diff options
author | Scott Bardone <sbardone@chelsio.com> | 2005-06-23 01:40:19 -0400 |
---|---|---|
committer | Jeff Garzik <jgarzik@pobox.com> | 2005-06-23 01:40:19 -0400 |
commit | 559fb51ba7e66fe298b8355fabde1275b7def35f (patch) | |
tree | e1de3eb86ea5e6ac8c5f27dc32140a0c2aacc51e /drivers/net/chelsio/sge.c | |
parent | a5324343955997d1439f26518ddac567cd5d134b (diff) |
Update Chelsio gige net driver.
- Use extern prefix for functions required.
- Removed a lot of wrappers, including t1_read/write_reg_4.
- Removed various macros, using native kernel calls now.
- Enumerated various #defines.
- Removed a lot of shared code which is not currently used in "NIC only" mode.
- Removed dead code.
Documentation/networking/cxgb.txt:
- Updated release notes for version 2.1.1
drivers/net/chelsio/ch_ethtool.h
- removed file, no longer using ETHTOOL namespace.
drivers/net/chelsio/common.h
- moved code from osdep.h to common.h
- added comment to #endif indicating which symbol it closes.
drivers/net/chelsio/cphy.h
- removed dead code.
- added comment to #endif indicating which symbol it closes.
drivers/net/chelsio/cxgb2.c
- use DMA_{32,64}BIT_MASK in include/linux/dma-mapping.h.
- removed unused code.
- use printk message for link info resembling drivers/net/mii.c.
- no longer using the MODULE_xxx namespace.
- no longer using "pci_" namespace.
- no longer using ETHTOOL namespace.
drivers/net/chelsio/cxgb2.h
- removed file, merged into common.h
drivers/net/chelsio/elmer0.h
- removed dead code.
- added various enums.
- added comment to #endif indicating which symbol it closes.
drivers/net/chelsio/espi.c
- removed various macros, using native kernel calls now.
- removed a lot of wrappers, including t1_read/write_reg_4.
drivers/net/chelsio/espi.h
- added comment to #endif indicating which symbol it closes.
drivers/net/chelsio/gmac.h
- added comment to #endif indicating which symbol it closes.
drivers/net/chelsio/mv88x201x.c
- changes to sync with Chelsio TOT.
drivers/net/chelsio/osdep.h
- removed file, consolidation. osdep was used to translate wrapper functions
since our code supports multiple OSs. removed wrappers.
drivers/net/chelsio/pm3393.c
- removed various macros, using native kernel calls now.
- removed a lot of wrappers, including t1_read/write_reg_4.
- removed unused code.
drivers/net/chelsio/regs.h
- added a few register entries for future and current feature support.
- added comment to #endif indicating which symbol it closes.
drivers/net/chelsio/sge.c
- rewrote large portion of scatter-gather engine to stabilize
performance.
- using u8/u16/u32 kernel types instead of __u8/__u16/__u32 compiler
types.
drivers/net/chelsio/sge.h
- rewrote large portion of scatter-gather engine to stabilize
performance.
- added comment to #endif indicating which symbol it closes.
drivers/net/chelsio/subr.c
- merged tp.c into subr.c
- removed various macros, using native kernel calls now.
- removed a lot of wrappers, including t1_read/write_reg_4.
- removed unused code.
drivers/net/chelsio/suni1x10gexp_regs.h
- modified copyright and authorship of file.
- added comment to #endif indicating which symbol it closes.
drivers/net/chelsio/tp.c
- removed file, merged into subr.c.
drivers/net/chelsio/tp.h
- removed file.
include/linux/pci_ids.h
- patched to include PCI_VENDOR_ID_CHELSIO 0x1425, removed define from
our code.
Diffstat (limited to 'drivers/net/chelsio/sge.c')
-rw-r--r-- | drivers/net/chelsio/sge.c | 1859 |
1 files changed, 1046 insertions, 813 deletions
diff --git a/drivers/net/chelsio/sge.c b/drivers/net/chelsio/sge.c index bcf8b1e939b0..53b41d99b00b 100644 --- a/drivers/net/chelsio/sge.c +++ b/drivers/net/chelsio/sge.c | |||
@@ -1,8 +1,8 @@ | |||
1 | /***************************************************************************** | 1 | /***************************************************************************** |
2 | * * | 2 | * * |
3 | * File: sge.c * | 3 | * File: sge.c * |
4 | * $Revision: 1.13 $ * | 4 | * $Revision: 1.26 $ * |
5 | * $Date: 2005/03/23 07:41:27 $ * | 5 | * $Date: 2005/06/21 18:29:48 $ * |
6 | * Description: * | 6 | * Description: * |
7 | * DMA engine. * | 7 | * DMA engine. * |
8 | * part of the Chelsio 10Gb Ethernet Driver. * | 8 | * part of the Chelsio 10Gb Ethernet Driver. * |
@@ -58,59 +58,62 @@ | |||
58 | #include "regs.h" | 58 | #include "regs.h" |
59 | #include "espi.h" | 59 | #include "espi.h" |
60 | 60 | ||
61 | |||
62 | #ifdef NETIF_F_TSO | ||
61 | #include <linux/tcp.h> | 63 | #include <linux/tcp.h> |
64 | #endif | ||
62 | 65 | ||
63 | #define SGE_CMDQ_N 2 | 66 | #define SGE_CMDQ_N 2 |
64 | #define SGE_FREELQ_N 2 | 67 | #define SGE_FREELQ_N 2 |
65 | #define SGE_CMDQ0_E_N 512 | 68 | #define SGE_CMDQ0_E_N 1024 |
66 | #define SGE_CMDQ1_E_N 128 | 69 | #define SGE_CMDQ1_E_N 128 |
67 | #define SGE_FREEL_SIZE 4096 | 70 | #define SGE_FREEL_SIZE 4096 |
68 | #define SGE_JUMBO_FREEL_SIZE 512 | 71 | #define SGE_JUMBO_FREEL_SIZE 512 |
69 | #define SGE_FREEL_REFILL_THRESH 16 | 72 | #define SGE_FREEL_REFILL_THRESH 16 |
70 | #define SGE_RESPQ_E_N 1024 | 73 | #define SGE_RESPQ_E_N 1024 |
71 | #define SGE_INTR_BUCKETSIZE 100 | 74 | #define SGE_INTRTIMER_NRES 1000 |
72 | #define SGE_INTR_LATBUCKETS 5 | 75 | #define SGE_RX_COPY_THRES 256 |
73 | #define SGE_INTR_MAXBUCKETS 11 | ||
74 | #define SGE_INTRTIMER0 1 | ||
75 | #define SGE_INTRTIMER1 50 | ||
76 | #define SGE_INTRTIMER_NRES 10000 | ||
77 | #define SGE_RX_COPY_THRESHOLD 256 | ||
78 | #define SGE_RX_SM_BUF_SIZE 1536 | 76 | #define SGE_RX_SM_BUF_SIZE 1536 |
79 | 77 | ||
80 | #define SGE_RESPQ_REPLENISH_THRES ((3 * SGE_RESPQ_E_N) / 4) | 78 | # define SGE_RX_DROP_THRES 2 |
79 | |||
80 | #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4) | ||
81 | |||
82 | /* | ||
83 | * Period of the TX buffer reclaim timer. This timer does not need to run | ||
84 | * frequently as TX buffers are usually reclaimed by new TX packets. | ||
85 | */ | ||
86 | #define TX_RECLAIM_PERIOD (HZ / 4) | ||
81 | 87 | ||
82 | #define SGE_RX_OFFSET 2 | ||
83 | #ifndef NET_IP_ALIGN | 88 | #ifndef NET_IP_ALIGN |
84 | # define NET_IP_ALIGN SGE_RX_OFFSET | 89 | # define NET_IP_ALIGN 2 |
85 | #endif | 90 | #endif |
86 | 91 | ||
92 | #define M_CMD_LEN 0x7fffffff | ||
93 | #define V_CMD_LEN(v) (v) | ||
94 | #define G_CMD_LEN(v) ((v) & M_CMD_LEN) | ||
95 | #define V_CMD_GEN1(v) ((v) << 31) | ||
96 | #define V_CMD_GEN2(v) (v) | ||
97 | #define F_CMD_DATAVALID (1 << 1) | ||
98 | #define F_CMD_SOP (1 << 2) | ||
99 | #define V_CMD_EOP(v) ((v) << 3) | ||
100 | |||
87 | /* | 101 | /* |
88 | * Memory Mapped HW Command, Freelist and Response Queue Descriptors | 102 | * Command queue, receive buffer list, and response queue descriptors. |
89 | */ | 103 | */ |
90 | #if defined(__BIG_ENDIAN_BITFIELD) | 104 | #if defined(__BIG_ENDIAN_BITFIELD) |
91 | struct cmdQ_e { | 105 | struct cmdQ_e { |
92 | u32 AddrLow; | 106 | u32 addr_lo; |
93 | u32 GenerationBit : 1; | 107 | u32 len_gen; |
94 | u32 BufferLength : 31; | 108 | u32 flags; |
95 | u32 RespQueueSelector : 4; | 109 | u32 addr_hi; |
96 | u32 ResponseTokens : 12; | ||
97 | u32 CmdId : 8; | ||
98 | u32 Reserved : 3; | ||
99 | u32 TokenValid : 1; | ||
100 | u32 Eop : 1; | ||
101 | u32 Sop : 1; | ||
102 | u32 DataValid : 1; | ||
103 | u32 GenerationBit2 : 1; | ||
104 | u32 AddrHigh; | ||
105 | }; | 110 | }; |
106 | 111 | ||
107 | struct freelQ_e { | 112 | struct freelQ_e { |
108 | u32 AddrLow; | 113 | u32 addr_lo; |
109 | u32 GenerationBit : 1; | 114 | u32 len_gen; |
110 | u32 BufferLength : 31; | 115 | u32 gen2; |
111 | u32 Reserved : 31; | 116 | u32 addr_hi; |
112 | u32 GenerationBit2 : 1; | ||
113 | u32 AddrHigh; | ||
114 | }; | 117 | }; |
115 | 118 | ||
116 | struct respQ_e { | 119 | struct respQ_e { |
@@ -128,31 +131,19 @@ struct respQ_e { | |||
128 | u32 GenerationBit : 1; | 131 | u32 GenerationBit : 1; |
129 | u32 BufferLength; | 132 | u32 BufferLength; |
130 | }; | 133 | }; |
131 | |||
132 | #elif defined(__LITTLE_ENDIAN_BITFIELD) | 134 | #elif defined(__LITTLE_ENDIAN_BITFIELD) |
133 | struct cmdQ_e { | 135 | struct cmdQ_e { |
134 | u32 BufferLength : 31; | 136 | u32 len_gen; |
135 | u32 GenerationBit : 1; | 137 | u32 addr_lo; |
136 | u32 AddrLow; | 138 | u32 addr_hi; |
137 | u32 AddrHigh; | 139 | u32 flags; |
138 | u32 GenerationBit2 : 1; | ||
139 | u32 DataValid : 1; | ||
140 | u32 Sop : 1; | ||
141 | u32 Eop : 1; | ||
142 | u32 TokenValid : 1; | ||
143 | u32 Reserved : 3; | ||
144 | u32 CmdId : 8; | ||
145 | u32 ResponseTokens : 12; | ||
146 | u32 RespQueueSelector : 4; | ||
147 | }; | 140 | }; |
148 | 141 | ||
149 | struct freelQ_e { | 142 | struct freelQ_e { |
150 | u32 BufferLength : 31; | 143 | u32 len_gen; |
151 | u32 GenerationBit : 1; | 144 | u32 addr_lo; |
152 | u32 AddrLow; | 145 | u32 addr_hi; |
153 | u32 AddrHigh; | 146 | u32 gen2; |
154 | u32 GenerationBit2 : 1; | ||
155 | u32 Reserved : 31; | ||
156 | }; | 147 | }; |
157 | 148 | ||
158 | struct respQ_e { | 149 | struct respQ_e { |
@@ -179,7 +170,6 @@ struct cmdQ_ce { | |||
179 | struct sk_buff *skb; | 170 | struct sk_buff *skb; |
180 | DECLARE_PCI_UNMAP_ADDR(dma_addr); | 171 | DECLARE_PCI_UNMAP_ADDR(dma_addr); |
181 | DECLARE_PCI_UNMAP_LEN(dma_len); | 172 | DECLARE_PCI_UNMAP_LEN(dma_len); |
182 | unsigned int single; | ||
183 | }; | 173 | }; |
184 | 174 | ||
185 | struct freelQ_ce { | 175 | struct freelQ_ce { |
@@ -189,44 +179,52 @@ struct freelQ_ce { | |||
189 | }; | 179 | }; |
190 | 180 | ||
191 | /* | 181 | /* |
192 | * SW Command, Freelist and Response Queue | 182 | * SW command, freelist and response rings |
193 | */ | 183 | */ |
194 | struct cmdQ { | 184 | struct cmdQ { |
195 | atomic_t asleep; /* HW DMA Fetch status */ | 185 | unsigned long status; /* HW DMA fetch status */ |
196 | atomic_t credits; /* # available descriptors for TX */ | 186 | unsigned int in_use; /* # of in-use command descriptors */ |
197 | atomic_t pio_pidx; /* Variable updated on Doorbell */ | 187 | unsigned int size; /* # of descriptors */ |
198 | u16 entries_n; /* # descriptors for TX */ | 188 | unsigned int processed; /* total # of descs HW has processed */ |
199 | u16 pidx; /* producer index (SW) */ | 189 | unsigned int cleaned; /* total # of descs SW has reclaimed */ |
200 | u16 cidx; /* consumer index (HW) */ | 190 | unsigned int stop_thres; /* SW TX queue suspend threshold */ |
201 | u8 genbit; /* current generation (=valid) bit */ | 191 | u16 pidx; /* producer index (SW) */ |
202 | struct cmdQ_e *entries; /* HW command descriptor Q */ | 192 | u16 cidx; /* consumer index (HW) */ |
203 | struct cmdQ_ce *centries; /* SW command context descriptor Q */ | 193 | u8 genbit; /* current generation (=valid) bit */ |
204 | spinlock_t Qlock; /* Lock to protect cmdQ enqueuing */ | 194 | u8 sop; /* is next entry start of packet? */ |
205 | dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */ | 195 | struct cmdQ_e *entries; /* HW command descriptor Q */ |
196 | struct cmdQ_ce *centries; /* SW command context descriptor Q */ | ||
197 | spinlock_t lock; /* Lock to protect cmdQ enqueuing */ | ||
198 | dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */ | ||
206 | }; | 199 | }; |
207 | 200 | ||
208 | struct freelQ { | 201 | struct freelQ { |
209 | unsigned int credits; /* # of available RX buffers */ | 202 | unsigned int credits; /* # of available RX buffers */ |
210 | unsigned int entries_n; /* free list capacity */ | 203 | unsigned int size; /* free list capacity */ |
211 | u16 pidx; /* producer index (SW) */ | 204 | u16 pidx; /* producer index (SW) */ |
212 | u16 cidx; /* consumer index (HW) */ | 205 | u16 cidx; /* consumer index (HW) */ |
213 | u16 rx_buffer_size; /* Buffer size on this free list */ | 206 | u16 rx_buffer_size; /* Buffer size on this free list */ |
214 | u16 dma_offset; /* DMA offset to align IP headers */ | 207 | u16 dma_offset; /* DMA offset to align IP headers */ |
215 | u8 genbit; /* current generation (=valid) bit */ | 208 | u16 recycleq_idx; /* skb recycle q to use */ |
216 | struct freelQ_e *entries; /* HW freelist descriptor Q */ | 209 | u8 genbit; /* current generation (=valid) bit */ |
217 | struct freelQ_ce *centries; /* SW freelist conext descriptor Q */ | 210 | struct freelQ_e *entries; /* HW freelist descriptor Q */ |
218 | dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */ | 211 | struct freelQ_ce *centries; /* SW freelist context descriptor Q */ |
212 | dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */ | ||
219 | }; | 213 | }; |
220 | 214 | ||
221 | struct respQ { | 215 | struct respQ { |
222 | u16 credits; /* # of available respQ descriptors */ | 216 | unsigned int credits; /* credits to be returned to SGE */ |
223 | u16 credits_pend; /* # of not yet returned descriptors */ | 217 | unsigned int size; /* # of response Q descriptors */ |
224 | u16 entries_n; /* # of response Q descriptors */ | 218 | u16 cidx; /* consumer index (SW) */ |
225 | u16 pidx; /* producer index (HW) */ | 219 | u8 genbit; /* current generation(=valid) bit */ |
226 | u16 cidx; /* consumer index (SW) */ | ||
227 | u8 genbit; /* current generation(=valid) bit */ | ||
228 | struct respQ_e *entries; /* HW response descriptor Q */ | 220 | struct respQ_e *entries; /* HW response descriptor Q */ |
229 | dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */ | 221 | dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */ |
222 | }; | ||
223 | |||
224 | /* Bit flags for cmdQ.status */ | ||
225 | enum { | ||
226 | CMDQ_STAT_RUNNING = 1, /* fetch engine is running */ | ||
227 | CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */ | ||
230 | }; | 228 | }; |
231 | 229 | ||
232 | /* | 230 | /* |
@@ -239,134 +237,50 @@ struct respQ { | |||
239 | */ | 237 | */ |
240 | struct sge { | 238 | struct sge { |
241 | struct adapter *adapter; /* adapter backpointer */ | 239 | struct adapter *adapter; /* adapter backpointer */ |
242 | struct freelQ freelQ[SGE_FREELQ_N]; /* freelist Q(s) */ | 240 | struct net_device *netdev; /* netdevice backpointer */ |
243 | struct respQ respQ; /* response Q instatiation */ | 241 | struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */ |
242 | struct respQ respQ; /* response Q */ | ||
243 | unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */ | ||
244 | unsigned int rx_pkt_pad; /* RX padding for L2 packets */ | 244 | unsigned int rx_pkt_pad; /* RX padding for L2 packets */ |
245 | unsigned int jumbo_fl; /* jumbo freelist Q index */ | 245 | unsigned int jumbo_fl; /* jumbo freelist Q index */ |
246 | u32 intrtimer[SGE_INTR_MAXBUCKETS]; /* ! */ | 246 | unsigned int intrtimer_nres; /* no-resource interrupt timer */ |
247 | u32 currIndex; /* current index into intrtimer[] */ | 247 | unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */ |
248 | u32 intrtimer_nres; /* no resource interrupt timer value */ | 248 | struct timer_list tx_reclaim_timer; /* reclaims TX buffers */ |
249 | u32 sge_control; /* shadow content of sge control reg */ | 249 | struct timer_list espibug_timer; |
250 | struct sge_intr_counts intr_cnt; | 250 | unsigned int espibug_timeout; |
251 | struct timer_list ptimer; | 251 | struct sk_buff *espibug_skb; |
252 | struct sk_buff *pskb; | 252 | u32 sge_control; /* shadow value of sge control reg */ |
253 | u32 ptimeout; | 253 | struct sge_intr_counts stats; |
254 | struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned; /* command Q(s)*/ | 254 | struct sge_port_stats port_stats[MAX_NPORTS]; |
255 | struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp; | ||
255 | }; | 256 | }; |
256 | 257 | ||
257 | static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, | ||
258 | unsigned int qid); | ||
259 | |||
260 | /* | 258 | /* |
261 | * PIO to indicate that memory mapped Q contains valid descriptor(s). | 259 | * PIO to indicate that memory mapped Q contains valid descriptor(s). |
262 | */ | 260 | */ |
263 | static inline void doorbell_pio(struct sge *sge, u32 val) | 261 | static inline void doorbell_pio(struct adapter *adapter, u32 val) |
264 | { | 262 | { |
265 | wmb(); | 263 | wmb(); |
266 | t1_write_reg_4(sge->adapter, A_SG_DOORBELL, val); | 264 | writel(val, adapter->regs + A_SG_DOORBELL); |
267 | } | ||
268 | |||
269 | /* | ||
270 | * Disables the DMA engine. | ||
271 | */ | ||
272 | void t1_sge_stop(struct sge *sge) | ||
273 | { | ||
274 | t1_write_reg_4(sge->adapter, A_SG_CONTROL, 0); | ||
275 | t1_read_reg_4(sge->adapter, A_SG_CONTROL); /* flush write */ | ||
276 | if (is_T2(sge->adapter)) | ||
277 | del_timer_sync(&sge->ptimer); | ||
278 | } | ||
279 | |||
280 | static u8 ch_mac_addr[ETH_ALEN] = {0x0, 0x7, 0x43, 0x0, 0x0, 0x0}; | ||
281 | static void t1_espi_workaround(void *data) | ||
282 | { | ||
283 | struct adapter *adapter = (struct adapter *)data; | ||
284 | struct sge *sge = adapter->sge; | ||
285 | |||
286 | if (netif_running(adapter->port[0].dev) && | ||
287 | atomic_read(&sge->cmdQ[0].asleep)) { | ||
288 | |||
289 | u32 seop = t1_espi_get_mon(adapter, 0x930, 0); | ||
290 | |||
291 | if ((seop & 0xfff0fff) == 0xfff && sge->pskb) { | ||
292 | struct sk_buff *skb = sge->pskb; | ||
293 | if (!skb->cb[0]) { | ||
294 | memcpy(skb->data+sizeof(struct cpl_tx_pkt), ch_mac_addr, ETH_ALEN); | ||
295 | memcpy(skb->data+skb->len-10, ch_mac_addr, ETH_ALEN); | ||
296 | |||
297 | skb->cb[0] = 0xff; | ||
298 | } | ||
299 | t1_sge_tx(skb, adapter,0); | ||
300 | } | ||
301 | } | ||
302 | mod_timer(&adapter->sge->ptimer, jiffies + sge->ptimeout); | ||
303 | } | ||
304 | |||
305 | /* | ||
306 | * Enables the DMA engine. | ||
307 | */ | ||
308 | void t1_sge_start(struct sge *sge) | ||
309 | { | ||
310 | t1_write_reg_4(sge->adapter, A_SG_CONTROL, sge->sge_control); | ||
311 | t1_read_reg_4(sge->adapter, A_SG_CONTROL); /* flush write */ | ||
312 | if (is_T2(sge->adapter)) { | ||
313 | init_timer(&sge->ptimer); | ||
314 | sge->ptimer.function = (void *)&t1_espi_workaround; | ||
315 | sge->ptimer.data = (unsigned long)sge->adapter; | ||
316 | sge->ptimer.expires = jiffies + sge->ptimeout; | ||
317 | add_timer(&sge->ptimer); | ||
318 | } | ||
319 | } | ||
320 | |||
321 | /* | ||
322 | * Creates a t1_sge structure and returns suggested resource parameters. | ||
323 | */ | ||
324 | struct sge * __devinit t1_sge_create(struct adapter *adapter, | ||
325 | struct sge_params *p) | ||
326 | { | ||
327 | struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL); | ||
328 | |||
329 | if (!sge) | ||
330 | return NULL; | ||
331 | memset(sge, 0, sizeof(*sge)); | ||
332 | |||
333 | if (is_T2(adapter)) | ||
334 | sge->ptimeout = 1; /* finest allowed */ | ||
335 | |||
336 | sge->adapter = adapter; | ||
337 | sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : SGE_RX_OFFSET; | ||
338 | sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; | ||
339 | |||
340 | p->cmdQ_size[0] = SGE_CMDQ0_E_N; | ||
341 | p->cmdQ_size[1] = SGE_CMDQ1_E_N; | ||
342 | p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE; | ||
343 | p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE; | ||
344 | p->rx_coalesce_usecs = SGE_INTRTIMER1; | ||
345 | p->last_rx_coalesce_raw = SGE_INTRTIMER1 * | ||
346 | (board_info(sge->adapter)->clock_core / 1000000); | ||
347 | p->default_rx_coalesce_usecs = SGE_INTRTIMER1; | ||
348 | p->coalesce_enable = 0; /* Turn off adaptive algorithm by default */ | ||
349 | p->sample_interval_usecs = 0; | ||
350 | return sge; | ||
351 | } | 265 | } |
352 | 266 | ||
353 | /* | 267 | /* |
354 | * Frees all RX buffers on the freelist Q. The caller must make sure that | 268 | * Frees all RX buffers on the freelist Q. The caller must make sure that |
355 | * the SGE is turned off before calling this function. | 269 | * the SGE is turned off before calling this function. |
356 | */ | 270 | */ |
357 | static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *Q) | 271 | static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q) |
358 | { | 272 | { |
359 | unsigned int cidx = Q->cidx, credits = Q->credits; | 273 | unsigned int cidx = q->cidx; |
360 | 274 | ||
361 | while (credits--) { | 275 | while (q->credits--) { |
362 | struct freelQ_ce *ce = &Q->centries[cidx]; | 276 | struct freelQ_ce *ce = &q->centries[cidx]; |
363 | 277 | ||
364 | pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), | 278 | pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), |
365 | pci_unmap_len(ce, dma_len), | 279 | pci_unmap_len(ce, dma_len), |
366 | PCI_DMA_FROMDEVICE); | 280 | PCI_DMA_FROMDEVICE); |
367 | dev_kfree_skb(ce->skb); | 281 | dev_kfree_skb(ce->skb); |
368 | ce->skb = NULL; | 282 | ce->skb = NULL; |
369 | if (++cidx == Q->entries_n) | 283 | if (++cidx == q->size) |
370 | cidx = 0; | 284 | cidx = 0; |
371 | } | 285 | } |
372 | } | 286 | } |
@@ -380,29 +294,29 @@ static void free_rx_resources(struct sge *sge) | |||
380 | unsigned int size, i; | 294 | unsigned int size, i; |
381 | 295 | ||
382 | if (sge->respQ.entries) { | 296 | if (sge->respQ.entries) { |
383 | size = sizeof(struct respQ_e) * sge->respQ.entries_n; | 297 | size = sizeof(struct respQ_e) * sge->respQ.size; |
384 | pci_free_consistent(pdev, size, sge->respQ.entries, | 298 | pci_free_consistent(pdev, size, sge->respQ.entries, |
385 | sge->respQ.dma_addr); | 299 | sge->respQ.dma_addr); |
386 | } | 300 | } |
387 | 301 | ||
388 | for (i = 0; i < SGE_FREELQ_N; i++) { | 302 | for (i = 0; i < SGE_FREELQ_N; i++) { |
389 | struct freelQ *Q = &sge->freelQ[i]; | 303 | struct freelQ *q = &sge->freelQ[i]; |
390 | 304 | ||
391 | if (Q->centries) { | 305 | if (q->centries) { |
392 | free_freelQ_buffers(pdev, Q); | 306 | free_freelQ_buffers(pdev, q); |
393 | kfree(Q->centries); | 307 | kfree(q->centries); |
394 | } | 308 | } |
395 | if (Q->entries) { | 309 | if (q->entries) { |
396 | size = sizeof(struct freelQ_e) * Q->entries_n; | 310 | size = sizeof(struct freelQ_e) * q->size; |
397 | pci_free_consistent(pdev, size, Q->entries, | 311 | pci_free_consistent(pdev, size, q->entries, |
398 | Q->dma_addr); | 312 | q->dma_addr); |
399 | } | 313 | } |
400 | } | 314 | } |
401 | } | 315 | } |
402 | 316 | ||
403 | /* | 317 | /* |
404 | * Allocates basic RX resources, consisting of memory mapped freelist Qs and a | 318 | * Allocates basic RX resources, consisting of memory mapped freelist Qs and a |
405 | * response Q. | 319 | * response queue. |
406 | */ | 320 | */ |
407 | static int alloc_rx_resources(struct sge *sge, struct sge_params *p) | 321 | static int alloc_rx_resources(struct sge *sge, struct sge_params *p) |
408 | { | 322 | { |
@@ -410,21 +324,22 @@ static int alloc_rx_resources(struct sge *sge, struct sge_params *p) | |||
410 | unsigned int size, i; | 324 | unsigned int size, i; |
411 | 325 | ||
412 | for (i = 0; i < SGE_FREELQ_N; i++) { | 326 | for (i = 0; i < SGE_FREELQ_N; i++) { |
413 | struct freelQ *Q = &sge->freelQ[i]; | 327 | struct freelQ *q = &sge->freelQ[i]; |
414 | 328 | ||
415 | Q->genbit = 1; | 329 | q->genbit = 1; |
416 | Q->entries_n = p->freelQ_size[i]; | 330 | q->size = p->freelQ_size[i]; |
417 | Q->dma_offset = SGE_RX_OFFSET - sge->rx_pkt_pad; | 331 | q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN; |
418 | size = sizeof(struct freelQ_e) * Q->entries_n; | 332 | size = sizeof(struct freelQ_e) * q->size; |
419 | Q->entries = (struct freelQ_e *) | 333 | q->entries = (struct freelQ_e *) |
420 | pci_alloc_consistent(pdev, size, &Q->dma_addr); | 334 | pci_alloc_consistent(pdev, size, &q->dma_addr); |
421 | if (!Q->entries) | 335 | if (!q->entries) |
422 | goto err_no_mem; | 336 | goto err_no_mem; |
423 | memset(Q->entries, 0, size); | 337 | memset(q->entries, 0, size); |
424 | Q->centries = kcalloc(Q->entries_n, sizeof(struct freelQ_ce), | 338 | size = sizeof(struct freelQ_ce) * q->size; |
425 | GFP_KERNEL); | 339 | q->centries = kmalloc(size, GFP_KERNEL); |
426 | if (!Q->centries) | 340 | if (!q->centries) |
427 | goto err_no_mem; | 341 | goto err_no_mem; |
342 | memset(q->centries, 0, size); | ||
428 | } | 343 | } |
429 | 344 | ||
430 | /* | 345 | /* |
@@ -440,10 +355,17 @@ static int alloc_rx_resources(struct sge *sge, struct sge_params *p) | |||
440 | sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) - | 355 | sge->freelQ[sge->jumbo_fl].rx_buffer_size = (16 * 1024) - |
441 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 356 | SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); |
442 | 357 | ||
358 | /* | ||
359 | * Setup which skb recycle Q should be used when recycling buffers from | ||
360 | * each free list. | ||
361 | */ | ||
362 | sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0; | ||
363 | sge->freelQ[sge->jumbo_fl].recycleq_idx = 1; | ||
364 | |||
443 | sge->respQ.genbit = 1; | 365 | sge->respQ.genbit = 1; |
444 | sge->respQ.entries_n = SGE_RESPQ_E_N; | 366 | sge->respQ.size = SGE_RESPQ_E_N; |
445 | sge->respQ.credits = SGE_RESPQ_E_N; | 367 | sge->respQ.credits = 0; |
446 | size = sizeof(struct respQ_e) * sge->respQ.entries_n; | 368 | size = sizeof(struct respQ_e) * sge->respQ.size; |
447 | sge->respQ.entries = (struct respQ_e *) | 369 | sge->respQ.entries = (struct respQ_e *) |
448 | pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr); | 370 | pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr); |
449 | if (!sge->respQ.entries) | 371 | if (!sge->respQ.entries) |
@@ -457,48 +379,37 @@ err_no_mem: | |||
457 | } | 379 | } |
458 | 380 | ||
459 | /* | 381 | /* |
460 | * Frees 'credits_pend' TX buffers and returns the credits to Q->credits. | 382 | * Reclaims n TX descriptors and frees the buffers associated with them. |
461 | * | ||
462 | * The adaptive algorithm receives the total size of the buffers freed | ||
463 | * accumulated in @*totpayload. No initialization of this argument here. | ||
464 | * | ||
465 | */ | 383 | */ |
466 | static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *Q, | 384 | static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n) |
467 | unsigned int credits_pend, unsigned int *totpayload) | ||
468 | { | 385 | { |
386 | struct cmdQ_ce *ce; | ||
469 | struct pci_dev *pdev = sge->adapter->pdev; | 387 | struct pci_dev *pdev = sge->adapter->pdev; |
470 | struct sk_buff *skb; | 388 | unsigned int cidx = q->cidx; |
471 | struct cmdQ_ce *ce, *cq = Q->centries; | ||
472 | unsigned int entries_n = Q->entries_n, cidx = Q->cidx, | ||
473 | i = credits_pend; | ||
474 | |||
475 | 389 | ||
476 | ce = &cq[cidx]; | 390 | q->in_use -= n; |
477 | while (i--) { | 391 | ce = &q->centries[cidx]; |
478 | if (ce->single) | 392 | while (n--) { |
393 | if (q->sop) | ||
479 | pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), | 394 | pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), |
480 | pci_unmap_len(ce, dma_len), | 395 | pci_unmap_len(ce, dma_len), |
481 | PCI_DMA_TODEVICE); | 396 | PCI_DMA_TODEVICE); |
482 | else | 397 | else |
483 | pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr), | 398 | pci_unmap_page(pdev, pci_unmap_addr(ce, dma_addr), |
484 | pci_unmap_len(ce, dma_len), | 399 | pci_unmap_len(ce, dma_len), |
485 | PCI_DMA_TODEVICE); | 400 | PCI_DMA_TODEVICE); |
486 | if (totpayload) | 401 | q->sop = 0; |
487 | *totpayload += pci_unmap_len(ce, dma_len); | 402 | if (ce->skb) { |
488 | 403 | dev_kfree_skb(ce->skb); | |
489 | skb = ce->skb; | 404 | q->sop = 1; |
490 | if (skb) | 405 | } |
491 | dev_kfree_skb_irq(skb); | ||
492 | |||
493 | ce++; | 406 | ce++; |
494 | if (++cidx == entries_n) { | 407 | if (++cidx == q->size) { |
495 | cidx = 0; | 408 | cidx = 0; |
496 | ce = cq; | 409 | ce = q->centries; |
497 | } | 410 | } |
498 | } | 411 | } |
499 | 412 | q->cidx = cidx; | |
500 | Q->cidx = cidx; | ||
501 | atomic_add(credits_pend, &Q->credits); | ||
502 | } | 413 | } |
503 | 414 | ||
504 | /* | 415 | /* |
@@ -512,20 +423,17 @@ static void free_tx_resources(struct sge *sge) | |||
512 | unsigned int size, i; | 423 | unsigned int size, i; |
513 | 424 | ||
514 | for (i = 0; i < SGE_CMDQ_N; i++) { | 425 | for (i = 0; i < SGE_CMDQ_N; i++) { |
515 | struct cmdQ *Q = &sge->cmdQ[i]; | 426 | struct cmdQ *q = &sge->cmdQ[i]; |
516 | 427 | ||
517 | if (Q->centries) { | 428 | if (q->centries) { |
518 | unsigned int pending = Q->entries_n - | 429 | if (q->in_use) |
519 | atomic_read(&Q->credits); | 430 | free_cmdQ_buffers(sge, q, q->in_use); |
520 | 431 | kfree(q->centries); | |
521 | if (pending) | ||
522 | free_cmdQ_buffers(sge, Q, pending, NULL); | ||
523 | kfree(Q->centries); | ||
524 | } | 432 | } |
525 | if (Q->entries) { | 433 | if (q->entries) { |
526 | size = sizeof(struct cmdQ_e) * Q->entries_n; | 434 | size = sizeof(struct cmdQ_e) * q->size; |
527 | pci_free_consistent(pdev, size, Q->entries, | 435 | pci_free_consistent(pdev, size, q->entries, |
528 | Q->dma_addr); | 436 | q->dma_addr); |
529 | } | 437 | } |
530 | } | 438 | } |
531 | } | 439 | } |
@@ -539,25 +447,38 @@ static int alloc_tx_resources(struct sge *sge, struct sge_params *p) | |||
539 | unsigned int size, i; | 447 | unsigned int size, i; |
540 | 448 | ||
541 | for (i = 0; i < SGE_CMDQ_N; i++) { | 449 | for (i = 0; i < SGE_CMDQ_N; i++) { |
542 | struct cmdQ *Q = &sge->cmdQ[i]; | 450 | struct cmdQ *q = &sge->cmdQ[i]; |
543 | 451 | ||
544 | Q->genbit = 1; | 452 | q->genbit = 1; |
545 | Q->entries_n = p->cmdQ_size[i]; | 453 | q->sop = 1; |
546 | atomic_set(&Q->credits, Q->entries_n); | 454 | q->size = p->cmdQ_size[i]; |
547 | atomic_set(&Q->asleep, 1); | 455 | q->in_use = 0; |
548 | spin_lock_init(&Q->Qlock); | 456 | q->status = 0; |
549 | size = sizeof(struct cmdQ_e) * Q->entries_n; | 457 | q->processed = q->cleaned = 0; |
550 | Q->entries = (struct cmdQ_e *) | 458 | q->stop_thres = 0; |
551 | pci_alloc_consistent(pdev, size, &Q->dma_addr); | 459 | spin_lock_init(&q->lock); |
552 | if (!Q->entries) | 460 | size = sizeof(struct cmdQ_e) * q->size; |
461 | q->entries = (struct cmdQ_e *) | ||
462 | pci_alloc_consistent(pdev, size, &q->dma_addr); | ||
463 | if (!q->entries) | ||
553 | goto err_no_mem; | 464 | goto err_no_mem; |
554 | memset(Q->entries, 0, size); | 465 | memset(q->entries, 0, size); |
555 | Q->centries = kcalloc(Q->entries_n, sizeof(struct cmdQ_ce), | 466 | size = sizeof(struct cmdQ_ce) * q->size; |
556 | GFP_KERNEL); | 467 | q->centries = kmalloc(size, GFP_KERNEL); |
557 | if (!Q->centries) | 468 | if (!q->centries) |
558 | goto err_no_mem; | 469 | goto err_no_mem; |
470 | memset(q->centries, 0, size); | ||
559 | } | 471 | } |
560 | 472 | ||
473 | /* | ||
474 | * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE | ||
475 | * only. For queue 0 set the stop threshold so we can handle one more | ||
476 | * packet from each port, plus reserve an additional 24 entries for | ||
477 | * Ethernet packets only. Queue 1 never suspends nor do we reserve | ||
478 | * space for Ethernet packets. | ||
479 | */ | ||
480 | sge->cmdQ[0].stop_thres = sge->adapter->params.nports * | ||
481 | (MAX_SKB_FRAGS + 1); | ||
561 | return 0; | 482 | return 0; |
562 | 483 | ||
563 | err_no_mem: | 484 | err_no_mem: |
@@ -569,9 +490,9 @@ static inline void setup_ring_params(struct adapter *adapter, u64 addr, | |||
569 | u32 size, int base_reg_lo, | 490 | u32 size, int base_reg_lo, |
570 | int base_reg_hi, int size_reg) | 491 | int base_reg_hi, int size_reg) |
571 | { | 492 | { |
572 | t1_write_reg_4(adapter, base_reg_lo, (u32)addr); | 493 | writel((u32)addr, adapter->regs + base_reg_lo); |
573 | t1_write_reg_4(adapter, base_reg_hi, addr >> 32); | 494 | writel(addr >> 32, adapter->regs + base_reg_hi); |
574 | t1_write_reg_4(adapter, size_reg, size); | 495 | writel(size, adapter->regs + size_reg); |
575 | } | 496 | } |
576 | 497 | ||
577 | /* | 498 | /* |
@@ -585,97 +506,52 @@ void t1_set_vlan_accel(struct adapter *adapter, int on_off) | |||
585 | if (on_off) | 506 | if (on_off) |
586 | sge->sge_control |= F_VLAN_XTRACT; | 507 | sge->sge_control |= F_VLAN_XTRACT; |
587 | if (adapter->open_device_map) { | 508 | if (adapter->open_device_map) { |
588 | t1_write_reg_4(adapter, A_SG_CONTROL, sge->sge_control); | 509 | writel(sge->sge_control, adapter->regs + A_SG_CONTROL); |
589 | t1_read_reg_4(adapter, A_SG_CONTROL); /* flush */ | 510 | readl(adapter->regs + A_SG_CONTROL); /* flush */ |
590 | } | 511 | } |
591 | } | 512 | } |
592 | 513 | ||
593 | /* | 514 | /* |
594 | * Sets the interrupt latency timer when the adaptive Rx coalescing | ||
595 | * is turned off. Do nothing when it is turned on again. | ||
596 | * | ||
597 | * This routine relies on the fact that the caller has already set | ||
598 | * the adaptive policy in adapter->sge_params before calling it. | ||
599 | */ | ||
600 | int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p) | ||
601 | { | ||
602 | if (!p->coalesce_enable) { | ||
603 | u32 newTimer = p->rx_coalesce_usecs * | ||
604 | (board_info(sge->adapter)->clock_core / 1000000); | ||
605 | |||
606 | t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, newTimer); | ||
607 | } | ||
608 | return 0; | ||
609 | } | ||
610 | |||
611 | /* | ||
612 | * Programs the various SGE registers. However, the engine is not yet enabled, | 515 | * Programs the various SGE registers. However, the engine is not yet enabled, |
613 | * but sge->sge_control is setup and ready to go. | 516 | * but sge->sge_control is setup and ready to go. |
614 | */ | 517 | */ |
615 | static void configure_sge(struct sge *sge, struct sge_params *p) | 518 | static void configure_sge(struct sge *sge, struct sge_params *p) |
616 | { | 519 | { |
617 | struct adapter *ap = sge->adapter; | 520 | struct adapter *ap = sge->adapter; |
618 | int i; | 521 | |
619 | 522 | writel(0, ap->regs + A_SG_CONTROL); | |
620 | t1_write_reg_4(ap, A_SG_CONTROL, 0); | 523 | setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size, |
621 | setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].entries_n, | ||
622 | A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE); | 524 | A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE); |
623 | setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].entries_n, | 525 | setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size, |
624 | A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE); | 526 | A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE); |
625 | setup_ring_params(ap, sge->freelQ[0].dma_addr, | 527 | setup_ring_params(ap, sge->freelQ[0].dma_addr, |
626 | sge->freelQ[0].entries_n, A_SG_FL0BASELWR, | 528 | sge->freelQ[0].size, A_SG_FL0BASELWR, |
627 | A_SG_FL0BASEUPR, A_SG_FL0SIZE); | 529 | A_SG_FL0BASEUPR, A_SG_FL0SIZE); |
628 | setup_ring_params(ap, sge->freelQ[1].dma_addr, | 530 | setup_ring_params(ap, sge->freelQ[1].dma_addr, |
629 | sge->freelQ[1].entries_n, A_SG_FL1BASELWR, | 531 | sge->freelQ[1].size, A_SG_FL1BASELWR, |
630 | A_SG_FL1BASEUPR, A_SG_FL1SIZE); | 532 | A_SG_FL1BASEUPR, A_SG_FL1SIZE); |
631 | 533 | ||
632 | /* The threshold comparison uses <. */ | 534 | /* The threshold comparison uses <. */ |
633 | t1_write_reg_4(ap, A_SG_FLTHRESHOLD, SGE_RX_SM_BUF_SIZE + 1); | 535 | writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD); |
634 | 536 | ||
635 | setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.entries_n, | 537 | setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size, |
636 | A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE); | 538 | A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE); |
637 | t1_write_reg_4(ap, A_SG_RSPQUEUECREDIT, (u32)sge->respQ.entries_n); | 539 | writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT); |
638 | 540 | ||
639 | sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE | | 541 | sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE | |
640 | F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE | | 542 | F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE | |
641 | V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE | | 543 | V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE | |
544 | F_DISABLE_FL0_GTS | F_DISABLE_FL1_GTS | | ||
642 | V_RX_PKT_OFFSET(sge->rx_pkt_pad); | 545 | V_RX_PKT_OFFSET(sge->rx_pkt_pad); |
643 | 546 | ||
644 | #if defined(__BIG_ENDIAN_BITFIELD) | 547 | #if defined(__BIG_ENDIAN_BITFIELD) |
645 | sge->sge_control |= F_ENABLE_BIG_ENDIAN; | 548 | sge->sge_control |= F_ENABLE_BIG_ENDIAN; |
646 | #endif | 549 | #endif |
647 | 550 | ||
648 | /* | 551 | /* Initialize no-resource timer */ |
649 | * Initialize the SGE Interrupt Timer arrray: | 552 | sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap); |
650 | * intrtimer[0] = (SGE_INTRTIMER0) usec | 553 | |
651 | * intrtimer[0<i<5] = (SGE_INTRTIMER0 + i*2) usec | 554 | t1_sge_set_coalesce_params(sge, p); |
652 | * intrtimer[4<i<10] = ((i - 3) * 6) usec | ||
653 | * intrtimer[10] = (SGE_INTRTIMER1) usec | ||
654 | * | ||
655 | */ | ||
656 | sge->intrtimer[0] = board_info(sge->adapter)->clock_core / 1000000; | ||
657 | for (i = 1; i < SGE_INTR_LATBUCKETS; ++i) { | ||
658 | sge->intrtimer[i] = SGE_INTRTIMER0 + (2 * i); | ||
659 | sge->intrtimer[i] *= sge->intrtimer[0]; | ||
660 | } | ||
661 | for (i = SGE_INTR_LATBUCKETS; i < SGE_INTR_MAXBUCKETS - 1; ++i) { | ||
662 | sge->intrtimer[i] = (i - 3) * 6; | ||
663 | sge->intrtimer[i] *= sge->intrtimer[0]; | ||
664 | } | ||
665 | sge->intrtimer[SGE_INTR_MAXBUCKETS - 1] = | ||
666 | sge->intrtimer[0] * SGE_INTRTIMER1; | ||
667 | /* Initialize resource timer */ | ||
668 | sge->intrtimer_nres = sge->intrtimer[0] * SGE_INTRTIMER_NRES; | ||
669 | /* Finally finish initialization of intrtimer[0] */ | ||
670 | sge->intrtimer[0] *= SGE_INTRTIMER0; | ||
671 | /* Initialize for a throughput oriented workload */ | ||
672 | sge->currIndex = SGE_INTR_MAXBUCKETS - 1; | ||
673 | |||
674 | if (p->coalesce_enable) | ||
675 | t1_write_reg_4(ap, A_SG_INTRTIMER, | ||
676 | sge->intrtimer[sge->currIndex]); | ||
677 | else | ||
678 | t1_sge_set_coalesce_params(sge, p); | ||
679 | } | 555 | } |
680 | 556 | ||
681 | /* | 557 | /* |
@@ -684,31 +560,8 @@ static void configure_sge(struct sge *sge, struct sge_params *p) | |||
684 | static inline unsigned int jumbo_payload_capacity(const struct sge *sge) | 560 | static inline unsigned int jumbo_payload_capacity(const struct sge *sge) |
685 | { | 561 | { |
686 | return sge->freelQ[sge->jumbo_fl].rx_buffer_size - | 562 | return sge->freelQ[sge->jumbo_fl].rx_buffer_size - |
687 | sizeof(struct cpl_rx_data) - SGE_RX_OFFSET + sge->rx_pkt_pad; | 563 | sge->freelQ[sge->jumbo_fl].dma_offset - |
688 | } | 564 | sizeof(struct cpl_rx_data); |
689 | |||
690 | /* | ||
691 | * Allocates both RX and TX resources and configures the SGE. However, | ||
692 | * the hardware is not enabled yet. | ||
693 | */ | ||
694 | int t1_sge_configure(struct sge *sge, struct sge_params *p) | ||
695 | { | ||
696 | if (alloc_rx_resources(sge, p)) | ||
697 | return -ENOMEM; | ||
698 | if (alloc_tx_resources(sge, p)) { | ||
699 | free_rx_resources(sge); | ||
700 | return -ENOMEM; | ||
701 | } | ||
702 | configure_sge(sge, p); | ||
703 | |||
704 | /* | ||
705 | * Now that we have sized the free lists calculate the payload | ||
706 | * capacity of the large buffers. Other parts of the driver use | ||
707 | * this to set the max offload coalescing size so that RX packets | ||
708 | * do not overflow our large buffers. | ||
709 | */ | ||
710 | p->large_buf_capacity = jumbo_payload_capacity(sge); | ||
711 | return 0; | ||
712 | } | 565 | } |
713 | 566 | ||
714 | /* | 567 | /* |
@@ -716,8 +569,9 @@ int t1_sge_configure(struct sge *sge, struct sge_params *p) | |||
716 | */ | 569 | */ |
717 | void t1_sge_destroy(struct sge *sge) | 570 | void t1_sge_destroy(struct sge *sge) |
718 | { | 571 | { |
719 | if (sge->pskb) | 572 | if (sge->espibug_skb) |
720 | dev_kfree_skb(sge->pskb); | 573 | kfree_skb(sge->espibug_skb); |
574 | |||
721 | free_tx_resources(sge); | 575 | free_tx_resources(sge); |
722 | free_rx_resources(sge); | 576 | free_rx_resources(sge); |
723 | kfree(sge); | 577 | kfree(sge); |
@@ -735,75 +589,75 @@ void t1_sge_destroy(struct sge *sge) | |||
735 | * we specify a RX_OFFSET in order to make sure that the IP header is 4B | 589 | * we specify a RX_OFFSET in order to make sure that the IP header is 4B |
736 | * aligned. | 590 | * aligned. |
737 | */ | 591 | */ |
738 | static void refill_free_list(struct sge *sge, struct freelQ *Q) | 592 | static void refill_free_list(struct sge *sge, struct freelQ *q) |
739 | { | 593 | { |
740 | struct pci_dev *pdev = sge->adapter->pdev; | 594 | struct pci_dev *pdev = sge->adapter->pdev; |
741 | struct freelQ_ce *ce = &Q->centries[Q->pidx]; | 595 | struct freelQ_ce *ce = &q->centries[q->pidx]; |
742 | struct freelQ_e *e = &Q->entries[Q->pidx]; | 596 | struct freelQ_e *e = &q->entries[q->pidx]; |
743 | unsigned int dma_len = Q->rx_buffer_size - Q->dma_offset; | 597 | unsigned int dma_len = q->rx_buffer_size - q->dma_offset; |
744 | 598 | ||
745 | 599 | ||
746 | while (Q->credits < Q->entries_n) { | 600 | while (q->credits < q->size) { |
747 | if (e->GenerationBit != Q->genbit) { | 601 | struct sk_buff *skb; |
748 | struct sk_buff *skb; | 602 | dma_addr_t mapping; |
749 | dma_addr_t mapping; | ||
750 | 603 | ||
751 | skb = alloc_skb(Q->rx_buffer_size, GFP_ATOMIC); | 604 | skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC); |
752 | if (!skb) | 605 | if (!skb) |
753 | break; | 606 | break; |
754 | if (Q->dma_offset) | 607 | |
755 | skb_reserve(skb, Q->dma_offset); | 608 | skb_reserve(skb, q->dma_offset); |
756 | mapping = pci_map_single(pdev, skb->data, dma_len, | 609 | mapping = pci_map_single(pdev, skb->data, dma_len, |
757 | PCI_DMA_FROMDEVICE); | 610 | PCI_DMA_FROMDEVICE); |
758 | ce->skb = skb; | 611 | ce->skb = skb; |
759 | pci_unmap_addr_set(ce, dma_addr, mapping); | 612 | pci_unmap_addr_set(ce, dma_addr, mapping); |
760 | pci_unmap_len_set(ce, dma_len, dma_len); | 613 | pci_unmap_len_set(ce, dma_len, dma_len); |
761 | e->AddrLow = (u32)mapping; | 614 | e->addr_lo = (u32)mapping; |
762 | e->AddrHigh = (u64)mapping >> 32; | 615 | e->addr_hi = (u64)mapping >> 32; |
763 | e->BufferLength = dma_len; | 616 | e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit); |
764 | e->GenerationBit = e->GenerationBit2 = Q->genbit; | 617 | wmb(); |
765 | } | 618 | e->gen2 = V_CMD_GEN2(q->genbit); |
766 | 619 | ||
767 | e++; | 620 | e++; |
768 | ce++; | 621 | ce++; |
769 | if (++Q->pidx == Q->entries_n) { | 622 | if (++q->pidx == q->size) { |
770 | Q->pidx = 0; | 623 | q->pidx = 0; |
771 | Q->genbit ^= 1; | 624 | q->genbit ^= 1; |
772 | ce = Q->centries; | 625 | ce = q->centries; |
773 | e = Q->entries; | 626 | e = q->entries; |
774 | } | 627 | } |
775 | Q->credits++; | 628 | q->credits++; |
776 | } | 629 | } |
777 | 630 | ||
778 | } | 631 | } |
779 | 632 | ||
780 | /* | 633 | /* |
781 | * Calls refill_free_list for both freelist Qs. If we cannot | 634 | * Calls refill_free_list for both free lists. If we cannot fill at least 1/4 |
782 | * fill at least 1/4 of both Qs, we go into 'few interrupt mode' in order | 635 | * of both rings, we go into 'few interrupt mode' in order to give the system |
783 | * to give the system time to free up resources. | 636 | * time to free up resources. |
784 | */ | 637 | */ |
785 | static void freelQs_empty(struct sge *sge) | 638 | static void freelQs_empty(struct sge *sge) |
786 | { | 639 | { |
787 | u32 irq_reg = t1_read_reg_4(sge->adapter, A_SG_INT_ENABLE); | 640 | struct adapter *adapter = sge->adapter; |
641 | u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE); | ||
788 | u32 irqholdoff_reg; | 642 | u32 irqholdoff_reg; |
789 | 643 | ||
790 | refill_free_list(sge, &sge->freelQ[0]); | 644 | refill_free_list(sge, &sge->freelQ[0]); |
791 | refill_free_list(sge, &sge->freelQ[1]); | 645 | refill_free_list(sge, &sge->freelQ[1]); |
792 | 646 | ||
793 | if (sge->freelQ[0].credits > (sge->freelQ[0].entries_n >> 2) && | 647 | if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) && |
794 | sge->freelQ[1].credits > (sge->freelQ[1].entries_n >> 2)) { | 648 | sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) { |
795 | irq_reg |= F_FL_EXHAUSTED; | 649 | irq_reg |= F_FL_EXHAUSTED; |
796 | irqholdoff_reg = sge->intrtimer[sge->currIndex]; | 650 | irqholdoff_reg = sge->fixed_intrtimer; |
797 | } else { | 651 | } else { |
798 | /* Clear the F_FL_EXHAUSTED interrupts for now */ | 652 | /* Clear the F_FL_EXHAUSTED interrupts for now */ |
799 | irq_reg &= ~F_FL_EXHAUSTED; | 653 | irq_reg &= ~F_FL_EXHAUSTED; |
800 | irqholdoff_reg = sge->intrtimer_nres; | 654 | irqholdoff_reg = sge->intrtimer_nres; |
801 | } | 655 | } |
802 | t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, irqholdoff_reg); | 656 | writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER); |
803 | t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, irq_reg); | 657 | writel(irq_reg, adapter->regs + A_SG_INT_ENABLE); |
804 | 658 | ||
805 | /* We reenable the Qs to force a freelist GTS interrupt later */ | 659 | /* We reenable the Qs to force a freelist GTS interrupt later */ |
806 | doorbell_pio(sge, F_FL0_ENABLE | F_FL1_ENABLE); | 660 | doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE); |
807 | } | 661 | } |
808 | 662 | ||
809 | #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA) | 663 | #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA) |
@@ -816,10 +670,10 @@ static void freelQs_empty(struct sge *sge) | |||
816 | */ | 670 | */ |
817 | void t1_sge_intr_disable(struct sge *sge) | 671 | void t1_sge_intr_disable(struct sge *sge) |
818 | { | 672 | { |
819 | u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE); | 673 | u32 val = readl(sge->adapter->regs + A_PL_ENABLE); |
820 | 674 | ||
821 | t1_write_reg_4(sge->adapter, A_PL_ENABLE, val & ~SGE_PL_INTR_MASK); | 675 | writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); |
822 | t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, 0); | 676 | writel(0, sge->adapter->regs + A_SG_INT_ENABLE); |
823 | } | 677 | } |
824 | 678 | ||
825 | /* | 679 | /* |
@@ -828,12 +682,12 @@ void t1_sge_intr_disable(struct sge *sge) | |||
828 | void t1_sge_intr_enable(struct sge *sge) | 682 | void t1_sge_intr_enable(struct sge *sge) |
829 | { | 683 | { |
830 | u32 en = SGE_INT_ENABLE; | 684 | u32 en = SGE_INT_ENABLE; |
831 | u32 val = t1_read_reg_4(sge->adapter, A_PL_ENABLE); | 685 | u32 val = readl(sge->adapter->regs + A_PL_ENABLE); |
832 | 686 | ||
833 | if (sge->adapter->flags & TSO_CAPABLE) | 687 | if (sge->adapter->flags & TSO_CAPABLE) |
834 | en &= ~F_PACKET_TOO_BIG; | 688 | en &= ~F_PACKET_TOO_BIG; |
835 | t1_write_reg_4(sge->adapter, A_SG_INT_ENABLE, en); | 689 | writel(en, sge->adapter->regs + A_SG_INT_ENABLE); |
836 | t1_write_reg_4(sge->adapter, A_PL_ENABLE, val | SGE_PL_INTR_MASK); | 690 | writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE); |
837 | } | 691 | } |
838 | 692 | ||
839 | /* | 693 | /* |
@@ -841,8 +695,8 @@ void t1_sge_intr_enable(struct sge *sge) | |||
841 | */ | 695 | */ |
842 | void t1_sge_intr_clear(struct sge *sge) | 696 | void t1_sge_intr_clear(struct sge *sge) |
843 | { | 697 | { |
844 | t1_write_reg_4(sge->adapter, A_PL_CAUSE, SGE_PL_INTR_MASK); | 698 | writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE); |
845 | t1_write_reg_4(sge->adapter, A_SG_INT_CAUSE, 0xffffffff); | 699 | writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE); |
846 | } | 700 | } |
847 | 701 | ||
848 | /* | 702 | /* |
@@ -851,464 +705,673 @@ void t1_sge_intr_clear(struct sge *sge) | |||
851 | int t1_sge_intr_error_handler(struct sge *sge) | 705 | int t1_sge_intr_error_handler(struct sge *sge) |
852 | { | 706 | { |
853 | struct adapter *adapter = sge->adapter; | 707 | struct adapter *adapter = sge->adapter; |
854 | u32 cause = t1_read_reg_4(adapter, A_SG_INT_CAUSE); | 708 | u32 cause = readl(adapter->regs + A_SG_INT_CAUSE); |
855 | 709 | ||
856 | if (adapter->flags & TSO_CAPABLE) | 710 | if (adapter->flags & TSO_CAPABLE) |
857 | cause &= ~F_PACKET_TOO_BIG; | 711 | cause &= ~F_PACKET_TOO_BIG; |
858 | if (cause & F_RESPQ_EXHAUSTED) | 712 | if (cause & F_RESPQ_EXHAUSTED) |
859 | sge->intr_cnt.respQ_empty++; | 713 | sge->stats.respQ_empty++; |
860 | if (cause & F_RESPQ_OVERFLOW) { | 714 | if (cause & F_RESPQ_OVERFLOW) { |
861 | sge->intr_cnt.respQ_overflow++; | 715 | sge->stats.respQ_overflow++; |
862 | CH_ALERT("%s: SGE response queue overflow\n", | 716 | CH_ALERT("%s: SGE response queue overflow\n", |
863 | adapter->name); | 717 | adapter->name); |
864 | } | 718 | } |
865 | if (cause & F_FL_EXHAUSTED) { | 719 | if (cause & F_FL_EXHAUSTED) { |
866 | sge->intr_cnt.freelistQ_empty++; | 720 | sge->stats.freelistQ_empty++; |
867 | freelQs_empty(sge); | 721 | freelQs_empty(sge); |
868 | } | 722 | } |
869 | if (cause & F_PACKET_TOO_BIG) { | 723 | if (cause & F_PACKET_TOO_BIG) { |
870 | sge->intr_cnt.pkt_too_big++; | 724 | sge->stats.pkt_too_big++; |
871 | CH_ALERT("%s: SGE max packet size exceeded\n", | 725 | CH_ALERT("%s: SGE max packet size exceeded\n", |
872 | adapter->name); | 726 | adapter->name); |
873 | } | 727 | } |
874 | if (cause & F_PACKET_MISMATCH) { | 728 | if (cause & F_PACKET_MISMATCH) { |
875 | sge->intr_cnt.pkt_mismatch++; | 729 | sge->stats.pkt_mismatch++; |
876 | CH_ALERT("%s: SGE packet mismatch\n", adapter->name); | 730 | CH_ALERT("%s: SGE packet mismatch\n", adapter->name); |
877 | } | 731 | } |
878 | if (cause & SGE_INT_FATAL) | 732 | if (cause & SGE_INT_FATAL) |
879 | t1_fatal_err(adapter); | 733 | t1_fatal_err(adapter); |
880 | 734 | ||
881 | t1_write_reg_4(adapter, A_SG_INT_CAUSE, cause); | 735 | writel(cause, adapter->regs + A_SG_INT_CAUSE); |
882 | return 0; | 736 | return 0; |
883 | } | 737 | } |
884 | 738 | ||
885 | /* | 739 | const struct sge_intr_counts *t1_sge_get_intr_counts(struct sge *sge) |
886 | * The following code is copied from 2.6, where the skb_pull is doing the | 740 | { |
887 | * right thing and only pulls ETH_HLEN. | 741 | return &sge->stats; |
742 | } | ||
743 | |||
744 | const struct sge_port_stats *t1_sge_get_port_stats(struct sge *sge, int port) | ||
745 | { | ||
746 | return &sge->port_stats[port]; | ||
747 | } | ||
748 | |||
749 | /** | ||
750 | * recycle_fl_buf - recycle a free list buffer | ||
751 | * @fl: the free list | ||
752 | * @idx: index of buffer to recycle | ||
888 | * | 753 | * |
889 | * Determine the packet's protocol ID. The rule here is that we | 754 | * Recycles the specified buffer on the given free list by adding it at |
890 | * assume 802.3 if the type field is short enough to be a length. | 755 | * the next available slot on the list. |
891 | * This is normal practice and works for any 'now in use' protocol. | ||
892 | */ | 756 | */ |
893 | static unsigned short sge_eth_type_trans(struct sk_buff *skb, | 757 | static void recycle_fl_buf(struct freelQ *fl, int idx) |
894 | struct net_device *dev) | ||
895 | { | 758 | { |
896 | struct ethhdr *eth; | 759 | struct freelQ_e *from = &fl->entries[idx]; |
897 | unsigned char *rawp; | 760 | struct freelQ_e *to = &fl->entries[fl->pidx]; |
898 | 761 | ||
899 | skb->mac.raw = skb->data; | 762 | fl->centries[fl->pidx] = fl->centries[idx]; |
900 | skb_pull(skb, ETH_HLEN); | 763 | to->addr_lo = from->addr_lo; |
901 | eth = (struct ethhdr *)skb->mac.raw; | 764 | to->addr_hi = from->addr_hi; |
765 | to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit); | ||
766 | wmb(); | ||
767 | to->gen2 = V_CMD_GEN2(fl->genbit); | ||
768 | fl->credits++; | ||
902 | 769 | ||
903 | if (*eth->h_dest&1) { | 770 | if (++fl->pidx == fl->size) { |
904 | if(memcmp(eth->h_dest, dev->broadcast, ETH_ALEN) == 0) | 771 | fl->pidx = 0; |
905 | skb->pkt_type = PACKET_BROADCAST; | 772 | fl->genbit ^= 1; |
906 | else | ||
907 | skb->pkt_type = PACKET_MULTICAST; | ||
908 | } | 773 | } |
774 | } | ||
909 | 775 | ||
910 | /* | 776 | /** |
911 | * This ALLMULTI check should be redundant by 1.4 | 777 | * get_packet - return the next ingress packet buffer |
912 | * so don't forget to remove it. | 778 | * @pdev: the PCI device that received the packet |
913 | * | 779 | * @fl: the SGE free list holding the packet |
914 | * Seems, you forgot to remove it. All silly devices | 780 | * @len: the actual packet length, excluding any SGE padding |
915 | * seems to set IFF_PROMISC. | 781 | * @dma_pad: padding at beginning of buffer left by SGE DMA |
916 | */ | 782 | * @skb_pad: padding to be used if the packet is copied |
783 | * @copy_thres: length threshold under which a packet should be copied | ||
784 | * @drop_thres: # of remaining buffers before we start dropping packets | ||
785 | * | ||
786 | * Get the next packet from a free list and complete setup of the | ||
787 | * sk_buff. If the packet is small we make a copy and recycle the | ||
788 | * original buffer, otherwise we use the original buffer itself. If a | ||
789 | * positive drop threshold is supplied packets are dropped and their | ||
790 | * buffers recycled if (a) the number of remaining buffers is under the | ||
791 | * threshold and the packet is too big to copy, or (b) the packet should | ||
792 | * be copied but there is no memory for the copy. | ||
793 | */ | ||
794 | static inline struct sk_buff *get_packet(struct pci_dev *pdev, | ||
795 | struct freelQ *fl, unsigned int len, | ||
796 | int dma_pad, int skb_pad, | ||
797 | unsigned int copy_thres, | ||
798 | unsigned int drop_thres) | ||
799 | { | ||
800 | struct sk_buff *skb; | ||
801 | struct freelQ_ce *ce = &fl->centries[fl->cidx]; | ||
802 | |||
803 | if (len < copy_thres) { | ||
804 | skb = alloc_skb(len + skb_pad, GFP_ATOMIC); | ||
805 | if (likely(skb != NULL)) { | ||
806 | skb_reserve(skb, skb_pad); | ||
807 | skb_put(skb, len); | ||
808 | pci_dma_sync_single_for_cpu(pdev, | ||
809 | pci_unmap_addr(ce, dma_addr), | ||
810 | pci_unmap_len(ce, dma_len), | ||
811 | PCI_DMA_FROMDEVICE); | ||
812 | memcpy(skb->data, ce->skb->data + dma_pad, len); | ||
813 | pci_dma_sync_single_for_device(pdev, | ||
814 | pci_unmap_addr(ce, dma_addr), | ||
815 | pci_unmap_len(ce, dma_len), | ||
816 | PCI_DMA_FROMDEVICE); | ||
817 | } else if (!drop_thres) | ||
818 | goto use_orig_buf; | ||
917 | 819 | ||
918 | else if (1 /*dev->flags&IFF_PROMISC*/) | 820 | recycle_fl_buf(fl, fl->cidx); |
919 | { | 821 | return skb; |
920 | if(memcmp(eth->h_dest,dev->dev_addr, ETH_ALEN)) | ||
921 | skb->pkt_type=PACKET_OTHERHOST; | ||
922 | } | 822 | } |
923 | 823 | ||
924 | if (ntohs(eth->h_proto) >= 1536) | 824 | if (fl->credits < drop_thres) { |
925 | return eth->h_proto; | 825 | recycle_fl_buf(fl, fl->cidx); |
926 | 826 | return NULL; | |
927 | rawp = skb->data; | 827 | } |
928 | 828 | ||
929 | /* | 829 | use_orig_buf: |
930 | * This is a magic hack to spot IPX packets. Older Novell breaks | 830 | pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr), |
931 | * the protocol design and runs IPX over 802.3 without an 802.2 LLC | 831 | pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); |
932 | * layer. We look for FFFF which isn't a used 802.2 SSAP/DSAP. This | 832 | skb = ce->skb; |
933 | * won't work for fault tolerant netware but does for the rest. | 833 | skb_reserve(skb, dma_pad); |
934 | */ | 834 | skb_put(skb, len); |
935 | if (*(unsigned short *)rawp == 0xFFFF) | 835 | return skb; |
936 | return htons(ETH_P_802_3); | 836 | } |
937 | 837 | ||
938 | /* | 838 | /** |
939 | * Real 802.2 LLC | 839 | * unexpected_offload - handle an unexpected offload packet |
940 | */ | 840 | * @adapter: the adapter |
941 | return htons(ETH_P_802_2); | 841 | * @fl: the free list that received the packet |
842 | * | ||
843 | * Called when we receive an unexpected offload packet (e.g., the TOE | ||
844 | * function is disabled or the card is a NIC). Prints a message and | ||
845 | * recycles the buffer. | ||
846 | */ | ||
847 | static void unexpected_offload(struct adapter *adapter, struct freelQ *fl) | ||
848 | { | ||
849 | struct freelQ_ce *ce = &fl->centries[fl->cidx]; | ||
850 | struct sk_buff *skb = ce->skb; | ||
851 | |||
852 | pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr), | ||
853 | pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE); | ||
854 | CH_ERR("%s: unexpected offload packet, cmd %u\n", | ||
855 | adapter->name, *skb->data); | ||
856 | recycle_fl_buf(fl, fl->cidx); | ||
942 | } | 857 | } |
943 | 858 | ||
944 | /* | 859 | /* |
945 | * Prepare the received buffer and pass it up the stack. If it is small enough | 860 | * Write the command descriptors to transmit the given skb starting at |
946 | * and allocation doesn't fail, we use a new sk_buff and copy the content. | 861 | * descriptor pidx with the given generation. |
947 | */ | 862 | */ |
948 | static unsigned int t1_sge_rx(struct sge *sge, struct freelQ *Q, | 863 | static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb, |
949 | unsigned int len, unsigned int offload) | 864 | unsigned int pidx, unsigned int gen, |
865 | struct cmdQ *q) | ||
950 | { | 866 | { |
951 | struct sk_buff *skb; | 867 | dma_addr_t mapping; |
952 | struct adapter *adapter = sge->adapter; | 868 | struct cmdQ_e *e, *e1; |
953 | struct freelQ_ce *ce = &Q->centries[Q->cidx]; | 869 | struct cmdQ_ce *ce; |
870 | unsigned int i, flags, nfrags = skb_shinfo(skb)->nr_frags; | ||
871 | |||
872 | mapping = pci_map_single(adapter->pdev, skb->data, | ||
873 | skb->len - skb->data_len, PCI_DMA_TODEVICE); | ||
874 | ce = &q->centries[pidx]; | ||
875 | ce->skb = NULL; | ||
876 | pci_unmap_addr_set(ce, dma_addr, mapping); | ||
877 | pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len); | ||
954 | 878 | ||
955 | if (len <= SGE_RX_COPY_THRESHOLD && | 879 | flags = F_CMD_DATAVALID | F_CMD_SOP | V_CMD_EOP(nfrags == 0) | |
956 | (skb = alloc_skb(len + NET_IP_ALIGN, GFP_ATOMIC))) { | 880 | V_CMD_GEN2(gen); |
957 | struct freelQ_e *e; | 881 | e = &q->entries[pidx]; |
958 | char *src = ce->skb->data; | 882 | e->addr_lo = (u32)mapping; |
883 | e->addr_hi = (u64)mapping >> 32; | ||
884 | e->len_gen = V_CMD_LEN(skb->len - skb->data_len) | V_CMD_GEN1(gen); | ||
885 | for (e1 = e, i = 0; nfrags--; i++) { | ||
886 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
959 | 887 | ||
960 | pci_dma_sync_single_for_cpu(adapter->pdev, | 888 | ce++; |
961 | pci_unmap_addr(ce, dma_addr), | 889 | e1++; |
962 | pci_unmap_len(ce, dma_len), | 890 | if (++pidx == q->size) { |
963 | PCI_DMA_FROMDEVICE); | 891 | pidx = 0; |
964 | if (!offload) { | 892 | gen ^= 1; |
965 | skb_reserve(skb, NET_IP_ALIGN); | 893 | ce = q->centries; |
966 | src += sge->rx_pkt_pad; | 894 | e1 = q->entries; |
967 | } | 895 | } |
968 | memcpy(skb->data, src, len); | ||
969 | 896 | ||
970 | /* Reuse the entry. */ | 897 | mapping = pci_map_page(adapter->pdev, frag->page, |
971 | e = &Q->entries[Q->cidx]; | 898 | frag->page_offset, frag->size, |
972 | e->GenerationBit ^= 1; | 899 | PCI_DMA_TODEVICE); |
973 | e->GenerationBit2 ^= 1; | 900 | ce->skb = NULL; |
974 | } else { | 901 | pci_unmap_addr_set(ce, dma_addr, mapping); |
975 | pci_unmap_single(adapter->pdev, pci_unmap_addr(ce, dma_addr), | 902 | pci_unmap_len_set(ce, dma_len, frag->size); |
976 | pci_unmap_len(ce, dma_len), | 903 | |
977 | PCI_DMA_FROMDEVICE); | 904 | e1->addr_lo = (u32)mapping; |
978 | skb = ce->skb; | 905 | e1->addr_hi = (u64)mapping >> 32; |
979 | if (!offload && sge->rx_pkt_pad) | 906 | e1->len_gen = V_CMD_LEN(frag->size) | V_CMD_GEN1(gen); |
980 | __skb_pull(skb, sge->rx_pkt_pad); | 907 | e1->flags = F_CMD_DATAVALID | V_CMD_EOP(nfrags == 0) | |
908 | V_CMD_GEN2(gen); | ||
981 | } | 909 | } |
982 | 910 | ||
983 | skb_put(skb, len); | 911 | ce->skb = skb; |
912 | wmb(); | ||
913 | e->flags = flags; | ||
914 | } | ||
984 | 915 | ||
916 | /* | ||
917 | * Clean up completed Tx buffers. | ||
918 | */ | ||
919 | static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q) | ||
920 | { | ||
921 | unsigned int reclaim = q->processed - q->cleaned; | ||
985 | 922 | ||
986 | if (unlikely(offload)) { | 923 | if (reclaim) { |
987 | { | 924 | free_cmdQ_buffers(sge, q, reclaim); |
988 | printk(KERN_ERR | 925 | q->cleaned += reclaim; |
989 | "%s: unexpected offloaded packet, cmd %u\n", | ||
990 | adapter->name, *skb->data); | ||
991 | dev_kfree_skb_any(skb); | ||
992 | } | ||
993 | } else { | ||
994 | struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)skb->data; | ||
995 | |||
996 | skb_pull(skb, sizeof(*p)); | ||
997 | skb->dev = adapter->port[p->iff].dev; | ||
998 | skb->dev->last_rx = jiffies; | ||
999 | skb->protocol = sge_eth_type_trans(skb, skb->dev); | ||
1000 | if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff && | ||
1001 | skb->protocol == htons(ETH_P_IP) && | ||
1002 | (skb->data[9] == IPPROTO_TCP || | ||
1003 | skb->data[9] == IPPROTO_UDP)) | ||
1004 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
1005 | else | ||
1006 | skb->ip_summed = CHECKSUM_NONE; | ||
1007 | if (adapter->vlan_grp && p->vlan_valid) | ||
1008 | vlan_hwaccel_rx(skb, adapter->vlan_grp, | ||
1009 | ntohs(p->vlan)); | ||
1010 | else | ||
1011 | netif_rx(skb); | ||
1012 | } | 926 | } |
927 | } | ||
1013 | 928 | ||
1014 | if (++Q->cidx == Q->entries_n) | 929 | #ifndef SET_ETHTOOL_OPS |
1015 | Q->cidx = 0; | 930 | # define __netif_rx_complete(dev) netif_rx_complete(dev) |
931 | #endif | ||
1016 | 932 | ||
1017 | if (unlikely(--Q->credits < Q->entries_n - SGE_FREEL_REFILL_THRESH)) | 933 | /* |
1018 | refill_free_list(sge, Q); | 934 | * We cannot use the standard netif_rx_schedule_prep() because we have multiple |
1019 | return 1; | 935 | * ports plus the TOE all multiplexing onto a single response queue, therefore |
936 | * accepting new responses cannot depend on the state of any particular port. | ||
937 | * So define our own equivalent that omits the netif_running() test. | ||
938 | */ | ||
939 | static inline int napi_schedule_prep(struct net_device *dev) | ||
940 | { | ||
941 | return !test_and_set_bit(__LINK_STATE_RX_SCHED, &dev->state); | ||
1020 | } | 942 | } |
1021 | 943 | ||
1022 | 944 | ||
1023 | /* | 945 | /** |
1024 | * Adaptive interrupt timer logic to keep the CPU utilization to | 946 | * sge_rx - process an ingress ethernet packet |
1025 | * manageable levels. Basically, as the Average Packet Size (APS) | 947 | * @sge: the sge structure |
1026 | * gets higher, the interrupt latency setting gets longer. Every | 948 | * @fl: the free list that contains the packet buffer |
1027 | * SGE_INTR_BUCKETSIZE (of 100B) causes a bump of 2usec to the | 949 | * @len: the packet length |
1028 | * base value of SGE_INTRTIMER0. At large values of payload the | ||
1029 | * latency hits the ceiling value of SGE_INTRTIMER1 stored at | ||
1030 | * index SGE_INTR_MAXBUCKETS-1 in sge->intrtimer[]. | ||
1031 | * | 950 | * |
1032 | * sge->currIndex caches the last index to save unneeded PIOs. | 951 | * Process an ingress ethernet pakcet and deliver it to the stack. |
1033 | */ | 952 | */ |
1034 | static inline void update_intr_timer(struct sge *sge, unsigned int avg_payload) | 953 | static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len) |
1035 | { | 954 | { |
1036 | unsigned int newIndex; | 955 | struct sk_buff *skb; |
956 | struct cpl_rx_pkt *p; | ||
957 | struct adapter *adapter = sge->adapter; | ||
1037 | 958 | ||
1038 | newIndex = avg_payload / SGE_INTR_BUCKETSIZE; | 959 | sge->stats.ethernet_pkts++; |
1039 | if (newIndex > SGE_INTR_MAXBUCKETS - 1) { | 960 | skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad, |
1040 | newIndex = SGE_INTR_MAXBUCKETS - 1; | 961 | sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES, |
1041 | } | 962 | SGE_RX_DROP_THRES); |
1042 | /* Save a PIO with this check....maybe */ | 963 | if (!skb) { |
1043 | if (newIndex != sge->currIndex) { | 964 | sge->port_stats[0].rx_drops++; /* charge only port 0 for now */ |
1044 | t1_write_reg_4(sge->adapter, A_SG_INTRTIMER, | 965 | return 0; |
1045 | sge->intrtimer[newIndex]); | ||
1046 | sge->currIndex = newIndex; | ||
1047 | sge->adapter->params.sge.last_rx_coalesce_raw = | ||
1048 | sge->intrtimer[newIndex]; | ||
1049 | } | 966 | } |
967 | |||
968 | p = (struct cpl_rx_pkt *)skb->data; | ||
969 | skb_pull(skb, sizeof(*p)); | ||
970 | skb->dev = adapter->port[p->iff].dev; | ||
971 | skb->dev->last_rx = jiffies; | ||
972 | skb->protocol = eth_type_trans(skb, skb->dev); | ||
973 | if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff && | ||
974 | skb->protocol == htons(ETH_P_IP) && | ||
975 | (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) { | ||
976 | sge->port_stats[p->iff].rx_cso_good++; | ||
977 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
978 | } else | ||
979 | skb->ip_summed = CHECKSUM_NONE; | ||
980 | |||
981 | if (unlikely(adapter->vlan_grp && p->vlan_valid)) { | ||
982 | sge->port_stats[p->iff].vlan_xtract++; | ||
983 | if (adapter->params.sge.polling) | ||
984 | vlan_hwaccel_receive_skb(skb, adapter->vlan_grp, | ||
985 | ntohs(p->vlan)); | ||
986 | else | ||
987 | vlan_hwaccel_rx(skb, adapter->vlan_grp, | ||
988 | ntohs(p->vlan)); | ||
989 | } else if (adapter->params.sge.polling) | ||
990 | netif_receive_skb(skb); | ||
991 | else | ||
992 | netif_rx(skb); | ||
993 | return 0; | ||
1050 | } | 994 | } |
1051 | 995 | ||
1052 | /* | 996 | /* |
1053 | * Returns true if command queue q_num has enough available descriptors that | 997 | * Returns true if a command queue has enough available descriptors that |
1054 | * we can resume Tx operation after temporarily disabling its packet queue. | 998 | * we can resume Tx operation after temporarily disabling its packet queue. |
1055 | */ | 999 | */ |
1056 | static inline int enough_free_Tx_descs(struct sge *sge, int q_num) | 1000 | static inline int enough_free_Tx_descs(const struct cmdQ *q) |
1057 | { | 1001 | { |
1058 | return atomic_read(&sge->cmdQ[q_num].credits) > | 1002 | unsigned int r = q->processed - q->cleaned; |
1059 | (sge->cmdQ[q_num].entries_n >> 2); | 1003 | |
1004 | return q->in_use - r < (q->size >> 1); | ||
1060 | } | 1005 | } |
1061 | 1006 | ||
1062 | /* | 1007 | /* |
1063 | * Main interrupt handler, optimized assuming that we took a 'DATA' | 1008 | * Called when sufficient space has become available in the SGE command queues |
1064 | * interrupt. | 1009 | * after the Tx packet schedulers have been suspended to restart the Tx path. |
1065 | * | ||
1066 | * 1. Clear the interrupt | ||
1067 | * 2. Loop while we find valid descriptors and process them; accumulate | ||
1068 | * information that can be processed after the loop | ||
1069 | * 3. Tell the SGE at which index we stopped processing descriptors | ||
1070 | * 4. Bookkeeping; free TX buffers, ring doorbell if there are any | ||
1071 | * outstanding TX buffers waiting, replenish RX buffers, potentially | ||
1072 | * reenable upper layers if they were turned off due to lack of TX | ||
1073 | * resources which are available again. | ||
1074 | * 5. If we took an interrupt, but no valid respQ descriptors was found we | ||
1075 | * let the slow_intr_handler run and do error handling. | ||
1076 | */ | 1010 | */ |
1077 | irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs) | 1011 | static void restart_tx_queues(struct sge *sge) |
1078 | { | 1012 | { |
1079 | struct net_device *netdev; | 1013 | struct adapter *adap = sge->adapter; |
1080 | struct adapter *adapter = cookie; | ||
1081 | struct sge *sge = adapter->sge; | ||
1082 | struct respQ *Q = &sge->respQ; | ||
1083 | unsigned int credits = Q->credits, flags = 0, ret = 0; | ||
1084 | unsigned int tot_rxpayload = 0, tot_txpayload = 0, n_rx = 0, n_tx = 0; | ||
1085 | unsigned int credits_pend[SGE_CMDQ_N] = { 0, 0 }; | ||
1086 | 1014 | ||
1087 | struct respQ_e *e = &Q->entries[Q->cidx]; | 1015 | if (enough_free_Tx_descs(&sge->cmdQ[0])) { |
1088 | prefetch(e); | 1016 | int i; |
1017 | |||
1018 | for_each_port(adap, i) { | ||
1019 | struct net_device *nd = adap->port[i].dev; | ||
1020 | |||
1021 | if (test_and_clear_bit(nd->if_port, | ||
1022 | &sge->stopped_tx_queues) && | ||
1023 | netif_running(nd)) { | ||
1024 | sge->stats.cmdQ_restarted[3]++; | ||
1025 | netif_wake_queue(nd); | ||
1026 | } | ||
1027 | } | ||
1028 | } | ||
1029 | } | ||
1030 | |||
1031 | /* | ||
1032 | * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0 | ||
1033 | * information. | ||
1034 | */ | ||
1035 | static unsigned int update_tx_info(struct adapter *adapter, | ||
1036 | unsigned int flags, | ||
1037 | unsigned int pr0) | ||
1038 | { | ||
1039 | struct sge *sge = adapter->sge; | ||
1040 | struct cmdQ *cmdq = &sge->cmdQ[0]; | ||
1089 | 1041 | ||
1090 | t1_write_reg_4(adapter, A_PL_CAUSE, F_PL_INTR_SGE_DATA); | 1042 | cmdq->processed += pr0; |
1091 | 1043 | ||
1044 | if (flags & F_CMDQ0_ENABLE) { | ||
1045 | clear_bit(CMDQ_STAT_RUNNING, &cmdq->status); | ||
1046 | |||
1047 | if (cmdq->cleaned + cmdq->in_use != cmdq->processed && | ||
1048 | !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) { | ||
1049 | set_bit(CMDQ_STAT_RUNNING, &cmdq->status); | ||
1050 | writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); | ||
1051 | } | ||
1052 | flags &= ~F_CMDQ0_ENABLE; | ||
1053 | } | ||
1054 | |||
1055 | if (unlikely(sge->stopped_tx_queues != 0)) | ||
1056 | restart_tx_queues(sge); | ||
1092 | 1057 | ||
1093 | while (e->GenerationBit == Q->genbit) { | 1058 | return flags; |
1094 | if (--credits < SGE_RESPQ_REPLENISH_THRES) { | 1059 | } |
1095 | u32 n = Q->entries_n - credits - 1; | ||
1096 | 1060 | ||
1097 | t1_write_reg_4(adapter, A_SG_RSPQUEUECREDIT, n); | 1061 | /* |
1098 | credits += n; | 1062 | * Process SGE responses, up to the supplied budget. Returns the number of |
1063 | * responses processed. A negative budget is effectively unlimited. | ||
1064 | */ | ||
1065 | static int process_responses(struct adapter *adapter, int budget) | ||
1066 | { | ||
1067 | struct sge *sge = adapter->sge; | ||
1068 | struct respQ *q = &sge->respQ; | ||
1069 | struct respQ_e *e = &q->entries[q->cidx]; | ||
1070 | int budget_left = budget; | ||
1071 | unsigned int flags = 0; | ||
1072 | unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; | ||
1073 | |||
1074 | |||
1075 | while (likely(budget_left && e->GenerationBit == q->genbit)) { | ||
1076 | flags |= e->Qsleeping; | ||
1077 | |||
1078 | cmdq_processed[0] += e->Cmdq0CreditReturn; | ||
1079 | cmdq_processed[1] += e->Cmdq1CreditReturn; | ||
1080 | |||
1081 | /* We batch updates to the TX side to avoid cacheline | ||
1082 | * ping-pong of TX state information on MP where the sender | ||
1083 | * might run on a different CPU than this function... | ||
1084 | */ | ||
1085 | if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) { | ||
1086 | flags = update_tx_info(adapter, flags, cmdq_processed[0]); | ||
1087 | cmdq_processed[0] = 0; | ||
1088 | } | ||
1089 | if (unlikely(cmdq_processed[1] > 16)) { | ||
1090 | sge->cmdQ[1].processed += cmdq_processed[1]; | ||
1091 | cmdq_processed[1] = 0; | ||
1099 | } | 1092 | } |
1100 | if (likely(e->DataValid)) { | 1093 | if (likely(e->DataValid)) { |
1101 | if (!e->Sop || !e->Eop) | 1094 | struct freelQ *fl = &sge->freelQ[e->FreelistQid]; |
1095 | |||
1096 | if (unlikely(!e->Sop || !e->Eop)) | ||
1102 | BUG(); | 1097 | BUG(); |
1103 | t1_sge_rx(sge, &sge->freelQ[e->FreelistQid], | 1098 | if (unlikely(e->Offload)) |
1104 | e->BufferLength, e->Offload); | 1099 | unexpected_offload(adapter, fl); |
1105 | tot_rxpayload += e->BufferLength; | 1100 | else |
1106 | ++n_rx; | 1101 | sge_rx(sge, fl, e->BufferLength); |
1107 | } | 1102 | |
1108 | flags |= e->Qsleeping; | 1103 | /* |
1109 | credits_pend[0] += e->Cmdq0CreditReturn; | 1104 | * Note: this depends on each packet consuming a |
1110 | credits_pend[1] += e->Cmdq1CreditReturn; | 1105 | * single free-list buffer; cf. the BUG above. |
1106 | */ | ||
1107 | if (++fl->cidx == fl->size) | ||
1108 | fl->cidx = 0; | ||
1109 | if (unlikely(--fl->credits < | ||
1110 | fl->size - SGE_FREEL_REFILL_THRESH)) | ||
1111 | refill_free_list(sge, fl); | ||
1112 | } else | ||
1113 | sge->stats.pure_rsps++; | ||
1111 | 1114 | ||
1112 | #ifdef CONFIG_SMP | ||
1113 | /* | ||
1114 | * If enough cmdQ0 buffers have finished DMAing free them so | ||
1115 | * anyone that may be waiting for their release can continue. | ||
1116 | * We do this only on MP systems to allow other CPUs to proceed | ||
1117 | * promptly. UP systems can wait for the free_cmdQ_buffers() | ||
1118 | * calls after this loop as the sole CPU is currently busy in | ||
1119 | * this loop. | ||
1120 | */ | ||
1121 | if (unlikely(credits_pend[0] > SGE_FREEL_REFILL_THRESH)) { | ||
1122 | free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0], | ||
1123 | &tot_txpayload); | ||
1124 | n_tx += credits_pend[0]; | ||
1125 | credits_pend[0] = 0; | ||
1126 | } | ||
1127 | #endif | ||
1128 | ret++; | ||
1129 | e++; | 1115 | e++; |
1130 | if (unlikely(++Q->cidx == Q->entries_n)) { | 1116 | if (unlikely(++q->cidx == q->size)) { |
1131 | Q->cidx = 0; | 1117 | q->cidx = 0; |
1132 | Q->genbit ^= 1; | 1118 | q->genbit ^= 1; |
1133 | e = Q->entries; | 1119 | e = q->entries; |
1120 | } | ||
1121 | prefetch(e); | ||
1122 | |||
1123 | if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { | ||
1124 | writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); | ||
1125 | q->credits = 0; | ||
1134 | } | 1126 | } |
1127 | --budget_left; | ||
1135 | } | 1128 | } |
1136 | 1129 | ||
1137 | Q->credits = credits; | 1130 | flags = update_tx_info(adapter, flags, cmdq_processed[0]); |
1138 | t1_write_reg_4(adapter, A_SG_SLEEPING, Q->cidx); | 1131 | sge->cmdQ[1].processed += cmdq_processed[1]; |
1139 | 1132 | ||
1140 | if (credits_pend[0]) | 1133 | budget -= budget_left; |
1141 | free_cmdQ_buffers(sge, &sge->cmdQ[0], credits_pend[0], &tot_txpayload); | 1134 | return budget; |
1142 | if (credits_pend[1]) | 1135 | } |
1143 | free_cmdQ_buffers(sge, &sge->cmdQ[1], credits_pend[1], &tot_txpayload); | ||
1144 | 1136 | ||
1145 | /* Do any coalescing and interrupt latency timer adjustments */ | 1137 | /* |
1146 | if (adapter->params.sge.coalesce_enable) { | 1138 | * A simpler version of process_responses() that handles only pure (i.e., |
1147 | unsigned int avg_txpayload = 0, avg_rxpayload = 0; | 1139 | * non data-carrying) responses. Such respones are too light-weight to justify |
1140 | * calling a softirq when using NAPI, so we handle them specially in hard | ||
1141 | * interrupt context. The function is called with a pointer to a response, | ||
1142 | * which the caller must ensure is a valid pure response. Returns 1 if it | ||
1143 | * encounters a valid data-carrying response, 0 otherwise. | ||
1144 | */ | ||
1145 | static int process_pure_responses(struct adapter *adapter, struct respQ_e *e) | ||
1146 | { | ||
1147 | struct sge *sge = adapter->sge; | ||
1148 | struct respQ *q = &sge->respQ; | ||
1149 | unsigned int flags = 0; | ||
1150 | unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0}; | ||
1148 | 1151 | ||
1149 | n_tx += credits_pend[0] + credits_pend[1]; | 1152 | do { |
1153 | flags |= e->Qsleeping; | ||
1150 | 1154 | ||
1151 | /* | 1155 | cmdq_processed[0] += e->Cmdq0CreditReturn; |
1152 | * Choose larger avg. payload size to increase | 1156 | cmdq_processed[1] += e->Cmdq1CreditReturn; |
1153 | * throughput and reduce [CPU util., intr/s.] | 1157 | |
1154 | * | 1158 | e++; |
1155 | * Throughput behavior favored in mixed-mode. | 1159 | if (unlikely(++q->cidx == q->size)) { |
1156 | */ | 1160 | q->cidx = 0; |
1157 | if (n_tx) | 1161 | q->genbit ^= 1; |
1158 | avg_txpayload = tot_txpayload/n_tx; | 1162 | e = q->entries; |
1159 | if (n_rx) | ||
1160 | avg_rxpayload = tot_rxpayload/n_rx; | ||
1161 | |||
1162 | if (n_tx && avg_txpayload > avg_rxpayload){ | ||
1163 | update_intr_timer(sge, avg_txpayload); | ||
1164 | } else if (n_rx) { | ||
1165 | update_intr_timer(sge, avg_rxpayload); | ||
1166 | } | 1163 | } |
1167 | } | 1164 | prefetch(e); |
1168 | |||
1169 | if (flags & F_CMDQ0_ENABLE) { | ||
1170 | struct cmdQ *cmdQ = &sge->cmdQ[0]; | ||
1171 | 1165 | ||
1172 | atomic_set(&cmdQ->asleep, 1); | 1166 | if (++q->credits > SGE_RESPQ_REPLENISH_THRES) { |
1173 | if (atomic_read(&cmdQ->pio_pidx) != cmdQ->pidx) { | 1167 | writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT); |
1174 | doorbell_pio(sge, F_CMDQ0_ENABLE); | 1168 | q->credits = 0; |
1175 | atomic_set(&cmdQ->pio_pidx, cmdQ->pidx); | ||
1176 | } | 1169 | } |
1177 | } | 1170 | sge->stats.pure_rsps++; |
1178 | if (unlikely(flags & (F_FL0_ENABLE | F_FL1_ENABLE))) | 1171 | } while (e->GenerationBit == q->genbit && !e->DataValid); |
1179 | freelQs_empty(sge); | ||
1180 | 1172 | ||
1181 | netdev = adapter->port[0].dev; | 1173 | flags = update_tx_info(adapter, flags, cmdq_processed[0]); |
1182 | if (unlikely(netif_queue_stopped(netdev) && netif_carrier_ok(netdev) && | 1174 | sge->cmdQ[1].processed += cmdq_processed[1]; |
1183 | enough_free_Tx_descs(sge, 0) && | ||
1184 | enough_free_Tx_descs(sge, 1))) { | ||
1185 | netif_wake_queue(netdev); | ||
1186 | } | ||
1187 | if (unlikely(!ret)) | ||
1188 | ret = t1_slow_intr_handler(adapter); | ||
1189 | 1175 | ||
1190 | return IRQ_RETVAL(ret != 0); | 1176 | return e->GenerationBit == q->genbit; |
1191 | } | 1177 | } |
1192 | 1178 | ||
1193 | /* | 1179 | /* |
1194 | * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it. | 1180 | * Handler for new data events when using NAPI. This does not need any locking |
1195 | * | 1181 | * or protection from interrupts as data interrupts are off at this point and |
1196 | * The code figures out how many entries the sk_buff will require in the | 1182 | * other adapter interrupts do not interfere. |
1197 | * cmdQ and updates the cmdQ data structure with the state once the enqueue | ||
1198 | * has complete. Then, it doesn't access the global structure anymore, but | ||
1199 | * uses the corresponding fields on the stack. In conjuction with a spinlock | ||
1200 | * around that code, we can make the function reentrant without holding the | ||
1201 | * lock when we actually enqueue (which might be expensive, especially on | ||
1202 | * architectures with IO MMUs). | ||
1203 | */ | 1183 | */ |
1204 | static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, | 1184 | static int t1_poll(struct net_device *dev, int *budget) |
1205 | unsigned int qid) | ||
1206 | { | 1185 | { |
1207 | struct sge *sge = adapter->sge; | 1186 | struct adapter *adapter = dev->priv; |
1208 | struct cmdQ *Q = &sge->cmdQ[qid]; | 1187 | int effective_budget = min(*budget, dev->quota); |
1209 | struct cmdQ_e *e; | 1188 | |
1210 | struct cmdQ_ce *ce; | 1189 | int work_done = process_responses(adapter, effective_budget); |
1211 | dma_addr_t mapping; | 1190 | *budget -= work_done; |
1212 | unsigned int credits, pidx, genbit; | 1191 | dev->quota -= work_done; |
1213 | 1192 | ||
1214 | unsigned int count = 1 + skb_shinfo(skb)->nr_frags; | 1193 | if (work_done >= effective_budget) |
1194 | return 1; | ||
1195 | |||
1196 | __netif_rx_complete(dev); | ||
1215 | 1197 | ||
1216 | /* | 1198 | /* |
1217 | * Coming from the timer | 1199 | * Because we don't atomically flush the following write it is |
1200 | * possible that in very rare cases it can reach the device in a way | ||
1201 | * that races with a new response being written plus an error interrupt | ||
1202 | * causing the NAPI interrupt handler below to return unhandled status | ||
1203 | * to the OS. To protect against this would require flushing the write | ||
1204 | * and doing both the write and the flush with interrupts off. Way too | ||
1205 | * expensive and unjustifiable given the rarity of the race. | ||
1218 | */ | 1206 | */ |
1219 | if ((skb == sge->pskb)) { | 1207 | writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING); |
1220 | /* | 1208 | return 0; |
1221 | * Quit if any cmdQ activities | 1209 | } |
1222 | */ | ||
1223 | if (!spin_trylock(&Q->Qlock)) | ||
1224 | return 0; | ||
1225 | if (atomic_read(&Q->credits) != Q->entries_n) { | ||
1226 | spin_unlock(&Q->Qlock); | ||
1227 | return 0; | ||
1228 | } | ||
1229 | } | ||
1230 | else | ||
1231 | spin_lock(&Q->Qlock); | ||
1232 | |||
1233 | genbit = Q->genbit; | ||
1234 | pidx = Q->pidx; | ||
1235 | credits = atomic_read(&Q->credits); | ||
1236 | |||
1237 | credits -= count; | ||
1238 | atomic_sub(count, &Q->credits); | ||
1239 | Q->pidx += count; | ||
1240 | if (Q->pidx >= Q->entries_n) { | ||
1241 | Q->pidx -= Q->entries_n; | ||
1242 | Q->genbit ^= 1; | ||
1243 | } | ||
1244 | 1210 | ||
1245 | if (unlikely(credits < (MAX_SKB_FRAGS + 1))) { | 1211 | /* |
1246 | sge->intr_cnt.cmdQ_full[qid]++; | 1212 | * Returns true if the device is already scheduled for polling. |
1247 | netif_stop_queue(adapter->port[0].dev); | 1213 | */ |
1248 | } | 1214 | static inline int napi_is_scheduled(struct net_device *dev) |
1249 | spin_unlock(&Q->Qlock); | 1215 | { |
1216 | return test_bit(__LINK_STATE_RX_SCHED, &dev->state); | ||
1217 | } | ||
1250 | 1218 | ||
1251 | mapping = pci_map_single(adapter->pdev, skb->data, | 1219 | /* |
1252 | skb->len - skb->data_len, PCI_DMA_TODEVICE); | 1220 | * NAPI version of the main interrupt handler. |
1253 | ce = &Q->centries[pidx]; | 1221 | */ |
1254 | ce->skb = NULL; | 1222 | static irqreturn_t t1_interrupt_napi(int irq, void *data, struct pt_regs *regs) |
1255 | pci_unmap_addr_set(ce, dma_addr, mapping); | 1223 | { |
1256 | pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len); | 1224 | int handled; |
1257 | ce->single = 1; | 1225 | struct adapter *adapter = data; |
1226 | struct sge *sge = adapter->sge; | ||
1227 | struct respQ *q = &adapter->sge->respQ; | ||
1258 | 1228 | ||
1259 | e = &Q->entries[pidx]; | 1229 | /* |
1260 | e->Sop = 1; | 1230 | * Clear the SGE_DATA interrupt first thing. Normally the NAPI |
1261 | e->DataValid = 1; | 1231 | * handler has control of the response queue and the interrupt handler |
1262 | e->BufferLength = skb->len - skb->data_len; | 1232 | * can look at the queue reliably only once it knows NAPI is off. |
1263 | e->AddrHigh = (u64)mapping >> 32; | 1233 | * We can't wait that long to clear the SGE_DATA interrupt because we |
1264 | e->AddrLow = (u32)mapping; | 1234 | * could race with t1_poll rearming the SGE interrupt, so we need to |
1235 | * clear the interrupt speculatively and really early on. | ||
1236 | */ | ||
1237 | writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); | ||
1238 | |||
1239 | spin_lock(&adapter->async_lock); | ||
1240 | if (!napi_is_scheduled(sge->netdev)) { | ||
1241 | struct respQ_e *e = &q->entries[q->cidx]; | ||
1242 | |||
1243 | if (e->GenerationBit == q->genbit) { | ||
1244 | if (e->DataValid || | ||
1245 | process_pure_responses(adapter, e)) { | ||
1246 | if (likely(napi_schedule_prep(sge->netdev))) | ||
1247 | __netif_rx_schedule(sge->netdev); | ||
1248 | else | ||
1249 | printk(KERN_CRIT | ||
1250 | "NAPI schedule failure!\n"); | ||
1251 | } else | ||
1252 | writel(q->cidx, adapter->regs + A_SG_SLEEPING); | ||
1253 | handled = 1; | ||
1254 | goto unlock; | ||
1255 | } else | ||
1256 | writel(q->cidx, adapter->regs + A_SG_SLEEPING); | ||
1257 | } else | ||
1258 | if (readl(adapter->regs + A_PL_CAUSE) & F_PL_INTR_SGE_DATA) | ||
1259 | printk(KERN_ERR "data interrupt while NAPI running\n"); | ||
1260 | |||
1261 | handled = t1_slow_intr_handler(adapter); | ||
1262 | if (!handled) | ||
1263 | sge->stats.unhandled_irqs++; | ||
1264 | unlock: | ||
1265 | spin_unlock(&adapter->async_lock); | ||
1266 | return IRQ_RETVAL(handled != 0); | ||
1267 | } | ||
1265 | 1268 | ||
1266 | if (--count > 0) { | 1269 | /* |
1267 | unsigned int i; | 1270 | * Main interrupt handler, optimized assuming that we took a 'DATA' |
1271 | * interrupt. | ||
1272 | * | ||
1273 | * 1. Clear the interrupt | ||
1274 | * 2. Loop while we find valid descriptors and process them; accumulate | ||
1275 | * information that can be processed after the loop | ||
1276 | * 3. Tell the SGE at which index we stopped processing descriptors | ||
1277 | * 4. Bookkeeping; free TX buffers, ring doorbell if there are any | ||
1278 | * outstanding TX buffers waiting, replenish RX buffers, potentially | ||
1279 | * reenable upper layers if they were turned off due to lack of TX | ||
1280 | * resources which are available again. | ||
1281 | * 5. If we took an interrupt, but no valid respQ descriptors was found we | ||
1282 | * let the slow_intr_handler run and do error handling. | ||
1283 | */ | ||
1284 | static irqreturn_t t1_interrupt(int irq, void *cookie, struct pt_regs *regs) | ||
1285 | { | ||
1286 | int work_done; | ||
1287 | struct respQ_e *e; | ||
1288 | struct adapter *adapter = cookie; | ||
1289 | struct respQ *Q = &adapter->sge->respQ; | ||
1268 | 1290 | ||
1269 | e->Eop = 0; | 1291 | spin_lock(&adapter->async_lock); |
1270 | wmb(); | 1292 | e = &Q->entries[Q->cidx]; |
1271 | e->GenerationBit = e->GenerationBit2 = genbit; | 1293 | prefetch(e); |
1272 | 1294 | ||
1273 | for (i = 0; i < count; i++) { | 1295 | writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE); |
1274 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
1275 | 1296 | ||
1276 | ce++; e++; | 1297 | if (likely(e->GenerationBit == Q->genbit)) |
1277 | if (++pidx == Q->entries_n) { | 1298 | work_done = process_responses(adapter, -1); |
1278 | pidx = 0; | 1299 | else |
1279 | genbit ^= 1; | 1300 | work_done = t1_slow_intr_handler(adapter); |
1280 | ce = Q->centries; | ||
1281 | e = Q->entries; | ||
1282 | } | ||
1283 | 1301 | ||
1284 | mapping = pci_map_page(adapter->pdev, frag->page, | 1302 | /* |
1285 | frag->page_offset, | 1303 | * The unconditional clearing of the PL_CAUSE above may have raced |
1286 | frag->size, | 1304 | * with DMA completion and the corresponding generation of a response |
1287 | PCI_DMA_TODEVICE); | 1305 | * to cause us to miss the resulting data interrupt. The next write |
1288 | ce->skb = NULL; | 1306 | * is also unconditional to recover the missed interrupt and render |
1289 | pci_unmap_addr_set(ce, dma_addr, mapping); | 1307 | * this race harmless. |
1290 | pci_unmap_len_set(ce, dma_len, frag->size); | 1308 | */ |
1291 | ce->single = 0; | 1309 | writel(Q->cidx, adapter->regs + A_SG_SLEEPING); |
1292 | 1310 | ||
1293 | e->Sop = 0; | 1311 | if (!work_done) |
1294 | e->DataValid = 1; | 1312 | adapter->sge->stats.unhandled_irqs++; |
1295 | e->BufferLength = frag->size; | 1313 | spin_unlock(&adapter->async_lock); |
1296 | e->AddrHigh = (u64)mapping >> 32; | 1314 | return IRQ_RETVAL(work_done != 0); |
1297 | e->AddrLow = (u32)mapping; | 1315 | } |
1298 | 1316 | ||
1299 | if (i < count - 1) { | 1317 | intr_handler_t t1_select_intr_handler(adapter_t *adapter) |
1300 | e->Eop = 0; | 1318 | { |
1301 | wmb(); | 1319 | return adapter->params.sge.polling ? t1_interrupt_napi : t1_interrupt; |
1302 | e->GenerationBit = e->GenerationBit2 = genbit; | 1320 | } |
1303 | } | 1321 | |
1322 | /* | ||
1323 | * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it. | ||
1324 | * | ||
1325 | * The code figures out how many entries the sk_buff will require in the | ||
1326 | * cmdQ and updates the cmdQ data structure with the state once the enqueue | ||
1327 | * has complete. Then, it doesn't access the global structure anymore, but | ||
1328 | * uses the corresponding fields on the stack. In conjuction with a spinlock | ||
1329 | * around that code, we can make the function reentrant without holding the | ||
1330 | * lock when we actually enqueue (which might be expensive, especially on | ||
1331 | * architectures with IO MMUs). | ||
1332 | * | ||
1333 | * This runs with softirqs disabled. | ||
1334 | */ | ||
1335 | unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, | ||
1336 | unsigned int qid, struct net_device *dev) | ||
1337 | { | ||
1338 | struct sge *sge = adapter->sge; | ||
1339 | struct cmdQ *q = &sge->cmdQ[qid]; | ||
1340 | unsigned int credits, pidx, genbit, count; | ||
1341 | |||
1342 | spin_lock(&q->lock); | ||
1343 | reclaim_completed_tx(sge, q); | ||
1344 | |||
1345 | pidx = q->pidx; | ||
1346 | credits = q->size - q->in_use; | ||
1347 | count = 1 + skb_shinfo(skb)->nr_frags; | ||
1348 | |||
1349 | { /* Ethernet packet */ | ||
1350 | if (unlikely(credits < count)) { | ||
1351 | netif_stop_queue(dev); | ||
1352 | set_bit(dev->if_port, &sge->stopped_tx_queues); | ||
1353 | sge->stats.cmdQ_full[3]++; | ||
1354 | spin_unlock(&q->lock); | ||
1355 | CH_ERR("%s: Tx ring full while queue awake!\n", | ||
1356 | adapter->name); | ||
1357 | return 1; | ||
1304 | } | 1358 | } |
1359 | if (unlikely(credits - count < q->stop_thres)) { | ||
1360 | sge->stats.cmdQ_full[3]++; | ||
1361 | netif_stop_queue(dev); | ||
1362 | set_bit(dev->if_port, &sge->stopped_tx_queues); | ||
1363 | } | ||
1364 | } | ||
1365 | q->in_use += count; | ||
1366 | genbit = q->genbit; | ||
1367 | q->pidx += count; | ||
1368 | if (q->pidx >= q->size) { | ||
1369 | q->pidx -= q->size; | ||
1370 | q->genbit ^= 1; | ||
1305 | } | 1371 | } |
1372 | spin_unlock(&q->lock); | ||
1306 | 1373 | ||
1307 | if (skb != sge->pskb) | 1374 | write_tx_descs(adapter, skb, pidx, genbit, q); |
1308 | ce->skb = skb; | ||
1309 | e->Eop = 1; | ||
1310 | wmb(); | ||
1311 | e->GenerationBit = e->GenerationBit2 = genbit; | ||
1312 | 1375 | ||
1313 | /* | 1376 | /* |
1314 | * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring | 1377 | * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring |
@@ -1317,12 +1380,14 @@ static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, | |||
1317 | * then the interrupt handler will detect the outstanding TX packet | 1380 | * then the interrupt handler will detect the outstanding TX packet |
1318 | * and ring the doorbell for us. | 1381 | * and ring the doorbell for us. |
1319 | */ | 1382 | */ |
1320 | if (qid) { | 1383 | if (qid) |
1321 | doorbell_pio(sge, F_CMDQ1_ENABLE); | 1384 | doorbell_pio(adapter, F_CMDQ1_ENABLE); |
1322 | } else if (atomic_read(&Q->asleep)) { | 1385 | else { |
1323 | atomic_set(&Q->asleep, 0); | 1386 | clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); |
1324 | doorbell_pio(sge, F_CMDQ0_ENABLE); | 1387 | if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) { |
1325 | atomic_set(&Q->pio_pidx, Q->pidx); | 1388 | set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status); |
1389 | writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL); | ||
1390 | } | ||
1326 | } | 1391 | } |
1327 | return 0; | 1392 | return 0; |
1328 | } | 1393 | } |
@@ -1330,37 +1395,35 @@ static unsigned int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter, | |||
1330 | #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14)) | 1395 | #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14)) |
1331 | 1396 | ||
1332 | /* | 1397 | /* |
1398 | * eth_hdr_len - return the length of an Ethernet header | ||
1399 | * @data: pointer to the start of the Ethernet header | ||
1400 | * | ||
1401 | * Returns the length of an Ethernet header, including optional VLAN tag. | ||
1402 | */ | ||
1403 | static inline int eth_hdr_len(const void *data) | ||
1404 | { | ||
1405 | const struct ethhdr *e = data; | ||
1406 | |||
1407 | return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN; | ||
1408 | } | ||
1409 | |||
1410 | /* | ||
1333 | * Adds the CPL header to the sk_buff and passes it to t1_sge_tx. | 1411 | * Adds the CPL header to the sk_buff and passes it to t1_sge_tx. |
1334 | */ | 1412 | */ |
1335 | int t1_start_xmit(struct sk_buff *skb, struct net_device *dev) | 1413 | int t1_start_xmit(struct sk_buff *skb, struct net_device *dev) |
1336 | { | 1414 | { |
1337 | struct adapter *adapter = dev->priv; | 1415 | struct adapter *adapter = dev->priv; |
1416 | struct sge_port_stats *st = &adapter->sge->port_stats[dev->if_port]; | ||
1417 | struct sge *sge = adapter->sge; | ||
1338 | struct cpl_tx_pkt *cpl; | 1418 | struct cpl_tx_pkt *cpl; |
1339 | struct ethhdr *eth; | ||
1340 | size_t max_len; | ||
1341 | |||
1342 | /* | ||
1343 | * We are using a non-standard hard_header_len and some kernel | ||
1344 | * components, such as pktgen, do not handle it right. Complain | ||
1345 | * when this happens but try to fix things up. | ||
1346 | */ | ||
1347 | if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) { | ||
1348 | struct sk_buff *orig_skb = skb; | ||
1349 | |||
1350 | if (net_ratelimit()) | ||
1351 | printk(KERN_ERR | ||
1352 | "%s: Tx packet has inadequate headroom\n", | ||
1353 | dev->name); | ||
1354 | skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso)); | ||
1355 | dev_kfree_skb_any(orig_skb); | ||
1356 | if (!skb) | ||
1357 | return -ENOMEM; | ||
1358 | } | ||
1359 | 1419 | ||
1420 | #ifdef NETIF_F_TSO | ||
1360 | if (skb_shinfo(skb)->tso_size) { | 1421 | if (skb_shinfo(skb)->tso_size) { |
1361 | int eth_type; | 1422 | int eth_type; |
1362 | struct cpl_tx_pkt_lso *hdr; | 1423 | struct cpl_tx_pkt_lso *hdr; |
1363 | 1424 | ||
1425 | st->tso++; | ||
1426 | |||
1364 | eth_type = skb->nh.raw - skb->data == ETH_HLEN ? | 1427 | eth_type = skb->nh.raw - skb->data == ETH_HLEN ? |
1365 | CPL_ETH_II : CPL_ETH_II_VLAN; | 1428 | CPL_ETH_II : CPL_ETH_II_VLAN; |
1366 | 1429 | ||
@@ -1373,40 +1436,72 @@ int t1_start_xmit(struct sk_buff *skb, struct net_device *dev) | |||
1373 | skb_shinfo(skb)->tso_size)); | 1436 | skb_shinfo(skb)->tso_size)); |
1374 | hdr->len = htonl(skb->len - sizeof(*hdr)); | 1437 | hdr->len = htonl(skb->len - sizeof(*hdr)); |
1375 | cpl = (struct cpl_tx_pkt *)hdr; | 1438 | cpl = (struct cpl_tx_pkt *)hdr; |
1439 | sge->stats.tx_lso_pkts++; | ||
1376 | } else | 1440 | } else |
1441 | #endif | ||
1377 | { | 1442 | { |
1378 | /* | 1443 | /* |
1379 | * An Ethernet packet must have at least space for | 1444 | * Packets shorter than ETH_HLEN can break the MAC, drop them |
1380 | * the DIX Ethernet header and be no greater than | 1445 | * early. Also, we may get oversized packets because some |
1381 | * the device set MTU. Otherwise trash the packet. | 1446 | * parts of the kernel don't handle our unusual hard_header_len |
1447 | * right, drop those too. | ||
1382 | */ | 1448 | */ |
1383 | if (skb->len < ETH_HLEN) | 1449 | if (unlikely(skb->len < ETH_HLEN || |
1384 | goto t1_start_xmit_fail2; | 1450 | skb->len > dev->mtu + eth_hdr_len(skb->data))) { |
1385 | eth = (struct ethhdr *)skb->data; | 1451 | dev_kfree_skb_any(skb); |
1386 | if (eth->h_proto == htons(ETH_P_8021Q)) | 1452 | return NET_XMIT_SUCCESS; |
1387 | max_len = dev->mtu + VLAN_ETH_HLEN; | 1453 | } |
1388 | else | 1454 | |
1389 | max_len = dev->mtu + ETH_HLEN; | 1455 | /* |
1390 | if (skb->len > max_len) | 1456 | * We are using a non-standard hard_header_len and some kernel |
1391 | goto t1_start_xmit_fail2; | 1457 | * components, such as pktgen, do not handle it right. |
1458 | * Complain when this happens but try to fix things up. | ||
1459 | */ | ||
1460 | if (unlikely(skb_headroom(skb) < | ||
1461 | dev->hard_header_len - ETH_HLEN)) { | ||
1462 | struct sk_buff *orig_skb = skb; | ||
1463 | |||
1464 | if (net_ratelimit()) | ||
1465 | printk(KERN_ERR "%s: inadequate headroom in " | ||
1466 | "Tx packet\n", dev->name); | ||
1467 | skb = skb_realloc_headroom(skb, sizeof(*cpl)); | ||
1468 | dev_kfree_skb_any(orig_skb); | ||
1469 | if (!skb) | ||
1470 | return -ENOMEM; | ||
1471 | } | ||
1392 | 1472 | ||
1393 | if (!(adapter->flags & UDP_CSUM_CAPABLE) && | 1473 | if (!(adapter->flags & UDP_CSUM_CAPABLE) && |
1394 | skb->ip_summed == CHECKSUM_HW && | 1474 | skb->ip_summed == CHECKSUM_HW && |
1395 | skb->nh.iph->protocol == IPPROTO_UDP && | 1475 | skb->nh.iph->protocol == IPPROTO_UDP) |
1396 | skb_checksum_help(skb, 0)) | 1476 | if (unlikely(skb_checksum_help(skb, 0))) { |
1397 | goto t1_start_xmit_fail3; | 1477 | dev_kfree_skb_any(skb); |
1398 | 1478 | return -ENOMEM; | |
1479 | } | ||
1399 | 1480 | ||
1400 | if (!adapter->sge->pskb) { | 1481 | /* Hmmm, assuming to catch the gratious arp... and we'll use |
1482 | * it to flush out stuck espi packets... | ||
1483 | */ | ||
1484 | if (unlikely(!adapter->sge->espibug_skb)) { | ||
1401 | if (skb->protocol == htons(ETH_P_ARP) && | 1485 | if (skb->protocol == htons(ETH_P_ARP) && |
1402 | skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) | 1486 | skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) { |
1403 | adapter->sge->pskb = skb; | 1487 | adapter->sge->espibug_skb = skb; |
1488 | /* We want to re-use this skb later. We | ||
1489 | * simply bump the reference count and it | ||
1490 | * will not be freed... | ||
1491 | */ | ||
1492 | skb = skb_get(skb); | ||
1493 | } | ||
1404 | } | 1494 | } |
1405 | cpl = (struct cpl_tx_pkt *)skb_push(skb, sizeof(*cpl)); | 1495 | |
1496 | cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl)); | ||
1406 | cpl->opcode = CPL_TX_PKT; | 1497 | cpl->opcode = CPL_TX_PKT; |
1407 | cpl->ip_csum_dis = 1; /* SW calculates IP csum */ | 1498 | cpl->ip_csum_dis = 1; /* SW calculates IP csum */ |
1408 | cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1; | 1499 | cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_HW ? 0 : 1; |
1409 | /* the length field isn't used so don't bother setting it */ | 1500 | /* the length field isn't used so don't bother setting it */ |
1501 | |||
1502 | st->tx_cso += (skb->ip_summed == CHECKSUM_HW); | ||
1503 | sge->stats.tx_do_cksum += (skb->ip_summed == CHECKSUM_HW); | ||
1504 | sge->stats.tx_reg_pkts++; | ||
1410 | } | 1505 | } |
1411 | cpl->iff = dev->if_port; | 1506 | cpl->iff = dev->if_port; |
1412 | 1507 | ||
@@ -1414,38 +1509,176 @@ int t1_start_xmit(struct sk_buff *skb, struct net_device *dev) | |||
1414 | if (adapter->vlan_grp && vlan_tx_tag_present(skb)) { | 1509 | if (adapter->vlan_grp && vlan_tx_tag_present(skb)) { |
1415 | cpl->vlan_valid = 1; | 1510 | cpl->vlan_valid = 1; |
1416 | cpl->vlan = htons(vlan_tx_tag_get(skb)); | 1511 | cpl->vlan = htons(vlan_tx_tag_get(skb)); |
1512 | st->vlan_insert++; | ||
1417 | } else | 1513 | } else |
1418 | #endif | 1514 | #endif |
1419 | cpl->vlan_valid = 0; | 1515 | cpl->vlan_valid = 0; |
1420 | 1516 | ||
1421 | dev->trans_start = jiffies; | 1517 | dev->trans_start = jiffies; |
1422 | return t1_sge_tx(skb, adapter, 0); | 1518 | return t1_sge_tx(skb, adapter, 0, dev); |
1519 | } | ||
1423 | 1520 | ||
1424 | t1_start_xmit_fail3: | 1521 | /* |
1425 | printk(KERN_INFO "%s: Unable to complete checksum\n", dev->name); | 1522 | * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled. |
1426 | goto t1_start_xmit_fail1; | 1523 | */ |
1524 | static void sge_tx_reclaim_cb(unsigned long data) | ||
1525 | { | ||
1526 | int i; | ||
1527 | struct sge *sge = (struct sge *)data; | ||
1528 | |||
1529 | for (i = 0; i < SGE_CMDQ_N; ++i) { | ||
1530 | struct cmdQ *q = &sge->cmdQ[i]; | ||
1531 | |||
1532 | if (!spin_trylock(&q->lock)) | ||
1533 | continue; | ||
1427 | 1534 | ||
1428 | t1_start_xmit_fail2: | 1535 | reclaim_completed_tx(sge, q); |
1429 | printk(KERN_INFO "%s: Invalid packet length %d, dropping\n", | 1536 | if (i == 0 && q->in_use) /* flush pending credits */ |
1430 | dev->name, skb->len); | 1537 | writel(F_CMDQ0_ENABLE, |
1538 | sge->adapter->regs + A_SG_DOORBELL); | ||
1431 | 1539 | ||
1432 | t1_start_xmit_fail1: | 1540 | spin_unlock(&q->lock); |
1433 | dev_kfree_skb_any(skb); | 1541 | } |
1542 | mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | ||
1543 | } | ||
1544 | |||
1545 | /* | ||
1546 | * Propagate changes of the SGE coalescing parameters to the HW. | ||
1547 | */ | ||
1548 | int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p) | ||
1549 | { | ||
1550 | sge->netdev->poll = t1_poll; | ||
1551 | sge->fixed_intrtimer = p->rx_coalesce_usecs * | ||
1552 | core_ticks_per_usec(sge->adapter); | ||
1553 | writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER); | ||
1434 | return 0; | 1554 | return 0; |
1435 | } | 1555 | } |
1436 | 1556 | ||
1437 | void t1_sge_set_ptimeout(adapter_t *adapter, u32 val) | 1557 | /* |
1558 | * Allocates both RX and TX resources and configures the SGE. However, | ||
1559 | * the hardware is not enabled yet. | ||
1560 | */ | ||
1561 | int t1_sge_configure(struct sge *sge, struct sge_params *p) | ||
1438 | { | 1562 | { |
1439 | struct sge *sge = adapter->sge; | 1563 | if (alloc_rx_resources(sge, p)) |
1564 | return -ENOMEM; | ||
1565 | if (alloc_tx_resources(sge, p)) { | ||
1566 | free_rx_resources(sge); | ||
1567 | return -ENOMEM; | ||
1568 | } | ||
1569 | configure_sge(sge, p); | ||
1570 | |||
1571 | /* | ||
1572 | * Now that we have sized the free lists calculate the payload | ||
1573 | * capacity of the large buffers. Other parts of the driver use | ||
1574 | * this to set the max offload coalescing size so that RX packets | ||
1575 | * do not overflow our large buffers. | ||
1576 | */ | ||
1577 | p->large_buf_capacity = jumbo_payload_capacity(sge); | ||
1578 | return 0; | ||
1579 | } | ||
1440 | 1580 | ||
1441 | if (is_T2(adapter)) | 1581 | /* |
1442 | sge->ptimeout = max((u32)((HZ * val) / 1000), (u32)1); | 1582 | * Disables the DMA engine. |
1583 | */ | ||
1584 | void t1_sge_stop(struct sge *sge) | ||
1585 | { | ||
1586 | writel(0, sge->adapter->regs + A_SG_CONTROL); | ||
1587 | (void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ | ||
1588 | if (is_T2(sge->adapter)) | ||
1589 | del_timer_sync(&sge->espibug_timer); | ||
1590 | del_timer_sync(&sge->tx_reclaim_timer); | ||
1443 | } | 1591 | } |
1444 | 1592 | ||
1445 | u32 t1_sge_get_ptimeout(adapter_t *adapter) | 1593 | /* |
1594 | * Enables the DMA engine. | ||
1595 | */ | ||
1596 | void t1_sge_start(struct sge *sge) | ||
1446 | { | 1597 | { |
1598 | refill_free_list(sge, &sge->freelQ[0]); | ||
1599 | refill_free_list(sge, &sge->freelQ[1]); | ||
1600 | |||
1601 | writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL); | ||
1602 | doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE); | ||
1603 | (void) readl(sge->adapter->regs + A_SG_CONTROL); /* flush */ | ||
1604 | |||
1605 | mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | ||
1606 | |||
1607 | if (is_T2(sge->adapter)) | ||
1608 | mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); | ||
1609 | } | ||
1610 | |||
1611 | /* | ||
1612 | * Callback for the T2 ESPI 'stuck packet feature' workaorund | ||
1613 | */ | ||
1614 | static void espibug_workaround(void *data) | ||
1615 | { | ||
1616 | struct adapter *adapter = (struct adapter *)data; | ||
1447 | struct sge *sge = adapter->sge; | 1617 | struct sge *sge = adapter->sge; |
1448 | 1618 | ||
1449 | return (is_T2(adapter) ? ((sge->ptimeout * 1000) / HZ) : 0); | 1619 | if (netif_running(adapter->port[0].dev)) { |
1620 | struct sk_buff *skb = sge->espibug_skb; | ||
1621 | |||
1622 | u32 seop = t1_espi_get_mon(adapter, 0x930, 0); | ||
1623 | |||
1624 | if ((seop & 0xfff0fff) == 0xfff && skb) { | ||
1625 | if (!skb->cb[0]) { | ||
1626 | u8 ch_mac_addr[ETH_ALEN] = | ||
1627 | {0x0, 0x7, 0x43, 0x0, 0x0, 0x0}; | ||
1628 | memcpy(skb->data + sizeof(struct cpl_tx_pkt), | ||
1629 | ch_mac_addr, ETH_ALEN); | ||
1630 | memcpy(skb->data + skb->len - 10, ch_mac_addr, | ||
1631 | ETH_ALEN); | ||
1632 | skb->cb[0] = 0xff; | ||
1633 | } | ||
1634 | |||
1635 | /* bump the reference count to avoid freeing of the | ||
1636 | * skb once the DMA has completed. | ||
1637 | */ | ||
1638 | skb = skb_get(skb); | ||
1639 | t1_sge_tx(skb, adapter, 0, adapter->port[0].dev); | ||
1640 | } | ||
1641 | } | ||
1642 | mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout); | ||
1450 | } | 1643 | } |
1451 | 1644 | ||
1645 | /* | ||
1646 | * Creates a t1_sge structure and returns suggested resource parameters. | ||
1647 | */ | ||
1648 | struct sge * __devinit t1_sge_create(struct adapter *adapter, | ||
1649 | struct sge_params *p) | ||
1650 | { | ||
1651 | struct sge *sge = kmalloc(sizeof(*sge), GFP_KERNEL); | ||
1652 | |||
1653 | if (!sge) | ||
1654 | return NULL; | ||
1655 | memset(sge, 0, sizeof(*sge)); | ||
1656 | |||
1657 | sge->adapter = adapter; | ||
1658 | sge->netdev = adapter->port[0].dev; | ||
1659 | sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2; | ||
1660 | sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0; | ||
1661 | |||
1662 | init_timer(&sge->tx_reclaim_timer); | ||
1663 | sge->tx_reclaim_timer.data = (unsigned long)sge; | ||
1664 | sge->tx_reclaim_timer.function = sge_tx_reclaim_cb; | ||
1665 | |||
1666 | if (is_T2(sge->adapter)) { | ||
1667 | init_timer(&sge->espibug_timer); | ||
1668 | sge->espibug_timer.function = (void *)&espibug_workaround; | ||
1669 | sge->espibug_timer.data = (unsigned long)sge->adapter; | ||
1670 | sge->espibug_timeout = 1; | ||
1671 | } | ||
1672 | |||
1673 | |||
1674 | p->cmdQ_size[0] = SGE_CMDQ0_E_N; | ||
1675 | p->cmdQ_size[1] = SGE_CMDQ1_E_N; | ||
1676 | p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE; | ||
1677 | p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE; | ||
1678 | p->rx_coalesce_usecs = 50; | ||
1679 | p->coalesce_enable = 0; | ||
1680 | p->sample_interval_usecs = 0; | ||
1681 | p->polling = 0; | ||
1682 | |||
1683 | return sge; | ||
1684 | } | ||