diff options
author | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
---|---|---|
committer | Linus Torvalds <torvalds@ppc970.osdl.org> | 2005-04-16 18:20:36 -0400 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/acenic.c |
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'drivers/net/acenic.c')
-rw-r--r-- | drivers/net/acenic.c | 3271 |
1 files changed, 3271 insertions, 0 deletions
diff --git a/drivers/net/acenic.c b/drivers/net/acenic.c new file mode 100644 index 000000000000..6eea3a8accb7 --- /dev/null +++ b/drivers/net/acenic.c | |||
@@ -0,0 +1,3271 @@ | |||
1 | /* | ||
2 | * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card | ||
3 | * and other Tigon based cards. | ||
4 | * | ||
5 | * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. | ||
6 | * | ||
7 | * Thanks to Alteon and 3Com for providing hardware and documentation | ||
8 | * enabling me to write this driver. | ||
9 | * | ||
10 | * A mailing list for discussing the use of this driver has been | ||
11 | * setup, please subscribe to the lists if you have any questions | ||
12 | * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to | ||
13 | * see how to subscribe. | ||
14 | * | ||
15 | * This program is free software; you can redistribute it and/or modify | ||
16 | * it under the terms of the GNU General Public License as published by | ||
17 | * the Free Software Foundation; either version 2 of the License, or | ||
18 | * (at your option) any later version. | ||
19 | * | ||
20 | * Additional credits: | ||
21 | * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace | ||
22 | * dump support. The trace dump support has not been | ||
23 | * integrated yet however. | ||
24 | * Troy Benjegerdes: Big Endian (PPC) patches. | ||
25 | * Nate Stahl: Better out of memory handling and stats support. | ||
26 | * Aman Singla: Nasty race between interrupt handler and tx code dealing | ||
27 | * with 'testing the tx_ret_csm and setting tx_full' | ||
28 | * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping | ||
29 | * infrastructure and Sparc support | ||
30 | * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the | ||
31 | * driver under Linux/Sparc64 | ||
32 | * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards | ||
33 | * ETHTOOL_GDRVINFO support | ||
34 | * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx | ||
35 | * handler and close() cleanup. | ||
36 | * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether | ||
37 | * memory mapped IO is enabled to | ||
38 | * make the driver work on RS/6000. | ||
39 | * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem | ||
40 | * where the driver would disable | ||
41 | * bus master mode if it had to disable | ||
42 | * write and invalidate. | ||
43 | * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little | ||
44 | * endian systems. | ||
45 | * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and | ||
46 | * rx producer index when | ||
47 | * flushing the Jumbo ring. | ||
48 | * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the | ||
49 | * driver init path. | ||
50 | * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. | ||
51 | */ | ||
52 | |||
53 | #include <linux/config.h> | ||
54 | #include <linux/module.h> | ||
55 | #include <linux/moduleparam.h> | ||
56 | #include <linux/version.h> | ||
57 | #include <linux/types.h> | ||
58 | #include <linux/errno.h> | ||
59 | #include <linux/ioport.h> | ||
60 | #include <linux/pci.h> | ||
61 | #include <linux/kernel.h> | ||
62 | #include <linux/netdevice.h> | ||
63 | #include <linux/etherdevice.h> | ||
64 | #include <linux/skbuff.h> | ||
65 | #include <linux/init.h> | ||
66 | #include <linux/delay.h> | ||
67 | #include <linux/mm.h> | ||
68 | #include <linux/highmem.h> | ||
69 | #include <linux/sockios.h> | ||
70 | |||
71 | #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) | ||
72 | #include <linux/if_vlan.h> | ||
73 | #endif | ||
74 | |||
75 | #ifdef SIOCETHTOOL | ||
76 | #include <linux/ethtool.h> | ||
77 | #endif | ||
78 | |||
79 | #include <net/sock.h> | ||
80 | #include <net/ip.h> | ||
81 | |||
82 | #include <asm/system.h> | ||
83 | #include <asm/io.h> | ||
84 | #include <asm/irq.h> | ||
85 | #include <asm/byteorder.h> | ||
86 | #include <asm/uaccess.h> | ||
87 | |||
88 | |||
89 | #define DRV_NAME "acenic" | ||
90 | |||
91 | #undef INDEX_DEBUG | ||
92 | |||
93 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | ||
94 | #define ACE_IS_TIGON_I(ap) 0 | ||
95 | #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES | ||
96 | #else | ||
97 | #define ACE_IS_TIGON_I(ap) (ap->version == 1) | ||
98 | #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries | ||
99 | #endif | ||
100 | |||
101 | #ifndef PCI_VENDOR_ID_ALTEON | ||
102 | #define PCI_VENDOR_ID_ALTEON 0x12ae | ||
103 | #endif | ||
104 | #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE | ||
105 | #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 | ||
106 | #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 | ||
107 | #endif | ||
108 | #ifndef PCI_DEVICE_ID_3COM_3C985 | ||
109 | #define PCI_DEVICE_ID_3COM_3C985 0x0001 | ||
110 | #endif | ||
111 | #ifndef PCI_VENDOR_ID_NETGEAR | ||
112 | #define PCI_VENDOR_ID_NETGEAR 0x1385 | ||
113 | #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a | ||
114 | #endif | ||
115 | #ifndef PCI_DEVICE_ID_NETGEAR_GA620T | ||
116 | #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a | ||
117 | #endif | ||
118 | |||
119 | |||
120 | /* | ||
121 | * Farallon used the DEC vendor ID by mistake and they seem not | ||
122 | * to care - stinky! | ||
123 | */ | ||
124 | #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX | ||
125 | #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a | ||
126 | #endif | ||
127 | #ifndef PCI_DEVICE_ID_FARALLON_PN9100T | ||
128 | #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa | ||
129 | #endif | ||
130 | #ifndef PCI_VENDOR_ID_SGI | ||
131 | #define PCI_VENDOR_ID_SGI 0x10a9 | ||
132 | #endif | ||
133 | #ifndef PCI_DEVICE_ID_SGI_ACENIC | ||
134 | #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 | ||
135 | #endif | ||
136 | |||
137 | static struct pci_device_id acenic_pci_tbl[] = { | ||
138 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, | ||
139 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
140 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, | ||
141 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
142 | { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, | ||
143 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
144 | { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, | ||
145 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
146 | { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, | ||
147 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
148 | /* | ||
149 | * Farallon used the DEC vendor ID on their cards incorrectly, | ||
150 | * then later Alteon's ID. | ||
151 | */ | ||
152 | { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, | ||
153 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
154 | { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, | ||
155 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
156 | { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, | ||
157 | PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, | ||
158 | { } | ||
159 | }; | ||
160 | MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); | ||
161 | |||
162 | #ifndef SET_NETDEV_DEV | ||
163 | #define SET_NETDEV_DEV(net, pdev) do{} while(0) | ||
164 | #endif | ||
165 | |||
166 | #if LINUX_VERSION_CODE >= 0x2051c | ||
167 | #define ace_sync_irq(irq) synchronize_irq(irq) | ||
168 | #else | ||
169 | #define ace_sync_irq(irq) synchronize_irq() | ||
170 | #endif | ||
171 | |||
172 | #ifndef offset_in_page | ||
173 | #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) | ||
174 | #endif | ||
175 | |||
176 | #define ACE_MAX_MOD_PARMS 8 | ||
177 | #define BOARD_IDX_STATIC 0 | ||
178 | #define BOARD_IDX_OVERFLOW -1 | ||
179 | |||
180 | #if (defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)) && \ | ||
181 | defined(NETIF_F_HW_VLAN_RX) | ||
182 | #define ACENIC_DO_VLAN 1 | ||
183 | #define ACE_RCB_VLAN_FLAG RCB_FLG_VLAN_ASSIST | ||
184 | #else | ||
185 | #define ACENIC_DO_VLAN 0 | ||
186 | #define ACE_RCB_VLAN_FLAG 0 | ||
187 | #endif | ||
188 | |||
189 | #include "acenic.h" | ||
190 | |||
191 | /* | ||
192 | * These must be defined before the firmware is included. | ||
193 | */ | ||
194 | #define MAX_TEXT_LEN 96*1024 | ||
195 | #define MAX_RODATA_LEN 8*1024 | ||
196 | #define MAX_DATA_LEN 2*1024 | ||
197 | |||
198 | #include "acenic_firmware.h" | ||
199 | |||
200 | #ifndef tigon2FwReleaseLocal | ||
201 | #define tigon2FwReleaseLocal 0 | ||
202 | #endif | ||
203 | |||
204 | /* | ||
205 | * This driver currently supports Tigon I and Tigon II based cards | ||
206 | * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear | ||
207 | * GA620. The driver should also work on the SGI, DEC and Farallon | ||
208 | * versions of the card, however I have not been able to test that | ||
209 | * myself. | ||
210 | * | ||
211 | * This card is really neat, it supports receive hardware checksumming | ||
212 | * and jumbo frames (up to 9000 bytes) and does a lot of work in the | ||
213 | * firmware. Also the programming interface is quite neat, except for | ||
214 | * the parts dealing with the i2c eeprom on the card ;-) | ||
215 | * | ||
216 | * Using jumbo frames: | ||
217 | * | ||
218 | * To enable jumbo frames, simply specify an mtu between 1500 and 9000 | ||
219 | * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time | ||
220 | * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet | ||
221 | * interface number and <MTU> being the MTU value. | ||
222 | * | ||
223 | * Module parameters: | ||
224 | * | ||
225 | * When compiled as a loadable module, the driver allows for a number | ||
226 | * of module parameters to be specified. The driver supports the | ||
227 | * following module parameters: | ||
228 | * | ||
229 | * trace=<val> - Firmware trace level. This requires special traced | ||
230 | * firmware to replace the firmware supplied with | ||
231 | * the driver - for debugging purposes only. | ||
232 | * | ||
233 | * link=<val> - Link state. Normally you want to use the default link | ||
234 | * parameters set by the driver. This can be used to | ||
235 | * override these in case your switch doesn't negotiate | ||
236 | * the link properly. Valid values are: | ||
237 | * 0x0001 - Force half duplex link. | ||
238 | * 0x0002 - Do not negotiate line speed with the other end. | ||
239 | * 0x0010 - 10Mbit/sec link. | ||
240 | * 0x0020 - 100Mbit/sec link. | ||
241 | * 0x0040 - 1000Mbit/sec link. | ||
242 | * 0x0100 - Do not negotiate flow control. | ||
243 | * 0x0200 - Enable RX flow control Y | ||
244 | * 0x0400 - Enable TX flow control Y (Tigon II NICs only). | ||
245 | * Default value is 0x0270, ie. enable link+flow | ||
246 | * control negotiation. Negotiating the highest | ||
247 | * possible link speed with RX flow control enabled. | ||
248 | * | ||
249 | * When disabling link speed negotiation, only one link | ||
250 | * speed is allowed to be specified! | ||
251 | * | ||
252 | * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | ||
253 | * to wait for more packets to arive before | ||
254 | * interrupting the host, from the time the first | ||
255 | * packet arrives. | ||
256 | * | ||
257 | * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed | ||
258 | * to wait for more packets to arive in the transmit ring, | ||
259 | * before interrupting the host, after transmitting the | ||
260 | * first packet in the ring. | ||
261 | * | ||
262 | * max_tx_desc=<val> - maximum number of transmit descriptors | ||
263 | * (packets) transmitted before interrupting the host. | ||
264 | * | ||
265 | * max_rx_desc=<val> - maximum number of receive descriptors | ||
266 | * (packets) received before interrupting the host. | ||
267 | * | ||
268 | * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th | ||
269 | * increments of the NIC's on board memory to be used for | ||
270 | * transmit and receive buffers. For the 1MB NIC app. 800KB | ||
271 | * is available, on the 1/2MB NIC app. 300KB is available. | ||
272 | * 68KB will always be available as a minimum for both | ||
273 | * directions. The default value is a 50/50 split. | ||
274 | * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate | ||
275 | * operations, default (1) is to always disable this as | ||
276 | * that is what Alteon does on NT. I have not been able | ||
277 | * to measure any real performance differences with | ||
278 | * this on my systems. Set <val>=0 if you want to | ||
279 | * enable these operations. | ||
280 | * | ||
281 | * If you use more than one NIC, specify the parameters for the | ||
282 | * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to | ||
283 | * run tracing on NIC #2 but not on NIC #1 and #3. | ||
284 | * | ||
285 | * TODO: | ||
286 | * | ||
287 | * - Proper multicast support. | ||
288 | * - NIC dump support. | ||
289 | * - More tuning parameters. | ||
290 | * | ||
291 | * The mini ring is not used under Linux and I am not sure it makes sense | ||
292 | * to actually use it. | ||
293 | * | ||
294 | * New interrupt handler strategy: | ||
295 | * | ||
296 | * The old interrupt handler worked using the traditional method of | ||
297 | * replacing an skbuff with a new one when a packet arrives. However | ||
298 | * the rx rings do not need to contain a static number of buffer | ||
299 | * descriptors, thus it makes sense to move the memory allocation out | ||
300 | * of the main interrupt handler and do it in a bottom half handler | ||
301 | * and only allocate new buffers when the number of buffers in the | ||
302 | * ring is below a certain threshold. In order to avoid starving the | ||
303 | * NIC under heavy load it is however necessary to force allocation | ||
304 | * when hitting a minimum threshold. The strategy for alloction is as | ||
305 | * follows: | ||
306 | * | ||
307 | * RX_LOW_BUF_THRES - allocate buffers in the bottom half | ||
308 | * RX_PANIC_LOW_THRES - we are very low on buffers, allocate | ||
309 | * the buffers in the interrupt handler | ||
310 | * RX_RING_THRES - maximum number of buffers in the rx ring | ||
311 | * RX_MINI_THRES - maximum number of buffers in the mini ring | ||
312 | * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring | ||
313 | * | ||
314 | * One advantagous side effect of this allocation approach is that the | ||
315 | * entire rx processing can be done without holding any spin lock | ||
316 | * since the rx rings and registers are totally independent of the tx | ||
317 | * ring and its registers. This of course includes the kmalloc's of | ||
318 | * new skb's. Thus start_xmit can run in parallel with rx processing | ||
319 | * and the memory allocation on SMP systems. | ||
320 | * | ||
321 | * Note that running the skb reallocation in a bottom half opens up | ||
322 | * another can of races which needs to be handled properly. In | ||
323 | * particular it can happen that the interrupt handler tries to run | ||
324 | * the reallocation while the bottom half is either running on another | ||
325 | * CPU or was interrupted on the same CPU. To get around this the | ||
326 | * driver uses bitops to prevent the reallocation routines from being | ||
327 | * reentered. | ||
328 | * | ||
329 | * TX handling can also be done without holding any spin lock, wheee | ||
330 | * this is fun! since tx_ret_csm is only written to by the interrupt | ||
331 | * handler. The case to be aware of is when shutting down the device | ||
332 | * and cleaning up where it is necessary to make sure that | ||
333 | * start_xmit() is not running while this is happening. Well DaveM | ||
334 | * informs me that this case is already protected against ... bye bye | ||
335 | * Mr. Spin Lock, it was nice to know you. | ||
336 | * | ||
337 | * TX interrupts are now partly disabled so the NIC will only generate | ||
338 | * TX interrupts for the number of coal ticks, not for the number of | ||
339 | * TX packets in the queue. This should reduce the number of TX only, | ||
340 | * ie. when no RX processing is done, interrupts seen. | ||
341 | */ | ||
342 | |||
343 | /* | ||
344 | * Threshold values for RX buffer allocation - the low water marks for | ||
345 | * when to start refilling the rings are set to 75% of the ring | ||
346 | * sizes. It seems to make sense to refill the rings entirely from the | ||
347 | * intrrupt handler once it gets below the panic threshold, that way | ||
348 | * we don't risk that the refilling is moved to another CPU when the | ||
349 | * one running the interrupt handler just got the slab code hot in its | ||
350 | * cache. | ||
351 | */ | ||
352 | #define RX_RING_SIZE 72 | ||
353 | #define RX_MINI_SIZE 64 | ||
354 | #define RX_JUMBO_SIZE 48 | ||
355 | |||
356 | #define RX_PANIC_STD_THRES 16 | ||
357 | #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 | ||
358 | #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 | ||
359 | #define RX_PANIC_MINI_THRES 12 | ||
360 | #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 | ||
361 | #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 | ||
362 | #define RX_PANIC_JUMBO_THRES 6 | ||
363 | #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 | ||
364 | #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 | ||
365 | |||
366 | |||
367 | /* | ||
368 | * Size of the mini ring entries, basically these just should be big | ||
369 | * enough to take TCP ACKs | ||
370 | */ | ||
371 | #define ACE_MINI_SIZE 100 | ||
372 | |||
373 | #define ACE_MINI_BUFSIZE ACE_MINI_SIZE | ||
374 | #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) | ||
375 | #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) | ||
376 | |||
377 | /* | ||
378 | * There seems to be a magic difference in the effect between 995 and 996 | ||
379 | * but little difference between 900 and 995 ... no idea why. | ||
380 | * | ||
381 | * There is now a default set of tuning parameters which is set, depending | ||
382 | * on whether or not the user enables Jumbo frames. It's assumed that if | ||
383 | * Jumbo frames are enabled, the user wants optimal tuning for that case. | ||
384 | */ | ||
385 | #define DEF_TX_COAL 400 /* 996 */ | ||
386 | #define DEF_TX_MAX_DESC 60 /* was 40 */ | ||
387 | #define DEF_RX_COAL 120 /* 1000 */ | ||
388 | #define DEF_RX_MAX_DESC 25 | ||
389 | #define DEF_TX_RATIO 21 /* 24 */ | ||
390 | |||
391 | #define DEF_JUMBO_TX_COAL 20 | ||
392 | #define DEF_JUMBO_TX_MAX_DESC 60 | ||
393 | #define DEF_JUMBO_RX_COAL 30 | ||
394 | #define DEF_JUMBO_RX_MAX_DESC 6 | ||
395 | #define DEF_JUMBO_TX_RATIO 21 | ||
396 | |||
397 | #if tigon2FwReleaseLocal < 20001118 | ||
398 | /* | ||
399 | * Standard firmware and early modifications duplicate | ||
400 | * IRQ load without this flag (coal timer is never reset). | ||
401 | * Note that with this flag tx_coal should be less than | ||
402 | * time to xmit full tx ring. | ||
403 | * 400usec is not so bad for tx ring size of 128. | ||
404 | */ | ||
405 | #define TX_COAL_INTS_ONLY 1 /* worth it */ | ||
406 | #else | ||
407 | /* | ||
408 | * With modified firmware, this is not necessary, but still useful. | ||
409 | */ | ||
410 | #define TX_COAL_INTS_ONLY 1 | ||
411 | #endif | ||
412 | |||
413 | #define DEF_TRACE 0 | ||
414 | #define DEF_STAT (2 * TICKS_PER_SEC) | ||
415 | |||
416 | |||
417 | static int link[ACE_MAX_MOD_PARMS]; | ||
418 | static int trace[ACE_MAX_MOD_PARMS]; | ||
419 | static int tx_coal_tick[ACE_MAX_MOD_PARMS]; | ||
420 | static int rx_coal_tick[ACE_MAX_MOD_PARMS]; | ||
421 | static int max_tx_desc[ACE_MAX_MOD_PARMS]; | ||
422 | static int max_rx_desc[ACE_MAX_MOD_PARMS]; | ||
423 | static int tx_ratio[ACE_MAX_MOD_PARMS]; | ||
424 | static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; | ||
425 | |||
426 | MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); | ||
427 | MODULE_LICENSE("GPL"); | ||
428 | MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); | ||
429 | |||
430 | module_param_array(link, int, NULL, 0); | ||
431 | module_param_array(trace, int, NULL, 0); | ||
432 | module_param_array(tx_coal_tick, int, NULL, 0); | ||
433 | module_param_array(max_tx_desc, int, NULL, 0); | ||
434 | module_param_array(rx_coal_tick, int, NULL, 0); | ||
435 | module_param_array(max_rx_desc, int, NULL, 0); | ||
436 | module_param_array(tx_ratio, int, NULL, 0); | ||
437 | MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); | ||
438 | MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); | ||
439 | MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); | ||
440 | MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); | ||
441 | MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); | ||
442 | MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); | ||
443 | MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); | ||
444 | |||
445 | |||
446 | static char version[] __devinitdata = | ||
447 | "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n" | ||
448 | " http://home.cern.ch/~jes/gige/acenic.html\n"; | ||
449 | |||
450 | static int ace_get_settings(struct net_device *, struct ethtool_cmd *); | ||
451 | static int ace_set_settings(struct net_device *, struct ethtool_cmd *); | ||
452 | static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); | ||
453 | |||
454 | static struct ethtool_ops ace_ethtool_ops = { | ||
455 | .get_settings = ace_get_settings, | ||
456 | .set_settings = ace_set_settings, | ||
457 | .get_drvinfo = ace_get_drvinfo, | ||
458 | }; | ||
459 | |||
460 | static void ace_watchdog(struct net_device *dev); | ||
461 | |||
462 | static int __devinit acenic_probe_one(struct pci_dev *pdev, | ||
463 | const struct pci_device_id *id) | ||
464 | { | ||
465 | struct net_device *dev; | ||
466 | struct ace_private *ap; | ||
467 | static int boards_found; | ||
468 | |||
469 | dev = alloc_etherdev(sizeof(struct ace_private)); | ||
470 | if (dev == NULL) { | ||
471 | printk(KERN_ERR "acenic: Unable to allocate " | ||
472 | "net_device structure!\n"); | ||
473 | return -ENOMEM; | ||
474 | } | ||
475 | |||
476 | SET_MODULE_OWNER(dev); | ||
477 | SET_NETDEV_DEV(dev, &pdev->dev); | ||
478 | |||
479 | ap = dev->priv; | ||
480 | ap->pdev = pdev; | ||
481 | ap->name = pci_name(pdev); | ||
482 | |||
483 | dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; | ||
484 | #if ACENIC_DO_VLAN | ||
485 | dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; | ||
486 | dev->vlan_rx_register = ace_vlan_rx_register; | ||
487 | dev->vlan_rx_kill_vid = ace_vlan_rx_kill_vid; | ||
488 | #endif | ||
489 | if (1) { | ||
490 | dev->tx_timeout = &ace_watchdog; | ||
491 | dev->watchdog_timeo = 5*HZ; | ||
492 | } | ||
493 | |||
494 | dev->open = &ace_open; | ||
495 | dev->stop = &ace_close; | ||
496 | dev->hard_start_xmit = &ace_start_xmit; | ||
497 | dev->get_stats = &ace_get_stats; | ||
498 | dev->set_multicast_list = &ace_set_multicast_list; | ||
499 | SET_ETHTOOL_OPS(dev, &ace_ethtool_ops); | ||
500 | dev->set_mac_address = &ace_set_mac_addr; | ||
501 | dev->change_mtu = &ace_change_mtu; | ||
502 | |||
503 | /* we only display this string ONCE */ | ||
504 | if (!boards_found) | ||
505 | printk(version); | ||
506 | |||
507 | if (pci_enable_device(pdev)) | ||
508 | goto fail_free_netdev; | ||
509 | |||
510 | /* | ||
511 | * Enable master mode before we start playing with the | ||
512 | * pci_command word since pci_set_master() will modify | ||
513 | * it. | ||
514 | */ | ||
515 | pci_set_master(pdev); | ||
516 | |||
517 | pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); | ||
518 | |||
519 | /* OpenFirmware on Mac's does not set this - DOH.. */ | ||
520 | if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { | ||
521 | printk(KERN_INFO "%s: Enabling PCI Memory Mapped " | ||
522 | "access - was not enabled by BIOS/Firmware\n", | ||
523 | ap->name); | ||
524 | ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; | ||
525 | pci_write_config_word(ap->pdev, PCI_COMMAND, | ||
526 | ap->pci_command); | ||
527 | wmb(); | ||
528 | } | ||
529 | |||
530 | pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); | ||
531 | if (ap->pci_latency <= 0x40) { | ||
532 | ap->pci_latency = 0x40; | ||
533 | pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); | ||
534 | } | ||
535 | |||
536 | /* | ||
537 | * Remap the regs into kernel space - this is abuse of | ||
538 | * dev->base_addr since it was means for I/O port | ||
539 | * addresses but who gives a damn. | ||
540 | */ | ||
541 | dev->base_addr = pci_resource_start(pdev, 0); | ||
542 | ap->regs = ioremap(dev->base_addr, 0x4000); | ||
543 | if (!ap->regs) { | ||
544 | printk(KERN_ERR "%s: Unable to map I/O register, " | ||
545 | "AceNIC %i will be disabled.\n", | ||
546 | ap->name, boards_found); | ||
547 | goto fail_free_netdev; | ||
548 | } | ||
549 | |||
550 | switch(pdev->vendor) { | ||
551 | case PCI_VENDOR_ID_ALTEON: | ||
552 | if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { | ||
553 | printk(KERN_INFO "%s: Farallon PN9100-T ", | ||
554 | ap->name); | ||
555 | } else { | ||
556 | printk(KERN_INFO "%s: Alteon AceNIC ", | ||
557 | ap->name); | ||
558 | } | ||
559 | break; | ||
560 | case PCI_VENDOR_ID_3COM: | ||
561 | printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); | ||
562 | break; | ||
563 | case PCI_VENDOR_ID_NETGEAR: | ||
564 | printk(KERN_INFO "%s: NetGear GA620 ", ap->name); | ||
565 | break; | ||
566 | case PCI_VENDOR_ID_DEC: | ||
567 | if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { | ||
568 | printk(KERN_INFO "%s: Farallon PN9000-SX ", | ||
569 | ap->name); | ||
570 | break; | ||
571 | } | ||
572 | case PCI_VENDOR_ID_SGI: | ||
573 | printk(KERN_INFO "%s: SGI AceNIC ", ap->name); | ||
574 | break; | ||
575 | default: | ||
576 | printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); | ||
577 | break; | ||
578 | } | ||
579 | |||
580 | printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); | ||
581 | #ifdef __sparc__ | ||
582 | printk("irq %s\n", __irq_itoa(pdev->irq)); | ||
583 | #else | ||
584 | printk("irq %i\n", pdev->irq); | ||
585 | #endif | ||
586 | |||
587 | #ifdef CONFIG_ACENIC_OMIT_TIGON_I | ||
588 | if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { | ||
589 | printk(KERN_ERR "%s: Driver compiled without Tigon I" | ||
590 | " support - NIC disabled\n", dev->name); | ||
591 | goto fail_uninit; | ||
592 | } | ||
593 | #endif | ||
594 | |||
595 | if (ace_allocate_descriptors(dev)) | ||
596 | goto fail_free_netdev; | ||
597 | |||
598 | #ifdef MODULE | ||
599 | if (boards_found >= ACE_MAX_MOD_PARMS) | ||
600 | ap->board_idx = BOARD_IDX_OVERFLOW; | ||
601 | else | ||
602 | ap->board_idx = boards_found; | ||
603 | #else | ||
604 | ap->board_idx = BOARD_IDX_STATIC; | ||
605 | #endif | ||
606 | |||
607 | if (ace_init(dev)) | ||
608 | goto fail_free_netdev; | ||
609 | |||
610 | if (register_netdev(dev)) { | ||
611 | printk(KERN_ERR "acenic: device registration failed\n"); | ||
612 | goto fail_uninit; | ||
613 | } | ||
614 | ap->name = dev->name; | ||
615 | |||
616 | if (ap->pci_using_dac) | ||
617 | dev->features |= NETIF_F_HIGHDMA; | ||
618 | |||
619 | pci_set_drvdata(pdev, dev); | ||
620 | |||
621 | boards_found++; | ||
622 | return 0; | ||
623 | |||
624 | fail_uninit: | ||
625 | ace_init_cleanup(dev); | ||
626 | fail_free_netdev: | ||
627 | free_netdev(dev); | ||
628 | return -ENODEV; | ||
629 | } | ||
630 | |||
631 | static void __devexit acenic_remove_one(struct pci_dev *pdev) | ||
632 | { | ||
633 | struct net_device *dev = pci_get_drvdata(pdev); | ||
634 | struct ace_private *ap = netdev_priv(dev); | ||
635 | struct ace_regs __iomem *regs = ap->regs; | ||
636 | short i; | ||
637 | |||
638 | unregister_netdev(dev); | ||
639 | |||
640 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | ||
641 | if (ap->version >= 2) | ||
642 | writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | ||
643 | |||
644 | /* | ||
645 | * This clears any pending interrupts | ||
646 | */ | ||
647 | writel(1, ®s->Mb0Lo); | ||
648 | readl(®s->CpuCtrl); /* flush */ | ||
649 | |||
650 | /* | ||
651 | * Make sure no other CPUs are processing interrupts | ||
652 | * on the card before the buffers are being released. | ||
653 | * Otherwise one might experience some `interesting' | ||
654 | * effects. | ||
655 | * | ||
656 | * Then release the RX buffers - jumbo buffers were | ||
657 | * already released in ace_close(). | ||
658 | */ | ||
659 | ace_sync_irq(dev->irq); | ||
660 | |||
661 | for (i = 0; i < RX_STD_RING_ENTRIES; i++) { | ||
662 | struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; | ||
663 | |||
664 | if (skb) { | ||
665 | struct ring_info *ringp; | ||
666 | dma_addr_t mapping; | ||
667 | |||
668 | ringp = &ap->skb->rx_std_skbuff[i]; | ||
669 | mapping = pci_unmap_addr(ringp, mapping); | ||
670 | pci_unmap_page(ap->pdev, mapping, | ||
671 | ACE_STD_BUFSIZE, | ||
672 | PCI_DMA_FROMDEVICE); | ||
673 | |||
674 | ap->rx_std_ring[i].size = 0; | ||
675 | ap->skb->rx_std_skbuff[i].skb = NULL; | ||
676 | dev_kfree_skb(skb); | ||
677 | } | ||
678 | } | ||
679 | |||
680 | if (ap->version >= 2) { | ||
681 | for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { | ||
682 | struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; | ||
683 | |||
684 | if (skb) { | ||
685 | struct ring_info *ringp; | ||
686 | dma_addr_t mapping; | ||
687 | |||
688 | ringp = &ap->skb->rx_mini_skbuff[i]; | ||
689 | mapping = pci_unmap_addr(ringp,mapping); | ||
690 | pci_unmap_page(ap->pdev, mapping, | ||
691 | ACE_MINI_BUFSIZE, | ||
692 | PCI_DMA_FROMDEVICE); | ||
693 | |||
694 | ap->rx_mini_ring[i].size = 0; | ||
695 | ap->skb->rx_mini_skbuff[i].skb = NULL; | ||
696 | dev_kfree_skb(skb); | ||
697 | } | ||
698 | } | ||
699 | } | ||
700 | |||
701 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | ||
702 | struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; | ||
703 | if (skb) { | ||
704 | struct ring_info *ringp; | ||
705 | dma_addr_t mapping; | ||
706 | |||
707 | ringp = &ap->skb->rx_jumbo_skbuff[i]; | ||
708 | mapping = pci_unmap_addr(ringp, mapping); | ||
709 | pci_unmap_page(ap->pdev, mapping, | ||
710 | ACE_JUMBO_BUFSIZE, | ||
711 | PCI_DMA_FROMDEVICE); | ||
712 | |||
713 | ap->rx_jumbo_ring[i].size = 0; | ||
714 | ap->skb->rx_jumbo_skbuff[i].skb = NULL; | ||
715 | dev_kfree_skb(skb); | ||
716 | } | ||
717 | } | ||
718 | |||
719 | ace_init_cleanup(dev); | ||
720 | free_netdev(dev); | ||
721 | } | ||
722 | |||
723 | static struct pci_driver acenic_pci_driver = { | ||
724 | .name = "acenic", | ||
725 | .id_table = acenic_pci_tbl, | ||
726 | .probe = acenic_probe_one, | ||
727 | .remove = __devexit_p(acenic_remove_one), | ||
728 | }; | ||
729 | |||
730 | static int __init acenic_init(void) | ||
731 | { | ||
732 | return pci_module_init(&acenic_pci_driver); | ||
733 | } | ||
734 | |||
735 | static void __exit acenic_exit(void) | ||
736 | { | ||
737 | pci_unregister_driver(&acenic_pci_driver); | ||
738 | } | ||
739 | |||
740 | module_init(acenic_init); | ||
741 | module_exit(acenic_exit); | ||
742 | |||
743 | static void ace_free_descriptors(struct net_device *dev) | ||
744 | { | ||
745 | struct ace_private *ap = netdev_priv(dev); | ||
746 | int size; | ||
747 | |||
748 | if (ap->rx_std_ring != NULL) { | ||
749 | size = (sizeof(struct rx_desc) * | ||
750 | (RX_STD_RING_ENTRIES + | ||
751 | RX_JUMBO_RING_ENTRIES + | ||
752 | RX_MINI_RING_ENTRIES + | ||
753 | RX_RETURN_RING_ENTRIES)); | ||
754 | pci_free_consistent(ap->pdev, size, ap->rx_std_ring, | ||
755 | ap->rx_ring_base_dma); | ||
756 | ap->rx_std_ring = NULL; | ||
757 | ap->rx_jumbo_ring = NULL; | ||
758 | ap->rx_mini_ring = NULL; | ||
759 | ap->rx_return_ring = NULL; | ||
760 | } | ||
761 | if (ap->evt_ring != NULL) { | ||
762 | size = (sizeof(struct event) * EVT_RING_ENTRIES); | ||
763 | pci_free_consistent(ap->pdev, size, ap->evt_ring, | ||
764 | ap->evt_ring_dma); | ||
765 | ap->evt_ring = NULL; | ||
766 | } | ||
767 | if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { | ||
768 | size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | ||
769 | pci_free_consistent(ap->pdev, size, ap->tx_ring, | ||
770 | ap->tx_ring_dma); | ||
771 | } | ||
772 | ap->tx_ring = NULL; | ||
773 | |||
774 | if (ap->evt_prd != NULL) { | ||
775 | pci_free_consistent(ap->pdev, sizeof(u32), | ||
776 | (void *)ap->evt_prd, ap->evt_prd_dma); | ||
777 | ap->evt_prd = NULL; | ||
778 | } | ||
779 | if (ap->rx_ret_prd != NULL) { | ||
780 | pci_free_consistent(ap->pdev, sizeof(u32), | ||
781 | (void *)ap->rx_ret_prd, | ||
782 | ap->rx_ret_prd_dma); | ||
783 | ap->rx_ret_prd = NULL; | ||
784 | } | ||
785 | if (ap->tx_csm != NULL) { | ||
786 | pci_free_consistent(ap->pdev, sizeof(u32), | ||
787 | (void *)ap->tx_csm, ap->tx_csm_dma); | ||
788 | ap->tx_csm = NULL; | ||
789 | } | ||
790 | } | ||
791 | |||
792 | |||
793 | static int ace_allocate_descriptors(struct net_device *dev) | ||
794 | { | ||
795 | struct ace_private *ap = netdev_priv(dev); | ||
796 | int size; | ||
797 | |||
798 | size = (sizeof(struct rx_desc) * | ||
799 | (RX_STD_RING_ENTRIES + | ||
800 | RX_JUMBO_RING_ENTRIES + | ||
801 | RX_MINI_RING_ENTRIES + | ||
802 | RX_RETURN_RING_ENTRIES)); | ||
803 | |||
804 | ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, | ||
805 | &ap->rx_ring_base_dma); | ||
806 | if (ap->rx_std_ring == NULL) | ||
807 | goto fail; | ||
808 | |||
809 | ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; | ||
810 | ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; | ||
811 | ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; | ||
812 | |||
813 | size = (sizeof(struct event) * EVT_RING_ENTRIES); | ||
814 | |||
815 | ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); | ||
816 | |||
817 | if (ap->evt_ring == NULL) | ||
818 | goto fail; | ||
819 | |||
820 | /* | ||
821 | * Only allocate a host TX ring for the Tigon II, the Tigon I | ||
822 | * has to use PCI registers for this ;-( | ||
823 | */ | ||
824 | if (!ACE_IS_TIGON_I(ap)) { | ||
825 | size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); | ||
826 | |||
827 | ap->tx_ring = pci_alloc_consistent(ap->pdev, size, | ||
828 | &ap->tx_ring_dma); | ||
829 | |||
830 | if (ap->tx_ring == NULL) | ||
831 | goto fail; | ||
832 | } | ||
833 | |||
834 | ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | ||
835 | &ap->evt_prd_dma); | ||
836 | if (ap->evt_prd == NULL) | ||
837 | goto fail; | ||
838 | |||
839 | ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), | ||
840 | &ap->rx_ret_prd_dma); | ||
841 | if (ap->rx_ret_prd == NULL) | ||
842 | goto fail; | ||
843 | |||
844 | ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), | ||
845 | &ap->tx_csm_dma); | ||
846 | if (ap->tx_csm == NULL) | ||
847 | goto fail; | ||
848 | |||
849 | return 0; | ||
850 | |||
851 | fail: | ||
852 | /* Clean up. */ | ||
853 | ace_init_cleanup(dev); | ||
854 | return 1; | ||
855 | } | ||
856 | |||
857 | |||
858 | /* | ||
859 | * Generic cleanup handling data allocated during init. Used when the | ||
860 | * module is unloaded or if an error occurs during initialization | ||
861 | */ | ||
862 | static void ace_init_cleanup(struct net_device *dev) | ||
863 | { | ||
864 | struct ace_private *ap; | ||
865 | |||
866 | ap = netdev_priv(dev); | ||
867 | |||
868 | ace_free_descriptors(dev); | ||
869 | |||
870 | if (ap->info) | ||
871 | pci_free_consistent(ap->pdev, sizeof(struct ace_info), | ||
872 | ap->info, ap->info_dma); | ||
873 | if (ap->skb) | ||
874 | kfree(ap->skb); | ||
875 | if (ap->trace_buf) | ||
876 | kfree(ap->trace_buf); | ||
877 | |||
878 | if (dev->irq) | ||
879 | free_irq(dev->irq, dev); | ||
880 | |||
881 | iounmap(ap->regs); | ||
882 | } | ||
883 | |||
884 | |||
885 | /* | ||
886 | * Commands are considered to be slow. | ||
887 | */ | ||
888 | static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) | ||
889 | { | ||
890 | u32 idx; | ||
891 | |||
892 | idx = readl(®s->CmdPrd); | ||
893 | |||
894 | writel(*(u32 *)(cmd), ®s->CmdRng[idx]); | ||
895 | idx = (idx + 1) % CMD_RING_ENTRIES; | ||
896 | |||
897 | writel(idx, ®s->CmdPrd); | ||
898 | } | ||
899 | |||
900 | |||
901 | static int __devinit ace_init(struct net_device *dev) | ||
902 | { | ||
903 | struct ace_private *ap; | ||
904 | struct ace_regs __iomem *regs; | ||
905 | struct ace_info *info = NULL; | ||
906 | struct pci_dev *pdev; | ||
907 | unsigned long myjif; | ||
908 | u64 tmp_ptr; | ||
909 | u32 tig_ver, mac1, mac2, tmp, pci_state; | ||
910 | int board_idx, ecode = 0; | ||
911 | short i; | ||
912 | unsigned char cache_size; | ||
913 | |||
914 | ap = netdev_priv(dev); | ||
915 | regs = ap->regs; | ||
916 | |||
917 | board_idx = ap->board_idx; | ||
918 | |||
919 | /* | ||
920 | * aman@sgi.com - its useful to do a NIC reset here to | ||
921 | * address the `Firmware not running' problem subsequent | ||
922 | * to any crashes involving the NIC | ||
923 | */ | ||
924 | writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); | ||
925 | readl(®s->HostCtrl); /* PCI write posting */ | ||
926 | udelay(5); | ||
927 | |||
928 | /* | ||
929 | * Don't access any other registers before this point! | ||
930 | */ | ||
931 | #ifdef __BIG_ENDIAN | ||
932 | /* | ||
933 | * This will most likely need BYTE_SWAP once we switch | ||
934 | * to using __raw_writel() | ||
935 | */ | ||
936 | writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), | ||
937 | ®s->HostCtrl); | ||
938 | #else | ||
939 | writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), | ||
940 | ®s->HostCtrl); | ||
941 | #endif | ||
942 | readl(®s->HostCtrl); /* PCI write posting */ | ||
943 | |||
944 | /* | ||
945 | * Stop the NIC CPU and clear pending interrupts | ||
946 | */ | ||
947 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | ||
948 | readl(®s->CpuCtrl); /* PCI write posting */ | ||
949 | writel(0, ®s->Mb0Lo); | ||
950 | |||
951 | tig_ver = readl(®s->HostCtrl) >> 28; | ||
952 | |||
953 | switch(tig_ver){ | ||
954 | #ifndef CONFIG_ACENIC_OMIT_TIGON_I | ||
955 | case 4: | ||
956 | case 5: | ||
957 | printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", | ||
958 | tig_ver, tigonFwReleaseMajor, tigonFwReleaseMinor, | ||
959 | tigonFwReleaseFix); | ||
960 | writel(0, ®s->LocalCtrl); | ||
961 | ap->version = 1; | ||
962 | ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; | ||
963 | break; | ||
964 | #endif | ||
965 | case 6: | ||
966 | printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", | ||
967 | tig_ver, tigon2FwReleaseMajor, tigon2FwReleaseMinor, | ||
968 | tigon2FwReleaseFix); | ||
969 | writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); | ||
970 | readl(®s->CpuBCtrl); /* PCI write posting */ | ||
971 | /* | ||
972 | * The SRAM bank size does _not_ indicate the amount | ||
973 | * of memory on the card, it controls the _bank_ size! | ||
974 | * Ie. a 1MB AceNIC will have two banks of 512KB. | ||
975 | */ | ||
976 | writel(SRAM_BANK_512K, ®s->LocalCtrl); | ||
977 | writel(SYNC_SRAM_TIMING, ®s->MiscCfg); | ||
978 | ap->version = 2; | ||
979 | ap->tx_ring_entries = MAX_TX_RING_ENTRIES; | ||
980 | break; | ||
981 | default: | ||
982 | printk(KERN_WARNING " Unsupported Tigon version detected " | ||
983 | "(%i)\n", tig_ver); | ||
984 | ecode = -ENODEV; | ||
985 | goto init_error; | ||
986 | } | ||
987 | |||
988 | /* | ||
989 | * ModeStat _must_ be set after the SRAM settings as this change | ||
990 | * seems to corrupt the ModeStat and possible other registers. | ||
991 | * The SRAM settings survive resets and setting it to the same | ||
992 | * value a second time works as well. This is what caused the | ||
993 | * `Firmware not running' problem on the Tigon II. | ||
994 | */ | ||
995 | #ifdef __BIG_ENDIAN | ||
996 | writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | | ||
997 | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | ||
998 | #else | ||
999 | writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | | ||
1000 | ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); | ||
1001 | #endif | ||
1002 | readl(®s->ModeStat); /* PCI write posting */ | ||
1003 | |||
1004 | mac1 = 0; | ||
1005 | for(i = 0; i < 4; i++) { | ||
1006 | mac1 = mac1 << 8; | ||
1007 | tmp = read_eeprom_byte(dev, 0x8c+i); | ||
1008 | if (tmp < 0) { | ||
1009 | ecode = -EIO; | ||
1010 | goto init_error; | ||
1011 | } else | ||
1012 | mac1 |= (tmp & 0xff); | ||
1013 | } | ||
1014 | mac2 = 0; | ||
1015 | for(i = 4; i < 8; i++) { | ||
1016 | mac2 = mac2 << 8; | ||
1017 | tmp = read_eeprom_byte(dev, 0x8c+i); | ||
1018 | if (tmp < 0) { | ||
1019 | ecode = -EIO; | ||
1020 | goto init_error; | ||
1021 | } else | ||
1022 | mac2 |= (tmp & 0xff); | ||
1023 | } | ||
1024 | |||
1025 | writel(mac1, ®s->MacAddrHi); | ||
1026 | writel(mac2, ®s->MacAddrLo); | ||
1027 | |||
1028 | printk("MAC: %02x:%02x:%02x:%02x:%02x:%02x\n", | ||
1029 | (mac1 >> 8) & 0xff, mac1 & 0xff, (mac2 >> 24) &0xff, | ||
1030 | (mac2 >> 16) & 0xff, (mac2 >> 8) & 0xff, mac2 & 0xff); | ||
1031 | |||
1032 | dev->dev_addr[0] = (mac1 >> 8) & 0xff; | ||
1033 | dev->dev_addr[1] = mac1 & 0xff; | ||
1034 | dev->dev_addr[2] = (mac2 >> 24) & 0xff; | ||
1035 | dev->dev_addr[3] = (mac2 >> 16) & 0xff; | ||
1036 | dev->dev_addr[4] = (mac2 >> 8) & 0xff; | ||
1037 | dev->dev_addr[5] = mac2 & 0xff; | ||
1038 | |||
1039 | /* | ||
1040 | * Looks like this is necessary to deal with on all architectures, | ||
1041 | * even this %$#%$# N440BX Intel based thing doesn't get it right. | ||
1042 | * Ie. having two NICs in the machine, one will have the cache | ||
1043 | * line set at boot time, the other will not. | ||
1044 | */ | ||
1045 | pdev = ap->pdev; | ||
1046 | pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); | ||
1047 | cache_size <<= 2; | ||
1048 | if (cache_size != SMP_CACHE_BYTES) { | ||
1049 | printk(KERN_INFO " PCI cache line size set incorrectly " | ||
1050 | "(%i bytes) by BIOS/FW, ", cache_size); | ||
1051 | if (cache_size > SMP_CACHE_BYTES) | ||
1052 | printk("expecting %i\n", SMP_CACHE_BYTES); | ||
1053 | else { | ||
1054 | printk("correcting to %i\n", SMP_CACHE_BYTES); | ||
1055 | pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, | ||
1056 | SMP_CACHE_BYTES >> 2); | ||
1057 | } | ||
1058 | } | ||
1059 | |||
1060 | pci_state = readl(®s->PciState); | ||
1061 | printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " | ||
1062 | "latency: %i clks\n", | ||
1063 | (pci_state & PCI_32BIT) ? 32 : 64, | ||
1064 | (pci_state & PCI_66MHZ) ? 66 : 33, | ||
1065 | ap->pci_latency); | ||
1066 | |||
1067 | /* | ||
1068 | * Set the max DMA transfer size. Seems that for most systems | ||
1069 | * the performance is better when no MAX parameter is | ||
1070 | * set. However for systems enabling PCI write and invalidate, | ||
1071 | * DMA writes must be set to the L1 cache line size to get | ||
1072 | * optimal performance. | ||
1073 | * | ||
1074 | * The default is now to turn the PCI write and invalidate off | ||
1075 | * - that is what Alteon does for NT. | ||
1076 | */ | ||
1077 | tmp = READ_CMD_MEM | WRITE_CMD_MEM; | ||
1078 | if (ap->version >= 2) { | ||
1079 | tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); | ||
1080 | /* | ||
1081 | * Tuning parameters only supported for 8 cards | ||
1082 | */ | ||
1083 | if (board_idx == BOARD_IDX_OVERFLOW || | ||
1084 | dis_pci_mem_inval[board_idx]) { | ||
1085 | if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | ||
1086 | ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | ||
1087 | pci_write_config_word(pdev, PCI_COMMAND, | ||
1088 | ap->pci_command); | ||
1089 | printk(KERN_INFO " Disabling PCI memory " | ||
1090 | "write and invalidate\n"); | ||
1091 | } | ||
1092 | } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { | ||
1093 | printk(KERN_INFO " PCI memory write & invalidate " | ||
1094 | "enabled by BIOS, enabling counter measures\n"); | ||
1095 | |||
1096 | switch(SMP_CACHE_BYTES) { | ||
1097 | case 16: | ||
1098 | tmp |= DMA_WRITE_MAX_16; | ||
1099 | break; | ||
1100 | case 32: | ||
1101 | tmp |= DMA_WRITE_MAX_32; | ||
1102 | break; | ||
1103 | case 64: | ||
1104 | tmp |= DMA_WRITE_MAX_64; | ||
1105 | break; | ||
1106 | case 128: | ||
1107 | tmp |= DMA_WRITE_MAX_128; | ||
1108 | break; | ||
1109 | default: | ||
1110 | printk(KERN_INFO " Cache line size %i not " | ||
1111 | "supported, PCI write and invalidate " | ||
1112 | "disabled\n", SMP_CACHE_BYTES); | ||
1113 | ap->pci_command &= ~PCI_COMMAND_INVALIDATE; | ||
1114 | pci_write_config_word(pdev, PCI_COMMAND, | ||
1115 | ap->pci_command); | ||
1116 | } | ||
1117 | } | ||
1118 | } | ||
1119 | |||
1120 | #ifdef __sparc__ | ||
1121 | /* | ||
1122 | * On this platform, we know what the best dma settings | ||
1123 | * are. We use 64-byte maximum bursts, because if we | ||
1124 | * burst larger than the cache line size (or even cross | ||
1125 | * a 64byte boundary in a single burst) the UltraSparc | ||
1126 | * PCI controller will disconnect at 64-byte multiples. | ||
1127 | * | ||
1128 | * Read-multiple will be properly enabled above, and when | ||
1129 | * set will give the PCI controller proper hints about | ||
1130 | * prefetching. | ||
1131 | */ | ||
1132 | tmp &= ~DMA_READ_WRITE_MASK; | ||
1133 | tmp |= DMA_READ_MAX_64; | ||
1134 | tmp |= DMA_WRITE_MAX_64; | ||
1135 | #endif | ||
1136 | #ifdef __alpha__ | ||
1137 | tmp &= ~DMA_READ_WRITE_MASK; | ||
1138 | tmp |= DMA_READ_MAX_128; | ||
1139 | /* | ||
1140 | * All the docs say MUST NOT. Well, I did. | ||
1141 | * Nothing terrible happens, if we load wrong size. | ||
1142 | * Bit w&i still works better! | ||
1143 | */ | ||
1144 | tmp |= DMA_WRITE_MAX_128; | ||
1145 | #endif | ||
1146 | writel(tmp, ®s->PciState); | ||
1147 | |||
1148 | #if 0 | ||
1149 | /* | ||
1150 | * The Host PCI bus controller driver has to set FBB. | ||
1151 | * If all devices on that PCI bus support FBB, then the controller | ||
1152 | * can enable FBB support in the Host PCI Bus controller (or on | ||
1153 | * the PCI-PCI bridge if that applies). | ||
1154 | * -ggg | ||
1155 | */ | ||
1156 | /* | ||
1157 | * I have received reports from people having problems when this | ||
1158 | * bit is enabled. | ||
1159 | */ | ||
1160 | if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { | ||
1161 | printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); | ||
1162 | ap->pci_command |= PCI_COMMAND_FAST_BACK; | ||
1163 | pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); | ||
1164 | } | ||
1165 | #endif | ||
1166 | |||
1167 | /* | ||
1168 | * Configure DMA attributes. | ||
1169 | */ | ||
1170 | if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) { | ||
1171 | ap->pci_using_dac = 1; | ||
1172 | } else if (!pci_set_dma_mask(pdev, 0xffffffffULL)) { | ||
1173 | ap->pci_using_dac = 0; | ||
1174 | } else { | ||
1175 | ecode = -ENODEV; | ||
1176 | goto init_error; | ||
1177 | } | ||
1178 | |||
1179 | /* | ||
1180 | * Initialize the generic info block and the command+event rings | ||
1181 | * and the control blocks for the transmit and receive rings | ||
1182 | * as they need to be setup once and for all. | ||
1183 | */ | ||
1184 | if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), | ||
1185 | &ap->info_dma))) { | ||
1186 | ecode = -EAGAIN; | ||
1187 | goto init_error; | ||
1188 | } | ||
1189 | ap->info = info; | ||
1190 | |||
1191 | /* | ||
1192 | * Get the memory for the skb rings. | ||
1193 | */ | ||
1194 | if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { | ||
1195 | ecode = -EAGAIN; | ||
1196 | goto init_error; | ||
1197 | } | ||
1198 | |||
1199 | ecode = request_irq(pdev->irq, ace_interrupt, SA_SHIRQ, | ||
1200 | DRV_NAME, dev); | ||
1201 | if (ecode) { | ||
1202 | printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", | ||
1203 | DRV_NAME, pdev->irq); | ||
1204 | goto init_error; | ||
1205 | } else | ||
1206 | dev->irq = pdev->irq; | ||
1207 | |||
1208 | #ifdef INDEX_DEBUG | ||
1209 | spin_lock_init(&ap->debug_lock); | ||
1210 | ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; | ||
1211 | ap->last_std_rx = 0; | ||
1212 | ap->last_mini_rx = 0; | ||
1213 | #endif | ||
1214 | |||
1215 | memset(ap->info, 0, sizeof(struct ace_info)); | ||
1216 | memset(ap->skb, 0, sizeof(struct ace_skb)); | ||
1217 | |||
1218 | ace_load_firmware(dev); | ||
1219 | ap->fw_running = 0; | ||
1220 | |||
1221 | tmp_ptr = ap->info_dma; | ||
1222 | writel(tmp_ptr >> 32, ®s->InfoPtrHi); | ||
1223 | writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); | ||
1224 | |||
1225 | memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); | ||
1226 | |||
1227 | set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); | ||
1228 | info->evt_ctrl.flags = 0; | ||
1229 | |||
1230 | *(ap->evt_prd) = 0; | ||
1231 | wmb(); | ||
1232 | set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); | ||
1233 | writel(0, ®s->EvtCsm); | ||
1234 | |||
1235 | set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); | ||
1236 | info->cmd_ctrl.flags = 0; | ||
1237 | info->cmd_ctrl.max_len = 0; | ||
1238 | |||
1239 | for (i = 0; i < CMD_RING_ENTRIES; i++) | ||
1240 | writel(0, ®s->CmdRng[i]); | ||
1241 | |||
1242 | writel(0, ®s->CmdPrd); | ||
1243 | writel(0, ®s->CmdCsm); | ||
1244 | |||
1245 | tmp_ptr = ap->info_dma; | ||
1246 | tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); | ||
1247 | set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); | ||
1248 | |||
1249 | set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); | ||
1250 | info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; | ||
1251 | info->rx_std_ctrl.flags = | ||
1252 | RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | ||
1253 | |||
1254 | memset(ap->rx_std_ring, 0, | ||
1255 | RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); | ||
1256 | |||
1257 | for (i = 0; i < RX_STD_RING_ENTRIES; i++) | ||
1258 | ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; | ||
1259 | |||
1260 | ap->rx_std_skbprd = 0; | ||
1261 | atomic_set(&ap->cur_rx_bufs, 0); | ||
1262 | |||
1263 | set_aceaddr(&info->rx_jumbo_ctrl.rngptr, | ||
1264 | (ap->rx_ring_base_dma + | ||
1265 | (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); | ||
1266 | info->rx_jumbo_ctrl.max_len = 0; | ||
1267 | info->rx_jumbo_ctrl.flags = | ||
1268 | RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | ||
1269 | |||
1270 | memset(ap->rx_jumbo_ring, 0, | ||
1271 | RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); | ||
1272 | |||
1273 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) | ||
1274 | ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; | ||
1275 | |||
1276 | ap->rx_jumbo_skbprd = 0; | ||
1277 | atomic_set(&ap->cur_jumbo_bufs, 0); | ||
1278 | |||
1279 | memset(ap->rx_mini_ring, 0, | ||
1280 | RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); | ||
1281 | |||
1282 | if (ap->version >= 2) { | ||
1283 | set_aceaddr(&info->rx_mini_ctrl.rngptr, | ||
1284 | (ap->rx_ring_base_dma + | ||
1285 | (sizeof(struct rx_desc) * | ||
1286 | (RX_STD_RING_ENTRIES + | ||
1287 | RX_JUMBO_RING_ENTRIES)))); | ||
1288 | info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; | ||
1289 | info->rx_mini_ctrl.flags = | ||
1290 | RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|ACE_RCB_VLAN_FLAG; | ||
1291 | |||
1292 | for (i = 0; i < RX_MINI_RING_ENTRIES; i++) | ||
1293 | ap->rx_mini_ring[i].flags = | ||
1294 | BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; | ||
1295 | } else { | ||
1296 | set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); | ||
1297 | info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; | ||
1298 | info->rx_mini_ctrl.max_len = 0; | ||
1299 | } | ||
1300 | |||
1301 | ap->rx_mini_skbprd = 0; | ||
1302 | atomic_set(&ap->cur_mini_bufs, 0); | ||
1303 | |||
1304 | set_aceaddr(&info->rx_return_ctrl.rngptr, | ||
1305 | (ap->rx_ring_base_dma + | ||
1306 | (sizeof(struct rx_desc) * | ||
1307 | (RX_STD_RING_ENTRIES + | ||
1308 | RX_JUMBO_RING_ENTRIES + | ||
1309 | RX_MINI_RING_ENTRIES)))); | ||
1310 | info->rx_return_ctrl.flags = 0; | ||
1311 | info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; | ||
1312 | |||
1313 | memset(ap->rx_return_ring, 0, | ||
1314 | RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); | ||
1315 | |||
1316 | set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); | ||
1317 | *(ap->rx_ret_prd) = 0; | ||
1318 | |||
1319 | writel(TX_RING_BASE, ®s->WinBase); | ||
1320 | |||
1321 | if (ACE_IS_TIGON_I(ap)) { | ||
1322 | ap->tx_ring = (struct tx_desc *) regs->Window; | ||
1323 | for (i = 0; i < (TIGON_I_TX_RING_ENTRIES | ||
1324 | * sizeof(struct tx_desc)) / sizeof(u32); i++) | ||
1325 | writel(0, (void __iomem *)ap->tx_ring + i * 4); | ||
1326 | |||
1327 | set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); | ||
1328 | } else { | ||
1329 | memset(ap->tx_ring, 0, | ||
1330 | MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); | ||
1331 | |||
1332 | set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); | ||
1333 | } | ||
1334 | |||
1335 | info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); | ||
1336 | tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | ACE_RCB_VLAN_FLAG; | ||
1337 | |||
1338 | /* | ||
1339 | * The Tigon I does not like having the TX ring in host memory ;-( | ||
1340 | */ | ||
1341 | if (!ACE_IS_TIGON_I(ap)) | ||
1342 | tmp |= RCB_FLG_TX_HOST_RING; | ||
1343 | #if TX_COAL_INTS_ONLY | ||
1344 | tmp |= RCB_FLG_COAL_INT_ONLY; | ||
1345 | #endif | ||
1346 | info->tx_ctrl.flags = tmp; | ||
1347 | |||
1348 | set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); | ||
1349 | |||
1350 | /* | ||
1351 | * Potential item for tuning parameter | ||
1352 | */ | ||
1353 | #if 0 /* NO */ | ||
1354 | writel(DMA_THRESH_16W, ®s->DmaReadCfg); | ||
1355 | writel(DMA_THRESH_16W, ®s->DmaWriteCfg); | ||
1356 | #else | ||
1357 | writel(DMA_THRESH_8W, ®s->DmaReadCfg); | ||
1358 | writel(DMA_THRESH_8W, ®s->DmaWriteCfg); | ||
1359 | #endif | ||
1360 | |||
1361 | writel(0, ®s->MaskInt); | ||
1362 | writel(1, ®s->IfIdx); | ||
1363 | #if 0 | ||
1364 | /* | ||
1365 | * McKinley boxes do not like us fiddling with AssistState | ||
1366 | * this early | ||
1367 | */ | ||
1368 | writel(1, ®s->AssistState); | ||
1369 | #endif | ||
1370 | |||
1371 | writel(DEF_STAT, ®s->TuneStatTicks); | ||
1372 | writel(DEF_TRACE, ®s->TuneTrace); | ||
1373 | |||
1374 | ace_set_rxtx_parms(dev, 0); | ||
1375 | |||
1376 | if (board_idx == BOARD_IDX_OVERFLOW) { | ||
1377 | printk(KERN_WARNING "%s: more than %i NICs detected, " | ||
1378 | "ignoring module parameters!\n", | ||
1379 | ap->name, ACE_MAX_MOD_PARMS); | ||
1380 | } else if (board_idx >= 0) { | ||
1381 | if (tx_coal_tick[board_idx]) | ||
1382 | writel(tx_coal_tick[board_idx], | ||
1383 | ®s->TuneTxCoalTicks); | ||
1384 | if (max_tx_desc[board_idx]) | ||
1385 | writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); | ||
1386 | |||
1387 | if (rx_coal_tick[board_idx]) | ||
1388 | writel(rx_coal_tick[board_idx], | ||
1389 | ®s->TuneRxCoalTicks); | ||
1390 | if (max_rx_desc[board_idx]) | ||
1391 | writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); | ||
1392 | |||
1393 | if (trace[board_idx]) | ||
1394 | writel(trace[board_idx], ®s->TuneTrace); | ||
1395 | |||
1396 | if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) | ||
1397 | writel(tx_ratio[board_idx], ®s->TxBufRat); | ||
1398 | } | ||
1399 | |||
1400 | /* | ||
1401 | * Default link parameters | ||
1402 | */ | ||
1403 | tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | | ||
1404 | LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; | ||
1405 | if(ap->version >= 2) | ||
1406 | tmp |= LNK_TX_FLOW_CTL_Y; | ||
1407 | |||
1408 | /* | ||
1409 | * Override link default parameters | ||
1410 | */ | ||
1411 | if ((board_idx >= 0) && link[board_idx]) { | ||
1412 | int option = link[board_idx]; | ||
1413 | |||
1414 | tmp = LNK_ENABLE; | ||
1415 | |||
1416 | if (option & 0x01) { | ||
1417 | printk(KERN_INFO "%s: Setting half duplex link\n", | ||
1418 | ap->name); | ||
1419 | tmp &= ~LNK_FULL_DUPLEX; | ||
1420 | } | ||
1421 | if (option & 0x02) | ||
1422 | tmp &= ~LNK_NEGOTIATE; | ||
1423 | if (option & 0x10) | ||
1424 | tmp |= LNK_10MB; | ||
1425 | if (option & 0x20) | ||
1426 | tmp |= LNK_100MB; | ||
1427 | if (option & 0x40) | ||
1428 | tmp |= LNK_1000MB; | ||
1429 | if ((option & 0x70) == 0) { | ||
1430 | printk(KERN_WARNING "%s: No media speed specified, " | ||
1431 | "forcing auto negotiation\n", ap->name); | ||
1432 | tmp |= LNK_NEGOTIATE | LNK_1000MB | | ||
1433 | LNK_100MB | LNK_10MB; | ||
1434 | } | ||
1435 | if ((option & 0x100) == 0) | ||
1436 | tmp |= LNK_NEG_FCTL; | ||
1437 | else | ||
1438 | printk(KERN_INFO "%s: Disabling flow control " | ||
1439 | "negotiation\n", ap->name); | ||
1440 | if (option & 0x200) | ||
1441 | tmp |= LNK_RX_FLOW_CTL_Y; | ||
1442 | if ((option & 0x400) && (ap->version >= 2)) { | ||
1443 | printk(KERN_INFO "%s: Enabling TX flow control\n", | ||
1444 | ap->name); | ||
1445 | tmp |= LNK_TX_FLOW_CTL_Y; | ||
1446 | } | ||
1447 | } | ||
1448 | |||
1449 | ap->link = tmp; | ||
1450 | writel(tmp, ®s->TuneLink); | ||
1451 | if (ap->version >= 2) | ||
1452 | writel(tmp, ®s->TuneFastLink); | ||
1453 | |||
1454 | if (ACE_IS_TIGON_I(ap)) | ||
1455 | writel(tigonFwStartAddr, ®s->Pc); | ||
1456 | if (ap->version == 2) | ||
1457 | writel(tigon2FwStartAddr, ®s->Pc); | ||
1458 | |||
1459 | writel(0, ®s->Mb0Lo); | ||
1460 | |||
1461 | /* | ||
1462 | * Set tx_csm before we start receiving interrupts, otherwise | ||
1463 | * the interrupt handler might think it is supposed to process | ||
1464 | * tx ints before we are up and running, which may cause a null | ||
1465 | * pointer access in the int handler. | ||
1466 | */ | ||
1467 | ap->cur_rx = 0; | ||
1468 | ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; | ||
1469 | |||
1470 | wmb(); | ||
1471 | ace_set_txprd(regs, ap, 0); | ||
1472 | writel(0, ®s->RxRetCsm); | ||
1473 | |||
1474 | /* | ||
1475 | * Zero the stats before starting the interface | ||
1476 | */ | ||
1477 | memset(&ap->stats, 0, sizeof(ap->stats)); | ||
1478 | |||
1479 | /* | ||
1480 | * Enable DMA engine now. | ||
1481 | * If we do this sooner, Mckinley box pukes. | ||
1482 | * I assume it's because Tigon II DMA engine wants to check | ||
1483 | * *something* even before the CPU is started. | ||
1484 | */ | ||
1485 | writel(1, ®s->AssistState); /* enable DMA */ | ||
1486 | |||
1487 | /* | ||
1488 | * Start the NIC CPU | ||
1489 | */ | ||
1490 | writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); | ||
1491 | readl(®s->CpuCtrl); | ||
1492 | |||
1493 | /* | ||
1494 | * Wait for the firmware to spin up - max 3 seconds. | ||
1495 | */ | ||
1496 | myjif = jiffies + 3 * HZ; | ||
1497 | while (time_before(jiffies, myjif) && !ap->fw_running) | ||
1498 | cpu_relax(); | ||
1499 | |||
1500 | if (!ap->fw_running) { | ||
1501 | printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); | ||
1502 | |||
1503 | ace_dump_trace(ap); | ||
1504 | writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); | ||
1505 | readl(®s->CpuCtrl); | ||
1506 | |||
1507 | /* aman@sgi.com - account for badly behaving firmware/NIC: | ||
1508 | * - have observed that the NIC may continue to generate | ||
1509 | * interrupts for some reason; attempt to stop it - halt | ||
1510 | * second CPU for Tigon II cards, and also clear Mb0 | ||
1511 | * - if we're a module, we'll fail to load if this was | ||
1512 | * the only GbE card in the system => if the kernel does | ||
1513 | * see an interrupt from the NIC, code to handle it is | ||
1514 | * gone and OOps! - so free_irq also | ||
1515 | */ | ||
1516 | if (ap->version >= 2) | ||
1517 | writel(readl(®s->CpuBCtrl) | CPU_HALT, | ||
1518 | ®s->CpuBCtrl); | ||
1519 | writel(0, ®s->Mb0Lo); | ||
1520 | readl(®s->Mb0Lo); | ||
1521 | |||
1522 | ecode = -EBUSY; | ||
1523 | goto init_error; | ||
1524 | } | ||
1525 | |||
1526 | /* | ||
1527 | * We load the ring here as there seem to be no way to tell the | ||
1528 | * firmware to wipe the ring without re-initializing it. | ||
1529 | */ | ||
1530 | if (!test_and_set_bit(0, &ap->std_refill_busy)) | ||
1531 | ace_load_std_rx_ring(ap, RX_RING_SIZE); | ||
1532 | else | ||
1533 | printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", | ||
1534 | ap->name); | ||
1535 | if (ap->version >= 2) { | ||
1536 | if (!test_and_set_bit(0, &ap->mini_refill_busy)) | ||
1537 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE); | ||
1538 | else | ||
1539 | printk(KERN_ERR "%s: Someone is busy refilling " | ||
1540 | "the RX mini ring\n", ap->name); | ||
1541 | } | ||
1542 | return 0; | ||
1543 | |||
1544 | init_error: | ||
1545 | ace_init_cleanup(dev); | ||
1546 | return ecode; | ||
1547 | } | ||
1548 | |||
1549 | |||
1550 | static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) | ||
1551 | { | ||
1552 | struct ace_private *ap = netdev_priv(dev); | ||
1553 | struct ace_regs __iomem *regs = ap->regs; | ||
1554 | int board_idx = ap->board_idx; | ||
1555 | |||
1556 | if (board_idx >= 0) { | ||
1557 | if (!jumbo) { | ||
1558 | if (!tx_coal_tick[board_idx]) | ||
1559 | writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); | ||
1560 | if (!max_tx_desc[board_idx]) | ||
1561 | writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); | ||
1562 | if (!rx_coal_tick[board_idx]) | ||
1563 | writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); | ||
1564 | if (!max_rx_desc[board_idx]) | ||
1565 | writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); | ||
1566 | if (!tx_ratio[board_idx]) | ||
1567 | writel(DEF_TX_RATIO, ®s->TxBufRat); | ||
1568 | } else { | ||
1569 | if (!tx_coal_tick[board_idx]) | ||
1570 | writel(DEF_JUMBO_TX_COAL, | ||
1571 | ®s->TuneTxCoalTicks); | ||
1572 | if (!max_tx_desc[board_idx]) | ||
1573 | writel(DEF_JUMBO_TX_MAX_DESC, | ||
1574 | ®s->TuneMaxTxDesc); | ||
1575 | if (!rx_coal_tick[board_idx]) | ||
1576 | writel(DEF_JUMBO_RX_COAL, | ||
1577 | ®s->TuneRxCoalTicks); | ||
1578 | if (!max_rx_desc[board_idx]) | ||
1579 | writel(DEF_JUMBO_RX_MAX_DESC, | ||
1580 | ®s->TuneMaxRxDesc); | ||
1581 | if (!tx_ratio[board_idx]) | ||
1582 | writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); | ||
1583 | } | ||
1584 | } | ||
1585 | } | ||
1586 | |||
1587 | |||
1588 | static void ace_watchdog(struct net_device *data) | ||
1589 | { | ||
1590 | struct net_device *dev = data; | ||
1591 | struct ace_private *ap = netdev_priv(dev); | ||
1592 | struct ace_regs __iomem *regs = ap->regs; | ||
1593 | |||
1594 | /* | ||
1595 | * We haven't received a stats update event for more than 2.5 | ||
1596 | * seconds and there is data in the transmit queue, thus we | ||
1597 | * asume the card is stuck. | ||
1598 | */ | ||
1599 | if (*ap->tx_csm != ap->tx_ret_csm) { | ||
1600 | printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", | ||
1601 | dev->name, (unsigned int)readl(®s->HostCtrl)); | ||
1602 | /* This can happen due to ieee flow control. */ | ||
1603 | } else { | ||
1604 | printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", | ||
1605 | dev->name); | ||
1606 | #if 0 | ||
1607 | netif_wake_queue(dev); | ||
1608 | #endif | ||
1609 | } | ||
1610 | } | ||
1611 | |||
1612 | |||
1613 | static void ace_tasklet(unsigned long dev) | ||
1614 | { | ||
1615 | struct ace_private *ap = netdev_priv((struct net_device *)dev); | ||
1616 | int cur_size; | ||
1617 | |||
1618 | cur_size = atomic_read(&ap->cur_rx_bufs); | ||
1619 | if ((cur_size < RX_LOW_STD_THRES) && | ||
1620 | !test_and_set_bit(0, &ap->std_refill_busy)) { | ||
1621 | #ifdef DEBUG | ||
1622 | printk("refilling buffers (current %i)\n", cur_size); | ||
1623 | #endif | ||
1624 | ace_load_std_rx_ring(ap, RX_RING_SIZE - cur_size); | ||
1625 | } | ||
1626 | |||
1627 | if (ap->version >= 2) { | ||
1628 | cur_size = atomic_read(&ap->cur_mini_bufs); | ||
1629 | if ((cur_size < RX_LOW_MINI_THRES) && | ||
1630 | !test_and_set_bit(0, &ap->mini_refill_busy)) { | ||
1631 | #ifdef DEBUG | ||
1632 | printk("refilling mini buffers (current %i)\n", | ||
1633 | cur_size); | ||
1634 | #endif | ||
1635 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | ||
1636 | } | ||
1637 | } | ||
1638 | |||
1639 | cur_size = atomic_read(&ap->cur_jumbo_bufs); | ||
1640 | if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && | ||
1641 | !test_and_set_bit(0, &ap->jumbo_refill_busy)) { | ||
1642 | #ifdef DEBUG | ||
1643 | printk("refilling jumbo buffers (current %i)\n", cur_size); | ||
1644 | #endif | ||
1645 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | ||
1646 | } | ||
1647 | ap->tasklet_pending = 0; | ||
1648 | } | ||
1649 | |||
1650 | |||
1651 | /* | ||
1652 | * Copy the contents of the NIC's trace buffer to kernel memory. | ||
1653 | */ | ||
1654 | static void ace_dump_trace(struct ace_private *ap) | ||
1655 | { | ||
1656 | #if 0 | ||
1657 | if (!ap->trace_buf) | ||
1658 | if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) | ||
1659 | return; | ||
1660 | #endif | ||
1661 | } | ||
1662 | |||
1663 | |||
1664 | /* | ||
1665 | * Load the standard rx ring. | ||
1666 | * | ||
1667 | * Loading rings is safe without holding the spin lock since this is | ||
1668 | * done only before the device is enabled, thus no interrupts are | ||
1669 | * generated and by the interrupt handler/tasklet handler. | ||
1670 | */ | ||
1671 | static void ace_load_std_rx_ring(struct ace_private *ap, int nr_bufs) | ||
1672 | { | ||
1673 | struct ace_regs __iomem *regs = ap->regs; | ||
1674 | short i, idx; | ||
1675 | |||
1676 | |||
1677 | prefetchw(&ap->cur_rx_bufs); | ||
1678 | |||
1679 | idx = ap->rx_std_skbprd; | ||
1680 | |||
1681 | for (i = 0; i < nr_bufs; i++) { | ||
1682 | struct sk_buff *skb; | ||
1683 | struct rx_desc *rd; | ||
1684 | dma_addr_t mapping; | ||
1685 | |||
1686 | skb = alloc_skb(ACE_STD_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | ||
1687 | if (!skb) | ||
1688 | break; | ||
1689 | |||
1690 | skb_reserve(skb, NET_IP_ALIGN); | ||
1691 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | ||
1692 | offset_in_page(skb->data), | ||
1693 | ACE_STD_BUFSIZE, | ||
1694 | PCI_DMA_FROMDEVICE); | ||
1695 | ap->skb->rx_std_skbuff[idx].skb = skb; | ||
1696 | pci_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], | ||
1697 | mapping, mapping); | ||
1698 | |||
1699 | rd = &ap->rx_std_ring[idx]; | ||
1700 | set_aceaddr(&rd->addr, mapping); | ||
1701 | rd->size = ACE_STD_BUFSIZE; | ||
1702 | rd->idx = idx; | ||
1703 | idx = (idx + 1) % RX_STD_RING_ENTRIES; | ||
1704 | } | ||
1705 | |||
1706 | if (!i) | ||
1707 | goto error_out; | ||
1708 | |||
1709 | atomic_add(i, &ap->cur_rx_bufs); | ||
1710 | ap->rx_std_skbprd = idx; | ||
1711 | |||
1712 | if (ACE_IS_TIGON_I(ap)) { | ||
1713 | struct cmd cmd; | ||
1714 | cmd.evt = C_SET_RX_PRD_IDX; | ||
1715 | cmd.code = 0; | ||
1716 | cmd.idx = ap->rx_std_skbprd; | ||
1717 | ace_issue_cmd(regs, &cmd); | ||
1718 | } else { | ||
1719 | writel(idx, ®s->RxStdPrd); | ||
1720 | wmb(); | ||
1721 | } | ||
1722 | |||
1723 | out: | ||
1724 | clear_bit(0, &ap->std_refill_busy); | ||
1725 | return; | ||
1726 | |||
1727 | error_out: | ||
1728 | printk(KERN_INFO "Out of memory when allocating " | ||
1729 | "standard receive buffers\n"); | ||
1730 | goto out; | ||
1731 | } | ||
1732 | |||
1733 | |||
1734 | static void ace_load_mini_rx_ring(struct ace_private *ap, int nr_bufs) | ||
1735 | { | ||
1736 | struct ace_regs __iomem *regs = ap->regs; | ||
1737 | short i, idx; | ||
1738 | |||
1739 | prefetchw(&ap->cur_mini_bufs); | ||
1740 | |||
1741 | idx = ap->rx_mini_skbprd; | ||
1742 | for (i = 0; i < nr_bufs; i++) { | ||
1743 | struct sk_buff *skb; | ||
1744 | struct rx_desc *rd; | ||
1745 | dma_addr_t mapping; | ||
1746 | |||
1747 | skb = alloc_skb(ACE_MINI_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | ||
1748 | if (!skb) | ||
1749 | break; | ||
1750 | |||
1751 | skb_reserve(skb, NET_IP_ALIGN); | ||
1752 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | ||
1753 | offset_in_page(skb->data), | ||
1754 | ACE_MINI_BUFSIZE, | ||
1755 | PCI_DMA_FROMDEVICE); | ||
1756 | ap->skb->rx_mini_skbuff[idx].skb = skb; | ||
1757 | pci_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], | ||
1758 | mapping, mapping); | ||
1759 | |||
1760 | rd = &ap->rx_mini_ring[idx]; | ||
1761 | set_aceaddr(&rd->addr, mapping); | ||
1762 | rd->size = ACE_MINI_BUFSIZE; | ||
1763 | rd->idx = idx; | ||
1764 | idx = (idx + 1) % RX_MINI_RING_ENTRIES; | ||
1765 | } | ||
1766 | |||
1767 | if (!i) | ||
1768 | goto error_out; | ||
1769 | |||
1770 | atomic_add(i, &ap->cur_mini_bufs); | ||
1771 | |||
1772 | ap->rx_mini_skbprd = idx; | ||
1773 | |||
1774 | writel(idx, ®s->RxMiniPrd); | ||
1775 | wmb(); | ||
1776 | |||
1777 | out: | ||
1778 | clear_bit(0, &ap->mini_refill_busy); | ||
1779 | return; | ||
1780 | error_out: | ||
1781 | printk(KERN_INFO "Out of memory when allocating " | ||
1782 | "mini receive buffers\n"); | ||
1783 | goto out; | ||
1784 | } | ||
1785 | |||
1786 | |||
1787 | /* | ||
1788 | * Load the jumbo rx ring, this may happen at any time if the MTU | ||
1789 | * is changed to a value > 1500. | ||
1790 | */ | ||
1791 | static void ace_load_jumbo_rx_ring(struct ace_private *ap, int nr_bufs) | ||
1792 | { | ||
1793 | struct ace_regs __iomem *regs = ap->regs; | ||
1794 | short i, idx; | ||
1795 | |||
1796 | idx = ap->rx_jumbo_skbprd; | ||
1797 | |||
1798 | for (i = 0; i < nr_bufs; i++) { | ||
1799 | struct sk_buff *skb; | ||
1800 | struct rx_desc *rd; | ||
1801 | dma_addr_t mapping; | ||
1802 | |||
1803 | skb = alloc_skb(ACE_JUMBO_BUFSIZE + NET_IP_ALIGN, GFP_ATOMIC); | ||
1804 | if (!skb) | ||
1805 | break; | ||
1806 | |||
1807 | skb_reserve(skb, NET_IP_ALIGN); | ||
1808 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | ||
1809 | offset_in_page(skb->data), | ||
1810 | ACE_JUMBO_BUFSIZE, | ||
1811 | PCI_DMA_FROMDEVICE); | ||
1812 | ap->skb->rx_jumbo_skbuff[idx].skb = skb; | ||
1813 | pci_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], | ||
1814 | mapping, mapping); | ||
1815 | |||
1816 | rd = &ap->rx_jumbo_ring[idx]; | ||
1817 | set_aceaddr(&rd->addr, mapping); | ||
1818 | rd->size = ACE_JUMBO_BUFSIZE; | ||
1819 | rd->idx = idx; | ||
1820 | idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; | ||
1821 | } | ||
1822 | |||
1823 | if (!i) | ||
1824 | goto error_out; | ||
1825 | |||
1826 | atomic_add(i, &ap->cur_jumbo_bufs); | ||
1827 | ap->rx_jumbo_skbprd = idx; | ||
1828 | |||
1829 | if (ACE_IS_TIGON_I(ap)) { | ||
1830 | struct cmd cmd; | ||
1831 | cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | ||
1832 | cmd.code = 0; | ||
1833 | cmd.idx = ap->rx_jumbo_skbprd; | ||
1834 | ace_issue_cmd(regs, &cmd); | ||
1835 | } else { | ||
1836 | writel(idx, ®s->RxJumboPrd); | ||
1837 | wmb(); | ||
1838 | } | ||
1839 | |||
1840 | out: | ||
1841 | clear_bit(0, &ap->jumbo_refill_busy); | ||
1842 | return; | ||
1843 | error_out: | ||
1844 | if (net_ratelimit()) | ||
1845 | printk(KERN_INFO "Out of memory when allocating " | ||
1846 | "jumbo receive buffers\n"); | ||
1847 | goto out; | ||
1848 | } | ||
1849 | |||
1850 | |||
1851 | /* | ||
1852 | * All events are considered to be slow (RX/TX ints do not generate | ||
1853 | * events) and are handled here, outside the main interrupt handler, | ||
1854 | * to reduce the size of the handler. | ||
1855 | */ | ||
1856 | static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) | ||
1857 | { | ||
1858 | struct ace_private *ap; | ||
1859 | |||
1860 | ap = netdev_priv(dev); | ||
1861 | |||
1862 | while (evtcsm != evtprd) { | ||
1863 | switch (ap->evt_ring[evtcsm].evt) { | ||
1864 | case E_FW_RUNNING: | ||
1865 | printk(KERN_INFO "%s: Firmware up and running\n", | ||
1866 | ap->name); | ||
1867 | ap->fw_running = 1; | ||
1868 | wmb(); | ||
1869 | break; | ||
1870 | case E_STATS_UPDATED: | ||
1871 | break; | ||
1872 | case E_LNK_STATE: | ||
1873 | { | ||
1874 | u16 code = ap->evt_ring[evtcsm].code; | ||
1875 | switch (code) { | ||
1876 | case E_C_LINK_UP: | ||
1877 | { | ||
1878 | u32 state = readl(&ap->regs->GigLnkState); | ||
1879 | printk(KERN_WARNING "%s: Optical link UP " | ||
1880 | "(%s Duplex, Flow Control: %s%s)\n", | ||
1881 | ap->name, | ||
1882 | state & LNK_FULL_DUPLEX ? "Full":"Half", | ||
1883 | state & LNK_TX_FLOW_CTL_Y ? "TX " : "", | ||
1884 | state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); | ||
1885 | break; | ||
1886 | } | ||
1887 | case E_C_LINK_DOWN: | ||
1888 | printk(KERN_WARNING "%s: Optical link DOWN\n", | ||
1889 | ap->name); | ||
1890 | break; | ||
1891 | case E_C_LINK_10_100: | ||
1892 | printk(KERN_WARNING "%s: 10/100BaseT link " | ||
1893 | "UP\n", ap->name); | ||
1894 | break; | ||
1895 | default: | ||
1896 | printk(KERN_ERR "%s: Unknown optical link " | ||
1897 | "state %02x\n", ap->name, code); | ||
1898 | } | ||
1899 | break; | ||
1900 | } | ||
1901 | case E_ERROR: | ||
1902 | switch(ap->evt_ring[evtcsm].code) { | ||
1903 | case E_C_ERR_INVAL_CMD: | ||
1904 | printk(KERN_ERR "%s: invalid command error\n", | ||
1905 | ap->name); | ||
1906 | break; | ||
1907 | case E_C_ERR_UNIMP_CMD: | ||
1908 | printk(KERN_ERR "%s: unimplemented command " | ||
1909 | "error\n", ap->name); | ||
1910 | break; | ||
1911 | case E_C_ERR_BAD_CFG: | ||
1912 | printk(KERN_ERR "%s: bad config error\n", | ||
1913 | ap->name); | ||
1914 | break; | ||
1915 | default: | ||
1916 | printk(KERN_ERR "%s: unknown error %02x\n", | ||
1917 | ap->name, ap->evt_ring[evtcsm].code); | ||
1918 | } | ||
1919 | break; | ||
1920 | case E_RESET_JUMBO_RNG: | ||
1921 | { | ||
1922 | int i; | ||
1923 | for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { | ||
1924 | if (ap->skb->rx_jumbo_skbuff[i].skb) { | ||
1925 | ap->rx_jumbo_ring[i].size = 0; | ||
1926 | set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); | ||
1927 | dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); | ||
1928 | ap->skb->rx_jumbo_skbuff[i].skb = NULL; | ||
1929 | } | ||
1930 | } | ||
1931 | |||
1932 | if (ACE_IS_TIGON_I(ap)) { | ||
1933 | struct cmd cmd; | ||
1934 | cmd.evt = C_SET_RX_JUMBO_PRD_IDX; | ||
1935 | cmd.code = 0; | ||
1936 | cmd.idx = 0; | ||
1937 | ace_issue_cmd(ap->regs, &cmd); | ||
1938 | } else { | ||
1939 | writel(0, &((ap->regs)->RxJumboPrd)); | ||
1940 | wmb(); | ||
1941 | } | ||
1942 | |||
1943 | ap->jumbo = 0; | ||
1944 | ap->rx_jumbo_skbprd = 0; | ||
1945 | printk(KERN_INFO "%s: Jumbo ring flushed\n", | ||
1946 | ap->name); | ||
1947 | clear_bit(0, &ap->jumbo_refill_busy); | ||
1948 | break; | ||
1949 | } | ||
1950 | default: | ||
1951 | printk(KERN_ERR "%s: Unhandled event 0x%02x\n", | ||
1952 | ap->name, ap->evt_ring[evtcsm].evt); | ||
1953 | } | ||
1954 | evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; | ||
1955 | } | ||
1956 | |||
1957 | return evtcsm; | ||
1958 | } | ||
1959 | |||
1960 | |||
1961 | static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) | ||
1962 | { | ||
1963 | struct ace_private *ap = netdev_priv(dev); | ||
1964 | u32 idx; | ||
1965 | int mini_count = 0, std_count = 0; | ||
1966 | |||
1967 | idx = rxretcsm; | ||
1968 | |||
1969 | prefetchw(&ap->cur_rx_bufs); | ||
1970 | prefetchw(&ap->cur_mini_bufs); | ||
1971 | |||
1972 | while (idx != rxretprd) { | ||
1973 | struct ring_info *rip; | ||
1974 | struct sk_buff *skb; | ||
1975 | struct rx_desc *rxdesc, *retdesc; | ||
1976 | u32 skbidx; | ||
1977 | int bd_flags, desc_type, mapsize; | ||
1978 | u16 csum; | ||
1979 | |||
1980 | |||
1981 | /* make sure the rx descriptor isn't read before rxretprd */ | ||
1982 | if (idx == rxretcsm) | ||
1983 | rmb(); | ||
1984 | |||
1985 | retdesc = &ap->rx_return_ring[idx]; | ||
1986 | skbidx = retdesc->idx; | ||
1987 | bd_flags = retdesc->flags; | ||
1988 | desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); | ||
1989 | |||
1990 | switch(desc_type) { | ||
1991 | /* | ||
1992 | * Normal frames do not have any flags set | ||
1993 | * | ||
1994 | * Mini and normal frames arrive frequently, | ||
1995 | * so use a local counter to avoid doing | ||
1996 | * atomic operations for each packet arriving. | ||
1997 | */ | ||
1998 | case 0: | ||
1999 | rip = &ap->skb->rx_std_skbuff[skbidx]; | ||
2000 | mapsize = ACE_STD_BUFSIZE; | ||
2001 | rxdesc = &ap->rx_std_ring[skbidx]; | ||
2002 | std_count++; | ||
2003 | break; | ||
2004 | case BD_FLG_JUMBO: | ||
2005 | rip = &ap->skb->rx_jumbo_skbuff[skbidx]; | ||
2006 | mapsize = ACE_JUMBO_BUFSIZE; | ||
2007 | rxdesc = &ap->rx_jumbo_ring[skbidx]; | ||
2008 | atomic_dec(&ap->cur_jumbo_bufs); | ||
2009 | break; | ||
2010 | case BD_FLG_MINI: | ||
2011 | rip = &ap->skb->rx_mini_skbuff[skbidx]; | ||
2012 | mapsize = ACE_MINI_BUFSIZE; | ||
2013 | rxdesc = &ap->rx_mini_ring[skbidx]; | ||
2014 | mini_count++; | ||
2015 | break; | ||
2016 | default: | ||
2017 | printk(KERN_INFO "%s: unknown frame type (0x%02x) " | ||
2018 | "returned by NIC\n", dev->name, | ||
2019 | retdesc->flags); | ||
2020 | goto error; | ||
2021 | } | ||
2022 | |||
2023 | skb = rip->skb; | ||
2024 | rip->skb = NULL; | ||
2025 | pci_unmap_page(ap->pdev, | ||
2026 | pci_unmap_addr(rip, mapping), | ||
2027 | mapsize, | ||
2028 | PCI_DMA_FROMDEVICE); | ||
2029 | skb_put(skb, retdesc->size); | ||
2030 | |||
2031 | /* | ||
2032 | * Fly baby, fly! | ||
2033 | */ | ||
2034 | csum = retdesc->tcp_udp_csum; | ||
2035 | |||
2036 | skb->dev = dev; | ||
2037 | skb->protocol = eth_type_trans(skb, dev); | ||
2038 | |||
2039 | /* | ||
2040 | * Instead of forcing the poor tigon mips cpu to calculate | ||
2041 | * pseudo hdr checksum, we do this ourselves. | ||
2042 | */ | ||
2043 | if (bd_flags & BD_FLG_TCP_UDP_SUM) { | ||
2044 | skb->csum = htons(csum); | ||
2045 | skb->ip_summed = CHECKSUM_HW; | ||
2046 | } else { | ||
2047 | skb->ip_summed = CHECKSUM_NONE; | ||
2048 | } | ||
2049 | |||
2050 | /* send it up */ | ||
2051 | #if ACENIC_DO_VLAN | ||
2052 | if (ap->vlgrp && (bd_flags & BD_FLG_VLAN_TAG)) { | ||
2053 | vlan_hwaccel_rx(skb, ap->vlgrp, retdesc->vlan); | ||
2054 | } else | ||
2055 | #endif | ||
2056 | netif_rx(skb); | ||
2057 | |||
2058 | dev->last_rx = jiffies; | ||
2059 | ap->stats.rx_packets++; | ||
2060 | ap->stats.rx_bytes += retdesc->size; | ||
2061 | |||
2062 | idx = (idx + 1) % RX_RETURN_RING_ENTRIES; | ||
2063 | } | ||
2064 | |||
2065 | atomic_sub(std_count, &ap->cur_rx_bufs); | ||
2066 | if (!ACE_IS_TIGON_I(ap)) | ||
2067 | atomic_sub(mini_count, &ap->cur_mini_bufs); | ||
2068 | |||
2069 | out: | ||
2070 | /* | ||
2071 | * According to the documentation RxRetCsm is obsolete with | ||
2072 | * the 12.3.x Firmware - my Tigon I NICs seem to disagree! | ||
2073 | */ | ||
2074 | if (ACE_IS_TIGON_I(ap)) { | ||
2075 | writel(idx, &ap->regs->RxRetCsm); | ||
2076 | } | ||
2077 | ap->cur_rx = idx; | ||
2078 | |||
2079 | return; | ||
2080 | error: | ||
2081 | idx = rxretprd; | ||
2082 | goto out; | ||
2083 | } | ||
2084 | |||
2085 | |||
2086 | static inline void ace_tx_int(struct net_device *dev, | ||
2087 | u32 txcsm, u32 idx) | ||
2088 | { | ||
2089 | struct ace_private *ap = netdev_priv(dev); | ||
2090 | |||
2091 | do { | ||
2092 | struct sk_buff *skb; | ||
2093 | dma_addr_t mapping; | ||
2094 | struct tx_ring_info *info; | ||
2095 | |||
2096 | info = ap->skb->tx_skbuff + idx; | ||
2097 | skb = info->skb; | ||
2098 | mapping = pci_unmap_addr(info, mapping); | ||
2099 | |||
2100 | if (mapping) { | ||
2101 | pci_unmap_page(ap->pdev, mapping, | ||
2102 | pci_unmap_len(info, maplen), | ||
2103 | PCI_DMA_TODEVICE); | ||
2104 | pci_unmap_addr_set(info, mapping, 0); | ||
2105 | } | ||
2106 | |||
2107 | if (skb) { | ||
2108 | ap->stats.tx_packets++; | ||
2109 | ap->stats.tx_bytes += skb->len; | ||
2110 | dev_kfree_skb_irq(skb); | ||
2111 | info->skb = NULL; | ||
2112 | } | ||
2113 | |||
2114 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | ||
2115 | } while (idx != txcsm); | ||
2116 | |||
2117 | if (netif_queue_stopped(dev)) | ||
2118 | netif_wake_queue(dev); | ||
2119 | |||
2120 | wmb(); | ||
2121 | ap->tx_ret_csm = txcsm; | ||
2122 | |||
2123 | /* So... tx_ret_csm is advanced _after_ check for device wakeup. | ||
2124 | * | ||
2125 | * We could try to make it before. In this case we would get | ||
2126 | * the following race condition: hard_start_xmit on other cpu | ||
2127 | * enters after we advanced tx_ret_csm and fills space, | ||
2128 | * which we have just freed, so that we make illegal device wakeup. | ||
2129 | * There is no good way to workaround this (at entry | ||
2130 | * to ace_start_xmit detects this condition and prevents | ||
2131 | * ring corruption, but it is not a good workaround.) | ||
2132 | * | ||
2133 | * When tx_ret_csm is advanced after, we wake up device _only_ | ||
2134 | * if we really have some space in ring (though the core doing | ||
2135 | * hard_start_xmit can see full ring for some period and has to | ||
2136 | * synchronize.) Superb. | ||
2137 | * BUT! We get another subtle race condition. hard_start_xmit | ||
2138 | * may think that ring is full between wakeup and advancing | ||
2139 | * tx_ret_csm and will stop device instantly! It is not so bad. | ||
2140 | * We are guaranteed that there is something in ring, so that | ||
2141 | * the next irq will resume transmission. To speedup this we could | ||
2142 | * mark descriptor, which closes ring with BD_FLG_COAL_NOW | ||
2143 | * (see ace_start_xmit). | ||
2144 | * | ||
2145 | * Well, this dilemma exists in all lock-free devices. | ||
2146 | * We, following scheme used in drivers by Donald Becker, | ||
2147 | * select the least dangerous. | ||
2148 | * --ANK | ||
2149 | */ | ||
2150 | } | ||
2151 | |||
2152 | |||
2153 | static irqreturn_t ace_interrupt(int irq, void *dev_id, struct pt_regs *ptregs) | ||
2154 | { | ||
2155 | struct net_device *dev = (struct net_device *)dev_id; | ||
2156 | struct ace_private *ap = netdev_priv(dev); | ||
2157 | struct ace_regs __iomem *regs = ap->regs; | ||
2158 | u32 idx; | ||
2159 | u32 txcsm, rxretcsm, rxretprd; | ||
2160 | u32 evtcsm, evtprd; | ||
2161 | |||
2162 | /* | ||
2163 | * In case of PCI shared interrupts or spurious interrupts, | ||
2164 | * we want to make sure it is actually our interrupt before | ||
2165 | * spending any time in here. | ||
2166 | */ | ||
2167 | if (!(readl(®s->HostCtrl) & IN_INT)) | ||
2168 | return IRQ_NONE; | ||
2169 | |||
2170 | /* | ||
2171 | * ACK intr now. Otherwise we will lose updates to rx_ret_prd, | ||
2172 | * which happened _after_ rxretprd = *ap->rx_ret_prd; but before | ||
2173 | * writel(0, ®s->Mb0Lo). | ||
2174 | * | ||
2175 | * "IRQ avoidance" recommended in docs applies to IRQs served | ||
2176 | * threads and it is wrong even for that case. | ||
2177 | */ | ||
2178 | writel(0, ®s->Mb0Lo); | ||
2179 | readl(®s->Mb0Lo); | ||
2180 | |||
2181 | /* | ||
2182 | * There is no conflict between transmit handling in | ||
2183 | * start_xmit and receive processing, thus there is no reason | ||
2184 | * to take a spin lock for RX handling. Wait until we start | ||
2185 | * working on the other stuff - hey we don't need a spin lock | ||
2186 | * anymore. | ||
2187 | */ | ||
2188 | rxretprd = *ap->rx_ret_prd; | ||
2189 | rxretcsm = ap->cur_rx; | ||
2190 | |||
2191 | if (rxretprd != rxretcsm) | ||
2192 | ace_rx_int(dev, rxretprd, rxretcsm); | ||
2193 | |||
2194 | txcsm = *ap->tx_csm; | ||
2195 | idx = ap->tx_ret_csm; | ||
2196 | |||
2197 | if (txcsm != idx) { | ||
2198 | /* | ||
2199 | * If each skb takes only one descriptor this check degenerates | ||
2200 | * to identity, because new space has just been opened. | ||
2201 | * But if skbs are fragmented we must check that this index | ||
2202 | * update releases enough of space, otherwise we just | ||
2203 | * wait for device to make more work. | ||
2204 | */ | ||
2205 | if (!tx_ring_full(ap, txcsm, ap->tx_prd)) | ||
2206 | ace_tx_int(dev, txcsm, idx); | ||
2207 | } | ||
2208 | |||
2209 | evtcsm = readl(®s->EvtCsm); | ||
2210 | evtprd = *ap->evt_prd; | ||
2211 | |||
2212 | if (evtcsm != evtprd) { | ||
2213 | evtcsm = ace_handle_event(dev, evtcsm, evtprd); | ||
2214 | writel(evtcsm, ®s->EvtCsm); | ||
2215 | } | ||
2216 | |||
2217 | /* | ||
2218 | * This has to go last in the interrupt handler and run with | ||
2219 | * the spin lock released ... what lock? | ||
2220 | */ | ||
2221 | if (netif_running(dev)) { | ||
2222 | int cur_size; | ||
2223 | int run_tasklet = 0; | ||
2224 | |||
2225 | cur_size = atomic_read(&ap->cur_rx_bufs); | ||
2226 | if (cur_size < RX_LOW_STD_THRES) { | ||
2227 | if ((cur_size < RX_PANIC_STD_THRES) && | ||
2228 | !test_and_set_bit(0, &ap->std_refill_busy)) { | ||
2229 | #ifdef DEBUG | ||
2230 | printk("low on std buffers %i\n", cur_size); | ||
2231 | #endif | ||
2232 | ace_load_std_rx_ring(ap, | ||
2233 | RX_RING_SIZE - cur_size); | ||
2234 | } else | ||
2235 | run_tasklet = 1; | ||
2236 | } | ||
2237 | |||
2238 | if (!ACE_IS_TIGON_I(ap)) { | ||
2239 | cur_size = atomic_read(&ap->cur_mini_bufs); | ||
2240 | if (cur_size < RX_LOW_MINI_THRES) { | ||
2241 | if ((cur_size < RX_PANIC_MINI_THRES) && | ||
2242 | !test_and_set_bit(0, | ||
2243 | &ap->mini_refill_busy)) { | ||
2244 | #ifdef DEBUG | ||
2245 | printk("low on mini buffers %i\n", | ||
2246 | cur_size); | ||
2247 | #endif | ||
2248 | ace_load_mini_rx_ring(ap, RX_MINI_SIZE - cur_size); | ||
2249 | } else | ||
2250 | run_tasklet = 1; | ||
2251 | } | ||
2252 | } | ||
2253 | |||
2254 | if (ap->jumbo) { | ||
2255 | cur_size = atomic_read(&ap->cur_jumbo_bufs); | ||
2256 | if (cur_size < RX_LOW_JUMBO_THRES) { | ||
2257 | if ((cur_size < RX_PANIC_JUMBO_THRES) && | ||
2258 | !test_and_set_bit(0, | ||
2259 | &ap->jumbo_refill_busy)){ | ||
2260 | #ifdef DEBUG | ||
2261 | printk("low on jumbo buffers %i\n", | ||
2262 | cur_size); | ||
2263 | #endif | ||
2264 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE - cur_size); | ||
2265 | } else | ||
2266 | run_tasklet = 1; | ||
2267 | } | ||
2268 | } | ||
2269 | if (run_tasklet && !ap->tasklet_pending) { | ||
2270 | ap->tasklet_pending = 1; | ||
2271 | tasklet_schedule(&ap->ace_tasklet); | ||
2272 | } | ||
2273 | } | ||
2274 | |||
2275 | return IRQ_HANDLED; | ||
2276 | } | ||
2277 | |||
2278 | |||
2279 | #if ACENIC_DO_VLAN | ||
2280 | static void ace_vlan_rx_register(struct net_device *dev, struct vlan_group *grp) | ||
2281 | { | ||
2282 | struct ace_private *ap = netdev_priv(dev); | ||
2283 | unsigned long flags; | ||
2284 | |||
2285 | local_irq_save(flags); | ||
2286 | ace_mask_irq(dev); | ||
2287 | |||
2288 | ap->vlgrp = grp; | ||
2289 | |||
2290 | ace_unmask_irq(dev); | ||
2291 | local_irq_restore(flags); | ||
2292 | } | ||
2293 | |||
2294 | |||
2295 | static void ace_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid) | ||
2296 | { | ||
2297 | struct ace_private *ap = netdev_priv(dev); | ||
2298 | unsigned long flags; | ||
2299 | |||
2300 | local_irq_save(flags); | ||
2301 | ace_mask_irq(dev); | ||
2302 | |||
2303 | if (ap->vlgrp) | ||
2304 | ap->vlgrp->vlan_devices[vid] = NULL; | ||
2305 | |||
2306 | ace_unmask_irq(dev); | ||
2307 | local_irq_restore(flags); | ||
2308 | } | ||
2309 | #endif /* ACENIC_DO_VLAN */ | ||
2310 | |||
2311 | |||
2312 | static int ace_open(struct net_device *dev) | ||
2313 | { | ||
2314 | struct ace_private *ap = netdev_priv(dev); | ||
2315 | struct ace_regs __iomem *regs = ap->regs; | ||
2316 | struct cmd cmd; | ||
2317 | |||
2318 | if (!(ap->fw_running)) { | ||
2319 | printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); | ||
2320 | return -EBUSY; | ||
2321 | } | ||
2322 | |||
2323 | writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); | ||
2324 | |||
2325 | cmd.evt = C_CLEAR_STATS; | ||
2326 | cmd.code = 0; | ||
2327 | cmd.idx = 0; | ||
2328 | ace_issue_cmd(regs, &cmd); | ||
2329 | |||
2330 | cmd.evt = C_HOST_STATE; | ||
2331 | cmd.code = C_C_STACK_UP; | ||
2332 | cmd.idx = 0; | ||
2333 | ace_issue_cmd(regs, &cmd); | ||
2334 | |||
2335 | if (ap->jumbo && | ||
2336 | !test_and_set_bit(0, &ap->jumbo_refill_busy)) | ||
2337 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | ||
2338 | |||
2339 | if (dev->flags & IFF_PROMISC) { | ||
2340 | cmd.evt = C_SET_PROMISC_MODE; | ||
2341 | cmd.code = C_C_PROMISC_ENABLE; | ||
2342 | cmd.idx = 0; | ||
2343 | ace_issue_cmd(regs, &cmd); | ||
2344 | |||
2345 | ap->promisc = 1; | ||
2346 | }else | ||
2347 | ap->promisc = 0; | ||
2348 | ap->mcast_all = 0; | ||
2349 | |||
2350 | #if 0 | ||
2351 | cmd.evt = C_LNK_NEGOTIATION; | ||
2352 | cmd.code = 0; | ||
2353 | cmd.idx = 0; | ||
2354 | ace_issue_cmd(regs, &cmd); | ||
2355 | #endif | ||
2356 | |||
2357 | netif_start_queue(dev); | ||
2358 | |||
2359 | /* | ||
2360 | * Setup the bottom half rx ring refill handler | ||
2361 | */ | ||
2362 | tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); | ||
2363 | return 0; | ||
2364 | } | ||
2365 | |||
2366 | |||
2367 | static int ace_close(struct net_device *dev) | ||
2368 | { | ||
2369 | struct ace_private *ap = netdev_priv(dev); | ||
2370 | struct ace_regs __iomem *regs = ap->regs; | ||
2371 | struct cmd cmd; | ||
2372 | unsigned long flags; | ||
2373 | short i; | ||
2374 | |||
2375 | /* | ||
2376 | * Without (or before) releasing irq and stopping hardware, this | ||
2377 | * is an absolute non-sense, by the way. It will be reset instantly | ||
2378 | * by the first irq. | ||
2379 | */ | ||
2380 | netif_stop_queue(dev); | ||
2381 | |||
2382 | |||
2383 | if (ap->promisc) { | ||
2384 | cmd.evt = C_SET_PROMISC_MODE; | ||
2385 | cmd.code = C_C_PROMISC_DISABLE; | ||
2386 | cmd.idx = 0; | ||
2387 | ace_issue_cmd(regs, &cmd); | ||
2388 | ap->promisc = 0; | ||
2389 | } | ||
2390 | |||
2391 | cmd.evt = C_HOST_STATE; | ||
2392 | cmd.code = C_C_STACK_DOWN; | ||
2393 | cmd.idx = 0; | ||
2394 | ace_issue_cmd(regs, &cmd); | ||
2395 | |||
2396 | tasklet_kill(&ap->ace_tasklet); | ||
2397 | |||
2398 | /* | ||
2399 | * Make sure one CPU is not processing packets while | ||
2400 | * buffers are being released by another. | ||
2401 | */ | ||
2402 | |||
2403 | local_irq_save(flags); | ||
2404 | ace_mask_irq(dev); | ||
2405 | |||
2406 | for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { | ||
2407 | struct sk_buff *skb; | ||
2408 | dma_addr_t mapping; | ||
2409 | struct tx_ring_info *info; | ||
2410 | |||
2411 | info = ap->skb->tx_skbuff + i; | ||
2412 | skb = info->skb; | ||
2413 | mapping = pci_unmap_addr(info, mapping); | ||
2414 | |||
2415 | if (mapping) { | ||
2416 | if (ACE_IS_TIGON_I(ap)) { | ||
2417 | struct tx_desc __iomem *tx | ||
2418 | = (struct tx_desc __iomem *) &ap->tx_ring[i]; | ||
2419 | writel(0, &tx->addr.addrhi); | ||
2420 | writel(0, &tx->addr.addrlo); | ||
2421 | writel(0, &tx->flagsize); | ||
2422 | } else | ||
2423 | memset(ap->tx_ring + i, 0, | ||
2424 | sizeof(struct tx_desc)); | ||
2425 | pci_unmap_page(ap->pdev, mapping, | ||
2426 | pci_unmap_len(info, maplen), | ||
2427 | PCI_DMA_TODEVICE); | ||
2428 | pci_unmap_addr_set(info, mapping, 0); | ||
2429 | } | ||
2430 | if (skb) { | ||
2431 | dev_kfree_skb(skb); | ||
2432 | info->skb = NULL; | ||
2433 | } | ||
2434 | } | ||
2435 | |||
2436 | if (ap->jumbo) { | ||
2437 | cmd.evt = C_RESET_JUMBO_RNG; | ||
2438 | cmd.code = 0; | ||
2439 | cmd.idx = 0; | ||
2440 | ace_issue_cmd(regs, &cmd); | ||
2441 | } | ||
2442 | |||
2443 | ace_unmask_irq(dev); | ||
2444 | local_irq_restore(flags); | ||
2445 | |||
2446 | return 0; | ||
2447 | } | ||
2448 | |||
2449 | |||
2450 | static inline dma_addr_t | ||
2451 | ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, | ||
2452 | struct sk_buff *tail, u32 idx) | ||
2453 | { | ||
2454 | dma_addr_t mapping; | ||
2455 | struct tx_ring_info *info; | ||
2456 | |||
2457 | mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), | ||
2458 | offset_in_page(skb->data), | ||
2459 | skb->len, PCI_DMA_TODEVICE); | ||
2460 | |||
2461 | info = ap->skb->tx_skbuff + idx; | ||
2462 | info->skb = tail; | ||
2463 | pci_unmap_addr_set(info, mapping, mapping); | ||
2464 | pci_unmap_len_set(info, maplen, skb->len); | ||
2465 | return mapping; | ||
2466 | } | ||
2467 | |||
2468 | |||
2469 | static inline void | ||
2470 | ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, | ||
2471 | u32 flagsize, u32 vlan_tag) | ||
2472 | { | ||
2473 | #if !USE_TX_COAL_NOW | ||
2474 | flagsize &= ~BD_FLG_COAL_NOW; | ||
2475 | #endif | ||
2476 | |||
2477 | if (ACE_IS_TIGON_I(ap)) { | ||
2478 | struct tx_desc __iomem *io = (struct tx_desc __iomem *) desc; | ||
2479 | writel(addr >> 32, &io->addr.addrhi); | ||
2480 | writel(addr & 0xffffffff, &io->addr.addrlo); | ||
2481 | writel(flagsize, &io->flagsize); | ||
2482 | #if ACENIC_DO_VLAN | ||
2483 | writel(vlan_tag, &io->vlanres); | ||
2484 | #endif | ||
2485 | } else { | ||
2486 | desc->addr.addrhi = addr >> 32; | ||
2487 | desc->addr.addrlo = addr; | ||
2488 | desc->flagsize = flagsize; | ||
2489 | #if ACENIC_DO_VLAN | ||
2490 | desc->vlanres = vlan_tag; | ||
2491 | #endif | ||
2492 | } | ||
2493 | } | ||
2494 | |||
2495 | |||
2496 | static int ace_start_xmit(struct sk_buff *skb, struct net_device *dev) | ||
2497 | { | ||
2498 | struct ace_private *ap = netdev_priv(dev); | ||
2499 | struct ace_regs __iomem *regs = ap->regs; | ||
2500 | struct tx_desc *desc; | ||
2501 | u32 idx, flagsize; | ||
2502 | unsigned long maxjiff = jiffies + 3*HZ; | ||
2503 | |||
2504 | restart: | ||
2505 | idx = ap->tx_prd; | ||
2506 | |||
2507 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | ||
2508 | goto overflow; | ||
2509 | |||
2510 | if (!skb_shinfo(skb)->nr_frags) { | ||
2511 | dma_addr_t mapping; | ||
2512 | u32 vlan_tag = 0; | ||
2513 | |||
2514 | mapping = ace_map_tx_skb(ap, skb, skb, idx); | ||
2515 | flagsize = (skb->len << 16) | (BD_FLG_END); | ||
2516 | if (skb->ip_summed == CHECKSUM_HW) | ||
2517 | flagsize |= BD_FLG_TCP_UDP_SUM; | ||
2518 | #if ACENIC_DO_VLAN | ||
2519 | if (vlan_tx_tag_present(skb)) { | ||
2520 | flagsize |= BD_FLG_VLAN_TAG; | ||
2521 | vlan_tag = vlan_tx_tag_get(skb); | ||
2522 | } | ||
2523 | #endif | ||
2524 | desc = ap->tx_ring + idx; | ||
2525 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | ||
2526 | |||
2527 | /* Look at ace_tx_int for explanations. */ | ||
2528 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | ||
2529 | flagsize |= BD_FLG_COAL_NOW; | ||
2530 | |||
2531 | ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | ||
2532 | } else { | ||
2533 | dma_addr_t mapping; | ||
2534 | u32 vlan_tag = 0; | ||
2535 | int i, len = 0; | ||
2536 | |||
2537 | mapping = ace_map_tx_skb(ap, skb, NULL, idx); | ||
2538 | flagsize = (skb_headlen(skb) << 16); | ||
2539 | if (skb->ip_summed == CHECKSUM_HW) | ||
2540 | flagsize |= BD_FLG_TCP_UDP_SUM; | ||
2541 | #if ACENIC_DO_VLAN | ||
2542 | if (vlan_tx_tag_present(skb)) { | ||
2543 | flagsize |= BD_FLG_VLAN_TAG; | ||
2544 | vlan_tag = vlan_tx_tag_get(skb); | ||
2545 | } | ||
2546 | #endif | ||
2547 | |||
2548 | ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); | ||
2549 | |||
2550 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | ||
2551 | |||
2552 | for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { | ||
2553 | skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | ||
2554 | struct tx_ring_info *info; | ||
2555 | |||
2556 | len += frag->size; | ||
2557 | info = ap->skb->tx_skbuff + idx; | ||
2558 | desc = ap->tx_ring + idx; | ||
2559 | |||
2560 | mapping = pci_map_page(ap->pdev, frag->page, | ||
2561 | frag->page_offset, frag->size, | ||
2562 | PCI_DMA_TODEVICE); | ||
2563 | |||
2564 | flagsize = (frag->size << 16); | ||
2565 | if (skb->ip_summed == CHECKSUM_HW) | ||
2566 | flagsize |= BD_FLG_TCP_UDP_SUM; | ||
2567 | idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); | ||
2568 | |||
2569 | if (i == skb_shinfo(skb)->nr_frags - 1) { | ||
2570 | flagsize |= BD_FLG_END; | ||
2571 | if (tx_ring_full(ap, ap->tx_ret_csm, idx)) | ||
2572 | flagsize |= BD_FLG_COAL_NOW; | ||
2573 | |||
2574 | /* | ||
2575 | * Only the last fragment frees | ||
2576 | * the skb! | ||
2577 | */ | ||
2578 | info->skb = skb; | ||
2579 | } else { | ||
2580 | info->skb = NULL; | ||
2581 | } | ||
2582 | pci_unmap_addr_set(info, mapping, mapping); | ||
2583 | pci_unmap_len_set(info, maplen, frag->size); | ||
2584 | ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); | ||
2585 | } | ||
2586 | } | ||
2587 | |||
2588 | wmb(); | ||
2589 | ap->tx_prd = idx; | ||
2590 | ace_set_txprd(regs, ap, idx); | ||
2591 | |||
2592 | if (flagsize & BD_FLG_COAL_NOW) { | ||
2593 | netif_stop_queue(dev); | ||
2594 | |||
2595 | /* | ||
2596 | * A TX-descriptor producer (an IRQ) might have gotten | ||
2597 | * inbetween, making the ring free again. Since xmit is | ||
2598 | * serialized, this is the only situation we have to | ||
2599 | * re-test. | ||
2600 | */ | ||
2601 | if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) | ||
2602 | netif_wake_queue(dev); | ||
2603 | } | ||
2604 | |||
2605 | dev->trans_start = jiffies; | ||
2606 | return NETDEV_TX_OK; | ||
2607 | |||
2608 | overflow: | ||
2609 | /* | ||
2610 | * This race condition is unavoidable with lock-free drivers. | ||
2611 | * We wake up the queue _before_ tx_prd is advanced, so that we can | ||
2612 | * enter hard_start_xmit too early, while tx ring still looks closed. | ||
2613 | * This happens ~1-4 times per 100000 packets, so that we can allow | ||
2614 | * to loop syncing to other CPU. Probably, we need an additional | ||
2615 | * wmb() in ace_tx_intr as well. | ||
2616 | * | ||
2617 | * Note that this race is relieved by reserving one more entry | ||
2618 | * in tx ring than it is necessary (see original non-SG driver). | ||
2619 | * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which | ||
2620 | * is already overkill. | ||
2621 | * | ||
2622 | * Alternative is to return with 1 not throttling queue. In this | ||
2623 | * case loop becomes longer, no more useful effects. | ||
2624 | */ | ||
2625 | if (time_before(jiffies, maxjiff)) { | ||
2626 | barrier(); | ||
2627 | cpu_relax(); | ||
2628 | goto restart; | ||
2629 | } | ||
2630 | |||
2631 | /* The ring is stuck full. */ | ||
2632 | printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); | ||
2633 | return NETDEV_TX_BUSY; | ||
2634 | } | ||
2635 | |||
2636 | |||
2637 | static int ace_change_mtu(struct net_device *dev, int new_mtu) | ||
2638 | { | ||
2639 | struct ace_private *ap = netdev_priv(dev); | ||
2640 | struct ace_regs __iomem *regs = ap->regs; | ||
2641 | |||
2642 | if (new_mtu > ACE_JUMBO_MTU) | ||
2643 | return -EINVAL; | ||
2644 | |||
2645 | writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); | ||
2646 | dev->mtu = new_mtu; | ||
2647 | |||
2648 | if (new_mtu > ACE_STD_MTU) { | ||
2649 | if (!(ap->jumbo)) { | ||
2650 | printk(KERN_INFO "%s: Enabling Jumbo frame " | ||
2651 | "support\n", dev->name); | ||
2652 | ap->jumbo = 1; | ||
2653 | if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) | ||
2654 | ace_load_jumbo_rx_ring(ap, RX_JUMBO_SIZE); | ||
2655 | ace_set_rxtx_parms(dev, 1); | ||
2656 | } | ||
2657 | } else { | ||
2658 | while (test_and_set_bit(0, &ap->jumbo_refill_busy)); | ||
2659 | ace_sync_irq(dev->irq); | ||
2660 | ace_set_rxtx_parms(dev, 0); | ||
2661 | if (ap->jumbo) { | ||
2662 | struct cmd cmd; | ||
2663 | |||
2664 | cmd.evt = C_RESET_JUMBO_RNG; | ||
2665 | cmd.code = 0; | ||
2666 | cmd.idx = 0; | ||
2667 | ace_issue_cmd(regs, &cmd); | ||
2668 | } | ||
2669 | } | ||
2670 | |||
2671 | return 0; | ||
2672 | } | ||
2673 | |||
2674 | static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | ||
2675 | { | ||
2676 | struct ace_private *ap = netdev_priv(dev); | ||
2677 | struct ace_regs __iomem *regs = ap->regs; | ||
2678 | u32 link; | ||
2679 | |||
2680 | memset(ecmd, 0, sizeof(struct ethtool_cmd)); | ||
2681 | ecmd->supported = | ||
2682 | (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | | ||
2683 | SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | | ||
2684 | SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | | ||
2685 | SUPPORTED_Autoneg | SUPPORTED_FIBRE); | ||
2686 | |||
2687 | ecmd->port = PORT_FIBRE; | ||
2688 | ecmd->transceiver = XCVR_INTERNAL; | ||
2689 | |||
2690 | link = readl(®s->GigLnkState); | ||
2691 | if (link & LNK_1000MB) | ||
2692 | ecmd->speed = SPEED_1000; | ||
2693 | else { | ||
2694 | link = readl(®s->FastLnkState); | ||
2695 | if (link & LNK_100MB) | ||
2696 | ecmd->speed = SPEED_100; | ||
2697 | else if (link & LNK_10MB) | ||
2698 | ecmd->speed = SPEED_10; | ||
2699 | else | ||
2700 | ecmd->speed = 0; | ||
2701 | } | ||
2702 | if (link & LNK_FULL_DUPLEX) | ||
2703 | ecmd->duplex = DUPLEX_FULL; | ||
2704 | else | ||
2705 | ecmd->duplex = DUPLEX_HALF; | ||
2706 | |||
2707 | if (link & LNK_NEGOTIATE) | ||
2708 | ecmd->autoneg = AUTONEG_ENABLE; | ||
2709 | else | ||
2710 | ecmd->autoneg = AUTONEG_DISABLE; | ||
2711 | |||
2712 | #if 0 | ||
2713 | /* | ||
2714 | * Current struct ethtool_cmd is insufficient | ||
2715 | */ | ||
2716 | ecmd->trace = readl(®s->TuneTrace); | ||
2717 | |||
2718 | ecmd->txcoal = readl(®s->TuneTxCoalTicks); | ||
2719 | ecmd->rxcoal = readl(®s->TuneRxCoalTicks); | ||
2720 | #endif | ||
2721 | ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); | ||
2722 | ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); | ||
2723 | |||
2724 | return 0; | ||
2725 | } | ||
2726 | |||
2727 | static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | ||
2728 | { | ||
2729 | struct ace_private *ap = netdev_priv(dev); | ||
2730 | struct ace_regs __iomem *regs = ap->regs; | ||
2731 | u32 link, speed; | ||
2732 | |||
2733 | link = readl(®s->GigLnkState); | ||
2734 | if (link & LNK_1000MB) | ||
2735 | speed = SPEED_1000; | ||
2736 | else { | ||
2737 | link = readl(®s->FastLnkState); | ||
2738 | if (link & LNK_100MB) | ||
2739 | speed = SPEED_100; | ||
2740 | else if (link & LNK_10MB) | ||
2741 | speed = SPEED_10; | ||
2742 | else | ||
2743 | speed = SPEED_100; | ||
2744 | } | ||
2745 | |||
2746 | link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | | ||
2747 | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; | ||
2748 | if (!ACE_IS_TIGON_I(ap)) | ||
2749 | link |= LNK_TX_FLOW_CTL_Y; | ||
2750 | if (ecmd->autoneg == AUTONEG_ENABLE) | ||
2751 | link |= LNK_NEGOTIATE; | ||
2752 | if (ecmd->speed != speed) { | ||
2753 | link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); | ||
2754 | switch (speed) { | ||
2755 | case SPEED_1000: | ||
2756 | link |= LNK_1000MB; | ||
2757 | break; | ||
2758 | case SPEED_100: | ||
2759 | link |= LNK_100MB; | ||
2760 | break; | ||
2761 | case SPEED_10: | ||
2762 | link |= LNK_10MB; | ||
2763 | break; | ||
2764 | } | ||
2765 | } | ||
2766 | |||
2767 | if (ecmd->duplex == DUPLEX_FULL) | ||
2768 | link |= LNK_FULL_DUPLEX; | ||
2769 | |||
2770 | if (link != ap->link) { | ||
2771 | struct cmd cmd; | ||
2772 | printk(KERN_INFO "%s: Renegotiating link state\n", | ||
2773 | dev->name); | ||
2774 | |||
2775 | ap->link = link; | ||
2776 | writel(link, ®s->TuneLink); | ||
2777 | if (!ACE_IS_TIGON_I(ap)) | ||
2778 | writel(link, ®s->TuneFastLink); | ||
2779 | wmb(); | ||
2780 | |||
2781 | cmd.evt = C_LNK_NEGOTIATION; | ||
2782 | cmd.code = 0; | ||
2783 | cmd.idx = 0; | ||
2784 | ace_issue_cmd(regs, &cmd); | ||
2785 | } | ||
2786 | return 0; | ||
2787 | } | ||
2788 | |||
2789 | static void ace_get_drvinfo(struct net_device *dev, | ||
2790 | struct ethtool_drvinfo *info) | ||
2791 | { | ||
2792 | struct ace_private *ap = netdev_priv(dev); | ||
2793 | |||
2794 | strlcpy(info->driver, "acenic", sizeof(info->driver)); | ||
2795 | snprintf(info->version, sizeof(info->version), "%i.%i.%i", | ||
2796 | tigonFwReleaseMajor, tigonFwReleaseMinor, | ||
2797 | tigonFwReleaseFix); | ||
2798 | |||
2799 | if (ap->pdev) | ||
2800 | strlcpy(info->bus_info, pci_name(ap->pdev), | ||
2801 | sizeof(info->bus_info)); | ||
2802 | |||
2803 | } | ||
2804 | |||
2805 | /* | ||
2806 | * Set the hardware MAC address. | ||
2807 | */ | ||
2808 | static int ace_set_mac_addr(struct net_device *dev, void *p) | ||
2809 | { | ||
2810 | struct ace_private *ap = netdev_priv(dev); | ||
2811 | struct ace_regs __iomem *regs = ap->regs; | ||
2812 | struct sockaddr *addr=p; | ||
2813 | u8 *da; | ||
2814 | struct cmd cmd; | ||
2815 | |||
2816 | if(netif_running(dev)) | ||
2817 | return -EBUSY; | ||
2818 | |||
2819 | memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); | ||
2820 | |||
2821 | da = (u8 *)dev->dev_addr; | ||
2822 | |||
2823 | writel(da[0] << 8 | da[1], ®s->MacAddrHi); | ||
2824 | writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], | ||
2825 | ®s->MacAddrLo); | ||
2826 | |||
2827 | cmd.evt = C_SET_MAC_ADDR; | ||
2828 | cmd.code = 0; | ||
2829 | cmd.idx = 0; | ||
2830 | ace_issue_cmd(regs, &cmd); | ||
2831 | |||
2832 | return 0; | ||
2833 | } | ||
2834 | |||
2835 | |||
2836 | static void ace_set_multicast_list(struct net_device *dev) | ||
2837 | { | ||
2838 | struct ace_private *ap = netdev_priv(dev); | ||
2839 | struct ace_regs __iomem *regs = ap->regs; | ||
2840 | struct cmd cmd; | ||
2841 | |||
2842 | if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { | ||
2843 | cmd.evt = C_SET_MULTICAST_MODE; | ||
2844 | cmd.code = C_C_MCAST_ENABLE; | ||
2845 | cmd.idx = 0; | ||
2846 | ace_issue_cmd(regs, &cmd); | ||
2847 | ap->mcast_all = 1; | ||
2848 | } else if (ap->mcast_all) { | ||
2849 | cmd.evt = C_SET_MULTICAST_MODE; | ||
2850 | cmd.code = C_C_MCAST_DISABLE; | ||
2851 | cmd.idx = 0; | ||
2852 | ace_issue_cmd(regs, &cmd); | ||
2853 | ap->mcast_all = 0; | ||
2854 | } | ||
2855 | |||
2856 | if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { | ||
2857 | cmd.evt = C_SET_PROMISC_MODE; | ||
2858 | cmd.code = C_C_PROMISC_ENABLE; | ||
2859 | cmd.idx = 0; | ||
2860 | ace_issue_cmd(regs, &cmd); | ||
2861 | ap->promisc = 1; | ||
2862 | }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { | ||
2863 | cmd.evt = C_SET_PROMISC_MODE; | ||
2864 | cmd.code = C_C_PROMISC_DISABLE; | ||
2865 | cmd.idx = 0; | ||
2866 | ace_issue_cmd(regs, &cmd); | ||
2867 | ap->promisc = 0; | ||
2868 | } | ||
2869 | |||
2870 | /* | ||
2871 | * For the time being multicast relies on the upper layers | ||
2872 | * filtering it properly. The Firmware does not allow one to | ||
2873 | * set the entire multicast list at a time and keeping track of | ||
2874 | * it here is going to be messy. | ||
2875 | */ | ||
2876 | if ((dev->mc_count) && !(ap->mcast_all)) { | ||
2877 | cmd.evt = C_SET_MULTICAST_MODE; | ||
2878 | cmd.code = C_C_MCAST_ENABLE; | ||
2879 | cmd.idx = 0; | ||
2880 | ace_issue_cmd(regs, &cmd); | ||
2881 | }else if (!ap->mcast_all) { | ||
2882 | cmd.evt = C_SET_MULTICAST_MODE; | ||
2883 | cmd.code = C_C_MCAST_DISABLE; | ||
2884 | cmd.idx = 0; | ||
2885 | ace_issue_cmd(regs, &cmd); | ||
2886 | } | ||
2887 | } | ||
2888 | |||
2889 | |||
2890 | static struct net_device_stats *ace_get_stats(struct net_device *dev) | ||
2891 | { | ||
2892 | struct ace_private *ap = netdev_priv(dev); | ||
2893 | struct ace_mac_stats __iomem *mac_stats = | ||
2894 | (struct ace_mac_stats __iomem *)ap->regs->Stats; | ||
2895 | |||
2896 | ap->stats.rx_missed_errors = readl(&mac_stats->drop_space); | ||
2897 | ap->stats.multicast = readl(&mac_stats->kept_mc); | ||
2898 | ap->stats.collisions = readl(&mac_stats->coll); | ||
2899 | |||
2900 | return &ap->stats; | ||
2901 | } | ||
2902 | |||
2903 | |||
2904 | static void __devinit ace_copy(struct ace_regs __iomem *regs, void *src, | ||
2905 | u32 dest, int size) | ||
2906 | { | ||
2907 | void __iomem *tdest; | ||
2908 | u32 *wsrc; | ||
2909 | short tsize, i; | ||
2910 | |||
2911 | if (size <= 0) | ||
2912 | return; | ||
2913 | |||
2914 | while (size > 0) { | ||
2915 | tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | ||
2916 | min_t(u32, size, ACE_WINDOW_SIZE)); | ||
2917 | tdest = (void __iomem *) ®s->Window + | ||
2918 | (dest & (ACE_WINDOW_SIZE - 1)); | ||
2919 | writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | ||
2920 | /* | ||
2921 | * This requires byte swapping on big endian, however | ||
2922 | * writel does that for us | ||
2923 | */ | ||
2924 | wsrc = src; | ||
2925 | for (i = 0; i < (tsize / 4); i++) { | ||
2926 | writel(wsrc[i], tdest + i*4); | ||
2927 | } | ||
2928 | dest += tsize; | ||
2929 | src += tsize; | ||
2930 | size -= tsize; | ||
2931 | } | ||
2932 | |||
2933 | return; | ||
2934 | } | ||
2935 | |||
2936 | |||
2937 | static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) | ||
2938 | { | ||
2939 | void __iomem *tdest; | ||
2940 | short tsize = 0, i; | ||
2941 | |||
2942 | if (size <= 0) | ||
2943 | return; | ||
2944 | |||
2945 | while (size > 0) { | ||
2946 | tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), | ||
2947 | min_t(u32, size, ACE_WINDOW_SIZE)); | ||
2948 | tdest = (void __iomem *) ®s->Window + | ||
2949 | (dest & (ACE_WINDOW_SIZE - 1)); | ||
2950 | writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); | ||
2951 | |||
2952 | for (i = 0; i < (tsize / 4); i++) { | ||
2953 | writel(0, tdest + i*4); | ||
2954 | } | ||
2955 | |||
2956 | dest += tsize; | ||
2957 | size -= tsize; | ||
2958 | } | ||
2959 | |||
2960 | return; | ||
2961 | } | ||
2962 | |||
2963 | |||
2964 | /* | ||
2965 | * Download the firmware into the SRAM on the NIC | ||
2966 | * | ||
2967 | * This operation requires the NIC to be halted and is performed with | ||
2968 | * interrupts disabled and with the spinlock hold. | ||
2969 | */ | ||
2970 | int __devinit ace_load_firmware(struct net_device *dev) | ||
2971 | { | ||
2972 | struct ace_private *ap = netdev_priv(dev); | ||
2973 | struct ace_regs __iomem *regs = ap->regs; | ||
2974 | |||
2975 | if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { | ||
2976 | printk(KERN_ERR "%s: trying to download firmware while the " | ||
2977 | "CPU is running!\n", ap->name); | ||
2978 | return -EFAULT; | ||
2979 | } | ||
2980 | |||
2981 | /* | ||
2982 | * Do not try to clear more than 512KB or we end up seeing | ||
2983 | * funny things on NICs with only 512KB SRAM | ||
2984 | */ | ||
2985 | ace_clear(regs, 0x2000, 0x80000-0x2000); | ||
2986 | if (ACE_IS_TIGON_I(ap)) { | ||
2987 | ace_copy(regs, tigonFwText, tigonFwTextAddr, tigonFwTextLen); | ||
2988 | ace_copy(regs, tigonFwData, tigonFwDataAddr, tigonFwDataLen); | ||
2989 | ace_copy(regs, tigonFwRodata, tigonFwRodataAddr, | ||
2990 | tigonFwRodataLen); | ||
2991 | ace_clear(regs, tigonFwBssAddr, tigonFwBssLen); | ||
2992 | ace_clear(regs, tigonFwSbssAddr, tigonFwSbssLen); | ||
2993 | }else if (ap->version == 2) { | ||
2994 | ace_clear(regs, tigon2FwBssAddr, tigon2FwBssLen); | ||
2995 | ace_clear(regs, tigon2FwSbssAddr, tigon2FwSbssLen); | ||
2996 | ace_copy(regs, tigon2FwText, tigon2FwTextAddr,tigon2FwTextLen); | ||
2997 | ace_copy(regs, tigon2FwRodata, tigon2FwRodataAddr, | ||
2998 | tigon2FwRodataLen); | ||
2999 | ace_copy(regs, tigon2FwData, tigon2FwDataAddr,tigon2FwDataLen); | ||
3000 | } | ||
3001 | |||
3002 | return 0; | ||
3003 | } | ||
3004 | |||
3005 | |||
3006 | /* | ||
3007 | * The eeprom on the AceNIC is an Atmel i2c EEPROM. | ||
3008 | * | ||
3009 | * Accessing the EEPROM is `interesting' to say the least - don't read | ||
3010 | * this code right after dinner. | ||
3011 | * | ||
3012 | * This is all about black magic and bit-banging the device .... I | ||
3013 | * wonder in what hospital they have put the guy who designed the i2c | ||
3014 | * specs. | ||
3015 | * | ||
3016 | * Oh yes, this is only the beginning! | ||
3017 | * | ||
3018 | * Thanks to Stevarino Webinski for helping tracking down the bugs in the | ||
3019 | * code i2c readout code by beta testing all my hacks. | ||
3020 | */ | ||
3021 | static void __devinit eeprom_start(struct ace_regs __iomem *regs) | ||
3022 | { | ||
3023 | u32 local; | ||
3024 | |||
3025 | readl(®s->LocalCtrl); | ||
3026 | udelay(ACE_SHORT_DELAY); | ||
3027 | local = readl(®s->LocalCtrl); | ||
3028 | local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; | ||
3029 | writel(local, ®s->LocalCtrl); | ||
3030 | readl(®s->LocalCtrl); | ||
3031 | mb(); | ||
3032 | udelay(ACE_SHORT_DELAY); | ||
3033 | local |= EEPROM_CLK_OUT; | ||
3034 | writel(local, ®s->LocalCtrl); | ||
3035 | readl(®s->LocalCtrl); | ||
3036 | mb(); | ||
3037 | udelay(ACE_SHORT_DELAY); | ||
3038 | local &= ~EEPROM_DATA_OUT; | ||
3039 | writel(local, ®s->LocalCtrl); | ||
3040 | readl(®s->LocalCtrl); | ||
3041 | mb(); | ||
3042 | udelay(ACE_SHORT_DELAY); | ||
3043 | local &= ~EEPROM_CLK_OUT; | ||
3044 | writel(local, ®s->LocalCtrl); | ||
3045 | readl(®s->LocalCtrl); | ||
3046 | mb(); | ||
3047 | } | ||
3048 | |||
3049 | |||
3050 | static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic) | ||
3051 | { | ||
3052 | short i; | ||
3053 | u32 local; | ||
3054 | |||
3055 | udelay(ACE_SHORT_DELAY); | ||
3056 | local = readl(®s->LocalCtrl); | ||
3057 | local &= ~EEPROM_DATA_OUT; | ||
3058 | local |= EEPROM_WRITE_ENABLE; | ||
3059 | writel(local, ®s->LocalCtrl); | ||
3060 | readl(®s->LocalCtrl); | ||
3061 | mb(); | ||
3062 | |||
3063 | for (i = 0; i < 8; i++, magic <<= 1) { | ||
3064 | udelay(ACE_SHORT_DELAY); | ||
3065 | if (magic & 0x80) | ||
3066 | local |= EEPROM_DATA_OUT; | ||
3067 | else | ||
3068 | local &= ~EEPROM_DATA_OUT; | ||
3069 | writel(local, ®s->LocalCtrl); | ||
3070 | readl(®s->LocalCtrl); | ||
3071 | mb(); | ||
3072 | |||
3073 | udelay(ACE_SHORT_DELAY); | ||
3074 | local |= EEPROM_CLK_OUT; | ||
3075 | writel(local, ®s->LocalCtrl); | ||
3076 | readl(®s->LocalCtrl); | ||
3077 | mb(); | ||
3078 | udelay(ACE_SHORT_DELAY); | ||
3079 | local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); | ||
3080 | writel(local, ®s->LocalCtrl); | ||
3081 | readl(®s->LocalCtrl); | ||
3082 | mb(); | ||
3083 | } | ||
3084 | } | ||
3085 | |||
3086 | |||
3087 | static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs) | ||
3088 | { | ||
3089 | int state; | ||
3090 | u32 local; | ||
3091 | |||
3092 | local = readl(®s->LocalCtrl); | ||
3093 | local &= ~EEPROM_WRITE_ENABLE; | ||
3094 | writel(local, ®s->LocalCtrl); | ||
3095 | readl(®s->LocalCtrl); | ||
3096 | mb(); | ||
3097 | udelay(ACE_LONG_DELAY); | ||
3098 | local |= EEPROM_CLK_OUT; | ||
3099 | writel(local, ®s->LocalCtrl); | ||
3100 | readl(®s->LocalCtrl); | ||
3101 | mb(); | ||
3102 | udelay(ACE_SHORT_DELAY); | ||
3103 | /* sample data in middle of high clk */ | ||
3104 | state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; | ||
3105 | udelay(ACE_SHORT_DELAY); | ||
3106 | mb(); | ||
3107 | writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | ||
3108 | readl(®s->LocalCtrl); | ||
3109 | mb(); | ||
3110 | |||
3111 | return state; | ||
3112 | } | ||
3113 | |||
3114 | |||
3115 | static void __devinit eeprom_stop(struct ace_regs __iomem *regs) | ||
3116 | { | ||
3117 | u32 local; | ||
3118 | |||
3119 | udelay(ACE_SHORT_DELAY); | ||
3120 | local = readl(®s->LocalCtrl); | ||
3121 | local |= EEPROM_WRITE_ENABLE; | ||
3122 | writel(local, ®s->LocalCtrl); | ||
3123 | readl(®s->LocalCtrl); | ||
3124 | mb(); | ||
3125 | udelay(ACE_SHORT_DELAY); | ||
3126 | local &= ~EEPROM_DATA_OUT; | ||
3127 | writel(local, ®s->LocalCtrl); | ||
3128 | readl(®s->LocalCtrl); | ||
3129 | mb(); | ||
3130 | udelay(ACE_SHORT_DELAY); | ||
3131 | local |= EEPROM_CLK_OUT; | ||
3132 | writel(local, ®s->LocalCtrl); | ||
3133 | readl(®s->LocalCtrl); | ||
3134 | mb(); | ||
3135 | udelay(ACE_SHORT_DELAY); | ||
3136 | local |= EEPROM_DATA_OUT; | ||
3137 | writel(local, ®s->LocalCtrl); | ||
3138 | readl(®s->LocalCtrl); | ||
3139 | mb(); | ||
3140 | udelay(ACE_LONG_DELAY); | ||
3141 | local &= ~EEPROM_CLK_OUT; | ||
3142 | writel(local, ®s->LocalCtrl); | ||
3143 | mb(); | ||
3144 | } | ||
3145 | |||
3146 | |||
3147 | /* | ||
3148 | * Read a whole byte from the EEPROM. | ||
3149 | */ | ||
3150 | static int __devinit read_eeprom_byte(struct net_device *dev, | ||
3151 | unsigned long offset) | ||
3152 | { | ||
3153 | struct ace_private *ap = netdev_priv(dev); | ||
3154 | struct ace_regs __iomem *regs = ap->regs; | ||
3155 | unsigned long flags; | ||
3156 | u32 local; | ||
3157 | int result = 0; | ||
3158 | short i; | ||
3159 | |||
3160 | if (!dev) { | ||
3161 | printk(KERN_ERR "No device!\n"); | ||
3162 | result = -ENODEV; | ||
3163 | goto out; | ||
3164 | } | ||
3165 | |||
3166 | /* | ||
3167 | * Don't take interrupts on this CPU will bit banging | ||
3168 | * the %#%#@$ I2C device | ||
3169 | */ | ||
3170 | local_irq_save(flags); | ||
3171 | |||
3172 | eeprom_start(regs); | ||
3173 | |||
3174 | eeprom_prep(regs, EEPROM_WRITE_SELECT); | ||
3175 | if (eeprom_check_ack(regs)) { | ||
3176 | local_irq_restore(flags); | ||
3177 | printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); | ||
3178 | result = -EIO; | ||
3179 | goto eeprom_read_error; | ||
3180 | } | ||
3181 | |||
3182 | eeprom_prep(regs, (offset >> 8) & 0xff); | ||
3183 | if (eeprom_check_ack(regs)) { | ||
3184 | local_irq_restore(flags); | ||
3185 | printk(KERN_ERR "%s: Unable to set address byte 0\n", | ||
3186 | ap->name); | ||
3187 | result = -EIO; | ||
3188 | goto eeprom_read_error; | ||
3189 | } | ||
3190 | |||
3191 | eeprom_prep(regs, offset & 0xff); | ||
3192 | if (eeprom_check_ack(regs)) { | ||
3193 | local_irq_restore(flags); | ||
3194 | printk(KERN_ERR "%s: Unable to set address byte 1\n", | ||
3195 | ap->name); | ||
3196 | result = -EIO; | ||
3197 | goto eeprom_read_error; | ||
3198 | } | ||
3199 | |||
3200 | eeprom_start(regs); | ||
3201 | eeprom_prep(regs, EEPROM_READ_SELECT); | ||
3202 | if (eeprom_check_ack(regs)) { | ||
3203 | local_irq_restore(flags); | ||
3204 | printk(KERN_ERR "%s: Unable to set READ_SELECT\n", | ||
3205 | ap->name); | ||
3206 | result = -EIO; | ||
3207 | goto eeprom_read_error; | ||
3208 | } | ||
3209 | |||
3210 | for (i = 0; i < 8; i++) { | ||
3211 | local = readl(®s->LocalCtrl); | ||
3212 | local &= ~EEPROM_WRITE_ENABLE; | ||
3213 | writel(local, ®s->LocalCtrl); | ||
3214 | readl(®s->LocalCtrl); | ||
3215 | udelay(ACE_LONG_DELAY); | ||
3216 | mb(); | ||
3217 | local |= EEPROM_CLK_OUT; | ||
3218 | writel(local, ®s->LocalCtrl); | ||
3219 | readl(®s->LocalCtrl); | ||
3220 | mb(); | ||
3221 | udelay(ACE_SHORT_DELAY); | ||
3222 | /* sample data mid high clk */ | ||
3223 | result = (result << 1) | | ||
3224 | ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); | ||
3225 | udelay(ACE_SHORT_DELAY); | ||
3226 | mb(); | ||
3227 | local = readl(®s->LocalCtrl); | ||
3228 | local &= ~EEPROM_CLK_OUT; | ||
3229 | writel(local, ®s->LocalCtrl); | ||
3230 | readl(®s->LocalCtrl); | ||
3231 | udelay(ACE_SHORT_DELAY); | ||
3232 | mb(); | ||
3233 | if (i == 7) { | ||
3234 | local |= EEPROM_WRITE_ENABLE; | ||
3235 | writel(local, ®s->LocalCtrl); | ||
3236 | readl(®s->LocalCtrl); | ||
3237 | mb(); | ||
3238 | udelay(ACE_SHORT_DELAY); | ||
3239 | } | ||
3240 | } | ||
3241 | |||
3242 | local |= EEPROM_DATA_OUT; | ||
3243 | writel(local, ®s->LocalCtrl); | ||
3244 | readl(®s->LocalCtrl); | ||
3245 | mb(); | ||
3246 | udelay(ACE_SHORT_DELAY); | ||
3247 | writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); | ||
3248 | readl(®s->LocalCtrl); | ||
3249 | udelay(ACE_LONG_DELAY); | ||
3250 | writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); | ||
3251 | readl(®s->LocalCtrl); | ||
3252 | mb(); | ||
3253 | udelay(ACE_SHORT_DELAY); | ||
3254 | eeprom_stop(regs); | ||
3255 | |||
3256 | local_irq_restore(flags); | ||
3257 | out: | ||
3258 | return result; | ||
3259 | |||
3260 | eeprom_read_error: | ||
3261 | printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", | ||
3262 | ap->name, offset); | ||
3263 | goto out; | ||
3264 | } | ||
3265 | |||
3266 | |||
3267 | /* | ||
3268 | * Local variables: | ||
3269 | * compile-command: "gcc -D__SMP__ -D__KERNEL__ -DMODULE -I../../include -Wall -Wstrict-prototypes -O2 -fomit-frame-pointer -pipe -fno-strength-reduce -DMODVERSIONS -include ../../include/linux/modversions.h -c -o acenic.o acenic.c" | ||
3270 | * End: | ||
3271 | */ | ||