3306 | * | ||
3307 | * We need to ensure that the producer never reaches the | ||
3308 | * completion, except to indicate that the queue is empty. | ||
3309 | */ | ||
3310 | |||
3311 | if (prod == bp->rcv_xmt_reg.index.xmt_comp) | ||
3312 | { | ||
3313 | skb_pull(skb,3); | ||
3314 | spin_unlock_irqrestore(&bp->lock, flags); | ||
3315 | return NETDEV_TX_BUSY; /* requeue packet for later */ | ||
3316 | } | ||
3317 | |||
3318 | /* | ||
3319 | * Save info for this packet for xmt done indication routine | ||
3320 | * | ||
3321 | * Normally, we'd save the producer index in the p_xmt_drv_descr | ||
3322 | * structure so that we'd have it handy when we complete this | ||
3323 | * packet later (in dfx_xmt_done). However, since the current | ||
3324 | * transmit architecture guarantees a single fragment for the | ||
3325 | * entire packet, we can simply bump the completion index by | ||
3326 | * one (1) for each completed packet. | ||
3327 | * | ||
3328 | * Note: If this assumption changes and we're presented with | ||
3329 | * an inconsistent number of transmit fragments for packet | ||
3330 | * data, we'll need to modify this code to save the current | ||
3331 | * transmit producer index. | ||
3332 | */ | ||
3333 | |||
3334 | p_xmt_drv_descr->p_skb = skb; | ||
3335 | |||
3336 | /* Update Type 2 register */ | ||
3337 | |||
3338 | bp->rcv_xmt_reg.index.xmt_prod = prod; | ||
3339 | dfx_port_write_long(bp, PI_PDQ_K_REG_TYPE_2_PROD, bp->rcv_xmt_reg.lword); | ||
3340 | spin_unlock_irqrestore(&bp->lock, flags); | ||
3341 | netif_wake_queue(dev); | ||
3342 | return NETDEV_TX_OK; /* packet queued to adapter */ | ||
3343 | } | ||
3344 | |||
3345 | |||
3346 | /* | ||
3347 | * ================ | ||
3348 | * = dfx_xmt_done = | ||
3349 | * ================ | ||
3350 | * | ||
3351 | * Overview: | ||
3352 | * Processes all frames that have been transmitted. | ||
3353 | * | ||
3354 | * Returns: | ||
3355 | * None | ||
3356 | * | ||
3357 | * Arguments: | ||
3358 | * bp - pointer to board information | ||
3359 | * | ||
3360 | * Functional Description: | ||
3361 | * For all consumed transmit descriptors that have not | ||
3362 | * yet been completed, we'll free the skb we were holding | ||
3363 | * onto using dev_kfree_skb and bump the appropriate | ||
3364 | * counters. | ||
3365 | * | ||
3366 | * Return Codes: | ||
3367 | * None | ||
3368 | * | ||
3369 | * Assumptions: | ||
3370 | * The Type 2 register is not updated in this routine. It is | ||
3371 | * assumed that it will be updated in the ISR when dfx_xmt_done | ||
3372 | * returns. | ||
3373 | * | ||
3374 | * Side Effects: | ||
3375 | * None | ||
3376 | */ | ||
3377 | |||
3378 | static int dfx_xmt_done(DFX_board_t *bp) | ||
3379 | { | ||
3380 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ | ||
3381 | PI_TYPE_2_CONSUMER *p_type_2_cons; /* ptr to rcv/xmt consumer block register */ | ||
3382 | u8 comp; /* local transmit completion index */ | ||
3383 | int freed = 0; /* buffers freed */ | ||
3384 | |||
3385 | /* Service all consumed transmit frames */ | ||
3386 | |||
3387 | p_type_2_cons = (PI_TYPE_2_CONSUMER *)(&bp->cons_block_virt->xmt_rcv_data); | ||
3388 | while (bp->rcv_xmt_reg.index.xmt_comp != p_type_2_cons->index.xmt_cons) | ||
3389 | { | ||
3390 | /* Get pointer to the transmit driver descriptor block information */ | ||
3391 | |||
3392 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); | ||
3393 | |||
3394 | /* Increment transmit counters */ | ||
3395 | |||
3396 | bp->xmt_total_frames++; | ||
3397 | bp->xmt_total_bytes += p_xmt_drv_descr->p_skb->len; | ||
3398 | |||
3399 | /* Return skb to operating system */ | ||
3400 | comp = bp->rcv_xmt_reg.index.xmt_comp; | ||
3401 | dma_unmap_single(bp->bus_dev, | ||
3402 | bp->descr_block_virt->xmt_data[comp].long_1, | ||
3403 | p_xmt_drv_descr->p_skb->len, | ||
3404 | DMA_TO_DEVICE); | ||
3405 | dev_kfree_skb_irq(p_xmt_drv_descr->p_skb); | ||
3406 | |||
3407 | /* | ||
3408 | * Move to start of next packet by updating completion index | ||
3409 | * | ||
3410 | * Here we assume that a transmit packet request is always | ||
3411 | * serviced by posting one fragment. We can therefore | ||
3412 | * simplify the completion code by incrementing the | ||
3413 | * completion index by one. This code will need to be | ||
3414 | * modified if this assumption changes. See comments | ||
3415 | * in dfx_xmt_queue_pkt for more details. | ||
3416 | */ | ||
3417 | |||
3418 | bp->rcv_xmt_reg.index.xmt_comp += 1; | ||
3419 | freed++; | ||
3420 | } | ||
3421 | return freed; | ||
3422 | } | ||
3423 | |||
3424 | |||
3425 | /* | ||
3426 | * ================= | ||
3427 | * = dfx_rcv_flush = | ||
3428 | * ================= | ||
3429 | * | ||
3430 | * Overview: | ||
3431 | * Remove all skb's in the receive ring. | ||
3432 | * | ||
3433 | * Returns: | ||
3434 | * None | ||
3435 | * | ||
3436 | * Arguments: | ||
3437 | * bp - pointer to board information | ||
3438 | * | ||
3439 | * Functional Description: | ||
3440 | * Free's all the dynamically allocated skb's that are | ||
3441 | * currently attached to the device receive ring. This | ||
3442 | * function is typically only used when the device is | ||
3443 | * initialized or reinitialized. | ||
3444 | * | ||
3445 | * Return Codes: | ||
3446 | * None | ||
3447 | * | ||
3448 | * Side Effects: | ||
3449 | * None | ||
3450 | */ | ||
3451 | #ifdef DYNAMIC_BUFFERS | ||
3452 | static void dfx_rcv_flush( DFX_board_t *bp ) | ||
3453 | { | ||
3454 | int i, j; | ||
3455 | |||
3456 | for (i = 0; i < (int)(bp->rcv_bufs_to_post); i++) | ||
3457 | for (j = 0; (i + j) < (int)PI_RCV_DATA_K_NUM_ENTRIES; j += bp->rcv_bufs_to_post) | ||
3458 | { | ||
3459 | struct sk_buff *skb; | ||
3460 | skb = (struct sk_buff *)bp->p_rcv_buff_va[i+j]; | ||
3461 | if (skb) | ||
3462 | dev_kfree_skb(skb); | ||
3463 | bp->p_rcv_buff_va[i+j] = NULL; | ||
3464 | } | ||
3465 | |||
3466 | } | ||
3467 | #else | ||
3468 | static inline void dfx_rcv_flush( DFX_board_t *bp ) | ||
3469 | { | ||
3470 | } | ||
3471 | #endif /* DYNAMIC_BUFFERS */ | ||
3472 | |||
3473 | /* | ||
3474 | * ================= | ||
3475 | * = dfx_xmt_flush = | ||
3476 | * ================= | ||
3477 | * | ||
3478 | * Overview: | ||
3479 | * Processes all frames whether they've been transmitted | ||
3480 | * or not. | ||
3481 | * | ||
3482 | * Returns: | ||
3483 | * None | ||
3484 | * | ||
3485 | * Arguments: | ||
3486 | * bp - pointer to board information | ||
3487 | * | ||
3488 | * Functional Description: | ||
3489 | * For all produced transmit descriptors that have not | ||
3490 | * yet been completed, we'll free the skb we were holding | ||
3491 | * onto using dev_kfree_skb and bump the appropriate | ||
3492 | * counters. Of course, it's possible that some of | ||
3493 | * these transmit requests actually did go out, but we | ||
3494 | * won't make that distinction here. Finally, we'll | ||
3495 | * update the consumer index to match the producer. | ||
3496 | * | ||
3497 | * Return Codes: | ||
3498 | * None | ||
3499 | * | ||
3500 | * Assumptions: | ||
3501 | * This routine does NOT update the Type 2 register. It | ||
3502 | * is assumed that this routine is being called during a | ||
3503 | * transmit flush interrupt, or a shutdown or close routine. | ||
3504 | * | ||
3505 | * Side Effects: | ||
3506 | * None | ||
3507 | */ | ||
3508 | |||
3509 | static void dfx_xmt_flush( DFX_board_t *bp ) | ||
3510 | { | ||
3511 | u32 prod_cons; /* rcv/xmt consumer block longword */ | ||
3512 | XMT_DRIVER_DESCR *p_xmt_drv_descr; /* ptr to transmit driver descriptor */ | ||
3513 | u8 comp; /* local transmit completion index */ | ||
3514 | |||
3515 | /* Flush all outstanding transmit frames */ | ||
3516 | |||
3517 | while (bp->rcv_xmt_reg.index.xmt_comp != bp->rcv_xmt_reg.index.xmt_prod) | ||
3518 | { | ||
3519 | /* Get pointer to the transmit driver descriptor block information */ | ||
3520 | |||
3521 | p_xmt_drv_descr = &(bp->xmt_drv_descr_blk[bp->rcv_xmt_reg.index.xmt_comp]); | ||
3522 | |||
3523 | /* Return skb to operating system */ | ||
3524 | comp = bp->rcv_xmt_reg.index.xmt_comp; | ||
3525 | dma_unmap_single(bp->bus_dev, | ||
3526 | bp->descr_block_virt->xmt_data[comp].long_1, | ||
3527 | p_xmt_drv_descr->p_skb->len, | ||
3528 | DMA_TO_DEVICE); | ||
3529 | dev_kfree_skb(p_xmt_drv_descr->p_skb); | ||
3530 | |||
3531 | /* Increment transmit error counter */ | ||
3532 | |||
3533 | bp->xmt_discards++; | ||
3534 | |||
3535 | /* | ||
3536 | * Move to start of next packet by updating completion index | ||
3537 | * | ||
3538 | * Here we assume that a transmit packet request is always | ||
3539 | * serviced by posting one fragment. We can therefore | ||
3540 | * simplify the completion code by incrementing the | ||
3541 | * completion index by one. This code will need to be | ||
3542 | * modified if this assumption changes. See comments | ||
3543 | * in dfx_xmt_queue_pkt for more details. | ||
3544 | */ | ||
3545 | |||
3546 | bp->rcv_xmt_reg.index.xmt_comp += 1; | ||
3547 | } | ||
3548 | |||
3549 | /* Update the transmit consumer index in the consumer block */ | ||
3550 | |||
3551 | prod_cons = (u32)(bp->cons_block_virt->xmt_rcv_data & ~PI_CONS_M_XMT_INDEX); | ||
3552 | prod_cons |= (u32)(bp->rcv_xmt_reg.index.xmt_prod << PI_CONS_V_XMT_INDEX); | ||
3553 | bp->cons_block_virt->xmt_rcv_data = prod_cons; | ||
3554 | } | ||
3555 | |||
3556 | /* | ||
3557 | * ================== | ||
3558 | * = dfx_unregister = | ||
3559 | * ================== | ||
3560 | * | ||
3561 | * Overview: | ||
3562 | * Shuts down an FDDI controller | ||
3563 | * | ||
3564 | * Returns: | ||
3565 | * Condition code | ||
3566 | * | ||
3567 | * Arguments: | ||
3568 | * bdev - pointer to device information | ||
3569 | * | ||
3570 | * Functional Description: | ||
3571 | * | ||
3572 | * Return Codes: | ||
3573 | * None | ||
3574 | * | ||
3575 | * Assumptions: | ||
3576 | * It compiles so it should work :-( (PCI cards do :-) | ||
3577 | * | ||
3578 | * Side Effects: | ||
3579 | * Device structures for FDDI adapters (fddi0, fddi1, etc) are | ||
3580 | * freed. | ||
3581 | */ | ||
3582 | static void __devexit dfx_unregister(struct device *bdev) | ||
3583 | { | ||
3584 | struct net_device *dev = dev_get_drvdata(bdev); | ||
3585 | DFX_board_t *bp = netdev_priv(dev); | ||
3586 | int dfx_bus_pci = DFX_BUS_PCI(bdev); | ||
3587 | int dfx_bus_tc = DFX_BUS_TC(bdev); | ||
3588 | int dfx_use_mmio = DFX_MMIO || dfx_bus_tc; | ||
3589 | resource_size_t bar_start = 0; /* pointer to port */ | ||
3590 | resource_size_t bar_len = 0; /* resource length */ | ||
3591 | int alloc_size; /* total buffer size used */ | ||
3592 | |||
3593 | unregister_netdev(dev); | ||
3594 | |||
3595 | alloc_size = sizeof(PI_DESCR_BLOCK) + | ||
3596 | PI_CMD_REQ_K_SIZE_MAX + PI_CMD_RSP_K_SIZE_MAX + | ||
3597 | #ifndef DYNAMIC_BUFFERS | ||
3598 | (bp->rcv_bufs_to_post * PI_RCV_DATA_K_SIZE_MAX) + | ||
3599 | #endif | ||
3600 | sizeof(PI_CONSUMER_BLOCK) + | ||
3601 | (PI_ALIGN_K_DESC_BLK - 1); | ||
3602 | if (bp->kmalloced) | ||
3603 | dma_free_coherent(bdev, alloc_size, | ||
3604 | bp->kmalloced, bp->kmalloced_dma); | ||
3605 | |||
3606 | dfx_bus_uninit(dev); | ||
3607 | |||
3608 | dfx_get_bars(bdev, &bar_start, &bar_len); | ||
3609 | if (dfx_use_mmio) { | ||
3610 | iounmap(bp->base.mem); | ||
3611 | release_mem_region(bar_start, bar_len); | ||
3612 | } else | ||
3613 | release_region(bar_start, bar_len); | ||
3614 | |||
3615 | if (dfx_bus_pci) | ||
3616 | pci_disable_device(to_pci_dev(bdev)); | ||
3617 | |||
3618 | free_netdev(dev); | ||
3619 | } | ||
3620 | |||
3621 | |||
3622 | static int __devinit __maybe_unused dfx_dev_register(struct device *); | ||
3623 | static int __devexit __maybe_unused dfx_dev_unregister(struct device *); | ||
3624 | |||
3625 | #ifdef CONFIG_PCI | ||
3626 | static int __devinit dfx_pci_register(struct pci_dev *, | ||
3627 | const struct pci_device_id *); | ||
3628 | static void __devexit dfx_pci_unregister(struct pci_dev *); | ||
3629 | |||
3630 | static DEFINE_PCI_DEVICE_TABLE(dfx_pci_table) = { | ||
3631 | { PCI_DEVICE(PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_DEC_FDDI) }, | ||
3632 | { } | ||
3633 | }; | ||
3634 | MODULE_DEVICE_TABLE(pci, dfx_pci_table); | ||
3635 | |||
3636 | static struct pci_driver dfx_pci_driver = { | ||
3637 | .name = "defxx", | ||
3638 | .id_table = dfx_pci_table, | ||
3639 | .probe = dfx_pci_register, | ||
3640 | .remove = __devexit_p(dfx_pci_unregister), | ||
3641 | }; | ||
3642 | |||
3643 | static __devinit int dfx_pci_register(struct pci_dev *pdev, | ||
3644 | const struct pci_device_id *ent) | ||
3645 | { | ||
3646 | return dfx_register(&pdev->dev); | ||
3647 | } | ||
3648 | |||
3649 | static void __devexit dfx_pci_unregister(struct pci_dev *pdev) | ||
3650 | { | ||
3651 | dfx_unregister(&pdev->dev); | ||
3652 | } | ||
3653 | #endif /* CONFIG_PCI */ | ||
3654 | |||
3655 | #ifdef CONFIG_EISA | ||
3656 | static struct eisa_device_id dfx_eisa_table[] = { | ||
3657 | { "DEC3001", DEFEA_PROD_ID_1 }, | ||
3658 | { "DEC3002", DEFEA_PROD_ID_2 }, | ||
3659 | { "DEC3003", DEFEA_PROD_ID_3 }, | ||
3660 | { "DEC3004", DEFEA_PROD_ID_4 }, | ||
3661 | { } | ||
3662 | }; | ||
3663 | MODULE_DEVICE_TABLE(eisa, dfx_eisa_table); | ||
3664 | |||
3665 | static struct eisa_driver dfx_eisa_driver = { | ||
3666 | .id_table = dfx_eisa_table, | ||
3667 | .driver = { | ||
3668 | .name = "defxx", | ||
3669 | .bus = &eisa_bus_type, | ||
3670 | .probe = dfx_dev_register, | ||
3671 | .remove = __devexit_p(dfx_dev_unregister), | ||
3672 | }, | ||
3673 | }; | ||
3674 | #endif /* CONFIG_EISA */ | ||
3675 | |||
3676 | #ifdef CONFIG_TC | ||
3677 | static struct tc_device_id const dfx_tc_table[] = { | ||
3678 | { "DEC ", "PMAF-FA " }, | ||
3679 | { "DEC ", "PMAF-FD " }, | ||
3680 | { "DEC ", "PMAF-FS " }, | ||
3681 | { "DEC ", "PMAF-FU " }, | ||
3682 | { } | ||
3683 | }; | ||
3684 | MODULE_DEVICE_TABLE(tc, dfx_tc_table); | ||
3685 | |||
3686 | static struct tc_driver dfx_tc_driver = { | ||
3687 | .id_table = dfx_tc_table, | ||
3688 | .driver = { | ||
3689 | .name = "defxx", | ||
3690 | .bus = &tc_bus_type, | ||
3691 | .probe = dfx_dev_register, | ||
3692 | .remove = __devexit_p(dfx_dev_unregister), | ||
3693 | }, | ||
3694 | }; | ||
3695 | #endif /* CONFIG_TC */ | ||
3696 | |||
3697 | static int __devinit __maybe_unused dfx_dev_register(struct device *dev) | ||
3698 | { | ||
3699 | int status; | ||
3700 | |||
3701 | status = dfx_register(dev); | ||
3702 | if (!status) | ||
3703 | get_device(dev); | ||
3704 | return status; | ||
3705 | } | ||
3706 | |||
3707 | static int __devexit __maybe_unused dfx_dev_unregister(struct device *dev) | ||
3708 | { | ||
3709 | put_device(dev); | ||
3710 | dfx_unregister(dev); | ||
3711 | return 0; | ||
3712 | } | ||
3713 | |||
3714 | |||
3715 | static int __devinit dfx_init(void) | ||
3716 | { | ||
3717 | int status; | ||
3718 | |||
3719 | status = pci_register_driver(&dfx_pci_driver); | ||
3720 | if (!status) | ||
3721 | status = eisa_driver_register(&dfx_eisa_driver); | ||
3722 | if (!status) | ||
3723 | status = tc_register_driver(&dfx_tc_driver); | ||
3724 | return status; | ||
3725 | } | ||
3726 | |||
3727 | static void __devexit dfx_cleanup(void) | ||
3728 | { | ||
3729 | tc_unregister_driver(&dfx_tc_driver); | ||
3730 | eisa_driver_unregister(&dfx_eisa_driver); | ||
3731 | pci_unregister_driver(&dfx_pci_driver); | ||
3732 | } | ||
3733 | |||
3734 | module_init(dfx_init); | ||
3735 | module_exit(dfx_cleanup); | ||
3736 | MODULE_AUTHOR("Lawrence V. Stefani"); | ||
3737 | MODULE_DESCRIPTION("DEC FDDIcontroller TC/EISA/PCI (DEFTA/DEFEA/DEFPA) driver " | ||
3738 | DRV_VERSION " " DRV_RELDATE); | ||
3739 | MODULE_LICENSE("GPL"); | ||