aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/ubi/kapi.c
diff options
context:
space:
mode:
authorArtem B. Bityutskiy <dedekind@linutronix.de>2006-06-27 04:22:22 -0400
committerFrank Haverkamp <haver@vnet.ibm.com>2007-04-27 07:23:33 -0400
commit801c135ce73d5df1caf3eca35b66a10824ae0707 (patch)
treeeaf6e7859650557192533b70746479de686c56e1 /drivers/mtd/ubi/kapi.c
parentde46c33745f5e2ad594c72f2cf5f490861b16ce1 (diff)
UBI: Unsorted Block Images
UBI (Latin: "where?") manages multiple logical volumes on a single flash device, specifically supporting NAND flash devices. UBI provides a flexible partitioning concept which still allows for wear-levelling across the whole flash device. In a sense, UBI may be compared to the Logical Volume Manager (LVM). Whereas LVM maps logical sector numbers to physical HDD sector numbers, UBI maps logical eraseblocks to physical eraseblocks. More information may be found at http://www.linux-mtd.infradead.org/doc/ubi.html Partitioning/Re-partitioning An UBI volume occupies a certain number of erase blocks. This is limited by a configured maximum volume size, which could also be viewed as the partition size. Each individual UBI volume's size can be changed independently of the other UBI volumes, provided that the sum of all volume sizes doesn't exceed a certain limit. UBI supports dynamic volumes and static volumes. Static volumes are read-only and their contents are protected by CRC check sums. Bad eraseblocks handling UBI transparently handles bad eraseblocks. When a physical eraseblock becomes bad, it is substituted by a good physical eraseblock, and the user does not even notice this. Scrubbing On a NAND flash bit flips can occur on any write operation, sometimes also on read. If bit flips persist on the device, at first they can still be corrected by ECC, but once they accumulate, correction will become impossible. Thus it is best to actively scrub the affected eraseblock, by first copying it to a free eraseblock and then erasing the original. The UBI layer performs this type of scrubbing under the covers, transparently to the UBI volume users. Erase Counts UBI maintains an erase count header per eraseblock. This frees higher-level layers (like file systems) from doing this and allows for centralized erase count management instead. The erase counts are used by the wear-levelling algorithm in the UBI layer. The algorithm itself is exchangeable. Booting from NAND For booting directly from NAND flash the hardware must at least be capable of fetching and executing a small portion of the NAND flash. Some NAND flash controllers have this kind of support. They usually limit the window to a few kilobytes in erase block 0. This "initial program loader" (IPL) must then contain sufficient logic to load and execute the next boot phase. Due to bad eraseblocks, which may be randomly scattered over the flash device, it is problematic to store the "secondary program loader" (SPL) statically. Also, due to bit-flips it may become corrupted over time. UBI allows to solve this problem gracefully by storing the SPL in a small static UBI volume. UBI volumes vs. static partitions UBI volumes are still very similar to static MTD partitions: * both consist of eraseblocks (logical eraseblocks in case of UBI volumes, and physical eraseblocks in case of static partitions; * both support three basic operations - read, write, erase. But UBI volumes have the following advantages over traditional static MTD partitions: * there are no eraseblock wear-leveling constraints in case of UBI volumes, so the user should not care about this; * there are no bit-flips and bad eraseblocks in case of UBI volumes. So, UBI volumes may be considered as flash devices with relaxed restrictions. Where can it be found? Documentation, kernel code and applications can be found in the MTD gits. What are the applications for? The applications help to create binary flash images for two purposes: pfi files (partial flash images) for in-system update of UBI volumes, and plain binary images, with or without OOB data in case of NAND, for a manufacturing step. Furthermore some tools are/and will be created that allow flash content analysis after a system has crashed.. Who did UBI? The original ideas, where UBI is based on, were developed by Andreas Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others were involved too. The implementation of the kernel layer was done by Artem B. Bityutskiy. The user-space applications and tools were written by Oliver Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem. Joern Engel contributed a patch which modifies JFFS2 so that it can be run on a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander Schmidt made some testing work as well as core functionality improvements. Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de> Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
Diffstat (limited to 'drivers/mtd/ubi/kapi.c')
-rw-r--r--drivers/mtd/ubi/kapi.c575
1 files changed, 575 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/kapi.c b/drivers/mtd/ubi/kapi.c
new file mode 100644
index 000000000000..d352c4575c3d
--- /dev/null
+++ b/drivers/mtd/ubi/kapi.c
@@ -0,0 +1,575 @@
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/* This file mostly implements UBI kernel API functions */
22
23#include <linux/module.h>
24#include <linux/err.h>
25#include <asm/div64.h>
26#include "ubi.h"
27
28/**
29 * ubi_get_device_info - get information about UBI device.
30 * @ubi_num: UBI device number
31 * @di: the information is stored here
32 *
33 * This function returns %0 in case of success and a %-ENODEV if there is no
34 * such UBI device.
35 */
36int ubi_get_device_info(int ubi_num, struct ubi_device_info *di)
37{
38 const struct ubi_device *ubi;
39
40 if (!try_module_get(THIS_MODULE))
41 return -ENODEV;
42
43 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES ||
44 !ubi_devices[ubi_num]) {
45 module_put(THIS_MODULE);
46 return -ENODEV;
47 }
48
49 ubi = ubi_devices[ubi_num];
50 di->ubi_num = ubi->ubi_num;
51 di->leb_size = ubi->leb_size;
52 di->min_io_size = ubi->min_io_size;
53 di->ro_mode = ubi->ro_mode;
54 di->cdev = MKDEV(ubi->major, 0);
55 module_put(THIS_MODULE);
56 return 0;
57}
58EXPORT_SYMBOL_GPL(ubi_get_device_info);
59
60/**
61 * ubi_get_volume_info - get information about UBI volume.
62 * @desc: volume descriptor
63 * @vi: the information is stored here
64 */
65void ubi_get_volume_info(struct ubi_volume_desc *desc,
66 struct ubi_volume_info *vi)
67{
68 const struct ubi_volume *vol = desc->vol;
69 const struct ubi_device *ubi = vol->ubi;
70
71 vi->vol_id = vol->vol_id;
72 vi->ubi_num = ubi->ubi_num;
73 vi->size = vol->reserved_pebs;
74 vi->used_bytes = vol->used_bytes;
75 vi->vol_type = vol->vol_type;
76 vi->corrupted = vol->corrupted;
77 vi->upd_marker = vol->upd_marker;
78 vi->alignment = vol->alignment;
79 vi->usable_leb_size = vol->usable_leb_size;
80 vi->name_len = vol->name_len;
81 vi->name = vol->name;
82 vi->cdev = MKDEV(ubi->major, vi->vol_id + 1);
83}
84EXPORT_SYMBOL_GPL(ubi_get_volume_info);
85
86/**
87 * ubi_open_volume - open UBI volume.
88 * @ubi_num: UBI device number
89 * @vol_id: volume ID
90 * @mode: open mode
91 *
92 * The @mode parameter specifies if the volume should be opened in read-only
93 * mode, read-write mode, or exclusive mode. The exclusive mode guarantees that
94 * nobody else will be able to open this volume. UBI allows to have many volume
95 * readers and one writer at a time.
96 *
97 * If a static volume is being opened for the first time since boot, it will be
98 * checked by this function, which means it will be fully read and the CRC
99 * checksum of each logical eraseblock will be checked.
100 *
101 * This function returns volume descriptor in case of success and a negative
102 * error code in case of failure.
103 */
104struct ubi_volume_desc *ubi_open_volume(int ubi_num, int vol_id, int mode)
105{
106 int err;
107 struct ubi_volume_desc *desc;
108 struct ubi_device *ubi = ubi_devices[ubi_num];
109 struct ubi_volume *vol;
110
111 dbg_msg("open device %d volume %d, mode %d", ubi_num, vol_id, mode);
112
113 err = -ENODEV;
114 if (!try_module_get(THIS_MODULE))
115 return ERR_PTR(err);
116
117 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES || !ubi)
118 goto out_put;
119
120 err = -EINVAL;
121 if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
122 goto out_put;
123 if (mode != UBI_READONLY && mode != UBI_READWRITE &&
124 mode != UBI_EXCLUSIVE)
125 goto out_put;
126
127 desc = kmalloc(sizeof(struct ubi_volume_desc), GFP_KERNEL);
128 if (!desc) {
129 err = -ENOMEM;
130 goto out_put;
131 }
132
133 spin_lock(&ubi->volumes_lock);
134 vol = ubi->volumes[vol_id];
135 if (!vol) {
136 err = -ENODEV;
137 goto out_unlock;
138 }
139
140 err = -EBUSY;
141 switch (mode) {
142 case UBI_READONLY:
143 if (vol->exclusive)
144 goto out_unlock;
145 vol->readers += 1;
146 break;
147
148 case UBI_READWRITE:
149 if (vol->exclusive || vol->writers > 0)
150 goto out_unlock;
151 vol->writers += 1;
152 break;
153
154 case UBI_EXCLUSIVE:
155 if (vol->exclusive || vol->writers || vol->readers)
156 goto out_unlock;
157 vol->exclusive = 1;
158 break;
159 }
160 spin_unlock(&ubi->volumes_lock);
161
162 desc->vol = vol;
163 desc->mode = mode;
164
165 /*
166 * To prevent simultaneous checks of the same volume we use @vtbl_mutex,
167 * although it is not the purpose it was introduced for.
168 */
169 mutex_lock(&ubi->vtbl_mutex);
170 if (!vol->checked) {
171 /* This is the first open - check the volume */
172 err = ubi_check_volume(ubi, vol_id);
173 if (err < 0) {
174 mutex_unlock(&ubi->vtbl_mutex);
175 ubi_close_volume(desc);
176 return ERR_PTR(err);
177 }
178 if (err == 1) {
179 ubi_warn("volume %d on UBI device %d is corrupted",
180 vol_id, ubi->ubi_num);
181 vol->corrupted = 1;
182 }
183 vol->checked = 1;
184 }
185 mutex_unlock(&ubi->vtbl_mutex);
186 return desc;
187
188out_unlock:
189 spin_unlock(&ubi->volumes_lock);
190 kfree(desc);
191out_put:
192 module_put(THIS_MODULE);
193 return ERR_PTR(err);
194}
195EXPORT_SYMBOL_GPL(ubi_open_volume);
196
197/**
198 * ubi_open_volume_nm - open UBI volume by name.
199 * @ubi_num: UBI device number
200 * @name: volume name
201 * @mode: open mode
202 *
203 * This function is similar to 'ubi_open_volume()', but opens a volume by name.
204 */
205struct ubi_volume_desc *ubi_open_volume_nm(int ubi_num, const char *name,
206 int mode)
207{
208 int i, vol_id = -1, len;
209 struct ubi_volume_desc *ret;
210 struct ubi_device *ubi;
211
212 dbg_msg("open volume %s, mode %d", name, mode);
213
214 if (!name)
215 return ERR_PTR(-EINVAL);
216
217 len = strnlen(name, UBI_VOL_NAME_MAX + 1);
218 if (len > UBI_VOL_NAME_MAX)
219 return ERR_PTR(-EINVAL);
220
221 ret = ERR_PTR(-ENODEV);
222 if (!try_module_get(THIS_MODULE))
223 return ret;
224
225 if (ubi_num < 0 || ubi_num >= UBI_MAX_DEVICES || !ubi_devices[ubi_num])
226 goto out_put;
227
228 ubi = ubi_devices[ubi_num];
229
230 spin_lock(&ubi->volumes_lock);
231 /* Walk all volumes of this UBI device */
232 for (i = 0; i < ubi->vtbl_slots; i++) {
233 struct ubi_volume *vol = ubi->volumes[i];
234
235 if (vol && len == vol->name_len && !strcmp(name, vol->name)) {
236 vol_id = i;
237 break;
238 }
239 }
240 spin_unlock(&ubi->volumes_lock);
241
242 if (vol_id < 0)
243 goto out_put;
244
245 ret = ubi_open_volume(ubi_num, vol_id, mode);
246
247out_put:
248 module_put(THIS_MODULE);
249 return ret;
250}
251EXPORT_SYMBOL_GPL(ubi_open_volume_nm);
252
253/**
254 * ubi_close_volume - close UBI volume.
255 * @desc: volume descriptor
256 */
257void ubi_close_volume(struct ubi_volume_desc *desc)
258{
259 struct ubi_volume *vol = desc->vol;
260
261 dbg_msg("close volume %d, mode %d", vol->vol_id, desc->mode);
262
263 spin_lock(&vol->ubi->volumes_lock);
264 switch (desc->mode) {
265 case UBI_READONLY:
266 vol->readers -= 1;
267 break;
268 case UBI_READWRITE:
269 vol->writers -= 1;
270 break;
271 case UBI_EXCLUSIVE:
272 vol->exclusive = 0;
273 }
274 spin_unlock(&vol->ubi->volumes_lock);
275
276 kfree(desc);
277 module_put(THIS_MODULE);
278}
279EXPORT_SYMBOL_GPL(ubi_close_volume);
280
281/**
282 * ubi_leb_read - read data.
283 * @desc: volume descriptor
284 * @lnum: logical eraseblock number to read from
285 * @buf: buffer where to store the read data
286 * @offset: offset within the logical eraseblock to read from
287 * @len: how many bytes to read
288 * @check: whether UBI has to check the read data's CRC or not.
289 *
290 * This function reads data from offset @offset of logical eraseblock @lnum and
291 * stores the data at @buf. When reading from static volumes, @check specifies
292 * whether the data has to be checked or not. If yes, the whole logical
293 * eraseblock will be read and its CRC checksum will be checked (i.e., the CRC
294 * checksum is per-eraseblock). So checking may substantially slow down the
295 * read speed. The @check argument is ignored for dynamic volumes.
296 *
297 * In case of success, this function returns zero. In case of failure, this
298 * function returns a negative error code.
299 *
300 * %-EBADMSG error code is returned:
301 * o for both static and dynamic volumes if MTD driver has detected a data
302 * integrity problem (unrecoverable ECC checksum mismatch in case of NAND);
303 * o for static volumes in case of data CRC mismatch.
304 *
305 * If the volume is damaged because of an interrupted update this function just
306 * returns immediately with %-EBADF error code.
307 */
308int ubi_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
309 int len, int check)
310{
311 struct ubi_volume *vol = desc->vol;
312 struct ubi_device *ubi = vol->ubi;
313 int err, vol_id = vol->vol_id;
314
315 dbg_msg("read %d bytes from LEB %d:%d:%d", len, vol_id, lnum, offset);
316
317 if (vol_id < 0 || vol_id >= ubi->vtbl_slots || lnum < 0 ||
318 lnum >= vol->used_ebs || offset < 0 || len < 0 ||
319 offset + len > vol->usable_leb_size)
320 return -EINVAL;
321
322 if (vol->vol_type == UBI_STATIC_VOLUME && lnum == vol->used_ebs - 1 &&
323 offset + len > vol->last_eb_bytes)
324 return -EINVAL;
325
326 if (vol->upd_marker)
327 return -EBADF;
328 if (len == 0)
329 return 0;
330
331 err = ubi_eba_read_leb(ubi, vol_id, lnum, buf, offset, len, check);
332 if (err && err == -EBADMSG && vol->vol_type == UBI_STATIC_VOLUME) {
333 ubi_warn("mark volume %d as corrupted", vol_id);
334 vol->corrupted = 1;
335 }
336
337 return err;
338}
339EXPORT_SYMBOL_GPL(ubi_leb_read);
340
341/**
342 * ubi_leb_write - write data.
343 * @desc: volume descriptor
344 * @lnum: logical eraseblock number to write to
345 * @buf: data to write
346 * @offset: offset within the logical eraseblock where to write
347 * @len: how many bytes to write
348 * @dtype: expected data type
349 *
350 * This function writes @len bytes of data from @buf to offset @offset of
351 * logical eraseblock @lnum. The @dtype argument describes expected lifetime of
352 * the data.
353 *
354 * This function takes care of physical eraseblock write failures. If write to
355 * the physical eraseblock write operation fails, the logical eraseblock is
356 * re-mapped to another physical eraseblock, the data is recovered, and the
357 * write finishes. UBI has a pool of reserved physical eraseblocks for this.
358 *
359 * If all the data were successfully written, zero is returned. If an error
360 * occurred and UBI has not been able to recover from it, this function returns
361 * a negative error code. Note, in case of an error, it is possible that
362 * something was still written to the flash media, but that may be some
363 * garbage.
364 *
365 * If the volume is damaged because of an interrupted update this function just
366 * returns immediately with %-EBADF code.
367 */
368int ubi_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
369 int offset, int len, int dtype)
370{
371 struct ubi_volume *vol = desc->vol;
372 struct ubi_device *ubi = vol->ubi;
373 int vol_id = vol->vol_id;
374
375 dbg_msg("write %d bytes to LEB %d:%d:%d", len, vol_id, lnum, offset);
376
377 if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
378 return -EINVAL;
379
380 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
381 return -EROFS;
382
383 if (lnum < 0 || lnum >= vol->reserved_pebs || offset < 0 || len < 0 ||
384 offset + len > vol->usable_leb_size || offset % ubi->min_io_size ||
385 len % ubi->min_io_size)
386 return -EINVAL;
387
388 if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
389 dtype != UBI_UNKNOWN)
390 return -EINVAL;
391
392 if (vol->upd_marker)
393 return -EBADF;
394
395 if (len == 0)
396 return 0;
397
398 return ubi_eba_write_leb(ubi, vol_id, lnum, buf, offset, len, dtype);
399}
400EXPORT_SYMBOL_GPL(ubi_leb_write);
401
402/*
403 * ubi_leb_change - change logical eraseblock atomically.
404 * @desc: volume descriptor
405 * @lnum: logical eraseblock number to change
406 * @buf: data to write
407 * @len: how many bytes to write
408 * @dtype: expected data type
409 *
410 * This function changes the contents of a logical eraseblock atomically. @buf
411 * has to contain new logical eraseblock data, and @len - the length of the
412 * data, which has to be aligned. The length may be shorter then the logical
413 * eraseblock size, ant the logical eraseblock may be appended to more times
414 * later on. This function guarantees that in case of an unclean reboot the old
415 * contents is preserved. Returns zero in case of success and a negative error
416 * code in case of failure.
417 */
418int ubi_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
419 int len, int dtype)
420{
421 struct ubi_volume *vol = desc->vol;
422 struct ubi_device *ubi = vol->ubi;
423 int vol_id = vol->vol_id;
424
425 dbg_msg("atomically write %d bytes to LEB %d:%d", len, vol_id, lnum);
426
427 if (vol_id < 0 || vol_id >= ubi->vtbl_slots)
428 return -EINVAL;
429
430 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
431 return -EROFS;
432
433 if (lnum < 0 || lnum >= vol->reserved_pebs || len < 0 ||
434 len > vol->usable_leb_size || len % ubi->min_io_size)
435 return -EINVAL;
436
437 if (dtype != UBI_LONGTERM && dtype != UBI_SHORTTERM &&
438 dtype != UBI_UNKNOWN)
439 return -EINVAL;
440
441 if (vol->upd_marker)
442 return -EBADF;
443
444 if (len == 0)
445 return 0;
446
447 return ubi_eba_atomic_leb_change(ubi, vol_id, lnum, buf, len, dtype);
448}
449EXPORT_SYMBOL_GPL(ubi_leb_change);
450
451/**
452 * ubi_leb_erase - erase logical eraseblock.
453 * @desc: volume descriptor
454 * @lnum: logical eraseblock number
455 *
456 * This function un-maps logical eraseblock @lnum and synchronously erases the
457 * correspondent physical eraseblock. Returns zero in case of success and a
458 * negative error code in case of failure.
459 *
460 * If the volume is damaged because of an interrupted update this function just
461 * returns immediately with %-EBADF code.
462 */
463int ubi_leb_erase(struct ubi_volume_desc *desc, int lnum)
464{
465 struct ubi_volume *vol = desc->vol;
466 struct ubi_device *ubi = vol->ubi;
467 int err, vol_id = vol->vol_id;
468
469 dbg_msg("erase LEB %d:%d", vol_id, lnum);
470
471 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
472 return -EROFS;
473
474 if (lnum < 0 || lnum >= vol->reserved_pebs)
475 return -EINVAL;
476
477 if (vol->upd_marker)
478 return -EBADF;
479
480 err = ubi_eba_unmap_leb(ubi, vol_id, lnum);
481 if (err)
482 return err;
483
484 return ubi_wl_flush(ubi);
485}
486EXPORT_SYMBOL_GPL(ubi_leb_erase);
487
488/**
489 * ubi_leb_unmap - un-map logical eraseblock.
490 * @desc: volume descriptor
491 * @lnum: logical eraseblock number
492 *
493 * This function un-maps logical eraseblock @lnum and schedules the
494 * corresponding physical eraseblock for erasure, so that it will eventually be
495 * physically erased in background. This operation is much faster then the
496 * erase operation.
497 *
498 * Unlike erase, the un-map operation does not guarantee that the logical
499 * eraseblock will contain all 0xFF bytes when UBI is initialized again. For
500 * example, if several logical eraseblocks are un-mapped, and an unclean reboot
501 * happens after this, the logical eraseblocks will not necessarily be
502 * un-mapped again when this MTD device is attached. They may actually be
503 * mapped to the same physical eraseblocks again. So, this function has to be
504 * used with care.
505 *
506 * In other words, when un-mapping a logical eraseblock, UBI does not store
507 * any information about this on the flash media, it just marks the logical
508 * eraseblock as "un-mapped" in RAM. If UBI is detached before the physical
509 * eraseblock is physically erased, it will be mapped again to the same logical
510 * eraseblock when the MTD device is attached again.
511 *
512 * The main and obvious use-case of this function is when the contents of a
513 * logical eraseblock has to be re-written. Then it is much more efficient to
514 * first un-map it, then write new data, rather then first erase it, then write
515 * new data. Note, once new data has been written to the logical eraseblock,
516 * UBI guarantees that the old contents has gone forever. In other words, if an
517 * unclean reboot happens after the logical eraseblock has been un-mapped and
518 * then written to, it will contain the last written data.
519 *
520 * This function returns zero in case of success and a negative error code in
521 * case of failure. If the volume is damaged because of an interrupted update
522 * this function just returns immediately with %-EBADF code.
523 */
524int ubi_leb_unmap(struct ubi_volume_desc *desc, int lnum)
525{
526 struct ubi_volume *vol = desc->vol;
527 struct ubi_device *ubi = vol->ubi;
528 int vol_id = vol->vol_id;
529
530 dbg_msg("unmap LEB %d:%d", vol_id, lnum);
531
532 if (desc->mode == UBI_READONLY || vol->vol_type == UBI_STATIC_VOLUME)
533 return -EROFS;
534
535 if (lnum < 0 || lnum >= vol->reserved_pebs)
536 return -EINVAL;
537
538 if (vol->upd_marker)
539 return -EBADF;
540
541 return ubi_eba_unmap_leb(ubi, vol_id, lnum);
542}
543EXPORT_SYMBOL_GPL(ubi_leb_unmap);
544
545/**
546 * ubi_is_mapped - check if logical eraseblock is mapped.
547 * @desc: volume descriptor
548 * @lnum: logical eraseblock number
549 *
550 * This function checks if logical eraseblock @lnum is mapped to a physical
551 * eraseblock. If a logical eraseblock is un-mapped, this does not necessarily
552 * mean it will still be un-mapped after the UBI device is re-attached. The
553 * logical eraseblock may become mapped to the physical eraseblock it was last
554 * mapped to.
555 *
556 * This function returns %1 if the LEB is mapped, %0 if not, and a negative
557 * error code in case of failure. If the volume is damaged because of an
558 * interrupted update this function just returns immediately with %-EBADF error
559 * code.
560 */
561int ubi_is_mapped(struct ubi_volume_desc *desc, int lnum)
562{
563 struct ubi_volume *vol = desc->vol;
564
565 dbg_msg("test LEB %d:%d", vol->vol_id, lnum);
566
567 if (lnum < 0 || lnum >= vol->reserved_pebs)
568 return -EINVAL;
569
570 if (vol->upd_marker)
571 return -EBADF;
572
573 return vol->eba_tbl[lnum] >= 0;
574}
575EXPORT_SYMBOL_GPL(ubi_is_mapped);