diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/au1000_eth.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/au1000_eth.c')
-rw-r--r-- | drivers/net/au1000_eth.c | 2273 |
1 files changed, 2273 insertions, 0 deletions
diff --git a/drivers/net/au1000_eth.c b/drivers/net/au1000_eth.c new file mode 100644 index 000000000000..5a2efd343db4 --- /dev/null +++ b/drivers/net/au1000_eth.c | |||
@@ -0,0 +1,2273 @@ | |||
1 | /* | ||
2 | * | ||
3 | * Alchemy Au1x00 ethernet driver | ||
4 | * | ||
5 | * Copyright 2001,2002,2003 MontaVista Software Inc. | ||
6 | * Copyright 2002 TimeSys Corp. | ||
7 | * Added ethtool/mii-tool support, | ||
8 | * Copyright 2004 Matt Porter <mporter@kernel.crashing.org> | ||
9 | * Update: 2004 Bjoern Riemer, riemer@fokus.fraunhofer.de | ||
10 | * or riemer@riemer-nt.de: fixed the link beat detection with | ||
11 | * ioctls (SIOCGMIIPHY) | ||
12 | * Author: MontaVista Software, Inc. | ||
13 | * ppopov@mvista.com or source@mvista.com | ||
14 | * | ||
15 | * ######################################################################## | ||
16 | * | ||
17 | * This program is free software; you can distribute it and/or modify it | ||
18 | * under the terms of the GNU General Public License (Version 2) as | ||
19 | * published by the Free Software Foundation. | ||
20 | * | ||
21 | * This program is distributed in the hope it will be useful, but WITHOUT | ||
22 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | ||
23 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License | ||
24 | * for more details. | ||
25 | * | ||
26 | * You should have received a copy of the GNU General Public License along | ||
27 | * with this program; if not, write to the Free Software Foundation, Inc., | ||
28 | * 59 Temple Place - Suite 330, Boston MA 02111-1307, USA. | ||
29 | * | ||
30 | * ######################################################################## | ||
31 | * | ||
32 | * | ||
33 | */ | ||
34 | |||
35 | #include <linux/module.h> | ||
36 | #include <linux/kernel.h> | ||
37 | #include <linux/sched.h> | ||
38 | #include <linux/string.h> | ||
39 | #include <linux/timer.h> | ||
40 | #include <linux/errno.h> | ||
41 | #include <linux/in.h> | ||
42 | #include <linux/ioport.h> | ||
43 | #include <linux/bitops.h> | ||
44 | #include <linux/slab.h> | ||
45 | #include <linux/interrupt.h> | ||
46 | #include <linux/pci.h> | ||
47 | #include <linux/init.h> | ||
48 | #include <linux/netdevice.h> | ||
49 | #include <linux/etherdevice.h> | ||
50 | #include <linux/ethtool.h> | ||
51 | #include <linux/mii.h> | ||
52 | #include <linux/skbuff.h> | ||
53 | #include <linux/delay.h> | ||
54 | #include <asm/mipsregs.h> | ||
55 | #include <asm/irq.h> | ||
56 | #include <asm/io.h> | ||
57 | #include <asm/processor.h> | ||
58 | |||
59 | #include <asm/mach-au1x00/au1000.h> | ||
60 | #include <asm/cpu.h> | ||
61 | #include "au1000_eth.h" | ||
62 | |||
63 | #ifdef AU1000_ETH_DEBUG | ||
64 | static int au1000_debug = 5; | ||
65 | #else | ||
66 | static int au1000_debug = 3; | ||
67 | #endif | ||
68 | |||
69 | #define DRV_NAME "au1000eth" | ||
70 | #define DRV_VERSION "1.5" | ||
71 | #define DRV_AUTHOR "Pete Popov <ppopov@embeddedalley.com>" | ||
72 | #define DRV_DESC "Au1xxx on-chip Ethernet driver" | ||
73 | |||
74 | MODULE_AUTHOR(DRV_AUTHOR); | ||
75 | MODULE_DESCRIPTION(DRV_DESC); | ||
76 | MODULE_LICENSE("GPL"); | ||
77 | |||
78 | // prototypes | ||
79 | static void hard_stop(struct net_device *); | ||
80 | static void enable_rx_tx(struct net_device *dev); | ||
81 | static struct net_device * au1000_probe(u32 ioaddr, int irq, int port_num); | ||
82 | static int au1000_init(struct net_device *); | ||
83 | static int au1000_open(struct net_device *); | ||
84 | static int au1000_close(struct net_device *); | ||
85 | static int au1000_tx(struct sk_buff *, struct net_device *); | ||
86 | static int au1000_rx(struct net_device *); | ||
87 | static irqreturn_t au1000_interrupt(int, void *, struct pt_regs *); | ||
88 | static void au1000_tx_timeout(struct net_device *); | ||
89 | static int au1000_set_config(struct net_device *dev, struct ifmap *map); | ||
90 | static void set_rx_mode(struct net_device *); | ||
91 | static struct net_device_stats *au1000_get_stats(struct net_device *); | ||
92 | static inline void update_tx_stats(struct net_device *, u32, u32); | ||
93 | static inline void update_rx_stats(struct net_device *, u32); | ||
94 | static void au1000_timer(unsigned long); | ||
95 | static int au1000_ioctl(struct net_device *, struct ifreq *, int); | ||
96 | static int mdio_read(struct net_device *, int, int); | ||
97 | static void mdio_write(struct net_device *, int, int, u16); | ||
98 | static void dump_mii(struct net_device *dev, int phy_id); | ||
99 | |||
100 | // externs | ||
101 | extern void ack_rise_edge_irq(unsigned int); | ||
102 | extern int get_ethernet_addr(char *ethernet_addr); | ||
103 | extern void str2eaddr(unsigned char *ea, unsigned char *str); | ||
104 | extern char * __init prom_getcmdline(void); | ||
105 | |||
106 | /* | ||
107 | * Theory of operation | ||
108 | * | ||
109 | * The Au1000 MACs use a simple rx and tx descriptor ring scheme. | ||
110 | * There are four receive and four transmit descriptors. These | ||
111 | * descriptors are not in memory; rather, they are just a set of | ||
112 | * hardware registers. | ||
113 | * | ||
114 | * Since the Au1000 has a coherent data cache, the receive and | ||
115 | * transmit buffers are allocated from the KSEG0 segment. The | ||
116 | * hardware registers, however, are still mapped at KSEG1 to | ||
117 | * make sure there's no out-of-order writes, and that all writes | ||
118 | * complete immediately. | ||
119 | */ | ||
120 | |||
121 | /* These addresses are only used if yamon doesn't tell us what | ||
122 | * the mac address is, and the mac address is not passed on the | ||
123 | * command line. | ||
124 | */ | ||
125 | static unsigned char au1000_mac_addr[6] __devinitdata = { | ||
126 | 0x00, 0x50, 0xc2, 0x0c, 0x30, 0x00 | ||
127 | }; | ||
128 | |||
129 | #define nibswap(x) ((((x) >> 4) & 0x0f) | (((x) << 4) & 0xf0)) | ||
130 | #define RUN_AT(x) (jiffies + (x)) | ||
131 | |||
132 | // For reading/writing 32-bit words from/to DMA memory | ||
133 | #define cpu_to_dma32 cpu_to_be32 | ||
134 | #define dma32_to_cpu be32_to_cpu | ||
135 | |||
136 | struct au1000_private *au_macs[NUM_ETH_INTERFACES]; | ||
137 | |||
138 | /* FIXME | ||
139 | * All of the PHY code really should be detached from the MAC | ||
140 | * code. | ||
141 | */ | ||
142 | |||
143 | /* Default advertise */ | ||
144 | #define GENMII_DEFAULT_ADVERTISE \ | ||
145 | ADVERTISED_10baseT_Half | ADVERTISED_10baseT_Full | \ | ||
146 | ADVERTISED_100baseT_Half | ADVERTISED_100baseT_Full | \ | ||
147 | ADVERTISED_Autoneg | ||
148 | |||
149 | #define GENMII_DEFAULT_FEATURES \ | ||
150 | SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \ | ||
151 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \ | ||
152 | SUPPORTED_Autoneg | ||
153 | |||
154 | static char *phy_link[] = | ||
155 | { "unknown", | ||
156 | "10Base2", "10BaseT", | ||
157 | "AUI", | ||
158 | "100BaseT", "100BaseTX", "100BaseFX" | ||
159 | }; | ||
160 | |||
161 | int bcm_5201_init(struct net_device *dev, int phy_addr) | ||
162 | { | ||
163 | s16 data; | ||
164 | |||
165 | /* Stop auto-negotiation */ | ||
166 | data = mdio_read(dev, phy_addr, MII_CONTROL); | ||
167 | mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | ||
168 | |||
169 | /* Set advertisement to 10/100 and Half/Full duplex | ||
170 | * (full capabilities) */ | ||
171 | data = mdio_read(dev, phy_addr, MII_ANADV); | ||
172 | data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | ||
173 | mdio_write(dev, phy_addr, MII_ANADV, data); | ||
174 | |||
175 | /* Restart auto-negotiation */ | ||
176 | data = mdio_read(dev, phy_addr, MII_CONTROL); | ||
177 | data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | ||
178 | mdio_write(dev, phy_addr, MII_CONTROL, data); | ||
179 | |||
180 | if (au1000_debug > 4) | ||
181 | dump_mii(dev, phy_addr); | ||
182 | return 0; | ||
183 | } | ||
184 | |||
185 | int bcm_5201_reset(struct net_device *dev, int phy_addr) | ||
186 | { | ||
187 | s16 mii_control, timeout; | ||
188 | |||
189 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
190 | mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | ||
191 | mdelay(1); | ||
192 | for (timeout = 100; timeout > 0; --timeout) { | ||
193 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
194 | if ((mii_control & MII_CNTL_RESET) == 0) | ||
195 | break; | ||
196 | mdelay(1); | ||
197 | } | ||
198 | if (mii_control & MII_CNTL_RESET) { | ||
199 | printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | ||
200 | return -1; | ||
201 | } | ||
202 | return 0; | ||
203 | } | ||
204 | |||
205 | int | ||
206 | bcm_5201_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | ||
207 | { | ||
208 | u16 mii_data; | ||
209 | struct au1000_private *aup; | ||
210 | |||
211 | if (!dev) { | ||
212 | printk(KERN_ERR "bcm_5201_status error: NULL dev\n"); | ||
213 | return -1; | ||
214 | } | ||
215 | aup = (struct au1000_private *) dev->priv; | ||
216 | |||
217 | mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | ||
218 | if (mii_data & MII_STAT_LINK) { | ||
219 | *link = 1; | ||
220 | mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); | ||
221 | if (mii_data & MII_AUX_100) { | ||
222 | if (mii_data & MII_AUX_FDX) { | ||
223 | *speed = IF_PORT_100BASEFX; | ||
224 | dev->if_port = IF_PORT_100BASEFX; | ||
225 | } | ||
226 | else { | ||
227 | *speed = IF_PORT_100BASETX; | ||
228 | dev->if_port = IF_PORT_100BASETX; | ||
229 | } | ||
230 | } | ||
231 | else { | ||
232 | *speed = IF_PORT_10BASET; | ||
233 | dev->if_port = IF_PORT_10BASET; | ||
234 | } | ||
235 | |||
236 | } | ||
237 | else { | ||
238 | *link = 0; | ||
239 | *speed = 0; | ||
240 | dev->if_port = IF_PORT_UNKNOWN; | ||
241 | } | ||
242 | return 0; | ||
243 | } | ||
244 | |||
245 | int lsi_80227_init(struct net_device *dev, int phy_addr) | ||
246 | { | ||
247 | if (au1000_debug > 4) | ||
248 | printk("lsi_80227_init\n"); | ||
249 | |||
250 | /* restart auto-negotiation */ | ||
251 | mdio_write(dev, phy_addr, MII_CONTROL, | ||
252 | MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO); // | MII_CNTL_FDX); | ||
253 | mdelay(1); | ||
254 | |||
255 | /* set up LEDs to correct display */ | ||
256 | #ifdef CONFIG_MIPS_MTX1 | ||
257 | mdio_write(dev, phy_addr, 17, 0xff80); | ||
258 | #else | ||
259 | mdio_write(dev, phy_addr, 17, 0xffc0); | ||
260 | #endif | ||
261 | |||
262 | if (au1000_debug > 4) | ||
263 | dump_mii(dev, phy_addr); | ||
264 | return 0; | ||
265 | } | ||
266 | |||
267 | int lsi_80227_reset(struct net_device *dev, int phy_addr) | ||
268 | { | ||
269 | s16 mii_control, timeout; | ||
270 | |||
271 | if (au1000_debug > 4) { | ||
272 | printk("lsi_80227_reset\n"); | ||
273 | dump_mii(dev, phy_addr); | ||
274 | } | ||
275 | |||
276 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
277 | mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | ||
278 | mdelay(1); | ||
279 | for (timeout = 100; timeout > 0; --timeout) { | ||
280 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
281 | if ((mii_control & MII_CNTL_RESET) == 0) | ||
282 | break; | ||
283 | mdelay(1); | ||
284 | } | ||
285 | if (mii_control & MII_CNTL_RESET) { | ||
286 | printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | ||
287 | return -1; | ||
288 | } | ||
289 | return 0; | ||
290 | } | ||
291 | |||
292 | int | ||
293 | lsi_80227_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | ||
294 | { | ||
295 | u16 mii_data; | ||
296 | struct au1000_private *aup; | ||
297 | |||
298 | if (!dev) { | ||
299 | printk(KERN_ERR "lsi_80227_status error: NULL dev\n"); | ||
300 | return -1; | ||
301 | } | ||
302 | aup = (struct au1000_private *) dev->priv; | ||
303 | |||
304 | mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | ||
305 | if (mii_data & MII_STAT_LINK) { | ||
306 | *link = 1; | ||
307 | mii_data = mdio_read(dev, aup->phy_addr, MII_LSI_PHY_STAT); | ||
308 | if (mii_data & MII_LSI_PHY_STAT_SPD) { | ||
309 | if (mii_data & MII_LSI_PHY_STAT_FDX) { | ||
310 | *speed = IF_PORT_100BASEFX; | ||
311 | dev->if_port = IF_PORT_100BASEFX; | ||
312 | } | ||
313 | else { | ||
314 | *speed = IF_PORT_100BASETX; | ||
315 | dev->if_port = IF_PORT_100BASETX; | ||
316 | } | ||
317 | } | ||
318 | else { | ||
319 | *speed = IF_PORT_10BASET; | ||
320 | dev->if_port = IF_PORT_10BASET; | ||
321 | } | ||
322 | |||
323 | } | ||
324 | else { | ||
325 | *link = 0; | ||
326 | *speed = 0; | ||
327 | dev->if_port = IF_PORT_UNKNOWN; | ||
328 | } | ||
329 | return 0; | ||
330 | } | ||
331 | |||
332 | int am79c901_init(struct net_device *dev, int phy_addr) | ||
333 | { | ||
334 | printk("am79c901_init\n"); | ||
335 | return 0; | ||
336 | } | ||
337 | |||
338 | int am79c901_reset(struct net_device *dev, int phy_addr) | ||
339 | { | ||
340 | printk("am79c901_reset\n"); | ||
341 | return 0; | ||
342 | } | ||
343 | |||
344 | int | ||
345 | am79c901_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | ||
346 | { | ||
347 | return 0; | ||
348 | } | ||
349 | |||
350 | int am79c874_init(struct net_device *dev, int phy_addr) | ||
351 | { | ||
352 | s16 data; | ||
353 | |||
354 | /* 79c874 has quit resembled bit assignments to BCM5201 */ | ||
355 | if (au1000_debug > 4) | ||
356 | printk("am79c847_init\n"); | ||
357 | |||
358 | /* Stop auto-negotiation */ | ||
359 | data = mdio_read(dev, phy_addr, MII_CONTROL); | ||
360 | mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | ||
361 | |||
362 | /* Set advertisement to 10/100 and Half/Full duplex | ||
363 | * (full capabilities) */ | ||
364 | data = mdio_read(dev, phy_addr, MII_ANADV); | ||
365 | data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | ||
366 | mdio_write(dev, phy_addr, MII_ANADV, data); | ||
367 | |||
368 | /* Restart auto-negotiation */ | ||
369 | data = mdio_read(dev, phy_addr, MII_CONTROL); | ||
370 | data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | ||
371 | |||
372 | mdio_write(dev, phy_addr, MII_CONTROL, data); | ||
373 | |||
374 | if (au1000_debug > 4) dump_mii(dev, phy_addr); | ||
375 | return 0; | ||
376 | } | ||
377 | |||
378 | int am79c874_reset(struct net_device *dev, int phy_addr) | ||
379 | { | ||
380 | s16 mii_control, timeout; | ||
381 | |||
382 | if (au1000_debug > 4) | ||
383 | printk("am79c874_reset\n"); | ||
384 | |||
385 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
386 | mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | ||
387 | mdelay(1); | ||
388 | for (timeout = 100; timeout > 0; --timeout) { | ||
389 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
390 | if ((mii_control & MII_CNTL_RESET) == 0) | ||
391 | break; | ||
392 | mdelay(1); | ||
393 | } | ||
394 | if (mii_control & MII_CNTL_RESET) { | ||
395 | printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | ||
396 | return -1; | ||
397 | } | ||
398 | return 0; | ||
399 | } | ||
400 | |||
401 | int | ||
402 | am79c874_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | ||
403 | { | ||
404 | u16 mii_data; | ||
405 | struct au1000_private *aup; | ||
406 | |||
407 | // printk("am79c874_status\n"); | ||
408 | if (!dev) { | ||
409 | printk(KERN_ERR "am79c874_status error: NULL dev\n"); | ||
410 | return -1; | ||
411 | } | ||
412 | |||
413 | aup = (struct au1000_private *) dev->priv; | ||
414 | mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | ||
415 | |||
416 | if (mii_data & MII_STAT_LINK) { | ||
417 | *link = 1; | ||
418 | mii_data = mdio_read(dev, aup->phy_addr, MII_AMD_PHY_STAT); | ||
419 | if (mii_data & MII_AMD_PHY_STAT_SPD) { | ||
420 | if (mii_data & MII_AMD_PHY_STAT_FDX) { | ||
421 | *speed = IF_PORT_100BASEFX; | ||
422 | dev->if_port = IF_PORT_100BASEFX; | ||
423 | } | ||
424 | else { | ||
425 | *speed = IF_PORT_100BASETX; | ||
426 | dev->if_port = IF_PORT_100BASETX; | ||
427 | } | ||
428 | } | ||
429 | else { | ||
430 | *speed = IF_PORT_10BASET; | ||
431 | dev->if_port = IF_PORT_10BASET; | ||
432 | } | ||
433 | |||
434 | } | ||
435 | else { | ||
436 | *link = 0; | ||
437 | *speed = 0; | ||
438 | dev->if_port = IF_PORT_UNKNOWN; | ||
439 | } | ||
440 | return 0; | ||
441 | } | ||
442 | |||
443 | int lxt971a_init(struct net_device *dev, int phy_addr) | ||
444 | { | ||
445 | if (au1000_debug > 4) | ||
446 | printk("lxt971a_init\n"); | ||
447 | |||
448 | /* restart auto-negotiation */ | ||
449 | mdio_write(dev, phy_addr, MII_CONTROL, | ||
450 | MII_CNTL_F100 | MII_CNTL_AUTO | MII_CNTL_RST_AUTO | MII_CNTL_FDX); | ||
451 | |||
452 | /* set up LEDs to correct display */ | ||
453 | mdio_write(dev, phy_addr, 20, 0x0422); | ||
454 | |||
455 | if (au1000_debug > 4) | ||
456 | dump_mii(dev, phy_addr); | ||
457 | return 0; | ||
458 | } | ||
459 | |||
460 | int lxt971a_reset(struct net_device *dev, int phy_addr) | ||
461 | { | ||
462 | s16 mii_control, timeout; | ||
463 | |||
464 | if (au1000_debug > 4) { | ||
465 | printk("lxt971a_reset\n"); | ||
466 | dump_mii(dev, phy_addr); | ||
467 | } | ||
468 | |||
469 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
470 | mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | ||
471 | mdelay(1); | ||
472 | for (timeout = 100; timeout > 0; --timeout) { | ||
473 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
474 | if ((mii_control & MII_CNTL_RESET) == 0) | ||
475 | break; | ||
476 | mdelay(1); | ||
477 | } | ||
478 | if (mii_control & MII_CNTL_RESET) { | ||
479 | printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | ||
480 | return -1; | ||
481 | } | ||
482 | return 0; | ||
483 | } | ||
484 | |||
485 | int | ||
486 | lxt971a_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | ||
487 | { | ||
488 | u16 mii_data; | ||
489 | struct au1000_private *aup; | ||
490 | |||
491 | if (!dev) { | ||
492 | printk(KERN_ERR "lxt971a_status error: NULL dev\n"); | ||
493 | return -1; | ||
494 | } | ||
495 | aup = (struct au1000_private *) dev->priv; | ||
496 | |||
497 | mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | ||
498 | if (mii_data & MII_STAT_LINK) { | ||
499 | *link = 1; | ||
500 | mii_data = mdio_read(dev, aup->phy_addr, MII_INTEL_PHY_STAT); | ||
501 | if (mii_data & MII_INTEL_PHY_STAT_SPD) { | ||
502 | if (mii_data & MII_INTEL_PHY_STAT_FDX) { | ||
503 | *speed = IF_PORT_100BASEFX; | ||
504 | dev->if_port = IF_PORT_100BASEFX; | ||
505 | } | ||
506 | else { | ||
507 | *speed = IF_PORT_100BASETX; | ||
508 | dev->if_port = IF_PORT_100BASETX; | ||
509 | } | ||
510 | } | ||
511 | else { | ||
512 | *speed = IF_PORT_10BASET; | ||
513 | dev->if_port = IF_PORT_10BASET; | ||
514 | } | ||
515 | |||
516 | } | ||
517 | else { | ||
518 | *link = 0; | ||
519 | *speed = 0; | ||
520 | dev->if_port = IF_PORT_UNKNOWN; | ||
521 | } | ||
522 | return 0; | ||
523 | } | ||
524 | |||
525 | int ks8995m_init(struct net_device *dev, int phy_addr) | ||
526 | { | ||
527 | s16 data; | ||
528 | |||
529 | // printk("ks8995m_init\n"); | ||
530 | /* Stop auto-negotiation */ | ||
531 | data = mdio_read(dev, phy_addr, MII_CONTROL); | ||
532 | mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | ||
533 | |||
534 | /* Set advertisement to 10/100 and Half/Full duplex | ||
535 | * (full capabilities) */ | ||
536 | data = mdio_read(dev, phy_addr, MII_ANADV); | ||
537 | data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | ||
538 | mdio_write(dev, phy_addr, MII_ANADV, data); | ||
539 | |||
540 | /* Restart auto-negotiation */ | ||
541 | data = mdio_read(dev, phy_addr, MII_CONTROL); | ||
542 | data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | ||
543 | mdio_write(dev, phy_addr, MII_CONTROL, data); | ||
544 | |||
545 | if (au1000_debug > 4) dump_mii(dev, phy_addr); | ||
546 | |||
547 | return 0; | ||
548 | } | ||
549 | |||
550 | int ks8995m_reset(struct net_device *dev, int phy_addr) | ||
551 | { | ||
552 | s16 mii_control, timeout; | ||
553 | |||
554 | // printk("ks8995m_reset\n"); | ||
555 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
556 | mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | ||
557 | mdelay(1); | ||
558 | for (timeout = 100; timeout > 0; --timeout) { | ||
559 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
560 | if ((mii_control & MII_CNTL_RESET) == 0) | ||
561 | break; | ||
562 | mdelay(1); | ||
563 | } | ||
564 | if (mii_control & MII_CNTL_RESET) { | ||
565 | printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | ||
566 | return -1; | ||
567 | } | ||
568 | return 0; | ||
569 | } | ||
570 | |||
571 | int ks8995m_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | ||
572 | { | ||
573 | u16 mii_data; | ||
574 | struct au1000_private *aup; | ||
575 | |||
576 | if (!dev) { | ||
577 | printk(KERN_ERR "ks8995m_status error: NULL dev\n"); | ||
578 | return -1; | ||
579 | } | ||
580 | aup = (struct au1000_private *) dev->priv; | ||
581 | |||
582 | mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | ||
583 | if (mii_data & MII_STAT_LINK) { | ||
584 | *link = 1; | ||
585 | mii_data = mdio_read(dev, aup->phy_addr, MII_AUX_CNTRL); | ||
586 | if (mii_data & MII_AUX_100) { | ||
587 | if (mii_data & MII_AUX_FDX) { | ||
588 | *speed = IF_PORT_100BASEFX; | ||
589 | dev->if_port = IF_PORT_100BASEFX; | ||
590 | } | ||
591 | else { | ||
592 | *speed = IF_PORT_100BASETX; | ||
593 | dev->if_port = IF_PORT_100BASETX; | ||
594 | } | ||
595 | } | ||
596 | else { | ||
597 | *speed = IF_PORT_10BASET; | ||
598 | dev->if_port = IF_PORT_10BASET; | ||
599 | } | ||
600 | |||
601 | } | ||
602 | else { | ||
603 | *link = 0; | ||
604 | *speed = 0; | ||
605 | dev->if_port = IF_PORT_UNKNOWN; | ||
606 | } | ||
607 | return 0; | ||
608 | } | ||
609 | |||
610 | int | ||
611 | smsc_83C185_init (struct net_device *dev, int phy_addr) | ||
612 | { | ||
613 | s16 data; | ||
614 | |||
615 | if (au1000_debug > 4) | ||
616 | printk("smsc_83C185_init\n"); | ||
617 | |||
618 | /* Stop auto-negotiation */ | ||
619 | data = mdio_read(dev, phy_addr, MII_CONTROL); | ||
620 | mdio_write(dev, phy_addr, MII_CONTROL, data & ~MII_CNTL_AUTO); | ||
621 | |||
622 | /* Set advertisement to 10/100 and Half/Full duplex | ||
623 | * (full capabilities) */ | ||
624 | data = mdio_read(dev, phy_addr, MII_ANADV); | ||
625 | data |= MII_NWAY_TX | MII_NWAY_TX_FDX | MII_NWAY_T_FDX | MII_NWAY_T; | ||
626 | mdio_write(dev, phy_addr, MII_ANADV, data); | ||
627 | |||
628 | /* Restart auto-negotiation */ | ||
629 | data = mdio_read(dev, phy_addr, MII_CONTROL); | ||
630 | data |= MII_CNTL_RST_AUTO | MII_CNTL_AUTO; | ||
631 | |||
632 | mdio_write(dev, phy_addr, MII_CONTROL, data); | ||
633 | |||
634 | if (au1000_debug > 4) dump_mii(dev, phy_addr); | ||
635 | return 0; | ||
636 | } | ||
637 | |||
638 | int | ||
639 | smsc_83C185_reset (struct net_device *dev, int phy_addr) | ||
640 | { | ||
641 | s16 mii_control, timeout; | ||
642 | |||
643 | if (au1000_debug > 4) | ||
644 | printk("smsc_83C185_reset\n"); | ||
645 | |||
646 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
647 | mdio_write(dev, phy_addr, MII_CONTROL, mii_control | MII_CNTL_RESET); | ||
648 | mdelay(1); | ||
649 | for (timeout = 100; timeout > 0; --timeout) { | ||
650 | mii_control = mdio_read(dev, phy_addr, MII_CONTROL); | ||
651 | if ((mii_control & MII_CNTL_RESET) == 0) | ||
652 | break; | ||
653 | mdelay(1); | ||
654 | } | ||
655 | if (mii_control & MII_CNTL_RESET) { | ||
656 | printk(KERN_ERR "%s PHY reset timeout !\n", dev->name); | ||
657 | return -1; | ||
658 | } | ||
659 | return 0; | ||
660 | } | ||
661 | |||
662 | int | ||
663 | smsc_83C185_status (struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | ||
664 | { | ||
665 | u16 mii_data; | ||
666 | struct au1000_private *aup; | ||
667 | |||
668 | if (!dev) { | ||
669 | printk(KERN_ERR "smsc_83C185_status error: NULL dev\n"); | ||
670 | return -1; | ||
671 | } | ||
672 | |||
673 | aup = (struct au1000_private *) dev->priv; | ||
674 | mii_data = mdio_read(dev, aup->phy_addr, MII_STATUS); | ||
675 | |||
676 | if (mii_data & MII_STAT_LINK) { | ||
677 | *link = 1; | ||
678 | mii_data = mdio_read(dev, aup->phy_addr, 0x1f); | ||
679 | if (mii_data & (1<<3)) { | ||
680 | if (mii_data & (1<<4)) { | ||
681 | *speed = IF_PORT_100BASEFX; | ||
682 | dev->if_port = IF_PORT_100BASEFX; | ||
683 | } | ||
684 | else { | ||
685 | *speed = IF_PORT_100BASETX; | ||
686 | dev->if_port = IF_PORT_100BASETX; | ||
687 | } | ||
688 | } | ||
689 | else { | ||
690 | *speed = IF_PORT_10BASET; | ||
691 | dev->if_port = IF_PORT_10BASET; | ||
692 | } | ||
693 | } | ||
694 | else { | ||
695 | *link = 0; | ||
696 | *speed = 0; | ||
697 | dev->if_port = IF_PORT_UNKNOWN; | ||
698 | } | ||
699 | return 0; | ||
700 | } | ||
701 | |||
702 | |||
703 | #ifdef CONFIG_MIPS_BOSPORUS | ||
704 | int stub_init(struct net_device *dev, int phy_addr) | ||
705 | { | ||
706 | //printk("PHY stub_init\n"); | ||
707 | return 0; | ||
708 | } | ||
709 | |||
710 | int stub_reset(struct net_device *dev, int phy_addr) | ||
711 | { | ||
712 | //printk("PHY stub_reset\n"); | ||
713 | return 0; | ||
714 | } | ||
715 | |||
716 | int | ||
717 | stub_status(struct net_device *dev, int phy_addr, u16 *link, u16 *speed) | ||
718 | { | ||
719 | //printk("PHY stub_status\n"); | ||
720 | *link = 1; | ||
721 | /* hmmm, revisit */ | ||
722 | *speed = IF_PORT_100BASEFX; | ||
723 | dev->if_port = IF_PORT_100BASEFX; | ||
724 | return 0; | ||
725 | } | ||
726 | #endif | ||
727 | |||
728 | struct phy_ops bcm_5201_ops = { | ||
729 | bcm_5201_init, | ||
730 | bcm_5201_reset, | ||
731 | bcm_5201_status, | ||
732 | }; | ||
733 | |||
734 | struct phy_ops am79c874_ops = { | ||
735 | am79c874_init, | ||
736 | am79c874_reset, | ||
737 | am79c874_status, | ||
738 | }; | ||
739 | |||
740 | struct phy_ops am79c901_ops = { | ||
741 | am79c901_init, | ||
742 | am79c901_reset, | ||
743 | am79c901_status, | ||
744 | }; | ||
745 | |||
746 | struct phy_ops lsi_80227_ops = { | ||
747 | lsi_80227_init, | ||
748 | lsi_80227_reset, | ||
749 | lsi_80227_status, | ||
750 | }; | ||
751 | |||
752 | struct phy_ops lxt971a_ops = { | ||
753 | lxt971a_init, | ||
754 | lxt971a_reset, | ||
755 | lxt971a_status, | ||
756 | }; | ||
757 | |||
758 | struct phy_ops ks8995m_ops = { | ||
759 | ks8995m_init, | ||
760 | ks8995m_reset, | ||
761 | ks8995m_status, | ||
762 | }; | ||
763 | |||
764 | struct phy_ops smsc_83C185_ops = { | ||
765 | smsc_83C185_init, | ||
766 | smsc_83C185_reset, | ||
767 | smsc_83C185_status, | ||
768 | }; | ||
769 | |||
770 | #ifdef CONFIG_MIPS_BOSPORUS | ||
771 | struct phy_ops stub_ops = { | ||
772 | stub_init, | ||
773 | stub_reset, | ||
774 | stub_status, | ||
775 | }; | ||
776 | #endif | ||
777 | |||
778 | static struct mii_chip_info { | ||
779 | const char * name; | ||
780 | u16 phy_id0; | ||
781 | u16 phy_id1; | ||
782 | struct phy_ops *phy_ops; | ||
783 | int dual_phy; | ||
784 | } mii_chip_table[] = { | ||
785 | {"Broadcom BCM5201 10/100 BaseT PHY",0x0040,0x6212, &bcm_5201_ops,0}, | ||
786 | {"Broadcom BCM5221 10/100 BaseT PHY",0x0040,0x61e4, &bcm_5201_ops,0}, | ||
787 | {"Broadcom BCM5222 10/100 BaseT PHY",0x0040,0x6322, &bcm_5201_ops,1}, | ||
788 | {"AMD 79C901 HomePNA PHY",0x0000,0x35c8, &am79c901_ops,0}, | ||
789 | {"AMD 79C874 10/100 BaseT PHY",0x0022,0x561b, &am79c874_ops,0}, | ||
790 | {"LSI 80227 10/100 BaseT PHY",0x0016,0xf840, &lsi_80227_ops,0}, | ||
791 | {"Intel LXT971A Dual Speed PHY",0x0013,0x78e2, &lxt971a_ops,0}, | ||
792 | {"Kendin KS8995M 10/100 BaseT PHY",0x0022,0x1450, &ks8995m_ops,0}, | ||
793 | {"SMSC LAN83C185 10/100 BaseT PHY",0x0007,0xc0a3, &smsc_83C185_ops,0}, | ||
794 | #ifdef CONFIG_MIPS_BOSPORUS | ||
795 | {"Stub", 0x1234, 0x5678, &stub_ops }, | ||
796 | #endif | ||
797 | {0,}, | ||
798 | }; | ||
799 | |||
800 | static int mdio_read(struct net_device *dev, int phy_id, int reg) | ||
801 | { | ||
802 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
803 | volatile u32 *mii_control_reg; | ||
804 | volatile u32 *mii_data_reg; | ||
805 | u32 timedout = 20; | ||
806 | u32 mii_control; | ||
807 | |||
808 | #ifdef CONFIG_BCM5222_DUAL_PHY | ||
809 | /* First time we probe, it's for the mac0 phy. | ||
810 | * Since we haven't determined yet that we have a dual phy, | ||
811 | * aup->mii->mii_control_reg won't be setup and we'll | ||
812 | * default to the else statement. | ||
813 | * By the time we probe for the mac1 phy, the mii_control_reg | ||
814 | * will be setup to be the address of the mac0 phy control since | ||
815 | * both phys are controlled through mac0. | ||
816 | */ | ||
817 | if (aup->mii && aup->mii->mii_control_reg) { | ||
818 | mii_control_reg = aup->mii->mii_control_reg; | ||
819 | mii_data_reg = aup->mii->mii_data_reg; | ||
820 | } | ||
821 | else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | ||
822 | /* assume both phys are controlled through mac0 */ | ||
823 | mii_control_reg = au_macs[0]->mii->mii_control_reg; | ||
824 | mii_data_reg = au_macs[0]->mii->mii_data_reg; | ||
825 | } | ||
826 | else | ||
827 | #endif | ||
828 | { | ||
829 | /* default control and data reg addresses */ | ||
830 | mii_control_reg = &aup->mac->mii_control; | ||
831 | mii_data_reg = &aup->mac->mii_data; | ||
832 | } | ||
833 | |||
834 | while (*mii_control_reg & MAC_MII_BUSY) { | ||
835 | mdelay(1); | ||
836 | if (--timedout == 0) { | ||
837 | printk(KERN_ERR "%s: read_MII busy timeout!!\n", | ||
838 | dev->name); | ||
839 | return -1; | ||
840 | } | ||
841 | } | ||
842 | |||
843 | mii_control = MAC_SET_MII_SELECT_REG(reg) | | ||
844 | MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_READ; | ||
845 | |||
846 | *mii_control_reg = mii_control; | ||
847 | |||
848 | timedout = 20; | ||
849 | while (*mii_control_reg & MAC_MII_BUSY) { | ||
850 | mdelay(1); | ||
851 | if (--timedout == 0) { | ||
852 | printk(KERN_ERR "%s: mdio_read busy timeout!!\n", | ||
853 | dev->name); | ||
854 | return -1; | ||
855 | } | ||
856 | } | ||
857 | return (int)*mii_data_reg; | ||
858 | } | ||
859 | |||
860 | static void mdio_write(struct net_device *dev, int phy_id, int reg, u16 value) | ||
861 | { | ||
862 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
863 | volatile u32 *mii_control_reg; | ||
864 | volatile u32 *mii_data_reg; | ||
865 | u32 timedout = 20; | ||
866 | u32 mii_control; | ||
867 | |||
868 | #ifdef CONFIG_BCM5222_DUAL_PHY | ||
869 | if (aup->mii && aup->mii->mii_control_reg) { | ||
870 | mii_control_reg = aup->mii->mii_control_reg; | ||
871 | mii_data_reg = aup->mii->mii_data_reg; | ||
872 | } | ||
873 | else if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | ||
874 | /* assume both phys are controlled through mac0 */ | ||
875 | mii_control_reg = au_macs[0]->mii->mii_control_reg; | ||
876 | mii_data_reg = au_macs[0]->mii->mii_data_reg; | ||
877 | } | ||
878 | else | ||
879 | #endif | ||
880 | { | ||
881 | /* default control and data reg addresses */ | ||
882 | mii_control_reg = &aup->mac->mii_control; | ||
883 | mii_data_reg = &aup->mac->mii_data; | ||
884 | } | ||
885 | |||
886 | while (*mii_control_reg & MAC_MII_BUSY) { | ||
887 | mdelay(1); | ||
888 | if (--timedout == 0) { | ||
889 | printk(KERN_ERR "%s: mdio_write busy timeout!!\n", | ||
890 | dev->name); | ||
891 | return; | ||
892 | } | ||
893 | } | ||
894 | |||
895 | mii_control = MAC_SET_MII_SELECT_REG(reg) | | ||
896 | MAC_SET_MII_SELECT_PHY(phy_id) | MAC_MII_WRITE; | ||
897 | |||
898 | *mii_data_reg = value; | ||
899 | *mii_control_reg = mii_control; | ||
900 | } | ||
901 | |||
902 | |||
903 | static void dump_mii(struct net_device *dev, int phy_id) | ||
904 | { | ||
905 | int i, val; | ||
906 | |||
907 | for (i = 0; i < 7; i++) { | ||
908 | if ((val = mdio_read(dev, phy_id, i)) >= 0) | ||
909 | printk("%s: MII Reg %d=%x\n", dev->name, i, val); | ||
910 | } | ||
911 | for (i = 16; i < 25; i++) { | ||
912 | if ((val = mdio_read(dev, phy_id, i)) >= 0) | ||
913 | printk("%s: MII Reg %d=%x\n", dev->name, i, val); | ||
914 | } | ||
915 | } | ||
916 | |||
917 | static int mii_probe (struct net_device * dev) | ||
918 | { | ||
919 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
920 | int phy_addr; | ||
921 | #ifdef CONFIG_MIPS_BOSPORUS | ||
922 | int phy_found=0; | ||
923 | #endif | ||
924 | |||
925 | /* search for total of 32 possible mii phy addresses */ | ||
926 | for (phy_addr = 0; phy_addr < 32; phy_addr++) { | ||
927 | u16 mii_status; | ||
928 | u16 phy_id0, phy_id1; | ||
929 | int i; | ||
930 | |||
931 | #ifdef CONFIG_BCM5222_DUAL_PHY | ||
932 | /* Mask the already found phy, try next one */ | ||
933 | if (au_macs[0]->mii && au_macs[0]->mii->mii_control_reg) { | ||
934 | if (au_macs[0]->phy_addr == phy_addr) | ||
935 | continue; | ||
936 | } | ||
937 | #endif | ||
938 | |||
939 | mii_status = mdio_read(dev, phy_addr, MII_STATUS); | ||
940 | if (mii_status == 0xffff || mii_status == 0x0000) | ||
941 | /* the mii is not accessable, try next one */ | ||
942 | continue; | ||
943 | |||
944 | phy_id0 = mdio_read(dev, phy_addr, MII_PHY_ID0); | ||
945 | phy_id1 = mdio_read(dev, phy_addr, MII_PHY_ID1); | ||
946 | |||
947 | /* search our mii table for the current mii */ | ||
948 | for (i = 0; mii_chip_table[i].phy_id1; i++) { | ||
949 | if (phy_id0 == mii_chip_table[i].phy_id0 && | ||
950 | phy_id1 == mii_chip_table[i].phy_id1) { | ||
951 | struct mii_phy * mii_phy = aup->mii; | ||
952 | |||
953 | printk(KERN_INFO "%s: %s at phy address %d\n", | ||
954 | dev->name, mii_chip_table[i].name, | ||
955 | phy_addr); | ||
956 | #ifdef CONFIG_MIPS_BOSPORUS | ||
957 | phy_found = 1; | ||
958 | #endif | ||
959 | mii_phy->chip_info = mii_chip_table+i; | ||
960 | aup->phy_addr = phy_addr; | ||
961 | aup->want_autoneg = 1; | ||
962 | aup->phy_ops = mii_chip_table[i].phy_ops; | ||
963 | aup->phy_ops->phy_init(dev,phy_addr); | ||
964 | |||
965 | // Check for dual-phy and then store required | ||
966 | // values and set indicators. We need to do | ||
967 | // this now since mdio_{read,write} need the | ||
968 | // control and data register addresses. | ||
969 | #ifdef CONFIG_BCM5222_DUAL_PHY | ||
970 | if ( mii_chip_table[i].dual_phy) { | ||
971 | |||
972 | /* assume both phys are controlled | ||
973 | * through MAC0. Board specific? */ | ||
974 | |||
975 | /* sanity check */ | ||
976 | if (!au_macs[0] || !au_macs[0]->mii) | ||
977 | return -1; | ||
978 | aup->mii->mii_control_reg = (u32 *) | ||
979 | &au_macs[0]->mac->mii_control; | ||
980 | aup->mii->mii_data_reg = (u32 *) | ||
981 | &au_macs[0]->mac->mii_data; | ||
982 | } | ||
983 | #endif | ||
984 | goto found; | ||
985 | } | ||
986 | } | ||
987 | } | ||
988 | found: | ||
989 | |||
990 | #ifdef CONFIG_MIPS_BOSPORUS | ||
991 | /* This is a workaround for the Micrel/Kendin 5 port switch | ||
992 | The second MAC doesn't see a PHY connected... so we need to | ||
993 | trick it into thinking we have one. | ||
994 | |||
995 | If this kernel is run on another Au1500 development board | ||
996 | the stub will be found as well as the actual PHY. However, | ||
997 | the last found PHY will be used... usually at Addr 31 (Db1500). | ||
998 | */ | ||
999 | if ( (!phy_found) ) | ||
1000 | { | ||
1001 | u16 phy_id0, phy_id1; | ||
1002 | int i; | ||
1003 | |||
1004 | phy_id0 = 0x1234; | ||
1005 | phy_id1 = 0x5678; | ||
1006 | |||
1007 | /* search our mii table for the current mii */ | ||
1008 | for (i = 0; mii_chip_table[i].phy_id1; i++) { | ||
1009 | if (phy_id0 == mii_chip_table[i].phy_id0 && | ||
1010 | phy_id1 == mii_chip_table[i].phy_id1) { | ||
1011 | struct mii_phy * mii_phy; | ||
1012 | |||
1013 | printk(KERN_INFO "%s: %s at phy address %d\n", | ||
1014 | dev->name, mii_chip_table[i].name, | ||
1015 | phy_addr); | ||
1016 | mii_phy = kmalloc(sizeof(struct mii_phy), | ||
1017 | GFP_KERNEL); | ||
1018 | if (mii_phy) { | ||
1019 | mii_phy->chip_info = mii_chip_table+i; | ||
1020 | aup->phy_addr = phy_addr; | ||
1021 | mii_phy->next = aup->mii; | ||
1022 | aup->phy_ops = | ||
1023 | mii_chip_table[i].phy_ops; | ||
1024 | aup->mii = mii_phy; | ||
1025 | aup->phy_ops->phy_init(dev,phy_addr); | ||
1026 | } else { | ||
1027 | printk(KERN_ERR "%s: out of memory\n", | ||
1028 | dev->name); | ||
1029 | return -1; | ||
1030 | } | ||
1031 | mii_phy->chip_info = mii_chip_table+i; | ||
1032 | aup->phy_addr = phy_addr; | ||
1033 | aup->phy_ops = mii_chip_table[i].phy_ops; | ||
1034 | aup->phy_ops->phy_init(dev,phy_addr); | ||
1035 | break; | ||
1036 | } | ||
1037 | } | ||
1038 | } | ||
1039 | if (aup->mac_id == 0) { | ||
1040 | /* the Bosporus phy responds to addresses 0-5 but | ||
1041 | * 5 is the correct one. | ||
1042 | */ | ||
1043 | aup->phy_addr = 5; | ||
1044 | } | ||
1045 | #endif | ||
1046 | |||
1047 | if (aup->mii->chip_info == NULL) { | ||
1048 | printk(KERN_ERR "%s: Au1x No MII transceivers found!\n", | ||
1049 | dev->name); | ||
1050 | return -1; | ||
1051 | } | ||
1052 | |||
1053 | printk(KERN_INFO "%s: Using %s as default\n", | ||
1054 | dev->name, aup->mii->chip_info->name); | ||
1055 | |||
1056 | return 0; | ||
1057 | } | ||
1058 | |||
1059 | |||
1060 | /* | ||
1061 | * Buffer allocation/deallocation routines. The buffer descriptor returned | ||
1062 | * has the virtual and dma address of a buffer suitable for | ||
1063 | * both, receive and transmit operations. | ||
1064 | */ | ||
1065 | static db_dest_t *GetFreeDB(struct au1000_private *aup) | ||
1066 | { | ||
1067 | db_dest_t *pDB; | ||
1068 | pDB = aup->pDBfree; | ||
1069 | |||
1070 | if (pDB) { | ||
1071 | aup->pDBfree = pDB->pnext; | ||
1072 | } | ||
1073 | return pDB; | ||
1074 | } | ||
1075 | |||
1076 | void ReleaseDB(struct au1000_private *aup, db_dest_t *pDB) | ||
1077 | { | ||
1078 | db_dest_t *pDBfree = aup->pDBfree; | ||
1079 | if (pDBfree) | ||
1080 | pDBfree->pnext = pDB; | ||
1081 | aup->pDBfree = pDB; | ||
1082 | } | ||
1083 | |||
1084 | static void enable_rx_tx(struct net_device *dev) | ||
1085 | { | ||
1086 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1087 | |||
1088 | if (au1000_debug > 4) | ||
1089 | printk(KERN_INFO "%s: enable_rx_tx\n", dev->name); | ||
1090 | |||
1091 | aup->mac->control |= (MAC_RX_ENABLE | MAC_TX_ENABLE); | ||
1092 | au_sync_delay(10); | ||
1093 | } | ||
1094 | |||
1095 | static void hard_stop(struct net_device *dev) | ||
1096 | { | ||
1097 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1098 | |||
1099 | if (au1000_debug > 4) | ||
1100 | printk(KERN_INFO "%s: hard stop\n", dev->name); | ||
1101 | |||
1102 | aup->mac->control &= ~(MAC_RX_ENABLE | MAC_TX_ENABLE); | ||
1103 | au_sync_delay(10); | ||
1104 | } | ||
1105 | |||
1106 | |||
1107 | static void reset_mac(struct net_device *dev) | ||
1108 | { | ||
1109 | int i; | ||
1110 | u32 flags; | ||
1111 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1112 | |||
1113 | if (au1000_debug > 4) | ||
1114 | printk(KERN_INFO "%s: reset mac, aup %x\n", | ||
1115 | dev->name, (unsigned)aup); | ||
1116 | |||
1117 | spin_lock_irqsave(&aup->lock, flags); | ||
1118 | if (aup->timer.function == &au1000_timer) {/* check if timer initted */ | ||
1119 | del_timer(&aup->timer); | ||
1120 | } | ||
1121 | |||
1122 | hard_stop(dev); | ||
1123 | #ifdef CONFIG_BCM5222_DUAL_PHY | ||
1124 | if (aup->mac_id != 0) { | ||
1125 | #endif | ||
1126 | /* If BCM5222, we can't leave MAC0 in reset because then | ||
1127 | * we can't access the dual phy for ETH1 */ | ||
1128 | *aup->enable = MAC_EN_CLOCK_ENABLE; | ||
1129 | au_sync_delay(2); | ||
1130 | *aup->enable = 0; | ||
1131 | au_sync_delay(2); | ||
1132 | #ifdef CONFIG_BCM5222_DUAL_PHY | ||
1133 | } | ||
1134 | #endif | ||
1135 | aup->tx_full = 0; | ||
1136 | for (i = 0; i < NUM_RX_DMA; i++) { | ||
1137 | /* reset control bits */ | ||
1138 | aup->rx_dma_ring[i]->buff_stat &= ~0xf; | ||
1139 | } | ||
1140 | for (i = 0; i < NUM_TX_DMA; i++) { | ||
1141 | /* reset control bits */ | ||
1142 | aup->tx_dma_ring[i]->buff_stat &= ~0xf; | ||
1143 | } | ||
1144 | spin_unlock_irqrestore(&aup->lock, flags); | ||
1145 | } | ||
1146 | |||
1147 | |||
1148 | /* | ||
1149 | * Setup the receive and transmit "rings". These pointers are the addresses | ||
1150 | * of the rx and tx MAC DMA registers so they are fixed by the hardware -- | ||
1151 | * these are not descriptors sitting in memory. | ||
1152 | */ | ||
1153 | static void | ||
1154 | setup_hw_rings(struct au1000_private *aup, u32 rx_base, u32 tx_base) | ||
1155 | { | ||
1156 | int i; | ||
1157 | |||
1158 | for (i = 0; i < NUM_RX_DMA; i++) { | ||
1159 | aup->rx_dma_ring[i] = | ||
1160 | (volatile rx_dma_t *) (rx_base + sizeof(rx_dma_t)*i); | ||
1161 | } | ||
1162 | for (i = 0; i < NUM_TX_DMA; i++) { | ||
1163 | aup->tx_dma_ring[i] = | ||
1164 | (volatile tx_dma_t *) (tx_base + sizeof(tx_dma_t)*i); | ||
1165 | } | ||
1166 | } | ||
1167 | |||
1168 | static struct { | ||
1169 | int port; | ||
1170 | u32 base_addr; | ||
1171 | u32 macen_addr; | ||
1172 | int irq; | ||
1173 | struct net_device *dev; | ||
1174 | } iflist[2]; | ||
1175 | |||
1176 | static int num_ifs; | ||
1177 | |||
1178 | /* | ||
1179 | * Setup the base address and interupt of the Au1xxx ethernet macs | ||
1180 | * based on cpu type and whether the interface is enabled in sys_pinfunc | ||
1181 | * register. The last interface is enabled if SYS_PF_NI2 (bit 4) is 0. | ||
1182 | */ | ||
1183 | static int __init au1000_init_module(void) | ||
1184 | { | ||
1185 | struct cpuinfo_mips *c = ¤t_cpu_data; | ||
1186 | int ni = (int)((au_readl(SYS_PINFUNC) & (u32)(SYS_PF_NI2)) >> 4); | ||
1187 | struct net_device *dev; | ||
1188 | int i, found_one = 0; | ||
1189 | |||
1190 | switch (c->cputype) { | ||
1191 | #ifdef CONFIG_SOC_AU1000 | ||
1192 | case CPU_AU1000: | ||
1193 | num_ifs = 2 - ni; | ||
1194 | iflist[0].base_addr = AU1000_ETH0_BASE; | ||
1195 | iflist[1].base_addr = AU1000_ETH1_BASE; | ||
1196 | iflist[0].macen_addr = AU1000_MAC0_ENABLE; | ||
1197 | iflist[1].macen_addr = AU1000_MAC1_ENABLE; | ||
1198 | iflist[0].irq = AU1000_MAC0_DMA_INT; | ||
1199 | iflist[1].irq = AU1000_MAC1_DMA_INT; | ||
1200 | break; | ||
1201 | #endif | ||
1202 | #ifdef CONFIG_SOC_AU1100 | ||
1203 | case CPU_AU1100: | ||
1204 | num_ifs = 1 - ni; | ||
1205 | iflist[0].base_addr = AU1100_ETH0_BASE; | ||
1206 | iflist[0].macen_addr = AU1100_MAC0_ENABLE; | ||
1207 | iflist[0].irq = AU1100_MAC0_DMA_INT; | ||
1208 | break; | ||
1209 | #endif | ||
1210 | #ifdef CONFIG_SOC_AU1500 | ||
1211 | case CPU_AU1500: | ||
1212 | num_ifs = 2 - ni; | ||
1213 | iflist[0].base_addr = AU1500_ETH0_BASE; | ||
1214 | iflist[1].base_addr = AU1500_ETH1_BASE; | ||
1215 | iflist[0].macen_addr = AU1500_MAC0_ENABLE; | ||
1216 | iflist[1].macen_addr = AU1500_MAC1_ENABLE; | ||
1217 | iflist[0].irq = AU1500_MAC0_DMA_INT; | ||
1218 | iflist[1].irq = AU1500_MAC1_DMA_INT; | ||
1219 | break; | ||
1220 | #endif | ||
1221 | #ifdef CONFIG_SOC_AU1550 | ||
1222 | case CPU_AU1550: | ||
1223 | num_ifs = 2 - ni; | ||
1224 | iflist[0].base_addr = AU1550_ETH0_BASE; | ||
1225 | iflist[1].base_addr = AU1550_ETH1_BASE; | ||
1226 | iflist[0].macen_addr = AU1550_MAC0_ENABLE; | ||
1227 | iflist[1].macen_addr = AU1550_MAC1_ENABLE; | ||
1228 | iflist[0].irq = AU1550_MAC0_DMA_INT; | ||
1229 | iflist[1].irq = AU1550_MAC1_DMA_INT; | ||
1230 | break; | ||
1231 | #endif | ||
1232 | default: | ||
1233 | num_ifs = 0; | ||
1234 | } | ||
1235 | for(i = 0; i < num_ifs; i++) { | ||
1236 | dev = au1000_probe(iflist[i].base_addr, iflist[i].irq, i); | ||
1237 | iflist[i].dev = dev; | ||
1238 | if (dev) | ||
1239 | found_one++; | ||
1240 | } | ||
1241 | if (!found_one) | ||
1242 | return -ENODEV; | ||
1243 | return 0; | ||
1244 | } | ||
1245 | |||
1246 | static int au1000_setup_aneg(struct net_device *dev, u32 advertise) | ||
1247 | { | ||
1248 | struct au1000_private *aup = (struct au1000_private *)dev->priv; | ||
1249 | u16 ctl, adv; | ||
1250 | |||
1251 | /* Setup standard advertise */ | ||
1252 | adv = mdio_read(dev, aup->phy_addr, MII_ADVERTISE); | ||
1253 | adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); | ||
1254 | if (advertise & ADVERTISED_10baseT_Half) | ||
1255 | adv |= ADVERTISE_10HALF; | ||
1256 | if (advertise & ADVERTISED_10baseT_Full) | ||
1257 | adv |= ADVERTISE_10FULL; | ||
1258 | if (advertise & ADVERTISED_100baseT_Half) | ||
1259 | adv |= ADVERTISE_100HALF; | ||
1260 | if (advertise & ADVERTISED_100baseT_Full) | ||
1261 | adv |= ADVERTISE_100FULL; | ||
1262 | mdio_write(dev, aup->phy_addr, MII_ADVERTISE, adv); | ||
1263 | |||
1264 | /* Start/Restart aneg */ | ||
1265 | ctl = mdio_read(dev, aup->phy_addr, MII_BMCR); | ||
1266 | ctl |= (BMCR_ANENABLE | BMCR_ANRESTART); | ||
1267 | mdio_write(dev, aup->phy_addr, MII_BMCR, ctl); | ||
1268 | |||
1269 | return 0; | ||
1270 | } | ||
1271 | |||
1272 | static int au1000_setup_forced(struct net_device *dev, int speed, int fd) | ||
1273 | { | ||
1274 | struct au1000_private *aup = (struct au1000_private *)dev->priv; | ||
1275 | u16 ctl; | ||
1276 | |||
1277 | ctl = mdio_read(dev, aup->phy_addr, MII_BMCR); | ||
1278 | ctl &= ~(BMCR_FULLDPLX | BMCR_SPEED100 | BMCR_ANENABLE); | ||
1279 | |||
1280 | /* First reset the PHY */ | ||
1281 | mdio_write(dev, aup->phy_addr, MII_BMCR, ctl | BMCR_RESET); | ||
1282 | |||
1283 | /* Select speed & duplex */ | ||
1284 | switch (speed) { | ||
1285 | case SPEED_10: | ||
1286 | break; | ||
1287 | case SPEED_100: | ||
1288 | ctl |= BMCR_SPEED100; | ||
1289 | break; | ||
1290 | case SPEED_1000: | ||
1291 | default: | ||
1292 | return -EINVAL; | ||
1293 | } | ||
1294 | if (fd == DUPLEX_FULL) | ||
1295 | ctl |= BMCR_FULLDPLX; | ||
1296 | mdio_write(dev, aup->phy_addr, MII_BMCR, ctl); | ||
1297 | |||
1298 | return 0; | ||
1299 | } | ||
1300 | |||
1301 | |||
1302 | static void | ||
1303 | au1000_start_link(struct net_device *dev, struct ethtool_cmd *cmd) | ||
1304 | { | ||
1305 | struct au1000_private *aup = (struct au1000_private *)dev->priv; | ||
1306 | u32 advertise; | ||
1307 | int autoneg; | ||
1308 | int forced_speed; | ||
1309 | int forced_duplex; | ||
1310 | |||
1311 | /* Default advertise */ | ||
1312 | advertise = GENMII_DEFAULT_ADVERTISE; | ||
1313 | autoneg = aup->want_autoneg; | ||
1314 | forced_speed = SPEED_100; | ||
1315 | forced_duplex = DUPLEX_FULL; | ||
1316 | |||
1317 | /* Setup link parameters */ | ||
1318 | if (cmd) { | ||
1319 | if (cmd->autoneg == AUTONEG_ENABLE) { | ||
1320 | advertise = cmd->advertising; | ||
1321 | autoneg = 1; | ||
1322 | } else { | ||
1323 | autoneg = 0; | ||
1324 | |||
1325 | forced_speed = cmd->speed; | ||
1326 | forced_duplex = cmd->duplex; | ||
1327 | } | ||
1328 | } | ||
1329 | |||
1330 | /* Configure PHY & start aneg */ | ||
1331 | aup->want_autoneg = autoneg; | ||
1332 | if (autoneg) | ||
1333 | au1000_setup_aneg(dev, advertise); | ||
1334 | else | ||
1335 | au1000_setup_forced(dev, forced_speed, forced_duplex); | ||
1336 | mod_timer(&aup->timer, jiffies + HZ); | ||
1337 | } | ||
1338 | |||
1339 | static int au1000_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | ||
1340 | { | ||
1341 | struct au1000_private *aup = (struct au1000_private *)dev->priv; | ||
1342 | u16 link, speed; | ||
1343 | |||
1344 | cmd->supported = GENMII_DEFAULT_FEATURES; | ||
1345 | cmd->advertising = GENMII_DEFAULT_ADVERTISE; | ||
1346 | cmd->port = PORT_MII; | ||
1347 | cmd->transceiver = XCVR_EXTERNAL; | ||
1348 | cmd->phy_address = aup->phy_addr; | ||
1349 | spin_lock_irq(&aup->lock); | ||
1350 | cmd->autoneg = aup->want_autoneg; | ||
1351 | aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); | ||
1352 | if ((speed == IF_PORT_100BASETX) || (speed == IF_PORT_100BASEFX)) | ||
1353 | cmd->speed = SPEED_100; | ||
1354 | else if (speed == IF_PORT_10BASET) | ||
1355 | cmd->speed = SPEED_10; | ||
1356 | if (link && (dev->if_port == IF_PORT_100BASEFX)) | ||
1357 | cmd->duplex = DUPLEX_FULL; | ||
1358 | else | ||
1359 | cmd->duplex = DUPLEX_HALF; | ||
1360 | spin_unlock_irq(&aup->lock); | ||
1361 | return 0; | ||
1362 | } | ||
1363 | |||
1364 | static int au1000_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | ||
1365 | { | ||
1366 | struct au1000_private *aup = (struct au1000_private *)dev->priv; | ||
1367 | unsigned long features = GENMII_DEFAULT_FEATURES; | ||
1368 | |||
1369 | if (!capable(CAP_NET_ADMIN)) | ||
1370 | return -EPERM; | ||
1371 | |||
1372 | if (cmd->autoneg != AUTONEG_ENABLE && cmd->autoneg != AUTONEG_DISABLE) | ||
1373 | return -EINVAL; | ||
1374 | if (cmd->autoneg == AUTONEG_ENABLE && cmd->advertising == 0) | ||
1375 | return -EINVAL; | ||
1376 | if (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) | ||
1377 | return -EINVAL; | ||
1378 | if (cmd->autoneg == AUTONEG_DISABLE) | ||
1379 | switch (cmd->speed) { | ||
1380 | case SPEED_10: | ||
1381 | if (cmd->duplex == DUPLEX_HALF && | ||
1382 | (features & SUPPORTED_10baseT_Half) == 0) | ||
1383 | return -EINVAL; | ||
1384 | if (cmd->duplex == DUPLEX_FULL && | ||
1385 | (features & SUPPORTED_10baseT_Full) == 0) | ||
1386 | return -EINVAL; | ||
1387 | break; | ||
1388 | case SPEED_100: | ||
1389 | if (cmd->duplex == DUPLEX_HALF && | ||
1390 | (features & SUPPORTED_100baseT_Half) == 0) | ||
1391 | return -EINVAL; | ||
1392 | if (cmd->duplex == DUPLEX_FULL && | ||
1393 | (features & SUPPORTED_100baseT_Full) == 0) | ||
1394 | return -EINVAL; | ||
1395 | break; | ||
1396 | default: | ||
1397 | return -EINVAL; | ||
1398 | } | ||
1399 | else if ((features & SUPPORTED_Autoneg) == 0) | ||
1400 | return -EINVAL; | ||
1401 | |||
1402 | spin_lock_irq(&aup->lock); | ||
1403 | au1000_start_link(dev, cmd); | ||
1404 | spin_unlock_irq(&aup->lock); | ||
1405 | return 0; | ||
1406 | } | ||
1407 | |||
1408 | static int au1000_nway_reset(struct net_device *dev) | ||
1409 | { | ||
1410 | struct au1000_private *aup = (struct au1000_private *)dev->priv; | ||
1411 | |||
1412 | if (!aup->want_autoneg) | ||
1413 | return -EINVAL; | ||
1414 | spin_lock_irq(&aup->lock); | ||
1415 | au1000_start_link(dev, NULL); | ||
1416 | spin_unlock_irq(&aup->lock); | ||
1417 | return 0; | ||
1418 | } | ||
1419 | |||
1420 | static void | ||
1421 | au1000_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | ||
1422 | { | ||
1423 | struct au1000_private *aup = (struct au1000_private *)dev->priv; | ||
1424 | |||
1425 | strcpy(info->driver, DRV_NAME); | ||
1426 | strcpy(info->version, DRV_VERSION); | ||
1427 | info->fw_version[0] = '\0'; | ||
1428 | sprintf(info->bus_info, "%s %d", DRV_NAME, aup->mac_id); | ||
1429 | info->regdump_len = 0; | ||
1430 | } | ||
1431 | |||
1432 | static u32 au1000_get_link(struct net_device *dev) | ||
1433 | { | ||
1434 | return netif_carrier_ok(dev); | ||
1435 | } | ||
1436 | |||
1437 | static struct ethtool_ops au1000_ethtool_ops = { | ||
1438 | .get_settings = au1000_get_settings, | ||
1439 | .set_settings = au1000_set_settings, | ||
1440 | .get_drvinfo = au1000_get_drvinfo, | ||
1441 | .nway_reset = au1000_nway_reset, | ||
1442 | .get_link = au1000_get_link | ||
1443 | }; | ||
1444 | |||
1445 | static struct net_device * | ||
1446 | au1000_probe(u32 ioaddr, int irq, int port_num) | ||
1447 | { | ||
1448 | static unsigned version_printed = 0; | ||
1449 | struct au1000_private *aup = NULL; | ||
1450 | struct net_device *dev = NULL; | ||
1451 | db_dest_t *pDB, *pDBfree; | ||
1452 | char *pmac, *argptr; | ||
1453 | char ethaddr[6]; | ||
1454 | int i, err; | ||
1455 | |||
1456 | if (!request_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE, "Au1x00 ENET")) | ||
1457 | return NULL; | ||
1458 | |||
1459 | if (version_printed++ == 0) | ||
1460 | printk("%s version %s %s\n", DRV_NAME, DRV_VERSION, DRV_AUTHOR); | ||
1461 | |||
1462 | dev = alloc_etherdev(sizeof(struct au1000_private)); | ||
1463 | if (!dev) { | ||
1464 | printk (KERN_ERR "au1000 eth: alloc_etherdev failed\n"); | ||
1465 | return NULL; | ||
1466 | } | ||
1467 | |||
1468 | if ((err = register_netdev(dev))) { | ||
1469 | printk(KERN_ERR "Au1x_eth Cannot register net device err %d\n", | ||
1470 | err); | ||
1471 | free_netdev(dev); | ||
1472 | return NULL; | ||
1473 | } | ||
1474 | |||
1475 | printk("%s: Au1x Ethernet found at 0x%x, irq %d\n", | ||
1476 | dev->name, ioaddr, irq); | ||
1477 | |||
1478 | aup = dev->priv; | ||
1479 | |||
1480 | /* Allocate the data buffers */ | ||
1481 | /* Snooping works fine with eth on all au1xxx */ | ||
1482 | aup->vaddr = (u32)dma_alloc_noncoherent(NULL, | ||
1483 | MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | ||
1484 | &aup->dma_addr, | ||
1485 | 0); | ||
1486 | if (!aup->vaddr) { | ||
1487 | free_netdev(dev); | ||
1488 | release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE); | ||
1489 | return NULL; | ||
1490 | } | ||
1491 | |||
1492 | /* aup->mac is the base address of the MAC's registers */ | ||
1493 | aup->mac = (volatile mac_reg_t *)((unsigned long)ioaddr); | ||
1494 | /* Setup some variables for quick register address access */ | ||
1495 | if (ioaddr == iflist[0].base_addr) | ||
1496 | { | ||
1497 | /* check env variables first */ | ||
1498 | if (!get_ethernet_addr(ethaddr)) { | ||
1499 | memcpy(au1000_mac_addr, ethaddr, sizeof(au1000_mac_addr)); | ||
1500 | } else { | ||
1501 | /* Check command line */ | ||
1502 | argptr = prom_getcmdline(); | ||
1503 | if ((pmac = strstr(argptr, "ethaddr=")) == NULL) { | ||
1504 | printk(KERN_INFO "%s: No mac address found\n", | ||
1505 | dev->name); | ||
1506 | /* use the hard coded mac addresses */ | ||
1507 | } else { | ||
1508 | str2eaddr(ethaddr, pmac + strlen("ethaddr=")); | ||
1509 | memcpy(au1000_mac_addr, ethaddr, | ||
1510 | sizeof(au1000_mac_addr)); | ||
1511 | } | ||
1512 | } | ||
1513 | aup->enable = (volatile u32 *) | ||
1514 | ((unsigned long)iflist[0].macen_addr); | ||
1515 | memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); | ||
1516 | setup_hw_rings(aup, MAC0_RX_DMA_ADDR, MAC0_TX_DMA_ADDR); | ||
1517 | aup->mac_id = 0; | ||
1518 | au_macs[0] = aup; | ||
1519 | } | ||
1520 | else | ||
1521 | if (ioaddr == iflist[1].base_addr) | ||
1522 | { | ||
1523 | aup->enable = (volatile u32 *) | ||
1524 | ((unsigned long)iflist[1].macen_addr); | ||
1525 | memcpy(dev->dev_addr, au1000_mac_addr, sizeof(au1000_mac_addr)); | ||
1526 | dev->dev_addr[4] += 0x10; | ||
1527 | setup_hw_rings(aup, MAC1_RX_DMA_ADDR, MAC1_TX_DMA_ADDR); | ||
1528 | aup->mac_id = 1; | ||
1529 | au_macs[1] = aup; | ||
1530 | } | ||
1531 | else | ||
1532 | { | ||
1533 | printk(KERN_ERR "%s: bad ioaddr\n", dev->name); | ||
1534 | } | ||
1535 | |||
1536 | /* bring the device out of reset, otherwise probing the mii | ||
1537 | * will hang */ | ||
1538 | *aup->enable = MAC_EN_CLOCK_ENABLE; | ||
1539 | au_sync_delay(2); | ||
1540 | *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | | ||
1541 | MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; | ||
1542 | au_sync_delay(2); | ||
1543 | |||
1544 | aup->mii = kmalloc(sizeof(struct mii_phy), GFP_KERNEL); | ||
1545 | if (!aup->mii) { | ||
1546 | printk(KERN_ERR "%s: out of memory\n", dev->name); | ||
1547 | goto err_out; | ||
1548 | } | ||
1549 | aup->mii->mii_control_reg = 0; | ||
1550 | aup->mii->mii_data_reg = 0; | ||
1551 | |||
1552 | if (mii_probe(dev) != 0) { | ||
1553 | goto err_out; | ||
1554 | } | ||
1555 | |||
1556 | pDBfree = NULL; | ||
1557 | /* setup the data buffer descriptors and attach a buffer to each one */ | ||
1558 | pDB = aup->db; | ||
1559 | for (i = 0; i < (NUM_TX_BUFFS+NUM_RX_BUFFS); i++) { | ||
1560 | pDB->pnext = pDBfree; | ||
1561 | pDBfree = pDB; | ||
1562 | pDB->vaddr = (u32 *)((unsigned)aup->vaddr + MAX_BUF_SIZE*i); | ||
1563 | pDB->dma_addr = (dma_addr_t)virt_to_bus(pDB->vaddr); | ||
1564 | pDB++; | ||
1565 | } | ||
1566 | aup->pDBfree = pDBfree; | ||
1567 | |||
1568 | for (i = 0; i < NUM_RX_DMA; i++) { | ||
1569 | pDB = GetFreeDB(aup); | ||
1570 | if (!pDB) { | ||
1571 | goto err_out; | ||
1572 | } | ||
1573 | aup->rx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; | ||
1574 | aup->rx_db_inuse[i] = pDB; | ||
1575 | } | ||
1576 | for (i = 0; i < NUM_TX_DMA; i++) { | ||
1577 | pDB = GetFreeDB(aup); | ||
1578 | if (!pDB) { | ||
1579 | goto err_out; | ||
1580 | } | ||
1581 | aup->tx_dma_ring[i]->buff_stat = (unsigned)pDB->dma_addr; | ||
1582 | aup->tx_dma_ring[i]->len = 0; | ||
1583 | aup->tx_db_inuse[i] = pDB; | ||
1584 | } | ||
1585 | |||
1586 | spin_lock_init(&aup->lock); | ||
1587 | dev->base_addr = ioaddr; | ||
1588 | dev->irq = irq; | ||
1589 | dev->open = au1000_open; | ||
1590 | dev->hard_start_xmit = au1000_tx; | ||
1591 | dev->stop = au1000_close; | ||
1592 | dev->get_stats = au1000_get_stats; | ||
1593 | dev->set_multicast_list = &set_rx_mode; | ||
1594 | dev->do_ioctl = &au1000_ioctl; | ||
1595 | SET_ETHTOOL_OPS(dev, &au1000_ethtool_ops); | ||
1596 | dev->set_config = &au1000_set_config; | ||
1597 | dev->tx_timeout = au1000_tx_timeout; | ||
1598 | dev->watchdog_timeo = ETH_TX_TIMEOUT; | ||
1599 | |||
1600 | /* | ||
1601 | * The boot code uses the ethernet controller, so reset it to start | ||
1602 | * fresh. au1000_init() expects that the device is in reset state. | ||
1603 | */ | ||
1604 | reset_mac(dev); | ||
1605 | |||
1606 | return dev; | ||
1607 | |||
1608 | err_out: | ||
1609 | /* here we should have a valid dev plus aup-> register addresses | ||
1610 | * so we can reset the mac properly.*/ | ||
1611 | reset_mac(dev); | ||
1612 | if (aup->mii) | ||
1613 | kfree(aup->mii); | ||
1614 | for (i = 0; i < NUM_RX_DMA; i++) { | ||
1615 | if (aup->rx_db_inuse[i]) | ||
1616 | ReleaseDB(aup, aup->rx_db_inuse[i]); | ||
1617 | } | ||
1618 | for (i = 0; i < NUM_TX_DMA; i++) { | ||
1619 | if (aup->tx_db_inuse[i]) | ||
1620 | ReleaseDB(aup, aup->tx_db_inuse[i]); | ||
1621 | } | ||
1622 | dma_free_noncoherent(NULL, | ||
1623 | MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | ||
1624 | (void *)aup->vaddr, | ||
1625 | aup->dma_addr); | ||
1626 | unregister_netdev(dev); | ||
1627 | free_netdev(dev); | ||
1628 | release_mem_region(CPHYSADDR(ioaddr), MAC_IOSIZE); | ||
1629 | return NULL; | ||
1630 | } | ||
1631 | |||
1632 | /* | ||
1633 | * Initialize the interface. | ||
1634 | * | ||
1635 | * When the device powers up, the clocks are disabled and the | ||
1636 | * mac is in reset state. When the interface is closed, we | ||
1637 | * do the same -- reset the device and disable the clocks to | ||
1638 | * conserve power. Thus, whenever au1000_init() is called, | ||
1639 | * the device should already be in reset state. | ||
1640 | */ | ||
1641 | static int au1000_init(struct net_device *dev) | ||
1642 | { | ||
1643 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1644 | u32 flags; | ||
1645 | int i; | ||
1646 | u32 control; | ||
1647 | u16 link, speed; | ||
1648 | |||
1649 | if (au1000_debug > 4) | ||
1650 | printk("%s: au1000_init\n", dev->name); | ||
1651 | |||
1652 | spin_lock_irqsave(&aup->lock, flags); | ||
1653 | |||
1654 | /* bring the device out of reset */ | ||
1655 | *aup->enable = MAC_EN_CLOCK_ENABLE; | ||
1656 | au_sync_delay(2); | ||
1657 | *aup->enable = MAC_EN_RESET0 | MAC_EN_RESET1 | | ||
1658 | MAC_EN_RESET2 | MAC_EN_CLOCK_ENABLE; | ||
1659 | au_sync_delay(20); | ||
1660 | |||
1661 | aup->mac->control = 0; | ||
1662 | aup->tx_head = (aup->tx_dma_ring[0]->buff_stat & 0xC) >> 2; | ||
1663 | aup->tx_tail = aup->tx_head; | ||
1664 | aup->rx_head = (aup->rx_dma_ring[0]->buff_stat & 0xC) >> 2; | ||
1665 | |||
1666 | aup->mac->mac_addr_high = dev->dev_addr[5]<<8 | dev->dev_addr[4]; | ||
1667 | aup->mac->mac_addr_low = dev->dev_addr[3]<<24 | dev->dev_addr[2]<<16 | | ||
1668 | dev->dev_addr[1]<<8 | dev->dev_addr[0]; | ||
1669 | |||
1670 | for (i = 0; i < NUM_RX_DMA; i++) { | ||
1671 | aup->rx_dma_ring[i]->buff_stat |= RX_DMA_ENABLE; | ||
1672 | } | ||
1673 | au_sync(); | ||
1674 | |||
1675 | aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed); | ||
1676 | control = MAC_DISABLE_RX_OWN | MAC_RX_ENABLE | MAC_TX_ENABLE; | ||
1677 | #ifndef CONFIG_CPU_LITTLE_ENDIAN | ||
1678 | control |= MAC_BIG_ENDIAN; | ||
1679 | #endif | ||
1680 | if (link && (dev->if_port == IF_PORT_100BASEFX)) { | ||
1681 | control |= MAC_FULL_DUPLEX; | ||
1682 | } | ||
1683 | |||
1684 | /* fix for startup without cable */ | ||
1685 | if (!link) | ||
1686 | dev->flags &= ~IFF_RUNNING; | ||
1687 | |||
1688 | aup->mac->control = control; | ||
1689 | aup->mac->vlan1_tag = 0x8100; /* activate vlan support */ | ||
1690 | au_sync(); | ||
1691 | |||
1692 | spin_unlock_irqrestore(&aup->lock, flags); | ||
1693 | return 0; | ||
1694 | } | ||
1695 | |||
1696 | static void au1000_timer(unsigned long data) | ||
1697 | { | ||
1698 | struct net_device *dev = (struct net_device *)data; | ||
1699 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1700 | unsigned char if_port; | ||
1701 | u16 link, speed; | ||
1702 | |||
1703 | if (!dev) { | ||
1704 | /* fatal error, don't restart the timer */ | ||
1705 | printk(KERN_ERR "au1000_timer error: NULL dev\n"); | ||
1706 | return; | ||
1707 | } | ||
1708 | |||
1709 | if_port = dev->if_port; | ||
1710 | if (aup->phy_ops->phy_status(dev, aup->phy_addr, &link, &speed) == 0) { | ||
1711 | if (link) { | ||
1712 | if (!(dev->flags & IFF_RUNNING)) { | ||
1713 | netif_carrier_on(dev); | ||
1714 | dev->flags |= IFF_RUNNING; | ||
1715 | printk(KERN_INFO "%s: link up\n", dev->name); | ||
1716 | } | ||
1717 | } | ||
1718 | else { | ||
1719 | if (dev->flags & IFF_RUNNING) { | ||
1720 | netif_carrier_off(dev); | ||
1721 | dev->flags &= ~IFF_RUNNING; | ||
1722 | dev->if_port = 0; | ||
1723 | printk(KERN_INFO "%s: link down\n", dev->name); | ||
1724 | } | ||
1725 | } | ||
1726 | } | ||
1727 | |||
1728 | if (link && (dev->if_port != if_port) && | ||
1729 | (dev->if_port != IF_PORT_UNKNOWN)) { | ||
1730 | hard_stop(dev); | ||
1731 | if (dev->if_port == IF_PORT_100BASEFX) { | ||
1732 | printk(KERN_INFO "%s: going to full duplex\n", | ||
1733 | dev->name); | ||
1734 | aup->mac->control |= MAC_FULL_DUPLEX; | ||
1735 | au_sync_delay(1); | ||
1736 | } | ||
1737 | else { | ||
1738 | aup->mac->control &= ~MAC_FULL_DUPLEX; | ||
1739 | au_sync_delay(1); | ||
1740 | } | ||
1741 | enable_rx_tx(dev); | ||
1742 | } | ||
1743 | |||
1744 | aup->timer.expires = RUN_AT((1*HZ)); | ||
1745 | aup->timer.data = (unsigned long)dev; | ||
1746 | aup->timer.function = &au1000_timer; /* timer handler */ | ||
1747 | add_timer(&aup->timer); | ||
1748 | |||
1749 | } | ||
1750 | |||
1751 | static int au1000_open(struct net_device *dev) | ||
1752 | { | ||
1753 | int retval; | ||
1754 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1755 | |||
1756 | if (au1000_debug > 4) | ||
1757 | printk("%s: open: dev=%p\n", dev->name, dev); | ||
1758 | |||
1759 | if ((retval = au1000_init(dev))) { | ||
1760 | printk(KERN_ERR "%s: error in au1000_init\n", dev->name); | ||
1761 | free_irq(dev->irq, dev); | ||
1762 | return retval; | ||
1763 | } | ||
1764 | netif_start_queue(dev); | ||
1765 | |||
1766 | if ((retval = request_irq(dev->irq, &au1000_interrupt, 0, | ||
1767 | dev->name, dev))) { | ||
1768 | printk(KERN_ERR "%s: unable to get IRQ %d\n", | ||
1769 | dev->name, dev->irq); | ||
1770 | return retval; | ||
1771 | } | ||
1772 | |||
1773 | init_timer(&aup->timer); /* used in ioctl() */ | ||
1774 | aup->timer.expires = RUN_AT((3*HZ)); | ||
1775 | aup->timer.data = (unsigned long)dev; | ||
1776 | aup->timer.function = &au1000_timer; /* timer handler */ | ||
1777 | add_timer(&aup->timer); | ||
1778 | |||
1779 | if (au1000_debug > 4) | ||
1780 | printk("%s: open: Initialization done.\n", dev->name); | ||
1781 | |||
1782 | return 0; | ||
1783 | } | ||
1784 | |||
1785 | static int au1000_close(struct net_device *dev) | ||
1786 | { | ||
1787 | u32 flags; | ||
1788 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1789 | |||
1790 | if (au1000_debug > 4) | ||
1791 | printk("%s: close: dev=%p\n", dev->name, dev); | ||
1792 | |||
1793 | reset_mac(dev); | ||
1794 | |||
1795 | spin_lock_irqsave(&aup->lock, flags); | ||
1796 | |||
1797 | /* stop the device */ | ||
1798 | netif_stop_queue(dev); | ||
1799 | |||
1800 | /* disable the interrupt */ | ||
1801 | free_irq(dev->irq, dev); | ||
1802 | spin_unlock_irqrestore(&aup->lock, flags); | ||
1803 | |||
1804 | return 0; | ||
1805 | } | ||
1806 | |||
1807 | static void __exit au1000_cleanup_module(void) | ||
1808 | { | ||
1809 | int i, j; | ||
1810 | struct net_device *dev; | ||
1811 | struct au1000_private *aup; | ||
1812 | |||
1813 | for (i = 0; i < num_ifs; i++) { | ||
1814 | dev = iflist[i].dev; | ||
1815 | if (dev) { | ||
1816 | aup = (struct au1000_private *) dev->priv; | ||
1817 | unregister_netdev(dev); | ||
1818 | if (aup->mii) | ||
1819 | kfree(aup->mii); | ||
1820 | for (j = 0; j < NUM_RX_DMA; j++) { | ||
1821 | if (aup->rx_db_inuse[j]) | ||
1822 | ReleaseDB(aup, aup->rx_db_inuse[j]); | ||
1823 | } | ||
1824 | for (j = 0; j < NUM_TX_DMA; j++) { | ||
1825 | if (aup->tx_db_inuse[j]) | ||
1826 | ReleaseDB(aup, aup->tx_db_inuse[j]); | ||
1827 | } | ||
1828 | dma_free_noncoherent(NULL, | ||
1829 | MAX_BUF_SIZE * (NUM_TX_BUFFS+NUM_RX_BUFFS), | ||
1830 | (void *)aup->vaddr, | ||
1831 | aup->dma_addr); | ||
1832 | free_netdev(dev); | ||
1833 | release_mem_region(CPHYSADDR(iflist[i].base_addr), MAC_IOSIZE); | ||
1834 | } | ||
1835 | } | ||
1836 | } | ||
1837 | |||
1838 | |||
1839 | static inline void | ||
1840 | update_tx_stats(struct net_device *dev, u32 status, u32 pkt_len) | ||
1841 | { | ||
1842 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1843 | struct net_device_stats *ps = &aup->stats; | ||
1844 | |||
1845 | ps->tx_packets++; | ||
1846 | ps->tx_bytes += pkt_len; | ||
1847 | |||
1848 | if (status & TX_FRAME_ABORTED) { | ||
1849 | if (dev->if_port == IF_PORT_100BASEFX) { | ||
1850 | if (status & (TX_JAB_TIMEOUT | TX_UNDERRUN)) { | ||
1851 | /* any other tx errors are only valid | ||
1852 | * in half duplex mode */ | ||
1853 | ps->tx_errors++; | ||
1854 | ps->tx_aborted_errors++; | ||
1855 | } | ||
1856 | } | ||
1857 | else { | ||
1858 | ps->tx_errors++; | ||
1859 | ps->tx_aborted_errors++; | ||
1860 | if (status & (TX_NO_CARRIER | TX_LOSS_CARRIER)) | ||
1861 | ps->tx_carrier_errors++; | ||
1862 | } | ||
1863 | } | ||
1864 | } | ||
1865 | |||
1866 | |||
1867 | /* | ||
1868 | * Called from the interrupt service routine to acknowledge | ||
1869 | * the TX DONE bits. This is a must if the irq is setup as | ||
1870 | * edge triggered. | ||
1871 | */ | ||
1872 | static void au1000_tx_ack(struct net_device *dev) | ||
1873 | { | ||
1874 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1875 | volatile tx_dma_t *ptxd; | ||
1876 | |||
1877 | ptxd = aup->tx_dma_ring[aup->tx_tail]; | ||
1878 | |||
1879 | while (ptxd->buff_stat & TX_T_DONE) { | ||
1880 | update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff); | ||
1881 | ptxd->buff_stat &= ~TX_T_DONE; | ||
1882 | ptxd->len = 0; | ||
1883 | au_sync(); | ||
1884 | |||
1885 | aup->tx_tail = (aup->tx_tail + 1) & (NUM_TX_DMA - 1); | ||
1886 | ptxd = aup->tx_dma_ring[aup->tx_tail]; | ||
1887 | |||
1888 | if (aup->tx_full) { | ||
1889 | aup->tx_full = 0; | ||
1890 | netif_wake_queue(dev); | ||
1891 | } | ||
1892 | } | ||
1893 | } | ||
1894 | |||
1895 | |||
1896 | /* | ||
1897 | * Au1000 transmit routine. | ||
1898 | */ | ||
1899 | static int au1000_tx(struct sk_buff *skb, struct net_device *dev) | ||
1900 | { | ||
1901 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1902 | volatile tx_dma_t *ptxd; | ||
1903 | u32 buff_stat; | ||
1904 | db_dest_t *pDB; | ||
1905 | int i; | ||
1906 | |||
1907 | if (au1000_debug > 5) | ||
1908 | printk("%s: tx: aup %x len=%d, data=%p, head %d\n", | ||
1909 | dev->name, (unsigned)aup, skb->len, | ||
1910 | skb->data, aup->tx_head); | ||
1911 | |||
1912 | ptxd = aup->tx_dma_ring[aup->tx_head]; | ||
1913 | buff_stat = ptxd->buff_stat; | ||
1914 | if (buff_stat & TX_DMA_ENABLE) { | ||
1915 | /* We've wrapped around and the transmitter is still busy */ | ||
1916 | netif_stop_queue(dev); | ||
1917 | aup->tx_full = 1; | ||
1918 | return 1; | ||
1919 | } | ||
1920 | else if (buff_stat & TX_T_DONE) { | ||
1921 | update_tx_stats(dev, ptxd->status, ptxd->len & 0x3ff); | ||
1922 | ptxd->len = 0; | ||
1923 | } | ||
1924 | |||
1925 | if (aup->tx_full) { | ||
1926 | aup->tx_full = 0; | ||
1927 | netif_wake_queue(dev); | ||
1928 | } | ||
1929 | |||
1930 | pDB = aup->tx_db_inuse[aup->tx_head]; | ||
1931 | memcpy((void *)pDB->vaddr, skb->data, skb->len); | ||
1932 | if (skb->len < ETH_ZLEN) { | ||
1933 | for (i=skb->len; i<ETH_ZLEN; i++) { | ||
1934 | ((char *)pDB->vaddr)[i] = 0; | ||
1935 | } | ||
1936 | ptxd->len = ETH_ZLEN; | ||
1937 | } | ||
1938 | else | ||
1939 | ptxd->len = skb->len; | ||
1940 | |||
1941 | ptxd->buff_stat = pDB->dma_addr | TX_DMA_ENABLE; | ||
1942 | au_sync(); | ||
1943 | dev_kfree_skb(skb); | ||
1944 | aup->tx_head = (aup->tx_head + 1) & (NUM_TX_DMA - 1); | ||
1945 | dev->trans_start = jiffies; | ||
1946 | return 0; | ||
1947 | } | ||
1948 | |||
1949 | |||
1950 | static inline void update_rx_stats(struct net_device *dev, u32 status) | ||
1951 | { | ||
1952 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1953 | struct net_device_stats *ps = &aup->stats; | ||
1954 | |||
1955 | ps->rx_packets++; | ||
1956 | if (status & RX_MCAST_FRAME) | ||
1957 | ps->multicast++; | ||
1958 | |||
1959 | if (status & RX_ERROR) { | ||
1960 | ps->rx_errors++; | ||
1961 | if (status & RX_MISSED_FRAME) | ||
1962 | ps->rx_missed_errors++; | ||
1963 | if (status & (RX_OVERLEN | RX_OVERLEN | RX_LEN_ERROR)) | ||
1964 | ps->rx_length_errors++; | ||
1965 | if (status & RX_CRC_ERROR) | ||
1966 | ps->rx_crc_errors++; | ||
1967 | if (status & RX_COLL) | ||
1968 | ps->collisions++; | ||
1969 | } | ||
1970 | else | ||
1971 | ps->rx_bytes += status & RX_FRAME_LEN_MASK; | ||
1972 | |||
1973 | } | ||
1974 | |||
1975 | /* | ||
1976 | * Au1000 receive routine. | ||
1977 | */ | ||
1978 | static int au1000_rx(struct net_device *dev) | ||
1979 | { | ||
1980 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
1981 | struct sk_buff *skb; | ||
1982 | volatile rx_dma_t *prxd; | ||
1983 | u32 buff_stat, status; | ||
1984 | db_dest_t *pDB; | ||
1985 | u32 frmlen; | ||
1986 | |||
1987 | if (au1000_debug > 5) | ||
1988 | printk("%s: au1000_rx head %d\n", dev->name, aup->rx_head); | ||
1989 | |||
1990 | prxd = aup->rx_dma_ring[aup->rx_head]; | ||
1991 | buff_stat = prxd->buff_stat; | ||
1992 | while (buff_stat & RX_T_DONE) { | ||
1993 | status = prxd->status; | ||
1994 | pDB = aup->rx_db_inuse[aup->rx_head]; | ||
1995 | update_rx_stats(dev, status); | ||
1996 | if (!(status & RX_ERROR)) { | ||
1997 | |||
1998 | /* good frame */ | ||
1999 | frmlen = (status & RX_FRAME_LEN_MASK); | ||
2000 | frmlen -= 4; /* Remove FCS */ | ||
2001 | skb = dev_alloc_skb(frmlen + 2); | ||
2002 | if (skb == NULL) { | ||
2003 | printk(KERN_ERR | ||
2004 | "%s: Memory squeeze, dropping packet.\n", | ||
2005 | dev->name); | ||
2006 | aup->stats.rx_dropped++; | ||
2007 | continue; | ||
2008 | } | ||
2009 | skb->dev = dev; | ||
2010 | skb_reserve(skb, 2); /* 16 byte IP header align */ | ||
2011 | eth_copy_and_sum(skb, | ||
2012 | (unsigned char *)pDB->vaddr, frmlen, 0); | ||
2013 | skb_put(skb, frmlen); | ||
2014 | skb->protocol = eth_type_trans(skb, dev); | ||
2015 | netif_rx(skb); /* pass the packet to upper layers */ | ||
2016 | } | ||
2017 | else { | ||
2018 | if (au1000_debug > 4) { | ||
2019 | if (status & RX_MISSED_FRAME) | ||
2020 | printk("rx miss\n"); | ||
2021 | if (status & RX_WDOG_TIMER) | ||
2022 | printk("rx wdog\n"); | ||
2023 | if (status & RX_RUNT) | ||
2024 | printk("rx runt\n"); | ||
2025 | if (status & RX_OVERLEN) | ||
2026 | printk("rx overlen\n"); | ||
2027 | if (status & RX_COLL) | ||
2028 | printk("rx coll\n"); | ||
2029 | if (status & RX_MII_ERROR) | ||
2030 | printk("rx mii error\n"); | ||
2031 | if (status & RX_CRC_ERROR) | ||
2032 | printk("rx crc error\n"); | ||
2033 | if (status & RX_LEN_ERROR) | ||
2034 | printk("rx len error\n"); | ||
2035 | if (status & RX_U_CNTRL_FRAME) | ||
2036 | printk("rx u control frame\n"); | ||
2037 | if (status & RX_MISSED_FRAME) | ||
2038 | printk("rx miss\n"); | ||
2039 | } | ||
2040 | } | ||
2041 | prxd->buff_stat = (u32)(pDB->dma_addr | RX_DMA_ENABLE); | ||
2042 | aup->rx_head = (aup->rx_head + 1) & (NUM_RX_DMA - 1); | ||
2043 | au_sync(); | ||
2044 | |||
2045 | /* next descriptor */ | ||
2046 | prxd = aup->rx_dma_ring[aup->rx_head]; | ||
2047 | buff_stat = prxd->buff_stat; | ||
2048 | dev->last_rx = jiffies; | ||
2049 | } | ||
2050 | return 0; | ||
2051 | } | ||
2052 | |||
2053 | |||
2054 | /* | ||
2055 | * Au1000 interrupt service routine. | ||
2056 | */ | ||
2057 | static irqreturn_t au1000_interrupt(int irq, void *dev_id, struct pt_regs *regs) | ||
2058 | { | ||
2059 | struct net_device *dev = (struct net_device *) dev_id; | ||
2060 | |||
2061 | if (dev == NULL) { | ||
2062 | printk(KERN_ERR "%s: isr: null dev ptr\n", dev->name); | ||
2063 | return IRQ_RETVAL(1); | ||
2064 | } | ||
2065 | |||
2066 | /* Handle RX interrupts first to minimize chance of overrun */ | ||
2067 | |||
2068 | au1000_rx(dev); | ||
2069 | au1000_tx_ack(dev); | ||
2070 | return IRQ_RETVAL(1); | ||
2071 | } | ||
2072 | |||
2073 | |||
2074 | /* | ||
2075 | * The Tx ring has been full longer than the watchdog timeout | ||
2076 | * value. The transmitter must be hung? | ||
2077 | */ | ||
2078 | static void au1000_tx_timeout(struct net_device *dev) | ||
2079 | { | ||
2080 | printk(KERN_ERR "%s: au1000_tx_timeout: dev=%p\n", dev->name, dev); | ||
2081 | reset_mac(dev); | ||
2082 | au1000_init(dev); | ||
2083 | dev->trans_start = jiffies; | ||
2084 | netif_wake_queue(dev); | ||
2085 | } | ||
2086 | |||
2087 | |||
2088 | static unsigned const ethernet_polynomial = 0x04c11db7U; | ||
2089 | static inline u32 ether_crc(int length, unsigned char *data) | ||
2090 | { | ||
2091 | int crc = -1; | ||
2092 | |||
2093 | while(--length >= 0) { | ||
2094 | unsigned char current_octet = *data++; | ||
2095 | int bit; | ||
2096 | for (bit = 0; bit < 8; bit++, current_octet >>= 1) | ||
2097 | crc = (crc << 1) ^ | ||
2098 | ((crc < 0) ^ (current_octet & 1) ? | ||
2099 | ethernet_polynomial : 0); | ||
2100 | } | ||
2101 | return crc; | ||
2102 | } | ||
2103 | |||
2104 | static void set_rx_mode(struct net_device *dev) | ||
2105 | { | ||
2106 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
2107 | |||
2108 | if (au1000_debug > 4) | ||
2109 | printk("%s: set_rx_mode: flags=%x\n", dev->name, dev->flags); | ||
2110 | |||
2111 | if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ | ||
2112 | aup->mac->control |= MAC_PROMISCUOUS; | ||
2113 | printk(KERN_INFO "%s: Promiscuous mode enabled.\n", dev->name); | ||
2114 | } else if ((dev->flags & IFF_ALLMULTI) || | ||
2115 | dev->mc_count > MULTICAST_FILTER_LIMIT) { | ||
2116 | aup->mac->control |= MAC_PASS_ALL_MULTI; | ||
2117 | aup->mac->control &= ~MAC_PROMISCUOUS; | ||
2118 | printk(KERN_INFO "%s: Pass all multicast\n", dev->name); | ||
2119 | } else { | ||
2120 | int i; | ||
2121 | struct dev_mc_list *mclist; | ||
2122 | u32 mc_filter[2]; /* Multicast hash filter */ | ||
2123 | |||
2124 | mc_filter[1] = mc_filter[0] = 0; | ||
2125 | for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; | ||
2126 | i++, mclist = mclist->next) { | ||
2127 | set_bit(ether_crc(ETH_ALEN, mclist->dmi_addr)>>26, | ||
2128 | (long *)mc_filter); | ||
2129 | } | ||
2130 | aup->mac->multi_hash_high = mc_filter[1]; | ||
2131 | aup->mac->multi_hash_low = mc_filter[0]; | ||
2132 | aup->mac->control &= ~MAC_PROMISCUOUS; | ||
2133 | aup->mac->control |= MAC_HASH_MODE; | ||
2134 | } | ||
2135 | } | ||
2136 | |||
2137 | |||
2138 | static int au1000_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | ||
2139 | { | ||
2140 | struct au1000_private *aup = (struct au1000_private *)dev->priv; | ||
2141 | u16 *data = (u16 *)&rq->ifr_ifru; | ||
2142 | |||
2143 | switch(cmd) { | ||
2144 | case SIOCDEVPRIVATE: /* Get the address of the PHY in use. */ | ||
2145 | case SIOCGMIIPHY: | ||
2146 | if (!netif_running(dev)) return -EINVAL; | ||
2147 | data[0] = aup->phy_addr; | ||
2148 | case SIOCDEVPRIVATE+1: /* Read the specified MII register. */ | ||
2149 | case SIOCGMIIREG: | ||
2150 | data[3] = mdio_read(dev, data[0], data[1]); | ||
2151 | return 0; | ||
2152 | case SIOCDEVPRIVATE+2: /* Write the specified MII register */ | ||
2153 | case SIOCSMIIREG: | ||
2154 | if (!capable(CAP_NET_ADMIN)) | ||
2155 | return -EPERM; | ||
2156 | mdio_write(dev, data[0], data[1],data[2]); | ||
2157 | return 0; | ||
2158 | default: | ||
2159 | return -EOPNOTSUPP; | ||
2160 | } | ||
2161 | |||
2162 | } | ||
2163 | |||
2164 | |||
2165 | static int au1000_set_config(struct net_device *dev, struct ifmap *map) | ||
2166 | { | ||
2167 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
2168 | u16 control; | ||
2169 | |||
2170 | if (au1000_debug > 4) { | ||
2171 | printk("%s: set_config called: dev->if_port %d map->port %x\n", | ||
2172 | dev->name, dev->if_port, map->port); | ||
2173 | } | ||
2174 | |||
2175 | switch(map->port){ | ||
2176 | case IF_PORT_UNKNOWN: /* use auto here */ | ||
2177 | printk(KERN_INFO "%s: config phy for aneg\n", | ||
2178 | dev->name); | ||
2179 | dev->if_port = map->port; | ||
2180 | /* Link Down: the timer will bring it up */ | ||
2181 | netif_carrier_off(dev); | ||
2182 | |||
2183 | /* read current control */ | ||
2184 | control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | ||
2185 | control &= ~(MII_CNTL_FDX | MII_CNTL_F100); | ||
2186 | |||
2187 | /* enable auto negotiation and reset the negotiation */ | ||
2188 | mdio_write(dev, aup->phy_addr, MII_CONTROL, | ||
2189 | control | MII_CNTL_AUTO | | ||
2190 | MII_CNTL_RST_AUTO); | ||
2191 | |||
2192 | break; | ||
2193 | |||
2194 | case IF_PORT_10BASET: /* 10BaseT */ | ||
2195 | printk(KERN_INFO "%s: config phy for 10BaseT\n", | ||
2196 | dev->name); | ||
2197 | dev->if_port = map->port; | ||
2198 | |||
2199 | /* Link Down: the timer will bring it up */ | ||
2200 | netif_carrier_off(dev); | ||
2201 | |||
2202 | /* set Speed to 10Mbps, Half Duplex */ | ||
2203 | control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | ||
2204 | control &= ~(MII_CNTL_F100 | MII_CNTL_AUTO | | ||
2205 | MII_CNTL_FDX); | ||
2206 | |||
2207 | /* disable auto negotiation and force 10M/HD mode*/ | ||
2208 | mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | ||
2209 | break; | ||
2210 | |||
2211 | case IF_PORT_100BASET: /* 100BaseT */ | ||
2212 | case IF_PORT_100BASETX: /* 100BaseTx */ | ||
2213 | printk(KERN_INFO "%s: config phy for 100BaseTX\n", | ||
2214 | dev->name); | ||
2215 | dev->if_port = map->port; | ||
2216 | |||
2217 | /* Link Down: the timer will bring it up */ | ||
2218 | netif_carrier_off(dev); | ||
2219 | |||
2220 | /* set Speed to 100Mbps, Half Duplex */ | ||
2221 | /* disable auto negotiation and enable 100MBit Mode */ | ||
2222 | control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | ||
2223 | control &= ~(MII_CNTL_AUTO | MII_CNTL_FDX); | ||
2224 | control |= MII_CNTL_F100; | ||
2225 | mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | ||
2226 | break; | ||
2227 | |||
2228 | case IF_PORT_100BASEFX: /* 100BaseFx */ | ||
2229 | printk(KERN_INFO "%s: config phy for 100BaseFX\n", | ||
2230 | dev->name); | ||
2231 | dev->if_port = map->port; | ||
2232 | |||
2233 | /* Link Down: the timer will bring it up */ | ||
2234 | netif_carrier_off(dev); | ||
2235 | |||
2236 | /* set Speed to 100Mbps, Full Duplex */ | ||
2237 | /* disable auto negotiation and enable 100MBit Mode */ | ||
2238 | control = mdio_read(dev, aup->phy_addr, MII_CONTROL); | ||
2239 | control &= ~MII_CNTL_AUTO; | ||
2240 | control |= MII_CNTL_F100 | MII_CNTL_FDX; | ||
2241 | mdio_write(dev, aup->phy_addr, MII_CONTROL, control); | ||
2242 | break; | ||
2243 | case IF_PORT_10BASE2: /* 10Base2 */ | ||
2244 | case IF_PORT_AUI: /* AUI */ | ||
2245 | /* These Modes are not supported (are they?)*/ | ||
2246 | printk(KERN_ERR "%s: 10Base2/AUI not supported", | ||
2247 | dev->name); | ||
2248 | return -EOPNOTSUPP; | ||
2249 | break; | ||
2250 | |||
2251 | default: | ||
2252 | printk(KERN_ERR "%s: Invalid media selected", | ||
2253 | dev->name); | ||
2254 | return -EINVAL; | ||
2255 | } | ||
2256 | return 0; | ||
2257 | } | ||
2258 | |||
2259 | static struct net_device_stats *au1000_get_stats(struct net_device *dev) | ||
2260 | { | ||
2261 | struct au1000_private *aup = (struct au1000_private *) dev->priv; | ||
2262 | |||
2263 | if (au1000_debug > 4) | ||
2264 | printk("%s: au1000_get_stats: dev=%p\n", dev->name, dev); | ||
2265 | |||
2266 | if (netif_device_present(dev)) { | ||
2267 | return &aup->stats; | ||
2268 | } | ||
2269 | return 0; | ||
2270 | } | ||
2271 | |||
2272 | module_init(au1000_init_module); | ||
2273 | module_exit(au1000_cleanup_module); | ||