diff options
author | Artem B. Bityutskiy <dedekind@linutronix.de> | 2006-06-27 04:22:22 -0400 |
---|---|---|
committer | Frank Haverkamp <haver@vnet.ibm.com> | 2007-04-27 07:23:33 -0400 |
commit | 801c135ce73d5df1caf3eca35b66a10824ae0707 (patch) | |
tree | eaf6e7859650557192533b70746479de686c56e1 /drivers/mtd/ubi/debug.c | |
parent | de46c33745f5e2ad594c72f2cf5f490861b16ce1 (diff) |
UBI: Unsorted Block Images
UBI (Latin: "where?") manages multiple logical volumes on a single
flash device, specifically supporting NAND flash devices. UBI provides
a flexible partitioning concept which still allows for wear-levelling
across the whole flash device.
In a sense, UBI may be compared to the Logical Volume Manager
(LVM). Whereas LVM maps logical sector numbers to physical HDD sector
numbers, UBI maps logical eraseblocks to physical eraseblocks.
More information may be found at
http://www.linux-mtd.infradead.org/doc/ubi.html
Partitioning/Re-partitioning
An UBI volume occupies a certain number of erase blocks. This is
limited by a configured maximum volume size, which could also be
viewed as the partition size. Each individual UBI volume's size can
be changed independently of the other UBI volumes, provided that the
sum of all volume sizes doesn't exceed a certain limit.
UBI supports dynamic volumes and static volumes. Static volumes are
read-only and their contents are protected by CRC check sums.
Bad eraseblocks handling
UBI transparently handles bad eraseblocks. When a physical
eraseblock becomes bad, it is substituted by a good physical
eraseblock, and the user does not even notice this.
Scrubbing
On a NAND flash bit flips can occur on any write operation,
sometimes also on read. If bit flips persist on the device, at first
they can still be corrected by ECC, but once they accumulate,
correction will become impossible. Thus it is best to actively scrub
the affected eraseblock, by first copying it to a free eraseblock
and then erasing the original. The UBI layer performs this type of
scrubbing under the covers, transparently to the UBI volume users.
Erase Counts
UBI maintains an erase count header per eraseblock. This frees
higher-level layers (like file systems) from doing this and allows
for centralized erase count management instead. The erase counts are
used by the wear-levelling algorithm in the UBI layer. The algorithm
itself is exchangeable.
Booting from NAND
For booting directly from NAND flash the hardware must at least be
capable of fetching and executing a small portion of the NAND
flash. Some NAND flash controllers have this kind of support. They
usually limit the window to a few kilobytes in erase block 0. This
"initial program loader" (IPL) must then contain sufficient logic to
load and execute the next boot phase.
Due to bad eraseblocks, which may be randomly scattered over the
flash device, it is problematic to store the "secondary program
loader" (SPL) statically. Also, due to bit-flips it may become
corrupted over time. UBI allows to solve this problem gracefully by
storing the SPL in a small static UBI volume.
UBI volumes vs. static partitions
UBI volumes are still very similar to static MTD partitions:
* both consist of eraseblocks (logical eraseblocks in case of UBI
volumes, and physical eraseblocks in case of static partitions;
* both support three basic operations - read, write, erase.
But UBI volumes have the following advantages over traditional
static MTD partitions:
* there are no eraseblock wear-leveling constraints in case of UBI
volumes, so the user should not care about this;
* there are no bit-flips and bad eraseblocks in case of UBI volumes.
So, UBI volumes may be considered as flash devices with relaxed
restrictions.
Where can it be found?
Documentation, kernel code and applications can be found in the MTD
gits.
What are the applications for?
The applications help to create binary flash images for two purposes: pfi
files (partial flash images) for in-system update of UBI volumes, and plain
binary images, with or without OOB data in case of NAND, for a manufacturing
step. Furthermore some tools are/and will be created that allow flash content
analysis after a system has crashed..
Who did UBI?
The original ideas, where UBI is based on, were developed by Andreas
Arnez, Frank Haverkamp and Thomas Gleixner. Josh W. Boyer and some others
were involved too. The implementation of the kernel layer was done by Artem
B. Bityutskiy. The user-space applications and tools were written by Oliver
Lohmann with contributions from Frank Haverkamp, Andreas Arnez, and Artem.
Joern Engel contributed a patch which modifies JFFS2 so that it can be run on
a UBI volume. Thomas Gleixner did modifications to the NAND layer. Alexander
Schmidt made some testing work as well as core functionality improvements.
Signed-off-by: Artem B. Bityutskiy <dedekind@linutronix.de>
Signed-off-by: Frank Haverkamp <haver@vnet.ibm.com>
Diffstat (limited to 'drivers/mtd/ubi/debug.c')
-rw-r--r-- | drivers/mtd/ubi/debug.c | 224 |
1 files changed, 224 insertions, 0 deletions
diff --git a/drivers/mtd/ubi/debug.c b/drivers/mtd/ubi/debug.c new file mode 100644 index 000000000000..86364221fafe --- /dev/null +++ b/drivers/mtd/ubi/debug.c | |||
@@ -0,0 +1,224 @@ | |||
1 | /* | ||
2 | * Copyright (c) International Business Machines Corp., 2006 | ||
3 | * | ||
4 | * This program is free software; you can redistribute it and/or modify | ||
5 | * it under the terms of the GNU General Public License as published by | ||
6 | * the Free Software Foundation; either version 2 of the License, or | ||
7 | * (at your option) any later version. | ||
8 | * | ||
9 | * This program is distributed in the hope that it will be useful, | ||
10 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
11 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See | ||
12 | * the GNU General Public License for more details. | ||
13 | * | ||
14 | * You should have received a copy of the GNU General Public License | ||
15 | * along with this program; if not, write to the Free Software | ||
16 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA | ||
17 | * | ||
18 | * Author: Artem Bityutskiy (Битюцкий Артём) | ||
19 | */ | ||
20 | |||
21 | /* | ||
22 | * Here we keep all the UBI debugging stuff which should normally be disabled | ||
23 | * and compiled-out, but it is extremely helpful when hunting bugs or doing big | ||
24 | * changes. | ||
25 | */ | ||
26 | |||
27 | #ifdef CONFIG_MTD_UBI_DEBUG_MSG | ||
28 | |||
29 | #include "ubi.h" | ||
30 | |||
31 | /** | ||
32 | * ubi_dbg_dump_ec_hdr - dump an erase counter header. | ||
33 | * @ec_hdr: the erase counter header to dump | ||
34 | */ | ||
35 | void ubi_dbg_dump_ec_hdr(const struct ubi_ec_hdr *ec_hdr) | ||
36 | { | ||
37 | dbg_msg("erase counter header dump:"); | ||
38 | dbg_msg("magic %#08x", ubi32_to_cpu(ec_hdr->magic)); | ||
39 | dbg_msg("version %d", (int)ec_hdr->version); | ||
40 | dbg_msg("ec %llu", (long long)ubi64_to_cpu(ec_hdr->ec)); | ||
41 | dbg_msg("vid_hdr_offset %d", ubi32_to_cpu(ec_hdr->vid_hdr_offset)); | ||
42 | dbg_msg("data_offset %d", ubi32_to_cpu(ec_hdr->data_offset)); | ||
43 | dbg_msg("hdr_crc %#08x", ubi32_to_cpu(ec_hdr->hdr_crc)); | ||
44 | dbg_msg("erase counter header hexdump:"); | ||
45 | ubi_dbg_hexdump(ec_hdr, UBI_EC_HDR_SIZE); | ||
46 | } | ||
47 | |||
48 | /** | ||
49 | * ubi_dbg_dump_vid_hdr - dump a volume identifier header. | ||
50 | * @vid_hdr: the volume identifier header to dump | ||
51 | */ | ||
52 | void ubi_dbg_dump_vid_hdr(const struct ubi_vid_hdr *vid_hdr) | ||
53 | { | ||
54 | dbg_msg("volume identifier header dump:"); | ||
55 | dbg_msg("magic %08x", ubi32_to_cpu(vid_hdr->magic)); | ||
56 | dbg_msg("version %d", (int)vid_hdr->version); | ||
57 | dbg_msg("vol_type %d", (int)vid_hdr->vol_type); | ||
58 | dbg_msg("copy_flag %d", (int)vid_hdr->copy_flag); | ||
59 | dbg_msg("compat %d", (int)vid_hdr->compat); | ||
60 | dbg_msg("vol_id %d", ubi32_to_cpu(vid_hdr->vol_id)); | ||
61 | dbg_msg("lnum %d", ubi32_to_cpu(vid_hdr->lnum)); | ||
62 | dbg_msg("leb_ver %u", ubi32_to_cpu(vid_hdr->leb_ver)); | ||
63 | dbg_msg("data_size %d", ubi32_to_cpu(vid_hdr->data_size)); | ||
64 | dbg_msg("used_ebs %d", ubi32_to_cpu(vid_hdr->used_ebs)); | ||
65 | dbg_msg("data_pad %d", ubi32_to_cpu(vid_hdr->data_pad)); | ||
66 | dbg_msg("sqnum %llu", | ||
67 | (unsigned long long)ubi64_to_cpu(vid_hdr->sqnum)); | ||
68 | dbg_msg("hdr_crc %08x", ubi32_to_cpu(vid_hdr->hdr_crc)); | ||
69 | dbg_msg("volume identifier header hexdump:"); | ||
70 | } | ||
71 | |||
72 | /** | ||
73 | * ubi_dbg_dump_vol_info- dump volume information. | ||
74 | * @vol: UBI volume description object | ||
75 | */ | ||
76 | void ubi_dbg_dump_vol_info(const struct ubi_volume *vol) | ||
77 | { | ||
78 | dbg_msg("volume information dump:"); | ||
79 | dbg_msg("vol_id %d", vol->vol_id); | ||
80 | dbg_msg("reserved_pebs %d", vol->reserved_pebs); | ||
81 | dbg_msg("alignment %d", vol->alignment); | ||
82 | dbg_msg("data_pad %d", vol->data_pad); | ||
83 | dbg_msg("vol_type %d", vol->vol_type); | ||
84 | dbg_msg("name_len %d", vol->name_len); | ||
85 | dbg_msg("usable_leb_size %d", vol->usable_leb_size); | ||
86 | dbg_msg("used_ebs %d", vol->used_ebs); | ||
87 | dbg_msg("used_bytes %lld", vol->used_bytes); | ||
88 | dbg_msg("last_eb_bytes %d", vol->last_eb_bytes); | ||
89 | dbg_msg("corrupted %d", vol->corrupted); | ||
90 | dbg_msg("upd_marker %d", vol->upd_marker); | ||
91 | |||
92 | if (vol->name_len <= UBI_VOL_NAME_MAX && | ||
93 | strnlen(vol->name, vol->name_len + 1) == vol->name_len) { | ||
94 | dbg_msg("name %s", vol->name); | ||
95 | } else { | ||
96 | dbg_msg("the 1st 5 characters of the name: %c%c%c%c%c", | ||
97 | vol->name[0], vol->name[1], vol->name[2], | ||
98 | vol->name[3], vol->name[4]); | ||
99 | } | ||
100 | } | ||
101 | |||
102 | /** | ||
103 | * ubi_dbg_dump_vtbl_record - dump a &struct ubi_vtbl_record object. | ||
104 | * @r: the object to dump | ||
105 | * @idx: volume table index | ||
106 | */ | ||
107 | void ubi_dbg_dump_vtbl_record(const struct ubi_vtbl_record *r, int idx) | ||
108 | { | ||
109 | int name_len = ubi16_to_cpu(r->name_len); | ||
110 | |||
111 | dbg_msg("volume table record %d dump:", idx); | ||
112 | dbg_msg("reserved_pebs %d", ubi32_to_cpu(r->reserved_pebs)); | ||
113 | dbg_msg("alignment %d", ubi32_to_cpu(r->alignment)); | ||
114 | dbg_msg("data_pad %d", ubi32_to_cpu(r->data_pad)); | ||
115 | dbg_msg("vol_type %d", (int)r->vol_type); | ||
116 | dbg_msg("upd_marker %d", (int)r->upd_marker); | ||
117 | dbg_msg("name_len %d", name_len); | ||
118 | |||
119 | if (r->name[0] == '\0') { | ||
120 | dbg_msg("name NULL"); | ||
121 | return; | ||
122 | } | ||
123 | |||
124 | if (name_len <= UBI_VOL_NAME_MAX && | ||
125 | strnlen(&r->name[0], name_len + 1) == name_len) { | ||
126 | dbg_msg("name %s", &r->name[0]); | ||
127 | } else { | ||
128 | dbg_msg("1st 5 characters of the name: %c%c%c%c%c", | ||
129 | r->name[0], r->name[1], r->name[2], r->name[3], | ||
130 | r->name[4]); | ||
131 | } | ||
132 | dbg_msg("crc %#08x", ubi32_to_cpu(r->crc)); | ||
133 | } | ||
134 | |||
135 | /** | ||
136 | * ubi_dbg_dump_sv - dump a &struct ubi_scan_volume object. | ||
137 | * @sv: the object to dump | ||
138 | */ | ||
139 | void ubi_dbg_dump_sv(const struct ubi_scan_volume *sv) | ||
140 | { | ||
141 | dbg_msg("volume scanning information dump:"); | ||
142 | dbg_msg("vol_id %d", sv->vol_id); | ||
143 | dbg_msg("highest_lnum %d", sv->highest_lnum); | ||
144 | dbg_msg("leb_count %d", sv->leb_count); | ||
145 | dbg_msg("compat %d", sv->compat); | ||
146 | dbg_msg("vol_type %d", sv->vol_type); | ||
147 | dbg_msg("used_ebs %d", sv->used_ebs); | ||
148 | dbg_msg("last_data_size %d", sv->last_data_size); | ||
149 | dbg_msg("data_pad %d", sv->data_pad); | ||
150 | } | ||
151 | |||
152 | /** | ||
153 | * ubi_dbg_dump_seb - dump a &struct ubi_scan_leb object. | ||
154 | * @seb: the object to dump | ||
155 | * @type: object type: 0 - not corrupted, 1 - corrupted | ||
156 | */ | ||
157 | void ubi_dbg_dump_seb(const struct ubi_scan_leb *seb, int type) | ||
158 | { | ||
159 | dbg_msg("eraseblock scanning information dump:"); | ||
160 | dbg_msg("ec %d", seb->ec); | ||
161 | dbg_msg("pnum %d", seb->pnum); | ||
162 | if (type == 0) { | ||
163 | dbg_msg("lnum %d", seb->lnum); | ||
164 | dbg_msg("scrub %d", seb->scrub); | ||
165 | dbg_msg("sqnum %llu", seb->sqnum); | ||
166 | dbg_msg("leb_ver %u", seb->leb_ver); | ||
167 | } | ||
168 | } | ||
169 | |||
170 | /** | ||
171 | * ubi_dbg_dump_mkvol_req - dump a &struct ubi_mkvol_req object. | ||
172 | * @req: the object to dump | ||
173 | */ | ||
174 | void ubi_dbg_dump_mkvol_req(const struct ubi_mkvol_req *req) | ||
175 | { | ||
176 | char nm[17]; | ||
177 | |||
178 | dbg_msg("volume creation request dump:"); | ||
179 | dbg_msg("vol_id %d", req->vol_id); | ||
180 | dbg_msg("alignment %d", req->alignment); | ||
181 | dbg_msg("bytes %lld", (long long)req->bytes); | ||
182 | dbg_msg("vol_type %d", req->vol_type); | ||
183 | dbg_msg("name_len %d", req->name_len); | ||
184 | |||
185 | memcpy(nm, req->name, 16); | ||
186 | nm[16] = 0; | ||
187 | dbg_msg("the 1st 16 characters of the name: %s", nm); | ||
188 | } | ||
189 | |||
190 | #define BYTES_PER_LINE 32 | ||
191 | |||
192 | /** | ||
193 | * ubi_dbg_hexdump - dump a buffer. | ||
194 | * @ptr: the buffer to dump | ||
195 | * @size: buffer size which must be multiple of 4 bytes | ||
196 | */ | ||
197 | void ubi_dbg_hexdump(const void *ptr, int size) | ||
198 | { | ||
199 | int i, k = 0, rows, columns; | ||
200 | const uint8_t *p = ptr; | ||
201 | |||
202 | size = ALIGN(size, 4); | ||
203 | rows = size/BYTES_PER_LINE + size % BYTES_PER_LINE; | ||
204 | for (i = 0; i < rows; i++) { | ||
205 | int j; | ||
206 | |||
207 | cond_resched(); | ||
208 | columns = min(size - k, BYTES_PER_LINE) / 4; | ||
209 | if (columns == 0) | ||
210 | break; | ||
211 | printk(KERN_DEBUG "%5d: ", i * BYTES_PER_LINE); | ||
212 | for (j = 0; j < columns; j++) { | ||
213 | int n, N; | ||
214 | |||
215 | N = size - k > 4 ? 4 : size - k; | ||
216 | for (n = 0; n < N; n++) | ||
217 | printk("%02x", p[k++]); | ||
218 | printk(" "); | ||
219 | } | ||
220 | printk("\n"); | ||
221 | } | ||
222 | } | ||
223 | |||
224 | #endif /* CONFIG_MTD_UBI_DEBUG_MSG */ | ||