diff options
author | Vimal Singh <vimalsingh@ti.com> | 2009-05-12 16:47:03 -0400 |
---|---|---|
committer | David Woodhouse <David.Woodhouse@intel.com> | 2009-06-05 13:57:09 -0400 |
commit | 67ce04bf2746f8a1f8c2a104b313d20c63f68378 (patch) | |
tree | d746bb03f8a84e7661fb1fbede2e23f126a5676d /drivers/mtd | |
parent | 4938c88c922fad23f0a9f404eeda0207a819e4df (diff) |
mtd: nand: add OMAP2/OMAP3 NAND driver
This driver is present in the OMAP tree, now pushing it to MTD.
Original author(s):
Jian Zhang <jzhang@ti.com>
Signed-off-by: Vimal Singh <vimalsingh@ti.com>
Cc: Jian Zhang <jzhang@ti.com>
Cc: Artem Bityutskiy <dedekind@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/nand/Kconfig | 6 | ||||
-rw-r--r-- | drivers/mtd/nand/Makefile | 1 | ||||
-rw-r--r-- | drivers/mtd/nand/omap2.c | 776 |
3 files changed, 783 insertions, 0 deletions
diff --git a/drivers/mtd/nand/Kconfig b/drivers/mtd/nand/Kconfig index 890936d0275e..3b3a21d1a6ba 100644 --- a/drivers/mtd/nand/Kconfig +++ b/drivers/mtd/nand/Kconfig | |||
@@ -74,6 +74,12 @@ config MTD_NAND_AMS_DELTA | |||
74 | help | 74 | help |
75 | Support for NAND flash on Amstrad E3 (Delta). | 75 | Support for NAND flash on Amstrad E3 (Delta). |
76 | 76 | ||
77 | config MTD_NAND_OMAP2 | ||
78 | tristate "NAND Flash device on OMAP2 and OMAP3" | ||
79 | depends on ARM && MTD_NAND && (ARCH_OMAP2 || ARCH_OMAP3) | ||
80 | help | ||
81 | Support for NAND flash on Texas Instruments OMAP2 and OMAP3 platforms. | ||
82 | |||
77 | config MTD_NAND_TS7250 | 83 | config MTD_NAND_TS7250 |
78 | tristate "NAND Flash device on TS-7250 board" | 84 | tristate "NAND Flash device on TS-7250 board" |
79 | depends on MACH_TS72XX | 85 | depends on MACH_TS72XX |
diff --git a/drivers/mtd/nand/Makefile b/drivers/mtd/nand/Makefile index d33860ac42c3..f3a786b3cff3 100644 --- a/drivers/mtd/nand/Makefile +++ b/drivers/mtd/nand/Makefile | |||
@@ -25,6 +25,7 @@ obj-$(CONFIG_MTD_NAND_CS553X) += cs553x_nand.o | |||
25 | obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o | 25 | obj-$(CONFIG_MTD_NAND_NDFC) += ndfc.o |
26 | obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o | 26 | obj-$(CONFIG_MTD_NAND_ATMEL) += atmel_nand.o |
27 | obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o | 27 | obj-$(CONFIG_MTD_NAND_GPIO) += gpio.o |
28 | obj-$(CONFIG_MTD_NAND_OMAP2) += omap2.o | ||
28 | obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o | 29 | obj-$(CONFIG_MTD_NAND_CM_X270) += cmx270_nand.o |
29 | obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o | 30 | obj-$(CONFIG_MTD_NAND_BASLER_EXCITE) += excite_nandflash.o |
30 | obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o | 31 | obj-$(CONFIG_MTD_NAND_PXA3xx) += pxa3xx_nand.o |
diff --git a/drivers/mtd/nand/omap2.c b/drivers/mtd/nand/omap2.c new file mode 100644 index 000000000000..0cd76f89f4b0 --- /dev/null +++ b/drivers/mtd/nand/omap2.c | |||
@@ -0,0 +1,776 @@ | |||
1 | /* | ||
2 | * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> | ||
3 | * Copyright © 2004 Micron Technology Inc. | ||
4 | * Copyright © 2004 David Brownell | ||
5 | * | ||
6 | * This program is free software; you can redistribute it and/or modify | ||
7 | * it under the terms of the GNU General Public License version 2 as | ||
8 | * published by the Free Software Foundation. | ||
9 | */ | ||
10 | |||
11 | #include <linux/platform_device.h> | ||
12 | #include <linux/dma-mapping.h> | ||
13 | #include <linux/delay.h> | ||
14 | #include <linux/mtd/mtd.h> | ||
15 | #include <linux/mtd/nand.h> | ||
16 | #include <linux/mtd/partitions.h> | ||
17 | #include <linux/io.h> | ||
18 | |||
19 | #include <asm/dma.h> | ||
20 | |||
21 | #include <mach/gpmc.h> | ||
22 | #include <mach/nand.h> | ||
23 | |||
24 | #define GPMC_IRQ_STATUS 0x18 | ||
25 | #define GPMC_ECC_CONFIG 0x1F4 | ||
26 | #define GPMC_ECC_CONTROL 0x1F8 | ||
27 | #define GPMC_ECC_SIZE_CONFIG 0x1FC | ||
28 | #define GPMC_ECC1_RESULT 0x200 | ||
29 | |||
30 | #define DRIVER_NAME "omap2-nand" | ||
31 | |||
32 | /* size (4 KiB) for IO mapping */ | ||
33 | #define NAND_IO_SIZE SZ_4K | ||
34 | |||
35 | #define NAND_WP_OFF 0 | ||
36 | #define NAND_WP_BIT 0x00000010 | ||
37 | #define WR_RD_PIN_MONITORING 0x00600000 | ||
38 | |||
39 | #define GPMC_BUF_FULL 0x00000001 | ||
40 | #define GPMC_BUF_EMPTY 0x00000000 | ||
41 | |||
42 | #define NAND_Ecc_P1e (1 << 0) | ||
43 | #define NAND_Ecc_P2e (1 << 1) | ||
44 | #define NAND_Ecc_P4e (1 << 2) | ||
45 | #define NAND_Ecc_P8e (1 << 3) | ||
46 | #define NAND_Ecc_P16e (1 << 4) | ||
47 | #define NAND_Ecc_P32e (1 << 5) | ||
48 | #define NAND_Ecc_P64e (1 << 6) | ||
49 | #define NAND_Ecc_P128e (1 << 7) | ||
50 | #define NAND_Ecc_P256e (1 << 8) | ||
51 | #define NAND_Ecc_P512e (1 << 9) | ||
52 | #define NAND_Ecc_P1024e (1 << 10) | ||
53 | #define NAND_Ecc_P2048e (1 << 11) | ||
54 | |||
55 | #define NAND_Ecc_P1o (1 << 16) | ||
56 | #define NAND_Ecc_P2o (1 << 17) | ||
57 | #define NAND_Ecc_P4o (1 << 18) | ||
58 | #define NAND_Ecc_P8o (1 << 19) | ||
59 | #define NAND_Ecc_P16o (1 << 20) | ||
60 | #define NAND_Ecc_P32o (1 << 21) | ||
61 | #define NAND_Ecc_P64o (1 << 22) | ||
62 | #define NAND_Ecc_P128o (1 << 23) | ||
63 | #define NAND_Ecc_P256o (1 << 24) | ||
64 | #define NAND_Ecc_P512o (1 << 25) | ||
65 | #define NAND_Ecc_P1024o (1 << 26) | ||
66 | #define NAND_Ecc_P2048o (1 << 27) | ||
67 | |||
68 | #define TF(value) (value ? 1 : 0) | ||
69 | |||
70 | #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0) | ||
71 | #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1) | ||
72 | #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2) | ||
73 | #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3) | ||
74 | #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4) | ||
75 | #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5) | ||
76 | #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6) | ||
77 | #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7) | ||
78 | |||
79 | #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0) | ||
80 | #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1) | ||
81 | #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2) | ||
82 | #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3) | ||
83 | #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4) | ||
84 | #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5) | ||
85 | #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6) | ||
86 | #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7) | ||
87 | |||
88 | #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0) | ||
89 | #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1) | ||
90 | #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2) | ||
91 | #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3) | ||
92 | #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4) | ||
93 | #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5) | ||
94 | #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6) | ||
95 | #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7) | ||
96 | |||
97 | #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0) | ||
98 | #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1) | ||
99 | #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2) | ||
100 | #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3) | ||
101 | #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4) | ||
102 | #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5) | ||
103 | #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6) | ||
104 | #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7) | ||
105 | |||
106 | #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0) | ||
107 | #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1) | ||
108 | |||
109 | #ifdef CONFIG_MTD_PARTITIONS | ||
110 | static const char *part_probes[] = { "cmdlinepart", NULL }; | ||
111 | #endif | ||
112 | |||
113 | struct omap_nand_info { | ||
114 | struct nand_hw_control controller; | ||
115 | struct omap_nand_platform_data *pdata; | ||
116 | struct mtd_info mtd; | ||
117 | struct mtd_partition *parts; | ||
118 | struct nand_chip nand; | ||
119 | struct platform_device *pdev; | ||
120 | |||
121 | int gpmc_cs; | ||
122 | unsigned long phys_base; | ||
123 | void __iomem *gpmc_cs_baseaddr; | ||
124 | void __iomem *gpmc_baseaddr; | ||
125 | }; | ||
126 | |||
127 | /** | ||
128 | * omap_nand_wp - This function enable or disable the Write Protect feature | ||
129 | * @mtd: MTD device structure | ||
130 | * @mode: WP ON/OFF | ||
131 | */ | ||
132 | static void omap_nand_wp(struct mtd_info *mtd, int mode) | ||
133 | { | ||
134 | struct omap_nand_info *info = container_of(mtd, | ||
135 | struct omap_nand_info, mtd); | ||
136 | |||
137 | unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG); | ||
138 | |||
139 | if (mode) | ||
140 | config &= ~(NAND_WP_BIT); /* WP is ON */ | ||
141 | else | ||
142 | config |= (NAND_WP_BIT); /* WP is OFF */ | ||
143 | |||
144 | __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG)); | ||
145 | } | ||
146 | |||
147 | /** | ||
148 | * omap_hwcontrol - hardware specific access to control-lines | ||
149 | * @mtd: MTD device structure | ||
150 | * @cmd: command to device | ||
151 | * @ctrl: | ||
152 | * NAND_NCE: bit 0 -> don't care | ||
153 | * NAND_CLE: bit 1 -> Command Latch | ||
154 | * NAND_ALE: bit 2 -> Address Latch | ||
155 | * | ||
156 | * NOTE: boards may use different bits for these!! | ||
157 | */ | ||
158 | static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl) | ||
159 | { | ||
160 | struct omap_nand_info *info = container_of(mtd, | ||
161 | struct omap_nand_info, mtd); | ||
162 | switch (ctrl) { | ||
163 | case NAND_CTRL_CHANGE | NAND_CTRL_CLE: | ||
164 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + | ||
165 | GPMC_CS_NAND_COMMAND; | ||
166 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + | ||
167 | GPMC_CS_NAND_DATA; | ||
168 | break; | ||
169 | |||
170 | case NAND_CTRL_CHANGE | NAND_CTRL_ALE: | ||
171 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + | ||
172 | GPMC_CS_NAND_ADDRESS; | ||
173 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + | ||
174 | GPMC_CS_NAND_DATA; | ||
175 | break; | ||
176 | |||
177 | case NAND_CTRL_CHANGE | NAND_NCE: | ||
178 | info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + | ||
179 | GPMC_CS_NAND_DATA; | ||
180 | info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + | ||
181 | GPMC_CS_NAND_DATA; | ||
182 | break; | ||
183 | } | ||
184 | |||
185 | if (cmd != NAND_CMD_NONE) | ||
186 | __raw_writeb(cmd, info->nand.IO_ADDR_W); | ||
187 | } | ||
188 | |||
189 | /** | ||
190 | * omap_read_buf16 - read data from NAND controller into buffer | ||
191 | * @mtd: MTD device structure | ||
192 | * @buf: buffer to store date | ||
193 | * @len: number of bytes to read | ||
194 | */ | ||
195 | static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len) | ||
196 | { | ||
197 | struct nand_chip *nand = mtd->priv; | ||
198 | |||
199 | __raw_readsw(nand->IO_ADDR_R, buf, len / 2); | ||
200 | } | ||
201 | |||
202 | /** | ||
203 | * omap_write_buf16 - write buffer to NAND controller | ||
204 | * @mtd: MTD device structure | ||
205 | * @buf: data buffer | ||
206 | * @len: number of bytes to write | ||
207 | */ | ||
208 | static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len) | ||
209 | { | ||
210 | struct omap_nand_info *info = container_of(mtd, | ||
211 | struct omap_nand_info, mtd); | ||
212 | u16 *p = (u16 *) buf; | ||
213 | |||
214 | /* FIXME try bursts of writesw() or DMA ... */ | ||
215 | len >>= 1; | ||
216 | |||
217 | while (len--) { | ||
218 | writew(*p++, info->nand.IO_ADDR_W); | ||
219 | |||
220 | while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + | ||
221 | GPMC_STATUS) & GPMC_BUF_FULL)) | ||
222 | ; | ||
223 | } | ||
224 | } | ||
225 | /** | ||
226 | * omap_verify_buf - Verify chip data against buffer | ||
227 | * @mtd: MTD device structure | ||
228 | * @buf: buffer containing the data to compare | ||
229 | * @len: number of bytes to compare | ||
230 | */ | ||
231 | static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len) | ||
232 | { | ||
233 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
234 | mtd); | ||
235 | u16 *p = (u16 *) buf; | ||
236 | |||
237 | len >>= 1; | ||
238 | while (len--) { | ||
239 | if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) | ||
240 | return -EFAULT; | ||
241 | } | ||
242 | |||
243 | return 0; | ||
244 | } | ||
245 | |||
246 | #ifdef CONFIG_MTD_NAND_OMAP_HWECC | ||
247 | /** | ||
248 | * omap_hwecc_init - Initialize the HW ECC for NAND flash in GPMC controller | ||
249 | * @mtd: MTD device structure | ||
250 | */ | ||
251 | static void omap_hwecc_init(struct mtd_info *mtd) | ||
252 | { | ||
253 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
254 | mtd); | ||
255 | struct nand_chip *chip = mtd->priv; | ||
256 | unsigned long val = 0x0; | ||
257 | |||
258 | /* Read from ECC Control Register */ | ||
259 | val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
260 | /* Clear all ECC | Enable Reg1 */ | ||
261 | val = ((0x00000001<<8) | 0x00000001); | ||
262 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
263 | |||
264 | /* Read from ECC Size Config Register */ | ||
265 | val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); | ||
266 | /* ECCSIZE1=512 | Select eccResultsize[0-3] */ | ||
267 | val = ((((chip->ecc.size >> 1) - 1) << 22) | (0x0000000F)); | ||
268 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_SIZE_CONFIG); | ||
269 | } | ||
270 | |||
271 | /** | ||
272 | * gen_true_ecc - This function will generate true ECC value | ||
273 | * @ecc_buf: buffer to store ecc code | ||
274 | * | ||
275 | * This generated true ECC value can be used when correcting | ||
276 | * data read from NAND flash memory core | ||
277 | */ | ||
278 | static void gen_true_ecc(u8 *ecc_buf) | ||
279 | { | ||
280 | u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) | | ||
281 | ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8); | ||
282 | |||
283 | ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) | | ||
284 | P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp)); | ||
285 | ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) | | ||
286 | P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp)); | ||
287 | ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) | | ||
288 | P1e(tmp) | P2048o(tmp) | P2048e(tmp)); | ||
289 | } | ||
290 | |||
291 | /** | ||
292 | * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data | ||
293 | * @ecc_data1: ecc code from nand spare area | ||
294 | * @ecc_data2: ecc code from hardware register obtained from hardware ecc | ||
295 | * @page_data: page data | ||
296 | * | ||
297 | * This function compares two ECC's and indicates if there is an error. | ||
298 | * If the error can be corrected it will be corrected to the buffer. | ||
299 | */ | ||
300 | static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */ | ||
301 | u8 *ecc_data2, /* read from register */ | ||
302 | u8 *page_data) | ||
303 | { | ||
304 | uint i; | ||
305 | u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8]; | ||
306 | u8 comp0_bit[8], comp1_bit[8], comp2_bit[8]; | ||
307 | u8 ecc_bit[24]; | ||
308 | u8 ecc_sum = 0; | ||
309 | u8 find_bit = 0; | ||
310 | uint find_byte = 0; | ||
311 | int isEccFF; | ||
312 | |||
313 | isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF); | ||
314 | |||
315 | gen_true_ecc(ecc_data1); | ||
316 | gen_true_ecc(ecc_data2); | ||
317 | |||
318 | for (i = 0; i <= 2; i++) { | ||
319 | *(ecc_data1 + i) = ~(*(ecc_data1 + i)); | ||
320 | *(ecc_data2 + i) = ~(*(ecc_data2 + i)); | ||
321 | } | ||
322 | |||
323 | for (i = 0; i < 8; i++) { | ||
324 | tmp0_bit[i] = *ecc_data1 % 2; | ||
325 | *ecc_data1 = *ecc_data1 / 2; | ||
326 | } | ||
327 | |||
328 | for (i = 0; i < 8; i++) { | ||
329 | tmp1_bit[i] = *(ecc_data1 + 1) % 2; | ||
330 | *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2; | ||
331 | } | ||
332 | |||
333 | for (i = 0; i < 8; i++) { | ||
334 | tmp2_bit[i] = *(ecc_data1 + 2) % 2; | ||
335 | *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2; | ||
336 | } | ||
337 | |||
338 | for (i = 0; i < 8; i++) { | ||
339 | comp0_bit[i] = *ecc_data2 % 2; | ||
340 | *ecc_data2 = *ecc_data2 / 2; | ||
341 | } | ||
342 | |||
343 | for (i = 0; i < 8; i++) { | ||
344 | comp1_bit[i] = *(ecc_data2 + 1) % 2; | ||
345 | *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2; | ||
346 | } | ||
347 | |||
348 | for (i = 0; i < 8; i++) { | ||
349 | comp2_bit[i] = *(ecc_data2 + 2) % 2; | ||
350 | *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2; | ||
351 | } | ||
352 | |||
353 | for (i = 0; i < 6; i++) | ||
354 | ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2]; | ||
355 | |||
356 | for (i = 0; i < 8; i++) | ||
357 | ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i]; | ||
358 | |||
359 | for (i = 0; i < 8; i++) | ||
360 | ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i]; | ||
361 | |||
362 | ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0]; | ||
363 | ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1]; | ||
364 | |||
365 | for (i = 0; i < 24; i++) | ||
366 | ecc_sum += ecc_bit[i]; | ||
367 | |||
368 | switch (ecc_sum) { | ||
369 | case 0: | ||
370 | /* Not reached because this function is not called if | ||
371 | * ECC values are equal | ||
372 | */ | ||
373 | return 0; | ||
374 | |||
375 | case 1: | ||
376 | /* Uncorrectable error */ | ||
377 | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n"); | ||
378 | return -1; | ||
379 | |||
380 | case 11: | ||
381 | /* UN-Correctable error */ | ||
382 | DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n"); | ||
383 | return -1; | ||
384 | |||
385 | case 12: | ||
386 | /* Correctable error */ | ||
387 | find_byte = (ecc_bit[23] << 8) + | ||
388 | (ecc_bit[21] << 7) + | ||
389 | (ecc_bit[19] << 6) + | ||
390 | (ecc_bit[17] << 5) + | ||
391 | (ecc_bit[15] << 4) + | ||
392 | (ecc_bit[13] << 3) + | ||
393 | (ecc_bit[11] << 2) + | ||
394 | (ecc_bit[9] << 1) + | ||
395 | ecc_bit[7]; | ||
396 | |||
397 | find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1]; | ||
398 | |||
399 | DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at " | ||
400 | "offset: %d, bit: %d\n", find_byte, find_bit); | ||
401 | |||
402 | page_data[find_byte] ^= (1 << find_bit); | ||
403 | |||
404 | return 0; | ||
405 | default: | ||
406 | if (isEccFF) { | ||
407 | if (ecc_data2[0] == 0 && | ||
408 | ecc_data2[1] == 0 && | ||
409 | ecc_data2[2] == 0) | ||
410 | return 0; | ||
411 | } | ||
412 | DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n"); | ||
413 | return -1; | ||
414 | } | ||
415 | } | ||
416 | |||
417 | /** | ||
418 | * omap_correct_data - Compares the ECC read with HW generated ECC | ||
419 | * @mtd: MTD device structure | ||
420 | * @dat: page data | ||
421 | * @read_ecc: ecc read from nand flash | ||
422 | * @calc_ecc: ecc read from HW ECC registers | ||
423 | * | ||
424 | * Compares the ecc read from nand spare area with ECC registers values | ||
425 | * and if ECC's mismached, it will call 'omap_compare_ecc' for error detection | ||
426 | * and correction. | ||
427 | */ | ||
428 | static int omap_correct_data(struct mtd_info *mtd, u_char *dat, | ||
429 | u_char *read_ecc, u_char *calc_ecc) | ||
430 | { | ||
431 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
432 | mtd); | ||
433 | int blockCnt = 0, i = 0, ret = 0; | ||
434 | |||
435 | /* Ex NAND_ECC_HW12_2048 */ | ||
436 | if ((info->nand.ecc.mode == NAND_ECC_HW) && | ||
437 | (info->nand.ecc.size == 2048)) | ||
438 | blockCnt = 4; | ||
439 | else | ||
440 | blockCnt = 1; | ||
441 | |||
442 | for (i = 0; i < blockCnt; i++) { | ||
443 | if (memcmp(read_ecc, calc_ecc, 3) != 0) { | ||
444 | ret = omap_compare_ecc(read_ecc, calc_ecc, dat); | ||
445 | if (ret < 0) | ||
446 | return ret; | ||
447 | } | ||
448 | read_ecc += 3; | ||
449 | calc_ecc += 3; | ||
450 | dat += 512; | ||
451 | } | ||
452 | return 0; | ||
453 | } | ||
454 | |||
455 | /** | ||
456 | * omap_calcuate_ecc - Generate non-inverted ECC bytes. | ||
457 | * @mtd: MTD device structure | ||
458 | * @dat: The pointer to data on which ecc is computed | ||
459 | * @ecc_code: The ecc_code buffer | ||
460 | * | ||
461 | * Using noninverted ECC can be considered ugly since writing a blank | ||
462 | * page ie. padding will clear the ECC bytes. This is no problem as long | ||
463 | * nobody is trying to write data on the seemingly unused page. Reading | ||
464 | * an erased page will produce an ECC mismatch between generated and read | ||
465 | * ECC bytes that has to be dealt with separately. | ||
466 | */ | ||
467 | static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat, | ||
468 | u_char *ecc_code) | ||
469 | { | ||
470 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
471 | mtd); | ||
472 | unsigned long val = 0x0; | ||
473 | unsigned long reg; | ||
474 | |||
475 | /* Start Reading from HW ECC1_Result = 0x200 */ | ||
476 | reg = (unsigned long)(info->gpmc_baseaddr + GPMC_ECC1_RESULT); | ||
477 | val = __raw_readl(reg); | ||
478 | *ecc_code++ = val; /* P128e, ..., P1e */ | ||
479 | *ecc_code++ = val >> 16; /* P128o, ..., P1o */ | ||
480 | /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */ | ||
481 | *ecc_code++ = ((val >> 8) & 0x0f) | ((val >> 20) & 0xf0); | ||
482 | reg += 4; | ||
483 | |||
484 | return 0; | ||
485 | } | ||
486 | |||
487 | /** | ||
488 | * omap_enable_hwecc - This function enables the hardware ecc functionality | ||
489 | * @mtd: MTD device structure | ||
490 | * @mode: Read/Write mode | ||
491 | */ | ||
492 | static void omap_enable_hwecc(struct mtd_info *mtd, int mode) | ||
493 | { | ||
494 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
495 | mtd); | ||
496 | struct nand_chip *chip = mtd->priv; | ||
497 | unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0; | ||
498 | unsigned long val = __raw_readl(info->gpmc_baseaddr + GPMC_ECC_CONFIG); | ||
499 | |||
500 | switch (mode) { | ||
501 | case NAND_ECC_READ: | ||
502 | __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
503 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ | ||
504 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); | ||
505 | break; | ||
506 | case NAND_ECC_READSYN: | ||
507 | __raw_writel(0x100, info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
508 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ | ||
509 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); | ||
510 | break; | ||
511 | case NAND_ECC_WRITE: | ||
512 | __raw_writel(0x101, info->gpmc_baseaddr + GPMC_ECC_CONTROL); | ||
513 | /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */ | ||
514 | val = (dev_width << 7) | (info->gpmc_cs << 1) | (0x1); | ||
515 | break; | ||
516 | default: | ||
517 | DEBUG(MTD_DEBUG_LEVEL0, "Error: Unrecognized Mode[%d]!\n", | ||
518 | mode); | ||
519 | break; | ||
520 | } | ||
521 | |||
522 | __raw_writel(val, info->gpmc_baseaddr + GPMC_ECC_CONFIG); | ||
523 | } | ||
524 | #endif | ||
525 | |||
526 | /** | ||
527 | * omap_wait - wait until the command is done | ||
528 | * @mtd: MTD device structure | ||
529 | * @chip: NAND Chip structure | ||
530 | * | ||
531 | * Wait function is called during Program and erase operations and | ||
532 | * the way it is called from MTD layer, we should wait till the NAND | ||
533 | * chip is ready after the programming/erase operation has completed. | ||
534 | * | ||
535 | * Erase can take up to 400ms and program up to 20ms according to | ||
536 | * general NAND and SmartMedia specs | ||
537 | */ | ||
538 | static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip) | ||
539 | { | ||
540 | struct nand_chip *this = mtd->priv; | ||
541 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
542 | mtd); | ||
543 | unsigned long timeo = jiffies; | ||
544 | int status, state = this->state; | ||
545 | |||
546 | if (state == FL_ERASING) | ||
547 | timeo += (HZ * 400) / 1000; | ||
548 | else | ||
549 | timeo += (HZ * 20) / 1000; | ||
550 | |||
551 | this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr + | ||
552 | GPMC_CS_NAND_COMMAND; | ||
553 | this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; | ||
554 | |||
555 | __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W); | ||
556 | |||
557 | while (time_before(jiffies, timeo)) { | ||
558 | status = __raw_readb(this->IO_ADDR_R); | ||
559 | if (!(status & 0x40)) | ||
560 | break; | ||
561 | } | ||
562 | return status; | ||
563 | } | ||
564 | |||
565 | /** | ||
566 | * omap_dev_ready - calls the platform specific dev_ready function | ||
567 | * @mtd: MTD device structure | ||
568 | */ | ||
569 | static int omap_dev_ready(struct mtd_info *mtd) | ||
570 | { | ||
571 | struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, | ||
572 | mtd); | ||
573 | unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQ_STATUS); | ||
574 | |||
575 | if ((val & 0x100) == 0x100) { | ||
576 | /* Clear IRQ Interrupt */ | ||
577 | val |= 0x100; | ||
578 | val &= ~(0x0); | ||
579 | __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQ_STATUS); | ||
580 | } else { | ||
581 | unsigned int cnt = 0; | ||
582 | while (cnt++ < 0x1FF) { | ||
583 | if ((val & 0x100) == 0x100) | ||
584 | return 0; | ||
585 | val = __raw_readl(info->gpmc_baseaddr + | ||
586 | GPMC_IRQ_STATUS); | ||
587 | } | ||
588 | } | ||
589 | |||
590 | return 1; | ||
591 | } | ||
592 | |||
593 | static int __devinit omap_nand_probe(struct platform_device *pdev) | ||
594 | { | ||
595 | struct omap_nand_info *info; | ||
596 | struct omap_nand_platform_data *pdata; | ||
597 | int err; | ||
598 | unsigned long val; | ||
599 | |||
600 | |||
601 | pdata = pdev->dev.platform_data; | ||
602 | if (pdata == NULL) { | ||
603 | dev_err(&pdev->dev, "platform data missing\n"); | ||
604 | return -ENODEV; | ||
605 | } | ||
606 | |||
607 | info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); | ||
608 | if (!info) | ||
609 | return -ENOMEM; | ||
610 | |||
611 | platform_set_drvdata(pdev, info); | ||
612 | |||
613 | spin_lock_init(&info->controller.lock); | ||
614 | init_waitqueue_head(&info->controller.wq); | ||
615 | |||
616 | info->pdev = pdev; | ||
617 | |||
618 | info->gpmc_cs = pdata->cs; | ||
619 | info->gpmc_baseaddr = pdata->gpmc_baseaddr; | ||
620 | info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr; | ||
621 | |||
622 | info->mtd.priv = &info->nand; | ||
623 | info->mtd.name = dev_name(&pdev->dev); | ||
624 | info->mtd.owner = THIS_MODULE; | ||
625 | |||
626 | err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base); | ||
627 | if (err < 0) { | ||
628 | dev_err(&pdev->dev, "Cannot request GPMC CS\n"); | ||
629 | goto out_free_info; | ||
630 | } | ||
631 | |||
632 | /* Enable RD PIN Monitoring Reg */ | ||
633 | if (pdata->dev_ready) { | ||
634 | val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1); | ||
635 | val |= WR_RD_PIN_MONITORING; | ||
636 | gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val); | ||
637 | } | ||
638 | |||
639 | val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7); | ||
640 | val &= ~(0xf << 8); | ||
641 | val |= (0xc & 0xf) << 8; | ||
642 | gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val); | ||
643 | |||
644 | /* NAND write protect off */ | ||
645 | omap_nand_wp(&info->mtd, NAND_WP_OFF); | ||
646 | |||
647 | if (!request_mem_region(info->phys_base, NAND_IO_SIZE, | ||
648 | pdev->dev.driver->name)) { | ||
649 | err = -EBUSY; | ||
650 | goto out_free_cs; | ||
651 | } | ||
652 | |||
653 | info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); | ||
654 | if (!info->nand.IO_ADDR_R) { | ||
655 | err = -ENOMEM; | ||
656 | goto out_release_mem_region; | ||
657 | } | ||
658 | info->nand.controller = &info->controller; | ||
659 | |||
660 | info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; | ||
661 | info->nand.cmd_ctrl = omap_hwcontrol; | ||
662 | |||
663 | /* REVISIT: only supports 16-bit NAND flash */ | ||
664 | |||
665 | info->nand.read_buf = omap_read_buf16; | ||
666 | info->nand.write_buf = omap_write_buf16; | ||
667 | info->nand.verify_buf = omap_verify_buf; | ||
668 | |||
669 | /* | ||
670 | * If RDY/BSY line is connected to OMAP then use the omap ready | ||
671 | * funcrtion and the generic nand_wait function which reads the status | ||
672 | * register after monitoring the RDY/BSY line.Otherwise use a standard | ||
673 | * chip delay which is slightly more than tR (AC Timing) of the NAND | ||
674 | * device and read status register until you get a failure or success | ||
675 | */ | ||
676 | if (pdata->dev_ready) { | ||
677 | info->nand.dev_ready = omap_dev_ready; | ||
678 | info->nand.chip_delay = 0; | ||
679 | } else { | ||
680 | info->nand.waitfunc = omap_wait; | ||
681 | info->nand.chip_delay = 50; | ||
682 | } | ||
683 | |||
684 | info->nand.options |= NAND_SKIP_BBTSCAN; | ||
685 | if ((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000) | ||
686 | == 0x1000) | ||
687 | info->nand.options |= NAND_BUSWIDTH_16; | ||
688 | |||
689 | #ifdef CONFIG_MTD_NAND_OMAP_HWECC | ||
690 | info->nand.ecc.bytes = 3; | ||
691 | info->nand.ecc.size = 512; | ||
692 | info->nand.ecc.calculate = omap_calculate_ecc; | ||
693 | info->nand.ecc.hwctl = omap_enable_hwecc; | ||
694 | info->nand.ecc.correct = omap_correct_data; | ||
695 | info->nand.ecc.mode = NAND_ECC_HW; | ||
696 | |||
697 | /* init HW ECC */ | ||
698 | omap_hwecc_init(&info->mtd); | ||
699 | #else | ||
700 | info->nand.ecc.mode = NAND_ECC_SOFT; | ||
701 | #endif | ||
702 | |||
703 | /* DIP switches on some boards change between 8 and 16 bit | ||
704 | * bus widths for flash. Try the other width if the first try fails. | ||
705 | */ | ||
706 | if (nand_scan(&info->mtd, 1)) { | ||
707 | info->nand.options ^= NAND_BUSWIDTH_16; | ||
708 | if (nand_scan(&info->mtd, 1)) { | ||
709 | err = -ENXIO; | ||
710 | goto out_release_mem_region; | ||
711 | } | ||
712 | } | ||
713 | |||
714 | #ifdef CONFIG_MTD_PARTITIONS | ||
715 | err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); | ||
716 | if (err > 0) | ||
717 | add_mtd_partitions(&info->mtd, info->parts, err); | ||
718 | else if (pdata->parts) | ||
719 | add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); | ||
720 | else | ||
721 | #endif | ||
722 | add_mtd_device(&info->mtd); | ||
723 | |||
724 | platform_set_drvdata(pdev, &info->mtd); | ||
725 | |||
726 | return 0; | ||
727 | |||
728 | out_release_mem_region: | ||
729 | release_mem_region(info->phys_base, NAND_IO_SIZE); | ||
730 | out_free_cs: | ||
731 | gpmc_cs_free(info->gpmc_cs); | ||
732 | out_free_info: | ||
733 | kfree(info); | ||
734 | |||
735 | return err; | ||
736 | } | ||
737 | |||
738 | static int omap_nand_remove(struct platform_device *pdev) | ||
739 | { | ||
740 | struct mtd_info *mtd = platform_get_drvdata(pdev); | ||
741 | struct omap_nand_info *info = mtd->priv; | ||
742 | |||
743 | platform_set_drvdata(pdev, NULL); | ||
744 | /* Release NAND device, its internal structures and partitions */ | ||
745 | nand_release(&info->mtd); | ||
746 | iounmap(info->nand.IO_ADDR_R); | ||
747 | kfree(&info->mtd); | ||
748 | return 0; | ||
749 | } | ||
750 | |||
751 | static struct platform_driver omap_nand_driver = { | ||
752 | .probe = omap_nand_probe, | ||
753 | .remove = omap_nand_remove, | ||
754 | .driver = { | ||
755 | .name = DRIVER_NAME, | ||
756 | .owner = THIS_MODULE, | ||
757 | }, | ||
758 | }; | ||
759 | |||
760 | static int __init omap_nand_init(void) | ||
761 | { | ||
762 | printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME); | ||
763 | return platform_driver_register(&omap_nand_driver); | ||
764 | } | ||
765 | |||
766 | static void __exit omap_nand_exit(void) | ||
767 | { | ||
768 | platform_driver_unregister(&omap_nand_driver); | ||
769 | } | ||
770 | |||
771 | module_init(omap_nand_init); | ||
772 | module_exit(omap_nand_exit); | ||
773 | |||
774 | MODULE_ALIAS(DRIVER_NAME); | ||
775 | MODULE_LICENSE("GPL"); | ||
776 | MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards"); | ||