aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/ubi/upd.c
diff options
context:
space:
mode:
authorArtem B. Bityutskiy <dedekind@linutronix.de>2006-06-27 04:22:22 -0400
committerFrank Haverkamp <haver@vnet.ibm.com>2007-04-27 07:23:33 -0400
commit801c135ce73d5df1caf3eca35b66a10824ae0707 (patch)
treeeaf6e7859650557192533b70746479de686c56e1 /drivers/mtd/ubi/upd.c
parentde46c33745f5e2ad594c72f2cf5f490861b16ce1 (diff)
UBI: Unsorted Block Images
UBI (Latin: "where?") manages multiple logical volumes on a single flash device, specifically supporting NAND flash devices. UBI provides a flexible partitioning concept which still allows for wear-levelling across the whole flash device. In a sense, UBI may be compared to the Logical Volume Manager (LVM). Whereas LVM maps logical sector numbers to physical HDD sector numbers, UBI maps logical eraseblocks to physical eraseblocks. More information may be found at http://www.linux-mtd.infradead.org/doc/ubi.html Partitioning/Re-partitioning An UBI volume occupies a certain number of erase blocks. This is limited by a configured maximum volume size, which could also be viewed as the partition size. Each individual UBI volume's size can be changed independently of the other UBI volumes, provided that the sum of all volume sizes doesn't exceed a certain limit. UBI supports dynamic volumes and static volumes. Static volumes are read-only and their contents are protected by CRC check sums. Bad eraseblocks handling UBI transparently handles bad eraseblocks. When a physical eraseblock becomes bad, it is substituted by a good physical eraseblock, and the user does not even notice this. Scrubbing On a NAND flash bit flips can occur on any write operation, sometimes also on read. If bit flips persist on the device, at first they can still be corrected by ECC, but once they accumulate, correction will become impossible. Thus it is best to actively scrub the affected eraseblock, by first copying it to a free eraseblock and then erasing the original. The UBI layer performs this type of scrubbing under the covers, transparently to the UBI volume users. Erase Counts UBI maintains an erase count header per eraseblock. This frees higher-level layers (like file systems) from doing this and allows for centralized erase count management instead. The erase counts are used by the wear-levelling algorithm in the UBI layer. The algorithm itself is exchangeable. Booting from NAND For booting directly from NAND flash the hardware must at least be capable of fetching and executing a small portion of the NAND flash. Some NAND flash controllers have this kind of support. They usually limit the window to a few kilobytes in erase block 0. This "initial program loader" (IPL) must then contain sufficient logic to load and execute the next boot phase. Due to bad eraseblocks, which may be randomly scattered over the flash device, it is problematic to store the "secondary program loader" (SPL) statically. Also, due to bit-flips it may become corrupted over time. UBI allows to solve this problem gracefully by storing the SPL in a small static UBI volume. UBI volumes vs. static partitions UBI volumes are still very similar to static MTD partitions: * both consist of eraseblocks (logical eraseblocks in case of UBI volumes, and physical eraseblocks in case of static partitions; * both support three basic operations - read, write, erase. But UBI volumes have the following advantages over traditional static MTD partitions: * there are no eraseblock wear-leveling constraints in case of UBI volumes, so the user should not care about this; * there are no bit-flips and bad eraseblocks in case of UBI volumes. So, UBI volumes may be considered as flash devices with relaxed restrictions. Where can it be found? Documentation, kernel code and applications can be found in the MTD gits. What are the applications for? The applications help to create binary flash images for two purposes: pfi files (partial flash images) for in-system update of UBI volumes, and plain binary images, with or without OOB data in case of NAND, for a manufacturing step. Furthermore some tools are/and will be created that allow flash content analysis after a system has crashed.. Who did UBI? The original ideas, where UBI is based on, were developed by Andreas Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others were involved too. The implementation of the kernel layer was done by Artem B. Bityutskiy. The user-space applications and tools were written by Oliver Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem. Joern Engel contributed a patch which modifies JFFS2 so that it can be run on a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander Schmidt made some testing work as well as core functionality improvements. Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de> Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
Diffstat (limited to 'drivers/mtd/ubi/upd.c')
-rw-r--r--drivers/mtd/ubi/upd.c348
1 files changed, 348 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/upd.c b/drivers/mtd/ubi/upd.c
new file mode 100644
index 000000000000..8925b977e3dc
--- /dev/null
+++ b/drivers/mtd/ubi/upd.c
@@ -0,0 +1,348 @@
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Author: Artem Bityutskiy (Битюцкий Артём)
20 *
21 * Jan 2007: Alexander Schmidt, hacked per-volume update.
22 */
23
24/*
25 * This file contains implementation of the volume update functionality.
26 *
27 * The update operation is based on the per-volume update marker which is
28 * stored in the volume table. The update marker is set before the update
29 * starts, and removed after the update has been finished. So if the update was
30 * interrupted by an unclean re-boot or due to some other reasons, the update
31 * marker stays on the flash media and UBI finds it when it attaches the MTD
32 * device next time. If the update marker is set for a volume, the volume is
33 * treated as damaged and most I/O operations are prohibited. Only a new update
34 * operation is allowed.
35 *
36 * Note, in general it is possible to implement the update operation as a
37 * transaction with a roll-back capability.
38 */
39
40#include <linux/err.h>
41#include <asm/uaccess.h>
42#include <asm/div64.h>
43#include "ubi.h"
44
45/**
46 * set_update_marker - set update marker.
47 * @ubi: UBI device description object
48 * @vol_id: volume ID
49 *
50 * This function sets the update marker flag for volume @vol_id. Returns zero
51 * in case of success and a negative error code in case of failure.
52 */
53static int set_update_marker(struct ubi_device *ubi, int vol_id)
54{
55 int err;
56 struct ubi_vtbl_record vtbl_rec;
57 struct ubi_volume *vol = ubi->volumes[vol_id];
58
59 dbg_msg("set update marker for volume %d", vol_id);
60
61 if (vol->upd_marker) {
62 ubi_assert(ubi->vtbl[vol_id].upd_marker);
63 dbg_msg("already set");
64 return 0;
65 }
66
67 memcpy(&vtbl_rec, &ubi->vtbl[vol_id], sizeof(struct ubi_vtbl_record));
68 vtbl_rec.upd_marker = 1;
69
70 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
71 vol->upd_marker = 1;
72 return err;
73}
74
75/**
76 * clear_update_marker - clear update marker.
77 * @ubi: UBI device description object
78 * @vol_id: volume ID
79 * @bytes: new data size in bytes
80 *
81 * This function clears the update marker for volume @vol_id, sets new volume
82 * data size and clears the "corrupted" flag (static volumes only). Returns
83 * zero in case of success and a negative error code in case of failure.
84 */
85static int clear_update_marker(struct ubi_device *ubi, int vol_id, long long bytes)
86{
87 int err;
88 uint64_t tmp;
89 struct ubi_vtbl_record vtbl_rec;
90 struct ubi_volume *vol = ubi->volumes[vol_id];
91
92 dbg_msg("clear update marker for volume %d", vol_id);
93
94 memcpy(&vtbl_rec, &ubi->vtbl[vol_id], sizeof(struct ubi_vtbl_record));
95 ubi_assert(vol->upd_marker && vtbl_rec.upd_marker);
96 vtbl_rec.upd_marker = 0;
97
98 if (vol->vol_type == UBI_STATIC_VOLUME) {
99 vol->corrupted = 0;
100 vol->used_bytes = tmp = bytes;
101 vol->last_eb_bytes = do_div(tmp, vol->usable_leb_size);
102 vol->used_ebs = tmp;
103 if (vol->last_eb_bytes)
104 vol->used_ebs += 1;
105 else
106 vol->last_eb_bytes = vol->usable_leb_size;
107 }
108
109 err = ubi_change_vtbl_record(ubi, vol_id, &vtbl_rec);
110 vol->upd_marker = 0;
111 return err;
112}
113
114/**
115 * ubi_start_update - start volume update.
116 * @ubi: UBI device description object
117 * @vol_id: volume ID
118 * @bytes: update bytes
119 *
120 * This function starts volume update operation. If @bytes is zero, the volume
121 * is just wiped out. Returns zero in case of success and a negative error code
122 * in case of failure.
123 */
124int ubi_start_update(struct ubi_device *ubi, int vol_id, long long bytes)
125{
126 int i, err;
127 uint64_t tmp;
128 struct ubi_volume *vol = ubi->volumes[vol_id];
129
130 dbg_msg("start update of volume %d, %llu bytes", vol_id, bytes);
131 vol->updating = 1;
132
133 err = set_update_marker(ubi, vol_id);
134 if (err)
135 return err;
136
137 /* Before updating - wipe out the volume */
138 for (i = 0; i < vol->reserved_pebs; i++) {
139 err = ubi_eba_unmap_leb(ubi, vol_id, i);
140 if (err)
141 return err;
142 }
143
144 if (bytes == 0) {
145 err = clear_update_marker(ubi, vol_id, 0);
146 if (err)
147 return err;
148 err = ubi_wl_flush(ubi);
149 if (!err)
150 vol->updating = 0;
151 }
152
153 vol->upd_buf = kmalloc(ubi->leb_size, GFP_KERNEL);
154 if (!vol->upd_buf)
155 return -ENOMEM;
156
157 tmp = bytes;
158 vol->upd_ebs = !!do_div(tmp, vol->usable_leb_size);
159 vol->upd_ebs += tmp;
160 vol->upd_bytes = bytes;
161 vol->upd_received = 0;
162 return 0;
163}
164
165/**
166 * write_leb - write update data.
167 * @ubi: UBI device description object
168 * @vol_id: volume ID
169 * @lnum: logical eraseblock number
170 * @buf: data to write
171 * @len: data size
172 * @used_ebs: how many logical eraseblocks will this volume contain (static
173 * volumes only)
174 *
175 * This function writes update data to corresponding logical eraseblock. In
176 * case of dynamic volume, this function checks if the data contains 0xFF bytes
177 * at the end. If yes, the 0xFF bytes are cut and not written. So if the whole
178 * buffer contains only 0xFF bytes, the LEB is left unmapped.
179 *
180 * The reason why we skip the trailing 0xFF bytes in case of dynamic volume is
181 * that we want to make sure that more data may be appended to the logical
182 * eraseblock in future. Indeed, writing 0xFF bytes may have side effects and
183 * this PEB won't be writable anymore. So if one writes the file-system image
184 * to the UBI volume where 0xFFs mean free space - UBI makes sure this free
185 * space is writable after the update.
186 *
187 * We do not do this for static volumes because they are read-only. But this
188 * also cannot be done because we have to store per-LEB CRC and the correct
189 * data length.
190 *
191 * This function returns zero in case of success and a negative error code in
192 * case of failure.
193 */
194static int write_leb(struct ubi_device *ubi, int vol_id, int lnum, void *buf,
195 int len, int used_ebs)
196{
197 int err, l;
198 struct ubi_volume *vol = ubi->volumes[vol_id];
199
200 if (vol->vol_type == UBI_DYNAMIC_VOLUME) {
201 l = ALIGN(len, ubi->min_io_size);
202 memset(buf + len, 0xFF, l - len);
203
204 l = ubi_calc_data_len(ubi, buf, l);
205 if (l == 0) {
206 dbg_msg("all %d bytes contain 0xFF - skip", len);
207 return 0;
208 }
209 if (len != l)
210 dbg_msg("skip last %d bytes (0xFF)", len - l);
211
212 err = ubi_eba_write_leb(ubi, vol_id, lnum, buf, 0, l,
213 UBI_UNKNOWN);
214 } else {
215 /*
216 * When writing static volume, and this is the last logical
217 * eraseblock, the length (@len) does not have to be aligned to
218 * the minimal flash I/O unit. The 'ubi_eba_write_leb_st()'
219 * function accepts exact (unaligned) length and stores it in
220 * the VID header. And it takes care of proper alignment by
221 * padding the buffer. Here we just make sure the padding will
222 * contain zeros, not random trash.
223 */
224 memset(buf + len, 0, vol->usable_leb_size - len);
225 err = ubi_eba_write_leb_st(ubi, vol_id, lnum, buf, len,
226 UBI_UNKNOWN, used_ebs);
227 }
228
229 return err;
230}
231
232/**
233 * ubi_more_update_data - write more update data.
234 * @vol: volume description object
235 * @buf: write data (user-space memory buffer)
236 * @count: how much bytes to write
237 *
238 * This function writes more data to the volume which is being updated. It may
239 * be called arbitrary number of times until all of the update data arrive.
240 * This function returns %0 in case of success, number of bytes written during
241 * the last call if the whole volume update was successfully finished, and a
242 * negative error code in case of failure.
243 */
244int ubi_more_update_data(struct ubi_device *ubi, int vol_id,
245 const void __user *buf, int count)
246{
247 uint64_t tmp;
248 struct ubi_volume *vol = ubi->volumes[vol_id];
249 int lnum, offs, err = 0, len, to_write = count;
250
251 dbg_msg("write %d of %lld bytes, %lld already passed",
252 count, vol->upd_bytes, vol->upd_received);
253
254 if (ubi->ro_mode)
255 return -EROFS;
256
257 tmp = vol->upd_received;
258 offs = do_div(tmp, vol->usable_leb_size);
259 lnum = tmp;
260
261 if (vol->upd_received + count > vol->upd_bytes)
262 to_write = count = vol->upd_bytes - vol->upd_received;
263
264 /*
265 * When updating volumes, we accumulate whole logical eraseblock of
266 * data and write it at once.
267 */
268 if (offs != 0) {
269 /*
270 * This is a write to the middle of the logical eraseblock. We
271 * copy the data to our update buffer and wait for more data or
272 * flush it if the whole eraseblock is written or the update
273 * is finished.
274 */
275
276 len = vol->usable_leb_size - offs;
277 if (len > count)
278 len = count;
279
280 err = copy_from_user(vol->upd_buf + offs, buf, len);
281 if (err)
282 return -EFAULT;
283
284 if (offs + len == vol->usable_leb_size ||
285 vol->upd_received + len == vol->upd_bytes) {
286 int flush_len = offs + len;
287
288 /*
289 * OK, we gathered either the whole eraseblock or this
290 * is the last chunk, it's time to flush the buffer.
291 */
292 ubi_assert(flush_len <= vol->usable_leb_size);
293 err = write_leb(ubi, vol_id, lnum, vol->upd_buf,
294 flush_len, vol->upd_ebs);
295 if (err)
296 return err;
297 }
298
299 vol->upd_received += len;
300 count -= len;
301 buf += len;
302 lnum += 1;
303 }
304
305 /*
306 * If we've got more to write, let's continue. At this point we know we
307 * are starting from the beginning of an eraseblock.
308 */
309 while (count) {
310 if (count > vol->usable_leb_size)
311 len = vol->usable_leb_size;
312 else
313 len = count;
314
315 err = copy_from_user(vol->upd_buf, buf, len);
316 if (err)
317 return -EFAULT;
318
319 if (len == vol->usable_leb_size ||
320 vol->upd_received + len == vol->upd_bytes) {
321 err = write_leb(ubi, vol_id, lnum, vol->upd_buf, len,
322 vol->upd_ebs);
323 if (err)
324 break;
325 }
326
327 vol->upd_received += len;
328 count -= len;
329 lnum += 1;
330 buf += len;
331 }
332
333 ubi_assert(vol->upd_received <= vol->upd_bytes);
334 if (vol->upd_received == vol->upd_bytes) {
335 /* The update is finished, clear the update marker */
336 err = clear_update_marker(ubi, vol_id, vol->upd_bytes);
337 if (err)
338 return err;
339 err = ubi_wl_flush(ubi);
340 if (err == 0) {
341 err = to_write;
342 kfree(vol->upd_buf);
343 vol->updating = 0;
344 }
345 }
346
347 return err;
348}