aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd
diff options
context:
space:
mode:
authorfrans <fransmeulenbroeks@gmail.com>2008-08-15 17:14:31 -0400
committerDavid Woodhouse <David.Woodhouse@intel.com>2008-08-16 05:55:33 -0400
commite6cf5df1838c28bb060ac45b5585e48e71bbc740 (patch)
treeb1333e4664fce7dd3c58dd879192e085cb1c2066 /drivers/mtd
parent782b7a367d81da005d93b28cb00f9ae086773c24 (diff)
[MTD] [NAND] nand_ecc.c: rewrite for improved performance
This patch improves the performance of the ecc generation code by a factor of 18 on an INTEL D920 CPU, a factor of 7 on MIPS and a factor of 5 on ARM (NSLU2) Signed-off-by: Frans Meulenbroeks <fransmeulenbroeks@gmail.com> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'drivers/mtd')
-rw-r--r--drivers/mtd/nand/nand_ecc.c496
1 files changed, 372 insertions, 124 deletions
diff --git a/drivers/mtd/nand/nand_ecc.c b/drivers/mtd/nand/nand_ecc.c
index 918a806a8471..7129da51bb33 100644
--- a/drivers/mtd/nand/nand_ecc.c
+++ b/drivers/mtd/nand/nand_ecc.c
@@ -1,13 +1,18 @@
1/* 1/*
2 * This file contains an ECC algorithm from Toshiba that detects and 2 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * corrects 1 bit errors in a 256 byte block of data. 3 * errors in a 256 byte block of data.
4 * 4 *
5 * drivers/mtd/nand/nand_ecc.c 5 * drivers/mtd/nand/nand_ecc.c
6 * 6 *
7 * Copyright (C) 2000-2004 Steven J. Hill (sjhill@realitydiluted.com) 7 * Copyright (C) 2008 Koninklijke Philips Electronics NV.
8 * Toshiba America Electronics Components, Inc. 8 * Author: Frans Meulenbroeks
9 * 9 *
10 * Copyright (C) 2006 Thomas Gleixner <tglx@linutronix.de> 10 * Completely replaces the previous ECC implementation which was written by:
11 * Steven J. Hill (sjhill@realitydiluted.com)
12 * Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
15 * can be found in Documentation/nand/ecc.txt
11 * 16 *
12 * This file is free software; you can redistribute it and/or modify it 17 * This file is free software; you can redistribute it and/or modify it
13 * under the terms of the GNU General Public License as published by the 18 * under the terms of the GNU General Public License as published by the
@@ -23,174 +28,417 @@
23 * with this file; if not, write to the Free Software Foundation, Inc., 28 * with this file; if not, write to the Free Software Foundation, Inc.,
24 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA. 29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
25 * 30 *
26 * As a special exception, if other files instantiate templates or use
27 * macros or inline functions from these files, or you compile these
28 * files and link them with other works to produce a work based on these
29 * files, these files do not by themselves cause the resulting work to be
30 * covered by the GNU General Public License. However the source code for
31 * these files must still be made available in accordance with section (3)
32 * of the GNU General Public License.
33 *
34 * This exception does not invalidate any other reasons why a work based on
35 * this file might be covered by the GNU General Public License.
36 */ 31 */
37 32
33/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
38 * Instead a private definition of mtd_into is given to satisfy the compiler
39 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
38#include <linux/types.h> 42#include <linux/types.h>
39#include <linux/kernel.h> 43#include <linux/kernel.h>
40#include <linux/module.h> 44#include <linux/module.h>
41#include <linux/mtd/nand_ecc.h> 45#include <linux/mtd/nand_ecc.h>
46#else
47typedef uint32_t unsigned long
48struct mtd_info {
49 int dummy;
50};
51#define EXPORT_SYMBOL(x) /* x */
52
53#define MODULE_LICENSE(x) /* x */
54#define MODULE_AUTHOR(x) /* x */
55#define MODULE_DESCRIPTION(x) /* x */
56#endif
57
58/*
59 * invparity is a 256 byte table that contains the odd parity
60 * for each byte. So if the number of bits in a byte is even,
61 * the array element is 1, and when the number of bits is odd
62 * the array eleemnt is 0.
63 */
64static const char invparity[256] = {
65 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
66 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
67 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
68 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
69 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
70 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
71 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
72 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
73 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
74 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
76 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
78 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
79 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
80 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
81};
42 82
43/* 83/*
44 * Pre-calculated 256-way 1 byte column parity 84 * bitsperbyte contains the number of bits per byte
85 * this is only used for testing and repairing parity
86 * (a precalculated value slightly improves performance)
45 */ 87 */
46static const u_char nand_ecc_precalc_table[] = { 88static const char bitsperbyte[256] = {
47 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, 89 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
48 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, 90 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
49 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, 91 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
50 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, 92 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
51 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, 93 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
52 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, 94 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
53 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, 95 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
54 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, 96 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
55 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, 97 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
56 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, 98 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
57 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, 99 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
58 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, 100 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
59 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, 101 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
60 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, 102 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
61 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, 103 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
62 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 104 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
105};
106
107/*
108 * addressbits is a lookup table to filter out the bits from the xor-ed
109 * ecc data that identify the faulty location.
110 * this is only used for repairing parity
111 * see the comments in nand_correct_data for more details
112 */
113static const char addressbits[256] = {
114 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
115 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
116 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
117 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
118 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
119 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
120 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
121 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
122 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
123 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
124 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
125 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
126 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
127 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
128 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
129 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
130 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
131 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
132 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
133 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
134 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
135 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
136 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
137 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
138 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
139 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
140 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
141 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
142 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
143 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
144 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
145 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
63}; 146};
64 147
65/** 148/**
66 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block 149 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256-byte block
67 * @mtd: MTD block structure 150 * @mtd: MTD block structure (unused)
68 * @dat: raw data 151 * @dat: raw data
69 * @ecc_code: buffer for ECC 152 * @ecc_code: buffer for ECC
70 */ 153 */
71int nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, 154int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
72 u_char *ecc_code) 155 unsigned char *code)
73{ 156{
74 uint8_t idx, reg1, reg2, reg3, tmp1, tmp2;
75 int i; 157 int i;
158 const uint32_t *bp = (uint32_t *)buf;
159 uint32_t cur; /* current value in buffer */
160 /* rp0..rp15 are the various accumulated parities (per byte) */
161 uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
162 uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15;
163 uint32_t par; /* the cumulative parity for all data */
164 uint32_t tmppar; /* the cumulative parity for this iteration;
165 for rp12 and rp14 at the end of the loop */
166
167 par = 0;
168 rp4 = 0;
169 rp6 = 0;
170 rp8 = 0;
171 rp10 = 0;
172 rp12 = 0;
173 rp14 = 0;
174
175 /*
176 * The loop is unrolled a number of times;
177 * This avoids if statements to decide on which rp value to update
178 * Also we process the data by longwords.
179 * Note: passing unaligned data might give a performance penalty.
180 * It is assumed that the buffers are aligned.
181 * tmppar is the cumulative sum of this iteration.
182 * needed for calculating rp12, rp14 and par
183 * also used as a performance improvement for rp6, rp8 and rp10
184 */
185 for (i = 0; i < 4; i++) {
186 cur = *bp++;
187 tmppar = cur;
188 rp4 ^= cur;
189 cur = *bp++;
190 tmppar ^= cur;
191 rp6 ^= tmppar;
192 cur = *bp++;
193 tmppar ^= cur;
194 rp4 ^= cur;
195 cur = *bp++;
196 tmppar ^= cur;
197 rp8 ^= tmppar;
76 198
77 /* Initialize variables */ 199 cur = *bp++;
78 reg1 = reg2 = reg3 = 0; 200 tmppar ^= cur;
201 rp4 ^= cur;
202 rp6 ^= cur;
203 cur = *bp++;
204 tmppar ^= cur;
205 rp6 ^= cur;
206 cur = *bp++;
207 tmppar ^= cur;
208 rp4 ^= cur;
209 cur = *bp++;
210 tmppar ^= cur;
211 rp10 ^= tmppar;
79 212
80 /* Build up column parity */ 213 cur = *bp++;
81 for(i = 0; i < 256; i++) { 214 tmppar ^= cur;
82 /* Get CP0 - CP5 from table */ 215 rp4 ^= cur;
83 idx = nand_ecc_precalc_table[*dat++]; 216 rp6 ^= cur;
84 reg1 ^= (idx & 0x3f); 217 rp8 ^= cur;
218 cur = *bp++;
219 tmppar ^= cur;
220 rp6 ^= cur;
221 rp8 ^= cur;
222 cur = *bp++;
223 tmppar ^= cur;
224 rp4 ^= cur;
225 rp8 ^= cur;
226 cur = *bp++;
227 tmppar ^= cur;
228 rp8 ^= cur;
85 229
86 /* All bit XOR = 1 ? */ 230 cur = *bp++;
87 if (idx & 0x40) { 231 tmppar ^= cur;
88 reg3 ^= (uint8_t) i; 232 rp4 ^= cur;
89 reg2 ^= ~((uint8_t) i); 233 rp6 ^= cur;
90 } 234 cur = *bp++;
235 tmppar ^= cur;
236 rp6 ^= cur;
237 cur = *bp++;
238 tmppar ^= cur;
239 rp4 ^= cur;
240 cur = *bp++;
241 tmppar ^= cur;
242
243 par ^= tmppar;
244 if ((i & 0x1) == 0)
245 rp12 ^= tmppar;
246 if ((i & 0x2) == 0)
247 rp14 ^= tmppar;
91 } 248 }
92 249
93 /* Create non-inverted ECC code from line parity */ 250 /*
94 tmp1 = (reg3 & 0x80) >> 0; /* B7 -> B7 */ 251 * handle the fact that we use longword operations
95 tmp1 |= (reg2 & 0x80) >> 1; /* B7 -> B6 */ 252 * we'll bring rp4..rp14 back to single byte entities by shifting and
96 tmp1 |= (reg3 & 0x40) >> 1; /* B6 -> B5 */ 253 * xoring first fold the upper and lower 16 bits,
97 tmp1 |= (reg2 & 0x40) >> 2; /* B6 -> B4 */ 254 * then the upper and lower 8 bits.
98 tmp1 |= (reg3 & 0x20) >> 2; /* B5 -> B3 */ 255 */
99 tmp1 |= (reg2 & 0x20) >> 3; /* B5 -> B2 */ 256 rp4 ^= (rp4 >> 16);
100 tmp1 |= (reg3 & 0x10) >> 3; /* B4 -> B1 */ 257 rp4 ^= (rp4 >> 8);
101 tmp1 |= (reg2 & 0x10) >> 4; /* B4 -> B0 */ 258 rp4 &= 0xff;
102 259 rp6 ^= (rp6 >> 16);
103 tmp2 = (reg3 & 0x08) << 4; /* B3 -> B7 */ 260 rp6 ^= (rp6 >> 8);
104 tmp2 |= (reg2 & 0x08) << 3; /* B3 -> B6 */ 261 rp6 &= 0xff;
105 tmp2 |= (reg3 & 0x04) << 3; /* B2 -> B5 */ 262 rp8 ^= (rp8 >> 16);
106 tmp2 |= (reg2 & 0x04) << 2; /* B2 -> B4 */ 263 rp8 ^= (rp8 >> 8);
107 tmp2 |= (reg3 & 0x02) << 2; /* B1 -> B3 */ 264 rp8 &= 0xff;
108 tmp2 |= (reg2 & 0x02) << 1; /* B1 -> B2 */ 265 rp10 ^= (rp10 >> 16);
109 tmp2 |= (reg3 & 0x01) << 1; /* B0 -> B1 */ 266 rp10 ^= (rp10 >> 8);
110 tmp2 |= (reg2 & 0x01) << 0; /* B7 -> B0 */ 267 rp10 &= 0xff;
111 268 rp12 ^= (rp12 >> 16);
112 /* Calculate final ECC code */ 269 rp12 ^= (rp12 >> 8);
270 rp12 &= 0xff;
271 rp14 ^= (rp14 >> 16);
272 rp14 ^= (rp14 >> 8);
273 rp14 &= 0xff;
274
275 /*
276 * we also need to calculate the row parity for rp0..rp3
277 * This is present in par, because par is now
278 * rp3 rp3 rp2 rp2
279 * as well as
280 * rp1 rp0 rp1 rp0
281 * First calculate rp2 and rp3
282 * (and yes: rp2 = (par ^ rp3) & 0xff; but doing that did not
283 * give a performance improvement)
284 */
285 rp3 = (par >> 16);
286 rp3 ^= (rp3 >> 8);
287 rp3 &= 0xff;
288 rp2 = par & 0xffff;
289 rp2 ^= (rp2 >> 8);
290 rp2 &= 0xff;
291
292 /* reduce par to 16 bits then calculate rp1 and rp0 */
293 par ^= (par >> 16);
294 rp1 = (par >> 8) & 0xff;
295 rp0 = (par & 0xff);
296
297 /* finally reduce par to 8 bits */
298 par ^= (par >> 8);
299 par &= 0xff;
300
301 /*
302 * and calculate rp5..rp15
303 * note that par = rp4 ^ rp5 and due to the commutative property
304 * of the ^ operator we can say:
305 * rp5 = (par ^ rp4);
306 * The & 0xff seems superfluous, but benchmarking learned that
307 * leaving it out gives slightly worse results. No idea why, probably
308 * it has to do with the way the pipeline in pentium is organized.
309 */
310 rp5 = (par ^ rp4) & 0xff;
311 rp7 = (par ^ rp6) & 0xff;
312 rp9 = (par ^ rp8) & 0xff;
313 rp11 = (par ^ rp10) & 0xff;
314 rp13 = (par ^ rp12) & 0xff;
315 rp15 = (par ^ rp14) & 0xff;
316
317 /*
318 * Finally calculate the ecc bits.
319 * Again here it might seem that there are performance optimisations
320 * possible, but benchmarks showed that on the system this is developed
321 * the code below is the fastest
322 */
113#ifdef CONFIG_MTD_NAND_ECC_SMC 323#ifdef CONFIG_MTD_NAND_ECC_SMC
114 ecc_code[0] = ~tmp2; 324 code[0] =
115 ecc_code[1] = ~tmp1; 325 (invparity[rp7] << 7) |
326 (invparity[rp6] << 6) |
327 (invparity[rp5] << 5) |
328 (invparity[rp4] << 4) |
329 (invparity[rp3] << 3) |
330 (invparity[rp2] << 2) |
331 (invparity[rp1] << 1) |
332 (invparity[rp0]);
333 code[1] =
334 (invparity[rp15] << 7) |
335 (invparity[rp14] << 6) |
336 (invparity[rp13] << 5) |
337 (invparity[rp12] << 4) |
338 (invparity[rp11] << 3) |
339 (invparity[rp10] << 2) |
340 (invparity[rp9] << 1) |
341 (invparity[rp8]);
116#else 342#else
117 ecc_code[0] = ~tmp1; 343 code[1] =
118 ecc_code[1] = ~tmp2; 344 (invparity[rp7] << 7) |
345 (invparity[rp6] << 6) |
346 (invparity[rp5] << 5) |
347 (invparity[rp4] << 4) |
348 (invparity[rp3] << 3) |
349 (invparity[rp2] << 2) |
350 (invparity[rp1] << 1) |
351 (invparity[rp0]);
352 code[0] =
353 (invparity[rp15] << 7) |
354 (invparity[rp14] << 6) |
355 (invparity[rp13] << 5) |
356 (invparity[rp12] << 4) |
357 (invparity[rp11] << 3) |
358 (invparity[rp10] << 2) |
359 (invparity[rp9] << 1) |
360 (invparity[rp8]);
119#endif 361#endif
120 ecc_code[2] = ((~reg1) << 2) | 0x03; 362 code[2] =
121 363 (invparity[par & 0xf0] << 7) |
364 (invparity[par & 0x0f] << 6) |
365 (invparity[par & 0xcc] << 5) |
366 (invparity[par & 0x33] << 4) |
367 (invparity[par & 0xaa] << 3) |
368 (invparity[par & 0x55] << 2) |
369 3;
122 return 0; 370 return 0;
123} 371}
124EXPORT_SYMBOL(nand_calculate_ecc); 372EXPORT_SYMBOL(nand_calculate_ecc);
125 373
126static inline int countbits(uint32_t byte)
127{
128 int res = 0;
129
130 for (;byte; byte >>= 1)
131 res += byte & 0x01;
132 return res;
133}
134
135/** 374/**
136 * nand_correct_data - [NAND Interface] Detect and correct bit error(s) 375 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
137 * @mtd: MTD block structure 376 * @mtd: MTD block structure (unused)
138 * @dat: raw data read from the chip 377 * @dat: raw data read from the chip
139 * @read_ecc: ECC from the chip 378 * @read_ecc: ECC from the chip
140 * @calc_ecc: the ECC calculated from raw data 379 * @calc_ecc: the ECC calculated from raw data
141 * 380 *
142 * Detect and correct a 1 bit error for 256 byte block 381 * Detect and correct a 1 bit error for 256 byte block
143 */ 382 */
144int nand_correct_data(struct mtd_info *mtd, u_char *dat, 383int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
145 u_char *read_ecc, u_char *calc_ecc) 384 unsigned char *read_ecc, unsigned char *calc_ecc)
146{ 385{
147 uint8_t s0, s1, s2; 386 int nr_bits;
387 unsigned char b0, b1, b2;
388 unsigned char byte_addr, bit_addr;
148 389
390 /*
391 * b0 to b2 indicate which bit is faulty (if any)
392 * we might need the xor result more than once,
393 * so keep them in a local var
394 */
149#ifdef CONFIG_MTD_NAND_ECC_SMC 395#ifdef CONFIG_MTD_NAND_ECC_SMC
150 s0 = calc_ecc[0] ^ read_ecc[0]; 396 b0 = read_ecc[0] ^ calc_ecc[0];
151 s1 = calc_ecc[1] ^ read_ecc[1]; 397 b1 = read_ecc[1] ^ calc_ecc[1];
152 s2 = calc_ecc[2] ^ read_ecc[2];
153#else 398#else
154 s1 = calc_ecc[0] ^ read_ecc[0]; 399 b0 = read_ecc[1] ^ calc_ecc[1];
155 s0 = calc_ecc[1] ^ read_ecc[1]; 400 b1 = read_ecc[0] ^ calc_ecc[0];
156 s2 = calc_ecc[2] ^ read_ecc[2];
157#endif 401#endif
158 if ((s0 | s1 | s2) == 0) 402 b2 = read_ecc[2] ^ calc_ecc[2];
159 return 0;
160
161 /* Check for a single bit error */
162 if( ((s0 ^ (s0 >> 1)) & 0x55) == 0x55 &&
163 ((s1 ^ (s1 >> 1)) & 0x55) == 0x55 &&
164 ((s2 ^ (s2 >> 1)) & 0x54) == 0x54) {
165
166 uint32_t byteoffs, bitnum;
167 403
168 byteoffs = (s1 << 0) & 0x80; 404 /* check if there are any bitfaults */
169 byteoffs |= (s1 << 1) & 0x40;
170 byteoffs |= (s1 << 2) & 0x20;
171 byteoffs |= (s1 << 3) & 0x10;
172 405
173 byteoffs |= (s0 >> 4) & 0x08; 406 /* count nr of bits; use table lookup, faster than calculating it */
174 byteoffs |= (s0 >> 3) & 0x04; 407 nr_bits = bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2];
175 byteoffs |= (s0 >> 2) & 0x02;
176 byteoffs |= (s0 >> 1) & 0x01;
177 408
178 bitnum = (s2 >> 5) & 0x04; 409 /* repeated if statements are slightly more efficient than switch ... */
179 bitnum |= (s2 >> 4) & 0x02; 410 /* ordered in order of likelihood */
180 bitnum |= (s2 >> 3) & 0x01; 411 if (nr_bits == 0)
181 412 return (0); /* no error */
182 dat[byteoffs] ^= (1 << bitnum); 413 if (nr_bits == 11) { /* correctable error */
183 414 /*
184 return 1; 415 * rp15/13/11/9/7/5/3/1 indicate which byte is the faulty byte
416 * cp 5/3/1 indicate the faulty bit.
417 * A lookup table (called addressbits) is used to filter
418 * the bits from the byte they are in.
419 * A marginal optimisation is possible by having three
420 * different lookup tables.
421 * One as we have now (for b0), one for b2
422 * (that would avoid the >> 1), and one for b1 (with all values
423 * << 4). However it was felt that introducing two more tables
424 * hardly justify the gain.
425 *
426 * The b2 shift is there to get rid of the lowest two bits.
427 * We could also do addressbits[b2] >> 1 but for the
428 * performace it does not make any difference
429 */
430 byte_addr = (addressbits[b1] << 4) + addressbits[b0];
431 bit_addr = addressbits[b2 >> 2];
432 /* flip the bit */
433 buf[byte_addr] ^= (1 << bit_addr);
434 return (1);
185 } 435 }
186 436 if (nr_bits == 1)
187 if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1) 437 return (1); /* error in ecc data; no action needed */
188 return 1; 438 return -1;
189
190 return -EBADMSG;
191} 439}
192EXPORT_SYMBOL(nand_correct_data); 440EXPORT_SYMBOL(nand_correct_data);
193 441
194MODULE_LICENSE("GPL"); 442MODULE_LICENSE("GPL");
195MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>"); 443MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
196MODULE_DESCRIPTION("Generic NAND ECC support"); 444MODULE_DESCRIPTION("Generic NAND ECC support");