diff options
author | Divy Le Ray <divy@chelsio.com> | 2007-01-18 22:04:14 -0500 |
---|---|---|
committer | Jeff Garzik <jeff@garzik.org> | 2007-02-05 16:58:46 -0500 |
commit | 4d22de3e6cc4a09c369b504cd8bcde3385a974cd (patch) | |
tree | af13a2ee582105d961c79fc4e55fce0b5e043310 /drivers/net/cxgb3/sge.c | |
parent | 0bf94faf64afaba6e7b49fd11541b59d2ba06d0e (diff) |
Add support for the latest 1G/10G Chelsio adapter, T3.
This driver is required by the Chelsio T3 RDMA driver posted by
Steve Wise.
Signed-off-by: Divy Le Ray <divy@chelsio.com>
Signed-off-by: Jeff Garzik <jeff@garzik.org>
Diffstat (limited to 'drivers/net/cxgb3/sge.c')
-rw-r--r-- | drivers/net/cxgb3/sge.c | 2702 |
1 files changed, 2702 insertions, 0 deletions
diff --git a/drivers/net/cxgb3/sge.c b/drivers/net/cxgb3/sge.c new file mode 100644 index 000000000000..6c77f4bab62f --- /dev/null +++ b/drivers/net/cxgb3/sge.c | |||
@@ -0,0 +1,2702 @@ | |||
1 | /* | ||
2 | * This file is part of the Chelsio T3 Ethernet driver. | ||
3 | * | ||
4 | * Copyright (C) 2005-2006 Chelsio Communications. All rights reserved. | ||
5 | * | ||
6 | * This program is distributed in the hope that it will be useful, but WITHOUT | ||
7 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
8 | * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this | ||
9 | * release for licensing terms and conditions. | ||
10 | */ | ||
11 | |||
12 | #include <linux/skbuff.h> | ||
13 | #include <linux/netdevice.h> | ||
14 | #include <linux/etherdevice.h> | ||
15 | #include <linux/if_vlan.h> | ||
16 | #include <linux/ip.h> | ||
17 | #include <linux/tcp.h> | ||
18 | #include <linux/dma-mapping.h> | ||
19 | #include "common.h" | ||
20 | #include "regs.h" | ||
21 | #include "sge_defs.h" | ||
22 | #include "t3_cpl.h" | ||
23 | #include "firmware_exports.h" | ||
24 | |||
25 | #define USE_GTS 0 | ||
26 | |||
27 | #define SGE_RX_SM_BUF_SIZE 1536 | ||
28 | #define SGE_RX_COPY_THRES 256 | ||
29 | |||
30 | # define SGE_RX_DROP_THRES 16 | ||
31 | |||
32 | /* | ||
33 | * Period of the Tx buffer reclaim timer. This timer does not need to run | ||
34 | * frequently as Tx buffers are usually reclaimed by new Tx packets. | ||
35 | */ | ||
36 | #define TX_RECLAIM_PERIOD (HZ / 4) | ||
37 | |||
38 | /* WR size in bytes */ | ||
39 | #define WR_LEN (WR_FLITS * 8) | ||
40 | |||
41 | /* | ||
42 | * Types of Tx queues in each queue set. Order here matters, do not change. | ||
43 | */ | ||
44 | enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; | ||
45 | |||
46 | /* Values for sge_txq.flags */ | ||
47 | enum { | ||
48 | TXQ_RUNNING = 1 << 0, /* fetch engine is running */ | ||
49 | TXQ_LAST_PKT_DB = 1 << 1, /* last packet rang the doorbell */ | ||
50 | }; | ||
51 | |||
52 | struct tx_desc { | ||
53 | u64 flit[TX_DESC_FLITS]; | ||
54 | }; | ||
55 | |||
56 | struct rx_desc { | ||
57 | __be32 addr_lo; | ||
58 | __be32 len_gen; | ||
59 | __be32 gen2; | ||
60 | __be32 addr_hi; | ||
61 | }; | ||
62 | |||
63 | struct tx_sw_desc { /* SW state per Tx descriptor */ | ||
64 | struct sk_buff *skb; | ||
65 | }; | ||
66 | |||
67 | struct rx_sw_desc { /* SW state per Rx descriptor */ | ||
68 | struct sk_buff *skb; | ||
69 | DECLARE_PCI_UNMAP_ADDR(dma_addr); | ||
70 | }; | ||
71 | |||
72 | struct rsp_desc { /* response queue descriptor */ | ||
73 | struct rss_header rss_hdr; | ||
74 | __be32 flags; | ||
75 | __be32 len_cq; | ||
76 | u8 imm_data[47]; | ||
77 | u8 intr_gen; | ||
78 | }; | ||
79 | |||
80 | struct unmap_info { /* packet unmapping info, overlays skb->cb */ | ||
81 | int sflit; /* start flit of first SGL entry in Tx descriptor */ | ||
82 | u16 fragidx; /* first page fragment in current Tx descriptor */ | ||
83 | u16 addr_idx; /* buffer index of first SGL entry in descriptor */ | ||
84 | u32 len; /* mapped length of skb main body */ | ||
85 | }; | ||
86 | |||
87 | /* | ||
88 | * Maps a number of flits to the number of Tx descriptors that can hold them. | ||
89 | * The formula is | ||
90 | * | ||
91 | * desc = 1 + (flits - 2) / (WR_FLITS - 1). | ||
92 | * | ||
93 | * HW allows up to 4 descriptors to be combined into a WR. | ||
94 | */ | ||
95 | static u8 flit_desc_map[] = { | ||
96 | 0, | ||
97 | #if SGE_NUM_GENBITS == 1 | ||
98 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
99 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | ||
100 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | ||
101 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 | ||
102 | #elif SGE_NUM_GENBITS == 2 | ||
103 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | ||
104 | 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | ||
105 | 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | ||
106 | 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | ||
107 | #else | ||
108 | # error "SGE_NUM_GENBITS must be 1 or 2" | ||
109 | #endif | ||
110 | }; | ||
111 | |||
112 | static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) | ||
113 | { | ||
114 | return container_of(q, struct sge_qset, fl[qidx]); | ||
115 | } | ||
116 | |||
117 | static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) | ||
118 | { | ||
119 | return container_of(q, struct sge_qset, rspq); | ||
120 | } | ||
121 | |||
122 | static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) | ||
123 | { | ||
124 | return container_of(q, struct sge_qset, txq[qidx]); | ||
125 | } | ||
126 | |||
127 | /** | ||
128 | * refill_rspq - replenish an SGE response queue | ||
129 | * @adapter: the adapter | ||
130 | * @q: the response queue to replenish | ||
131 | * @credits: how many new responses to make available | ||
132 | * | ||
133 | * Replenishes a response queue by making the supplied number of responses | ||
134 | * available to HW. | ||
135 | */ | ||
136 | static inline void refill_rspq(struct adapter *adapter, | ||
137 | const struct sge_rspq *q, unsigned int credits) | ||
138 | { | ||
139 | t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, | ||
140 | V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); | ||
141 | } | ||
142 | |||
143 | /** | ||
144 | * need_skb_unmap - does the platform need unmapping of sk_buffs? | ||
145 | * | ||
146 | * Returns true if the platfrom needs sk_buff unmapping. The compiler | ||
147 | * optimizes away unecessary code if this returns true. | ||
148 | */ | ||
149 | static inline int need_skb_unmap(void) | ||
150 | { | ||
151 | /* | ||
152 | * This structure is used to tell if the platfrom needs buffer | ||
153 | * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything. | ||
154 | */ | ||
155 | struct dummy { | ||
156 | DECLARE_PCI_UNMAP_ADDR(addr); | ||
157 | }; | ||
158 | |||
159 | return sizeof(struct dummy) != 0; | ||
160 | } | ||
161 | |||
162 | /** | ||
163 | * unmap_skb - unmap a packet main body and its page fragments | ||
164 | * @skb: the packet | ||
165 | * @q: the Tx queue containing Tx descriptors for the packet | ||
166 | * @cidx: index of Tx descriptor | ||
167 | * @pdev: the PCI device | ||
168 | * | ||
169 | * Unmap the main body of an sk_buff and its page fragments, if any. | ||
170 | * Because of the fairly complicated structure of our SGLs and the desire | ||
171 | * to conserve space for metadata, we keep the information necessary to | ||
172 | * unmap an sk_buff partly in the sk_buff itself (in its cb), and partly | ||
173 | * in the Tx descriptors (the physical addresses of the various data | ||
174 | * buffers). The send functions initialize the state in skb->cb so we | ||
175 | * can unmap the buffers held in the first Tx descriptor here, and we | ||
176 | * have enough information at this point to update the state for the next | ||
177 | * Tx descriptor. | ||
178 | */ | ||
179 | static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, | ||
180 | unsigned int cidx, struct pci_dev *pdev) | ||
181 | { | ||
182 | const struct sg_ent *sgp; | ||
183 | struct unmap_info *ui = (struct unmap_info *)skb->cb; | ||
184 | int nfrags, frag_idx, curflit, j = ui->addr_idx; | ||
185 | |||
186 | sgp = (struct sg_ent *)&q->desc[cidx].flit[ui->sflit]; | ||
187 | |||
188 | if (ui->len) { | ||
189 | pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), ui->len, | ||
190 | PCI_DMA_TODEVICE); | ||
191 | ui->len = 0; /* so we know for next descriptor for this skb */ | ||
192 | j = 1; | ||
193 | } | ||
194 | |||
195 | frag_idx = ui->fragidx; | ||
196 | curflit = ui->sflit + 1 + j; | ||
197 | nfrags = skb_shinfo(skb)->nr_frags; | ||
198 | |||
199 | while (frag_idx < nfrags && curflit < WR_FLITS) { | ||
200 | pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), | ||
201 | skb_shinfo(skb)->frags[frag_idx].size, | ||
202 | PCI_DMA_TODEVICE); | ||
203 | j ^= 1; | ||
204 | if (j == 0) { | ||
205 | sgp++; | ||
206 | curflit++; | ||
207 | } | ||
208 | curflit++; | ||
209 | frag_idx++; | ||
210 | } | ||
211 | |||
212 | if (frag_idx < nfrags) { /* SGL continues into next Tx descriptor */ | ||
213 | ui->fragidx = frag_idx; | ||
214 | ui->addr_idx = j; | ||
215 | ui->sflit = curflit - WR_FLITS - j; /* sflit can be -1 */ | ||
216 | } | ||
217 | } | ||
218 | |||
219 | /** | ||
220 | * free_tx_desc - reclaims Tx descriptors and their buffers | ||
221 | * @adapter: the adapter | ||
222 | * @q: the Tx queue to reclaim descriptors from | ||
223 | * @n: the number of descriptors to reclaim | ||
224 | * | ||
225 | * Reclaims Tx descriptors from an SGE Tx queue and frees the associated | ||
226 | * Tx buffers. Called with the Tx queue lock held. | ||
227 | */ | ||
228 | static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, | ||
229 | unsigned int n) | ||
230 | { | ||
231 | struct tx_sw_desc *d; | ||
232 | struct pci_dev *pdev = adapter->pdev; | ||
233 | unsigned int cidx = q->cidx; | ||
234 | |||
235 | d = &q->sdesc[cidx]; | ||
236 | while (n--) { | ||
237 | if (d->skb) { /* an SGL is present */ | ||
238 | if (need_skb_unmap()) | ||
239 | unmap_skb(d->skb, q, cidx, pdev); | ||
240 | if (d->skb->priority == cidx) | ||
241 | kfree_skb(d->skb); | ||
242 | } | ||
243 | ++d; | ||
244 | if (++cidx == q->size) { | ||
245 | cidx = 0; | ||
246 | d = q->sdesc; | ||
247 | } | ||
248 | } | ||
249 | q->cidx = cidx; | ||
250 | } | ||
251 | |||
252 | /** | ||
253 | * reclaim_completed_tx - reclaims completed Tx descriptors | ||
254 | * @adapter: the adapter | ||
255 | * @q: the Tx queue to reclaim completed descriptors from | ||
256 | * | ||
257 | * Reclaims Tx descriptors that the SGE has indicated it has processed, | ||
258 | * and frees the associated buffers if possible. Called with the Tx | ||
259 | * queue's lock held. | ||
260 | */ | ||
261 | static inline void reclaim_completed_tx(struct adapter *adapter, | ||
262 | struct sge_txq *q) | ||
263 | { | ||
264 | unsigned int reclaim = q->processed - q->cleaned; | ||
265 | |||
266 | if (reclaim) { | ||
267 | free_tx_desc(adapter, q, reclaim); | ||
268 | q->cleaned += reclaim; | ||
269 | q->in_use -= reclaim; | ||
270 | } | ||
271 | } | ||
272 | |||
273 | /** | ||
274 | * should_restart_tx - are there enough resources to restart a Tx queue? | ||
275 | * @q: the Tx queue | ||
276 | * | ||
277 | * Checks if there are enough descriptors to restart a suspended Tx queue. | ||
278 | */ | ||
279 | static inline int should_restart_tx(const struct sge_txq *q) | ||
280 | { | ||
281 | unsigned int r = q->processed - q->cleaned; | ||
282 | |||
283 | return q->in_use - r < (q->size >> 1); | ||
284 | } | ||
285 | |||
286 | /** | ||
287 | * free_rx_bufs - free the Rx buffers on an SGE free list | ||
288 | * @pdev: the PCI device associated with the adapter | ||
289 | * @rxq: the SGE free list to clean up | ||
290 | * | ||
291 | * Release the buffers on an SGE free-buffer Rx queue. HW fetching from | ||
292 | * this queue should be stopped before calling this function. | ||
293 | */ | ||
294 | static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) | ||
295 | { | ||
296 | unsigned int cidx = q->cidx; | ||
297 | |||
298 | while (q->credits--) { | ||
299 | struct rx_sw_desc *d = &q->sdesc[cidx]; | ||
300 | |||
301 | pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr), | ||
302 | q->buf_size, PCI_DMA_FROMDEVICE); | ||
303 | kfree_skb(d->skb); | ||
304 | d->skb = NULL; | ||
305 | if (++cidx == q->size) | ||
306 | cidx = 0; | ||
307 | } | ||
308 | } | ||
309 | |||
310 | /** | ||
311 | * add_one_rx_buf - add a packet buffer to a free-buffer list | ||
312 | * @skb: the buffer to add | ||
313 | * @len: the buffer length | ||
314 | * @d: the HW Rx descriptor to write | ||
315 | * @sd: the SW Rx descriptor to write | ||
316 | * @gen: the generation bit value | ||
317 | * @pdev: the PCI device associated with the adapter | ||
318 | * | ||
319 | * Add a buffer of the given length to the supplied HW and SW Rx | ||
320 | * descriptors. | ||
321 | */ | ||
322 | static inline void add_one_rx_buf(struct sk_buff *skb, unsigned int len, | ||
323 | struct rx_desc *d, struct rx_sw_desc *sd, | ||
324 | unsigned int gen, struct pci_dev *pdev) | ||
325 | { | ||
326 | dma_addr_t mapping; | ||
327 | |||
328 | sd->skb = skb; | ||
329 | mapping = pci_map_single(pdev, skb->data, len, PCI_DMA_FROMDEVICE); | ||
330 | pci_unmap_addr_set(sd, dma_addr, mapping); | ||
331 | |||
332 | d->addr_lo = cpu_to_be32(mapping); | ||
333 | d->addr_hi = cpu_to_be32((u64) mapping >> 32); | ||
334 | wmb(); | ||
335 | d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); | ||
336 | d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); | ||
337 | } | ||
338 | |||
339 | /** | ||
340 | * refill_fl - refill an SGE free-buffer list | ||
341 | * @adapter: the adapter | ||
342 | * @q: the free-list to refill | ||
343 | * @n: the number of new buffers to allocate | ||
344 | * @gfp: the gfp flags for allocating new buffers | ||
345 | * | ||
346 | * (Re)populate an SGE free-buffer list with up to @n new packet buffers, | ||
347 | * allocated with the supplied gfp flags. The caller must assure that | ||
348 | * @n does not exceed the queue's capacity. | ||
349 | */ | ||
350 | static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) | ||
351 | { | ||
352 | struct rx_sw_desc *sd = &q->sdesc[q->pidx]; | ||
353 | struct rx_desc *d = &q->desc[q->pidx]; | ||
354 | |||
355 | while (n--) { | ||
356 | struct sk_buff *skb = alloc_skb(q->buf_size, gfp); | ||
357 | |||
358 | if (!skb) | ||
359 | break; | ||
360 | |||
361 | add_one_rx_buf(skb, q->buf_size, d, sd, q->gen, adap->pdev); | ||
362 | d++; | ||
363 | sd++; | ||
364 | if (++q->pidx == q->size) { | ||
365 | q->pidx = 0; | ||
366 | q->gen ^= 1; | ||
367 | sd = q->sdesc; | ||
368 | d = q->desc; | ||
369 | } | ||
370 | q->credits++; | ||
371 | } | ||
372 | |||
373 | t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); | ||
374 | } | ||
375 | |||
376 | static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) | ||
377 | { | ||
378 | refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC); | ||
379 | } | ||
380 | |||
381 | /** | ||
382 | * recycle_rx_buf - recycle a receive buffer | ||
383 | * @adapter: the adapter | ||
384 | * @q: the SGE free list | ||
385 | * @idx: index of buffer to recycle | ||
386 | * | ||
387 | * Recycles the specified buffer on the given free list by adding it at | ||
388 | * the next available slot on the list. | ||
389 | */ | ||
390 | static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, | ||
391 | unsigned int idx) | ||
392 | { | ||
393 | struct rx_desc *from = &q->desc[idx]; | ||
394 | struct rx_desc *to = &q->desc[q->pidx]; | ||
395 | |||
396 | q->sdesc[q->pidx] = q->sdesc[idx]; | ||
397 | to->addr_lo = from->addr_lo; /* already big endian */ | ||
398 | to->addr_hi = from->addr_hi; /* likewise */ | ||
399 | wmb(); | ||
400 | to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); | ||
401 | to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); | ||
402 | q->credits++; | ||
403 | |||
404 | if (++q->pidx == q->size) { | ||
405 | q->pidx = 0; | ||
406 | q->gen ^= 1; | ||
407 | } | ||
408 | t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); | ||
409 | } | ||
410 | |||
411 | /** | ||
412 | * alloc_ring - allocate resources for an SGE descriptor ring | ||
413 | * @pdev: the PCI device | ||
414 | * @nelem: the number of descriptors | ||
415 | * @elem_size: the size of each descriptor | ||
416 | * @sw_size: the size of the SW state associated with each ring element | ||
417 | * @phys: the physical address of the allocated ring | ||
418 | * @metadata: address of the array holding the SW state for the ring | ||
419 | * | ||
420 | * Allocates resources for an SGE descriptor ring, such as Tx queues, | ||
421 | * free buffer lists, or response queues. Each SGE ring requires | ||
422 | * space for its HW descriptors plus, optionally, space for the SW state | ||
423 | * associated with each HW entry (the metadata). The function returns | ||
424 | * three values: the virtual address for the HW ring (the return value | ||
425 | * of the function), the physical address of the HW ring, and the address | ||
426 | * of the SW ring. | ||
427 | */ | ||
428 | static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, | ||
429 | size_t sw_size, dma_addr_t *phys, void *metadata) | ||
430 | { | ||
431 | size_t len = nelem * elem_size; | ||
432 | void *s = NULL; | ||
433 | void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); | ||
434 | |||
435 | if (!p) | ||
436 | return NULL; | ||
437 | if (sw_size) { | ||
438 | s = kcalloc(nelem, sw_size, GFP_KERNEL); | ||
439 | |||
440 | if (!s) { | ||
441 | dma_free_coherent(&pdev->dev, len, p, *phys); | ||
442 | return NULL; | ||
443 | } | ||
444 | } | ||
445 | if (metadata) | ||
446 | *(void **)metadata = s; | ||
447 | memset(p, 0, len); | ||
448 | return p; | ||
449 | } | ||
450 | |||
451 | /** | ||
452 | * free_qset - free the resources of an SGE queue set | ||
453 | * @adapter: the adapter owning the queue set | ||
454 | * @q: the queue set | ||
455 | * | ||
456 | * Release the HW and SW resources associated with an SGE queue set, such | ||
457 | * as HW contexts, packet buffers, and descriptor rings. Traffic to the | ||
458 | * queue set must be quiesced prior to calling this. | ||
459 | */ | ||
460 | void t3_free_qset(struct adapter *adapter, struct sge_qset *q) | ||
461 | { | ||
462 | int i; | ||
463 | struct pci_dev *pdev = adapter->pdev; | ||
464 | |||
465 | if (q->tx_reclaim_timer.function) | ||
466 | del_timer_sync(&q->tx_reclaim_timer); | ||
467 | |||
468 | for (i = 0; i < SGE_RXQ_PER_SET; ++i) | ||
469 | if (q->fl[i].desc) { | ||
470 | spin_lock(&adapter->sge.reg_lock); | ||
471 | t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); | ||
472 | spin_unlock(&adapter->sge.reg_lock); | ||
473 | free_rx_bufs(pdev, &q->fl[i]); | ||
474 | kfree(q->fl[i].sdesc); | ||
475 | dma_free_coherent(&pdev->dev, | ||
476 | q->fl[i].size * | ||
477 | sizeof(struct rx_desc), q->fl[i].desc, | ||
478 | q->fl[i].phys_addr); | ||
479 | } | ||
480 | |||
481 | for (i = 0; i < SGE_TXQ_PER_SET; ++i) | ||
482 | if (q->txq[i].desc) { | ||
483 | spin_lock(&adapter->sge.reg_lock); | ||
484 | t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); | ||
485 | spin_unlock(&adapter->sge.reg_lock); | ||
486 | if (q->txq[i].sdesc) { | ||
487 | free_tx_desc(adapter, &q->txq[i], | ||
488 | q->txq[i].in_use); | ||
489 | kfree(q->txq[i].sdesc); | ||
490 | } | ||
491 | dma_free_coherent(&pdev->dev, | ||
492 | q->txq[i].size * | ||
493 | sizeof(struct tx_desc), | ||
494 | q->txq[i].desc, q->txq[i].phys_addr); | ||
495 | __skb_queue_purge(&q->txq[i].sendq); | ||
496 | } | ||
497 | |||
498 | if (q->rspq.desc) { | ||
499 | spin_lock(&adapter->sge.reg_lock); | ||
500 | t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); | ||
501 | spin_unlock(&adapter->sge.reg_lock); | ||
502 | dma_free_coherent(&pdev->dev, | ||
503 | q->rspq.size * sizeof(struct rsp_desc), | ||
504 | q->rspq.desc, q->rspq.phys_addr); | ||
505 | } | ||
506 | |||
507 | if (q->netdev) | ||
508 | q->netdev->atalk_ptr = NULL; | ||
509 | |||
510 | memset(q, 0, sizeof(*q)); | ||
511 | } | ||
512 | |||
513 | /** | ||
514 | * init_qset_cntxt - initialize an SGE queue set context info | ||
515 | * @qs: the queue set | ||
516 | * @id: the queue set id | ||
517 | * | ||
518 | * Initializes the TIDs and context ids for the queues of a queue set. | ||
519 | */ | ||
520 | static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) | ||
521 | { | ||
522 | qs->rspq.cntxt_id = id; | ||
523 | qs->fl[0].cntxt_id = 2 * id; | ||
524 | qs->fl[1].cntxt_id = 2 * id + 1; | ||
525 | qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; | ||
526 | qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; | ||
527 | qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; | ||
528 | qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; | ||
529 | qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; | ||
530 | } | ||
531 | |||
532 | /** | ||
533 | * sgl_len - calculates the size of an SGL of the given capacity | ||
534 | * @n: the number of SGL entries | ||
535 | * | ||
536 | * Calculates the number of flits needed for a scatter/gather list that | ||
537 | * can hold the given number of entries. | ||
538 | */ | ||
539 | static inline unsigned int sgl_len(unsigned int n) | ||
540 | { | ||
541 | /* alternatively: 3 * (n / 2) + 2 * (n & 1) */ | ||
542 | return (3 * n) / 2 + (n & 1); | ||
543 | } | ||
544 | |||
545 | /** | ||
546 | * flits_to_desc - returns the num of Tx descriptors for the given flits | ||
547 | * @n: the number of flits | ||
548 | * | ||
549 | * Calculates the number of Tx descriptors needed for the supplied number | ||
550 | * of flits. | ||
551 | */ | ||
552 | static inline unsigned int flits_to_desc(unsigned int n) | ||
553 | { | ||
554 | BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); | ||
555 | return flit_desc_map[n]; | ||
556 | } | ||
557 | |||
558 | /** | ||
559 | * get_packet - return the next ingress packet buffer from a free list | ||
560 | * @adap: the adapter that received the packet | ||
561 | * @fl: the SGE free list holding the packet | ||
562 | * @len: the packet length including any SGE padding | ||
563 | * @drop_thres: # of remaining buffers before we start dropping packets | ||
564 | * | ||
565 | * Get the next packet from a free list and complete setup of the | ||
566 | * sk_buff. If the packet is small we make a copy and recycle the | ||
567 | * original buffer, otherwise we use the original buffer itself. If a | ||
568 | * positive drop threshold is supplied packets are dropped and their | ||
569 | * buffers recycled if (a) the number of remaining buffers is under the | ||
570 | * threshold and the packet is too big to copy, or (b) the packet should | ||
571 | * be copied but there is no memory for the copy. | ||
572 | */ | ||
573 | static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, | ||
574 | unsigned int len, unsigned int drop_thres) | ||
575 | { | ||
576 | struct sk_buff *skb = NULL; | ||
577 | struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; | ||
578 | |||
579 | prefetch(sd->skb->data); | ||
580 | |||
581 | if (len <= SGE_RX_COPY_THRES) { | ||
582 | skb = alloc_skb(len, GFP_ATOMIC); | ||
583 | if (likely(skb != NULL)) { | ||
584 | __skb_put(skb, len); | ||
585 | pci_dma_sync_single_for_cpu(adap->pdev, | ||
586 | pci_unmap_addr(sd, | ||
587 | dma_addr), | ||
588 | len, PCI_DMA_FROMDEVICE); | ||
589 | memcpy(skb->data, sd->skb->data, len); | ||
590 | pci_dma_sync_single_for_device(adap->pdev, | ||
591 | pci_unmap_addr(sd, | ||
592 | dma_addr), | ||
593 | len, PCI_DMA_FROMDEVICE); | ||
594 | } else if (!drop_thres) | ||
595 | goto use_orig_buf; | ||
596 | recycle: | ||
597 | recycle_rx_buf(adap, fl, fl->cidx); | ||
598 | return skb; | ||
599 | } | ||
600 | |||
601 | if (unlikely(fl->credits < drop_thres)) | ||
602 | goto recycle; | ||
603 | |||
604 | use_orig_buf: | ||
605 | pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr), | ||
606 | fl->buf_size, PCI_DMA_FROMDEVICE); | ||
607 | skb = sd->skb; | ||
608 | skb_put(skb, len); | ||
609 | __refill_fl(adap, fl); | ||
610 | return skb; | ||
611 | } | ||
612 | |||
613 | /** | ||
614 | * get_imm_packet - return the next ingress packet buffer from a response | ||
615 | * @resp: the response descriptor containing the packet data | ||
616 | * | ||
617 | * Return a packet containing the immediate data of the given response. | ||
618 | */ | ||
619 | static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) | ||
620 | { | ||
621 | struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); | ||
622 | |||
623 | if (skb) { | ||
624 | __skb_put(skb, IMMED_PKT_SIZE); | ||
625 | memcpy(skb->data, resp->imm_data, IMMED_PKT_SIZE); | ||
626 | } | ||
627 | return skb; | ||
628 | } | ||
629 | |||
630 | /** | ||
631 | * calc_tx_descs - calculate the number of Tx descriptors for a packet | ||
632 | * @skb: the packet | ||
633 | * | ||
634 | * Returns the number of Tx descriptors needed for the given Ethernet | ||
635 | * packet. Ethernet packets require addition of WR and CPL headers. | ||
636 | */ | ||
637 | static inline unsigned int calc_tx_descs(const struct sk_buff *skb) | ||
638 | { | ||
639 | unsigned int flits; | ||
640 | |||
641 | if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) | ||
642 | return 1; | ||
643 | |||
644 | flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; | ||
645 | if (skb_shinfo(skb)->gso_size) | ||
646 | flits++; | ||
647 | return flits_to_desc(flits); | ||
648 | } | ||
649 | |||
650 | /** | ||
651 | * make_sgl - populate a scatter/gather list for a packet | ||
652 | * @skb: the packet | ||
653 | * @sgp: the SGL to populate | ||
654 | * @start: start address of skb main body data to include in the SGL | ||
655 | * @len: length of skb main body data to include in the SGL | ||
656 | * @pdev: the PCI device | ||
657 | * | ||
658 | * Generates a scatter/gather list for the buffers that make up a packet | ||
659 | * and returns the SGL size in 8-byte words. The caller must size the SGL | ||
660 | * appropriately. | ||
661 | */ | ||
662 | static inline unsigned int make_sgl(const struct sk_buff *skb, | ||
663 | struct sg_ent *sgp, unsigned char *start, | ||
664 | unsigned int len, struct pci_dev *pdev) | ||
665 | { | ||
666 | dma_addr_t mapping; | ||
667 | unsigned int i, j = 0, nfrags; | ||
668 | |||
669 | if (len) { | ||
670 | mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE); | ||
671 | sgp->len[0] = cpu_to_be32(len); | ||
672 | sgp->addr[0] = cpu_to_be64(mapping); | ||
673 | j = 1; | ||
674 | } | ||
675 | |||
676 | nfrags = skb_shinfo(skb)->nr_frags; | ||
677 | for (i = 0; i < nfrags; i++) { | ||
678 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
679 | |||
680 | mapping = pci_map_page(pdev, frag->page, frag->page_offset, | ||
681 | frag->size, PCI_DMA_TODEVICE); | ||
682 | sgp->len[j] = cpu_to_be32(frag->size); | ||
683 | sgp->addr[j] = cpu_to_be64(mapping); | ||
684 | j ^= 1; | ||
685 | if (j == 0) | ||
686 | ++sgp; | ||
687 | } | ||
688 | if (j) | ||
689 | sgp->len[j] = 0; | ||
690 | return ((nfrags + (len != 0)) * 3) / 2 + j; | ||
691 | } | ||
692 | |||
693 | /** | ||
694 | * check_ring_tx_db - check and potentially ring a Tx queue's doorbell | ||
695 | * @adap: the adapter | ||
696 | * @q: the Tx queue | ||
697 | * | ||
698 | * Ring the doorbel if a Tx queue is asleep. There is a natural race, | ||
699 | * where the HW is going to sleep just after we checked, however, | ||
700 | * then the interrupt handler will detect the outstanding TX packet | ||
701 | * and ring the doorbell for us. | ||
702 | * | ||
703 | * When GTS is disabled we unconditionally ring the doorbell. | ||
704 | */ | ||
705 | static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) | ||
706 | { | ||
707 | #if USE_GTS | ||
708 | clear_bit(TXQ_LAST_PKT_DB, &q->flags); | ||
709 | if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { | ||
710 | set_bit(TXQ_LAST_PKT_DB, &q->flags); | ||
711 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
712 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
713 | } | ||
714 | #else | ||
715 | wmb(); /* write descriptors before telling HW */ | ||
716 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
717 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
718 | #endif | ||
719 | } | ||
720 | |||
721 | static inline void wr_gen2(struct tx_desc *d, unsigned int gen) | ||
722 | { | ||
723 | #if SGE_NUM_GENBITS == 2 | ||
724 | d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); | ||
725 | #endif | ||
726 | } | ||
727 | |||
728 | /** | ||
729 | * write_wr_hdr_sgl - write a WR header and, optionally, SGL | ||
730 | * @ndesc: number of Tx descriptors spanned by the SGL | ||
731 | * @skb: the packet corresponding to the WR | ||
732 | * @d: first Tx descriptor to be written | ||
733 | * @pidx: index of above descriptors | ||
734 | * @q: the SGE Tx queue | ||
735 | * @sgl: the SGL | ||
736 | * @flits: number of flits to the start of the SGL in the first descriptor | ||
737 | * @sgl_flits: the SGL size in flits | ||
738 | * @gen: the Tx descriptor generation | ||
739 | * @wr_hi: top 32 bits of WR header based on WR type (big endian) | ||
740 | * @wr_lo: low 32 bits of WR header based on WR type (big endian) | ||
741 | * | ||
742 | * Write a work request header and an associated SGL. If the SGL is | ||
743 | * small enough to fit into one Tx descriptor it has already been written | ||
744 | * and we just need to write the WR header. Otherwise we distribute the | ||
745 | * SGL across the number of descriptors it spans. | ||
746 | */ | ||
747 | static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, | ||
748 | struct tx_desc *d, unsigned int pidx, | ||
749 | const struct sge_txq *q, | ||
750 | const struct sg_ent *sgl, | ||
751 | unsigned int flits, unsigned int sgl_flits, | ||
752 | unsigned int gen, unsigned int wr_hi, | ||
753 | unsigned int wr_lo) | ||
754 | { | ||
755 | struct work_request_hdr *wrp = (struct work_request_hdr *)d; | ||
756 | struct tx_sw_desc *sd = &q->sdesc[pidx]; | ||
757 | |||
758 | sd->skb = skb; | ||
759 | if (need_skb_unmap()) { | ||
760 | struct unmap_info *ui = (struct unmap_info *)skb->cb; | ||
761 | |||
762 | ui->fragidx = 0; | ||
763 | ui->addr_idx = 0; | ||
764 | ui->sflit = flits; | ||
765 | } | ||
766 | |||
767 | if (likely(ndesc == 1)) { | ||
768 | skb->priority = pidx; | ||
769 | wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | | ||
770 | V_WR_SGLSFLT(flits)) | wr_hi; | ||
771 | wmb(); | ||
772 | wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | | ||
773 | V_WR_GEN(gen)) | wr_lo; | ||
774 | wr_gen2(d, gen); | ||
775 | } else { | ||
776 | unsigned int ogen = gen; | ||
777 | const u64 *fp = (const u64 *)sgl; | ||
778 | struct work_request_hdr *wp = wrp; | ||
779 | |||
780 | wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | | ||
781 | V_WR_SGLSFLT(flits)) | wr_hi; | ||
782 | |||
783 | while (sgl_flits) { | ||
784 | unsigned int avail = WR_FLITS - flits; | ||
785 | |||
786 | if (avail > sgl_flits) | ||
787 | avail = sgl_flits; | ||
788 | memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); | ||
789 | sgl_flits -= avail; | ||
790 | ndesc--; | ||
791 | if (!sgl_flits) | ||
792 | break; | ||
793 | |||
794 | fp += avail; | ||
795 | d++; | ||
796 | sd++; | ||
797 | if (++pidx == q->size) { | ||
798 | pidx = 0; | ||
799 | gen ^= 1; | ||
800 | d = q->desc; | ||
801 | sd = q->sdesc; | ||
802 | } | ||
803 | |||
804 | sd->skb = skb; | ||
805 | wrp = (struct work_request_hdr *)d; | ||
806 | wrp->wr_hi = htonl(V_WR_DATATYPE(1) | | ||
807 | V_WR_SGLSFLT(1)) | wr_hi; | ||
808 | wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, | ||
809 | sgl_flits + 1)) | | ||
810 | V_WR_GEN(gen)) | wr_lo; | ||
811 | wr_gen2(d, gen); | ||
812 | flits = 1; | ||
813 | } | ||
814 | skb->priority = pidx; | ||
815 | wrp->wr_hi |= htonl(F_WR_EOP); | ||
816 | wmb(); | ||
817 | wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; | ||
818 | wr_gen2((struct tx_desc *)wp, ogen); | ||
819 | WARN_ON(ndesc != 0); | ||
820 | } | ||
821 | } | ||
822 | |||
823 | /** | ||
824 | * write_tx_pkt_wr - write a TX_PKT work request | ||
825 | * @adap: the adapter | ||
826 | * @skb: the packet to send | ||
827 | * @pi: the egress interface | ||
828 | * @pidx: index of the first Tx descriptor to write | ||
829 | * @gen: the generation value to use | ||
830 | * @q: the Tx queue | ||
831 | * @ndesc: number of descriptors the packet will occupy | ||
832 | * @compl: the value of the COMPL bit to use | ||
833 | * | ||
834 | * Generate a TX_PKT work request to send the supplied packet. | ||
835 | */ | ||
836 | static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, | ||
837 | const struct port_info *pi, | ||
838 | unsigned int pidx, unsigned int gen, | ||
839 | struct sge_txq *q, unsigned int ndesc, | ||
840 | unsigned int compl) | ||
841 | { | ||
842 | unsigned int flits, sgl_flits, cntrl, tso_info; | ||
843 | struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; | ||
844 | struct tx_desc *d = &q->desc[pidx]; | ||
845 | struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; | ||
846 | |||
847 | cpl->len = htonl(skb->len | 0x80000000); | ||
848 | cntrl = V_TXPKT_INTF(pi->port_id); | ||
849 | |||
850 | if (vlan_tx_tag_present(skb) && pi->vlan_grp) | ||
851 | cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb)); | ||
852 | |||
853 | tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); | ||
854 | if (tso_info) { | ||
855 | int eth_type; | ||
856 | struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; | ||
857 | |||
858 | d->flit[2] = 0; | ||
859 | cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); | ||
860 | hdr->cntrl = htonl(cntrl); | ||
861 | eth_type = skb->nh.raw - skb->data == ETH_HLEN ? | ||
862 | CPL_ETH_II : CPL_ETH_II_VLAN; | ||
863 | tso_info |= V_LSO_ETH_TYPE(eth_type) | | ||
864 | V_LSO_IPHDR_WORDS(skb->nh.iph->ihl) | | ||
865 | V_LSO_TCPHDR_WORDS(skb->h.th->doff); | ||
866 | hdr->lso_info = htonl(tso_info); | ||
867 | flits = 3; | ||
868 | } else { | ||
869 | cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); | ||
870 | cntrl |= F_TXPKT_IPCSUM_DIS; /* SW calculates IP csum */ | ||
871 | cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); | ||
872 | cpl->cntrl = htonl(cntrl); | ||
873 | |||
874 | if (skb->len <= WR_LEN - sizeof(*cpl)) { | ||
875 | q->sdesc[pidx].skb = NULL; | ||
876 | if (!skb->data_len) | ||
877 | memcpy(&d->flit[2], skb->data, skb->len); | ||
878 | else | ||
879 | skb_copy_bits(skb, 0, &d->flit[2], skb->len); | ||
880 | |||
881 | flits = (skb->len + 7) / 8 + 2; | ||
882 | cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | | ||
883 | V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | ||
884 | | F_WR_SOP | F_WR_EOP | compl); | ||
885 | wmb(); | ||
886 | cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | | ||
887 | V_WR_TID(q->token)); | ||
888 | wr_gen2(d, gen); | ||
889 | kfree_skb(skb); | ||
890 | return; | ||
891 | } | ||
892 | |||
893 | flits = 2; | ||
894 | } | ||
895 | |||
896 | sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; | ||
897 | sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev); | ||
898 | if (need_skb_unmap()) | ||
899 | ((struct unmap_info *)skb->cb)->len = skb_headlen(skb); | ||
900 | |||
901 | write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, | ||
902 | htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), | ||
903 | htonl(V_WR_TID(q->token))); | ||
904 | } | ||
905 | |||
906 | /** | ||
907 | * eth_xmit - add a packet to the Ethernet Tx queue | ||
908 | * @skb: the packet | ||
909 | * @dev: the egress net device | ||
910 | * | ||
911 | * Add a packet to an SGE Tx queue. Runs with softirqs disabled. | ||
912 | */ | ||
913 | int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) | ||
914 | { | ||
915 | unsigned int ndesc, pidx, credits, gen, compl; | ||
916 | const struct port_info *pi = netdev_priv(dev); | ||
917 | struct adapter *adap = dev->priv; | ||
918 | struct sge_qset *qs = dev2qset(dev); | ||
919 | struct sge_txq *q = &qs->txq[TXQ_ETH]; | ||
920 | |||
921 | /* | ||
922 | * The chip min packet length is 9 octets but play safe and reject | ||
923 | * anything shorter than an Ethernet header. | ||
924 | */ | ||
925 | if (unlikely(skb->len < ETH_HLEN)) { | ||
926 | dev_kfree_skb(skb); | ||
927 | return NETDEV_TX_OK; | ||
928 | } | ||
929 | |||
930 | spin_lock(&q->lock); | ||
931 | reclaim_completed_tx(adap, q); | ||
932 | |||
933 | credits = q->size - q->in_use; | ||
934 | ndesc = calc_tx_descs(skb); | ||
935 | |||
936 | if (unlikely(credits < ndesc)) { | ||
937 | if (!netif_queue_stopped(dev)) { | ||
938 | netif_stop_queue(dev); | ||
939 | set_bit(TXQ_ETH, &qs->txq_stopped); | ||
940 | q->stops++; | ||
941 | dev_err(&adap->pdev->dev, | ||
942 | "%s: Tx ring %u full while queue awake!\n", | ||
943 | dev->name, q->cntxt_id & 7); | ||
944 | } | ||
945 | spin_unlock(&q->lock); | ||
946 | return NETDEV_TX_BUSY; | ||
947 | } | ||
948 | |||
949 | q->in_use += ndesc; | ||
950 | if (unlikely(credits - ndesc < q->stop_thres)) { | ||
951 | q->stops++; | ||
952 | netif_stop_queue(dev); | ||
953 | set_bit(TXQ_ETH, &qs->txq_stopped); | ||
954 | #if !USE_GTS | ||
955 | if (should_restart_tx(q) && | ||
956 | test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { | ||
957 | q->restarts++; | ||
958 | netif_wake_queue(dev); | ||
959 | } | ||
960 | #endif | ||
961 | } | ||
962 | |||
963 | gen = q->gen; | ||
964 | q->unacked += ndesc; | ||
965 | compl = (q->unacked & 8) << (S_WR_COMPL - 3); | ||
966 | q->unacked &= 7; | ||
967 | pidx = q->pidx; | ||
968 | q->pidx += ndesc; | ||
969 | if (q->pidx >= q->size) { | ||
970 | q->pidx -= q->size; | ||
971 | q->gen ^= 1; | ||
972 | } | ||
973 | |||
974 | /* update port statistics */ | ||
975 | if (skb->ip_summed == CHECKSUM_COMPLETE) | ||
976 | qs->port_stats[SGE_PSTAT_TX_CSUM]++; | ||
977 | if (skb_shinfo(skb)->gso_size) | ||
978 | qs->port_stats[SGE_PSTAT_TSO]++; | ||
979 | if (vlan_tx_tag_present(skb) && pi->vlan_grp) | ||
980 | qs->port_stats[SGE_PSTAT_VLANINS]++; | ||
981 | |||
982 | dev->trans_start = jiffies; | ||
983 | spin_unlock(&q->lock); | ||
984 | |||
985 | /* | ||
986 | * We do not use Tx completion interrupts to free DMAd Tx packets. | ||
987 | * This is good for performamce but means that we rely on new Tx | ||
988 | * packets arriving to run the destructors of completed packets, | ||
989 | * which open up space in their sockets' send queues. Sometimes | ||
990 | * we do not get such new packets causing Tx to stall. A single | ||
991 | * UDP transmitter is a good example of this situation. We have | ||
992 | * a clean up timer that periodically reclaims completed packets | ||
993 | * but it doesn't run often enough (nor do we want it to) to prevent | ||
994 | * lengthy stalls. A solution to this problem is to run the | ||
995 | * destructor early, after the packet is queued but before it's DMAd. | ||
996 | * A cons is that we lie to socket memory accounting, but the amount | ||
997 | * of extra memory is reasonable (limited by the number of Tx | ||
998 | * descriptors), the packets do actually get freed quickly by new | ||
999 | * packets almost always, and for protocols like TCP that wait for | ||
1000 | * acks to really free up the data the extra memory is even less. | ||
1001 | * On the positive side we run the destructors on the sending CPU | ||
1002 | * rather than on a potentially different completing CPU, usually a | ||
1003 | * good thing. We also run them without holding our Tx queue lock, | ||
1004 | * unlike what reclaim_completed_tx() would otherwise do. | ||
1005 | * | ||
1006 | * Run the destructor before telling the DMA engine about the packet | ||
1007 | * to make sure it doesn't complete and get freed prematurely. | ||
1008 | */ | ||
1009 | if (likely(!skb_shared(skb))) | ||
1010 | skb_orphan(skb); | ||
1011 | |||
1012 | write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl); | ||
1013 | check_ring_tx_db(adap, q); | ||
1014 | return NETDEV_TX_OK; | ||
1015 | } | ||
1016 | |||
1017 | /** | ||
1018 | * write_imm - write a packet into a Tx descriptor as immediate data | ||
1019 | * @d: the Tx descriptor to write | ||
1020 | * @skb: the packet | ||
1021 | * @len: the length of packet data to write as immediate data | ||
1022 | * @gen: the generation bit value to write | ||
1023 | * | ||
1024 | * Writes a packet as immediate data into a Tx descriptor. The packet | ||
1025 | * contains a work request at its beginning. We must write the packet | ||
1026 | * carefully so the SGE doesn't read accidentally before it's written in | ||
1027 | * its entirety. | ||
1028 | */ | ||
1029 | static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, | ||
1030 | unsigned int len, unsigned int gen) | ||
1031 | { | ||
1032 | struct work_request_hdr *from = (struct work_request_hdr *)skb->data; | ||
1033 | struct work_request_hdr *to = (struct work_request_hdr *)d; | ||
1034 | |||
1035 | memcpy(&to[1], &from[1], len - sizeof(*from)); | ||
1036 | to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | | ||
1037 | V_WR_BCNTLFLT(len & 7)); | ||
1038 | wmb(); | ||
1039 | to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | | ||
1040 | V_WR_LEN((len + 7) / 8)); | ||
1041 | wr_gen2(d, gen); | ||
1042 | kfree_skb(skb); | ||
1043 | } | ||
1044 | |||
1045 | /** | ||
1046 | * check_desc_avail - check descriptor availability on a send queue | ||
1047 | * @adap: the adapter | ||
1048 | * @q: the send queue | ||
1049 | * @skb: the packet needing the descriptors | ||
1050 | * @ndesc: the number of Tx descriptors needed | ||
1051 | * @qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) | ||
1052 | * | ||
1053 | * Checks if the requested number of Tx descriptors is available on an | ||
1054 | * SGE send queue. If the queue is already suspended or not enough | ||
1055 | * descriptors are available the packet is queued for later transmission. | ||
1056 | * Must be called with the Tx queue locked. | ||
1057 | * | ||
1058 | * Returns 0 if enough descriptors are available, 1 if there aren't | ||
1059 | * enough descriptors and the packet has been queued, and 2 if the caller | ||
1060 | * needs to retry because there weren't enough descriptors at the | ||
1061 | * beginning of the call but some freed up in the mean time. | ||
1062 | */ | ||
1063 | static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, | ||
1064 | struct sk_buff *skb, unsigned int ndesc, | ||
1065 | unsigned int qid) | ||
1066 | { | ||
1067 | if (unlikely(!skb_queue_empty(&q->sendq))) { | ||
1068 | addq_exit:__skb_queue_tail(&q->sendq, skb); | ||
1069 | return 1; | ||
1070 | } | ||
1071 | if (unlikely(q->size - q->in_use < ndesc)) { | ||
1072 | struct sge_qset *qs = txq_to_qset(q, qid); | ||
1073 | |||
1074 | set_bit(qid, &qs->txq_stopped); | ||
1075 | smp_mb__after_clear_bit(); | ||
1076 | |||
1077 | if (should_restart_tx(q) && | ||
1078 | test_and_clear_bit(qid, &qs->txq_stopped)) | ||
1079 | return 2; | ||
1080 | |||
1081 | q->stops++; | ||
1082 | goto addq_exit; | ||
1083 | } | ||
1084 | return 0; | ||
1085 | } | ||
1086 | |||
1087 | /** | ||
1088 | * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs | ||
1089 | * @q: the SGE control Tx queue | ||
1090 | * | ||
1091 | * This is a variant of reclaim_completed_tx() that is used for Tx queues | ||
1092 | * that send only immediate data (presently just the control queues) and | ||
1093 | * thus do not have any sk_buffs to release. | ||
1094 | */ | ||
1095 | static inline void reclaim_completed_tx_imm(struct sge_txq *q) | ||
1096 | { | ||
1097 | unsigned int reclaim = q->processed - q->cleaned; | ||
1098 | |||
1099 | q->in_use -= reclaim; | ||
1100 | q->cleaned += reclaim; | ||
1101 | } | ||
1102 | |||
1103 | static inline int immediate(const struct sk_buff *skb) | ||
1104 | { | ||
1105 | return skb->len <= WR_LEN && !skb->data_len; | ||
1106 | } | ||
1107 | |||
1108 | /** | ||
1109 | * ctrl_xmit - send a packet through an SGE control Tx queue | ||
1110 | * @adap: the adapter | ||
1111 | * @q: the control queue | ||
1112 | * @skb: the packet | ||
1113 | * | ||
1114 | * Send a packet through an SGE control Tx queue. Packets sent through | ||
1115 | * a control queue must fit entirely as immediate data in a single Tx | ||
1116 | * descriptor and have no page fragments. | ||
1117 | */ | ||
1118 | static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, | ||
1119 | struct sk_buff *skb) | ||
1120 | { | ||
1121 | int ret; | ||
1122 | struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; | ||
1123 | |||
1124 | if (unlikely(!immediate(skb))) { | ||
1125 | WARN_ON(1); | ||
1126 | dev_kfree_skb(skb); | ||
1127 | return NET_XMIT_SUCCESS; | ||
1128 | } | ||
1129 | |||
1130 | wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); | ||
1131 | wrp->wr_lo = htonl(V_WR_TID(q->token)); | ||
1132 | |||
1133 | spin_lock(&q->lock); | ||
1134 | again:reclaim_completed_tx_imm(q); | ||
1135 | |||
1136 | ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); | ||
1137 | if (unlikely(ret)) { | ||
1138 | if (ret == 1) { | ||
1139 | spin_unlock(&q->lock); | ||
1140 | return NET_XMIT_CN; | ||
1141 | } | ||
1142 | goto again; | ||
1143 | } | ||
1144 | |||
1145 | write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); | ||
1146 | |||
1147 | q->in_use++; | ||
1148 | if (++q->pidx >= q->size) { | ||
1149 | q->pidx = 0; | ||
1150 | q->gen ^= 1; | ||
1151 | } | ||
1152 | spin_unlock(&q->lock); | ||
1153 | wmb(); | ||
1154 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
1155 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
1156 | return NET_XMIT_SUCCESS; | ||
1157 | } | ||
1158 | |||
1159 | /** | ||
1160 | * restart_ctrlq - restart a suspended control queue | ||
1161 | * @qs: the queue set cotaining the control queue | ||
1162 | * | ||
1163 | * Resumes transmission on a suspended Tx control queue. | ||
1164 | */ | ||
1165 | static void restart_ctrlq(unsigned long data) | ||
1166 | { | ||
1167 | struct sk_buff *skb; | ||
1168 | struct sge_qset *qs = (struct sge_qset *)data; | ||
1169 | struct sge_txq *q = &qs->txq[TXQ_CTRL]; | ||
1170 | struct adapter *adap = qs->netdev->priv; | ||
1171 | |||
1172 | spin_lock(&q->lock); | ||
1173 | again:reclaim_completed_tx_imm(q); | ||
1174 | |||
1175 | while (q->in_use < q->size && (skb = __skb_dequeue(&q->sendq)) != NULL) { | ||
1176 | |||
1177 | write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); | ||
1178 | |||
1179 | if (++q->pidx >= q->size) { | ||
1180 | q->pidx = 0; | ||
1181 | q->gen ^= 1; | ||
1182 | } | ||
1183 | q->in_use++; | ||
1184 | } | ||
1185 | |||
1186 | if (!skb_queue_empty(&q->sendq)) { | ||
1187 | set_bit(TXQ_CTRL, &qs->txq_stopped); | ||
1188 | smp_mb__after_clear_bit(); | ||
1189 | |||
1190 | if (should_restart_tx(q) && | ||
1191 | test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) | ||
1192 | goto again; | ||
1193 | q->stops++; | ||
1194 | } | ||
1195 | |||
1196 | spin_unlock(&q->lock); | ||
1197 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
1198 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
1199 | } | ||
1200 | |||
1201 | /** | ||
1202 | * write_ofld_wr - write an offload work request | ||
1203 | * @adap: the adapter | ||
1204 | * @skb: the packet to send | ||
1205 | * @q: the Tx queue | ||
1206 | * @pidx: index of the first Tx descriptor to write | ||
1207 | * @gen: the generation value to use | ||
1208 | * @ndesc: number of descriptors the packet will occupy | ||
1209 | * | ||
1210 | * Write an offload work request to send the supplied packet. The packet | ||
1211 | * data already carry the work request with most fields populated. | ||
1212 | */ | ||
1213 | static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, | ||
1214 | struct sge_txq *q, unsigned int pidx, | ||
1215 | unsigned int gen, unsigned int ndesc) | ||
1216 | { | ||
1217 | unsigned int sgl_flits, flits; | ||
1218 | struct work_request_hdr *from; | ||
1219 | struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; | ||
1220 | struct tx_desc *d = &q->desc[pidx]; | ||
1221 | |||
1222 | if (immediate(skb)) { | ||
1223 | q->sdesc[pidx].skb = NULL; | ||
1224 | write_imm(d, skb, skb->len, gen); | ||
1225 | return; | ||
1226 | } | ||
1227 | |||
1228 | /* Only TX_DATA builds SGLs */ | ||
1229 | |||
1230 | from = (struct work_request_hdr *)skb->data; | ||
1231 | memcpy(&d->flit[1], &from[1], skb->h.raw - skb->data - sizeof(*from)); | ||
1232 | |||
1233 | flits = (skb->h.raw - skb->data) / 8; | ||
1234 | sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; | ||
1235 | sgl_flits = make_sgl(skb, sgp, skb->h.raw, skb->tail - skb->h.raw, | ||
1236 | adap->pdev); | ||
1237 | if (need_skb_unmap()) | ||
1238 | ((struct unmap_info *)skb->cb)->len = skb->tail - skb->h.raw; | ||
1239 | |||
1240 | write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, | ||
1241 | gen, from->wr_hi, from->wr_lo); | ||
1242 | } | ||
1243 | |||
1244 | /** | ||
1245 | * calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet | ||
1246 | * @skb: the packet | ||
1247 | * | ||
1248 | * Returns the number of Tx descriptors needed for the given offload | ||
1249 | * packet. These packets are already fully constructed. | ||
1250 | */ | ||
1251 | static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) | ||
1252 | { | ||
1253 | unsigned int flits, cnt = skb_shinfo(skb)->nr_frags; | ||
1254 | |||
1255 | if (skb->len <= WR_LEN && cnt == 0) | ||
1256 | return 1; /* packet fits as immediate data */ | ||
1257 | |||
1258 | flits = (skb->h.raw - skb->data) / 8; /* headers */ | ||
1259 | if (skb->tail != skb->h.raw) | ||
1260 | cnt++; | ||
1261 | return flits_to_desc(flits + sgl_len(cnt)); | ||
1262 | } | ||
1263 | |||
1264 | /** | ||
1265 | * ofld_xmit - send a packet through an offload queue | ||
1266 | * @adap: the adapter | ||
1267 | * @q: the Tx offload queue | ||
1268 | * @skb: the packet | ||
1269 | * | ||
1270 | * Send an offload packet through an SGE offload queue. | ||
1271 | */ | ||
1272 | static int ofld_xmit(struct adapter *adap, struct sge_txq *q, | ||
1273 | struct sk_buff *skb) | ||
1274 | { | ||
1275 | int ret; | ||
1276 | unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; | ||
1277 | |||
1278 | spin_lock(&q->lock); | ||
1279 | again:reclaim_completed_tx(adap, q); | ||
1280 | |||
1281 | ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); | ||
1282 | if (unlikely(ret)) { | ||
1283 | if (ret == 1) { | ||
1284 | skb->priority = ndesc; /* save for restart */ | ||
1285 | spin_unlock(&q->lock); | ||
1286 | return NET_XMIT_CN; | ||
1287 | } | ||
1288 | goto again; | ||
1289 | } | ||
1290 | |||
1291 | gen = q->gen; | ||
1292 | q->in_use += ndesc; | ||
1293 | pidx = q->pidx; | ||
1294 | q->pidx += ndesc; | ||
1295 | if (q->pidx >= q->size) { | ||
1296 | q->pidx -= q->size; | ||
1297 | q->gen ^= 1; | ||
1298 | } | ||
1299 | spin_unlock(&q->lock); | ||
1300 | |||
1301 | write_ofld_wr(adap, skb, q, pidx, gen, ndesc); | ||
1302 | check_ring_tx_db(adap, q); | ||
1303 | return NET_XMIT_SUCCESS; | ||
1304 | } | ||
1305 | |||
1306 | /** | ||
1307 | * restart_offloadq - restart a suspended offload queue | ||
1308 | * @qs: the queue set cotaining the offload queue | ||
1309 | * | ||
1310 | * Resumes transmission on a suspended Tx offload queue. | ||
1311 | */ | ||
1312 | static void restart_offloadq(unsigned long data) | ||
1313 | { | ||
1314 | struct sk_buff *skb; | ||
1315 | struct sge_qset *qs = (struct sge_qset *)data; | ||
1316 | struct sge_txq *q = &qs->txq[TXQ_OFLD]; | ||
1317 | struct adapter *adap = qs->netdev->priv; | ||
1318 | |||
1319 | spin_lock(&q->lock); | ||
1320 | again:reclaim_completed_tx(adap, q); | ||
1321 | |||
1322 | while ((skb = skb_peek(&q->sendq)) != NULL) { | ||
1323 | unsigned int gen, pidx; | ||
1324 | unsigned int ndesc = skb->priority; | ||
1325 | |||
1326 | if (unlikely(q->size - q->in_use < ndesc)) { | ||
1327 | set_bit(TXQ_OFLD, &qs->txq_stopped); | ||
1328 | smp_mb__after_clear_bit(); | ||
1329 | |||
1330 | if (should_restart_tx(q) && | ||
1331 | test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) | ||
1332 | goto again; | ||
1333 | q->stops++; | ||
1334 | break; | ||
1335 | } | ||
1336 | |||
1337 | gen = q->gen; | ||
1338 | q->in_use += ndesc; | ||
1339 | pidx = q->pidx; | ||
1340 | q->pidx += ndesc; | ||
1341 | if (q->pidx >= q->size) { | ||
1342 | q->pidx -= q->size; | ||
1343 | q->gen ^= 1; | ||
1344 | } | ||
1345 | __skb_unlink(skb, &q->sendq); | ||
1346 | spin_unlock(&q->lock); | ||
1347 | |||
1348 | write_ofld_wr(adap, skb, q, pidx, gen, ndesc); | ||
1349 | spin_lock(&q->lock); | ||
1350 | } | ||
1351 | spin_unlock(&q->lock); | ||
1352 | |||
1353 | #if USE_GTS | ||
1354 | set_bit(TXQ_RUNNING, &q->flags); | ||
1355 | set_bit(TXQ_LAST_PKT_DB, &q->flags); | ||
1356 | #endif | ||
1357 | t3_write_reg(adap, A_SG_KDOORBELL, | ||
1358 | F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | ||
1359 | } | ||
1360 | |||
1361 | /** | ||
1362 | * queue_set - return the queue set a packet should use | ||
1363 | * @skb: the packet | ||
1364 | * | ||
1365 | * Maps a packet to the SGE queue set it should use. The desired queue | ||
1366 | * set is carried in bits 1-3 in the packet's priority. | ||
1367 | */ | ||
1368 | static inline int queue_set(const struct sk_buff *skb) | ||
1369 | { | ||
1370 | return skb->priority >> 1; | ||
1371 | } | ||
1372 | |||
1373 | /** | ||
1374 | * is_ctrl_pkt - return whether an offload packet is a control packet | ||
1375 | * @skb: the packet | ||
1376 | * | ||
1377 | * Determines whether an offload packet should use an OFLD or a CTRL | ||
1378 | * Tx queue. This is indicated by bit 0 in the packet's priority. | ||
1379 | */ | ||
1380 | static inline int is_ctrl_pkt(const struct sk_buff *skb) | ||
1381 | { | ||
1382 | return skb->priority & 1; | ||
1383 | } | ||
1384 | |||
1385 | /** | ||
1386 | * t3_offload_tx - send an offload packet | ||
1387 | * @tdev: the offload device to send to | ||
1388 | * @skb: the packet | ||
1389 | * | ||
1390 | * Sends an offload packet. We use the packet priority to select the | ||
1391 | * appropriate Tx queue as follows: bit 0 indicates whether the packet | ||
1392 | * should be sent as regular or control, bits 1-3 select the queue set. | ||
1393 | */ | ||
1394 | int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) | ||
1395 | { | ||
1396 | struct adapter *adap = tdev2adap(tdev); | ||
1397 | struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; | ||
1398 | |||
1399 | if (unlikely(is_ctrl_pkt(skb))) | ||
1400 | return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); | ||
1401 | |||
1402 | return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); | ||
1403 | } | ||
1404 | |||
1405 | /** | ||
1406 | * offload_enqueue - add an offload packet to an SGE offload receive queue | ||
1407 | * @q: the SGE response queue | ||
1408 | * @skb: the packet | ||
1409 | * | ||
1410 | * Add a new offload packet to an SGE response queue's offload packet | ||
1411 | * queue. If the packet is the first on the queue it schedules the RX | ||
1412 | * softirq to process the queue. | ||
1413 | */ | ||
1414 | static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) | ||
1415 | { | ||
1416 | skb->next = skb->prev = NULL; | ||
1417 | if (q->rx_tail) | ||
1418 | q->rx_tail->next = skb; | ||
1419 | else { | ||
1420 | struct sge_qset *qs = rspq_to_qset(q); | ||
1421 | |||
1422 | if (__netif_rx_schedule_prep(qs->netdev)) | ||
1423 | __netif_rx_schedule(qs->netdev); | ||
1424 | q->rx_head = skb; | ||
1425 | } | ||
1426 | q->rx_tail = skb; | ||
1427 | } | ||
1428 | |||
1429 | /** | ||
1430 | * deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts | ||
1431 | * @tdev: the offload device that will be receiving the packets | ||
1432 | * @q: the SGE response queue that assembled the bundle | ||
1433 | * @skbs: the partial bundle | ||
1434 | * @n: the number of packets in the bundle | ||
1435 | * | ||
1436 | * Delivers a (partial) bundle of Rx offload packets to an offload device. | ||
1437 | */ | ||
1438 | static inline void deliver_partial_bundle(struct t3cdev *tdev, | ||
1439 | struct sge_rspq *q, | ||
1440 | struct sk_buff *skbs[], int n) | ||
1441 | { | ||
1442 | if (n) { | ||
1443 | q->offload_bundles++; | ||
1444 | tdev->recv(tdev, skbs, n); | ||
1445 | } | ||
1446 | } | ||
1447 | |||
1448 | /** | ||
1449 | * ofld_poll - NAPI handler for offload packets in interrupt mode | ||
1450 | * @dev: the network device doing the polling | ||
1451 | * @budget: polling budget | ||
1452 | * | ||
1453 | * The NAPI handler for offload packets when a response queue is serviced | ||
1454 | * by the hard interrupt handler, i.e., when it's operating in non-polling | ||
1455 | * mode. Creates small packet batches and sends them through the offload | ||
1456 | * receive handler. Batches need to be of modest size as we do prefetches | ||
1457 | * on the packets in each. | ||
1458 | */ | ||
1459 | static int ofld_poll(struct net_device *dev, int *budget) | ||
1460 | { | ||
1461 | struct adapter *adapter = dev->priv; | ||
1462 | struct sge_qset *qs = dev2qset(dev); | ||
1463 | struct sge_rspq *q = &qs->rspq; | ||
1464 | int work_done, limit = min(*budget, dev->quota), avail = limit; | ||
1465 | |||
1466 | while (avail) { | ||
1467 | struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE]; | ||
1468 | int ngathered; | ||
1469 | |||
1470 | spin_lock_irq(&q->lock); | ||
1471 | head = q->rx_head; | ||
1472 | if (!head) { | ||
1473 | work_done = limit - avail; | ||
1474 | *budget -= work_done; | ||
1475 | dev->quota -= work_done; | ||
1476 | __netif_rx_complete(dev); | ||
1477 | spin_unlock_irq(&q->lock); | ||
1478 | return 0; | ||
1479 | } | ||
1480 | |||
1481 | tail = q->rx_tail; | ||
1482 | q->rx_head = q->rx_tail = NULL; | ||
1483 | spin_unlock_irq(&q->lock); | ||
1484 | |||
1485 | for (ngathered = 0; avail && head; avail--) { | ||
1486 | prefetch(head->data); | ||
1487 | skbs[ngathered] = head; | ||
1488 | head = head->next; | ||
1489 | skbs[ngathered]->next = NULL; | ||
1490 | if (++ngathered == RX_BUNDLE_SIZE) { | ||
1491 | q->offload_bundles++; | ||
1492 | adapter->tdev.recv(&adapter->tdev, skbs, | ||
1493 | ngathered); | ||
1494 | ngathered = 0; | ||
1495 | } | ||
1496 | } | ||
1497 | if (head) { /* splice remaining packets back onto Rx queue */ | ||
1498 | spin_lock_irq(&q->lock); | ||
1499 | tail->next = q->rx_head; | ||
1500 | if (!q->rx_head) | ||
1501 | q->rx_tail = tail; | ||
1502 | q->rx_head = head; | ||
1503 | spin_unlock_irq(&q->lock); | ||
1504 | } | ||
1505 | deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); | ||
1506 | } | ||
1507 | work_done = limit - avail; | ||
1508 | *budget -= work_done; | ||
1509 | dev->quota -= work_done; | ||
1510 | return 1; | ||
1511 | } | ||
1512 | |||
1513 | /** | ||
1514 | * rx_offload - process a received offload packet | ||
1515 | * @tdev: the offload device receiving the packet | ||
1516 | * @rq: the response queue that received the packet | ||
1517 | * @skb: the packet | ||
1518 | * @rx_gather: a gather list of packets if we are building a bundle | ||
1519 | * @gather_idx: index of the next available slot in the bundle | ||
1520 | * | ||
1521 | * Process an ingress offload pakcet and add it to the offload ingress | ||
1522 | * queue. Returns the index of the next available slot in the bundle. | ||
1523 | */ | ||
1524 | static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, | ||
1525 | struct sk_buff *skb, struct sk_buff *rx_gather[], | ||
1526 | unsigned int gather_idx) | ||
1527 | { | ||
1528 | rq->offload_pkts++; | ||
1529 | skb->mac.raw = skb->nh.raw = skb->h.raw = skb->data; | ||
1530 | |||
1531 | if (rq->polling) { | ||
1532 | rx_gather[gather_idx++] = skb; | ||
1533 | if (gather_idx == RX_BUNDLE_SIZE) { | ||
1534 | tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); | ||
1535 | gather_idx = 0; | ||
1536 | rq->offload_bundles++; | ||
1537 | } | ||
1538 | } else | ||
1539 | offload_enqueue(rq, skb); | ||
1540 | |||
1541 | return gather_idx; | ||
1542 | } | ||
1543 | |||
1544 | /** | ||
1545 | * update_tx_completed - update the number of processed Tx descriptors | ||
1546 | * @qs: the queue set to update | ||
1547 | * @idx: which Tx queue within the set to update | ||
1548 | * @credits: number of new processed descriptors | ||
1549 | * @tx_completed: accumulates credits for the queues | ||
1550 | * | ||
1551 | * Updates the number of completed Tx descriptors for a queue set's Tx | ||
1552 | * queue. On UP systems we updated the information immediately but on | ||
1553 | * MP we accumulate the credits locally and update the Tx queue when we | ||
1554 | * reach a threshold to avoid cache-line bouncing. | ||
1555 | */ | ||
1556 | static inline void update_tx_completed(struct sge_qset *qs, int idx, | ||
1557 | unsigned int credits, | ||
1558 | unsigned int tx_completed[]) | ||
1559 | { | ||
1560 | #ifdef CONFIG_SMP | ||
1561 | tx_completed[idx] += credits; | ||
1562 | if (tx_completed[idx] > 32) { | ||
1563 | qs->txq[idx].processed += tx_completed[idx]; | ||
1564 | tx_completed[idx] = 0; | ||
1565 | } | ||
1566 | #else | ||
1567 | qs->txq[idx].processed += credits; | ||
1568 | #endif | ||
1569 | } | ||
1570 | |||
1571 | /** | ||
1572 | * restart_tx - check whether to restart suspended Tx queues | ||
1573 | * @qs: the queue set to resume | ||
1574 | * | ||
1575 | * Restarts suspended Tx queues of an SGE queue set if they have enough | ||
1576 | * free resources to resume operation. | ||
1577 | */ | ||
1578 | static void restart_tx(struct sge_qset *qs) | ||
1579 | { | ||
1580 | if (test_bit(TXQ_ETH, &qs->txq_stopped) && | ||
1581 | should_restart_tx(&qs->txq[TXQ_ETH]) && | ||
1582 | test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { | ||
1583 | qs->txq[TXQ_ETH].restarts++; | ||
1584 | if (netif_running(qs->netdev)) | ||
1585 | netif_wake_queue(qs->netdev); | ||
1586 | } | ||
1587 | |||
1588 | if (test_bit(TXQ_OFLD, &qs->txq_stopped) && | ||
1589 | should_restart_tx(&qs->txq[TXQ_OFLD]) && | ||
1590 | test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { | ||
1591 | qs->txq[TXQ_OFLD].restarts++; | ||
1592 | tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk); | ||
1593 | } | ||
1594 | if (test_bit(TXQ_CTRL, &qs->txq_stopped) && | ||
1595 | should_restart_tx(&qs->txq[TXQ_CTRL]) && | ||
1596 | test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { | ||
1597 | qs->txq[TXQ_CTRL].restarts++; | ||
1598 | tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk); | ||
1599 | } | ||
1600 | } | ||
1601 | |||
1602 | /** | ||
1603 | * rx_eth - process an ingress ethernet packet | ||
1604 | * @adap: the adapter | ||
1605 | * @rq: the response queue that received the packet | ||
1606 | * @skb: the packet | ||
1607 | * @pad: amount of padding at the start of the buffer | ||
1608 | * | ||
1609 | * Process an ingress ethernet pakcet and deliver it to the stack. | ||
1610 | * The padding is 2 if the packet was delivered in an Rx buffer and 0 | ||
1611 | * if it was immediate data in a response. | ||
1612 | */ | ||
1613 | static void rx_eth(struct adapter *adap, struct sge_rspq *rq, | ||
1614 | struct sk_buff *skb, int pad) | ||
1615 | { | ||
1616 | struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); | ||
1617 | struct port_info *pi; | ||
1618 | |||
1619 | rq->eth_pkts++; | ||
1620 | skb_pull(skb, sizeof(*p) + pad); | ||
1621 | skb->dev = adap->port[p->iff]; | ||
1622 | skb->dev->last_rx = jiffies; | ||
1623 | skb->protocol = eth_type_trans(skb, skb->dev); | ||
1624 | pi = netdev_priv(skb->dev); | ||
1625 | if (pi->rx_csum_offload && p->csum_valid && p->csum == 0xffff && | ||
1626 | !p->fragment) { | ||
1627 | rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; | ||
1628 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1629 | } else | ||
1630 | skb->ip_summed = CHECKSUM_NONE; | ||
1631 | |||
1632 | if (unlikely(p->vlan_valid)) { | ||
1633 | struct vlan_group *grp = pi->vlan_grp; | ||
1634 | |||
1635 | rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++; | ||
1636 | if (likely(grp)) | ||
1637 | __vlan_hwaccel_rx(skb, grp, ntohs(p->vlan), | ||
1638 | rq->polling); | ||
1639 | else | ||
1640 | dev_kfree_skb_any(skb); | ||
1641 | } else if (rq->polling) | ||
1642 | netif_receive_skb(skb); | ||
1643 | else | ||
1644 | netif_rx(skb); | ||
1645 | } | ||
1646 | |||
1647 | /** | ||
1648 | * handle_rsp_cntrl_info - handles control information in a response | ||
1649 | * @qs: the queue set corresponding to the response | ||
1650 | * @flags: the response control flags | ||
1651 | * @tx_completed: accumulates completion credits for the Tx queues | ||
1652 | * | ||
1653 | * Handles the control information of an SGE response, such as GTS | ||
1654 | * indications and completion credits for the queue set's Tx queues. | ||
1655 | */ | ||
1656 | static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags, | ||
1657 | unsigned int tx_completed[]) | ||
1658 | { | ||
1659 | unsigned int credits; | ||
1660 | |||
1661 | #if USE_GTS | ||
1662 | if (flags & F_RSPD_TXQ0_GTS) | ||
1663 | clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); | ||
1664 | #endif | ||
1665 | |||
1666 | /* ETH credits are already coalesced, return them immediately. */ | ||
1667 | credits = G_RSPD_TXQ0_CR(flags); | ||
1668 | if (credits) | ||
1669 | qs->txq[TXQ_ETH].processed += credits; | ||
1670 | |||
1671 | # if USE_GTS | ||
1672 | if (flags & F_RSPD_TXQ1_GTS) | ||
1673 | clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); | ||
1674 | # endif | ||
1675 | update_tx_completed(qs, TXQ_OFLD, G_RSPD_TXQ1_CR(flags), tx_completed); | ||
1676 | update_tx_completed(qs, TXQ_CTRL, G_RSPD_TXQ2_CR(flags), tx_completed); | ||
1677 | } | ||
1678 | |||
1679 | /** | ||
1680 | * flush_tx_completed - returns accumulated Tx completions to Tx queues | ||
1681 | * @qs: the queue set to update | ||
1682 | * @tx_completed: pending completion credits to return to Tx queues | ||
1683 | * | ||
1684 | * Updates the number of completed Tx descriptors for a queue set's Tx | ||
1685 | * queues with the credits pending in @tx_completed. This does something | ||
1686 | * only on MP systems as on UP systems we return the credits immediately. | ||
1687 | */ | ||
1688 | static inline void flush_tx_completed(struct sge_qset *qs, | ||
1689 | unsigned int tx_completed[]) | ||
1690 | { | ||
1691 | #if defined(CONFIG_SMP) | ||
1692 | if (tx_completed[TXQ_OFLD]) | ||
1693 | qs->txq[TXQ_OFLD].processed += tx_completed[TXQ_OFLD]; | ||
1694 | if (tx_completed[TXQ_CTRL]) | ||
1695 | qs->txq[TXQ_CTRL].processed += tx_completed[TXQ_CTRL]; | ||
1696 | #endif | ||
1697 | } | ||
1698 | |||
1699 | /** | ||
1700 | * check_ring_db - check if we need to ring any doorbells | ||
1701 | * @adapter: the adapter | ||
1702 | * @qs: the queue set whose Tx queues are to be examined | ||
1703 | * @sleeping: indicates which Tx queue sent GTS | ||
1704 | * | ||
1705 | * Checks if some of a queue set's Tx queues need to ring their doorbells | ||
1706 | * to resume transmission after idling while they still have unprocessed | ||
1707 | * descriptors. | ||
1708 | */ | ||
1709 | static void check_ring_db(struct adapter *adap, struct sge_qset *qs, | ||
1710 | unsigned int sleeping) | ||
1711 | { | ||
1712 | if (sleeping & F_RSPD_TXQ0_GTS) { | ||
1713 | struct sge_txq *txq = &qs->txq[TXQ_ETH]; | ||
1714 | |||
1715 | if (txq->cleaned + txq->in_use != txq->processed && | ||
1716 | !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { | ||
1717 | set_bit(TXQ_RUNNING, &txq->flags); | ||
1718 | t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | | ||
1719 | V_EGRCNTX(txq->cntxt_id)); | ||
1720 | } | ||
1721 | } | ||
1722 | |||
1723 | if (sleeping & F_RSPD_TXQ1_GTS) { | ||
1724 | struct sge_txq *txq = &qs->txq[TXQ_OFLD]; | ||
1725 | |||
1726 | if (txq->cleaned + txq->in_use != txq->processed && | ||
1727 | !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { | ||
1728 | set_bit(TXQ_RUNNING, &txq->flags); | ||
1729 | t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | | ||
1730 | V_EGRCNTX(txq->cntxt_id)); | ||
1731 | } | ||
1732 | } | ||
1733 | } | ||
1734 | |||
1735 | /** | ||
1736 | * is_new_response - check if a response is newly written | ||
1737 | * @r: the response descriptor | ||
1738 | * @q: the response queue | ||
1739 | * | ||
1740 | * Returns true if a response descriptor contains a yet unprocessed | ||
1741 | * response. | ||
1742 | */ | ||
1743 | static inline int is_new_response(const struct rsp_desc *r, | ||
1744 | const struct sge_rspq *q) | ||
1745 | { | ||
1746 | return (r->intr_gen & F_RSPD_GEN2) == q->gen; | ||
1747 | } | ||
1748 | |||
1749 | #define RSPD_GTS_MASK (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) | ||
1750 | #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ | ||
1751 | V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ | ||
1752 | V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ | ||
1753 | V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) | ||
1754 | |||
1755 | /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ | ||
1756 | #define NOMEM_INTR_DELAY 2500 | ||
1757 | |||
1758 | /** | ||
1759 | * process_responses - process responses from an SGE response queue | ||
1760 | * @adap: the adapter | ||
1761 | * @qs: the queue set to which the response queue belongs | ||
1762 | * @budget: how many responses can be processed in this round | ||
1763 | * | ||
1764 | * Process responses from an SGE response queue up to the supplied budget. | ||
1765 | * Responses include received packets as well as credits and other events | ||
1766 | * for the queues that belong to the response queue's queue set. | ||
1767 | * A negative budget is effectively unlimited. | ||
1768 | * | ||
1769 | * Additionally choose the interrupt holdoff time for the next interrupt | ||
1770 | * on this queue. If the system is under memory shortage use a fairly | ||
1771 | * long delay to help recovery. | ||
1772 | */ | ||
1773 | static int process_responses(struct adapter *adap, struct sge_qset *qs, | ||
1774 | int budget) | ||
1775 | { | ||
1776 | struct sge_rspq *q = &qs->rspq; | ||
1777 | struct rsp_desc *r = &q->desc[q->cidx]; | ||
1778 | int budget_left = budget; | ||
1779 | unsigned int sleeping = 0, tx_completed[3] = { 0, 0, 0 }; | ||
1780 | struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; | ||
1781 | int ngathered = 0; | ||
1782 | |||
1783 | q->next_holdoff = q->holdoff_tmr; | ||
1784 | |||
1785 | while (likely(budget_left && is_new_response(r, q))) { | ||
1786 | int eth, ethpad = 0; | ||
1787 | struct sk_buff *skb = NULL; | ||
1788 | u32 len, flags = ntohl(r->flags); | ||
1789 | u32 rss_hi = *(const u32 *)r, rss_lo = r->rss_hdr.rss_hash_val; | ||
1790 | |||
1791 | eth = r->rss_hdr.opcode == CPL_RX_PKT; | ||
1792 | |||
1793 | if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { | ||
1794 | skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); | ||
1795 | if (!skb) | ||
1796 | goto no_mem; | ||
1797 | |||
1798 | memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE); | ||
1799 | skb->data[0] = CPL_ASYNC_NOTIF; | ||
1800 | rss_hi = htonl(CPL_ASYNC_NOTIF << 24); | ||
1801 | q->async_notif++; | ||
1802 | } else if (flags & F_RSPD_IMM_DATA_VALID) { | ||
1803 | skb = get_imm_packet(r); | ||
1804 | if (unlikely(!skb)) { | ||
1805 | no_mem: | ||
1806 | q->next_holdoff = NOMEM_INTR_DELAY; | ||
1807 | q->nomem++; | ||
1808 | /* consume one credit since we tried */ | ||
1809 | budget_left--; | ||
1810 | break; | ||
1811 | } | ||
1812 | q->imm_data++; | ||
1813 | } else if ((len = ntohl(r->len_cq)) != 0) { | ||
1814 | struct sge_fl *fl; | ||
1815 | |||
1816 | fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; | ||
1817 | fl->credits--; | ||
1818 | skb = get_packet(adap, fl, G_RSPD_LEN(len), | ||
1819 | eth ? SGE_RX_DROP_THRES : 0); | ||
1820 | if (!skb) | ||
1821 | q->rx_drops++; | ||
1822 | else if (r->rss_hdr.opcode == CPL_TRACE_PKT) | ||
1823 | __skb_pull(skb, 2); | ||
1824 | ethpad = 2; | ||
1825 | if (++fl->cidx == fl->size) | ||
1826 | fl->cidx = 0; | ||
1827 | } else | ||
1828 | q->pure_rsps++; | ||
1829 | |||
1830 | if (flags & RSPD_CTRL_MASK) { | ||
1831 | sleeping |= flags & RSPD_GTS_MASK; | ||
1832 | handle_rsp_cntrl_info(qs, flags, tx_completed); | ||
1833 | } | ||
1834 | |||
1835 | r++; | ||
1836 | if (unlikely(++q->cidx == q->size)) { | ||
1837 | q->cidx = 0; | ||
1838 | q->gen ^= 1; | ||
1839 | r = q->desc; | ||
1840 | } | ||
1841 | prefetch(r); | ||
1842 | |||
1843 | if (++q->credits >= (q->size / 4)) { | ||
1844 | refill_rspq(adap, q, q->credits); | ||
1845 | q->credits = 0; | ||
1846 | } | ||
1847 | |||
1848 | if (likely(skb != NULL)) { | ||
1849 | if (eth) | ||
1850 | rx_eth(adap, q, skb, ethpad); | ||
1851 | else { | ||
1852 | /* Preserve the RSS info in csum & priority */ | ||
1853 | skb->csum = rss_hi; | ||
1854 | skb->priority = rss_lo; | ||
1855 | ngathered = rx_offload(&adap->tdev, q, skb, | ||
1856 | offload_skbs, ngathered); | ||
1857 | } | ||
1858 | } | ||
1859 | |||
1860 | --budget_left; | ||
1861 | } | ||
1862 | |||
1863 | flush_tx_completed(qs, tx_completed); | ||
1864 | deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); | ||
1865 | if (sleeping) | ||
1866 | check_ring_db(adap, qs, sleeping); | ||
1867 | |||
1868 | smp_mb(); /* commit Tx queue .processed updates */ | ||
1869 | if (unlikely(qs->txq_stopped != 0)) | ||
1870 | restart_tx(qs); | ||
1871 | |||
1872 | budget -= budget_left; | ||
1873 | return budget; | ||
1874 | } | ||
1875 | |||
1876 | static inline int is_pure_response(const struct rsp_desc *r) | ||
1877 | { | ||
1878 | u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); | ||
1879 | |||
1880 | return (n | r->len_cq) == 0; | ||
1881 | } | ||
1882 | |||
1883 | /** | ||
1884 | * napi_rx_handler - the NAPI handler for Rx processing | ||
1885 | * @dev: the net device | ||
1886 | * @budget: how many packets we can process in this round | ||
1887 | * | ||
1888 | * Handler for new data events when using NAPI. | ||
1889 | */ | ||
1890 | static int napi_rx_handler(struct net_device *dev, int *budget) | ||
1891 | { | ||
1892 | struct adapter *adap = dev->priv; | ||
1893 | struct sge_qset *qs = dev2qset(dev); | ||
1894 | int effective_budget = min(*budget, dev->quota); | ||
1895 | |||
1896 | int work_done = process_responses(adap, qs, effective_budget); | ||
1897 | *budget -= work_done; | ||
1898 | dev->quota -= work_done; | ||
1899 | |||
1900 | if (work_done >= effective_budget) | ||
1901 | return 1; | ||
1902 | |||
1903 | netif_rx_complete(dev); | ||
1904 | |||
1905 | /* | ||
1906 | * Because we don't atomically flush the following write it is | ||
1907 | * possible that in very rare cases it can reach the device in a way | ||
1908 | * that races with a new response being written plus an error interrupt | ||
1909 | * causing the NAPI interrupt handler below to return unhandled status | ||
1910 | * to the OS. To protect against this would require flushing the write | ||
1911 | * and doing both the write and the flush with interrupts off. Way too | ||
1912 | * expensive and unjustifiable given the rarity of the race. | ||
1913 | * | ||
1914 | * The race cannot happen at all with MSI-X. | ||
1915 | */ | ||
1916 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | | ||
1917 | V_NEWTIMER(qs->rspq.next_holdoff) | | ||
1918 | V_NEWINDEX(qs->rspq.cidx)); | ||
1919 | return 0; | ||
1920 | } | ||
1921 | |||
1922 | /* | ||
1923 | * Returns true if the device is already scheduled for polling. | ||
1924 | */ | ||
1925 | static inline int napi_is_scheduled(struct net_device *dev) | ||
1926 | { | ||
1927 | return test_bit(__LINK_STATE_RX_SCHED, &dev->state); | ||
1928 | } | ||
1929 | |||
1930 | /** | ||
1931 | * process_pure_responses - process pure responses from a response queue | ||
1932 | * @adap: the adapter | ||
1933 | * @qs: the queue set owning the response queue | ||
1934 | * @r: the first pure response to process | ||
1935 | * | ||
1936 | * A simpler version of process_responses() that handles only pure (i.e., | ||
1937 | * non data-carrying) responses. Such respones are too light-weight to | ||
1938 | * justify calling a softirq under NAPI, so we handle them specially in | ||
1939 | * the interrupt handler. The function is called with a pointer to a | ||
1940 | * response, which the caller must ensure is a valid pure response. | ||
1941 | * | ||
1942 | * Returns 1 if it encounters a valid data-carrying response, 0 otherwise. | ||
1943 | */ | ||
1944 | static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, | ||
1945 | struct rsp_desc *r) | ||
1946 | { | ||
1947 | struct sge_rspq *q = &qs->rspq; | ||
1948 | unsigned int sleeping = 0, tx_completed[3] = { 0, 0, 0 }; | ||
1949 | |||
1950 | do { | ||
1951 | u32 flags = ntohl(r->flags); | ||
1952 | |||
1953 | r++; | ||
1954 | if (unlikely(++q->cidx == q->size)) { | ||
1955 | q->cidx = 0; | ||
1956 | q->gen ^= 1; | ||
1957 | r = q->desc; | ||
1958 | } | ||
1959 | prefetch(r); | ||
1960 | |||
1961 | if (flags & RSPD_CTRL_MASK) { | ||
1962 | sleeping |= flags & RSPD_GTS_MASK; | ||
1963 | handle_rsp_cntrl_info(qs, flags, tx_completed); | ||
1964 | } | ||
1965 | |||
1966 | q->pure_rsps++; | ||
1967 | if (++q->credits >= (q->size / 4)) { | ||
1968 | refill_rspq(adap, q, q->credits); | ||
1969 | q->credits = 0; | ||
1970 | } | ||
1971 | } while (is_new_response(r, q) && is_pure_response(r)); | ||
1972 | |||
1973 | flush_tx_completed(qs, tx_completed); | ||
1974 | |||
1975 | if (sleeping) | ||
1976 | check_ring_db(adap, qs, sleeping); | ||
1977 | |||
1978 | smp_mb(); /* commit Tx queue .processed updates */ | ||
1979 | if (unlikely(qs->txq_stopped != 0)) | ||
1980 | restart_tx(qs); | ||
1981 | |||
1982 | return is_new_response(r, q); | ||
1983 | } | ||
1984 | |||
1985 | /** | ||
1986 | * handle_responses - decide what to do with new responses in NAPI mode | ||
1987 | * @adap: the adapter | ||
1988 | * @q: the response queue | ||
1989 | * | ||
1990 | * This is used by the NAPI interrupt handlers to decide what to do with | ||
1991 | * new SGE responses. If there are no new responses it returns -1. If | ||
1992 | * there are new responses and they are pure (i.e., non-data carrying) | ||
1993 | * it handles them straight in hard interrupt context as they are very | ||
1994 | * cheap and don't deliver any packets. Finally, if there are any data | ||
1995 | * signaling responses it schedules the NAPI handler. Returns 1 if it | ||
1996 | * schedules NAPI, 0 if all new responses were pure. | ||
1997 | * | ||
1998 | * The caller must ascertain NAPI is not already running. | ||
1999 | */ | ||
2000 | static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) | ||
2001 | { | ||
2002 | struct sge_qset *qs = rspq_to_qset(q); | ||
2003 | struct rsp_desc *r = &q->desc[q->cidx]; | ||
2004 | |||
2005 | if (!is_new_response(r, q)) | ||
2006 | return -1; | ||
2007 | if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { | ||
2008 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | ||
2009 | V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); | ||
2010 | return 0; | ||
2011 | } | ||
2012 | if (likely(__netif_rx_schedule_prep(qs->netdev))) | ||
2013 | __netif_rx_schedule(qs->netdev); | ||
2014 | return 1; | ||
2015 | } | ||
2016 | |||
2017 | /* | ||
2018 | * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case | ||
2019 | * (i.e., response queue serviced in hard interrupt). | ||
2020 | */ | ||
2021 | irqreturn_t t3_sge_intr_msix(int irq, void *cookie) | ||
2022 | { | ||
2023 | struct sge_qset *qs = cookie; | ||
2024 | struct adapter *adap = qs->netdev->priv; | ||
2025 | struct sge_rspq *q = &qs->rspq; | ||
2026 | |||
2027 | spin_lock(&q->lock); | ||
2028 | if (process_responses(adap, qs, -1) == 0) | ||
2029 | q->unhandled_irqs++; | ||
2030 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | ||
2031 | V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); | ||
2032 | spin_unlock(&q->lock); | ||
2033 | return IRQ_HANDLED; | ||
2034 | } | ||
2035 | |||
2036 | /* | ||
2037 | * The MSI-X interrupt handler for an SGE response queue for the NAPI case | ||
2038 | * (i.e., response queue serviced by NAPI polling). | ||
2039 | */ | ||
2040 | irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) | ||
2041 | { | ||
2042 | struct sge_qset *qs = cookie; | ||
2043 | struct adapter *adap = qs->netdev->priv; | ||
2044 | struct sge_rspq *q = &qs->rspq; | ||
2045 | |||
2046 | spin_lock(&q->lock); | ||
2047 | BUG_ON(napi_is_scheduled(qs->netdev)); | ||
2048 | |||
2049 | if (handle_responses(adap, q) < 0) | ||
2050 | q->unhandled_irqs++; | ||
2051 | spin_unlock(&q->lock); | ||
2052 | return IRQ_HANDLED; | ||
2053 | } | ||
2054 | |||
2055 | /* | ||
2056 | * The non-NAPI MSI interrupt handler. This needs to handle data events from | ||
2057 | * SGE response queues as well as error and other async events as they all use | ||
2058 | * the same MSI vector. We use one SGE response queue per port in this mode | ||
2059 | * and protect all response queues with queue 0's lock. | ||
2060 | */ | ||
2061 | static irqreturn_t t3_intr_msi(int irq, void *cookie) | ||
2062 | { | ||
2063 | int new_packets = 0; | ||
2064 | struct adapter *adap = cookie; | ||
2065 | struct sge_rspq *q = &adap->sge.qs[0].rspq; | ||
2066 | |||
2067 | spin_lock(&q->lock); | ||
2068 | |||
2069 | if (process_responses(adap, &adap->sge.qs[0], -1)) { | ||
2070 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | ||
2071 | V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); | ||
2072 | new_packets = 1; | ||
2073 | } | ||
2074 | |||
2075 | if (adap->params.nports == 2 && | ||
2076 | process_responses(adap, &adap->sge.qs[1], -1)) { | ||
2077 | struct sge_rspq *q1 = &adap->sge.qs[1].rspq; | ||
2078 | |||
2079 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | | ||
2080 | V_NEWTIMER(q1->next_holdoff) | | ||
2081 | V_NEWINDEX(q1->cidx)); | ||
2082 | new_packets = 1; | ||
2083 | } | ||
2084 | |||
2085 | if (!new_packets && t3_slow_intr_handler(adap) == 0) | ||
2086 | q->unhandled_irqs++; | ||
2087 | |||
2088 | spin_unlock(&q->lock); | ||
2089 | return IRQ_HANDLED; | ||
2090 | } | ||
2091 | |||
2092 | static int rspq_check_napi(struct net_device *dev, struct sge_rspq *q) | ||
2093 | { | ||
2094 | if (!napi_is_scheduled(dev) && is_new_response(&q->desc[q->cidx], q)) { | ||
2095 | if (likely(__netif_rx_schedule_prep(dev))) | ||
2096 | __netif_rx_schedule(dev); | ||
2097 | return 1; | ||
2098 | } | ||
2099 | return 0; | ||
2100 | } | ||
2101 | |||
2102 | /* | ||
2103 | * The MSI interrupt handler for the NAPI case (i.e., response queues serviced | ||
2104 | * by NAPI polling). Handles data events from SGE response queues as well as | ||
2105 | * error and other async events as they all use the same MSI vector. We use | ||
2106 | * one SGE response queue per port in this mode and protect all response | ||
2107 | * queues with queue 0's lock. | ||
2108 | */ | ||
2109 | irqreturn_t t3_intr_msi_napi(int irq, void *cookie) | ||
2110 | { | ||
2111 | int new_packets; | ||
2112 | struct adapter *adap = cookie; | ||
2113 | struct sge_rspq *q = &adap->sge.qs[0].rspq; | ||
2114 | |||
2115 | spin_lock(&q->lock); | ||
2116 | |||
2117 | new_packets = rspq_check_napi(adap->sge.qs[0].netdev, q); | ||
2118 | if (adap->params.nports == 2) | ||
2119 | new_packets += rspq_check_napi(adap->sge.qs[1].netdev, | ||
2120 | &adap->sge.qs[1].rspq); | ||
2121 | if (!new_packets && t3_slow_intr_handler(adap) == 0) | ||
2122 | q->unhandled_irqs++; | ||
2123 | |||
2124 | spin_unlock(&q->lock); | ||
2125 | return IRQ_HANDLED; | ||
2126 | } | ||
2127 | |||
2128 | /* | ||
2129 | * A helper function that processes responses and issues GTS. | ||
2130 | */ | ||
2131 | static inline int process_responses_gts(struct adapter *adap, | ||
2132 | struct sge_rspq *rq) | ||
2133 | { | ||
2134 | int work; | ||
2135 | |||
2136 | work = process_responses(adap, rspq_to_qset(rq), -1); | ||
2137 | t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | | ||
2138 | V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); | ||
2139 | return work; | ||
2140 | } | ||
2141 | |||
2142 | /* | ||
2143 | * The legacy INTx interrupt handler. This needs to handle data events from | ||
2144 | * SGE response queues as well as error and other async events as they all use | ||
2145 | * the same interrupt pin. We use one SGE response queue per port in this mode | ||
2146 | * and protect all response queues with queue 0's lock. | ||
2147 | */ | ||
2148 | static irqreturn_t t3_intr(int irq, void *cookie) | ||
2149 | { | ||
2150 | int work_done, w0, w1; | ||
2151 | struct adapter *adap = cookie; | ||
2152 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; | ||
2153 | struct sge_rspq *q1 = &adap->sge.qs[1].rspq; | ||
2154 | |||
2155 | spin_lock(&q0->lock); | ||
2156 | |||
2157 | w0 = is_new_response(&q0->desc[q0->cidx], q0); | ||
2158 | w1 = adap->params.nports == 2 && | ||
2159 | is_new_response(&q1->desc[q1->cidx], q1); | ||
2160 | |||
2161 | if (likely(w0 | w1)) { | ||
2162 | t3_write_reg(adap, A_PL_CLI, 0); | ||
2163 | t3_read_reg(adap, A_PL_CLI); /* flush */ | ||
2164 | |||
2165 | if (likely(w0)) | ||
2166 | process_responses_gts(adap, q0); | ||
2167 | |||
2168 | if (w1) | ||
2169 | process_responses_gts(adap, q1); | ||
2170 | |||
2171 | work_done = w0 | w1; | ||
2172 | } else | ||
2173 | work_done = t3_slow_intr_handler(adap); | ||
2174 | |||
2175 | spin_unlock(&q0->lock); | ||
2176 | return IRQ_RETVAL(work_done != 0); | ||
2177 | } | ||
2178 | |||
2179 | /* | ||
2180 | * Interrupt handler for legacy INTx interrupts for T3B-based cards. | ||
2181 | * Handles data events from SGE response queues as well as error and other | ||
2182 | * async events as they all use the same interrupt pin. We use one SGE | ||
2183 | * response queue per port in this mode and protect all response queues with | ||
2184 | * queue 0's lock. | ||
2185 | */ | ||
2186 | static irqreturn_t t3b_intr(int irq, void *cookie) | ||
2187 | { | ||
2188 | u32 map; | ||
2189 | struct adapter *adap = cookie; | ||
2190 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; | ||
2191 | |||
2192 | t3_write_reg(adap, A_PL_CLI, 0); | ||
2193 | map = t3_read_reg(adap, A_SG_DATA_INTR); | ||
2194 | |||
2195 | if (unlikely(!map)) /* shared interrupt, most likely */ | ||
2196 | return IRQ_NONE; | ||
2197 | |||
2198 | spin_lock(&q0->lock); | ||
2199 | |||
2200 | if (unlikely(map & F_ERRINTR)) | ||
2201 | t3_slow_intr_handler(adap); | ||
2202 | |||
2203 | if (likely(map & 1)) | ||
2204 | process_responses_gts(adap, q0); | ||
2205 | |||
2206 | if (map & 2) | ||
2207 | process_responses_gts(adap, &adap->sge.qs[1].rspq); | ||
2208 | |||
2209 | spin_unlock(&q0->lock); | ||
2210 | return IRQ_HANDLED; | ||
2211 | } | ||
2212 | |||
2213 | /* | ||
2214 | * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. | ||
2215 | * Handles data events from SGE response queues as well as error and other | ||
2216 | * async events as they all use the same interrupt pin. We use one SGE | ||
2217 | * response queue per port in this mode and protect all response queues with | ||
2218 | * queue 0's lock. | ||
2219 | */ | ||
2220 | static irqreturn_t t3b_intr_napi(int irq, void *cookie) | ||
2221 | { | ||
2222 | u32 map; | ||
2223 | struct net_device *dev; | ||
2224 | struct adapter *adap = cookie; | ||
2225 | struct sge_rspq *q0 = &adap->sge.qs[0].rspq; | ||
2226 | |||
2227 | t3_write_reg(adap, A_PL_CLI, 0); | ||
2228 | map = t3_read_reg(adap, A_SG_DATA_INTR); | ||
2229 | |||
2230 | if (unlikely(!map)) /* shared interrupt, most likely */ | ||
2231 | return IRQ_NONE; | ||
2232 | |||
2233 | spin_lock(&q0->lock); | ||
2234 | |||
2235 | if (unlikely(map & F_ERRINTR)) | ||
2236 | t3_slow_intr_handler(adap); | ||
2237 | |||
2238 | if (likely(map & 1)) { | ||
2239 | dev = adap->sge.qs[0].netdev; | ||
2240 | |||
2241 | BUG_ON(napi_is_scheduled(dev)); | ||
2242 | if (likely(__netif_rx_schedule_prep(dev))) | ||
2243 | __netif_rx_schedule(dev); | ||
2244 | } | ||
2245 | if (map & 2) { | ||
2246 | dev = adap->sge.qs[1].netdev; | ||
2247 | |||
2248 | BUG_ON(napi_is_scheduled(dev)); | ||
2249 | if (likely(__netif_rx_schedule_prep(dev))) | ||
2250 | __netif_rx_schedule(dev); | ||
2251 | } | ||
2252 | |||
2253 | spin_unlock(&q0->lock); | ||
2254 | return IRQ_HANDLED; | ||
2255 | } | ||
2256 | |||
2257 | /** | ||
2258 | * t3_intr_handler - select the top-level interrupt handler | ||
2259 | * @adap: the adapter | ||
2260 | * @polling: whether using NAPI to service response queues | ||
2261 | * | ||
2262 | * Selects the top-level interrupt handler based on the type of interrupts | ||
2263 | * (MSI-X, MSI, or legacy) and whether NAPI will be used to service the | ||
2264 | * response queues. | ||
2265 | */ | ||
2266 | intr_handler_t t3_intr_handler(struct adapter *adap, int polling) | ||
2267 | { | ||
2268 | if (adap->flags & USING_MSIX) | ||
2269 | return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; | ||
2270 | if (adap->flags & USING_MSI) | ||
2271 | return polling ? t3_intr_msi_napi : t3_intr_msi; | ||
2272 | if (adap->params.rev > 0) | ||
2273 | return polling ? t3b_intr_napi : t3b_intr; | ||
2274 | return t3_intr; | ||
2275 | } | ||
2276 | |||
2277 | /** | ||
2278 | * t3_sge_err_intr_handler - SGE async event interrupt handler | ||
2279 | * @adapter: the adapter | ||
2280 | * | ||
2281 | * Interrupt handler for SGE asynchronous (non-data) events. | ||
2282 | */ | ||
2283 | void t3_sge_err_intr_handler(struct adapter *adapter) | ||
2284 | { | ||
2285 | unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE); | ||
2286 | |||
2287 | if (status & F_RSPQCREDITOVERFOW) | ||
2288 | CH_ALERT(adapter, "SGE response queue credit overflow\n"); | ||
2289 | |||
2290 | if (status & F_RSPQDISABLED) { | ||
2291 | v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); | ||
2292 | |||
2293 | CH_ALERT(adapter, | ||
2294 | "packet delivered to disabled response queue " | ||
2295 | "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); | ||
2296 | } | ||
2297 | |||
2298 | t3_write_reg(adapter, A_SG_INT_CAUSE, status); | ||
2299 | if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED)) | ||
2300 | t3_fatal_err(adapter); | ||
2301 | } | ||
2302 | |||
2303 | /** | ||
2304 | * sge_timer_cb - perform periodic maintenance of an SGE qset | ||
2305 | * @data: the SGE queue set to maintain | ||
2306 | * | ||
2307 | * Runs periodically from a timer to perform maintenance of an SGE queue | ||
2308 | * set. It performs two tasks: | ||
2309 | * | ||
2310 | * a) Cleans up any completed Tx descriptors that may still be pending. | ||
2311 | * Normal descriptor cleanup happens when new packets are added to a Tx | ||
2312 | * queue so this timer is relatively infrequent and does any cleanup only | ||
2313 | * if the Tx queue has not seen any new packets in a while. We make a | ||
2314 | * best effort attempt to reclaim descriptors, in that we don't wait | ||
2315 | * around if we cannot get a queue's lock (which most likely is because | ||
2316 | * someone else is queueing new packets and so will also handle the clean | ||
2317 | * up). Since control queues use immediate data exclusively we don't | ||
2318 | * bother cleaning them up here. | ||
2319 | * | ||
2320 | * b) Replenishes Rx queues that have run out due to memory shortage. | ||
2321 | * Normally new Rx buffers are added when existing ones are consumed but | ||
2322 | * when out of memory a queue can become empty. We try to add only a few | ||
2323 | * buffers here, the queue will be replenished fully as these new buffers | ||
2324 | * are used up if memory shortage has subsided. | ||
2325 | */ | ||
2326 | static void sge_timer_cb(unsigned long data) | ||
2327 | { | ||
2328 | spinlock_t *lock; | ||
2329 | struct sge_qset *qs = (struct sge_qset *)data; | ||
2330 | struct adapter *adap = qs->netdev->priv; | ||
2331 | |||
2332 | if (spin_trylock(&qs->txq[TXQ_ETH].lock)) { | ||
2333 | reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]); | ||
2334 | spin_unlock(&qs->txq[TXQ_ETH].lock); | ||
2335 | } | ||
2336 | if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { | ||
2337 | reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]); | ||
2338 | spin_unlock(&qs->txq[TXQ_OFLD].lock); | ||
2339 | } | ||
2340 | lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock : | ||
2341 | &adap->sge.qs[0].rspq.lock; | ||
2342 | if (spin_trylock_irq(lock)) { | ||
2343 | if (!napi_is_scheduled(qs->netdev)) { | ||
2344 | if (qs->fl[0].credits < qs->fl[0].size) | ||
2345 | __refill_fl(adap, &qs->fl[0]); | ||
2346 | if (qs->fl[1].credits < qs->fl[1].size) | ||
2347 | __refill_fl(adap, &qs->fl[1]); | ||
2348 | } | ||
2349 | spin_unlock_irq(lock); | ||
2350 | } | ||
2351 | mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | ||
2352 | } | ||
2353 | |||
2354 | /** | ||
2355 | * t3_update_qset_coalesce - update coalescing settings for a queue set | ||
2356 | * @qs: the SGE queue set | ||
2357 | * @p: new queue set parameters | ||
2358 | * | ||
2359 | * Update the coalescing settings for an SGE queue set. Nothing is done | ||
2360 | * if the queue set is not initialized yet. | ||
2361 | */ | ||
2362 | void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) | ||
2363 | { | ||
2364 | if (!qs->netdev) | ||
2365 | return; | ||
2366 | |||
2367 | qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ | ||
2368 | qs->rspq.polling = p->polling; | ||
2369 | qs->netdev->poll = p->polling ? napi_rx_handler : ofld_poll; | ||
2370 | } | ||
2371 | |||
2372 | /** | ||
2373 | * t3_sge_alloc_qset - initialize an SGE queue set | ||
2374 | * @adapter: the adapter | ||
2375 | * @id: the queue set id | ||
2376 | * @nports: how many Ethernet ports will be using this queue set | ||
2377 | * @irq_vec_idx: the IRQ vector index for response queue interrupts | ||
2378 | * @p: configuration parameters for this queue set | ||
2379 | * @ntxq: number of Tx queues for the queue set | ||
2380 | * @netdev: net device associated with this queue set | ||
2381 | * | ||
2382 | * Allocate resources and initialize an SGE queue set. A queue set | ||
2383 | * comprises a response queue, two Rx free-buffer queues, and up to 3 | ||
2384 | * Tx queues. The Tx queues are assigned roles in the order Ethernet | ||
2385 | * queue, offload queue, and control queue. | ||
2386 | */ | ||
2387 | int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, | ||
2388 | int irq_vec_idx, const struct qset_params *p, | ||
2389 | int ntxq, struct net_device *netdev) | ||
2390 | { | ||
2391 | int i, ret = -ENOMEM; | ||
2392 | struct sge_qset *q = &adapter->sge.qs[id]; | ||
2393 | |||
2394 | init_qset_cntxt(q, id); | ||
2395 | init_timer(&q->tx_reclaim_timer); | ||
2396 | q->tx_reclaim_timer.data = (unsigned long)q; | ||
2397 | q->tx_reclaim_timer.function = sge_timer_cb; | ||
2398 | |||
2399 | q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, | ||
2400 | sizeof(struct rx_desc), | ||
2401 | sizeof(struct rx_sw_desc), | ||
2402 | &q->fl[0].phys_addr, &q->fl[0].sdesc); | ||
2403 | if (!q->fl[0].desc) | ||
2404 | goto err; | ||
2405 | |||
2406 | q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, | ||
2407 | sizeof(struct rx_desc), | ||
2408 | sizeof(struct rx_sw_desc), | ||
2409 | &q->fl[1].phys_addr, &q->fl[1].sdesc); | ||
2410 | if (!q->fl[1].desc) | ||
2411 | goto err; | ||
2412 | |||
2413 | q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, | ||
2414 | sizeof(struct rsp_desc), 0, | ||
2415 | &q->rspq.phys_addr, NULL); | ||
2416 | if (!q->rspq.desc) | ||
2417 | goto err; | ||
2418 | |||
2419 | for (i = 0; i < ntxq; ++i) { | ||
2420 | /* | ||
2421 | * The control queue always uses immediate data so does not | ||
2422 | * need to keep track of any sk_buffs. | ||
2423 | */ | ||
2424 | size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); | ||
2425 | |||
2426 | q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], | ||
2427 | sizeof(struct tx_desc), sz, | ||
2428 | &q->txq[i].phys_addr, | ||
2429 | &q->txq[i].sdesc); | ||
2430 | if (!q->txq[i].desc) | ||
2431 | goto err; | ||
2432 | |||
2433 | q->txq[i].gen = 1; | ||
2434 | q->txq[i].size = p->txq_size[i]; | ||
2435 | spin_lock_init(&q->txq[i].lock); | ||
2436 | skb_queue_head_init(&q->txq[i].sendq); | ||
2437 | } | ||
2438 | |||
2439 | tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq, | ||
2440 | (unsigned long)q); | ||
2441 | tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq, | ||
2442 | (unsigned long)q); | ||
2443 | |||
2444 | q->fl[0].gen = q->fl[1].gen = 1; | ||
2445 | q->fl[0].size = p->fl_size; | ||
2446 | q->fl[1].size = p->jumbo_size; | ||
2447 | |||
2448 | q->rspq.gen = 1; | ||
2449 | q->rspq.size = p->rspq_size; | ||
2450 | spin_lock_init(&q->rspq.lock); | ||
2451 | |||
2452 | q->txq[TXQ_ETH].stop_thres = nports * | ||
2453 | flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); | ||
2454 | |||
2455 | if (ntxq == 1) { | ||
2456 | q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + 2 + | ||
2457 | sizeof(struct cpl_rx_pkt); | ||
2458 | q->fl[1].buf_size = MAX_FRAME_SIZE + 2 + | ||
2459 | sizeof(struct cpl_rx_pkt); | ||
2460 | } else { | ||
2461 | q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + | ||
2462 | sizeof(struct cpl_rx_data); | ||
2463 | q->fl[1].buf_size = (16 * 1024) - | ||
2464 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | ||
2465 | } | ||
2466 | |||
2467 | spin_lock(&adapter->sge.reg_lock); | ||
2468 | |||
2469 | /* FL threshold comparison uses < */ | ||
2470 | ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, | ||
2471 | q->rspq.phys_addr, q->rspq.size, | ||
2472 | q->fl[0].buf_size, 1, 0); | ||
2473 | if (ret) | ||
2474 | goto err_unlock; | ||
2475 | |||
2476 | for (i = 0; i < SGE_RXQ_PER_SET; ++i) { | ||
2477 | ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, | ||
2478 | q->fl[i].phys_addr, q->fl[i].size, | ||
2479 | q->fl[i].buf_size, p->cong_thres, 1, | ||
2480 | 0); | ||
2481 | if (ret) | ||
2482 | goto err_unlock; | ||
2483 | } | ||
2484 | |||
2485 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, | ||
2486 | SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, | ||
2487 | q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, | ||
2488 | 1, 0); | ||
2489 | if (ret) | ||
2490 | goto err_unlock; | ||
2491 | |||
2492 | if (ntxq > 1) { | ||
2493 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, | ||
2494 | USE_GTS, SGE_CNTXT_OFLD, id, | ||
2495 | q->txq[TXQ_OFLD].phys_addr, | ||
2496 | q->txq[TXQ_OFLD].size, 0, 1, 0); | ||
2497 | if (ret) | ||
2498 | goto err_unlock; | ||
2499 | } | ||
2500 | |||
2501 | if (ntxq > 2) { | ||
2502 | ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, | ||
2503 | SGE_CNTXT_CTRL, id, | ||
2504 | q->txq[TXQ_CTRL].phys_addr, | ||
2505 | q->txq[TXQ_CTRL].size, | ||
2506 | q->txq[TXQ_CTRL].token, 1, 0); | ||
2507 | if (ret) | ||
2508 | goto err_unlock; | ||
2509 | } | ||
2510 | |||
2511 | spin_unlock(&adapter->sge.reg_lock); | ||
2512 | q->netdev = netdev; | ||
2513 | t3_update_qset_coalesce(q, p); | ||
2514 | |||
2515 | /* | ||
2516 | * We use atalk_ptr as a backpointer to a qset. In case a device is | ||
2517 | * associated with multiple queue sets only the first one sets | ||
2518 | * atalk_ptr. | ||
2519 | */ | ||
2520 | if (netdev->atalk_ptr == NULL) | ||
2521 | netdev->atalk_ptr = q; | ||
2522 | |||
2523 | refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL); | ||
2524 | refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL); | ||
2525 | refill_rspq(adapter, &q->rspq, q->rspq.size - 1); | ||
2526 | |||
2527 | t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | | ||
2528 | V_NEWTIMER(q->rspq.holdoff_tmr)); | ||
2529 | |||
2530 | mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | ||
2531 | return 0; | ||
2532 | |||
2533 | err_unlock: | ||
2534 | spin_unlock(&adapter->sge.reg_lock); | ||
2535 | err: | ||
2536 | t3_free_qset(adapter, q); | ||
2537 | return ret; | ||
2538 | } | ||
2539 | |||
2540 | /** | ||
2541 | * t3_free_sge_resources - free SGE resources | ||
2542 | * @adap: the adapter | ||
2543 | * | ||
2544 | * Frees resources used by the SGE queue sets. | ||
2545 | */ | ||
2546 | void t3_free_sge_resources(struct adapter *adap) | ||
2547 | { | ||
2548 | int i; | ||
2549 | |||
2550 | for (i = 0; i < SGE_QSETS; ++i) | ||
2551 | t3_free_qset(adap, &adap->sge.qs[i]); | ||
2552 | } | ||
2553 | |||
2554 | /** | ||
2555 | * t3_sge_start - enable SGE | ||
2556 | * @adap: the adapter | ||
2557 | * | ||
2558 | * Enables the SGE for DMAs. This is the last step in starting packet | ||
2559 | * transfers. | ||
2560 | */ | ||
2561 | void t3_sge_start(struct adapter *adap) | ||
2562 | { | ||
2563 | t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); | ||
2564 | } | ||
2565 | |||
2566 | /** | ||
2567 | * t3_sge_stop - disable SGE operation | ||
2568 | * @adap: the adapter | ||
2569 | * | ||
2570 | * Disables the DMA engine. This can be called in emeregencies (e.g., | ||
2571 | * from error interrupts) or from normal process context. In the latter | ||
2572 | * case it also disables any pending queue restart tasklets. Note that | ||
2573 | * if it is called in interrupt context it cannot disable the restart | ||
2574 | * tasklets as it cannot wait, however the tasklets will have no effect | ||
2575 | * since the doorbells are disabled and the driver will call this again | ||
2576 | * later from process context, at which time the tasklets will be stopped | ||
2577 | * if they are still running. | ||
2578 | */ | ||
2579 | void t3_sge_stop(struct adapter *adap) | ||
2580 | { | ||
2581 | t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); | ||
2582 | if (!in_interrupt()) { | ||
2583 | int i; | ||
2584 | |||
2585 | for (i = 0; i < SGE_QSETS; ++i) { | ||
2586 | struct sge_qset *qs = &adap->sge.qs[i]; | ||
2587 | |||
2588 | tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk); | ||
2589 | tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk); | ||
2590 | } | ||
2591 | } | ||
2592 | } | ||
2593 | |||
2594 | /** | ||
2595 | * t3_sge_init - initialize SGE | ||
2596 | * @adap: the adapter | ||
2597 | * @p: the SGE parameters | ||
2598 | * | ||
2599 | * Performs SGE initialization needed every time after a chip reset. | ||
2600 | * We do not initialize any of the queue sets here, instead the driver | ||
2601 | * top-level must request those individually. We also do not enable DMA | ||
2602 | * here, that should be done after the queues have been set up. | ||
2603 | */ | ||
2604 | void t3_sge_init(struct adapter *adap, struct sge_params *p) | ||
2605 | { | ||
2606 | unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); | ||
2607 | |||
2608 | ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | | ||
2609 | F_CQCRDTCTRL | | ||
2610 | V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | | ||
2611 | V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; | ||
2612 | #if SGE_NUM_GENBITS == 1 | ||
2613 | ctrl |= F_EGRGENCTRL; | ||
2614 | #endif | ||
2615 | if (adap->params.rev > 0) { | ||
2616 | if (!(adap->flags & (USING_MSIX | USING_MSI))) | ||
2617 | ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; | ||
2618 | ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL; | ||
2619 | } | ||
2620 | t3_write_reg(adap, A_SG_CONTROL, ctrl); | ||
2621 | t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | | ||
2622 | V_LORCQDRBTHRSH(512)); | ||
2623 | t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); | ||
2624 | t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | | ||
2625 | V_TIMEOUT(100 * core_ticks_per_usec(adap))); | ||
2626 | t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000); | ||
2627 | t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); | ||
2628 | t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); | ||
2629 | t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); | ||
2630 | t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); | ||
2631 | t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); | ||
2632 | } | ||
2633 | |||
2634 | /** | ||
2635 | * t3_sge_prep - one-time SGE initialization | ||
2636 | * @adap: the associated adapter | ||
2637 | * @p: SGE parameters | ||
2638 | * | ||
2639 | * Performs one-time initialization of SGE SW state. Includes determining | ||
2640 | * defaults for the assorted SGE parameters, which admins can change until | ||
2641 | * they are used to initialize the SGE. | ||
2642 | */ | ||
2643 | void __devinit t3_sge_prep(struct adapter *adap, struct sge_params *p) | ||
2644 | { | ||
2645 | int i; | ||
2646 | |||
2647 | p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - | ||
2648 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | ||
2649 | |||
2650 | for (i = 0; i < SGE_QSETS; ++i) { | ||
2651 | struct qset_params *q = p->qset + i; | ||
2652 | |||
2653 | q->polling = adap->params.rev > 0; | ||
2654 | q->coalesce_usecs = 5; | ||
2655 | q->rspq_size = 1024; | ||
2656 | q->fl_size = 4096; | ||
2657 | q->jumbo_size = 512; | ||
2658 | q->txq_size[TXQ_ETH] = 1024; | ||
2659 | q->txq_size[TXQ_OFLD] = 1024; | ||
2660 | q->txq_size[TXQ_CTRL] = 256; | ||
2661 | q->cong_thres = 0; | ||
2662 | } | ||
2663 | |||
2664 | spin_lock_init(&adap->sge.reg_lock); | ||
2665 | } | ||
2666 | |||
2667 | /** | ||
2668 | * t3_get_desc - dump an SGE descriptor for debugging purposes | ||
2669 | * @qs: the queue set | ||
2670 | * @qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx) | ||
2671 | * @idx: the descriptor index in the queue | ||
2672 | * @data: where to dump the descriptor contents | ||
2673 | * | ||
2674 | * Dumps the contents of a HW descriptor of an SGE queue. Returns the | ||
2675 | * size of the descriptor. | ||
2676 | */ | ||
2677 | int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx, | ||
2678 | unsigned char *data) | ||
2679 | { | ||
2680 | if (qnum >= 6) | ||
2681 | return -EINVAL; | ||
2682 | |||
2683 | if (qnum < 3) { | ||
2684 | if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size) | ||
2685 | return -EINVAL; | ||
2686 | memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc)); | ||
2687 | return sizeof(struct tx_desc); | ||
2688 | } | ||
2689 | |||
2690 | if (qnum == 3) { | ||
2691 | if (!qs->rspq.desc || idx >= qs->rspq.size) | ||
2692 | return -EINVAL; | ||
2693 | memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc)); | ||
2694 | return sizeof(struct rsp_desc); | ||
2695 | } | ||
2696 | |||
2697 | qnum -= 4; | ||
2698 | if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size) | ||
2699 | return -EINVAL; | ||
2700 | memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc)); | ||
2701 | return sizeof(struct rx_desc); | ||
2702 | } | ||