diff options
author | Dmitry Kravkov <dmitry@broadcom.com> | 2010-07-27 08:34:34 -0400 |
---|---|---|
committer | David S. Miller <davem@davemloft.net> | 2010-07-27 23:35:41 -0400 |
commit | 9f6c925889ad9204c7d1f5ca116d2e5fd6036c72 (patch) | |
tree | ab84e3b050729a1a92b54c1b6ed526cb97f9ad7b /drivers/net/bnx2x/bnx2x_cmn.c | |
parent | b0efbb996e8554ed8fe59e3f79e0bc83218083ab (diff) |
bnx2x: Create bnx2x_cmn.* files
Newly created files have no functionality changes,
but includes some functionality from bnx2x_main.c which
is common for PF and coming in the future VF driver.
Signed-off-by: Dmitry Kravkov <dmitry@broadcom.com>
Signed-off-by: Eilon Greenstein <eilong@broadcom.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'drivers/net/bnx2x/bnx2x_cmn.c')
-rw-r--r-- | drivers/net/bnx2x/bnx2x_cmn.c | 2251 |
1 files changed, 2251 insertions, 0 deletions
diff --git a/drivers/net/bnx2x/bnx2x_cmn.c b/drivers/net/bnx2x/bnx2x_cmn.c new file mode 100644 index 000000000000..30d20c7fee0b --- /dev/null +++ b/drivers/net/bnx2x/bnx2x_cmn.c | |||
@@ -0,0 +1,2251 @@ | |||
1 | /* bnx2x_cmn.c: Broadcom Everest network driver. | ||
2 | * | ||
3 | * Copyright (c) 2007-2010 Broadcom Corporation | ||
4 | * | ||
5 | * This program is free software; you can redistribute it and/or modify | ||
6 | * it under the terms of the GNU General Public License as published by | ||
7 | * the Free Software Foundation. | ||
8 | * | ||
9 | * Maintained by: Eilon Greenstein <eilong@broadcom.com> | ||
10 | * Written by: Eliezer Tamir | ||
11 | * Based on code from Michael Chan's bnx2 driver | ||
12 | * UDP CSUM errata workaround by Arik Gendelman | ||
13 | * Slowpath and fastpath rework by Vladislav Zolotarov | ||
14 | * Statistics and Link management by Yitchak Gertner | ||
15 | * | ||
16 | */ | ||
17 | |||
18 | |||
19 | #include <linux/etherdevice.h> | ||
20 | #include <linux/ip.h> | ||
21 | #include <linux/ipv6.h> | ||
22 | #include "bnx2x_cmn.h" | ||
23 | |||
24 | #ifdef BCM_VLAN | ||
25 | #include <linux/if_vlan.h> | ||
26 | #endif | ||
27 | |||
28 | static int bnx2x_poll(struct napi_struct *napi, int budget); | ||
29 | |||
30 | /* free skb in the packet ring at pos idx | ||
31 | * return idx of last bd freed | ||
32 | */ | ||
33 | static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fastpath *fp, | ||
34 | u16 idx) | ||
35 | { | ||
36 | struct sw_tx_bd *tx_buf = &fp->tx_buf_ring[idx]; | ||
37 | struct eth_tx_start_bd *tx_start_bd; | ||
38 | struct eth_tx_bd *tx_data_bd; | ||
39 | struct sk_buff *skb = tx_buf->skb; | ||
40 | u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons; | ||
41 | int nbd; | ||
42 | |||
43 | /* prefetch skb end pointer to speedup dev_kfree_skb() */ | ||
44 | prefetch(&skb->end); | ||
45 | |||
46 | DP(BNX2X_MSG_OFF, "pkt_idx %d buff @(%p)->skb %p\n", | ||
47 | idx, tx_buf, skb); | ||
48 | |||
49 | /* unmap first bd */ | ||
50 | DP(BNX2X_MSG_OFF, "free bd_idx %d\n", bd_idx); | ||
51 | tx_start_bd = &fp->tx_desc_ring[bd_idx].start_bd; | ||
52 | dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd), | ||
53 | BD_UNMAP_LEN(tx_start_bd), PCI_DMA_TODEVICE); | ||
54 | |||
55 | nbd = le16_to_cpu(tx_start_bd->nbd) - 1; | ||
56 | #ifdef BNX2X_STOP_ON_ERROR | ||
57 | if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) { | ||
58 | BNX2X_ERR("BAD nbd!\n"); | ||
59 | bnx2x_panic(); | ||
60 | } | ||
61 | #endif | ||
62 | new_cons = nbd + tx_buf->first_bd; | ||
63 | |||
64 | /* Get the next bd */ | ||
65 | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | ||
66 | |||
67 | /* Skip a parse bd... */ | ||
68 | --nbd; | ||
69 | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | ||
70 | |||
71 | /* ...and the TSO split header bd since they have no mapping */ | ||
72 | if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) { | ||
73 | --nbd; | ||
74 | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | ||
75 | } | ||
76 | |||
77 | /* now free frags */ | ||
78 | while (nbd > 0) { | ||
79 | |||
80 | DP(BNX2X_MSG_OFF, "free frag bd_idx %d\n", bd_idx); | ||
81 | tx_data_bd = &fp->tx_desc_ring[bd_idx].reg_bd; | ||
82 | dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd), | ||
83 | BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE); | ||
84 | if (--nbd) | ||
85 | bd_idx = TX_BD(NEXT_TX_IDX(bd_idx)); | ||
86 | } | ||
87 | |||
88 | /* release skb */ | ||
89 | WARN_ON(!skb); | ||
90 | dev_kfree_skb(skb); | ||
91 | tx_buf->first_bd = 0; | ||
92 | tx_buf->skb = NULL; | ||
93 | |||
94 | return new_cons; | ||
95 | } | ||
96 | |||
97 | int bnx2x_tx_int(struct bnx2x_fastpath *fp) | ||
98 | { | ||
99 | struct bnx2x *bp = fp->bp; | ||
100 | struct netdev_queue *txq; | ||
101 | u16 hw_cons, sw_cons, bd_cons = fp->tx_bd_cons; | ||
102 | |||
103 | #ifdef BNX2X_STOP_ON_ERROR | ||
104 | if (unlikely(bp->panic)) | ||
105 | return -1; | ||
106 | #endif | ||
107 | |||
108 | txq = netdev_get_tx_queue(bp->dev, fp->index); | ||
109 | hw_cons = le16_to_cpu(*fp->tx_cons_sb); | ||
110 | sw_cons = fp->tx_pkt_cons; | ||
111 | |||
112 | while (sw_cons != hw_cons) { | ||
113 | u16 pkt_cons; | ||
114 | |||
115 | pkt_cons = TX_BD(sw_cons); | ||
116 | |||
117 | /* prefetch(bp->tx_buf_ring[pkt_cons].skb); */ | ||
118 | |||
119 | DP(NETIF_MSG_TX_DONE, "hw_cons %u sw_cons %u pkt_cons %u\n", | ||
120 | hw_cons, sw_cons, pkt_cons); | ||
121 | |||
122 | /* if (NEXT_TX_IDX(sw_cons) != hw_cons) { | ||
123 | rmb(); | ||
124 | prefetch(fp->tx_buf_ring[NEXT_TX_IDX(sw_cons)].skb); | ||
125 | } | ||
126 | */ | ||
127 | bd_cons = bnx2x_free_tx_pkt(bp, fp, pkt_cons); | ||
128 | sw_cons++; | ||
129 | } | ||
130 | |||
131 | fp->tx_pkt_cons = sw_cons; | ||
132 | fp->tx_bd_cons = bd_cons; | ||
133 | |||
134 | /* Need to make the tx_bd_cons update visible to start_xmit() | ||
135 | * before checking for netif_tx_queue_stopped(). Without the | ||
136 | * memory barrier, there is a small possibility that | ||
137 | * start_xmit() will miss it and cause the queue to be stopped | ||
138 | * forever. | ||
139 | */ | ||
140 | smp_mb(); | ||
141 | |||
142 | /* TBD need a thresh? */ | ||
143 | if (unlikely(netif_tx_queue_stopped(txq))) { | ||
144 | /* Taking tx_lock() is needed to prevent reenabling the queue | ||
145 | * while it's empty. This could have happen if rx_action() gets | ||
146 | * suspended in bnx2x_tx_int() after the condition before | ||
147 | * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()): | ||
148 | * | ||
149 | * stops the queue->sees fresh tx_bd_cons->releases the queue-> | ||
150 | * sends some packets consuming the whole queue again-> | ||
151 | * stops the queue | ||
152 | */ | ||
153 | |||
154 | __netif_tx_lock(txq, smp_processor_id()); | ||
155 | |||
156 | if ((netif_tx_queue_stopped(txq)) && | ||
157 | (bp->state == BNX2X_STATE_OPEN) && | ||
158 | (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3)) | ||
159 | netif_tx_wake_queue(txq); | ||
160 | |||
161 | __netif_tx_unlock(txq); | ||
162 | } | ||
163 | return 0; | ||
164 | } | ||
165 | |||
166 | static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp, | ||
167 | u16 idx) | ||
168 | { | ||
169 | u16 last_max = fp->last_max_sge; | ||
170 | |||
171 | if (SUB_S16(idx, last_max) > 0) | ||
172 | fp->last_max_sge = idx; | ||
173 | } | ||
174 | |||
175 | static void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp, | ||
176 | struct eth_fast_path_rx_cqe *fp_cqe) | ||
177 | { | ||
178 | struct bnx2x *bp = fp->bp; | ||
179 | u16 sge_len = SGE_PAGE_ALIGN(le16_to_cpu(fp_cqe->pkt_len) - | ||
180 | le16_to_cpu(fp_cqe->len_on_bd)) >> | ||
181 | SGE_PAGE_SHIFT; | ||
182 | u16 last_max, last_elem, first_elem; | ||
183 | u16 delta = 0; | ||
184 | u16 i; | ||
185 | |||
186 | if (!sge_len) | ||
187 | return; | ||
188 | |||
189 | /* First mark all used pages */ | ||
190 | for (i = 0; i < sge_len; i++) | ||
191 | SGE_MASK_CLEAR_BIT(fp, RX_SGE(le16_to_cpu(fp_cqe->sgl[i]))); | ||
192 | |||
193 | DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n", | ||
194 | sge_len - 1, le16_to_cpu(fp_cqe->sgl[sge_len - 1])); | ||
195 | |||
196 | /* Here we assume that the last SGE index is the biggest */ | ||
197 | prefetch((void *)(fp->sge_mask)); | ||
198 | bnx2x_update_last_max_sge(fp, le16_to_cpu(fp_cqe->sgl[sge_len - 1])); | ||
199 | |||
200 | last_max = RX_SGE(fp->last_max_sge); | ||
201 | last_elem = last_max >> RX_SGE_MASK_ELEM_SHIFT; | ||
202 | first_elem = RX_SGE(fp->rx_sge_prod) >> RX_SGE_MASK_ELEM_SHIFT; | ||
203 | |||
204 | /* If ring is not full */ | ||
205 | if (last_elem + 1 != first_elem) | ||
206 | last_elem++; | ||
207 | |||
208 | /* Now update the prod */ | ||
209 | for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) { | ||
210 | if (likely(fp->sge_mask[i])) | ||
211 | break; | ||
212 | |||
213 | fp->sge_mask[i] = RX_SGE_MASK_ELEM_ONE_MASK; | ||
214 | delta += RX_SGE_MASK_ELEM_SZ; | ||
215 | } | ||
216 | |||
217 | if (delta > 0) { | ||
218 | fp->rx_sge_prod += delta; | ||
219 | /* clear page-end entries */ | ||
220 | bnx2x_clear_sge_mask_next_elems(fp); | ||
221 | } | ||
222 | |||
223 | DP(NETIF_MSG_RX_STATUS, | ||
224 | "fp->last_max_sge = %d fp->rx_sge_prod = %d\n", | ||
225 | fp->last_max_sge, fp->rx_sge_prod); | ||
226 | } | ||
227 | |||
228 | static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue, | ||
229 | struct sk_buff *skb, u16 cons, u16 prod) | ||
230 | { | ||
231 | struct bnx2x *bp = fp->bp; | ||
232 | struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; | ||
233 | struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; | ||
234 | struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; | ||
235 | dma_addr_t mapping; | ||
236 | |||
237 | /* move empty skb from pool to prod and map it */ | ||
238 | prod_rx_buf->skb = fp->tpa_pool[queue].skb; | ||
239 | mapping = dma_map_single(&bp->pdev->dev, fp->tpa_pool[queue].skb->data, | ||
240 | bp->rx_buf_size, DMA_FROM_DEVICE); | ||
241 | dma_unmap_addr_set(prod_rx_buf, mapping, mapping); | ||
242 | |||
243 | /* move partial skb from cons to pool (don't unmap yet) */ | ||
244 | fp->tpa_pool[queue] = *cons_rx_buf; | ||
245 | |||
246 | /* mark bin state as start - print error if current state != stop */ | ||
247 | if (fp->tpa_state[queue] != BNX2X_TPA_STOP) | ||
248 | BNX2X_ERR("start of bin not in stop [%d]\n", queue); | ||
249 | |||
250 | fp->tpa_state[queue] = BNX2X_TPA_START; | ||
251 | |||
252 | /* point prod_bd to new skb */ | ||
253 | prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | ||
254 | prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | ||
255 | |||
256 | #ifdef BNX2X_STOP_ON_ERROR | ||
257 | fp->tpa_queue_used |= (1 << queue); | ||
258 | #ifdef _ASM_GENERIC_INT_L64_H | ||
259 | DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%lx\n", | ||
260 | #else | ||
261 | DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n", | ||
262 | #endif | ||
263 | fp->tpa_queue_used); | ||
264 | #endif | ||
265 | } | ||
266 | |||
267 | static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp, | ||
268 | struct sk_buff *skb, | ||
269 | struct eth_fast_path_rx_cqe *fp_cqe, | ||
270 | u16 cqe_idx) | ||
271 | { | ||
272 | struct sw_rx_page *rx_pg, old_rx_pg; | ||
273 | u16 len_on_bd = le16_to_cpu(fp_cqe->len_on_bd); | ||
274 | u32 i, frag_len, frag_size, pages; | ||
275 | int err; | ||
276 | int j; | ||
277 | |||
278 | frag_size = le16_to_cpu(fp_cqe->pkt_len) - len_on_bd; | ||
279 | pages = SGE_PAGE_ALIGN(frag_size) >> SGE_PAGE_SHIFT; | ||
280 | |||
281 | /* This is needed in order to enable forwarding support */ | ||
282 | if (frag_size) | ||
283 | skb_shinfo(skb)->gso_size = min((u32)SGE_PAGE_SIZE, | ||
284 | max(frag_size, (u32)len_on_bd)); | ||
285 | |||
286 | #ifdef BNX2X_STOP_ON_ERROR | ||
287 | if (pages > min_t(u32, 8, MAX_SKB_FRAGS)*SGE_PAGE_SIZE*PAGES_PER_SGE) { | ||
288 | BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n", | ||
289 | pages, cqe_idx); | ||
290 | BNX2X_ERR("fp_cqe->pkt_len = %d fp_cqe->len_on_bd = %d\n", | ||
291 | fp_cqe->pkt_len, len_on_bd); | ||
292 | bnx2x_panic(); | ||
293 | return -EINVAL; | ||
294 | } | ||
295 | #endif | ||
296 | |||
297 | /* Run through the SGL and compose the fragmented skb */ | ||
298 | for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) { | ||
299 | u16 sge_idx = RX_SGE(le16_to_cpu(fp_cqe->sgl[j])); | ||
300 | |||
301 | /* FW gives the indices of the SGE as if the ring is an array | ||
302 | (meaning that "next" element will consume 2 indices) */ | ||
303 | frag_len = min(frag_size, (u32)(SGE_PAGE_SIZE*PAGES_PER_SGE)); | ||
304 | rx_pg = &fp->rx_page_ring[sge_idx]; | ||
305 | old_rx_pg = *rx_pg; | ||
306 | |||
307 | /* If we fail to allocate a substitute page, we simply stop | ||
308 | where we are and drop the whole packet */ | ||
309 | err = bnx2x_alloc_rx_sge(bp, fp, sge_idx); | ||
310 | if (unlikely(err)) { | ||
311 | fp->eth_q_stats.rx_skb_alloc_failed++; | ||
312 | return err; | ||
313 | } | ||
314 | |||
315 | /* Unmap the page as we r going to pass it to the stack */ | ||
316 | dma_unmap_page(&bp->pdev->dev, | ||
317 | dma_unmap_addr(&old_rx_pg, mapping), | ||
318 | SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE); | ||
319 | |||
320 | /* Add one frag and update the appropriate fields in the skb */ | ||
321 | skb_fill_page_desc(skb, j, old_rx_pg.page, 0, frag_len); | ||
322 | |||
323 | skb->data_len += frag_len; | ||
324 | skb->truesize += frag_len; | ||
325 | skb->len += frag_len; | ||
326 | |||
327 | frag_size -= frag_len; | ||
328 | } | ||
329 | |||
330 | return 0; | ||
331 | } | ||
332 | |||
333 | static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp, | ||
334 | u16 queue, int pad, int len, union eth_rx_cqe *cqe, | ||
335 | u16 cqe_idx) | ||
336 | { | ||
337 | struct sw_rx_bd *rx_buf = &fp->tpa_pool[queue]; | ||
338 | struct sk_buff *skb = rx_buf->skb; | ||
339 | /* alloc new skb */ | ||
340 | struct sk_buff *new_skb = netdev_alloc_skb(bp->dev, bp->rx_buf_size); | ||
341 | |||
342 | /* Unmap skb in the pool anyway, as we are going to change | ||
343 | pool entry status to BNX2X_TPA_STOP even if new skb allocation | ||
344 | fails. */ | ||
345 | dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping), | ||
346 | bp->rx_buf_size, DMA_FROM_DEVICE); | ||
347 | |||
348 | if (likely(new_skb)) { | ||
349 | /* fix ip xsum and give it to the stack */ | ||
350 | /* (no need to map the new skb) */ | ||
351 | #ifdef BCM_VLAN | ||
352 | int is_vlan_cqe = | ||
353 | (le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) & | ||
354 | PARSING_FLAGS_VLAN); | ||
355 | int is_not_hwaccel_vlan_cqe = | ||
356 | (is_vlan_cqe && (!(bp->flags & HW_VLAN_RX_FLAG))); | ||
357 | #endif | ||
358 | |||
359 | prefetch(skb); | ||
360 | prefetch(((char *)(skb)) + 128); | ||
361 | |||
362 | #ifdef BNX2X_STOP_ON_ERROR | ||
363 | if (pad + len > bp->rx_buf_size) { | ||
364 | BNX2X_ERR("skb_put is about to fail... " | ||
365 | "pad %d len %d rx_buf_size %d\n", | ||
366 | pad, len, bp->rx_buf_size); | ||
367 | bnx2x_panic(); | ||
368 | return; | ||
369 | } | ||
370 | #endif | ||
371 | |||
372 | skb_reserve(skb, pad); | ||
373 | skb_put(skb, len); | ||
374 | |||
375 | skb->protocol = eth_type_trans(skb, bp->dev); | ||
376 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
377 | |||
378 | { | ||
379 | struct iphdr *iph; | ||
380 | |||
381 | iph = (struct iphdr *)skb->data; | ||
382 | #ifdef BCM_VLAN | ||
383 | /* If there is no Rx VLAN offloading - | ||
384 | take VLAN tag into an account */ | ||
385 | if (unlikely(is_not_hwaccel_vlan_cqe)) | ||
386 | iph = (struct iphdr *)((u8 *)iph + VLAN_HLEN); | ||
387 | #endif | ||
388 | iph->check = 0; | ||
389 | iph->check = ip_fast_csum((u8 *)iph, iph->ihl); | ||
390 | } | ||
391 | |||
392 | if (!bnx2x_fill_frag_skb(bp, fp, skb, | ||
393 | &cqe->fast_path_cqe, cqe_idx)) { | ||
394 | #ifdef BCM_VLAN | ||
395 | if ((bp->vlgrp != NULL) && is_vlan_cqe && | ||
396 | (!is_not_hwaccel_vlan_cqe)) | ||
397 | vlan_gro_receive(&fp->napi, bp->vlgrp, | ||
398 | le16_to_cpu(cqe->fast_path_cqe. | ||
399 | vlan_tag), skb); | ||
400 | else | ||
401 | #endif | ||
402 | napi_gro_receive(&fp->napi, skb); | ||
403 | } else { | ||
404 | DP(NETIF_MSG_RX_STATUS, "Failed to allocate new pages" | ||
405 | " - dropping packet!\n"); | ||
406 | dev_kfree_skb(skb); | ||
407 | } | ||
408 | |||
409 | |||
410 | /* put new skb in bin */ | ||
411 | fp->tpa_pool[queue].skb = new_skb; | ||
412 | |||
413 | } else { | ||
414 | /* else drop the packet and keep the buffer in the bin */ | ||
415 | DP(NETIF_MSG_RX_STATUS, | ||
416 | "Failed to allocate new skb - dropping packet!\n"); | ||
417 | fp->eth_q_stats.rx_skb_alloc_failed++; | ||
418 | } | ||
419 | |||
420 | fp->tpa_state[queue] = BNX2X_TPA_STOP; | ||
421 | } | ||
422 | |||
423 | /* Set Toeplitz hash value in the skb using the value from the | ||
424 | * CQE (calculated by HW). | ||
425 | */ | ||
426 | static inline void bnx2x_set_skb_rxhash(struct bnx2x *bp, union eth_rx_cqe *cqe, | ||
427 | struct sk_buff *skb) | ||
428 | { | ||
429 | /* Set Toeplitz hash from CQE */ | ||
430 | if ((bp->dev->features & NETIF_F_RXHASH) && | ||
431 | (cqe->fast_path_cqe.status_flags & | ||
432 | ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) | ||
433 | skb->rxhash = | ||
434 | le32_to_cpu(cqe->fast_path_cqe.rss_hash_result); | ||
435 | } | ||
436 | |||
437 | int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget) | ||
438 | { | ||
439 | struct bnx2x *bp = fp->bp; | ||
440 | u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons; | ||
441 | u16 hw_comp_cons, sw_comp_cons, sw_comp_prod; | ||
442 | int rx_pkt = 0; | ||
443 | |||
444 | #ifdef BNX2X_STOP_ON_ERROR | ||
445 | if (unlikely(bp->panic)) | ||
446 | return 0; | ||
447 | #endif | ||
448 | |||
449 | /* CQ "next element" is of the size of the regular element, | ||
450 | that's why it's ok here */ | ||
451 | hw_comp_cons = le16_to_cpu(*fp->rx_cons_sb); | ||
452 | if ((hw_comp_cons & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT) | ||
453 | hw_comp_cons++; | ||
454 | |||
455 | bd_cons = fp->rx_bd_cons; | ||
456 | bd_prod = fp->rx_bd_prod; | ||
457 | bd_prod_fw = bd_prod; | ||
458 | sw_comp_cons = fp->rx_comp_cons; | ||
459 | sw_comp_prod = fp->rx_comp_prod; | ||
460 | |||
461 | /* Memory barrier necessary as speculative reads of the rx | ||
462 | * buffer can be ahead of the index in the status block | ||
463 | */ | ||
464 | rmb(); | ||
465 | |||
466 | DP(NETIF_MSG_RX_STATUS, | ||
467 | "queue[%d]: hw_comp_cons %u sw_comp_cons %u\n", | ||
468 | fp->index, hw_comp_cons, sw_comp_cons); | ||
469 | |||
470 | while (sw_comp_cons != hw_comp_cons) { | ||
471 | struct sw_rx_bd *rx_buf = NULL; | ||
472 | struct sk_buff *skb; | ||
473 | union eth_rx_cqe *cqe; | ||
474 | u8 cqe_fp_flags; | ||
475 | u16 len, pad; | ||
476 | |||
477 | comp_ring_cons = RCQ_BD(sw_comp_cons); | ||
478 | bd_prod = RX_BD(bd_prod); | ||
479 | bd_cons = RX_BD(bd_cons); | ||
480 | |||
481 | /* Prefetch the page containing the BD descriptor | ||
482 | at producer's index. It will be needed when new skb is | ||
483 | allocated */ | ||
484 | prefetch((void *)(PAGE_ALIGN((unsigned long) | ||
485 | (&fp->rx_desc_ring[bd_prod])) - | ||
486 | PAGE_SIZE + 1)); | ||
487 | |||
488 | cqe = &fp->rx_comp_ring[comp_ring_cons]; | ||
489 | cqe_fp_flags = cqe->fast_path_cqe.type_error_flags; | ||
490 | |||
491 | DP(NETIF_MSG_RX_STATUS, "CQE type %x err %x status %x" | ||
492 | " queue %x vlan %x len %u\n", CQE_TYPE(cqe_fp_flags), | ||
493 | cqe_fp_flags, cqe->fast_path_cqe.status_flags, | ||
494 | le32_to_cpu(cqe->fast_path_cqe.rss_hash_result), | ||
495 | le16_to_cpu(cqe->fast_path_cqe.vlan_tag), | ||
496 | le16_to_cpu(cqe->fast_path_cqe.pkt_len)); | ||
497 | |||
498 | /* is this a slowpath msg? */ | ||
499 | if (unlikely(CQE_TYPE(cqe_fp_flags))) { | ||
500 | bnx2x_sp_event(fp, cqe); | ||
501 | goto next_cqe; | ||
502 | |||
503 | /* this is an rx packet */ | ||
504 | } else { | ||
505 | rx_buf = &fp->rx_buf_ring[bd_cons]; | ||
506 | skb = rx_buf->skb; | ||
507 | prefetch(skb); | ||
508 | len = le16_to_cpu(cqe->fast_path_cqe.pkt_len); | ||
509 | pad = cqe->fast_path_cqe.placement_offset; | ||
510 | |||
511 | /* If CQE is marked both TPA_START and TPA_END | ||
512 | it is a non-TPA CQE */ | ||
513 | if ((!fp->disable_tpa) && | ||
514 | (TPA_TYPE(cqe_fp_flags) != | ||
515 | (TPA_TYPE_START | TPA_TYPE_END))) { | ||
516 | u16 queue = cqe->fast_path_cqe.queue_index; | ||
517 | |||
518 | if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_START) { | ||
519 | DP(NETIF_MSG_RX_STATUS, | ||
520 | "calling tpa_start on queue %d\n", | ||
521 | queue); | ||
522 | |||
523 | bnx2x_tpa_start(fp, queue, skb, | ||
524 | bd_cons, bd_prod); | ||
525 | |||
526 | /* Set Toeplitz hash for an LRO skb */ | ||
527 | bnx2x_set_skb_rxhash(bp, cqe, skb); | ||
528 | |||
529 | goto next_rx; | ||
530 | } | ||
531 | |||
532 | if (TPA_TYPE(cqe_fp_flags) == TPA_TYPE_END) { | ||
533 | DP(NETIF_MSG_RX_STATUS, | ||
534 | "calling tpa_stop on queue %d\n", | ||
535 | queue); | ||
536 | |||
537 | if (!BNX2X_RX_SUM_FIX(cqe)) | ||
538 | BNX2X_ERR("STOP on none TCP " | ||
539 | "data\n"); | ||
540 | |||
541 | /* This is a size of the linear data | ||
542 | on this skb */ | ||
543 | len = le16_to_cpu(cqe->fast_path_cqe. | ||
544 | len_on_bd); | ||
545 | bnx2x_tpa_stop(bp, fp, queue, pad, | ||
546 | len, cqe, comp_ring_cons); | ||
547 | #ifdef BNX2X_STOP_ON_ERROR | ||
548 | if (bp->panic) | ||
549 | return 0; | ||
550 | #endif | ||
551 | |||
552 | bnx2x_update_sge_prod(fp, | ||
553 | &cqe->fast_path_cqe); | ||
554 | goto next_cqe; | ||
555 | } | ||
556 | } | ||
557 | |||
558 | dma_sync_single_for_device(&bp->pdev->dev, | ||
559 | dma_unmap_addr(rx_buf, mapping), | ||
560 | pad + RX_COPY_THRESH, | ||
561 | DMA_FROM_DEVICE); | ||
562 | prefetch(((char *)(skb)) + 128); | ||
563 | |||
564 | /* is this an error packet? */ | ||
565 | if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) { | ||
566 | DP(NETIF_MSG_RX_ERR, | ||
567 | "ERROR flags %x rx packet %u\n", | ||
568 | cqe_fp_flags, sw_comp_cons); | ||
569 | fp->eth_q_stats.rx_err_discard_pkt++; | ||
570 | goto reuse_rx; | ||
571 | } | ||
572 | |||
573 | /* Since we don't have a jumbo ring | ||
574 | * copy small packets if mtu > 1500 | ||
575 | */ | ||
576 | if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) && | ||
577 | (len <= RX_COPY_THRESH)) { | ||
578 | struct sk_buff *new_skb; | ||
579 | |||
580 | new_skb = netdev_alloc_skb(bp->dev, | ||
581 | len + pad); | ||
582 | if (new_skb == NULL) { | ||
583 | DP(NETIF_MSG_RX_ERR, | ||
584 | "ERROR packet dropped " | ||
585 | "because of alloc failure\n"); | ||
586 | fp->eth_q_stats.rx_skb_alloc_failed++; | ||
587 | goto reuse_rx; | ||
588 | } | ||
589 | |||
590 | /* aligned copy */ | ||
591 | skb_copy_from_linear_data_offset(skb, pad, | ||
592 | new_skb->data + pad, len); | ||
593 | skb_reserve(new_skb, pad); | ||
594 | skb_put(new_skb, len); | ||
595 | |||
596 | bnx2x_reuse_rx_skb(fp, skb, bd_cons, bd_prod); | ||
597 | |||
598 | skb = new_skb; | ||
599 | |||
600 | } else | ||
601 | if (likely(bnx2x_alloc_rx_skb(bp, fp, bd_prod) == 0)) { | ||
602 | dma_unmap_single(&bp->pdev->dev, | ||
603 | dma_unmap_addr(rx_buf, mapping), | ||
604 | bp->rx_buf_size, | ||
605 | DMA_FROM_DEVICE); | ||
606 | skb_reserve(skb, pad); | ||
607 | skb_put(skb, len); | ||
608 | |||
609 | } else { | ||
610 | DP(NETIF_MSG_RX_ERR, | ||
611 | "ERROR packet dropped because " | ||
612 | "of alloc failure\n"); | ||
613 | fp->eth_q_stats.rx_skb_alloc_failed++; | ||
614 | reuse_rx: | ||
615 | bnx2x_reuse_rx_skb(fp, skb, bd_cons, bd_prod); | ||
616 | goto next_rx; | ||
617 | } | ||
618 | |||
619 | skb->protocol = eth_type_trans(skb, bp->dev); | ||
620 | |||
621 | /* Set Toeplitz hash for a none-LRO skb */ | ||
622 | bnx2x_set_skb_rxhash(bp, cqe, skb); | ||
623 | |||
624 | skb->ip_summed = CHECKSUM_NONE; | ||
625 | if (bp->rx_csum) { | ||
626 | if (likely(BNX2X_RX_CSUM_OK(cqe))) | ||
627 | skb->ip_summed = CHECKSUM_UNNECESSARY; | ||
628 | else | ||
629 | fp->eth_q_stats.hw_csum_err++; | ||
630 | } | ||
631 | } | ||
632 | |||
633 | skb_record_rx_queue(skb, fp->index); | ||
634 | |||
635 | #ifdef BCM_VLAN | ||
636 | if ((bp->vlgrp != NULL) && (bp->flags & HW_VLAN_RX_FLAG) && | ||
637 | (le16_to_cpu(cqe->fast_path_cqe.pars_flags.flags) & | ||
638 | PARSING_FLAGS_VLAN)) | ||
639 | vlan_gro_receive(&fp->napi, bp->vlgrp, | ||
640 | le16_to_cpu(cqe->fast_path_cqe.vlan_tag), skb); | ||
641 | else | ||
642 | #endif | ||
643 | napi_gro_receive(&fp->napi, skb); | ||
644 | |||
645 | |||
646 | next_rx: | ||
647 | rx_buf->skb = NULL; | ||
648 | |||
649 | bd_cons = NEXT_RX_IDX(bd_cons); | ||
650 | bd_prod = NEXT_RX_IDX(bd_prod); | ||
651 | bd_prod_fw = NEXT_RX_IDX(bd_prod_fw); | ||
652 | rx_pkt++; | ||
653 | next_cqe: | ||
654 | sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod); | ||
655 | sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons); | ||
656 | |||
657 | if (rx_pkt == budget) | ||
658 | break; | ||
659 | } /* while */ | ||
660 | |||
661 | fp->rx_bd_cons = bd_cons; | ||
662 | fp->rx_bd_prod = bd_prod_fw; | ||
663 | fp->rx_comp_cons = sw_comp_cons; | ||
664 | fp->rx_comp_prod = sw_comp_prod; | ||
665 | |||
666 | /* Update producers */ | ||
667 | bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod, | ||
668 | fp->rx_sge_prod); | ||
669 | |||
670 | fp->rx_pkt += rx_pkt; | ||
671 | fp->rx_calls++; | ||
672 | |||
673 | return rx_pkt; | ||
674 | } | ||
675 | |||
676 | static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie) | ||
677 | { | ||
678 | struct bnx2x_fastpath *fp = fp_cookie; | ||
679 | struct bnx2x *bp = fp->bp; | ||
680 | |||
681 | /* Return here if interrupt is disabled */ | ||
682 | if (unlikely(atomic_read(&bp->intr_sem) != 0)) { | ||
683 | DP(NETIF_MSG_INTR, "called but intr_sem not 0, returning\n"); | ||
684 | return IRQ_HANDLED; | ||
685 | } | ||
686 | |||
687 | DP(BNX2X_MSG_FP, "got an MSI-X interrupt on IDX:SB [%d:%d]\n", | ||
688 | fp->index, fp->sb_id); | ||
689 | bnx2x_ack_sb(bp, fp->sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0); | ||
690 | |||
691 | #ifdef BNX2X_STOP_ON_ERROR | ||
692 | if (unlikely(bp->panic)) | ||
693 | return IRQ_HANDLED; | ||
694 | #endif | ||
695 | |||
696 | /* Handle Rx and Tx according to MSI-X vector */ | ||
697 | prefetch(fp->rx_cons_sb); | ||
698 | prefetch(fp->tx_cons_sb); | ||
699 | prefetch(&fp->status_blk->u_status_block.status_block_index); | ||
700 | prefetch(&fp->status_blk->c_status_block.status_block_index); | ||
701 | napi_schedule(&bnx2x_fp(bp, fp->index, napi)); | ||
702 | |||
703 | return IRQ_HANDLED; | ||
704 | } | ||
705 | |||
706 | |||
707 | /* HW Lock for shared dual port PHYs */ | ||
708 | void bnx2x_acquire_phy_lock(struct bnx2x *bp) | ||
709 | { | ||
710 | mutex_lock(&bp->port.phy_mutex); | ||
711 | |||
712 | if (bp->port.need_hw_lock) | ||
713 | bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); | ||
714 | } | ||
715 | |||
716 | void bnx2x_release_phy_lock(struct bnx2x *bp) | ||
717 | { | ||
718 | if (bp->port.need_hw_lock) | ||
719 | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO); | ||
720 | |||
721 | mutex_unlock(&bp->port.phy_mutex); | ||
722 | } | ||
723 | |||
724 | void bnx2x_link_report(struct bnx2x *bp) | ||
725 | { | ||
726 | if (bp->flags & MF_FUNC_DIS) { | ||
727 | netif_carrier_off(bp->dev); | ||
728 | netdev_err(bp->dev, "NIC Link is Down\n"); | ||
729 | return; | ||
730 | } | ||
731 | |||
732 | if (bp->link_vars.link_up) { | ||
733 | u16 line_speed; | ||
734 | |||
735 | if (bp->state == BNX2X_STATE_OPEN) | ||
736 | netif_carrier_on(bp->dev); | ||
737 | netdev_info(bp->dev, "NIC Link is Up, "); | ||
738 | |||
739 | line_speed = bp->link_vars.line_speed; | ||
740 | if (IS_E1HMF(bp)) { | ||
741 | u16 vn_max_rate; | ||
742 | |||
743 | vn_max_rate = | ||
744 | ((bp->mf_config & FUNC_MF_CFG_MAX_BW_MASK) >> | ||
745 | FUNC_MF_CFG_MAX_BW_SHIFT) * 100; | ||
746 | if (vn_max_rate < line_speed) | ||
747 | line_speed = vn_max_rate; | ||
748 | } | ||
749 | pr_cont("%d Mbps ", line_speed); | ||
750 | |||
751 | if (bp->link_vars.duplex == DUPLEX_FULL) | ||
752 | pr_cont("full duplex"); | ||
753 | else | ||
754 | pr_cont("half duplex"); | ||
755 | |||
756 | if (bp->link_vars.flow_ctrl != BNX2X_FLOW_CTRL_NONE) { | ||
757 | if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX) { | ||
758 | pr_cont(", receive "); | ||
759 | if (bp->link_vars.flow_ctrl & | ||
760 | BNX2X_FLOW_CTRL_TX) | ||
761 | pr_cont("& transmit "); | ||
762 | } else { | ||
763 | pr_cont(", transmit "); | ||
764 | } | ||
765 | pr_cont("flow control ON"); | ||
766 | } | ||
767 | pr_cont("\n"); | ||
768 | |||
769 | } else { /* link_down */ | ||
770 | netif_carrier_off(bp->dev); | ||
771 | netdev_err(bp->dev, "NIC Link is Down\n"); | ||
772 | } | ||
773 | } | ||
774 | |||
775 | void bnx2x_init_rx_rings(struct bnx2x *bp) | ||
776 | { | ||
777 | int func = BP_FUNC(bp); | ||
778 | int max_agg_queues = CHIP_IS_E1(bp) ? ETH_MAX_AGGREGATION_QUEUES_E1 : | ||
779 | ETH_MAX_AGGREGATION_QUEUES_E1H; | ||
780 | u16 ring_prod, cqe_ring_prod; | ||
781 | int i, j; | ||
782 | |||
783 | bp->rx_buf_size = bp->dev->mtu + ETH_OVREHEAD + BNX2X_RX_ALIGN; | ||
784 | DP(NETIF_MSG_IFUP, | ||
785 | "mtu %d rx_buf_size %d\n", bp->dev->mtu, bp->rx_buf_size); | ||
786 | |||
787 | if (bp->flags & TPA_ENABLE_FLAG) { | ||
788 | |||
789 | for_each_queue(bp, j) { | ||
790 | struct bnx2x_fastpath *fp = &bp->fp[j]; | ||
791 | |||
792 | for (i = 0; i < max_agg_queues; i++) { | ||
793 | fp->tpa_pool[i].skb = | ||
794 | netdev_alloc_skb(bp->dev, bp->rx_buf_size); | ||
795 | if (!fp->tpa_pool[i].skb) { | ||
796 | BNX2X_ERR("Failed to allocate TPA " | ||
797 | "skb pool for queue[%d] - " | ||
798 | "disabling TPA on this " | ||
799 | "queue!\n", j); | ||
800 | bnx2x_free_tpa_pool(bp, fp, i); | ||
801 | fp->disable_tpa = 1; | ||
802 | break; | ||
803 | } | ||
804 | dma_unmap_addr_set((struct sw_rx_bd *) | ||
805 | &bp->fp->tpa_pool[i], | ||
806 | mapping, 0); | ||
807 | fp->tpa_state[i] = BNX2X_TPA_STOP; | ||
808 | } | ||
809 | } | ||
810 | } | ||
811 | |||
812 | for_each_queue(bp, j) { | ||
813 | struct bnx2x_fastpath *fp = &bp->fp[j]; | ||
814 | |||
815 | fp->rx_bd_cons = 0; | ||
816 | fp->rx_cons_sb = BNX2X_RX_SB_INDEX; | ||
817 | fp->rx_bd_cons_sb = BNX2X_RX_SB_BD_INDEX; | ||
818 | |||
819 | /* "next page" elements initialization */ | ||
820 | /* SGE ring */ | ||
821 | for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { | ||
822 | struct eth_rx_sge *sge; | ||
823 | |||
824 | sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; | ||
825 | sge->addr_hi = | ||
826 | cpu_to_le32(U64_HI(fp->rx_sge_mapping + | ||
827 | BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); | ||
828 | sge->addr_lo = | ||
829 | cpu_to_le32(U64_LO(fp->rx_sge_mapping + | ||
830 | BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); | ||
831 | } | ||
832 | |||
833 | bnx2x_init_sge_ring_bit_mask(fp); | ||
834 | |||
835 | /* RX BD ring */ | ||
836 | for (i = 1; i <= NUM_RX_RINGS; i++) { | ||
837 | struct eth_rx_bd *rx_bd; | ||
838 | |||
839 | rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2]; | ||
840 | rx_bd->addr_hi = | ||
841 | cpu_to_le32(U64_HI(fp->rx_desc_mapping + | ||
842 | BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); | ||
843 | rx_bd->addr_lo = | ||
844 | cpu_to_le32(U64_LO(fp->rx_desc_mapping + | ||
845 | BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); | ||
846 | } | ||
847 | |||
848 | /* CQ ring */ | ||
849 | for (i = 1; i <= NUM_RCQ_RINGS; i++) { | ||
850 | struct eth_rx_cqe_next_page *nextpg; | ||
851 | |||
852 | nextpg = (struct eth_rx_cqe_next_page *) | ||
853 | &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; | ||
854 | nextpg->addr_hi = | ||
855 | cpu_to_le32(U64_HI(fp->rx_comp_mapping + | ||
856 | BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); | ||
857 | nextpg->addr_lo = | ||
858 | cpu_to_le32(U64_LO(fp->rx_comp_mapping + | ||
859 | BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); | ||
860 | } | ||
861 | |||
862 | /* Allocate SGEs and initialize the ring elements */ | ||
863 | for (i = 0, ring_prod = 0; | ||
864 | i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) { | ||
865 | |||
866 | if (bnx2x_alloc_rx_sge(bp, fp, ring_prod) < 0) { | ||
867 | BNX2X_ERR("was only able to allocate " | ||
868 | "%d rx sges\n", i); | ||
869 | BNX2X_ERR("disabling TPA for queue[%d]\n", j); | ||
870 | /* Cleanup already allocated elements */ | ||
871 | bnx2x_free_rx_sge_range(bp, fp, ring_prod); | ||
872 | bnx2x_free_tpa_pool(bp, fp, max_agg_queues); | ||
873 | fp->disable_tpa = 1; | ||
874 | ring_prod = 0; | ||
875 | break; | ||
876 | } | ||
877 | ring_prod = NEXT_SGE_IDX(ring_prod); | ||
878 | } | ||
879 | fp->rx_sge_prod = ring_prod; | ||
880 | |||
881 | /* Allocate BDs and initialize BD ring */ | ||
882 | fp->rx_comp_cons = 0; | ||
883 | cqe_ring_prod = ring_prod = 0; | ||
884 | for (i = 0; i < bp->rx_ring_size; i++) { | ||
885 | if (bnx2x_alloc_rx_skb(bp, fp, ring_prod) < 0) { | ||
886 | BNX2X_ERR("was only able to allocate " | ||
887 | "%d rx skbs on queue[%d]\n", i, j); | ||
888 | fp->eth_q_stats.rx_skb_alloc_failed++; | ||
889 | break; | ||
890 | } | ||
891 | ring_prod = NEXT_RX_IDX(ring_prod); | ||
892 | cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); | ||
893 | WARN_ON(ring_prod <= i); | ||
894 | } | ||
895 | |||
896 | fp->rx_bd_prod = ring_prod; | ||
897 | /* must not have more available CQEs than BDs */ | ||
898 | fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, | ||
899 | cqe_ring_prod); | ||
900 | fp->rx_pkt = fp->rx_calls = 0; | ||
901 | |||
902 | /* Warning! | ||
903 | * this will generate an interrupt (to the TSTORM) | ||
904 | * must only be done after chip is initialized | ||
905 | */ | ||
906 | bnx2x_update_rx_prod(bp, fp, ring_prod, fp->rx_comp_prod, | ||
907 | fp->rx_sge_prod); | ||
908 | if (j != 0) | ||
909 | continue; | ||
910 | |||
911 | REG_WR(bp, BAR_USTRORM_INTMEM + | ||
912 | USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func), | ||
913 | U64_LO(fp->rx_comp_mapping)); | ||
914 | REG_WR(bp, BAR_USTRORM_INTMEM + | ||
915 | USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4, | ||
916 | U64_HI(fp->rx_comp_mapping)); | ||
917 | } | ||
918 | } | ||
919 | static void bnx2x_free_tx_skbs(struct bnx2x *bp) | ||
920 | { | ||
921 | int i; | ||
922 | |||
923 | for_each_queue(bp, i) { | ||
924 | struct bnx2x_fastpath *fp = &bp->fp[i]; | ||
925 | |||
926 | u16 bd_cons = fp->tx_bd_cons; | ||
927 | u16 sw_prod = fp->tx_pkt_prod; | ||
928 | u16 sw_cons = fp->tx_pkt_cons; | ||
929 | |||
930 | while (sw_cons != sw_prod) { | ||
931 | bd_cons = bnx2x_free_tx_pkt(bp, fp, TX_BD(sw_cons)); | ||
932 | sw_cons++; | ||
933 | } | ||
934 | } | ||
935 | } | ||
936 | |||
937 | static void bnx2x_free_rx_skbs(struct bnx2x *bp) | ||
938 | { | ||
939 | int i, j; | ||
940 | |||
941 | for_each_queue(bp, j) { | ||
942 | struct bnx2x_fastpath *fp = &bp->fp[j]; | ||
943 | |||
944 | for (i = 0; i < NUM_RX_BD; i++) { | ||
945 | struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i]; | ||
946 | struct sk_buff *skb = rx_buf->skb; | ||
947 | |||
948 | if (skb == NULL) | ||
949 | continue; | ||
950 | |||
951 | dma_unmap_single(&bp->pdev->dev, | ||
952 | dma_unmap_addr(rx_buf, mapping), | ||
953 | bp->rx_buf_size, DMA_FROM_DEVICE); | ||
954 | |||
955 | rx_buf->skb = NULL; | ||
956 | dev_kfree_skb(skb); | ||
957 | } | ||
958 | if (!fp->disable_tpa) | ||
959 | bnx2x_free_tpa_pool(bp, fp, CHIP_IS_E1(bp) ? | ||
960 | ETH_MAX_AGGREGATION_QUEUES_E1 : | ||
961 | ETH_MAX_AGGREGATION_QUEUES_E1H); | ||
962 | } | ||
963 | } | ||
964 | |||
965 | void bnx2x_free_skbs(struct bnx2x *bp) | ||
966 | { | ||
967 | bnx2x_free_tx_skbs(bp); | ||
968 | bnx2x_free_rx_skbs(bp); | ||
969 | } | ||
970 | |||
971 | static void bnx2x_free_msix_irqs(struct bnx2x *bp) | ||
972 | { | ||
973 | int i, offset = 1; | ||
974 | |||
975 | free_irq(bp->msix_table[0].vector, bp->dev); | ||
976 | DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n", | ||
977 | bp->msix_table[0].vector); | ||
978 | |||
979 | #ifdef BCM_CNIC | ||
980 | offset++; | ||
981 | #endif | ||
982 | for_each_queue(bp, i) { | ||
983 | DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq " | ||
984 | "state %x\n", i, bp->msix_table[i + offset].vector, | ||
985 | bnx2x_fp(bp, i, state)); | ||
986 | |||
987 | free_irq(bp->msix_table[i + offset].vector, &bp->fp[i]); | ||
988 | } | ||
989 | } | ||
990 | |||
991 | void bnx2x_free_irq(struct bnx2x *bp, bool disable_only) | ||
992 | { | ||
993 | if (bp->flags & USING_MSIX_FLAG) { | ||
994 | if (!disable_only) | ||
995 | bnx2x_free_msix_irqs(bp); | ||
996 | pci_disable_msix(bp->pdev); | ||
997 | bp->flags &= ~USING_MSIX_FLAG; | ||
998 | |||
999 | } else if (bp->flags & USING_MSI_FLAG) { | ||
1000 | if (!disable_only) | ||
1001 | free_irq(bp->pdev->irq, bp->dev); | ||
1002 | pci_disable_msi(bp->pdev); | ||
1003 | bp->flags &= ~USING_MSI_FLAG; | ||
1004 | |||
1005 | } else if (!disable_only) | ||
1006 | free_irq(bp->pdev->irq, bp->dev); | ||
1007 | } | ||
1008 | |||
1009 | static int bnx2x_enable_msix(struct bnx2x *bp) | ||
1010 | { | ||
1011 | int i, rc, offset = 1; | ||
1012 | int igu_vec = 0; | ||
1013 | |||
1014 | bp->msix_table[0].entry = igu_vec; | ||
1015 | DP(NETIF_MSG_IFUP, "msix_table[0].entry = %d (slowpath)\n", igu_vec); | ||
1016 | |||
1017 | #ifdef BCM_CNIC | ||
1018 | igu_vec = BP_L_ID(bp) + offset; | ||
1019 | bp->msix_table[1].entry = igu_vec; | ||
1020 | DP(NETIF_MSG_IFUP, "msix_table[1].entry = %d (CNIC)\n", igu_vec); | ||
1021 | offset++; | ||
1022 | #endif | ||
1023 | for_each_queue(bp, i) { | ||
1024 | igu_vec = BP_L_ID(bp) + offset + i; | ||
1025 | bp->msix_table[i + offset].entry = igu_vec; | ||
1026 | DP(NETIF_MSG_IFUP, "msix_table[%d].entry = %d " | ||
1027 | "(fastpath #%u)\n", i + offset, igu_vec, i); | ||
1028 | } | ||
1029 | |||
1030 | rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], | ||
1031 | BNX2X_NUM_QUEUES(bp) + offset); | ||
1032 | |||
1033 | /* | ||
1034 | * reconfigure number of tx/rx queues according to available | ||
1035 | * MSI-X vectors | ||
1036 | */ | ||
1037 | if (rc >= BNX2X_MIN_MSIX_VEC_CNT) { | ||
1038 | /* vectors available for FP */ | ||
1039 | int fp_vec = rc - BNX2X_MSIX_VEC_FP_START; | ||
1040 | |||
1041 | DP(NETIF_MSG_IFUP, | ||
1042 | "Trying to use less MSI-X vectors: %d\n", rc); | ||
1043 | |||
1044 | rc = pci_enable_msix(bp->pdev, &bp->msix_table[0], rc); | ||
1045 | |||
1046 | if (rc) { | ||
1047 | DP(NETIF_MSG_IFUP, | ||
1048 | "MSI-X is not attainable rc %d\n", rc); | ||
1049 | return rc; | ||
1050 | } | ||
1051 | |||
1052 | bp->num_queues = min(bp->num_queues, fp_vec); | ||
1053 | |||
1054 | DP(NETIF_MSG_IFUP, "New queue configuration set: %d\n", | ||
1055 | bp->num_queues); | ||
1056 | } else if (rc) { | ||
1057 | DP(NETIF_MSG_IFUP, "MSI-X is not attainable rc %d\n", rc); | ||
1058 | return rc; | ||
1059 | } | ||
1060 | |||
1061 | bp->flags |= USING_MSIX_FLAG; | ||
1062 | |||
1063 | return 0; | ||
1064 | } | ||
1065 | |||
1066 | static int bnx2x_req_msix_irqs(struct bnx2x *bp) | ||
1067 | { | ||
1068 | int i, rc, offset = 1; | ||
1069 | |||
1070 | rc = request_irq(bp->msix_table[0].vector, bnx2x_msix_sp_int, 0, | ||
1071 | bp->dev->name, bp->dev); | ||
1072 | if (rc) { | ||
1073 | BNX2X_ERR("request sp irq failed\n"); | ||
1074 | return -EBUSY; | ||
1075 | } | ||
1076 | |||
1077 | #ifdef BCM_CNIC | ||
1078 | offset++; | ||
1079 | #endif | ||
1080 | for_each_queue(bp, i) { | ||
1081 | struct bnx2x_fastpath *fp = &bp->fp[i]; | ||
1082 | snprintf(fp->name, sizeof(fp->name), "%s-fp-%d", | ||
1083 | bp->dev->name, i); | ||
1084 | |||
1085 | rc = request_irq(bp->msix_table[i + offset].vector, | ||
1086 | bnx2x_msix_fp_int, 0, fp->name, fp); | ||
1087 | if (rc) { | ||
1088 | BNX2X_ERR("request fp #%d irq failed rc %d\n", i, rc); | ||
1089 | bnx2x_free_msix_irqs(bp); | ||
1090 | return -EBUSY; | ||
1091 | } | ||
1092 | |||
1093 | fp->state = BNX2X_FP_STATE_IRQ; | ||
1094 | } | ||
1095 | |||
1096 | i = BNX2X_NUM_QUEUES(bp); | ||
1097 | netdev_info(bp->dev, "using MSI-X IRQs: sp %d fp[%d] %d" | ||
1098 | " ... fp[%d] %d\n", | ||
1099 | bp->msix_table[0].vector, | ||
1100 | 0, bp->msix_table[offset].vector, | ||
1101 | i - 1, bp->msix_table[offset + i - 1].vector); | ||
1102 | |||
1103 | return 0; | ||
1104 | } | ||
1105 | |||
1106 | static int bnx2x_enable_msi(struct bnx2x *bp) | ||
1107 | { | ||
1108 | int rc; | ||
1109 | |||
1110 | rc = pci_enable_msi(bp->pdev); | ||
1111 | if (rc) { | ||
1112 | DP(NETIF_MSG_IFUP, "MSI is not attainable\n"); | ||
1113 | return -1; | ||
1114 | } | ||
1115 | bp->flags |= USING_MSI_FLAG; | ||
1116 | |||
1117 | return 0; | ||
1118 | } | ||
1119 | |||
1120 | static int bnx2x_req_irq(struct bnx2x *bp) | ||
1121 | { | ||
1122 | unsigned long flags; | ||
1123 | int rc; | ||
1124 | |||
1125 | if (bp->flags & USING_MSI_FLAG) | ||
1126 | flags = 0; | ||
1127 | else | ||
1128 | flags = IRQF_SHARED; | ||
1129 | |||
1130 | rc = request_irq(bp->pdev->irq, bnx2x_interrupt, flags, | ||
1131 | bp->dev->name, bp->dev); | ||
1132 | if (!rc) | ||
1133 | bnx2x_fp(bp, 0, state) = BNX2X_FP_STATE_IRQ; | ||
1134 | |||
1135 | return rc; | ||
1136 | } | ||
1137 | |||
1138 | static void bnx2x_napi_enable(struct bnx2x *bp) | ||
1139 | { | ||
1140 | int i; | ||
1141 | |||
1142 | for_each_queue(bp, i) | ||
1143 | napi_enable(&bnx2x_fp(bp, i, napi)); | ||
1144 | } | ||
1145 | |||
1146 | static void bnx2x_napi_disable(struct bnx2x *bp) | ||
1147 | { | ||
1148 | int i; | ||
1149 | |||
1150 | for_each_queue(bp, i) | ||
1151 | napi_disable(&bnx2x_fp(bp, i, napi)); | ||
1152 | } | ||
1153 | |||
1154 | void bnx2x_netif_start(struct bnx2x *bp) | ||
1155 | { | ||
1156 | int intr_sem; | ||
1157 | |||
1158 | intr_sem = atomic_dec_and_test(&bp->intr_sem); | ||
1159 | smp_wmb(); /* Ensure that bp->intr_sem update is SMP-safe */ | ||
1160 | |||
1161 | if (intr_sem) { | ||
1162 | if (netif_running(bp->dev)) { | ||
1163 | bnx2x_napi_enable(bp); | ||
1164 | bnx2x_int_enable(bp); | ||
1165 | if (bp->state == BNX2X_STATE_OPEN) | ||
1166 | netif_tx_wake_all_queues(bp->dev); | ||
1167 | } | ||
1168 | } | ||
1169 | } | ||
1170 | |||
1171 | void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw) | ||
1172 | { | ||
1173 | bnx2x_int_disable_sync(bp, disable_hw); | ||
1174 | bnx2x_napi_disable(bp); | ||
1175 | netif_tx_disable(bp->dev); | ||
1176 | } | ||
1177 | static int bnx2x_set_num_queues(struct bnx2x *bp) | ||
1178 | { | ||
1179 | int rc = 0; | ||
1180 | |||
1181 | switch (bp->int_mode) { | ||
1182 | case INT_MODE_INTx: | ||
1183 | case INT_MODE_MSI: | ||
1184 | bp->num_queues = 1; | ||
1185 | DP(NETIF_MSG_IFUP, "set number of queues to 1\n"); | ||
1186 | break; | ||
1187 | default: | ||
1188 | /* Set number of queues according to bp->multi_mode value */ | ||
1189 | bnx2x_set_num_queues_msix(bp); | ||
1190 | |||
1191 | DP(NETIF_MSG_IFUP, "set number of queues to %d\n", | ||
1192 | bp->num_queues); | ||
1193 | |||
1194 | /* if we can't use MSI-X we only need one fp, | ||
1195 | * so try to enable MSI-X with the requested number of fp's | ||
1196 | * and fallback to MSI or legacy INTx with one fp | ||
1197 | */ | ||
1198 | rc = bnx2x_enable_msix(bp); | ||
1199 | if (rc) | ||
1200 | /* failed to enable MSI-X */ | ||
1201 | bp->num_queues = 1; | ||
1202 | break; | ||
1203 | } | ||
1204 | bp->dev->real_num_tx_queues = bp->num_queues; | ||
1205 | return rc; | ||
1206 | } | ||
1207 | |||
1208 | /* must be called with rtnl_lock */ | ||
1209 | int bnx2x_nic_load(struct bnx2x *bp, int load_mode) | ||
1210 | { | ||
1211 | u32 load_code; | ||
1212 | int i, rc; | ||
1213 | |||
1214 | #ifdef BNX2X_STOP_ON_ERROR | ||
1215 | if (unlikely(bp->panic)) | ||
1216 | return -EPERM; | ||
1217 | #endif | ||
1218 | |||
1219 | bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD; | ||
1220 | |||
1221 | rc = bnx2x_set_num_queues(bp); | ||
1222 | |||
1223 | if (bnx2x_alloc_mem(bp)) { | ||
1224 | bnx2x_free_irq(bp, true); | ||
1225 | return -ENOMEM; | ||
1226 | } | ||
1227 | |||
1228 | for_each_queue(bp, i) | ||
1229 | bnx2x_fp(bp, i, disable_tpa) = | ||
1230 | ((bp->flags & TPA_ENABLE_FLAG) == 0); | ||
1231 | |||
1232 | for_each_queue(bp, i) | ||
1233 | netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), | ||
1234 | bnx2x_poll, 128); | ||
1235 | |||
1236 | bnx2x_napi_enable(bp); | ||
1237 | |||
1238 | if (bp->flags & USING_MSIX_FLAG) { | ||
1239 | rc = bnx2x_req_msix_irqs(bp); | ||
1240 | if (rc) { | ||
1241 | bnx2x_free_irq(bp, true); | ||
1242 | goto load_error1; | ||
1243 | } | ||
1244 | } else { | ||
1245 | /* Fall to INTx if failed to enable MSI-X due to lack of | ||
1246 | memory (in bnx2x_set_num_queues()) */ | ||
1247 | if ((rc != -ENOMEM) && (bp->int_mode != INT_MODE_INTx)) | ||
1248 | bnx2x_enable_msi(bp); | ||
1249 | bnx2x_ack_int(bp); | ||
1250 | rc = bnx2x_req_irq(bp); | ||
1251 | if (rc) { | ||
1252 | BNX2X_ERR("IRQ request failed rc %d, aborting\n", rc); | ||
1253 | bnx2x_free_irq(bp, true); | ||
1254 | goto load_error1; | ||
1255 | } | ||
1256 | if (bp->flags & USING_MSI_FLAG) { | ||
1257 | bp->dev->irq = bp->pdev->irq; | ||
1258 | netdev_info(bp->dev, "using MSI IRQ %d\n", | ||
1259 | bp->pdev->irq); | ||
1260 | } | ||
1261 | } | ||
1262 | |||
1263 | /* Send LOAD_REQUEST command to MCP | ||
1264 | Returns the type of LOAD command: | ||
1265 | if it is the first port to be initialized | ||
1266 | common blocks should be initialized, otherwise - not | ||
1267 | */ | ||
1268 | if (!BP_NOMCP(bp)) { | ||
1269 | load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ); | ||
1270 | if (!load_code) { | ||
1271 | BNX2X_ERR("MCP response failure, aborting\n"); | ||
1272 | rc = -EBUSY; | ||
1273 | goto load_error2; | ||
1274 | } | ||
1275 | if (load_code == FW_MSG_CODE_DRV_LOAD_REFUSED) { | ||
1276 | rc = -EBUSY; /* other port in diagnostic mode */ | ||
1277 | goto load_error2; | ||
1278 | } | ||
1279 | |||
1280 | } else { | ||
1281 | int port = BP_PORT(bp); | ||
1282 | |||
1283 | DP(NETIF_MSG_IFUP, "NO MCP - load counts %d, %d, %d\n", | ||
1284 | load_count[0], load_count[1], load_count[2]); | ||
1285 | load_count[0]++; | ||
1286 | load_count[1 + port]++; | ||
1287 | DP(NETIF_MSG_IFUP, "NO MCP - new load counts %d, %d, %d\n", | ||
1288 | load_count[0], load_count[1], load_count[2]); | ||
1289 | if (load_count[0] == 1) | ||
1290 | load_code = FW_MSG_CODE_DRV_LOAD_COMMON; | ||
1291 | else if (load_count[1 + port] == 1) | ||
1292 | load_code = FW_MSG_CODE_DRV_LOAD_PORT; | ||
1293 | else | ||
1294 | load_code = FW_MSG_CODE_DRV_LOAD_FUNCTION; | ||
1295 | } | ||
1296 | |||
1297 | if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) || | ||
1298 | (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) | ||
1299 | bp->port.pmf = 1; | ||
1300 | else | ||
1301 | bp->port.pmf = 0; | ||
1302 | DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf); | ||
1303 | |||
1304 | /* Initialize HW */ | ||
1305 | rc = bnx2x_init_hw(bp, load_code); | ||
1306 | if (rc) { | ||
1307 | BNX2X_ERR("HW init failed, aborting\n"); | ||
1308 | bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE); | ||
1309 | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP); | ||
1310 | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE); | ||
1311 | goto load_error2; | ||
1312 | } | ||
1313 | |||
1314 | /* Setup NIC internals and enable interrupts */ | ||
1315 | bnx2x_nic_init(bp, load_code); | ||
1316 | |||
1317 | if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) && | ||
1318 | (bp->common.shmem2_base)) | ||
1319 | SHMEM2_WR(bp, dcc_support, | ||
1320 | (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV | | ||
1321 | SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV)); | ||
1322 | |||
1323 | /* Send LOAD_DONE command to MCP */ | ||
1324 | if (!BP_NOMCP(bp)) { | ||
1325 | load_code = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE); | ||
1326 | if (!load_code) { | ||
1327 | BNX2X_ERR("MCP response failure, aborting\n"); | ||
1328 | rc = -EBUSY; | ||
1329 | goto load_error3; | ||
1330 | } | ||
1331 | } | ||
1332 | |||
1333 | bp->state = BNX2X_STATE_OPENING_WAIT4_PORT; | ||
1334 | |||
1335 | rc = bnx2x_setup_leading(bp); | ||
1336 | if (rc) { | ||
1337 | BNX2X_ERR("Setup leading failed!\n"); | ||
1338 | #ifndef BNX2X_STOP_ON_ERROR | ||
1339 | goto load_error3; | ||
1340 | #else | ||
1341 | bp->panic = 1; | ||
1342 | return -EBUSY; | ||
1343 | #endif | ||
1344 | } | ||
1345 | |||
1346 | if (CHIP_IS_E1H(bp)) | ||
1347 | if (bp->mf_config & FUNC_MF_CFG_FUNC_DISABLED) { | ||
1348 | DP(NETIF_MSG_IFUP, "mf_cfg function disabled\n"); | ||
1349 | bp->flags |= MF_FUNC_DIS; | ||
1350 | } | ||
1351 | |||
1352 | if (bp->state == BNX2X_STATE_OPEN) { | ||
1353 | #ifdef BCM_CNIC | ||
1354 | /* Enable Timer scan */ | ||
1355 | REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 1); | ||
1356 | #endif | ||
1357 | for_each_nondefault_queue(bp, i) { | ||
1358 | rc = bnx2x_setup_multi(bp, i); | ||
1359 | if (rc) | ||
1360 | #ifdef BCM_CNIC | ||
1361 | goto load_error4; | ||
1362 | #else | ||
1363 | goto load_error3; | ||
1364 | #endif | ||
1365 | } | ||
1366 | |||
1367 | if (CHIP_IS_E1(bp)) | ||
1368 | bnx2x_set_eth_mac_addr_e1(bp, 1); | ||
1369 | else | ||
1370 | bnx2x_set_eth_mac_addr_e1h(bp, 1); | ||
1371 | #ifdef BCM_CNIC | ||
1372 | /* Set iSCSI L2 MAC */ | ||
1373 | mutex_lock(&bp->cnic_mutex); | ||
1374 | if (bp->cnic_eth_dev.drv_state & CNIC_DRV_STATE_REGD) { | ||
1375 | bnx2x_set_iscsi_eth_mac_addr(bp, 1); | ||
1376 | bp->cnic_flags |= BNX2X_CNIC_FLAG_MAC_SET; | ||
1377 | bnx2x_init_sb(bp, bp->cnic_sb, bp->cnic_sb_mapping, | ||
1378 | CNIC_SB_ID(bp)); | ||
1379 | } | ||
1380 | mutex_unlock(&bp->cnic_mutex); | ||
1381 | #endif | ||
1382 | } | ||
1383 | |||
1384 | if (bp->port.pmf) | ||
1385 | bnx2x_initial_phy_init(bp, load_mode); | ||
1386 | |||
1387 | /* Start fast path */ | ||
1388 | switch (load_mode) { | ||
1389 | case LOAD_NORMAL: | ||
1390 | if (bp->state == BNX2X_STATE_OPEN) { | ||
1391 | /* Tx queue should be only reenabled */ | ||
1392 | netif_tx_wake_all_queues(bp->dev); | ||
1393 | } | ||
1394 | /* Initialize the receive filter. */ | ||
1395 | bnx2x_set_rx_mode(bp->dev); | ||
1396 | break; | ||
1397 | |||
1398 | case LOAD_OPEN: | ||
1399 | netif_tx_start_all_queues(bp->dev); | ||
1400 | if (bp->state != BNX2X_STATE_OPEN) | ||
1401 | netif_tx_disable(bp->dev); | ||
1402 | /* Initialize the receive filter. */ | ||
1403 | bnx2x_set_rx_mode(bp->dev); | ||
1404 | break; | ||
1405 | |||
1406 | case LOAD_DIAG: | ||
1407 | /* Initialize the receive filter. */ | ||
1408 | bnx2x_set_rx_mode(bp->dev); | ||
1409 | bp->state = BNX2X_STATE_DIAG; | ||
1410 | break; | ||
1411 | |||
1412 | default: | ||
1413 | break; | ||
1414 | } | ||
1415 | |||
1416 | if (!bp->port.pmf) | ||
1417 | bnx2x__link_status_update(bp); | ||
1418 | |||
1419 | /* start the timer */ | ||
1420 | mod_timer(&bp->timer, jiffies + bp->current_interval); | ||
1421 | |||
1422 | #ifdef BCM_CNIC | ||
1423 | bnx2x_setup_cnic_irq_info(bp); | ||
1424 | if (bp->state == BNX2X_STATE_OPEN) | ||
1425 | bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD); | ||
1426 | #endif | ||
1427 | bnx2x_inc_load_cnt(bp); | ||
1428 | |||
1429 | return 0; | ||
1430 | |||
1431 | #ifdef BCM_CNIC | ||
1432 | load_error4: | ||
1433 | /* Disable Timer scan */ | ||
1434 | REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + BP_PORT(bp)*4, 0); | ||
1435 | #endif | ||
1436 | load_error3: | ||
1437 | bnx2x_int_disable_sync(bp, 1); | ||
1438 | if (!BP_NOMCP(bp)) { | ||
1439 | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP); | ||
1440 | bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE); | ||
1441 | } | ||
1442 | bp->port.pmf = 0; | ||
1443 | /* Free SKBs, SGEs, TPA pool and driver internals */ | ||
1444 | bnx2x_free_skbs(bp); | ||
1445 | for_each_queue(bp, i) | ||
1446 | bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | ||
1447 | load_error2: | ||
1448 | /* Release IRQs */ | ||
1449 | bnx2x_free_irq(bp, false); | ||
1450 | load_error1: | ||
1451 | bnx2x_napi_disable(bp); | ||
1452 | for_each_queue(bp, i) | ||
1453 | netif_napi_del(&bnx2x_fp(bp, i, napi)); | ||
1454 | bnx2x_free_mem(bp); | ||
1455 | |||
1456 | return rc; | ||
1457 | } | ||
1458 | |||
1459 | /* must be called with rtnl_lock */ | ||
1460 | int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode) | ||
1461 | { | ||
1462 | int i; | ||
1463 | |||
1464 | if (bp->state == BNX2X_STATE_CLOSED) { | ||
1465 | /* Interface has been removed - nothing to recover */ | ||
1466 | bp->recovery_state = BNX2X_RECOVERY_DONE; | ||
1467 | bp->is_leader = 0; | ||
1468 | bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_RESERVED_08); | ||
1469 | smp_wmb(); | ||
1470 | |||
1471 | return -EINVAL; | ||
1472 | } | ||
1473 | |||
1474 | #ifdef BCM_CNIC | ||
1475 | bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD); | ||
1476 | #endif | ||
1477 | bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT; | ||
1478 | |||
1479 | /* Set "drop all" */ | ||
1480 | bp->rx_mode = BNX2X_RX_MODE_NONE; | ||
1481 | bnx2x_set_storm_rx_mode(bp); | ||
1482 | |||
1483 | /* Disable HW interrupts, NAPI and Tx */ | ||
1484 | bnx2x_netif_stop(bp, 1); | ||
1485 | netif_carrier_off(bp->dev); | ||
1486 | |||
1487 | del_timer_sync(&bp->timer); | ||
1488 | SHMEM_WR(bp, func_mb[BP_FUNC(bp)].drv_pulse_mb, | ||
1489 | (DRV_PULSE_ALWAYS_ALIVE | bp->fw_drv_pulse_wr_seq)); | ||
1490 | bnx2x_stats_handle(bp, STATS_EVENT_STOP); | ||
1491 | |||
1492 | /* Release IRQs */ | ||
1493 | bnx2x_free_irq(bp, false); | ||
1494 | |||
1495 | /* Cleanup the chip if needed */ | ||
1496 | if (unload_mode != UNLOAD_RECOVERY) | ||
1497 | bnx2x_chip_cleanup(bp, unload_mode); | ||
1498 | |||
1499 | bp->port.pmf = 0; | ||
1500 | |||
1501 | /* Free SKBs, SGEs, TPA pool and driver internals */ | ||
1502 | bnx2x_free_skbs(bp); | ||
1503 | for_each_queue(bp, i) | ||
1504 | bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE); | ||
1505 | for_each_queue(bp, i) | ||
1506 | netif_napi_del(&bnx2x_fp(bp, i, napi)); | ||
1507 | bnx2x_free_mem(bp); | ||
1508 | |||
1509 | bp->state = BNX2X_STATE_CLOSED; | ||
1510 | |||
1511 | /* The last driver must disable a "close the gate" if there is no | ||
1512 | * parity attention or "process kill" pending. | ||
1513 | */ | ||
1514 | if ((!bnx2x_dec_load_cnt(bp)) && (!bnx2x_chk_parity_attn(bp)) && | ||
1515 | bnx2x_reset_is_done(bp)) | ||
1516 | bnx2x_disable_close_the_gate(bp); | ||
1517 | |||
1518 | /* Reset MCP mail box sequence if there is on going recovery */ | ||
1519 | if (unload_mode == UNLOAD_RECOVERY) | ||
1520 | bp->fw_seq = 0; | ||
1521 | |||
1522 | return 0; | ||
1523 | } | ||
1524 | int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state) | ||
1525 | { | ||
1526 | u16 pmcsr; | ||
1527 | |||
1528 | pci_read_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, &pmcsr); | ||
1529 | |||
1530 | switch (state) { | ||
1531 | case PCI_D0: | ||
1532 | pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, | ||
1533 | ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) | | ||
1534 | PCI_PM_CTRL_PME_STATUS)); | ||
1535 | |||
1536 | if (pmcsr & PCI_PM_CTRL_STATE_MASK) | ||
1537 | /* delay required during transition out of D3hot */ | ||
1538 | msleep(20); | ||
1539 | break; | ||
1540 | |||
1541 | case PCI_D3hot: | ||
1542 | /* If there are other clients above don't | ||
1543 | shut down the power */ | ||
1544 | if (atomic_read(&bp->pdev->enable_cnt) != 1) | ||
1545 | return 0; | ||
1546 | /* Don't shut down the power for emulation and FPGA */ | ||
1547 | if (CHIP_REV_IS_SLOW(bp)) | ||
1548 | return 0; | ||
1549 | |||
1550 | pmcsr &= ~PCI_PM_CTRL_STATE_MASK; | ||
1551 | pmcsr |= 3; | ||
1552 | |||
1553 | if (bp->wol) | ||
1554 | pmcsr |= PCI_PM_CTRL_PME_ENABLE; | ||
1555 | |||
1556 | pci_write_config_word(bp->pdev, bp->pm_cap + PCI_PM_CTRL, | ||
1557 | pmcsr); | ||
1558 | |||
1559 | /* No more memory access after this point until | ||
1560 | * device is brought back to D0. | ||
1561 | */ | ||
1562 | break; | ||
1563 | |||
1564 | default: | ||
1565 | return -EINVAL; | ||
1566 | } | ||
1567 | return 0; | ||
1568 | } | ||
1569 | |||
1570 | |||
1571 | |||
1572 | /* | ||
1573 | * net_device service functions | ||
1574 | */ | ||
1575 | |||
1576 | static int bnx2x_poll(struct napi_struct *napi, int budget) | ||
1577 | { | ||
1578 | int work_done = 0; | ||
1579 | struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath, | ||
1580 | napi); | ||
1581 | struct bnx2x *bp = fp->bp; | ||
1582 | |||
1583 | while (1) { | ||
1584 | #ifdef BNX2X_STOP_ON_ERROR | ||
1585 | if (unlikely(bp->panic)) { | ||
1586 | napi_complete(napi); | ||
1587 | return 0; | ||
1588 | } | ||
1589 | #endif | ||
1590 | |||
1591 | if (bnx2x_has_tx_work(fp)) | ||
1592 | bnx2x_tx_int(fp); | ||
1593 | |||
1594 | if (bnx2x_has_rx_work(fp)) { | ||
1595 | work_done += bnx2x_rx_int(fp, budget - work_done); | ||
1596 | |||
1597 | /* must not complete if we consumed full budget */ | ||
1598 | if (work_done >= budget) | ||
1599 | break; | ||
1600 | } | ||
1601 | |||
1602 | /* Fall out from the NAPI loop if needed */ | ||
1603 | if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | ||
1604 | bnx2x_update_fpsb_idx(fp); | ||
1605 | /* bnx2x_has_rx_work() reads the status block, thus we need | ||
1606 | * to ensure that status block indices have been actually read | ||
1607 | * (bnx2x_update_fpsb_idx) prior to this check | ||
1608 | * (bnx2x_has_rx_work) so that we won't write the "newer" | ||
1609 | * value of the status block to IGU (if there was a DMA right | ||
1610 | * after bnx2x_has_rx_work and if there is no rmb, the memory | ||
1611 | * reading (bnx2x_update_fpsb_idx) may be postponed to right | ||
1612 | * before bnx2x_ack_sb). In this case there will never be | ||
1613 | * another interrupt until there is another update of the | ||
1614 | * status block, while there is still unhandled work. | ||
1615 | */ | ||
1616 | rmb(); | ||
1617 | |||
1618 | if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) { | ||
1619 | napi_complete(napi); | ||
1620 | /* Re-enable interrupts */ | ||
1621 | bnx2x_ack_sb(bp, fp->sb_id, CSTORM_ID, | ||
1622 | le16_to_cpu(fp->fp_c_idx), | ||
1623 | IGU_INT_NOP, 1); | ||
1624 | bnx2x_ack_sb(bp, fp->sb_id, USTORM_ID, | ||
1625 | le16_to_cpu(fp->fp_u_idx), | ||
1626 | IGU_INT_ENABLE, 1); | ||
1627 | break; | ||
1628 | } | ||
1629 | } | ||
1630 | } | ||
1631 | |||
1632 | return work_done; | ||
1633 | } | ||
1634 | |||
1635 | |||
1636 | /* we split the first BD into headers and data BDs | ||
1637 | * to ease the pain of our fellow microcode engineers | ||
1638 | * we use one mapping for both BDs | ||
1639 | * So far this has only been observed to happen | ||
1640 | * in Other Operating Systems(TM) | ||
1641 | */ | ||
1642 | static noinline u16 bnx2x_tx_split(struct bnx2x *bp, | ||
1643 | struct bnx2x_fastpath *fp, | ||
1644 | struct sw_tx_bd *tx_buf, | ||
1645 | struct eth_tx_start_bd **tx_bd, u16 hlen, | ||
1646 | u16 bd_prod, int nbd) | ||
1647 | { | ||
1648 | struct eth_tx_start_bd *h_tx_bd = *tx_bd; | ||
1649 | struct eth_tx_bd *d_tx_bd; | ||
1650 | dma_addr_t mapping; | ||
1651 | int old_len = le16_to_cpu(h_tx_bd->nbytes); | ||
1652 | |||
1653 | /* first fix first BD */ | ||
1654 | h_tx_bd->nbd = cpu_to_le16(nbd); | ||
1655 | h_tx_bd->nbytes = cpu_to_le16(hlen); | ||
1656 | |||
1657 | DP(NETIF_MSG_TX_QUEUED, "TSO split header size is %d " | ||
1658 | "(%x:%x) nbd %d\n", h_tx_bd->nbytes, h_tx_bd->addr_hi, | ||
1659 | h_tx_bd->addr_lo, h_tx_bd->nbd); | ||
1660 | |||
1661 | /* now get a new data BD | ||
1662 | * (after the pbd) and fill it */ | ||
1663 | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | ||
1664 | d_tx_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | ||
1665 | |||
1666 | mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi), | ||
1667 | le32_to_cpu(h_tx_bd->addr_lo)) + hlen; | ||
1668 | |||
1669 | d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | ||
1670 | d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | ||
1671 | d_tx_bd->nbytes = cpu_to_le16(old_len - hlen); | ||
1672 | |||
1673 | /* this marks the BD as one that has no individual mapping */ | ||
1674 | tx_buf->flags |= BNX2X_TSO_SPLIT_BD; | ||
1675 | |||
1676 | DP(NETIF_MSG_TX_QUEUED, | ||
1677 | "TSO split data size is %d (%x:%x)\n", | ||
1678 | d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo); | ||
1679 | |||
1680 | /* update tx_bd */ | ||
1681 | *tx_bd = (struct eth_tx_start_bd *)d_tx_bd; | ||
1682 | |||
1683 | return bd_prod; | ||
1684 | } | ||
1685 | |||
1686 | static inline u16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix) | ||
1687 | { | ||
1688 | if (fix > 0) | ||
1689 | csum = (u16) ~csum_fold(csum_sub(csum, | ||
1690 | csum_partial(t_header - fix, fix, 0))); | ||
1691 | |||
1692 | else if (fix < 0) | ||
1693 | csum = (u16) ~csum_fold(csum_add(csum, | ||
1694 | csum_partial(t_header, -fix, 0))); | ||
1695 | |||
1696 | return swab16(csum); | ||
1697 | } | ||
1698 | |||
1699 | static inline u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb) | ||
1700 | { | ||
1701 | u32 rc; | ||
1702 | |||
1703 | if (skb->ip_summed != CHECKSUM_PARTIAL) | ||
1704 | rc = XMIT_PLAIN; | ||
1705 | |||
1706 | else { | ||
1707 | if (skb->protocol == htons(ETH_P_IPV6)) { | ||
1708 | rc = XMIT_CSUM_V6; | ||
1709 | if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) | ||
1710 | rc |= XMIT_CSUM_TCP; | ||
1711 | |||
1712 | } else { | ||
1713 | rc = XMIT_CSUM_V4; | ||
1714 | if (ip_hdr(skb)->protocol == IPPROTO_TCP) | ||
1715 | rc |= XMIT_CSUM_TCP; | ||
1716 | } | ||
1717 | } | ||
1718 | |||
1719 | if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) | ||
1720 | rc |= (XMIT_GSO_V4 | XMIT_CSUM_V4 | XMIT_CSUM_TCP); | ||
1721 | |||
1722 | else if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) | ||
1723 | rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP | XMIT_CSUM_V6); | ||
1724 | |||
1725 | return rc; | ||
1726 | } | ||
1727 | |||
1728 | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) | ||
1729 | /* check if packet requires linearization (packet is too fragmented) | ||
1730 | no need to check fragmentation if page size > 8K (there will be no | ||
1731 | violation to FW restrictions) */ | ||
1732 | static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb, | ||
1733 | u32 xmit_type) | ||
1734 | { | ||
1735 | int to_copy = 0; | ||
1736 | int hlen = 0; | ||
1737 | int first_bd_sz = 0; | ||
1738 | |||
1739 | /* 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */ | ||
1740 | if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - 3)) { | ||
1741 | |||
1742 | if (xmit_type & XMIT_GSO) { | ||
1743 | unsigned short lso_mss = skb_shinfo(skb)->gso_size; | ||
1744 | /* Check if LSO packet needs to be copied: | ||
1745 | 3 = 1 (for headers BD) + 2 (for PBD and last BD) */ | ||
1746 | int wnd_size = MAX_FETCH_BD - 3; | ||
1747 | /* Number of windows to check */ | ||
1748 | int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size; | ||
1749 | int wnd_idx = 0; | ||
1750 | int frag_idx = 0; | ||
1751 | u32 wnd_sum = 0; | ||
1752 | |||
1753 | /* Headers length */ | ||
1754 | hlen = (int)(skb_transport_header(skb) - skb->data) + | ||
1755 | tcp_hdrlen(skb); | ||
1756 | |||
1757 | /* Amount of data (w/o headers) on linear part of SKB*/ | ||
1758 | first_bd_sz = skb_headlen(skb) - hlen; | ||
1759 | |||
1760 | wnd_sum = first_bd_sz; | ||
1761 | |||
1762 | /* Calculate the first sum - it's special */ | ||
1763 | for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++) | ||
1764 | wnd_sum += | ||
1765 | skb_shinfo(skb)->frags[frag_idx].size; | ||
1766 | |||
1767 | /* If there was data on linear skb data - check it */ | ||
1768 | if (first_bd_sz > 0) { | ||
1769 | if (unlikely(wnd_sum < lso_mss)) { | ||
1770 | to_copy = 1; | ||
1771 | goto exit_lbl; | ||
1772 | } | ||
1773 | |||
1774 | wnd_sum -= first_bd_sz; | ||
1775 | } | ||
1776 | |||
1777 | /* Others are easier: run through the frag list and | ||
1778 | check all windows */ | ||
1779 | for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) { | ||
1780 | wnd_sum += | ||
1781 | skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1].size; | ||
1782 | |||
1783 | if (unlikely(wnd_sum < lso_mss)) { | ||
1784 | to_copy = 1; | ||
1785 | break; | ||
1786 | } | ||
1787 | wnd_sum -= | ||
1788 | skb_shinfo(skb)->frags[wnd_idx].size; | ||
1789 | } | ||
1790 | } else { | ||
1791 | /* in non-LSO too fragmented packet should always | ||
1792 | be linearized */ | ||
1793 | to_copy = 1; | ||
1794 | } | ||
1795 | } | ||
1796 | |||
1797 | exit_lbl: | ||
1798 | if (unlikely(to_copy)) | ||
1799 | DP(NETIF_MSG_TX_QUEUED, | ||
1800 | "Linearization IS REQUIRED for %s packet. " | ||
1801 | "num_frags %d hlen %d first_bd_sz %d\n", | ||
1802 | (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO", | ||
1803 | skb_shinfo(skb)->nr_frags, hlen, first_bd_sz); | ||
1804 | |||
1805 | return to_copy; | ||
1806 | } | ||
1807 | #endif | ||
1808 | |||
1809 | /* called with netif_tx_lock | ||
1810 | * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call | ||
1811 | * netif_wake_queue() | ||
1812 | */ | ||
1813 | netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev) | ||
1814 | { | ||
1815 | struct bnx2x *bp = netdev_priv(dev); | ||
1816 | struct bnx2x_fastpath *fp; | ||
1817 | struct netdev_queue *txq; | ||
1818 | struct sw_tx_bd *tx_buf; | ||
1819 | struct eth_tx_start_bd *tx_start_bd; | ||
1820 | struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL; | ||
1821 | struct eth_tx_parse_bd *pbd = NULL; | ||
1822 | u16 pkt_prod, bd_prod; | ||
1823 | int nbd, fp_index; | ||
1824 | dma_addr_t mapping; | ||
1825 | u32 xmit_type = bnx2x_xmit_type(bp, skb); | ||
1826 | int i; | ||
1827 | u8 hlen = 0; | ||
1828 | __le16 pkt_size = 0; | ||
1829 | struct ethhdr *eth; | ||
1830 | u8 mac_type = UNICAST_ADDRESS; | ||
1831 | |||
1832 | #ifdef BNX2X_STOP_ON_ERROR | ||
1833 | if (unlikely(bp->panic)) | ||
1834 | return NETDEV_TX_BUSY; | ||
1835 | #endif | ||
1836 | |||
1837 | fp_index = skb_get_queue_mapping(skb); | ||
1838 | txq = netdev_get_tx_queue(dev, fp_index); | ||
1839 | |||
1840 | fp = &bp->fp[fp_index]; | ||
1841 | |||
1842 | if (unlikely(bnx2x_tx_avail(fp) < (skb_shinfo(skb)->nr_frags + 3))) { | ||
1843 | fp->eth_q_stats.driver_xoff++; | ||
1844 | netif_tx_stop_queue(txq); | ||
1845 | BNX2X_ERR("BUG! Tx ring full when queue awake!\n"); | ||
1846 | return NETDEV_TX_BUSY; | ||
1847 | } | ||
1848 | |||
1849 | DP(NETIF_MSG_TX_QUEUED, "SKB: summed %x protocol %x protocol(%x,%x)" | ||
1850 | " gso type %x xmit_type %x\n", | ||
1851 | skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr, | ||
1852 | ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type); | ||
1853 | |||
1854 | eth = (struct ethhdr *)skb->data; | ||
1855 | |||
1856 | /* set flag according to packet type (UNICAST_ADDRESS is default)*/ | ||
1857 | if (unlikely(is_multicast_ether_addr(eth->h_dest))) { | ||
1858 | if (is_broadcast_ether_addr(eth->h_dest)) | ||
1859 | mac_type = BROADCAST_ADDRESS; | ||
1860 | else | ||
1861 | mac_type = MULTICAST_ADDRESS; | ||
1862 | } | ||
1863 | |||
1864 | #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - 3) | ||
1865 | /* First, check if we need to linearize the skb (due to FW | ||
1866 | restrictions). No need to check fragmentation if page size > 8K | ||
1867 | (there will be no violation to FW restrictions) */ | ||
1868 | if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) { | ||
1869 | /* Statistics of linearization */ | ||
1870 | bp->lin_cnt++; | ||
1871 | if (skb_linearize(skb) != 0) { | ||
1872 | DP(NETIF_MSG_TX_QUEUED, "SKB linearization failed - " | ||
1873 | "silently dropping this SKB\n"); | ||
1874 | dev_kfree_skb_any(skb); | ||
1875 | return NETDEV_TX_OK; | ||
1876 | } | ||
1877 | } | ||
1878 | #endif | ||
1879 | |||
1880 | /* | ||
1881 | Please read carefully. First we use one BD which we mark as start, | ||
1882 | then we have a parsing info BD (used for TSO or xsum), | ||
1883 | and only then we have the rest of the TSO BDs. | ||
1884 | (don't forget to mark the last one as last, | ||
1885 | and to unmap only AFTER you write to the BD ...) | ||
1886 | And above all, all pdb sizes are in words - NOT DWORDS! | ||
1887 | */ | ||
1888 | |||
1889 | pkt_prod = fp->tx_pkt_prod++; | ||
1890 | bd_prod = TX_BD(fp->tx_bd_prod); | ||
1891 | |||
1892 | /* get a tx_buf and first BD */ | ||
1893 | tx_buf = &fp->tx_buf_ring[TX_BD(pkt_prod)]; | ||
1894 | tx_start_bd = &fp->tx_desc_ring[bd_prod].start_bd; | ||
1895 | |||
1896 | tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD; | ||
1897 | tx_start_bd->general_data = (mac_type << | ||
1898 | ETH_TX_START_BD_ETH_ADDR_TYPE_SHIFT); | ||
1899 | /* header nbd */ | ||
1900 | tx_start_bd->general_data |= (1 << ETH_TX_START_BD_HDR_NBDS_SHIFT); | ||
1901 | |||
1902 | /* remember the first BD of the packet */ | ||
1903 | tx_buf->first_bd = fp->tx_bd_prod; | ||
1904 | tx_buf->skb = skb; | ||
1905 | tx_buf->flags = 0; | ||
1906 | |||
1907 | DP(NETIF_MSG_TX_QUEUED, | ||
1908 | "sending pkt %u @%p next_idx %u bd %u @%p\n", | ||
1909 | pkt_prod, tx_buf, fp->tx_pkt_prod, bd_prod, tx_start_bd); | ||
1910 | |||
1911 | #ifdef BCM_VLAN | ||
1912 | if ((bp->vlgrp != NULL) && vlan_tx_tag_present(skb) && | ||
1913 | (bp->flags & HW_VLAN_TX_FLAG)) { | ||
1914 | tx_start_bd->vlan = cpu_to_le16(vlan_tx_tag_get(skb)); | ||
1915 | tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_VLAN_TAG; | ||
1916 | } else | ||
1917 | #endif | ||
1918 | tx_start_bd->vlan = cpu_to_le16(pkt_prod); | ||
1919 | |||
1920 | /* turn on parsing and get a BD */ | ||
1921 | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | ||
1922 | pbd = &fp->tx_desc_ring[bd_prod].parse_bd; | ||
1923 | |||
1924 | memset(pbd, 0, sizeof(struct eth_tx_parse_bd)); | ||
1925 | |||
1926 | if (xmit_type & XMIT_CSUM) { | ||
1927 | hlen = (skb_network_header(skb) - skb->data) / 2; | ||
1928 | |||
1929 | /* for now NS flag is not used in Linux */ | ||
1930 | pbd->global_data = | ||
1931 | (hlen | ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) << | ||
1932 | ETH_TX_PARSE_BD_LLC_SNAP_EN_SHIFT)); | ||
1933 | |||
1934 | pbd->ip_hlen = (skb_transport_header(skb) - | ||
1935 | skb_network_header(skb)) / 2; | ||
1936 | |||
1937 | hlen += pbd->ip_hlen + tcp_hdrlen(skb) / 2; | ||
1938 | |||
1939 | pbd->total_hlen = cpu_to_le16(hlen); | ||
1940 | hlen = hlen*2; | ||
1941 | |||
1942 | tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM; | ||
1943 | |||
1944 | if (xmit_type & XMIT_CSUM_V4) | ||
1945 | tx_start_bd->bd_flags.as_bitfield |= | ||
1946 | ETH_TX_BD_FLAGS_IP_CSUM; | ||
1947 | else | ||
1948 | tx_start_bd->bd_flags.as_bitfield |= | ||
1949 | ETH_TX_BD_FLAGS_IPV6; | ||
1950 | |||
1951 | if (xmit_type & XMIT_CSUM_TCP) { | ||
1952 | pbd->tcp_pseudo_csum = swab16(tcp_hdr(skb)->check); | ||
1953 | |||
1954 | } else { | ||
1955 | s8 fix = SKB_CS_OFF(skb); /* signed! */ | ||
1956 | |||
1957 | pbd->global_data |= ETH_TX_PARSE_BD_UDP_CS_FLG; | ||
1958 | |||
1959 | DP(NETIF_MSG_TX_QUEUED, | ||
1960 | "hlen %d fix %d csum before fix %x\n", | ||
1961 | le16_to_cpu(pbd->total_hlen), fix, SKB_CS(skb)); | ||
1962 | |||
1963 | /* HW bug: fixup the CSUM */ | ||
1964 | pbd->tcp_pseudo_csum = | ||
1965 | bnx2x_csum_fix(skb_transport_header(skb), | ||
1966 | SKB_CS(skb), fix); | ||
1967 | |||
1968 | DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n", | ||
1969 | pbd->tcp_pseudo_csum); | ||
1970 | } | ||
1971 | } | ||
1972 | |||
1973 | mapping = dma_map_single(&bp->pdev->dev, skb->data, | ||
1974 | skb_headlen(skb), DMA_TO_DEVICE); | ||
1975 | |||
1976 | tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | ||
1977 | tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | ||
1978 | nbd = skb_shinfo(skb)->nr_frags + 2; /* start_bd + pbd + frags */ | ||
1979 | tx_start_bd->nbd = cpu_to_le16(nbd); | ||
1980 | tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb)); | ||
1981 | pkt_size = tx_start_bd->nbytes; | ||
1982 | |||
1983 | DP(NETIF_MSG_TX_QUEUED, "first bd @%p addr (%x:%x) nbd %d" | ||
1984 | " nbytes %d flags %x vlan %x\n", | ||
1985 | tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo, | ||
1986 | le16_to_cpu(tx_start_bd->nbd), le16_to_cpu(tx_start_bd->nbytes), | ||
1987 | tx_start_bd->bd_flags.as_bitfield, le16_to_cpu(tx_start_bd->vlan)); | ||
1988 | |||
1989 | if (xmit_type & XMIT_GSO) { | ||
1990 | |||
1991 | DP(NETIF_MSG_TX_QUEUED, | ||
1992 | "TSO packet len %d hlen %d total len %d tso size %d\n", | ||
1993 | skb->len, hlen, skb_headlen(skb), | ||
1994 | skb_shinfo(skb)->gso_size); | ||
1995 | |||
1996 | tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO; | ||
1997 | |||
1998 | if (unlikely(skb_headlen(skb) > hlen)) | ||
1999 | bd_prod = bnx2x_tx_split(bp, fp, tx_buf, &tx_start_bd, | ||
2000 | hlen, bd_prod, ++nbd); | ||
2001 | |||
2002 | pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size); | ||
2003 | pbd->tcp_send_seq = swab32(tcp_hdr(skb)->seq); | ||
2004 | pbd->tcp_flags = pbd_tcp_flags(skb); | ||
2005 | |||
2006 | if (xmit_type & XMIT_GSO_V4) { | ||
2007 | pbd->ip_id = swab16(ip_hdr(skb)->id); | ||
2008 | pbd->tcp_pseudo_csum = | ||
2009 | swab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr, | ||
2010 | ip_hdr(skb)->daddr, | ||
2011 | 0, IPPROTO_TCP, 0)); | ||
2012 | |||
2013 | } else | ||
2014 | pbd->tcp_pseudo_csum = | ||
2015 | swab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr, | ||
2016 | &ipv6_hdr(skb)->daddr, | ||
2017 | 0, IPPROTO_TCP, 0)); | ||
2018 | |||
2019 | pbd->global_data |= ETH_TX_PARSE_BD_PSEUDO_CS_WITHOUT_LEN; | ||
2020 | } | ||
2021 | tx_data_bd = (struct eth_tx_bd *)tx_start_bd; | ||
2022 | |||
2023 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | ||
2024 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
2025 | |||
2026 | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | ||
2027 | tx_data_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | ||
2028 | if (total_pkt_bd == NULL) | ||
2029 | total_pkt_bd = &fp->tx_desc_ring[bd_prod].reg_bd; | ||
2030 | |||
2031 | mapping = dma_map_page(&bp->pdev->dev, frag->page, | ||
2032 | frag->page_offset, | ||
2033 | frag->size, DMA_TO_DEVICE); | ||
2034 | |||
2035 | tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); | ||
2036 | tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); | ||
2037 | tx_data_bd->nbytes = cpu_to_le16(frag->size); | ||
2038 | le16_add_cpu(&pkt_size, frag->size); | ||
2039 | |||
2040 | DP(NETIF_MSG_TX_QUEUED, | ||
2041 | "frag %d bd @%p addr (%x:%x) nbytes %d\n", | ||
2042 | i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo, | ||
2043 | le16_to_cpu(tx_data_bd->nbytes)); | ||
2044 | } | ||
2045 | |||
2046 | DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd); | ||
2047 | |||
2048 | bd_prod = TX_BD(NEXT_TX_IDX(bd_prod)); | ||
2049 | |||
2050 | /* now send a tx doorbell, counting the next BD | ||
2051 | * if the packet contains or ends with it | ||
2052 | */ | ||
2053 | if (TX_BD_POFF(bd_prod) < nbd) | ||
2054 | nbd++; | ||
2055 | |||
2056 | if (total_pkt_bd != NULL) | ||
2057 | total_pkt_bd->total_pkt_bytes = pkt_size; | ||
2058 | |||
2059 | if (pbd) | ||
2060 | DP(NETIF_MSG_TX_QUEUED, | ||
2061 | "PBD @%p ip_data %x ip_hlen %u ip_id %u lso_mss %u" | ||
2062 | " tcp_flags %x xsum %x seq %u hlen %u\n", | ||
2063 | pbd, pbd->global_data, pbd->ip_hlen, pbd->ip_id, | ||
2064 | pbd->lso_mss, pbd->tcp_flags, pbd->tcp_pseudo_csum, | ||
2065 | pbd->tcp_send_seq, le16_to_cpu(pbd->total_hlen)); | ||
2066 | |||
2067 | DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d bd %u\n", nbd, bd_prod); | ||
2068 | |||
2069 | /* | ||
2070 | * Make sure that the BD data is updated before updating the producer | ||
2071 | * since FW might read the BD right after the producer is updated. | ||
2072 | * This is only applicable for weak-ordered memory model archs such | ||
2073 | * as IA-64. The following barrier is also mandatory since FW will | ||
2074 | * assumes packets must have BDs. | ||
2075 | */ | ||
2076 | wmb(); | ||
2077 | |||
2078 | fp->tx_db.data.prod += nbd; | ||
2079 | barrier(); | ||
2080 | DOORBELL(bp, fp->index, fp->tx_db.raw); | ||
2081 | |||
2082 | mmiowb(); | ||
2083 | |||
2084 | fp->tx_bd_prod += nbd; | ||
2085 | |||
2086 | if (unlikely(bnx2x_tx_avail(fp) < MAX_SKB_FRAGS + 3)) { | ||
2087 | netif_tx_stop_queue(txq); | ||
2088 | |||
2089 | /* paired memory barrier is in bnx2x_tx_int(), we have to keep | ||
2090 | * ordering of set_bit() in netif_tx_stop_queue() and read of | ||
2091 | * fp->bd_tx_cons */ | ||
2092 | smp_mb(); | ||
2093 | |||
2094 | fp->eth_q_stats.driver_xoff++; | ||
2095 | if (bnx2x_tx_avail(fp) >= MAX_SKB_FRAGS + 3) | ||
2096 | netif_tx_wake_queue(txq); | ||
2097 | } | ||
2098 | fp->tx_pkt++; | ||
2099 | |||
2100 | return NETDEV_TX_OK; | ||
2101 | } | ||
2102 | /* called with rtnl_lock */ | ||
2103 | int bnx2x_change_mac_addr(struct net_device *dev, void *p) | ||
2104 | { | ||
2105 | struct sockaddr *addr = p; | ||
2106 | struct bnx2x *bp = netdev_priv(dev); | ||
2107 | |||
2108 | if (!is_valid_ether_addr((u8 *)(addr->sa_data))) | ||
2109 | return -EINVAL; | ||
2110 | |||
2111 | memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); | ||
2112 | if (netif_running(dev)) { | ||
2113 | if (CHIP_IS_E1(bp)) | ||
2114 | bnx2x_set_eth_mac_addr_e1(bp, 1); | ||
2115 | else | ||
2116 | bnx2x_set_eth_mac_addr_e1h(bp, 1); | ||
2117 | } | ||
2118 | |||
2119 | return 0; | ||
2120 | } | ||
2121 | |||
2122 | /* called with rtnl_lock */ | ||
2123 | int bnx2x_change_mtu(struct net_device *dev, int new_mtu) | ||
2124 | { | ||
2125 | struct bnx2x *bp = netdev_priv(dev); | ||
2126 | int rc = 0; | ||
2127 | |||
2128 | if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | ||
2129 | printk(KERN_ERR "Handling parity error recovery. Try again later\n"); | ||
2130 | return -EAGAIN; | ||
2131 | } | ||
2132 | |||
2133 | if ((new_mtu > ETH_MAX_JUMBO_PACKET_SIZE) || | ||
2134 | ((new_mtu + ETH_HLEN) < ETH_MIN_PACKET_SIZE)) | ||
2135 | return -EINVAL; | ||
2136 | |||
2137 | /* This does not race with packet allocation | ||
2138 | * because the actual alloc size is | ||
2139 | * only updated as part of load | ||
2140 | */ | ||
2141 | dev->mtu = new_mtu; | ||
2142 | |||
2143 | if (netif_running(dev)) { | ||
2144 | bnx2x_nic_unload(bp, UNLOAD_NORMAL); | ||
2145 | rc = bnx2x_nic_load(bp, LOAD_NORMAL); | ||
2146 | } | ||
2147 | |||
2148 | return rc; | ||
2149 | } | ||
2150 | |||
2151 | void bnx2x_tx_timeout(struct net_device *dev) | ||
2152 | { | ||
2153 | struct bnx2x *bp = netdev_priv(dev); | ||
2154 | |||
2155 | #ifdef BNX2X_STOP_ON_ERROR | ||
2156 | if (!bp->panic) | ||
2157 | bnx2x_panic(); | ||
2158 | #endif | ||
2159 | /* This allows the netif to be shutdown gracefully before resetting */ | ||
2160 | schedule_delayed_work(&bp->reset_task, 0); | ||
2161 | } | ||
2162 | |||
2163 | #ifdef BCM_VLAN | ||
2164 | /* called with rtnl_lock */ | ||
2165 | void bnx2x_vlan_rx_register(struct net_device *dev, | ||
2166 | struct vlan_group *vlgrp) | ||
2167 | { | ||
2168 | struct bnx2x *bp = netdev_priv(dev); | ||
2169 | |||
2170 | bp->vlgrp = vlgrp; | ||
2171 | |||
2172 | /* Set flags according to the required capabilities */ | ||
2173 | bp->flags &= ~(HW_VLAN_RX_FLAG | HW_VLAN_TX_FLAG); | ||
2174 | |||
2175 | if (dev->features & NETIF_F_HW_VLAN_TX) | ||
2176 | bp->flags |= HW_VLAN_TX_FLAG; | ||
2177 | |||
2178 | if (dev->features & NETIF_F_HW_VLAN_RX) | ||
2179 | bp->flags |= HW_VLAN_RX_FLAG; | ||
2180 | |||
2181 | if (netif_running(dev)) | ||
2182 | bnx2x_set_client_config(bp); | ||
2183 | } | ||
2184 | |||
2185 | #endif | ||
2186 | int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state) | ||
2187 | { | ||
2188 | struct net_device *dev = pci_get_drvdata(pdev); | ||
2189 | struct bnx2x *bp; | ||
2190 | |||
2191 | if (!dev) { | ||
2192 | dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | ||
2193 | return -ENODEV; | ||
2194 | } | ||
2195 | bp = netdev_priv(dev); | ||
2196 | |||
2197 | rtnl_lock(); | ||
2198 | |||
2199 | pci_save_state(pdev); | ||
2200 | |||
2201 | if (!netif_running(dev)) { | ||
2202 | rtnl_unlock(); | ||
2203 | return 0; | ||
2204 | } | ||
2205 | |||
2206 | netif_device_detach(dev); | ||
2207 | |||
2208 | bnx2x_nic_unload(bp, UNLOAD_CLOSE); | ||
2209 | |||
2210 | bnx2x_set_power_state(bp, pci_choose_state(pdev, state)); | ||
2211 | |||
2212 | rtnl_unlock(); | ||
2213 | |||
2214 | return 0; | ||
2215 | } | ||
2216 | |||
2217 | int bnx2x_resume(struct pci_dev *pdev) | ||
2218 | { | ||
2219 | struct net_device *dev = pci_get_drvdata(pdev); | ||
2220 | struct bnx2x *bp; | ||
2221 | int rc; | ||
2222 | |||
2223 | if (!dev) { | ||
2224 | dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n"); | ||
2225 | return -ENODEV; | ||
2226 | } | ||
2227 | bp = netdev_priv(dev); | ||
2228 | |||
2229 | if (bp->recovery_state != BNX2X_RECOVERY_DONE) { | ||
2230 | printk(KERN_ERR "Handling parity error recovery. Try again later\n"); | ||
2231 | return -EAGAIN; | ||
2232 | } | ||
2233 | |||
2234 | rtnl_lock(); | ||
2235 | |||
2236 | pci_restore_state(pdev); | ||
2237 | |||
2238 | if (!netif_running(dev)) { | ||
2239 | rtnl_unlock(); | ||
2240 | return 0; | ||
2241 | } | ||
2242 | |||
2243 | bnx2x_set_power_state(bp, PCI_D0); | ||
2244 | netif_device_attach(dev); | ||
2245 | |||
2246 | rc = bnx2x_nic_load(bp, LOAD_OPEN); | ||
2247 | |||
2248 | rtnl_unlock(); | ||
2249 | |||
2250 | return rc; | ||
2251 | } | ||