aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/3c59x.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/net/3c59x.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/net/3c59x.c')
-rw-r--r--drivers/net/3c59x.c3365
1 files changed, 3365 insertions, 0 deletions
diff --git a/drivers/net/3c59x.c b/drivers/net/3c59x.c
new file mode 100644
index 000000000000..43e2ac532f82
--- /dev/null
+++ b/drivers/net/3c59x.c
@@ -0,0 +1,3365 @@
1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2/*
3 Written 1996-1999 by Donald Becker.
4
5 This software may be used and distributed according to the terms
6 of the GNU General Public License, incorporated herein by reference.
7
8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 and the EtherLink XL 3c900 and 3c905 cards.
11
12 Problem reports and questions should be directed to
13 vortex@scyld.com
14
15 The author may be reached as becker@scyld.com, or C/O
16 Scyld Computing Corporation
17 410 Severn Ave., Suite 210
18 Annapolis MD 21403
19
20 Linux Kernel Additions:
21
22 0.99H+lk0.9 - David S. Miller - softnet, PCI DMA updates
23 0.99H+lk1.0 - Jeff Garzik <jgarzik@pobox.com>
24 Remove compatibility defines for kernel versions < 2.2.x.
25 Update for new 2.3.x module interface
26 LK1.1.2 (March 19, 2000)
27 * New PCI interface (jgarzik)
28
29 LK1.1.3 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
30 - Merged with 3c575_cb.c
31 - Don't set RxComplete in boomerang interrupt enable reg
32 - spinlock in vortex_timer to protect mdio functions
33 - disable local interrupts around call to vortex_interrupt in
34 vortex_tx_timeout() (So vortex_interrupt can use spin_lock())
35 - Select window 3 in vortex_timer()'s write to Wn3_MAC_Ctrl
36 - In vortex_start_xmit(), move the lock to _after_ we've altered
37 vp->cur_tx and vp->tx_full. This defeats the race between
38 vortex_start_xmit() and vortex_interrupt which was identified
39 by Bogdan Costescu.
40 - Merged back support for six new cards from various sources
41 - Set vortex_have_pci if pci_module_init returns zero (fixes cardbus
42 insertion oops)
43 - Tell it that 3c905C has NWAY for 100bT autoneg
44 - Fix handling of SetStatusEnd in 'Too much work..' code, as
45 per 2.3.99's 3c575_cb (Dave Hinds).
46 - Split ISR into two for vortex & boomerang
47 - Fix MOD_INC/DEC races
48 - Handle resource allocation failures.
49 - Fix 3CCFE575CT LED polarity
50 - Make tx_interrupt_mitigation the default
51
52 LK1.1.4 25 April 2000, Andrew Morton <andrewm@uow.edu.au>
53 - Add extra TxReset to vortex_up() to fix 575_cb hotplug initialisation probs.
54 - Put vortex_info_tbl into __devinitdata
55 - In the vortex_error StatsFull HACK, disable stats in vp->intr_enable as well
56 as in the hardware.
57 - Increased the loop counter in issue_and_wait from 2,000 to 4,000.
58
59 LK1.1.5 28 April 2000, andrewm
60 - Added powerpc defines (John Daniel <jdaniel@etresoft.com> said these work...)
61 - Some extra diagnostics
62 - In vortex_error(), reset the Tx on maxCollisions. Otherwise most
63 chips usually get a Tx timeout.
64 - Added extra_reset module parm
65 - Replaced some inline timer manip with mod_timer
66 (Franois romieu <Francois.Romieu@nic.fr>)
67 - In vortex_up(), don't make Wn3_config initialisation dependent upon has_nway
68 (this came across from 3c575_cb).
69
70 LK1.1.6 06 Jun 2000, andrewm
71 - Backed out the PPC defines.
72 - Use del_timer_sync(), mod_timer().
73 - Fix wrapped ulong comparison in boomerang_rx()
74 - Add IS_TORNADO, use it to suppress 3c905C checksum error msg
75 (Donald Becker, I Lee Hetherington <ilh@sls.lcs.mit.edu>)
76 - Replace union wn3_config with BFINS/BFEXT manipulation for
77 sparc64 (Pete Zaitcev, Peter Jones)
78 - In vortex_error, do_tx_reset and vortex_tx_timeout(Vortex):
79 do a netif_wake_queue() to better recover from errors. (Anders Pedersen,
80 Donald Becker)
81 - Print a warning on out-of-memory (rate limited to 1 per 10 secs)
82 - Added two more Cardbus 575 NICs: 5b57 and 6564 (Paul Wagland)
83
84 LK1.1.7 2 Jul 2000 andrewm
85 - Better handling of shared IRQs
86 - Reset the transmitter on a Tx reclaim error
87 - Fixed crash under OOM during vortex_open() (Mark Hemment)
88 - Fix Rx cessation problem during OOM (help from Mark Hemment)
89 - The spinlocks around the mdio access were blocking interrupts for 300uS.
90 Fix all this to use spin_lock_bh() within mdio_read/write
91 - Only write to TxFreeThreshold if it's a boomerang - other NICs don't
92 have one.
93 - Added 802.3x MAC-layer flow control support
94
95 LK1.1.8 13 Aug 2000 andrewm
96 - Ignore request_region() return value - already reserved if Cardbus.
97 - Merged some additional Cardbus flags from Don's 0.99Qk
98 - Some fixes for 3c556 (Fred Maciel)
99 - Fix for EISA initialisation (Jan Rekorajski)
100 - Renamed MII_XCVR_PWR and EEPROM_230 to align with 3c575_cb and D. Becker's drivers
101 - Fixed MII_XCVR_PWR for 3CCFE575CT
102 - Added INVERT_LED_PWR, used it.
103 - Backed out the extra_reset stuff
104
105 LK1.1.9 12 Sep 2000 andrewm
106 - Backed out the tx_reset_resume flags. It was a no-op.
107 - In vortex_error, don't reset the Tx on txReclaim errors
108 - In vortex_error, don't reset the Tx on maxCollisions errors.
109 Hence backed out all the DownListPtr logic here.
110 - In vortex_error, give Tornado cards a partial TxReset on
111 maxCollisions (David Hinds). Defined MAX_COLLISION_RESET for this.
112 - Redid some driver flags and device names based on pcmcia_cs-3.1.20.
113 - Fixed a bug where, if vp->tx_full is set when the interface
114 is downed, it remains set when the interface is upped. Bad
115 things happen.
116
117 LK1.1.10 17 Sep 2000 andrewm
118 - Added EEPROM_8BIT for 3c555 (Fred Maciel)
119 - Added experimental support for the 3c556B Laptop Hurricane (Louis Gerbarg)
120 - Add HAS_NWAY to "3c900 Cyclone 10Mbps TPO"
121
122 LK1.1.11 13 Nov 2000 andrewm
123 - Dump MOD_INC/DEC_USE_COUNT, use SET_MODULE_OWNER
124
125 LK1.1.12 1 Jan 2001 andrewm (2.4.0-pre1)
126 - Call pci_enable_device before we request our IRQ (Tobias Ringstrom)
127 - Add 3c590 PCI latency timer hack to vortex_probe1 (from 0.99Ra)
128 - Added extended issue_and_wait for the 3c905CX.
129 - Look for an MII on PHY index 24 first (3c905CX oddity).
130 - Add HAS_NWAY to 3cSOHO100-TX (Brett Frankenberger)
131 - Don't free skbs we don't own on oom path in vortex_open().
132
133 LK1.1.13 27 Jan 2001
134 - Added explicit `medialock' flag so we can truly
135 lock the media type down with `options'.
136 - "check ioremap return and some tidbits" (Arnaldo Carvalho de Melo <acme@conectiva.com.br>)
137 - Added and used EEPROM_NORESET for 3c556B PM resumes.
138 - Fixed leakage of vp->rx_ring.
139 - Break out separate HAS_HWCKSM device capability flag.
140 - Kill vp->tx_full (ANK)
141 - Merge zerocopy fragment handling (ANK?)
142
143 LK1.1.14 15 Feb 2001
144 - Enable WOL. Can be turned on with `enable_wol' module option.
145 - EISA and PCI initialisation fixes (jgarzik, Manfred Spraul)
146 - If a device's internalconfig register reports it has NWAY,
147 use it, even if autoselect is enabled.
148
149 LK1.1.15 6 June 2001 akpm
150 - Prevent double counting of received bytes (Lars Christensen)
151 - Add ethtool support (jgarzik)
152 - Add module parm descriptions (Andrzej M. Krzysztofowicz)
153 - Implemented alloc_etherdev() API
154 - Special-case the 'Tx error 82' message.
155
156 LK1.1.16 18 July 2001 akpm
157 - Make NETIF_F_SG dependent upon nr_free_highpages(), not on CONFIG_HIGHMEM
158 - Lessen verbosity of bootup messages
159 - Fix WOL - use new PM API functions.
160 - Use netif_running() instead of vp->open in suspend/resume.
161 - Don't reset the interface logic on open/close/rmmod. It upsets
162 autonegotiation, and hence DHCP (from 0.99T).
163 - Back out EEPROM_NORESET flag because of the above (we do it for all
164 NICs).
165 - Correct 3c982 identification string
166 - Rename wait_for_completion() to issue_and_wait() to avoid completion.h
167 clash.
168
169 LK1.1.17 18Dec01 akpm
170 - PCI ID 9805 is a Python-T, not a dual-port Cyclone. Apparently.
171 And it has NWAY.
172 - Mask our advertised modes (vp->advertising) with our capabilities
173 (MII reg5) when deciding which duplex mode to use.
174 - Add `global_options' as default for options[]. Ditto global_enable_wol,
175 global_full_duplex.
176
177 LK1.1.18 01Jul02 akpm
178 - Fix for undocumented transceiver power-up bit on some 3c566B's
179 (Donald Becker, Rahul Karnik)
180
181 - See http://www.zip.com.au/~akpm/linux/#3c59x-2.3 for more details.
182 - Also see Documentation/networking/vortex.txt
183
184 LK1.1.19 10Nov02 Marc Zyngier <maz@wild-wind.fr.eu.org>
185 - EISA sysfs integration.
186*/
187
188/*
189 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation
190 * as well as other drivers
191 *
192 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
193 * due to dead code elimination. There will be some performance benefits from this due to
194 * elimination of all the tests and reduced cache footprint.
195 */
196
197
198#define DRV_NAME "3c59x"
199#define DRV_VERSION "LK1.1.19"
200#define DRV_RELDATE "10 Nov 2002"
201
202
203
204/* A few values that may be tweaked. */
205/* Keep the ring sizes a power of two for efficiency. */
206#define TX_RING_SIZE 16
207#define RX_RING_SIZE 32
208#define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
209
210/* "Knobs" that adjust features and parameters. */
211/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
212 Setting to > 1512 effectively disables this feature. */
213#ifndef __arm__
214static int rx_copybreak = 200;
215#else
216/* ARM systems perform better by disregarding the bus-master
217 transfer capability of these cards. -- rmk */
218static int rx_copybreak = 1513;
219#endif
220/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
221static const int mtu = 1500;
222/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
223static int max_interrupt_work = 32;
224/* Tx timeout interval (millisecs) */
225static int watchdog = 5000;
226
227/* Allow aggregation of Tx interrupts. Saves CPU load at the cost
228 * of possible Tx stalls if the system is blocking interrupts
229 * somewhere else. Undefine this to disable.
230 */
231#define tx_interrupt_mitigation 1
232
233/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
234#define vortex_debug debug
235#ifdef VORTEX_DEBUG
236static int vortex_debug = VORTEX_DEBUG;
237#else
238static int vortex_debug = 1;
239#endif
240
241#include <linux/config.h>
242#include <linux/module.h>
243#include <linux/kernel.h>
244#include <linux/string.h>
245#include <linux/timer.h>
246#include <linux/errno.h>
247#include <linux/in.h>
248#include <linux/ioport.h>
249#include <linux/slab.h>
250#include <linux/interrupt.h>
251#include <linux/pci.h>
252#include <linux/mii.h>
253#include <linux/init.h>
254#include <linux/netdevice.h>
255#include <linux/etherdevice.h>
256#include <linux/skbuff.h>
257#include <linux/ethtool.h>
258#include <linux/highmem.h>
259#include <linux/eisa.h>
260#include <linux/bitops.h>
261#include <asm/irq.h> /* For NR_IRQS only. */
262#include <asm/io.h>
263#include <asm/uaccess.h>
264
265/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
266 This is only in the support-all-kernels source code. */
267
268#define RUN_AT(x) (jiffies + (x))
269
270#include <linux/delay.h>
271
272
273static char version[] __devinitdata =
274DRV_NAME ": Donald Becker and others. www.scyld.com/network/vortex.html\n";
275
276MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
277MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "
278 DRV_VERSION " " DRV_RELDATE);
279MODULE_LICENSE("GPL");
280MODULE_VERSION(DRV_VERSION);
281
282
283/* Operational parameter that usually are not changed. */
284
285/* The Vortex size is twice that of the original EtherLinkIII series: the
286 runtime register window, window 1, is now always mapped in.
287 The Boomerang size is twice as large as the Vortex -- it has additional
288 bus master control registers. */
289#define VORTEX_TOTAL_SIZE 0x20
290#define BOOMERANG_TOTAL_SIZE 0x40
291
292/* Set iff a MII transceiver on any interface requires mdio preamble.
293 This only set with the original DP83840 on older 3c905 boards, so the extra
294 code size of a per-interface flag is not worthwhile. */
295static char mii_preamble_required;
296
297#define PFX DRV_NAME ": "
298
299
300
301/*
302 Theory of Operation
303
304I. Board Compatibility
305
306This device driver is designed for the 3Com FastEtherLink and FastEtherLink
307XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs
308versions of the FastEtherLink cards. The supported product IDs are
309 3c590, 3c592, 3c595, 3c597, 3c900, 3c905
310
311The related ISA 3c515 is supported with a separate driver, 3c515.c, included
312with the kernel source or available from
313 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
314
315II. Board-specific settings
316
317PCI bus devices are configured by the system at boot time, so no jumpers
318need to be set on the board. The system BIOS should be set to assign the
319PCI INTA signal to an otherwise unused system IRQ line.
320
321The EEPROM settings for media type and forced-full-duplex are observed.
322The EEPROM media type should be left at the default "autoselect" unless using
32310base2 or AUI connections which cannot be reliably detected.
324
325III. Driver operation
326
327The 3c59x series use an interface that's very similar to the previous 3c5x9
328series. The primary interface is two programmed-I/O FIFOs, with an
329alternate single-contiguous-region bus-master transfer (see next).
330
331The 3c900 "Boomerang" series uses a full-bus-master interface with separate
332lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
333DEC Tulip and Intel Speedo3. The first chip version retains a compatible
334programmed-I/O interface that has been removed in 'B' and subsequent board
335revisions.
336
337One extension that is advertised in a very large font is that the adapters
338are capable of being bus masters. On the Vortex chip this capability was
339only for a single contiguous region making it far less useful than the full
340bus master capability. There is a significant performance impact of taking
341an extra interrupt or polling for the completion of each transfer, as well
342as difficulty sharing the single transfer engine between the transmit and
343receive threads. Using DMA transfers is a win only with large blocks or
344with the flawed versions of the Intel Orion motherboard PCI controller.
345
346The Boomerang chip's full-bus-master interface is useful, and has the
347currently-unused advantages over other similar chips that queued transmit
348packets may be reordered and receive buffer groups are associated with a
349single frame.
350
351With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
352Rather than a fixed intermediate receive buffer, this scheme allocates
353full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as
354the copying breakpoint: it is chosen to trade-off the memory wasted by
355passing the full-sized skbuff to the queue layer for all frames vs. the
356copying cost of copying a frame to a correctly-sized skbuff.
357
358IIIC. Synchronization
359The driver runs as two independent, single-threaded flows of control. One
360is the send-packet routine, which enforces single-threaded use by the
361dev->tbusy flag. The other thread is the interrupt handler, which is single
362threaded by the hardware and other software.
363
364IV. Notes
365
366Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
3673c590, 3c595, and 3c900 boards.
368The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
369the EISA version is called "Demon". According to Terry these names come
370from rides at the local amusement park.
371
372The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
373This driver only supports ethernet packets because of the skbuff allocation
374limit of 4K.
375*/
376
377/* This table drives the PCI probe routines. It's mostly boilerplate in all
378 of the drivers, and will likely be provided by some future kernel.
379*/
380enum pci_flags_bit {
381 PCI_USES_IO=1, PCI_USES_MEM=2, PCI_USES_MASTER=4,
382 PCI_ADDR0=0x10<<0, PCI_ADDR1=0x10<<1, PCI_ADDR2=0x10<<2, PCI_ADDR3=0x10<<3,
383};
384
385enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
386 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
387 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
388 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
389 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
390 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
391
392enum vortex_chips {
393 CH_3C590 = 0,
394 CH_3C592,
395 CH_3C597,
396 CH_3C595_1,
397 CH_3C595_2,
398
399 CH_3C595_3,
400 CH_3C900_1,
401 CH_3C900_2,
402 CH_3C900_3,
403 CH_3C900_4,
404
405 CH_3C900_5,
406 CH_3C900B_FL,
407 CH_3C905_1,
408 CH_3C905_2,
409 CH_3C905B_1,
410
411 CH_3C905B_2,
412 CH_3C905B_FX,
413 CH_3C905C,
414 CH_3C9202,
415 CH_3C980,
416 CH_3C9805,
417
418 CH_3CSOHO100_TX,
419 CH_3C555,
420 CH_3C556,
421 CH_3C556B,
422 CH_3C575,
423
424 CH_3C575_1,
425 CH_3CCFE575,
426 CH_3CCFE575CT,
427 CH_3CCFE656,
428 CH_3CCFEM656,
429
430 CH_3CCFEM656_1,
431 CH_3C450,
432 CH_3C920,
433 CH_3C982A,
434 CH_3C982B,
435
436 CH_905BT4,
437 CH_920B_EMB_WNM,
438};
439
440
441/* note: this array directly indexed by above enums, and MUST
442 * be kept in sync with both the enums above, and the PCI device
443 * table below
444 */
445static struct vortex_chip_info {
446 const char *name;
447 int flags;
448 int drv_flags;
449 int io_size;
450} vortex_info_tbl[] __devinitdata = {
451 {"3c590 Vortex 10Mbps",
452 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
453 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
454 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
455 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */
456 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
457 {"3c595 Vortex 100baseTx",
458 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
459 {"3c595 Vortex 100baseT4",
460 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
461
462 {"3c595 Vortex 100base-MII",
463 PCI_USES_IO|PCI_USES_MASTER, IS_VORTEX, 32, },
464 {"3c900 Boomerang 10baseT",
465 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
466 {"3c900 Boomerang 10Mbps Combo",
467 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
468 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */
469 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
470 {"3c900 Cyclone 10Mbps Combo",
471 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
472
473 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */
474 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
475 {"3c900B-FL Cyclone 10base-FL",
476 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
477 {"3c905 Boomerang 100baseTx",
478 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
479 {"3c905 Boomerang 100baseT4",
480 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
481 {"3c905B Cyclone 100baseTx",
482 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
483
484 {"3c905B Cyclone 10/100/BNC",
485 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
486 {"3c905B-FX Cyclone 100baseFx",
487 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
488 {"3c905C Tornado",
489 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
490 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
491 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
492 {"3c980 Cyclone",
493 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
494
495 {"3c980C Python-T",
496 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
497 {"3cSOHO100-TX Hurricane",
498 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
499 {"3c555 Laptop Hurricane",
500 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
501 {"3c556 Laptop Tornado",
502 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
503 HAS_HWCKSM, 128, },
504 {"3c556B Laptop Hurricane",
505 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
506 WNO_XCVR_PWR|HAS_HWCKSM, 128, },
507
508 {"3c575 [Megahertz] 10/100 LAN CardBus",
509 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
510 {"3c575 Boomerang CardBus",
511 PCI_USES_IO|PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
512 {"3CCFE575BT Cyclone CardBus",
513 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
514 INVERT_LED_PWR|HAS_HWCKSM, 128, },
515 {"3CCFE575CT Tornado CardBus",
516 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
517 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
518 {"3CCFE656 Cyclone CardBus",
519 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
520 INVERT_LED_PWR|HAS_HWCKSM, 128, },
521
522 {"3CCFEM656B Cyclone+Winmodem CardBus",
523 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
524 INVERT_LED_PWR|HAS_HWCKSM, 128, },
525 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */
526 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
527 MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
528 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */
529 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
530 {"3c920 Tornado",
531 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
532 {"3c982 Hydra Dual Port A",
533 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
534
535 {"3c982 Hydra Dual Port B",
536 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
537 {"3c905B-T4",
538 PCI_USES_IO|PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
539 {"3c920B-EMB-WNM Tornado",
540 PCI_USES_IO|PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
541
542 {NULL,}, /* NULL terminated list. */
543};
544
545
546static struct pci_device_id vortex_pci_tbl[] = {
547 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
548 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
549 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
550 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
551 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
552
553 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
554 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
555 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
556 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
557 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
558
559 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
560 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
561 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
562 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
563 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
564
565 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
566 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
567 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
568 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
569 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
570 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
571
572 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
573 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
574 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
575 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
576 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
577
578 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
579 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
580 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
581 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
582 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
583
584 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
585 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
586 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
587 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
588 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
589
590 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
591 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
592
593 {0,} /* 0 terminated list. */
594};
595MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
596
597
598/* Operational definitions.
599 These are not used by other compilation units and thus are not
600 exported in a ".h" file.
601
602 First the windows. There are eight register windows, with the command
603 and status registers available in each.
604 */
605#define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
606#define EL3_CMD 0x0e
607#define EL3_STATUS 0x0e
608
609/* The top five bits written to EL3_CMD are a command, the lower
610 11 bits are the parameter, if applicable.
611 Note that 11 parameters bits was fine for ethernet, but the new chip
612 can handle FDDI length frames (~4500 octets) and now parameters count
613 32-bit 'Dwords' rather than octets. */
614
615enum vortex_cmd {
616 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
617 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
618 UpStall = 6<<11, UpUnstall = (6<<11)+1,
619 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
620 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
621 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
622 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
623 SetTxThreshold = 18<<11, SetTxStart = 19<<11,
624 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
625 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
626
627/* The SetRxFilter command accepts the following classes: */
628enum RxFilter {
629 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
630
631/* Bits in the general status register. */
632enum vortex_status {
633 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
634 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
635 IntReq = 0x0040, StatsFull = 0x0080,
636 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
637 DMAInProgress = 1<<11, /* DMA controller is still busy.*/
638 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/
639};
640
641/* Register window 1 offsets, the window used in normal operation.
642 On the Vortex this window is always mapped at offsets 0x10-0x1f. */
643enum Window1 {
644 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
645 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B,
646 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
647};
648enum Window0 {
649 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */
650 Wn0EepromData = 12, /* Window 0: EEPROM results register. */
651 IntrStatus=0x0E, /* Valid in all windows. */
652};
653enum Win0_EEPROM_bits {
654 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
655 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */
656 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */
657};
658/* EEPROM locations. */
659enum eeprom_offset {
660 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
661 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
662 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
663 DriverTune=13, Checksum=15};
664
665enum Window2 { /* Window 2. */
666 Wn2_ResetOptions=12,
667};
668enum Window3 { /* Window 3: MAC/config bits. */
669 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
670};
671
672#define BFEXT(value, offset, bitcount) \
673 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
674
675#define BFINS(lhs, rhs, offset, bitcount) \
676 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \
677 (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
678
679#define RAM_SIZE(v) BFEXT(v, 0, 3)
680#define RAM_WIDTH(v) BFEXT(v, 3, 1)
681#define RAM_SPEED(v) BFEXT(v, 4, 2)
682#define ROM_SIZE(v) BFEXT(v, 6, 2)
683#define RAM_SPLIT(v) BFEXT(v, 16, 2)
684#define XCVR(v) BFEXT(v, 20, 4)
685#define AUTOSELECT(v) BFEXT(v, 24, 1)
686
687enum Window4 { /* Window 4: Xcvr/media bits. */
688 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
689};
690enum Win4_Media_bits {
691 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */
692 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */
693 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */
694 Media_LnkBeat = 0x0800,
695};
696enum Window7 { /* Window 7: Bus Master control. */
697 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
698 Wn7_MasterStatus = 12,
699};
700/* Boomerang bus master control registers. */
701enum MasterCtrl {
702 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
703 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
704};
705
706/* The Rx and Tx descriptor lists.
707 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte
708 alignment contraint on tx_ring[] and rx_ring[]. */
709#define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */
710#define DN_COMPLETE 0x00010000 /* This packet has been downloaded */
711struct boom_rx_desc {
712 u32 next; /* Last entry points to 0. */
713 s32 status;
714 u32 addr; /* Up to 63 addr/len pairs possible. */
715 s32 length; /* Set LAST_FRAG to indicate last pair. */
716};
717/* Values for the Rx status entry. */
718enum rx_desc_status {
719 RxDComplete=0x00008000, RxDError=0x4000,
720 /* See boomerang_rx() for actual error bits */
721 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
722 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
723};
724
725#ifdef MAX_SKB_FRAGS
726#define DO_ZEROCOPY 1
727#else
728#define DO_ZEROCOPY 0
729#endif
730
731struct boom_tx_desc {
732 u32 next; /* Last entry points to 0. */
733 s32 status; /* bits 0:12 length, others see below. */
734#if DO_ZEROCOPY
735 struct {
736 u32 addr;
737 s32 length;
738 } frag[1+MAX_SKB_FRAGS];
739#else
740 u32 addr;
741 s32 length;
742#endif
743};
744
745/* Values for the Tx status entry. */
746enum tx_desc_status {
747 CRCDisable=0x2000, TxDComplete=0x8000,
748 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
749 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */
750};
751
752/* Chip features we care about in vp->capabilities, read from the EEPROM. */
753enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
754
755struct vortex_extra_stats {
756 unsigned long tx_deferred;
757 unsigned long tx_multiple_collisions;
758 unsigned long rx_bad_ssd;
759};
760
761struct vortex_private {
762 /* The Rx and Tx rings should be quad-word-aligned. */
763 struct boom_rx_desc* rx_ring;
764 struct boom_tx_desc* tx_ring;
765 dma_addr_t rx_ring_dma;
766 dma_addr_t tx_ring_dma;
767 /* The addresses of transmit- and receive-in-place skbuffs. */
768 struct sk_buff* rx_skbuff[RX_RING_SIZE];
769 struct sk_buff* tx_skbuff[TX_RING_SIZE];
770 unsigned int cur_rx, cur_tx; /* The next free ring entry */
771 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */
772 struct net_device_stats stats; /* Generic stats */
773 struct vortex_extra_stats xstats; /* NIC-specific extra stats */
774 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */
775 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */
776
777 /* PCI configuration space information. */
778 struct device *gendev;
779 char __iomem *cb_fn_base; /* CardBus function status addr space. */
780
781 /* Some values here only for performance evaluation and path-coverage */
782 int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
783 int card_idx;
784
785 /* The remainder are related to chip state, mostly media selection. */
786 struct timer_list timer; /* Media selection timer. */
787 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */
788 int options; /* User-settable misc. driver options. */
789 unsigned int media_override:4, /* Passed-in media type. */
790 default_media:4, /* Read from the EEPROM/Wn3_Config. */
791 full_duplex:1, force_fd:1, autoselect:1,
792 bus_master:1, /* Vortex can only do a fragment bus-m. */
793 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */
794 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */
795 partner_flow_ctrl:1, /* Partner supports flow control */
796 has_nway:1,
797 enable_wol:1, /* Wake-on-LAN is enabled */
798 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */
799 open:1,
800 medialock:1,
801 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */
802 large_frames:1; /* accept large frames */
803 int drv_flags;
804 u16 status_enable;
805 u16 intr_enable;
806 u16 available_media; /* From Wn3_Options. */
807 u16 capabilities, info1, info2; /* Various, from EEPROM. */
808 u16 advertising; /* NWay media advertisement */
809 unsigned char phys[2]; /* MII device addresses. */
810 u16 deferred; /* Resend these interrupts when we
811 * bale from the ISR */
812 u16 io_size; /* Size of PCI region (for release_region) */
813 spinlock_t lock; /* Serialise access to device & its vortex_private */
814 struct mii_if_info mii; /* MII lib hooks/info */
815};
816
817#ifdef CONFIG_PCI
818#define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
819#else
820#define DEVICE_PCI(dev) NULL
821#endif
822
823#define VORTEX_PCI(vp) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)
824
825#ifdef CONFIG_EISA
826#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
827#else
828#define DEVICE_EISA(dev) NULL
829#endif
830
831#define VORTEX_EISA(vp) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)
832
833/* The action to take with a media selection timer tick.
834 Note that we deviate from the 3Com order by checking 10base2 before AUI.
835 */
836enum xcvr_types {
837 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
838 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
839};
840
841static struct media_table {
842 char *name;
843 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */
844 mask:8, /* The transceiver-present bit in Wn3_Config.*/
845 next:8; /* The media type to try next. */
846 int wait; /* Time before we check media status. */
847} media_tbl[] = {
848 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
849 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
850 { "undefined", 0, 0x80, XCVR_10baseT, 10000},
851 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10},
852 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
853 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10},
854 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ },
855 { "undefined", 0, 0x01, XCVR_10baseT, 10000},
856 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ},
857 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ },
858 { "Default", 0, 0xFF, XCVR_10baseT, 10000},
859};
860
861static struct {
862 const char str[ETH_GSTRING_LEN];
863} ethtool_stats_keys[] = {
864 { "tx_deferred" },
865 { "tx_multiple_collisions" },
866 { "rx_bad_ssd" },
867};
868
869/* number of ETHTOOL_GSTATS u64's */
870#define VORTEX_NUM_STATS 3
871
872static int vortex_probe1(struct device *gendev, long ioaddr, int irq,
873 int chip_idx, int card_idx);
874static void vortex_up(struct net_device *dev);
875static void vortex_down(struct net_device *dev, int final);
876static int vortex_open(struct net_device *dev);
877static void mdio_sync(long ioaddr, int bits);
878static int mdio_read(struct net_device *dev, int phy_id, int location);
879static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
880static void vortex_timer(unsigned long arg);
881static void rx_oom_timer(unsigned long arg);
882static int vortex_start_xmit(struct sk_buff *skb, struct net_device *dev);
883static int boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev);
884static int vortex_rx(struct net_device *dev);
885static int boomerang_rx(struct net_device *dev);
886static irqreturn_t vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs);
887static irqreturn_t boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs);
888static int vortex_close(struct net_device *dev);
889static void dump_tx_ring(struct net_device *dev);
890static void update_stats(long ioaddr, struct net_device *dev);
891static struct net_device_stats *vortex_get_stats(struct net_device *dev);
892static void set_rx_mode(struct net_device *dev);
893#ifdef CONFIG_PCI
894static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
895#endif
896static void vortex_tx_timeout(struct net_device *dev);
897static void acpi_set_WOL(struct net_device *dev);
898static struct ethtool_ops vortex_ethtool_ops;
899static void set_8021q_mode(struct net_device *dev, int enable);
900
901
902/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
903/* Option count limit only -- unlimited interfaces are supported. */
904#define MAX_UNITS 8
905static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1,};
906static int full_duplex[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
907static int hw_checksums[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
908static int flow_ctrl[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
909static int enable_wol[MAX_UNITS] = {-1, -1, -1, -1, -1, -1, -1, -1};
910static int global_options = -1;
911static int global_full_duplex = -1;
912static int global_enable_wol = -1;
913
914/* #define dev_alloc_skb dev_alloc_skb_debug */
915
916/* Variables to work-around the Compaq PCI BIOS32 problem. */
917static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
918static struct net_device *compaq_net_device;
919
920static int vortex_cards_found;
921
922module_param(debug, int, 0);
923module_param(global_options, int, 0);
924module_param_array(options, int, NULL, 0);
925module_param(global_full_duplex, int, 0);
926module_param_array(full_duplex, int, NULL, 0);
927module_param_array(hw_checksums, int, NULL, 0);
928module_param_array(flow_ctrl, int, NULL, 0);
929module_param(global_enable_wol, int, 0);
930module_param_array(enable_wol, int, NULL, 0);
931module_param(rx_copybreak, int, 0);
932module_param(max_interrupt_work, int, 0);
933module_param(compaq_ioaddr, int, 0);
934module_param(compaq_irq, int, 0);
935module_param(compaq_device_id, int, 0);
936module_param(watchdog, int, 0);
937MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
938MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
939MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
940MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
941MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if options is unset");
942MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
943MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
944MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
945MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if options is unset");
946MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
947MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
948MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
949MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
950MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
951MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
952
953#ifdef CONFIG_NET_POLL_CONTROLLER
954static void poll_vortex(struct net_device *dev)
955{
956 struct vortex_private *vp = netdev_priv(dev);
957 unsigned long flags;
958 local_save_flags(flags);
959 local_irq_disable();
960 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev,NULL);
961 local_irq_restore(flags);
962}
963#endif
964
965#ifdef CONFIG_PM
966
967static int vortex_suspend (struct pci_dev *pdev, pm_message_t state)
968{
969 struct net_device *dev = pci_get_drvdata(pdev);
970
971 if (dev && dev->priv) {
972 if (netif_running(dev)) {
973 netif_device_detach(dev);
974 vortex_down(dev, 1);
975 }
976 }
977 return 0;
978}
979
980static int vortex_resume (struct pci_dev *pdev)
981{
982 struct net_device *dev = pci_get_drvdata(pdev);
983
984 if (dev && dev->priv) {
985 if (netif_running(dev)) {
986 vortex_up(dev);
987 netif_device_attach(dev);
988 }
989 }
990 return 0;
991}
992
993#endif /* CONFIG_PM */
994
995#ifdef CONFIG_EISA
996static struct eisa_device_id vortex_eisa_ids[] = {
997 { "TCM5920", CH_3C592 },
998 { "TCM5970", CH_3C597 },
999 { "" }
1000};
1001
1002static int vortex_eisa_probe (struct device *device);
1003static int vortex_eisa_remove (struct device *device);
1004
1005static struct eisa_driver vortex_eisa_driver = {
1006 .id_table = vortex_eisa_ids,
1007 .driver = {
1008 .name = "3c59x",
1009 .probe = vortex_eisa_probe,
1010 .remove = vortex_eisa_remove
1011 }
1012};
1013
1014static int vortex_eisa_probe (struct device *device)
1015{
1016 long ioaddr;
1017 struct eisa_device *edev;
1018
1019 edev = to_eisa_device (device);
1020 ioaddr = edev->base_addr;
1021
1022 if (!request_region(ioaddr, VORTEX_TOTAL_SIZE, DRV_NAME))
1023 return -EBUSY;
1024
1025 if (vortex_probe1(device, ioaddr, inw(ioaddr + 0xC88) >> 12,
1026 edev->id.driver_data, vortex_cards_found)) {
1027 release_region (ioaddr, VORTEX_TOTAL_SIZE);
1028 return -ENODEV;
1029 }
1030
1031 vortex_cards_found++;
1032
1033 return 0;
1034}
1035
1036static int vortex_eisa_remove (struct device *device)
1037{
1038 struct eisa_device *edev;
1039 struct net_device *dev;
1040 struct vortex_private *vp;
1041 long ioaddr;
1042
1043 edev = to_eisa_device (device);
1044 dev = eisa_get_drvdata (edev);
1045
1046 if (!dev) {
1047 printk("vortex_eisa_remove called for Compaq device!\n");
1048 BUG();
1049 }
1050
1051 vp = netdev_priv(dev);
1052 ioaddr = dev->base_addr;
1053
1054 unregister_netdev (dev);
1055 outw (TotalReset|0x14, ioaddr + EL3_CMD);
1056 release_region (ioaddr, VORTEX_TOTAL_SIZE);
1057
1058 free_netdev (dev);
1059 return 0;
1060}
1061#endif
1062
1063/* returns count found (>= 0), or negative on error */
1064static int __init vortex_eisa_init (void)
1065{
1066 int eisa_found = 0;
1067 int orig_cards_found = vortex_cards_found;
1068
1069#ifdef CONFIG_EISA
1070 if (eisa_driver_register (&vortex_eisa_driver) >= 0) {
1071 /* Because of the way EISA bus is probed, we cannot assume
1072 * any device have been found when we exit from
1073 * eisa_driver_register (the bus root driver may not be
1074 * initialized yet). So we blindly assume something was
1075 * found, and let the sysfs magic happend... */
1076
1077 eisa_found = 1;
1078 }
1079#endif
1080
1081 /* Special code to work-around the Compaq PCI BIOS32 problem. */
1082 if (compaq_ioaddr) {
1083 vortex_probe1(NULL, compaq_ioaddr, compaq_irq,
1084 compaq_device_id, vortex_cards_found++);
1085 }
1086
1087 return vortex_cards_found - orig_cards_found + eisa_found;
1088}
1089
1090/* returns count (>= 0), or negative on error */
1091static int __devinit vortex_init_one (struct pci_dev *pdev,
1092 const struct pci_device_id *ent)
1093{
1094 int rc;
1095
1096 /* wake up and enable device */
1097 rc = pci_enable_device (pdev);
1098 if (rc < 0)
1099 goto out;
1100
1101 rc = vortex_probe1 (&pdev->dev, pci_resource_start (pdev, 0),
1102 pdev->irq, ent->driver_data, vortex_cards_found);
1103 if (rc < 0) {
1104 pci_disable_device (pdev);
1105 goto out;
1106 }
1107
1108 vortex_cards_found++;
1109
1110out:
1111 return rc;
1112}
1113
1114/*
1115 * Start up the PCI/EISA device which is described by *gendev.
1116 * Return 0 on success.
1117 *
1118 * NOTE: pdev can be NULL, for the case of a Compaq device
1119 */
1120static int __devinit vortex_probe1(struct device *gendev,
1121 long ioaddr, int irq,
1122 int chip_idx, int card_idx)
1123{
1124 struct vortex_private *vp;
1125 int option;
1126 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */
1127 int i, step;
1128 struct net_device *dev;
1129 static int printed_version;
1130 int retval, print_info;
1131 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1132 char *print_name = "3c59x";
1133 struct pci_dev *pdev = NULL;
1134 struct eisa_device *edev = NULL;
1135
1136 if (!printed_version) {
1137 printk (version);
1138 printed_version = 1;
1139 }
1140
1141 if (gendev) {
1142 if ((pdev = DEVICE_PCI(gendev))) {
1143 print_name = pci_name(pdev);
1144 }
1145
1146 if ((edev = DEVICE_EISA(gendev))) {
1147 print_name = edev->dev.bus_id;
1148 }
1149 }
1150
1151 dev = alloc_etherdev(sizeof(*vp));
1152 retval = -ENOMEM;
1153 if (!dev) {
1154 printk (KERN_ERR PFX "unable to allocate etherdev, aborting\n");
1155 goto out;
1156 }
1157 SET_MODULE_OWNER(dev);
1158 SET_NETDEV_DEV(dev, gendev);
1159 vp = netdev_priv(dev);
1160
1161 option = global_options;
1162
1163 /* The lower four bits are the media type. */
1164 if (dev->mem_start) {
1165 /*
1166 * The 'options' param is passed in as the third arg to the
1167 * LILO 'ether=' argument for non-modular use
1168 */
1169 option = dev->mem_start;
1170 }
1171 else if (card_idx < MAX_UNITS) {
1172 if (options[card_idx] >= 0)
1173 option = options[card_idx];
1174 }
1175
1176 if (option > 0) {
1177 if (option & 0x8000)
1178 vortex_debug = 7;
1179 if (option & 0x4000)
1180 vortex_debug = 2;
1181 if (option & 0x0400)
1182 vp->enable_wol = 1;
1183 }
1184
1185 print_info = (vortex_debug > 1);
1186 if (print_info)
1187 printk (KERN_INFO "See Documentation/networking/vortex.txt\n");
1188
1189 printk(KERN_INFO "%s: 3Com %s %s at 0x%lx. Vers " DRV_VERSION "\n",
1190 print_name,
1191 pdev ? "PCI" : "EISA",
1192 vci->name,
1193 ioaddr);
1194
1195 dev->base_addr = ioaddr;
1196 dev->irq = irq;
1197 dev->mtu = mtu;
1198 vp->large_frames = mtu > 1500;
1199 vp->drv_flags = vci->drv_flags;
1200 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1201 vp->io_size = vci->io_size;
1202 vp->card_idx = card_idx;
1203
1204 /* module list only for Compaq device */
1205 if (gendev == NULL) {
1206 compaq_net_device = dev;
1207 }
1208
1209 /* PCI-only startup logic */
1210 if (pdev) {
1211 /* EISA resources already marked, so only PCI needs to do this here */
1212 /* Ignore return value, because Cardbus drivers already allocate for us */
1213 if (request_region(ioaddr, vci->io_size, print_name) != NULL)
1214 vp->must_free_region = 1;
1215
1216 /* enable bus-mastering if necessary */
1217 if (vci->flags & PCI_USES_MASTER)
1218 pci_set_master (pdev);
1219
1220 if (vci->drv_flags & IS_VORTEX) {
1221 u8 pci_latency;
1222 u8 new_latency = 248;
1223
1224 /* Check the PCI latency value. On the 3c590 series the latency timer
1225 must be set to the maximum value to avoid data corruption that occurs
1226 when the timer expires during a transfer. This bug exists the Vortex
1227 chip only. */
1228 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1229 if (pci_latency < new_latency) {
1230 printk(KERN_INFO "%s: Overriding PCI latency"
1231 " timer (CFLT) setting of %d, new value is %d.\n",
1232 print_name, pci_latency, new_latency);
1233 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1234 }
1235 }
1236 }
1237
1238 spin_lock_init(&vp->lock);
1239 vp->gendev = gendev;
1240 vp->mii.dev = dev;
1241 vp->mii.mdio_read = mdio_read;
1242 vp->mii.mdio_write = mdio_write;
1243 vp->mii.phy_id_mask = 0x1f;
1244 vp->mii.reg_num_mask = 0x1f;
1245
1246 /* Makes sure rings are at least 16 byte aligned. */
1247 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1248 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1249 &vp->rx_ring_dma);
1250 retval = -ENOMEM;
1251 if (vp->rx_ring == 0)
1252 goto free_region;
1253
1254 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1255 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1256
1257 /* if we are a PCI driver, we store info in pdev->driver_data
1258 * instead of a module list */
1259 if (pdev)
1260 pci_set_drvdata(pdev, dev);
1261 if (edev)
1262 eisa_set_drvdata (edev, dev);
1263
1264 vp->media_override = 7;
1265 if (option >= 0) {
1266 vp->media_override = ((option & 7) == 2) ? 0 : option & 15;
1267 if (vp->media_override != 7)
1268 vp->medialock = 1;
1269 vp->full_duplex = (option & 0x200) ? 1 : 0;
1270 vp->bus_master = (option & 16) ? 1 : 0;
1271 }
1272
1273 if (global_full_duplex > 0)
1274 vp->full_duplex = 1;
1275 if (global_enable_wol > 0)
1276 vp->enable_wol = 1;
1277
1278 if (card_idx < MAX_UNITS) {
1279 if (full_duplex[card_idx] > 0)
1280 vp->full_duplex = 1;
1281 if (flow_ctrl[card_idx] > 0)
1282 vp->flow_ctrl = 1;
1283 if (enable_wol[card_idx] > 0)
1284 vp->enable_wol = 1;
1285 }
1286
1287 vp->force_fd = vp->full_duplex;
1288 vp->options = option;
1289 /* Read the station address from the EEPROM. */
1290 EL3WINDOW(0);
1291 {
1292 int base;
1293
1294 if (vci->drv_flags & EEPROM_8BIT)
1295 base = 0x230;
1296 else if (vci->drv_flags & EEPROM_OFFSET)
1297 base = EEPROM_Read + 0x30;
1298 else
1299 base = EEPROM_Read;
1300
1301 for (i = 0; i < 0x40; i++) {
1302 int timer;
1303 outw(base + i, ioaddr + Wn0EepromCmd);
1304 /* Pause for at least 162 us. for the read to take place. */
1305 for (timer = 10; timer >= 0; timer--) {
1306 udelay(162);
1307 if ((inw(ioaddr + Wn0EepromCmd) & 0x8000) == 0)
1308 break;
1309 }
1310 eeprom[i] = inw(ioaddr + Wn0EepromData);
1311 }
1312 }
1313 for (i = 0; i < 0x18; i++)
1314 checksum ^= eeprom[i];
1315 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1316 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */
1317 while (i < 0x21)
1318 checksum ^= eeprom[i++];
1319 checksum = (checksum ^ (checksum >> 8)) & 0xff;
1320 }
1321 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1322 printk(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1323 for (i = 0; i < 3; i++)
1324 ((u16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1325 if (print_info) {
1326 for (i = 0; i < 6; i++)
1327 printk("%c%2.2x", i ? ':' : ' ', dev->dev_addr[i]);
1328 }
1329 /* Unfortunately an all zero eeprom passes the checksum and this
1330 gets found in the wild in failure cases. Crypto is hard 8) */
1331 if (!is_valid_ether_addr(dev->dev_addr)) {
1332 retval = -EINVAL;
1333 printk(KERN_ERR "*** EEPROM MAC address is invalid.\n");
1334 goto free_ring; /* With every pack */
1335 }
1336 EL3WINDOW(2);
1337 for (i = 0; i < 6; i++)
1338 outb(dev->dev_addr[i], ioaddr + i);
1339
1340#ifdef __sparc__
1341 if (print_info)
1342 printk(", IRQ %s\n", __irq_itoa(dev->irq));
1343#else
1344 if (print_info)
1345 printk(", IRQ %d\n", dev->irq);
1346 /* Tell them about an invalid IRQ. */
1347 if (dev->irq <= 0 || dev->irq >= NR_IRQS)
1348 printk(KERN_WARNING " *** Warning: IRQ %d is unlikely to work! ***\n",
1349 dev->irq);
1350#endif
1351
1352 EL3WINDOW(4);
1353 step = (inb(ioaddr + Wn4_NetDiag) & 0x1e) >> 1;
1354 if (print_info) {
1355 printk(KERN_INFO " product code %02x%02x rev %02x.%d date %02d-"
1356 "%02d-%02d\n", eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1357 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1358 }
1359
1360
1361 if (pdev && vci->drv_flags & HAS_CB_FNS) {
1362 unsigned long fn_st_addr; /* Cardbus function status space */
1363 unsigned short n;
1364
1365 fn_st_addr = pci_resource_start (pdev, 2);
1366 if (fn_st_addr) {
1367 vp->cb_fn_base = ioremap(fn_st_addr, 128);
1368 retval = -ENOMEM;
1369 if (!vp->cb_fn_base)
1370 goto free_ring;
1371 }
1372 if (print_info) {
1373 printk(KERN_INFO "%s: CardBus functions mapped %8.8lx->%p\n",
1374 print_name, fn_st_addr, vp->cb_fn_base);
1375 }
1376 EL3WINDOW(2);
1377
1378 n = inw(ioaddr + Wn2_ResetOptions) & ~0x4010;
1379 if (vp->drv_flags & INVERT_LED_PWR)
1380 n |= 0x10;
1381 if (vp->drv_flags & INVERT_MII_PWR)
1382 n |= 0x4000;
1383 outw(n, ioaddr + Wn2_ResetOptions);
1384 if (vp->drv_flags & WNO_XCVR_PWR) {
1385 EL3WINDOW(0);
1386 outw(0x0800, ioaddr);
1387 }
1388 }
1389
1390 /* Extract our information from the EEPROM data. */
1391 vp->info1 = eeprom[13];
1392 vp->info2 = eeprom[15];
1393 vp->capabilities = eeprom[16];
1394
1395 if (vp->info1 & 0x8000) {
1396 vp->full_duplex = 1;
1397 if (print_info)
1398 printk(KERN_INFO "Full duplex capable\n");
1399 }
1400
1401 {
1402 static const char * ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1403 unsigned int config;
1404 EL3WINDOW(3);
1405 vp->available_media = inw(ioaddr + Wn3_Options);
1406 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */
1407 vp->available_media = 0x40;
1408 config = inl(ioaddr + Wn3_Config);
1409 if (print_info) {
1410 printk(KERN_DEBUG " Internal config register is %4.4x, "
1411 "transceivers %#x.\n", config, inw(ioaddr + Wn3_Options));
1412 printk(KERN_INFO " %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1413 8 << RAM_SIZE(config),
1414 RAM_WIDTH(config) ? "word" : "byte",
1415 ram_split[RAM_SPLIT(config)],
1416 AUTOSELECT(config) ? "autoselect/" : "",
1417 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1418 media_tbl[XCVR(config)].name);
1419 }
1420 vp->default_media = XCVR(config);
1421 if (vp->default_media == XCVR_NWAY)
1422 vp->has_nway = 1;
1423 vp->autoselect = AUTOSELECT(config);
1424 }
1425
1426 if (vp->media_override != 7) {
1427 printk(KERN_INFO "%s: Media override to transceiver type %d (%s).\n",
1428 print_name, vp->media_override,
1429 media_tbl[vp->media_override].name);
1430 dev->if_port = vp->media_override;
1431 } else
1432 dev->if_port = vp->default_media;
1433
1434 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1435 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1436 int phy, phy_idx = 0;
1437 EL3WINDOW(4);
1438 mii_preamble_required++;
1439 if (vp->drv_flags & EXTRA_PREAMBLE)
1440 mii_preamble_required++;
1441 mdio_sync(ioaddr, 32);
1442 mdio_read(dev, 24, 1);
1443 for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1444 int mii_status, phyx;
1445
1446 /*
1447 * For the 3c905CX we look at index 24 first, because it bogusly
1448 * reports an external PHY at all indices
1449 */
1450 if (phy == 0)
1451 phyx = 24;
1452 else if (phy <= 24)
1453 phyx = phy - 1;
1454 else
1455 phyx = phy;
1456 mii_status = mdio_read(dev, phyx, 1);
1457 if (mii_status && mii_status != 0xffff) {
1458 vp->phys[phy_idx++] = phyx;
1459 if (print_info) {
1460 printk(KERN_INFO " MII transceiver found at address %d,"
1461 " status %4x.\n", phyx, mii_status);
1462 }
1463 if ((mii_status & 0x0040) == 0)
1464 mii_preamble_required++;
1465 }
1466 }
1467 mii_preamble_required--;
1468 if (phy_idx == 0) {
1469 printk(KERN_WARNING" ***WARNING*** No MII transceivers found!\n");
1470 vp->phys[0] = 24;
1471 } else {
1472 vp->advertising = mdio_read(dev, vp->phys[0], 4);
1473 if (vp->full_duplex) {
1474 /* Only advertise the FD media types. */
1475 vp->advertising &= ~0x02A0;
1476 mdio_write(dev, vp->phys[0], 4, vp->advertising);
1477 }
1478 }
1479 vp->mii.phy_id = vp->phys[0];
1480 }
1481
1482 if (vp->capabilities & CapBusMaster) {
1483 vp->full_bus_master_tx = 1;
1484 if (print_info) {
1485 printk(KERN_INFO " Enabling bus-master transmits and %s receives.\n",
1486 (vp->info2 & 1) ? "early" : "whole-frame" );
1487 }
1488 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1489 vp->bus_master = 0; /* AKPM: vortex only */
1490 }
1491
1492 /* The 3c59x-specific entries in the device structure. */
1493 dev->open = vortex_open;
1494 if (vp->full_bus_master_tx) {
1495 dev->hard_start_xmit = boomerang_start_xmit;
1496 /* Actually, it still should work with iommu. */
1497 dev->features |= NETIF_F_SG;
1498 if (((hw_checksums[card_idx] == -1) && (vp->drv_flags & HAS_HWCKSM)) ||
1499 (hw_checksums[card_idx] == 1)) {
1500 dev->features |= NETIF_F_IP_CSUM;
1501 }
1502 } else {
1503 dev->hard_start_xmit = vortex_start_xmit;
1504 }
1505
1506 if (print_info) {
1507 printk(KERN_INFO "%s: scatter/gather %sabled. h/w checksums %sabled\n",
1508 print_name,
1509 (dev->features & NETIF_F_SG) ? "en":"dis",
1510 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1511 }
1512
1513 dev->stop = vortex_close;
1514 dev->get_stats = vortex_get_stats;
1515#ifdef CONFIG_PCI
1516 dev->do_ioctl = vortex_ioctl;
1517#endif
1518 dev->ethtool_ops = &vortex_ethtool_ops;
1519 dev->set_multicast_list = set_rx_mode;
1520 dev->tx_timeout = vortex_tx_timeout;
1521 dev->watchdog_timeo = (watchdog * HZ) / 1000;
1522#ifdef CONFIG_NET_POLL_CONTROLLER
1523 dev->poll_controller = poll_vortex;
1524#endif
1525 if (pdev) {
1526 vp->pm_state_valid = 1;
1527 pci_save_state(VORTEX_PCI(vp));
1528 acpi_set_WOL(dev);
1529 }
1530 retval = register_netdev(dev);
1531 if (retval == 0)
1532 return 0;
1533
1534free_ring:
1535 pci_free_consistent(pdev,
1536 sizeof(struct boom_rx_desc) * RX_RING_SIZE
1537 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1538 vp->rx_ring,
1539 vp->rx_ring_dma);
1540free_region:
1541 if (vp->must_free_region)
1542 release_region(ioaddr, vci->io_size);
1543 free_netdev(dev);
1544 printk(KERN_ERR PFX "vortex_probe1 fails. Returns %d\n", retval);
1545out:
1546 return retval;
1547}
1548
1549static void
1550issue_and_wait(struct net_device *dev, int cmd)
1551{
1552 int i;
1553
1554 outw(cmd, dev->base_addr + EL3_CMD);
1555 for (i = 0; i < 2000; i++) {
1556 if (!(inw(dev->base_addr + EL3_STATUS) & CmdInProgress))
1557 return;
1558 }
1559
1560 /* OK, that didn't work. Do it the slow way. One second */
1561 for (i = 0; i < 100000; i++) {
1562 if (!(inw(dev->base_addr + EL3_STATUS) & CmdInProgress)) {
1563 if (vortex_debug > 1)
1564 printk(KERN_INFO "%s: command 0x%04x took %d usecs\n",
1565 dev->name, cmd, i * 10);
1566 return;
1567 }
1568 udelay(10);
1569 }
1570 printk(KERN_ERR "%s: command 0x%04x did not complete! Status=0x%x\n",
1571 dev->name, cmd, inw(dev->base_addr + EL3_STATUS));
1572}
1573
1574static void
1575vortex_up(struct net_device *dev)
1576{
1577 long ioaddr = dev->base_addr;
1578 struct vortex_private *vp = netdev_priv(dev);
1579 unsigned int config;
1580 int i;
1581
1582 if (VORTEX_PCI(vp)) {
1583 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
1584 pci_restore_state(VORTEX_PCI(vp));
1585 pci_enable_device(VORTEX_PCI(vp));
1586 }
1587
1588 /* Before initializing select the active media port. */
1589 EL3WINDOW(3);
1590 config = inl(ioaddr + Wn3_Config);
1591
1592 if (vp->media_override != 7) {
1593 printk(KERN_INFO "%s: Media override to transceiver %d (%s).\n",
1594 dev->name, vp->media_override,
1595 media_tbl[vp->media_override].name);
1596 dev->if_port = vp->media_override;
1597 } else if (vp->autoselect) {
1598 if (vp->has_nway) {
1599 if (vortex_debug > 1)
1600 printk(KERN_INFO "%s: using NWAY device table, not %d\n",
1601 dev->name, dev->if_port);
1602 dev->if_port = XCVR_NWAY;
1603 } else {
1604 /* Find first available media type, starting with 100baseTx. */
1605 dev->if_port = XCVR_100baseTx;
1606 while (! (vp->available_media & media_tbl[dev->if_port].mask))
1607 dev->if_port = media_tbl[dev->if_port].next;
1608 if (vortex_debug > 1)
1609 printk(KERN_INFO "%s: first available media type: %s\n",
1610 dev->name, media_tbl[dev->if_port].name);
1611 }
1612 } else {
1613 dev->if_port = vp->default_media;
1614 if (vortex_debug > 1)
1615 printk(KERN_INFO "%s: using default media %s\n",
1616 dev->name, media_tbl[dev->if_port].name);
1617 }
1618
1619 init_timer(&vp->timer);
1620 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1621 vp->timer.data = (unsigned long)dev;
1622 vp->timer.function = vortex_timer; /* timer handler */
1623 add_timer(&vp->timer);
1624
1625 init_timer(&vp->rx_oom_timer);
1626 vp->rx_oom_timer.data = (unsigned long)dev;
1627 vp->rx_oom_timer.function = rx_oom_timer;
1628
1629 if (vortex_debug > 1)
1630 printk(KERN_DEBUG "%s: Initial media type %s.\n",
1631 dev->name, media_tbl[dev->if_port].name);
1632
1633 vp->full_duplex = vp->force_fd;
1634 config = BFINS(config, dev->if_port, 20, 4);
1635 if (vortex_debug > 6)
1636 printk(KERN_DEBUG "vortex_up(): writing 0x%x to InternalConfig\n", config);
1637 outl(config, ioaddr + Wn3_Config);
1638
1639 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1640 int mii_reg1, mii_reg5;
1641 EL3WINDOW(4);
1642 /* Read BMSR (reg1) only to clear old status. */
1643 mii_reg1 = mdio_read(dev, vp->phys[0], 1);
1644 mii_reg5 = mdio_read(dev, vp->phys[0], 5);
1645 if (mii_reg5 == 0xffff || mii_reg5 == 0x0000) {
1646 netif_carrier_off(dev); /* No MII device or no link partner report */
1647 } else {
1648 mii_reg5 &= vp->advertising;
1649 if ((mii_reg5 & 0x0100) != 0 /* 100baseTx-FD */
1650 || (mii_reg5 & 0x00C0) == 0x0040) /* 10T-FD, but not 100-HD */
1651 vp->full_duplex = 1;
1652 netif_carrier_on(dev);
1653 }
1654 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1655 if (vortex_debug > 1)
1656 printk(KERN_INFO "%s: MII #%d status %4.4x, link partner capability %4.4x,"
1657 " info1 %04x, setting %s-duplex.\n",
1658 dev->name, vp->phys[0],
1659 mii_reg1, mii_reg5,
1660 vp->info1, ((vp->info1 & 0x8000) || vp->full_duplex) ? "full" : "half");
1661 EL3WINDOW(3);
1662 }
1663
1664 /* Set the full-duplex bit. */
1665 outw( ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1666 (vp->large_frames ? 0x40 : 0) |
1667 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1668 ioaddr + Wn3_MAC_Ctrl);
1669
1670 if (vortex_debug > 1) {
1671 printk(KERN_DEBUG "%s: vortex_up() InternalConfig %8.8x.\n",
1672 dev->name, config);
1673 }
1674
1675 issue_and_wait(dev, TxReset);
1676 /*
1677 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1678 */
1679 issue_and_wait(dev, RxReset|0x04);
1680
1681 outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1682
1683 if (vortex_debug > 1) {
1684 EL3WINDOW(4);
1685 printk(KERN_DEBUG "%s: vortex_up() irq %d media status %4.4x.\n",
1686 dev->name, dev->irq, inw(ioaddr + Wn4_Media));
1687 }
1688
1689 /* Set the station address and mask in window 2 each time opened. */
1690 EL3WINDOW(2);
1691 for (i = 0; i < 6; i++)
1692 outb(dev->dev_addr[i], ioaddr + i);
1693 for (; i < 12; i+=2)
1694 outw(0, ioaddr + i);
1695
1696 if (vp->cb_fn_base) {
1697 unsigned short n = inw(ioaddr + Wn2_ResetOptions) & ~0x4010;
1698 if (vp->drv_flags & INVERT_LED_PWR)
1699 n |= 0x10;
1700 if (vp->drv_flags & INVERT_MII_PWR)
1701 n |= 0x4000;
1702 outw(n, ioaddr + Wn2_ResetOptions);
1703 }
1704
1705 if (dev->if_port == XCVR_10base2)
1706 /* Start the thinnet transceiver. We should really wait 50ms...*/
1707 outw(StartCoax, ioaddr + EL3_CMD);
1708 if (dev->if_port != XCVR_NWAY) {
1709 EL3WINDOW(4);
1710 outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP|Media_SQE)) |
1711 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1712 }
1713
1714 /* Switch to the stats window, and clear all stats by reading. */
1715 outw(StatsDisable, ioaddr + EL3_CMD);
1716 EL3WINDOW(6);
1717 for (i = 0; i < 10; i++)
1718 inb(ioaddr + i);
1719 inw(ioaddr + 10);
1720 inw(ioaddr + 12);
1721 /* New: On the Vortex we must also clear the BadSSD counter. */
1722 EL3WINDOW(4);
1723 inb(ioaddr + 12);
1724 /* ..and on the Boomerang we enable the extra statistics bits. */
1725 outw(0x0040, ioaddr + Wn4_NetDiag);
1726
1727 /* Switch to register set 7 for normal use. */
1728 EL3WINDOW(7);
1729
1730 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1731 vp->cur_rx = vp->dirty_rx = 0;
1732 /* Initialize the RxEarly register as recommended. */
1733 outw(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1734 outl(0x0020, ioaddr + PktStatus);
1735 outl(vp->rx_ring_dma, ioaddr + UpListPtr);
1736 }
1737 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */
1738 vp->cur_tx = vp->dirty_tx = 0;
1739 if (vp->drv_flags & IS_BOOMERANG)
1740 outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1741 /* Clear the Rx, Tx rings. */
1742 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */
1743 vp->rx_ring[i].status = 0;
1744 for (i = 0; i < TX_RING_SIZE; i++)
1745 vp->tx_skbuff[i] = NULL;
1746 outl(0, ioaddr + DownListPtr);
1747 }
1748 /* Set receiver mode: presumably accept b-case and phys addr only. */
1749 set_rx_mode(dev);
1750 /* enable 802.1q tagged frames */
1751 set_8021q_mode(dev, 1);
1752 outw(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1753
1754// issue_and_wait(dev, SetTxStart|0x07ff);
1755 outw(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1756 outw(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1757 /* Allow status bits to be seen. */
1758 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1759 (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1760 (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1761 (vp->bus_master ? DMADone : 0);
1762 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1763 (vp->full_bus_master_rx ? 0 : RxComplete) |
1764 StatsFull | HostError | TxComplete | IntReq
1765 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1766 outw(vp->status_enable, ioaddr + EL3_CMD);
1767 /* Ack all pending events, and set active indicator mask. */
1768 outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1769 ioaddr + EL3_CMD);
1770 outw(vp->intr_enable, ioaddr + EL3_CMD);
1771 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
1772 writel(0x8000, vp->cb_fn_base + 4);
1773 netif_start_queue (dev);
1774}
1775
1776static int
1777vortex_open(struct net_device *dev)
1778{
1779 struct vortex_private *vp = netdev_priv(dev);
1780 int i;
1781 int retval;
1782
1783 /* Use the now-standard shared IRQ implementation. */
1784 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1785 &boomerang_interrupt : &vortex_interrupt, SA_SHIRQ, dev->name, dev))) {
1786 printk(KERN_ERR "%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1787 goto out;
1788 }
1789
1790 if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1791 if (vortex_debug > 2)
1792 printk(KERN_DEBUG "%s: Filling in the Rx ring.\n", dev->name);
1793 for (i = 0; i < RX_RING_SIZE; i++) {
1794 struct sk_buff *skb;
1795 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1796 vp->rx_ring[i].status = 0; /* Clear complete bit. */
1797 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1798 skb = dev_alloc_skb(PKT_BUF_SZ);
1799 vp->rx_skbuff[i] = skb;
1800 if (skb == NULL)
1801 break; /* Bad news! */
1802 skb->dev = dev; /* Mark as being used by this device. */
1803 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
1804 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->tail, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1805 }
1806 if (i != RX_RING_SIZE) {
1807 int j;
1808 printk(KERN_EMERG "%s: no memory for rx ring\n", dev->name);
1809 for (j = 0; j < i; j++) {
1810 if (vp->rx_skbuff[j]) {
1811 dev_kfree_skb(vp->rx_skbuff[j]);
1812 vp->rx_skbuff[j] = NULL;
1813 }
1814 }
1815 retval = -ENOMEM;
1816 goto out_free_irq;
1817 }
1818 /* Wrap the ring. */
1819 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1820 }
1821
1822 vortex_up(dev);
1823 return 0;
1824
1825out_free_irq:
1826 free_irq(dev->irq, dev);
1827out:
1828 if (vortex_debug > 1)
1829 printk(KERN_ERR "%s: vortex_open() fails: returning %d\n", dev->name, retval);
1830 return retval;
1831}
1832
1833static void
1834vortex_timer(unsigned long data)
1835{
1836 struct net_device *dev = (struct net_device *)data;
1837 struct vortex_private *vp = netdev_priv(dev);
1838 long ioaddr = dev->base_addr;
1839 int next_tick = 60*HZ;
1840 int ok = 0;
1841 int media_status, mii_status, old_window;
1842
1843 if (vortex_debug > 2) {
1844 printk(KERN_DEBUG "%s: Media selection timer tick happened, %s.\n",
1845 dev->name, media_tbl[dev->if_port].name);
1846 printk(KERN_DEBUG "dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1847 }
1848
1849 if (vp->medialock)
1850 goto leave_media_alone;
1851 disable_irq(dev->irq);
1852 old_window = inw(ioaddr + EL3_CMD) >> 13;
1853 EL3WINDOW(4);
1854 media_status = inw(ioaddr + Wn4_Media);
1855 switch (dev->if_port) {
1856 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx:
1857 if (media_status & Media_LnkBeat) {
1858 netif_carrier_on(dev);
1859 ok = 1;
1860 if (vortex_debug > 1)
1861 printk(KERN_DEBUG "%s: Media %s has link beat, %x.\n",
1862 dev->name, media_tbl[dev->if_port].name, media_status);
1863 } else {
1864 netif_carrier_off(dev);
1865 if (vortex_debug > 1) {
1866 printk(KERN_DEBUG "%s: Media %s has no link beat, %x.\n",
1867 dev->name, media_tbl[dev->if_port].name, media_status);
1868 }
1869 }
1870 break;
1871 case XCVR_MII: case XCVR_NWAY:
1872 {
1873 spin_lock_bh(&vp->lock);
1874 mii_status = mdio_read(dev, vp->phys[0], 1);
1875 ok = 1;
1876 if (vortex_debug > 2)
1877 printk(KERN_DEBUG "%s: MII transceiver has status %4.4x.\n",
1878 dev->name, mii_status);
1879 if (mii_status & BMSR_LSTATUS) {
1880 int mii_reg5 = mdio_read(dev, vp->phys[0], 5);
1881 if (! vp->force_fd && mii_reg5 != 0xffff) {
1882 int duplex;
1883
1884 mii_reg5 &= vp->advertising;
1885 duplex = (mii_reg5&0x0100) || (mii_reg5 & 0x01C0) == 0x0040;
1886 if (vp->full_duplex != duplex) {
1887 vp->full_duplex = duplex;
1888 printk(KERN_INFO "%s: Setting %s-duplex based on MII "
1889 "#%d link partner capability of %4.4x.\n",
1890 dev->name, vp->full_duplex ? "full" : "half",
1891 vp->phys[0], mii_reg5);
1892 /* Set the full-duplex bit. */
1893 EL3WINDOW(3);
1894 outw( (vp->full_duplex ? 0x20 : 0) |
1895 (vp->large_frames ? 0x40 : 0) |
1896 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 0x100 : 0),
1897 ioaddr + Wn3_MAC_Ctrl);
1898 if (vortex_debug > 1)
1899 printk(KERN_DEBUG "Setting duplex in Wn3_MAC_Ctrl\n");
1900 /* AKPM: bug: should reset Tx and Rx after setting Duplex. Page 180 */
1901 }
1902 }
1903 netif_carrier_on(dev);
1904 } else {
1905 netif_carrier_off(dev);
1906 }
1907 spin_unlock_bh(&vp->lock);
1908 }
1909 break;
1910 default: /* Other media types handled by Tx timeouts. */
1911 if (vortex_debug > 1)
1912 printk(KERN_DEBUG "%s: Media %s has no indication, %x.\n",
1913 dev->name, media_tbl[dev->if_port].name, media_status);
1914 ok = 1;
1915 }
1916 if ( ! ok) {
1917 unsigned int config;
1918
1919 do {
1920 dev->if_port = media_tbl[dev->if_port].next;
1921 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1922 if (dev->if_port == XCVR_Default) { /* Go back to default. */
1923 dev->if_port = vp->default_media;
1924 if (vortex_debug > 1)
1925 printk(KERN_DEBUG "%s: Media selection failing, using default "
1926 "%s port.\n",
1927 dev->name, media_tbl[dev->if_port].name);
1928 } else {
1929 if (vortex_debug > 1)
1930 printk(KERN_DEBUG "%s: Media selection failed, now trying "
1931 "%s port.\n",
1932 dev->name, media_tbl[dev->if_port].name);
1933 next_tick = media_tbl[dev->if_port].wait;
1934 }
1935 outw((media_status & ~(Media_10TP|Media_SQE)) |
1936 media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
1937
1938 EL3WINDOW(3);
1939 config = inl(ioaddr + Wn3_Config);
1940 config = BFINS(config, dev->if_port, 20, 4);
1941 outl(config, ioaddr + Wn3_Config);
1942
1943 outw(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1944 ioaddr + EL3_CMD);
1945 if (vortex_debug > 1)
1946 printk(KERN_DEBUG "wrote 0x%08x to Wn3_Config\n", config);
1947 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */
1948 }
1949 EL3WINDOW(old_window);
1950 enable_irq(dev->irq);
1951
1952leave_media_alone:
1953 if (vortex_debug > 2)
1954 printk(KERN_DEBUG "%s: Media selection timer finished, %s.\n",
1955 dev->name, media_tbl[dev->if_port].name);
1956
1957 mod_timer(&vp->timer, RUN_AT(next_tick));
1958 if (vp->deferred)
1959 outw(FakeIntr, ioaddr + EL3_CMD);
1960 return;
1961}
1962
1963static void vortex_tx_timeout(struct net_device *dev)
1964{
1965 struct vortex_private *vp = netdev_priv(dev);
1966 long ioaddr = dev->base_addr;
1967
1968 printk(KERN_ERR "%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1969 dev->name, inb(ioaddr + TxStatus),
1970 inw(ioaddr + EL3_STATUS));
1971 EL3WINDOW(4);
1972 printk(KERN_ERR " diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1973 inw(ioaddr + Wn4_NetDiag),
1974 inw(ioaddr + Wn4_Media),
1975 inl(ioaddr + PktStatus),
1976 inw(ioaddr + Wn4_FIFODiag));
1977 /* Slight code bloat to be user friendly. */
1978 if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
1979 printk(KERN_ERR "%s: Transmitter encountered 16 collisions --"
1980 " network cable problem?\n", dev->name);
1981 if (inw(ioaddr + EL3_STATUS) & IntLatch) {
1982 printk(KERN_ERR "%s: Interrupt posted but not delivered --"
1983 " IRQ blocked by another device?\n", dev->name);
1984 /* Bad idea here.. but we might as well handle a few events. */
1985 {
1986 /*
1987 * Block interrupts because vortex_interrupt does a bare spin_lock()
1988 */
1989 unsigned long flags;
1990 local_irq_save(flags);
1991 if (vp->full_bus_master_tx)
1992 boomerang_interrupt(dev->irq, dev, NULL);
1993 else
1994 vortex_interrupt(dev->irq, dev, NULL);
1995 local_irq_restore(flags);
1996 }
1997 }
1998
1999 if (vortex_debug > 0)
2000 dump_tx_ring(dev);
2001
2002 issue_and_wait(dev, TxReset);
2003
2004 vp->stats.tx_errors++;
2005 if (vp->full_bus_master_tx) {
2006 printk(KERN_DEBUG "%s: Resetting the Tx ring pointer.\n", dev->name);
2007 if (vp->cur_tx - vp->dirty_tx > 0 && inl(ioaddr + DownListPtr) == 0)
2008 outl(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
2009 ioaddr + DownListPtr);
2010 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
2011 netif_wake_queue (dev);
2012 if (vp->drv_flags & IS_BOOMERANG)
2013 outb(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
2014 outw(DownUnstall, ioaddr + EL3_CMD);
2015 } else {
2016 vp->stats.tx_dropped++;
2017 netif_wake_queue(dev);
2018 }
2019
2020 /* Issue Tx Enable */
2021 outw(TxEnable, ioaddr + EL3_CMD);
2022 dev->trans_start = jiffies;
2023
2024 /* Switch to register set 7 for normal use. */
2025 EL3WINDOW(7);
2026}
2027
2028/*
2029 * Handle uncommon interrupt sources. This is a separate routine to minimize
2030 * the cache impact.
2031 */
2032static void
2033vortex_error(struct net_device *dev, int status)
2034{
2035 struct vortex_private *vp = netdev_priv(dev);
2036 long ioaddr = dev->base_addr;
2037 int do_tx_reset = 0, reset_mask = 0;
2038 unsigned char tx_status = 0;
2039
2040 if (vortex_debug > 2) {
2041 printk(KERN_ERR "%s: vortex_error(), status=0x%x\n", dev->name, status);
2042 }
2043
2044 if (status & TxComplete) { /* Really "TxError" for us. */
2045 tx_status = inb(ioaddr + TxStatus);
2046 /* Presumably a tx-timeout. We must merely re-enable. */
2047 if (vortex_debug > 2
2048 || (tx_status != 0x88 && vortex_debug > 0)) {
2049 printk(KERN_ERR "%s: Transmit error, Tx status register %2.2x.\n",
2050 dev->name, tx_status);
2051 if (tx_status == 0x82) {
2052 printk(KERN_ERR "Probably a duplex mismatch. See "
2053 "Documentation/networking/vortex.txt\n");
2054 }
2055 dump_tx_ring(dev);
2056 }
2057 if (tx_status & 0x14) vp->stats.tx_fifo_errors++;
2058 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2059 outb(0, ioaddr + TxStatus);
2060 if (tx_status & 0x30) { /* txJabber or txUnderrun */
2061 do_tx_reset = 1;
2062 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */
2063 do_tx_reset = 1;
2064 reset_mask = 0x0108; /* Reset interface logic, but not download logic */
2065 } else { /* Merely re-enable the transmitter. */
2066 outw(TxEnable, ioaddr + EL3_CMD);
2067 }
2068 }
2069
2070 if (status & RxEarly) { /* Rx early is unused. */
2071 vortex_rx(dev);
2072 outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
2073 }
2074 if (status & StatsFull) { /* Empty statistics. */
2075 static int DoneDidThat;
2076 if (vortex_debug > 4)
2077 printk(KERN_DEBUG "%s: Updating stats.\n", dev->name);
2078 update_stats(ioaddr, dev);
2079 /* HACK: Disable statistics as an interrupt source. */
2080 /* This occurs when we have the wrong media type! */
2081 if (DoneDidThat == 0 &&
2082 inw(ioaddr + EL3_STATUS) & StatsFull) {
2083 printk(KERN_WARNING "%s: Updating statistics failed, disabling "
2084 "stats as an interrupt source.\n", dev->name);
2085 EL3WINDOW(5);
2086 outw(SetIntrEnb | (inw(ioaddr + 10) & ~StatsFull), ioaddr + EL3_CMD);
2087 vp->intr_enable &= ~StatsFull;
2088 EL3WINDOW(7);
2089 DoneDidThat++;
2090 }
2091 }
2092 if (status & IntReq) { /* Restore all interrupt sources. */
2093 outw(vp->status_enable, ioaddr + EL3_CMD);
2094 outw(vp->intr_enable, ioaddr + EL3_CMD);
2095 }
2096 if (status & HostError) {
2097 u16 fifo_diag;
2098 EL3WINDOW(4);
2099 fifo_diag = inw(ioaddr + Wn4_FIFODiag);
2100 printk(KERN_ERR "%s: Host error, FIFO diagnostic register %4.4x.\n",
2101 dev->name, fifo_diag);
2102 /* Adapter failure requires Tx/Rx reset and reinit. */
2103 if (vp->full_bus_master_tx) {
2104 int bus_status = inl(ioaddr + PktStatus);
2105 /* 0x80000000 PCI master abort. */
2106 /* 0x40000000 PCI target abort. */
2107 if (vortex_debug)
2108 printk(KERN_ERR "%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2109
2110 /* In this case, blow the card away */
2111 /* Must not enter D3 or we can't legally issue the reset! */
2112 vortex_down(dev, 0);
2113 issue_and_wait(dev, TotalReset | 0xff);
2114 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */
2115 } else if (fifo_diag & 0x0400)
2116 do_tx_reset = 1;
2117 if (fifo_diag & 0x3000) {
2118 /* Reset Rx fifo and upload logic */
2119 issue_and_wait(dev, RxReset|0x07);
2120 /* Set the Rx filter to the current state. */
2121 set_rx_mode(dev);
2122 /* enable 802.1q VLAN tagged frames */
2123 set_8021q_mode(dev, 1);
2124 outw(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2125 outw(AckIntr | HostError, ioaddr + EL3_CMD);
2126 }
2127 }
2128
2129 if (do_tx_reset) {
2130 issue_and_wait(dev, TxReset|reset_mask);
2131 outw(TxEnable, ioaddr + EL3_CMD);
2132 if (!vp->full_bus_master_tx)
2133 netif_wake_queue(dev);
2134 }
2135}
2136
2137static int
2138vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2139{
2140 struct vortex_private *vp = netdev_priv(dev);
2141 long ioaddr = dev->base_addr;
2142
2143 /* Put out the doubleword header... */
2144 outl(skb->len, ioaddr + TX_FIFO);
2145 if (vp->bus_master) {
2146 /* Set the bus-master controller to transfer the packet. */
2147 int len = (skb->len + 3) & ~3;
2148 outl( vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, PCI_DMA_TODEVICE),
2149 ioaddr + Wn7_MasterAddr);
2150 outw(len, ioaddr + Wn7_MasterLen);
2151 vp->tx_skb = skb;
2152 outw(StartDMADown, ioaddr + EL3_CMD);
2153 /* netif_wake_queue() will be called at the DMADone interrupt. */
2154 } else {
2155 /* ... and the packet rounded to a doubleword. */
2156 outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2157 dev_kfree_skb (skb);
2158 if (inw(ioaddr + TxFree) > 1536) {
2159 netif_start_queue (dev); /* AKPM: redundant? */
2160 } else {
2161 /* Interrupt us when the FIFO has room for max-sized packet. */
2162 netif_stop_queue(dev);
2163 outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2164 }
2165 }
2166
2167 dev->trans_start = jiffies;
2168
2169 /* Clear the Tx status stack. */
2170 {
2171 int tx_status;
2172 int i = 32;
2173
2174 while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
2175 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */
2176 if (vortex_debug > 2)
2177 printk(KERN_DEBUG "%s: Tx error, status %2.2x.\n",
2178 dev->name, tx_status);
2179 if (tx_status & 0x04) vp->stats.tx_fifo_errors++;
2180 if (tx_status & 0x38) vp->stats.tx_aborted_errors++;
2181 if (tx_status & 0x30) {
2182 issue_and_wait(dev, TxReset);
2183 }
2184 outw(TxEnable, ioaddr + EL3_CMD);
2185 }
2186 outb(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2187 }
2188 }
2189 return 0;
2190}
2191
2192static int
2193boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2194{
2195 struct vortex_private *vp = netdev_priv(dev);
2196 long ioaddr = dev->base_addr;
2197 /* Calculate the next Tx descriptor entry. */
2198 int entry = vp->cur_tx % TX_RING_SIZE;
2199 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2200 unsigned long flags;
2201
2202 if (vortex_debug > 6) {
2203 printk(KERN_DEBUG "boomerang_start_xmit()\n");
2204 if (vortex_debug > 3)
2205 printk(KERN_DEBUG "%s: Trying to send a packet, Tx index %d.\n",
2206 dev->name, vp->cur_tx);
2207 }
2208
2209 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2210 if (vortex_debug > 0)
2211 printk(KERN_WARNING "%s: BUG! Tx Ring full, refusing to send buffer.\n",
2212 dev->name);
2213 netif_stop_queue(dev);
2214 return 1;
2215 }
2216
2217 vp->tx_skbuff[entry] = skb;
2218
2219 vp->tx_ring[entry].next = 0;
2220#if DO_ZEROCOPY
2221 if (skb->ip_summed != CHECKSUM_HW)
2222 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2223 else
2224 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2225
2226 if (!skb_shinfo(skb)->nr_frags) {
2227 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2228 skb->len, PCI_DMA_TODEVICE));
2229 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2230 } else {
2231 int i;
2232
2233 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2234 skb->len-skb->data_len, PCI_DMA_TODEVICE));
2235 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len-skb->data_len);
2236
2237 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2238 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2239
2240 vp->tx_ring[entry].frag[i+1].addr =
2241 cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2242 (void*)page_address(frag->page) + frag->page_offset,
2243 frag->size, PCI_DMA_TODEVICE));
2244
2245 if (i == skb_shinfo(skb)->nr_frags-1)
2246 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2247 else
2248 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2249 }
2250 }
2251#else
2252 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2253 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2254 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2255#endif
2256
2257 spin_lock_irqsave(&vp->lock, flags);
2258 /* Wait for the stall to complete. */
2259 issue_and_wait(dev, DownStall);
2260 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2261 if (inl(ioaddr + DownListPtr) == 0) {
2262 outl(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2263 vp->queued_packet++;
2264 }
2265
2266 vp->cur_tx++;
2267 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2268 netif_stop_queue (dev);
2269 } else { /* Clear previous interrupt enable. */
2270#if defined(tx_interrupt_mitigation)
2271 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2272 * were selected, this would corrupt DN_COMPLETE. No?
2273 */
2274 prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2275#endif
2276 }
2277 outw(DownUnstall, ioaddr + EL3_CMD);
2278 spin_unlock_irqrestore(&vp->lock, flags);
2279 dev->trans_start = jiffies;
2280 return 0;
2281}
2282
2283/* The interrupt handler does all of the Rx thread work and cleans up
2284 after the Tx thread. */
2285
2286/*
2287 * This is the ISR for the vortex series chips.
2288 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2289 */
2290
2291static irqreturn_t
2292vortex_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2293{
2294 struct net_device *dev = dev_id;
2295 struct vortex_private *vp = netdev_priv(dev);
2296 long ioaddr;
2297 int status;
2298 int work_done = max_interrupt_work;
2299 int handled = 0;
2300
2301 ioaddr = dev->base_addr;
2302 spin_lock(&vp->lock);
2303
2304 status = inw(ioaddr + EL3_STATUS);
2305
2306 if (vortex_debug > 6)
2307 printk("vortex_interrupt(). status=0x%4x\n", status);
2308
2309 if ((status & IntLatch) == 0)
2310 goto handler_exit; /* No interrupt: shared IRQs cause this */
2311 handled = 1;
2312
2313 if (status & IntReq) {
2314 status |= vp->deferred;
2315 vp->deferred = 0;
2316 }
2317
2318 if (status == 0xffff) /* h/w no longer present (hotplug)? */
2319 goto handler_exit;
2320
2321 if (vortex_debug > 4)
2322 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2323 dev->name, status, inb(ioaddr + Timer));
2324
2325 do {
2326 if (vortex_debug > 5)
2327 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2328 dev->name, status);
2329 if (status & RxComplete)
2330 vortex_rx(dev);
2331
2332 if (status & TxAvailable) {
2333 if (vortex_debug > 5)
2334 printk(KERN_DEBUG " TX room bit was handled.\n");
2335 /* There's room in the FIFO for a full-sized packet. */
2336 outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2337 netif_wake_queue (dev);
2338 }
2339
2340 if (status & DMADone) {
2341 if (inw(ioaddr + Wn7_MasterStatus) & 0x1000) {
2342 outw(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2343 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2344 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2345 if (inw(ioaddr + TxFree) > 1536) {
2346 /*
2347 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to
2348 * insufficient FIFO room, the TxAvailable test will succeed and call
2349 * netif_wake_queue()
2350 */
2351 netif_wake_queue(dev);
2352 } else { /* Interrupt when FIFO has room for max-sized packet. */
2353 outw(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2354 netif_stop_queue(dev);
2355 }
2356 }
2357 }
2358 /* Check for all uncommon interrupts at once. */
2359 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2360 if (status == 0xffff)
2361 break;
2362 vortex_error(dev, status);
2363 }
2364
2365 if (--work_done < 0) {
2366 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2367 "%4.4x.\n", dev->name, status);
2368 /* Disable all pending interrupts. */
2369 do {
2370 vp->deferred |= status;
2371 outw(SetStatusEnb | (~vp->deferred & vp->status_enable),
2372 ioaddr + EL3_CMD);
2373 outw(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2374 } while ((status = inw(ioaddr + EL3_CMD)) & IntLatch);
2375 /* The timer will reenable interrupts. */
2376 mod_timer(&vp->timer, jiffies + 1*HZ);
2377 break;
2378 }
2379 /* Acknowledge the IRQ. */
2380 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2381 } while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2382
2383 if (vortex_debug > 4)
2384 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2385 dev->name, status);
2386handler_exit:
2387 spin_unlock(&vp->lock);
2388 return IRQ_RETVAL(handled);
2389}
2390
2391/*
2392 * This is the ISR for the boomerang series chips.
2393 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2394 */
2395
2396static irqreturn_t
2397boomerang_interrupt(int irq, void *dev_id, struct pt_regs *regs)
2398{
2399 struct net_device *dev = dev_id;
2400 struct vortex_private *vp = netdev_priv(dev);
2401 long ioaddr;
2402 int status;
2403 int work_done = max_interrupt_work;
2404
2405 ioaddr = dev->base_addr;
2406
2407 /*
2408 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2409 * and boomerang_start_xmit
2410 */
2411 spin_lock(&vp->lock);
2412
2413 status = inw(ioaddr + EL3_STATUS);
2414
2415 if (vortex_debug > 6)
2416 printk(KERN_DEBUG "boomerang_interrupt. status=0x%4x\n", status);
2417
2418 if ((status & IntLatch) == 0)
2419 goto handler_exit; /* No interrupt: shared IRQs can cause this */
2420
2421 if (status == 0xffff) { /* h/w no longer present (hotplug)? */
2422 if (vortex_debug > 1)
2423 printk(KERN_DEBUG "boomerang_interrupt(1): status = 0xffff\n");
2424 goto handler_exit;
2425 }
2426
2427 if (status & IntReq) {
2428 status |= vp->deferred;
2429 vp->deferred = 0;
2430 }
2431
2432 if (vortex_debug > 4)
2433 printk(KERN_DEBUG "%s: interrupt, status %4.4x, latency %d ticks.\n",
2434 dev->name, status, inb(ioaddr + Timer));
2435 do {
2436 if (vortex_debug > 5)
2437 printk(KERN_DEBUG "%s: In interrupt loop, status %4.4x.\n",
2438 dev->name, status);
2439 if (status & UpComplete) {
2440 outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
2441 if (vortex_debug > 5)
2442 printk(KERN_DEBUG "boomerang_interrupt->boomerang_rx\n");
2443 boomerang_rx(dev);
2444 }
2445
2446 if (status & DownComplete) {
2447 unsigned int dirty_tx = vp->dirty_tx;
2448
2449 outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
2450 while (vp->cur_tx - dirty_tx > 0) {
2451 int entry = dirty_tx % TX_RING_SIZE;
2452#if 1 /* AKPM: the latter is faster, but cyclone-only */
2453 if (inl(ioaddr + DownListPtr) ==
2454 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2455 break; /* It still hasn't been processed. */
2456#else
2457 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2458 break; /* It still hasn't been processed. */
2459#endif
2460
2461 if (vp->tx_skbuff[entry]) {
2462 struct sk_buff *skb = vp->tx_skbuff[entry];
2463#if DO_ZEROCOPY
2464 int i;
2465 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2466 pci_unmap_single(VORTEX_PCI(vp),
2467 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2468 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2469 PCI_DMA_TODEVICE);
2470#else
2471 pci_unmap_single(VORTEX_PCI(vp),
2472 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2473#endif
2474 dev_kfree_skb_irq(skb);
2475 vp->tx_skbuff[entry] = NULL;
2476 } else {
2477 printk(KERN_DEBUG "boomerang_interrupt: no skb!\n");
2478 }
2479 /* vp->stats.tx_packets++; Counted below. */
2480 dirty_tx++;
2481 }
2482 vp->dirty_tx = dirty_tx;
2483 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2484 if (vortex_debug > 6)
2485 printk(KERN_DEBUG "boomerang_interrupt: wake queue\n");
2486 netif_wake_queue (dev);
2487 }
2488 }
2489
2490 /* Check for all uncommon interrupts at once. */
2491 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2492 vortex_error(dev, status);
2493
2494 if (--work_done < 0) {
2495 printk(KERN_WARNING "%s: Too much work in interrupt, status "
2496 "%4.4x.\n", dev->name, status);
2497 /* Disable all pending interrupts. */
2498 do {
2499 vp->deferred |= status;
2500 outw(SetStatusEnb | (~vp->deferred & vp->status_enable),
2501 ioaddr + EL3_CMD);
2502 outw(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2503 } while ((status = inw(ioaddr + EL3_CMD)) & IntLatch);
2504 /* The timer will reenable interrupts. */
2505 mod_timer(&vp->timer, jiffies + 1*HZ);
2506 break;
2507 }
2508 /* Acknowledge the IRQ. */
2509 outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2510 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */
2511 writel(0x8000, vp->cb_fn_base + 4);
2512
2513 } while ((status = inw(ioaddr + EL3_STATUS)) & IntLatch);
2514
2515 if (vortex_debug > 4)
2516 printk(KERN_DEBUG "%s: exiting interrupt, status %4.4x.\n",
2517 dev->name, status);
2518handler_exit:
2519 spin_unlock(&vp->lock);
2520 return IRQ_HANDLED;
2521}
2522
2523static int vortex_rx(struct net_device *dev)
2524{
2525 struct vortex_private *vp = netdev_priv(dev);
2526 long ioaddr = dev->base_addr;
2527 int i;
2528 short rx_status;
2529
2530 if (vortex_debug > 5)
2531 printk(KERN_DEBUG "vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2532 inw(ioaddr+EL3_STATUS), inw(ioaddr+RxStatus));
2533 while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
2534 if (rx_status & 0x4000) { /* Error, update stats. */
2535 unsigned char rx_error = inb(ioaddr + RxErrors);
2536 if (vortex_debug > 2)
2537 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2538 vp->stats.rx_errors++;
2539 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2540 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2541 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2542 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2543 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2544 } else {
2545 /* The packet length: up to 4.5K!. */
2546 int pkt_len = rx_status & 0x1fff;
2547 struct sk_buff *skb;
2548
2549 skb = dev_alloc_skb(pkt_len + 5);
2550 if (vortex_debug > 4)
2551 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2552 pkt_len, rx_status);
2553 if (skb != NULL) {
2554 skb->dev = dev;
2555 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2556 /* 'skb_put()' points to the start of sk_buff data area. */
2557 if (vp->bus_master &&
2558 ! (inw(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2559 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2560 pkt_len, PCI_DMA_FROMDEVICE);
2561 outl(dma, ioaddr + Wn7_MasterAddr);
2562 outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2563 outw(StartDMAUp, ioaddr + EL3_CMD);
2564 while (inw(ioaddr + Wn7_MasterStatus) & 0x8000)
2565 ;
2566 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2567 } else {
2568 insl(ioaddr + RX_FIFO, skb_put(skb, pkt_len),
2569 (pkt_len + 3) >> 2);
2570 }
2571 outw(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2572 skb->protocol = eth_type_trans(skb, dev);
2573 netif_rx(skb);
2574 dev->last_rx = jiffies;
2575 vp->stats.rx_packets++;
2576 /* Wait a limited time to go to next packet. */
2577 for (i = 200; i >= 0; i--)
2578 if ( ! (inw(ioaddr + EL3_STATUS) & CmdInProgress))
2579 break;
2580 continue;
2581 } else if (vortex_debug > 0)
2582 printk(KERN_NOTICE "%s: No memory to allocate a sk_buff of "
2583 "size %d.\n", dev->name, pkt_len);
2584 }
2585 vp->stats.rx_dropped++;
2586 issue_and_wait(dev, RxDiscard);
2587 }
2588
2589 return 0;
2590}
2591
2592static int
2593boomerang_rx(struct net_device *dev)
2594{
2595 struct vortex_private *vp = netdev_priv(dev);
2596 int entry = vp->cur_rx % RX_RING_SIZE;
2597 long ioaddr = dev->base_addr;
2598 int rx_status;
2599 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2600
2601 if (vortex_debug > 5)
2602 printk(KERN_DEBUG "boomerang_rx(): status %4.4x\n", inw(ioaddr+EL3_STATUS));
2603
2604 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2605 if (--rx_work_limit < 0)
2606 break;
2607 if (rx_status & RxDError) { /* Error, update stats. */
2608 unsigned char rx_error = rx_status >> 16;
2609 if (vortex_debug > 2)
2610 printk(KERN_DEBUG " Rx error: status %2.2x.\n", rx_error);
2611 vp->stats.rx_errors++;
2612 if (rx_error & 0x01) vp->stats.rx_over_errors++;
2613 if (rx_error & 0x02) vp->stats.rx_length_errors++;
2614 if (rx_error & 0x04) vp->stats.rx_frame_errors++;
2615 if (rx_error & 0x08) vp->stats.rx_crc_errors++;
2616 if (rx_error & 0x10) vp->stats.rx_length_errors++;
2617 } else {
2618 /* The packet length: up to 4.5K!. */
2619 int pkt_len = rx_status & 0x1fff;
2620 struct sk_buff *skb;
2621 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2622
2623 if (vortex_debug > 4)
2624 printk(KERN_DEBUG "Receiving packet size %d status %4.4x.\n",
2625 pkt_len, rx_status);
2626
2627 /* Check if the packet is long enough to just accept without
2628 copying to a properly sized skbuff. */
2629 if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != 0) {
2630 skb->dev = dev;
2631 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2632 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2633 /* 'skb_put()' points to the start of sk_buff data area. */
2634 memcpy(skb_put(skb, pkt_len),
2635 vp->rx_skbuff[entry]->tail,
2636 pkt_len);
2637 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2638 vp->rx_copy++;
2639 } else {
2640 /* Pass up the skbuff already on the Rx ring. */
2641 skb = vp->rx_skbuff[entry];
2642 vp->rx_skbuff[entry] = NULL;
2643 skb_put(skb, pkt_len);
2644 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2645 vp->rx_nocopy++;
2646 }
2647 skb->protocol = eth_type_trans(skb, dev);
2648 { /* Use hardware checksum info. */
2649 int csum_bits = rx_status & 0xee000000;
2650 if (csum_bits &&
2651 (csum_bits == (IPChksumValid | TCPChksumValid) ||
2652 csum_bits == (IPChksumValid | UDPChksumValid))) {
2653 skb->ip_summed = CHECKSUM_UNNECESSARY;
2654 vp->rx_csumhits++;
2655 }
2656 }
2657 netif_rx(skb);
2658 dev->last_rx = jiffies;
2659 vp->stats.rx_packets++;
2660 }
2661 entry = (++vp->cur_rx) % RX_RING_SIZE;
2662 }
2663 /* Refill the Rx ring buffers. */
2664 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2665 struct sk_buff *skb;
2666 entry = vp->dirty_rx % RX_RING_SIZE;
2667 if (vp->rx_skbuff[entry] == NULL) {
2668 skb = dev_alloc_skb(PKT_BUF_SZ);
2669 if (skb == NULL) {
2670 static unsigned long last_jif;
2671 if ((jiffies - last_jif) > 10 * HZ) {
2672 printk(KERN_WARNING "%s: memory shortage\n", dev->name);
2673 last_jif = jiffies;
2674 }
2675 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2676 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2677 break; /* Bad news! */
2678 }
2679 skb->dev = dev; /* Mark as being used by this device. */
2680 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */
2681 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->tail, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2682 vp->rx_skbuff[entry] = skb;
2683 }
2684 vp->rx_ring[entry].status = 0; /* Clear complete bit. */
2685 outw(UpUnstall, ioaddr + EL3_CMD);
2686 }
2687 return 0;
2688}
2689
2690/*
2691 * If we've hit a total OOM refilling the Rx ring we poll once a second
2692 * for some memory. Otherwise there is no way to restart the rx process.
2693 */
2694static void
2695rx_oom_timer(unsigned long arg)
2696{
2697 struct net_device *dev = (struct net_device *)arg;
2698 struct vortex_private *vp = netdev_priv(dev);
2699
2700 spin_lock_irq(&vp->lock);
2701 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */
2702 boomerang_rx(dev);
2703 if (vortex_debug > 1) {
2704 printk(KERN_DEBUG "%s: rx_oom_timer %s\n", dev->name,
2705 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2706 }
2707 spin_unlock_irq(&vp->lock);
2708}
2709
2710static void
2711vortex_down(struct net_device *dev, int final_down)
2712{
2713 struct vortex_private *vp = netdev_priv(dev);
2714 long ioaddr = dev->base_addr;
2715
2716 netif_stop_queue (dev);
2717
2718 del_timer_sync(&vp->rx_oom_timer);
2719 del_timer_sync(&vp->timer);
2720
2721 /* Turn off statistics ASAP. We update vp->stats below. */
2722 outw(StatsDisable, ioaddr + EL3_CMD);
2723
2724 /* Disable the receiver and transmitter. */
2725 outw(RxDisable, ioaddr + EL3_CMD);
2726 outw(TxDisable, ioaddr + EL3_CMD);
2727
2728 /* Disable receiving 802.1q tagged frames */
2729 set_8021q_mode(dev, 0);
2730
2731 if (dev->if_port == XCVR_10base2)
2732 /* Turn off thinnet power. Green! */
2733 outw(StopCoax, ioaddr + EL3_CMD);
2734
2735 outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2736
2737 update_stats(ioaddr, dev);
2738 if (vp->full_bus_master_rx)
2739 outl(0, ioaddr + UpListPtr);
2740 if (vp->full_bus_master_tx)
2741 outl(0, ioaddr + DownListPtr);
2742
2743 if (final_down && VORTEX_PCI(vp)) {
2744 pci_save_state(VORTEX_PCI(vp));
2745 acpi_set_WOL(dev);
2746 }
2747}
2748
2749static int
2750vortex_close(struct net_device *dev)
2751{
2752 struct vortex_private *vp = netdev_priv(dev);
2753 long ioaddr = dev->base_addr;
2754 int i;
2755
2756 if (netif_device_present(dev))
2757 vortex_down(dev, 1);
2758
2759 if (vortex_debug > 1) {
2760 printk(KERN_DEBUG"%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2761 dev->name, inw(ioaddr + EL3_STATUS), inb(ioaddr + TxStatus));
2762 printk(KERN_DEBUG "%s: vortex close stats: rx_nocopy %d rx_copy %d"
2763 " tx_queued %d Rx pre-checksummed %d.\n",
2764 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2765 }
2766
2767#if DO_ZEROCOPY
2768 if ( vp->rx_csumhits &&
2769 ((vp->drv_flags & HAS_HWCKSM) == 0) &&
2770 (hw_checksums[vp->card_idx] == -1)) {
2771 printk(KERN_WARNING "%s supports hardware checksums, and we're not using them!\n", dev->name);
2772 }
2773#endif
2774
2775 free_irq(dev->irq, dev);
2776
2777 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2778 for (i = 0; i < RX_RING_SIZE; i++)
2779 if (vp->rx_skbuff[i]) {
2780 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2781 PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2782 dev_kfree_skb(vp->rx_skbuff[i]);
2783 vp->rx_skbuff[i] = NULL;
2784 }
2785 }
2786 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2787 for (i = 0; i < TX_RING_SIZE; i++) {
2788 if (vp->tx_skbuff[i]) {
2789 struct sk_buff *skb = vp->tx_skbuff[i];
2790#if DO_ZEROCOPY
2791 int k;
2792
2793 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2794 pci_unmap_single(VORTEX_PCI(vp),
2795 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2796 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2797 PCI_DMA_TODEVICE);
2798#else
2799 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2800#endif
2801 dev_kfree_skb(skb);
2802 vp->tx_skbuff[i] = NULL;
2803 }
2804 }
2805 }
2806
2807 return 0;
2808}
2809
2810static void
2811dump_tx_ring(struct net_device *dev)
2812{
2813 if (vortex_debug > 0) {
2814 struct vortex_private *vp = netdev_priv(dev);
2815 long ioaddr = dev->base_addr;
2816
2817 if (vp->full_bus_master_tx) {
2818 int i;
2819 int stalled = inl(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */
2820
2821 printk(KERN_ERR " Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2822 vp->full_bus_master_tx,
2823 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2824 vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2825 printk(KERN_ERR " Transmit list %8.8x vs. %p.\n",
2826 inl(ioaddr + DownListPtr),
2827 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2828 issue_and_wait(dev, DownStall);
2829 for (i = 0; i < TX_RING_SIZE; i++) {
2830 printk(KERN_ERR " %d: @%p length %8.8x status %8.8x\n", i,
2831 &vp->tx_ring[i],
2832#if DO_ZEROCOPY
2833 le32_to_cpu(vp->tx_ring[i].frag[0].length),
2834#else
2835 le32_to_cpu(vp->tx_ring[i].length),
2836#endif
2837 le32_to_cpu(vp->tx_ring[i].status));
2838 }
2839 if (!stalled)
2840 outw(DownUnstall, ioaddr + EL3_CMD);
2841 }
2842 }
2843}
2844
2845static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2846{
2847 struct vortex_private *vp = netdev_priv(dev);
2848 unsigned long flags;
2849
2850 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */
2851 spin_lock_irqsave (&vp->lock, flags);
2852 update_stats(dev->base_addr, dev);
2853 spin_unlock_irqrestore (&vp->lock, flags);
2854 }
2855 return &vp->stats;
2856}
2857
2858/* Update statistics.
2859 Unlike with the EL3 we need not worry about interrupts changing
2860 the window setting from underneath us, but we must still guard
2861 against a race condition with a StatsUpdate interrupt updating the
2862 table. This is done by checking that the ASM (!) code generated uses
2863 atomic updates with '+='.
2864 */
2865static void update_stats(long ioaddr, struct net_device *dev)
2866{
2867 struct vortex_private *vp = netdev_priv(dev);
2868 int old_window = inw(ioaddr + EL3_CMD);
2869
2870 if (old_window == 0xffff) /* Chip suspended or ejected. */
2871 return;
2872 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2873 /* Switch to the stats window, and read everything. */
2874 EL3WINDOW(6);
2875 vp->stats.tx_carrier_errors += inb(ioaddr + 0);
2876 vp->stats.tx_heartbeat_errors += inb(ioaddr + 1);
2877 vp->stats.collisions += inb(ioaddr + 3);
2878 vp->stats.tx_window_errors += inb(ioaddr + 4);
2879 vp->stats.rx_fifo_errors += inb(ioaddr + 5);
2880 vp->stats.tx_packets += inb(ioaddr + 6);
2881 vp->stats.tx_packets += (inb(ioaddr + 9)&0x30) << 4;
2882 /* Rx packets */ inb(ioaddr + 7); /* Must read to clear */
2883 /* Don't bother with register 9, an extension of registers 6&7.
2884 If we do use the 6&7 values the atomic update assumption above
2885 is invalid. */
2886 vp->stats.rx_bytes += inw(ioaddr + 10);
2887 vp->stats.tx_bytes += inw(ioaddr + 12);
2888 /* Extra stats for get_ethtool_stats() */
2889 vp->xstats.tx_multiple_collisions += inb(ioaddr + 2);
2890 vp->xstats.tx_deferred += inb(ioaddr + 8);
2891 EL3WINDOW(4);
2892 vp->xstats.rx_bad_ssd += inb(ioaddr + 12);
2893
2894 {
2895 u8 up = inb(ioaddr + 13);
2896 vp->stats.rx_bytes += (up & 0x0f) << 16;
2897 vp->stats.tx_bytes += (up & 0xf0) << 12;
2898 }
2899
2900 EL3WINDOW(old_window >> 13);
2901 return;
2902}
2903
2904static int vortex_nway_reset(struct net_device *dev)
2905{
2906 struct vortex_private *vp = netdev_priv(dev);
2907 long ioaddr = dev->base_addr;
2908 unsigned long flags;
2909 int rc;
2910
2911 spin_lock_irqsave(&vp->lock, flags);
2912 EL3WINDOW(4);
2913 rc = mii_nway_restart(&vp->mii);
2914 spin_unlock_irqrestore(&vp->lock, flags);
2915 return rc;
2916}
2917
2918static u32 vortex_get_link(struct net_device *dev)
2919{
2920 struct vortex_private *vp = netdev_priv(dev);
2921 long ioaddr = dev->base_addr;
2922 unsigned long flags;
2923 int rc;
2924
2925 spin_lock_irqsave(&vp->lock, flags);
2926 EL3WINDOW(4);
2927 rc = mii_link_ok(&vp->mii);
2928 spin_unlock_irqrestore(&vp->lock, flags);
2929 return rc;
2930}
2931
2932static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2933{
2934 struct vortex_private *vp = netdev_priv(dev);
2935 long ioaddr = dev->base_addr;
2936 unsigned long flags;
2937 int rc;
2938
2939 spin_lock_irqsave(&vp->lock, flags);
2940 EL3WINDOW(4);
2941 rc = mii_ethtool_gset(&vp->mii, cmd);
2942 spin_unlock_irqrestore(&vp->lock, flags);
2943 return rc;
2944}
2945
2946static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2947{
2948 struct vortex_private *vp = netdev_priv(dev);
2949 long ioaddr = dev->base_addr;
2950 unsigned long flags;
2951 int rc;
2952
2953 spin_lock_irqsave(&vp->lock, flags);
2954 EL3WINDOW(4);
2955 rc = mii_ethtool_sset(&vp->mii, cmd);
2956 spin_unlock_irqrestore(&vp->lock, flags);
2957 return rc;
2958}
2959
2960static u32 vortex_get_msglevel(struct net_device *dev)
2961{
2962 return vortex_debug;
2963}
2964
2965static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2966{
2967 vortex_debug = dbg;
2968}
2969
2970static int vortex_get_stats_count(struct net_device *dev)
2971{
2972 return VORTEX_NUM_STATS;
2973}
2974
2975static void vortex_get_ethtool_stats(struct net_device *dev,
2976 struct ethtool_stats *stats, u64 *data)
2977{
2978 struct vortex_private *vp = netdev_priv(dev);
2979 unsigned long flags;
2980
2981 spin_lock_irqsave(&vp->lock, flags);
2982 update_stats(dev->base_addr, dev);
2983 spin_unlock_irqrestore(&vp->lock, flags);
2984
2985 data[0] = vp->xstats.tx_deferred;
2986 data[1] = vp->xstats.tx_multiple_collisions;
2987 data[2] = vp->xstats.rx_bad_ssd;
2988}
2989
2990
2991static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2992{
2993 switch (stringset) {
2994 case ETH_SS_STATS:
2995 memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2996 break;
2997 default:
2998 WARN_ON(1);
2999 break;
3000 }
3001}
3002
3003static void vortex_get_drvinfo(struct net_device *dev,
3004 struct ethtool_drvinfo *info)
3005{
3006 struct vortex_private *vp = netdev_priv(dev);
3007
3008 strcpy(info->driver, DRV_NAME);
3009 strcpy(info->version, DRV_VERSION);
3010 if (VORTEX_PCI(vp)) {
3011 strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
3012 } else {
3013 if (VORTEX_EISA(vp))
3014 sprintf(info->bus_info, vp->gendev->bus_id);
3015 else
3016 sprintf(info->bus_info, "EISA 0x%lx %d",
3017 dev->base_addr, dev->irq);
3018 }
3019}
3020
3021static struct ethtool_ops vortex_ethtool_ops = {
3022 .get_drvinfo = vortex_get_drvinfo,
3023 .get_strings = vortex_get_strings,
3024 .get_msglevel = vortex_get_msglevel,
3025 .set_msglevel = vortex_set_msglevel,
3026 .get_ethtool_stats = vortex_get_ethtool_stats,
3027 .get_stats_count = vortex_get_stats_count,
3028 .get_settings = vortex_get_settings,
3029 .set_settings = vortex_set_settings,
3030 .get_link = vortex_get_link,
3031 .nway_reset = vortex_nway_reset,
3032};
3033
3034#ifdef CONFIG_PCI
3035/*
3036 * Must power the device up to do MDIO operations
3037 */
3038static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3039{
3040 int err;
3041 struct vortex_private *vp = netdev_priv(dev);
3042 long ioaddr = dev->base_addr;
3043 unsigned long flags;
3044 int state = 0;
3045
3046 if(VORTEX_PCI(vp))
3047 state = VORTEX_PCI(vp)->current_state;
3048
3049 /* The kernel core really should have pci_get_power_state() */
3050
3051 if(state != 0)
3052 pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3053 spin_lock_irqsave(&vp->lock, flags);
3054 EL3WINDOW(4);
3055 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3056 spin_unlock_irqrestore(&vp->lock, flags);
3057 if(state != 0)
3058 pci_set_power_state(VORTEX_PCI(vp), state);
3059
3060 return err;
3061}
3062#endif
3063
3064
3065/* Pre-Cyclone chips have no documented multicast filter, so the only
3066 multicast setting is to receive all multicast frames. At least
3067 the chip has a very clean way to set the mode, unlike many others. */
3068static void set_rx_mode(struct net_device *dev)
3069{
3070 long ioaddr = dev->base_addr;
3071 int new_mode;
3072
3073 if (dev->flags & IFF_PROMISC) {
3074 if (vortex_debug > 0)
3075 printk(KERN_NOTICE "%s: Setting promiscuous mode.\n", dev->name);
3076 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3077 } else if ((dev->mc_list) || (dev->flags & IFF_ALLMULTI)) {
3078 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3079 } else
3080 new_mode = SetRxFilter | RxStation | RxBroadcast;
3081
3082 outw(new_mode, ioaddr + EL3_CMD);
3083}
3084
3085#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3086/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3087 Note that this must be done after each RxReset due to some backwards
3088 compatibility logic in the Cyclone and Tornado ASICs */
3089
3090/* The Ethernet Type used for 802.1q tagged frames */
3091#define VLAN_ETHER_TYPE 0x8100
3092
3093static void set_8021q_mode(struct net_device *dev, int enable)
3094{
3095 struct vortex_private *vp = netdev_priv(dev);
3096 long ioaddr = dev->base_addr;
3097 int old_window = inw(ioaddr + EL3_CMD);
3098 int mac_ctrl;
3099
3100 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3101 /* cyclone and tornado chipsets can recognize 802.1q
3102 * tagged frames and treat them correctly */
3103
3104 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3105 if (enable)
3106 max_pkt_size += 4; /* 802.1Q VLAN tag */
3107
3108 EL3WINDOW(3);
3109 outw(max_pkt_size, ioaddr+Wn3_MaxPktSize);
3110
3111 /* set VlanEtherType to let the hardware checksumming
3112 treat tagged frames correctly */
3113 EL3WINDOW(7);
3114 outw(VLAN_ETHER_TYPE, ioaddr+Wn7_VlanEtherType);
3115 } else {
3116 /* on older cards we have to enable large frames */
3117
3118 vp->large_frames = dev->mtu > 1500 || enable;
3119
3120 EL3WINDOW(3);
3121 mac_ctrl = inw(ioaddr+Wn3_MAC_Ctrl);
3122 if (vp->large_frames)
3123 mac_ctrl |= 0x40;
3124 else
3125 mac_ctrl &= ~0x40;
3126 outw(mac_ctrl, ioaddr+Wn3_MAC_Ctrl);
3127 }
3128
3129 EL3WINDOW(old_window);
3130}
3131#else
3132
3133static void set_8021q_mode(struct net_device *dev, int enable)
3134{
3135}
3136
3137
3138#endif
3139
3140/* MII transceiver control section.
3141 Read and write the MII registers using software-generated serial
3142 MDIO protocol. See the MII specifications or DP83840A data sheet
3143 for details. */
3144
3145/* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually
3146 met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3147 "overclocking" issues. */
3148#define mdio_delay() inl(mdio_addr)
3149
3150#define MDIO_SHIFT_CLK 0x01
3151#define MDIO_DIR_WRITE 0x04
3152#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3153#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3154#define MDIO_DATA_READ 0x02
3155#define MDIO_ENB_IN 0x00
3156
3157/* Generate the preamble required for initial synchronization and
3158 a few older transceivers. */
3159static void mdio_sync(long ioaddr, int bits)
3160{
3161 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3162
3163 /* Establish sync by sending at least 32 logic ones. */
3164 while (-- bits >= 0) {
3165 outw(MDIO_DATA_WRITE1, mdio_addr);
3166 mdio_delay();
3167 outw(MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, mdio_addr);
3168 mdio_delay();
3169 }
3170}
3171
3172static int mdio_read(struct net_device *dev, int phy_id, int location)
3173{
3174 int i;
3175 long ioaddr = dev->base_addr;
3176 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3177 unsigned int retval = 0;
3178 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3179
3180 if (mii_preamble_required)
3181 mdio_sync(ioaddr, 32);
3182
3183 /* Shift the read command bits out. */
3184 for (i = 14; i >= 0; i--) {
3185 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3186 outw(dataval, mdio_addr);
3187 mdio_delay();
3188 outw(dataval | MDIO_SHIFT_CLK, mdio_addr);
3189 mdio_delay();
3190 }
3191 /* Read the two transition, 16 data, and wire-idle bits. */
3192 for (i = 19; i > 0; i--) {
3193 outw(MDIO_ENB_IN, mdio_addr);
3194 mdio_delay();
3195 retval = (retval << 1) | ((inw(mdio_addr) & MDIO_DATA_READ) ? 1 : 0);
3196 outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3197 mdio_delay();
3198 }
3199 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3200}
3201
3202static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3203{
3204 long ioaddr = dev->base_addr;
3205 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3206 long mdio_addr = ioaddr + Wn4_PhysicalMgmt;
3207 int i;
3208
3209 if (mii_preamble_required)
3210 mdio_sync(ioaddr, 32);
3211
3212 /* Shift the command bits out. */
3213 for (i = 31; i >= 0; i--) {
3214 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3215 outw(dataval, mdio_addr);
3216 mdio_delay();
3217 outw(dataval | MDIO_SHIFT_CLK, mdio_addr);
3218 mdio_delay();
3219 }
3220 /* Leave the interface idle. */
3221 for (i = 1; i >= 0; i--) {
3222 outw(MDIO_ENB_IN, mdio_addr);
3223 mdio_delay();
3224 outw(MDIO_ENB_IN | MDIO_SHIFT_CLK, mdio_addr);
3225 mdio_delay();
3226 }
3227 return;
3228}
3229
3230/* ACPI: Advanced Configuration and Power Interface. */
3231/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3232static void acpi_set_WOL(struct net_device *dev)
3233{
3234 struct vortex_private *vp = netdev_priv(dev);
3235 long ioaddr = dev->base_addr;
3236
3237 if (vp->enable_wol) {
3238 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3239 EL3WINDOW(7);
3240 outw(2, ioaddr + 0x0c);
3241 /* The RxFilter must accept the WOL frames. */
3242 outw(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3243 outw(RxEnable, ioaddr + EL3_CMD);
3244
3245 pci_enable_wake(VORTEX_PCI(vp), 0, 1);
3246 }
3247 /* Change the power state to D3; RxEnable doesn't take effect. */
3248 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3249}
3250
3251
3252static void __devexit vortex_remove_one (struct pci_dev *pdev)
3253{
3254 struct net_device *dev = pci_get_drvdata(pdev);
3255 struct vortex_private *vp;
3256
3257 if (!dev) {
3258 printk("vortex_remove_one called for Compaq device!\n");
3259 BUG();
3260 }
3261
3262 vp = netdev_priv(dev);
3263
3264 /* AKPM: FIXME: we should have
3265 * if (vp->cb_fn_base) iounmap(vp->cb_fn_base);
3266 * here
3267 */
3268 unregister_netdev(dev);
3269
3270 if (VORTEX_PCI(vp)) {
3271 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */
3272 if (vp->pm_state_valid)
3273 pci_restore_state(VORTEX_PCI(vp));
3274 pci_disable_device(VORTEX_PCI(vp));
3275 }
3276 /* Should really use issue_and_wait() here */
3277 outw(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3278 dev->base_addr + EL3_CMD);
3279
3280 pci_free_consistent(pdev,
3281 sizeof(struct boom_rx_desc) * RX_RING_SIZE
3282 + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3283 vp->rx_ring,
3284 vp->rx_ring_dma);
3285 if (vp->must_free_region)
3286 release_region(dev->base_addr, vp->io_size);
3287 free_netdev(dev);
3288}
3289
3290
3291static struct pci_driver vortex_driver = {
3292 .name = "3c59x",
3293 .probe = vortex_init_one,
3294 .remove = __devexit_p(vortex_remove_one),
3295 .id_table = vortex_pci_tbl,
3296#ifdef CONFIG_PM
3297 .suspend = vortex_suspend,
3298 .resume = vortex_resume,
3299#endif
3300};
3301
3302
3303static int vortex_have_pci;
3304static int vortex_have_eisa;
3305
3306
3307static int __init vortex_init (void)
3308{
3309 int pci_rc, eisa_rc;
3310
3311 pci_rc = pci_module_init(&vortex_driver);
3312 eisa_rc = vortex_eisa_init();
3313
3314 if (pci_rc == 0)
3315 vortex_have_pci = 1;
3316 if (eisa_rc > 0)
3317 vortex_have_eisa = 1;
3318
3319 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3320}
3321
3322
3323static void __exit vortex_eisa_cleanup (void)
3324{
3325 struct vortex_private *vp;
3326 long ioaddr;
3327
3328#ifdef CONFIG_EISA
3329 /* Take care of the EISA devices */
3330 eisa_driver_unregister (&vortex_eisa_driver);
3331#endif
3332
3333 if (compaq_net_device) {
3334 vp = compaq_net_device->priv;
3335 ioaddr = compaq_net_device->base_addr;
3336
3337 unregister_netdev (compaq_net_device);
3338 outw (TotalReset, ioaddr + EL3_CMD);
3339 release_region (ioaddr, VORTEX_TOTAL_SIZE);
3340
3341 free_netdev (compaq_net_device);
3342 }
3343}
3344
3345
3346static void __exit vortex_cleanup (void)
3347{
3348 if (vortex_have_pci)
3349 pci_unregister_driver (&vortex_driver);
3350 if (vortex_have_eisa)
3351 vortex_eisa_cleanup ();
3352}
3353
3354
3355module_init(vortex_init);
3356module_exit(vortex_cleanup);
3357
3358
3359/*
3360 * Local variables:
3361 * c-indent-level: 4
3362 * c-basic-offset: 4
3363 * tab-width: 4
3364 * End:
3365 */