aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/nandsim.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/mtd/nand/nandsim.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/mtd/nand/nandsim.c')
-rw-r--r--drivers/mtd/nand/nandsim.c1613
1 files changed, 1613 insertions, 0 deletions
diff --git a/drivers/mtd/nand/nandsim.c b/drivers/mtd/nand/nandsim.c
new file mode 100644
index 000000000000..13feefd7d8ca
--- /dev/null
+++ b/drivers/mtd/nand/nandsim.c
@@ -0,0 +1,1613 @@
1/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 *
25 * $Id: nandsim.c,v 1.7 2004/12/06 11:53:06 dedekind Exp $
26 */
27
28#include <linux/config.h>
29#include <linux/init.h>
30#include <linux/types.h>
31#include <linux/module.h>
32#include <linux/moduleparam.h>
33#include <linux/vmalloc.h>
34#include <linux/slab.h>
35#include <linux/errno.h>
36#include <linux/string.h>
37#include <linux/mtd/mtd.h>
38#include <linux/mtd/nand.h>
39#include <linux/mtd/partitions.h>
40#include <linux/delay.h>
41#ifdef CONFIG_NS_ABS_POS
42#include <asm/io.h>
43#endif
44
45
46/* Default simulator parameters values */
47#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
52#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
54#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
55#endif
56
57#ifndef CONFIG_NANDSIM_ACCESS_DELAY
58#define CONFIG_NANDSIM_ACCESS_DELAY 25
59#endif
60#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62#endif
63#ifndef CONFIG_NANDSIM_ERASE_DELAY
64#define CONFIG_NANDSIM_ERASE_DELAY 2
65#endif
66#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68#endif
69#ifndef CONFIG_NANDSIM_INPUT_CYCLE
70#define CONFIG_NANDSIM_INPUT_CYCLE 50
71#endif
72#ifndef CONFIG_NANDSIM_BUS_WIDTH
73#define CONFIG_NANDSIM_BUS_WIDTH 8
74#endif
75#ifndef CONFIG_NANDSIM_DO_DELAYS
76#define CONFIG_NANDSIM_DO_DELAYS 0
77#endif
78#ifndef CONFIG_NANDSIM_LOG
79#define CONFIG_NANDSIM_LOG 0
80#endif
81#ifndef CONFIG_NANDSIM_DBG
82#define CONFIG_NANDSIM_DBG 0
83#endif
84
85static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
86static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
87static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
88static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
89static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
90static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
91static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
92static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
93static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
94static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
95static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
96static uint log = CONFIG_NANDSIM_LOG;
97static uint dbg = CONFIG_NANDSIM_DBG;
98
99module_param(first_id_byte, uint, 0400);
100module_param(second_id_byte, uint, 0400);
101module_param(third_id_byte, uint, 0400);
102module_param(fourth_id_byte, uint, 0400);
103module_param(access_delay, uint, 0400);
104module_param(programm_delay, uint, 0400);
105module_param(erase_delay, uint, 0400);
106module_param(output_cycle, uint, 0400);
107module_param(input_cycle, uint, 0400);
108module_param(bus_width, uint, 0400);
109module_param(do_delays, uint, 0400);
110module_param(log, uint, 0400);
111module_param(dbg, uint, 0400);
112
113MODULE_PARM_DESC(first_id_byte, "The fist byte returned by NAND Flash 'read ID' command (manufaturer ID)");
114MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
115MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
116MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
117MODULE_PARM_DESC(access_delay, "Initial page access delay (microiseconds)");
118MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
119MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
120MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanodeconds)");
121MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanodeconds)");
122MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
123MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
124MODULE_PARM_DESC(log, "Perform logging if not zero");
125MODULE_PARM_DESC(dbg, "Output debug information if not zero");
126
127/* The largest possible page size */
128#define NS_LARGEST_PAGE_SIZE 2048
129
130/* The prefix for simulator output */
131#define NS_OUTPUT_PREFIX "[nandsim]"
132
133/* Simulator's output macros (logging, debugging, warning, error) */
134#define NS_LOG(args...) \
135 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
136#define NS_DBG(args...) \
137 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
138#define NS_WARN(args...) \
139 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warnig: " args); } while(0)
140#define NS_ERR(args...) \
141 do { printk(KERN_ERR NS_OUTPUT_PREFIX " errorr: " args); } while(0)
142
143/* Busy-wait delay macros (microseconds, milliseconds) */
144#define NS_UDELAY(us) \
145 do { if (do_delays) udelay(us); } while(0)
146#define NS_MDELAY(us) \
147 do { if (do_delays) mdelay(us); } while(0)
148
149/* Is the nandsim structure initialized ? */
150#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
151
152/* Good operation completion status */
153#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
154
155/* Operation failed completion status */
156#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
157
158/* Calculate the page offset in flash RAM image by (row, column) address */
159#define NS_RAW_OFFSET(ns) \
160 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
161
162/* Calculate the OOB offset in flash RAM image by (row, column) address */
163#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
164
165/* After a command is input, the simulator goes to one of the following states */
166#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
167#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
168#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
169#define STATE_CMD_PAGEPROG 0x00000004 /* start page programm */
170#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
171#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
172#define STATE_CMD_STATUS 0x00000007 /* read status */
173#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
174#define STATE_CMD_SEQIN 0x00000009 /* sequential data imput */
175#define STATE_CMD_READID 0x0000000A /* read ID */
176#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
177#define STATE_CMD_RESET 0x0000000C /* reset */
178#define STATE_CMD_MASK 0x0000000F /* command states mask */
179
180/* After an addres is input, the simulator goes to one of these states */
181#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
182#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
183#define STATE_ADDR_ZERO 0x00000030 /* one byte zero address was accepted */
184#define STATE_ADDR_MASK 0x00000030 /* address states mask */
185
186/* Durind data input/output the simulator is in these states */
187#define STATE_DATAIN 0x00000100 /* waiting for data input */
188#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
189
190#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
191#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
192#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
193#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
194#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
195
196/* Previous operation is done, ready to accept new requests */
197#define STATE_READY 0x00000000
198
199/* This state is used to mark that the next state isn't known yet */
200#define STATE_UNKNOWN 0x10000000
201
202/* Simulator's actions bit masks */
203#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
204#define ACTION_PRGPAGE 0x00200000 /* programm the internal buffer to flash */
205#define ACTION_SECERASE 0x00300000 /* erase sector */
206#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
207#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
208#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
209#define ACTION_MASK 0x00700000 /* action mask */
210
211#define NS_OPER_NUM 12 /* Number of operations supported by the simulator */
212#define NS_OPER_STATES 6 /* Maximum number of states in operation */
213
214#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
215#define OPT_PAGE256 0x00000001 /* 256-byte page chips */
216#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
217#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
218#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
219#define OPT_AUTOINCR 0x00000020 /* page number auto inctimentation is possible */
220#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
221#define OPT_LARGEPAGE (OPT_PAGE2048) /* 2048-byte page chips */
222#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
223
224/* Remove action bits ftom state */
225#define NS_STATE(x) ((x) & ~ACTION_MASK)
226
227/*
228 * Maximum previous states which need to be saved. Currently saving is
229 * only needed for page programm operation with preceeded read command
230 * (which is only valid for 512-byte pages).
231 */
232#define NS_MAX_PREVSTATES 1
233
234/*
235 * The structure which describes all the internal simulator data.
236 */
237struct nandsim {
238 struct mtd_partition part;
239
240 uint busw; /* flash chip bus width (8 or 16) */
241 u_char ids[4]; /* chip's ID bytes */
242 uint32_t options; /* chip's characteristic bits */
243 uint32_t state; /* current chip state */
244 uint32_t nxstate; /* next expected state */
245
246 uint32_t *op; /* current operation, NULL operations isn't known yet */
247 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
248 uint16_t npstates; /* number of previous states saved */
249 uint16_t stateidx; /* current state index */
250
251 /* The simulated NAND flash image */
252 union flash_media {
253 u_char *byte;
254 uint16_t *word;
255 } mem;
256
257 /* Internal buffer of page + OOB size bytes */
258 union internal_buffer {
259 u_char *byte; /* for byte access */
260 uint16_t *word; /* for 16-bit word access */
261 } buf;
262
263 /* NAND flash "geometry" */
264 struct nandsin_geometry {
265 uint32_t totsz; /* total flash size, bytes */
266 uint32_t secsz; /* flash sector (erase block) size, bytes */
267 uint pgsz; /* NAND flash page size, bytes */
268 uint oobsz; /* page OOB area size, bytes */
269 uint32_t totszoob; /* total flash size including OOB, bytes */
270 uint pgszoob; /* page size including OOB , bytes*/
271 uint secszoob; /* sector size including OOB, bytes */
272 uint pgnum; /* total number of pages */
273 uint pgsec; /* number of pages per sector */
274 uint secshift; /* bits number in sector size */
275 uint pgshift; /* bits number in page size */
276 uint oobshift; /* bits number in OOB size */
277 uint pgaddrbytes; /* bytes per page address */
278 uint secaddrbytes; /* bytes per sector address */
279 uint idbytes; /* the number ID bytes that this chip outputs */
280 } geom;
281
282 /* NAND flash internal registers */
283 struct nandsim_regs {
284 unsigned command; /* the command register */
285 u_char status; /* the status register */
286 uint row; /* the page number */
287 uint column; /* the offset within page */
288 uint count; /* internal counter */
289 uint num; /* number of bytes which must be processed */
290 uint off; /* fixed page offset */
291 } regs;
292
293 /* NAND flash lines state */
294 struct ns_lines_status {
295 int ce; /* chip Enable */
296 int cle; /* command Latch Enable */
297 int ale; /* address Latch Enable */
298 int wp; /* write Protect */
299 } lines;
300};
301
302/*
303 * Operations array. To perform any operation the simulator must pass
304 * through the correspondent states chain.
305 */
306static struct nandsim_operations {
307 uint32_t reqopts; /* options which are required to perform the operation */
308 uint32_t states[NS_OPER_STATES]; /* operation's states */
309} ops[NS_OPER_NUM] = {
310 /* Read page + OOB from the beginning */
311 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
312 STATE_DATAOUT, STATE_READY}},
313 /* Read page + OOB from the second half */
314 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
315 STATE_DATAOUT, STATE_READY}},
316 /* Read OOB */
317 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
318 STATE_DATAOUT, STATE_READY}},
319 /* Programm page starting from the beginning */
320 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
321 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
322 /* Programm page starting from the beginning */
323 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
324 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
325 /* Programm page starting from the second half */
326 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
327 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
328 /* Programm OOB */
329 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
330 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
331 /* Erase sector */
332 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
333 /* Read status */
334 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
335 /* Read multi-plane status */
336 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
337 /* Read ID */
338 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
339 /* Large page devices read page */
340 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
341 STATE_DATAOUT, STATE_READY}}
342};
343
344/* MTD structure for NAND controller */
345static struct mtd_info *nsmtd;
346
347static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
348
349/*
350 * Initialize the nandsim structure.
351 *
352 * RETURNS: 0 if success, -ERRNO if failure.
353 */
354static int
355init_nandsim(struct mtd_info *mtd)
356{
357 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
358 struct nandsim *ns = (struct nandsim *)(chip->priv);
359 int i;
360
361 if (NS_IS_INITIALIZED(ns)) {
362 NS_ERR("init_nandsim: nandsim is already initialized\n");
363 return -EIO;
364 }
365
366 /* Force mtd to not do delays */
367 chip->chip_delay = 0;
368
369 /* Initialize the NAND flash parameters */
370 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
371 ns->geom.totsz = mtd->size;
372 ns->geom.pgsz = mtd->oobblock;
373 ns->geom.oobsz = mtd->oobsize;
374 ns->geom.secsz = mtd->erasesize;
375 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
376 ns->geom.pgnum = ns->geom.totsz / ns->geom.pgsz;
377 ns->geom.totszoob = ns->geom.totsz + ns->geom.pgnum * ns->geom.oobsz;
378 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
379 ns->geom.pgshift = chip->page_shift;
380 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
381 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
382 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
383 ns->options = 0;
384
385 if (ns->geom.pgsz == 256) {
386 ns->options |= OPT_PAGE256;
387 }
388 else if (ns->geom.pgsz == 512) {
389 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
390 if (ns->busw == 8)
391 ns->options |= OPT_PAGE512_8BIT;
392 } else if (ns->geom.pgsz == 2048) {
393 ns->options |= OPT_PAGE2048;
394 } else {
395 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
396 return -EIO;
397 }
398
399 if (ns->options & OPT_SMALLPAGE) {
400 if (ns->geom.totsz < (64 << 20)) {
401 ns->geom.pgaddrbytes = 3;
402 ns->geom.secaddrbytes = 2;
403 } else {
404 ns->geom.pgaddrbytes = 4;
405 ns->geom.secaddrbytes = 3;
406 }
407 } else {
408 if (ns->geom.totsz <= (128 << 20)) {
409 ns->geom.pgaddrbytes = 5;
410 ns->geom.secaddrbytes = 2;
411 } else {
412 ns->geom.pgaddrbytes = 5;
413 ns->geom.secaddrbytes = 3;
414 }
415 }
416
417 /* Detect how many ID bytes the NAND chip outputs */
418 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
419 if (second_id_byte != nand_flash_ids[i].id)
420 continue;
421 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
422 ns->options |= OPT_AUTOINCR;
423 }
424
425 if (ns->busw == 16)
426 NS_WARN("16-bit flashes support wasn't tested\n");
427
428 printk("flash size: %u MiB\n", ns->geom.totsz >> 20);
429 printk("page size: %u bytes\n", ns->geom.pgsz);
430 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
431 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
432 printk("pages number: %u\n", ns->geom.pgnum);
433 printk("pages per sector: %u\n", ns->geom.pgsec);
434 printk("bus width: %u\n", ns->busw);
435 printk("bits in sector size: %u\n", ns->geom.secshift);
436 printk("bits in page size: %u\n", ns->geom.pgshift);
437 printk("bits in OOB size: %u\n", ns->geom.oobshift);
438 printk("flash size with OOB: %u KiB\n", ns->geom.totszoob >> 10);
439 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
440 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
441 printk("options: %#x\n", ns->options);
442
443 /* Map / allocate and initialize the flash image */
444#ifdef CONFIG_NS_ABS_POS
445 ns->mem.byte = ioremap(CONFIG_NS_ABS_POS, ns->geom.totszoob);
446 if (!ns->mem.byte) {
447 NS_ERR("init_nandsim: failed to map the NAND flash image at address %p\n",
448 (void *)CONFIG_NS_ABS_POS);
449 return -ENOMEM;
450 }
451#else
452 ns->mem.byte = vmalloc(ns->geom.totszoob);
453 if (!ns->mem.byte) {
454 NS_ERR("init_nandsim: unable to allocate %u bytes for flash image\n",
455 ns->geom.totszoob);
456 return -ENOMEM;
457 }
458 memset(ns->mem.byte, 0xFF, ns->geom.totszoob);
459#endif
460
461 /* Allocate / initialize the internal buffer */
462 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
463 if (!ns->buf.byte) {
464 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
465 ns->geom.pgszoob);
466 goto error;
467 }
468 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
469
470 /* Fill the partition_info structure */
471 ns->part.name = "NAND simulator partition";
472 ns->part.offset = 0;
473 ns->part.size = ns->geom.totsz;
474
475 return 0;
476
477error:
478#ifdef CONFIG_NS_ABS_POS
479 iounmap(ns->mem.byte);
480#else
481 vfree(ns->mem.byte);
482#endif
483
484 return -ENOMEM;
485}
486
487/*
488 * Free the nandsim structure.
489 */
490static void
491free_nandsim(struct nandsim *ns)
492{
493 kfree(ns->buf.byte);
494
495#ifdef CONFIG_NS_ABS_POS
496 iounmap(ns->mem.byte);
497#else
498 vfree(ns->mem.byte);
499#endif
500
501 return;
502}
503
504/*
505 * Returns the string representation of 'state' state.
506 */
507static char *
508get_state_name(uint32_t state)
509{
510 switch (NS_STATE(state)) {
511 case STATE_CMD_READ0:
512 return "STATE_CMD_READ0";
513 case STATE_CMD_READ1:
514 return "STATE_CMD_READ1";
515 case STATE_CMD_PAGEPROG:
516 return "STATE_CMD_PAGEPROG";
517 case STATE_CMD_READOOB:
518 return "STATE_CMD_READOOB";
519 case STATE_CMD_READSTART:
520 return "STATE_CMD_READSTART";
521 case STATE_CMD_ERASE1:
522 return "STATE_CMD_ERASE1";
523 case STATE_CMD_STATUS:
524 return "STATE_CMD_STATUS";
525 case STATE_CMD_STATUS_M:
526 return "STATE_CMD_STATUS_M";
527 case STATE_CMD_SEQIN:
528 return "STATE_CMD_SEQIN";
529 case STATE_CMD_READID:
530 return "STATE_CMD_READID";
531 case STATE_CMD_ERASE2:
532 return "STATE_CMD_ERASE2";
533 case STATE_CMD_RESET:
534 return "STATE_CMD_RESET";
535 case STATE_ADDR_PAGE:
536 return "STATE_ADDR_PAGE";
537 case STATE_ADDR_SEC:
538 return "STATE_ADDR_SEC";
539 case STATE_ADDR_ZERO:
540 return "STATE_ADDR_ZERO";
541 case STATE_DATAIN:
542 return "STATE_DATAIN";
543 case STATE_DATAOUT:
544 return "STATE_DATAOUT";
545 case STATE_DATAOUT_ID:
546 return "STATE_DATAOUT_ID";
547 case STATE_DATAOUT_STATUS:
548 return "STATE_DATAOUT_STATUS";
549 case STATE_DATAOUT_STATUS_M:
550 return "STATE_DATAOUT_STATUS_M";
551 case STATE_READY:
552 return "STATE_READY";
553 case STATE_UNKNOWN:
554 return "STATE_UNKNOWN";
555 }
556
557 NS_ERR("get_state_name: unknown state, BUG\n");
558 return NULL;
559}
560
561/*
562 * Check if command is valid.
563 *
564 * RETURNS: 1 if wrong command, 0 if right.
565 */
566static int
567check_command(int cmd)
568{
569 switch (cmd) {
570
571 case NAND_CMD_READ0:
572 case NAND_CMD_READSTART:
573 case NAND_CMD_PAGEPROG:
574 case NAND_CMD_READOOB:
575 case NAND_CMD_ERASE1:
576 case NAND_CMD_STATUS:
577 case NAND_CMD_SEQIN:
578 case NAND_CMD_READID:
579 case NAND_CMD_ERASE2:
580 case NAND_CMD_RESET:
581 case NAND_CMD_READ1:
582 return 0;
583
584 case NAND_CMD_STATUS_MULTI:
585 default:
586 return 1;
587 }
588}
589
590/*
591 * Returns state after command is accepted by command number.
592 */
593static uint32_t
594get_state_by_command(unsigned command)
595{
596 switch (command) {
597 case NAND_CMD_READ0:
598 return STATE_CMD_READ0;
599 case NAND_CMD_READ1:
600 return STATE_CMD_READ1;
601 case NAND_CMD_PAGEPROG:
602 return STATE_CMD_PAGEPROG;
603 case NAND_CMD_READSTART:
604 return STATE_CMD_READSTART;
605 case NAND_CMD_READOOB:
606 return STATE_CMD_READOOB;
607 case NAND_CMD_ERASE1:
608 return STATE_CMD_ERASE1;
609 case NAND_CMD_STATUS:
610 return STATE_CMD_STATUS;
611 case NAND_CMD_STATUS_MULTI:
612 return STATE_CMD_STATUS_M;
613 case NAND_CMD_SEQIN:
614 return STATE_CMD_SEQIN;
615 case NAND_CMD_READID:
616 return STATE_CMD_READID;
617 case NAND_CMD_ERASE2:
618 return STATE_CMD_ERASE2;
619 case NAND_CMD_RESET:
620 return STATE_CMD_RESET;
621 }
622
623 NS_ERR("get_state_by_command: unknown command, BUG\n");
624 return 0;
625}
626
627/*
628 * Move an address byte to the correspondent internal register.
629 */
630static inline void
631accept_addr_byte(struct nandsim *ns, u_char bt)
632{
633 uint byte = (uint)bt;
634
635 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
636 ns->regs.column |= (byte << 8 * ns->regs.count);
637 else {
638 ns->regs.row |= (byte << 8 * (ns->regs.count -
639 ns->geom.pgaddrbytes +
640 ns->geom.secaddrbytes));
641 }
642
643 return;
644}
645
646/*
647 * Switch to STATE_READY state.
648 */
649static inline void
650switch_to_ready_state(struct nandsim *ns, u_char status)
651{
652 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
653
654 ns->state = STATE_READY;
655 ns->nxstate = STATE_UNKNOWN;
656 ns->op = NULL;
657 ns->npstates = 0;
658 ns->stateidx = 0;
659 ns->regs.num = 0;
660 ns->regs.count = 0;
661 ns->regs.off = 0;
662 ns->regs.row = 0;
663 ns->regs.column = 0;
664 ns->regs.status = status;
665}
666
667/*
668 * If the operation isn't known yet, try to find it in the global array
669 * of supported operations.
670 *
671 * Operation can be unknown because of the following.
672 * 1. New command was accepted and this is the firs call to find the
673 * correspondent states chain. In this case ns->npstates = 0;
674 * 2. There is several operations which begin with the same command(s)
675 * (for example program from the second half and read from the
676 * second half operations both begin with the READ1 command). In this
677 * case the ns->pstates[] array contains previous states.
678 *
679 * Thus, the function tries to find operation containing the following
680 * states (if the 'flag' parameter is 0):
681 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
682 *
683 * If (one and only one) matching operation is found, it is accepted (
684 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
685 * zeroed).
686 *
687 * If there are several maches, the current state is pushed to the
688 * ns->pstates.
689 *
690 * The operation can be unknown only while commands are input to the chip.
691 * As soon as address command is accepted, the operation must be known.
692 * In such situation the function is called with 'flag' != 0, and the
693 * operation is searched using the following pattern:
694 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
695 *
696 * It is supposed that this pattern must either match one operation on
697 * none. There can't be ambiguity in that case.
698 *
699 * If no matches found, the functions does the following:
700 * 1. if there are saved states present, try to ignore them and search
701 * again only using the last command. If nothing was found, switch
702 * to the STATE_READY state.
703 * 2. if there are no saved states, switch to the STATE_READY state.
704 *
705 * RETURNS: -2 - no matched operations found.
706 * -1 - several matches.
707 * 0 - operation is found.
708 */
709static int
710find_operation(struct nandsim *ns, uint32_t flag)
711{
712 int opsfound = 0;
713 int i, j, idx = 0;
714
715 for (i = 0; i < NS_OPER_NUM; i++) {
716
717 int found = 1;
718
719 if (!(ns->options & ops[i].reqopts))
720 /* Ignore operations we can't perform */
721 continue;
722
723 if (flag) {
724 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
725 continue;
726 } else {
727 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
728 continue;
729 }
730
731 for (j = 0; j < ns->npstates; j++)
732 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
733 && (ns->options & ops[idx].reqopts)) {
734 found = 0;
735 break;
736 }
737
738 if (found) {
739 idx = i;
740 opsfound += 1;
741 }
742 }
743
744 if (opsfound == 1) {
745 /* Exact match */
746 ns->op = &ops[idx].states[0];
747 if (flag) {
748 /*
749 * In this case the find_operation function was
750 * called when address has just began input. But it isn't
751 * yet fully input and the current state must
752 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
753 * state must be the next state (ns->nxstate).
754 */
755 ns->stateidx = ns->npstates - 1;
756 } else {
757 ns->stateidx = ns->npstates;
758 }
759 ns->npstates = 0;
760 ns->state = ns->op[ns->stateidx];
761 ns->nxstate = ns->op[ns->stateidx + 1];
762 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
763 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
764 return 0;
765 }
766
767 if (opsfound == 0) {
768 /* Nothing was found. Try to ignore previous commands (if any) and search again */
769 if (ns->npstates != 0) {
770 NS_DBG("find_operation: no operation found, try again with state %s\n",
771 get_state_name(ns->state));
772 ns->npstates = 0;
773 return find_operation(ns, 0);
774
775 }
776 NS_DBG("find_operation: no operations found\n");
777 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
778 return -2;
779 }
780
781 if (flag) {
782 /* This shouldn't happen */
783 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
784 return -2;
785 }
786
787 NS_DBG("find_operation: there is still ambiguity\n");
788
789 ns->pstates[ns->npstates++] = ns->state;
790
791 return -1;
792}
793
794/*
795 * If state has any action bit, perform this action.
796 *
797 * RETURNS: 0 if success, -1 if error.
798 */
799static int
800do_state_action(struct nandsim *ns, uint32_t action)
801{
802 int i, num;
803 int busdiv = ns->busw == 8 ? 1 : 2;
804
805 action &= ACTION_MASK;
806
807 /* Check that page address input is correct */
808 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
809 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
810 return -1;
811 }
812
813 switch (action) {
814
815 case ACTION_CPY:
816 /*
817 * Copy page data to the internal buffer.
818 */
819
820 /* Column shouldn't be very large */
821 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
822 NS_ERR("do_state_action: column number is too large\n");
823 break;
824 }
825 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
826 memcpy(ns->buf.byte, ns->mem.byte + NS_RAW_OFFSET(ns) + ns->regs.off, num);
827
828 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
829 num, NS_RAW_OFFSET(ns) + ns->regs.off);
830
831 if (ns->regs.off == 0)
832 NS_LOG("read page %d\n", ns->regs.row);
833 else if (ns->regs.off < ns->geom.pgsz)
834 NS_LOG("read page %d (second half)\n", ns->regs.row);
835 else
836 NS_LOG("read OOB of page %d\n", ns->regs.row);
837
838 NS_UDELAY(access_delay);
839 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
840
841 break;
842
843 case ACTION_SECERASE:
844 /*
845 * Erase sector.
846 */
847
848 if (ns->lines.wp) {
849 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
850 return -1;
851 }
852
853 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
854 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
855 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
856 return -1;
857 }
858
859 ns->regs.row = (ns->regs.row <<
860 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
861 ns->regs.column = 0;
862
863 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
864 ns->regs.row, NS_RAW_OFFSET(ns));
865 NS_LOG("erase sector %d\n", ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift));
866
867 memset(ns->mem.byte + NS_RAW_OFFSET(ns), 0xFF, ns->geom.secszoob);
868
869 NS_MDELAY(erase_delay);
870
871 break;
872
873 case ACTION_PRGPAGE:
874 /*
875 * Programm page - move internal buffer data to the page.
876 */
877
878 if (ns->lines.wp) {
879 NS_WARN("do_state_action: device is write-protected, programm\n");
880 return -1;
881 }
882
883 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
884 if (num != ns->regs.count) {
885 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
886 ns->regs.count, num);
887 return -1;
888 }
889
890 for (i = 0; i < num; i++)
891 ns->mem.byte[NS_RAW_OFFSET(ns) + ns->regs.off + i] &= ns->buf.byte[i];
892
893 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
894 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
895 NS_LOG("programm page %d\n", ns->regs.row);
896
897 NS_UDELAY(programm_delay);
898 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
899
900 break;
901
902 case ACTION_ZEROOFF:
903 NS_DBG("do_state_action: set internal offset to 0\n");
904 ns->regs.off = 0;
905 break;
906
907 case ACTION_HALFOFF:
908 if (!(ns->options & OPT_PAGE512_8BIT)) {
909 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
910 "byte page size 8x chips\n");
911 return -1;
912 }
913 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
914 ns->regs.off = ns->geom.pgsz/2;
915 break;
916
917 case ACTION_OOBOFF:
918 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
919 ns->regs.off = ns->geom.pgsz;
920 break;
921
922 default:
923 NS_DBG("do_state_action: BUG! unknown action\n");
924 }
925
926 return 0;
927}
928
929/*
930 * Switch simulator's state.
931 */
932static void
933switch_state(struct nandsim *ns)
934{
935 if (ns->op) {
936 /*
937 * The current operation have already been identified.
938 * Just follow the states chain.
939 */
940
941 ns->stateidx += 1;
942 ns->state = ns->nxstate;
943 ns->nxstate = ns->op[ns->stateidx + 1];
944
945 NS_DBG("switch_state: operation is known, switch to the next state, "
946 "state: %s, nxstate: %s\n",
947 get_state_name(ns->state), get_state_name(ns->nxstate));
948
949 /* See, whether we need to do some action */
950 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
951 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
952 return;
953 }
954
955 } else {
956 /*
957 * We don't yet know which operation we perform.
958 * Try to identify it.
959 */
960
961 /*
962 * The only event causing the switch_state function to
963 * be called with yet unknown operation is new command.
964 */
965 ns->state = get_state_by_command(ns->regs.command);
966
967 NS_DBG("switch_state: operation is unknown, try to find it\n");
968
969 if (find_operation(ns, 0) != 0)
970 return;
971
972 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
973 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
974 return;
975 }
976 }
977
978 /* For 16x devices column means the page offset in words */
979 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
980 NS_DBG("switch_state: double the column number for 16x device\n");
981 ns->regs.column <<= 1;
982 }
983
984 if (NS_STATE(ns->nxstate) == STATE_READY) {
985 /*
986 * The current state is the last. Return to STATE_READY
987 */
988
989 u_char status = NS_STATUS_OK(ns);
990
991 /* In case of data states, see if all bytes were input/output */
992 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
993 && ns->regs.count != ns->regs.num) {
994 NS_WARN("switch_state: not all bytes were processed, %d left\n",
995 ns->regs.num - ns->regs.count);
996 status = NS_STATUS_FAILED(ns);
997 }
998
999 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1000
1001 switch_to_ready_state(ns, status);
1002
1003 return;
1004 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1005 /*
1006 * If the next state is data input/output, switch to it now
1007 */
1008
1009 ns->state = ns->nxstate;
1010 ns->nxstate = ns->op[++ns->stateidx + 1];
1011 ns->regs.num = ns->regs.count = 0;
1012
1013 NS_DBG("switch_state: the next state is data I/O, switch, "
1014 "state: %s, nxstate: %s\n",
1015 get_state_name(ns->state), get_state_name(ns->nxstate));
1016
1017 /*
1018 * Set the internal register to the count of bytes which
1019 * are expected to be input or output
1020 */
1021 switch (NS_STATE(ns->state)) {
1022 case STATE_DATAIN:
1023 case STATE_DATAOUT:
1024 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1025 break;
1026
1027 case STATE_DATAOUT_ID:
1028 ns->regs.num = ns->geom.idbytes;
1029 break;
1030
1031 case STATE_DATAOUT_STATUS:
1032 case STATE_DATAOUT_STATUS_M:
1033 ns->regs.count = ns->regs.num = 0;
1034 break;
1035
1036 default:
1037 NS_ERR("switch_state: BUG! unknown data state\n");
1038 }
1039
1040 } else if (ns->nxstate & STATE_ADDR_MASK) {
1041 /*
1042 * If the next state is address input, set the internal
1043 * register to the number of expected address bytes
1044 */
1045
1046 ns->regs.count = 0;
1047
1048 switch (NS_STATE(ns->nxstate)) {
1049 case STATE_ADDR_PAGE:
1050 ns->regs.num = ns->geom.pgaddrbytes;
1051
1052 break;
1053 case STATE_ADDR_SEC:
1054 ns->regs.num = ns->geom.secaddrbytes;
1055 break;
1056
1057 case STATE_ADDR_ZERO:
1058 ns->regs.num = 1;
1059 break;
1060
1061 default:
1062 NS_ERR("switch_state: BUG! unknown address state\n");
1063 }
1064 } else {
1065 /*
1066 * Just reset internal counters.
1067 */
1068
1069 ns->regs.num = 0;
1070 ns->regs.count = 0;
1071 }
1072}
1073
1074static void
1075ns_hwcontrol(struct mtd_info *mtd, int cmd)
1076{
1077 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1078
1079 switch (cmd) {
1080
1081 /* set CLE line high */
1082 case NAND_CTL_SETCLE:
1083 NS_DBG("ns_hwcontrol: start command latch cycles\n");
1084 ns->lines.cle = 1;
1085 break;
1086
1087 /* set CLE line low */
1088 case NAND_CTL_CLRCLE:
1089 NS_DBG("ns_hwcontrol: stop command latch cycles\n");
1090 ns->lines.cle = 0;
1091 break;
1092
1093 /* set ALE line high */
1094 case NAND_CTL_SETALE:
1095 NS_DBG("ns_hwcontrol: start address latch cycles\n");
1096 ns->lines.ale = 1;
1097 break;
1098
1099 /* set ALE line low */
1100 case NAND_CTL_CLRALE:
1101 NS_DBG("ns_hwcontrol: stop address latch cycles\n");
1102 ns->lines.ale = 0;
1103 break;
1104
1105 /* set WP line high */
1106 case NAND_CTL_SETWP:
1107 NS_DBG("ns_hwcontrol: enable write protection\n");
1108 ns->lines.wp = 1;
1109 break;
1110
1111 /* set WP line low */
1112 case NAND_CTL_CLRWP:
1113 NS_DBG("ns_hwcontrol: disable write protection\n");
1114 ns->lines.wp = 0;
1115 break;
1116
1117 /* set CE line low */
1118 case NAND_CTL_SETNCE:
1119 NS_DBG("ns_hwcontrol: enable chip\n");
1120 ns->lines.ce = 1;
1121 break;
1122
1123 /* set CE line high */
1124 case NAND_CTL_CLRNCE:
1125 NS_DBG("ns_hwcontrol: disable chip\n");
1126 ns->lines.ce = 0;
1127 break;
1128
1129 default:
1130 NS_ERR("hwcontrol: unknown command\n");
1131 }
1132
1133 return;
1134}
1135
1136static u_char
1137ns_nand_read_byte(struct mtd_info *mtd)
1138{
1139 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1140 u_char outb = 0x00;
1141
1142 /* Sanity and correctness checks */
1143 if (!ns->lines.ce) {
1144 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1145 return outb;
1146 }
1147 if (ns->lines.ale || ns->lines.cle) {
1148 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1149 return outb;
1150 }
1151 if (!(ns->state & STATE_DATAOUT_MASK)) {
1152 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1153 "return %#x\n", get_state_name(ns->state), (uint)outb);
1154 return outb;
1155 }
1156
1157 /* Status register may be read as many times as it is wanted */
1158 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1159 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1160 return ns->regs.status;
1161 }
1162
1163 /* Check if there is any data in the internal buffer which may be read */
1164 if (ns->regs.count == ns->regs.num) {
1165 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1166 return outb;
1167 }
1168
1169 switch (NS_STATE(ns->state)) {
1170 case STATE_DATAOUT:
1171 if (ns->busw == 8) {
1172 outb = ns->buf.byte[ns->regs.count];
1173 ns->regs.count += 1;
1174 } else {
1175 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1176 ns->regs.count += 2;
1177 }
1178 break;
1179 case STATE_DATAOUT_ID:
1180 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1181 outb = ns->ids[ns->regs.count];
1182 ns->regs.count += 1;
1183 break;
1184 default:
1185 BUG();
1186 }
1187
1188 if (ns->regs.count == ns->regs.num) {
1189 NS_DBG("read_byte: all bytes were read\n");
1190
1191 /*
1192 * The OPT_AUTOINCR allows to read next conseqitive pages without
1193 * new read operation cycle.
1194 */
1195 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1196 ns->regs.count = 0;
1197 if (ns->regs.row + 1 < ns->geom.pgnum)
1198 ns->regs.row += 1;
1199 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1200 do_state_action(ns, ACTION_CPY);
1201 }
1202 else if (NS_STATE(ns->nxstate) == STATE_READY)
1203 switch_state(ns);
1204
1205 }
1206
1207 return outb;
1208}
1209
1210static void
1211ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1212{
1213 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1214
1215 /* Sanity and correctness checks */
1216 if (!ns->lines.ce) {
1217 NS_ERR("write_byte: chip is disabled, ignore write\n");
1218 return;
1219 }
1220 if (ns->lines.ale && ns->lines.cle) {
1221 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1222 return;
1223 }
1224
1225 if (ns->lines.cle == 1) {
1226 /*
1227 * The byte written is a command.
1228 */
1229
1230 if (byte == NAND_CMD_RESET) {
1231 NS_LOG("reset chip\n");
1232 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1233 return;
1234 }
1235
1236 /*
1237 * Chip might still be in STATE_DATAOUT
1238 * (if OPT_AUTOINCR feature is supported), STATE_DATAOUT_STATUS or
1239 * STATE_DATAOUT_STATUS_M state. If so, switch state.
1240 */
1241 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1242 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1243 || ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT))
1244 switch_state(ns);
1245
1246 /* Check if chip is expecting command */
1247 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1248 /*
1249 * We are in situation when something else (not command)
1250 * was expected but command was input. In this case ignore
1251 * previous command(s)/state(s) and accept the last one.
1252 */
1253 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
1254 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
1255 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1256 }
1257
1258 /* Check that the command byte is correct */
1259 if (check_command(byte)) {
1260 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1261 return;
1262 }
1263
1264 NS_DBG("command byte corresponding to %s state accepted\n",
1265 get_state_name(get_state_by_command(byte)));
1266 ns->regs.command = byte;
1267 switch_state(ns);
1268
1269 } else if (ns->lines.ale == 1) {
1270 /*
1271 * The byte written is an address.
1272 */
1273
1274 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
1275
1276 NS_DBG("write_byte: operation isn't known yet, identify it\n");
1277
1278 if (find_operation(ns, 1) < 0)
1279 return;
1280
1281 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1282 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1283 return;
1284 }
1285
1286 ns->regs.count = 0;
1287 switch (NS_STATE(ns->nxstate)) {
1288 case STATE_ADDR_PAGE:
1289 ns->regs.num = ns->geom.pgaddrbytes;
1290 break;
1291 case STATE_ADDR_SEC:
1292 ns->regs.num = ns->geom.secaddrbytes;
1293 break;
1294 case STATE_ADDR_ZERO:
1295 ns->regs.num = 1;
1296 break;
1297 default:
1298 BUG();
1299 }
1300 }
1301
1302 /* Check that chip is expecting address */
1303 if (!(ns->nxstate & STATE_ADDR_MASK)) {
1304 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
1305 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
1306 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1307 return;
1308 }
1309
1310 /* Check if this is expected byte */
1311 if (ns->regs.count == ns->regs.num) {
1312 NS_ERR("write_byte: no more address bytes expected\n");
1313 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1314 return;
1315 }
1316
1317 accept_addr_byte(ns, byte);
1318
1319 ns->regs.count += 1;
1320
1321 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
1322 (uint)byte, ns->regs.count, ns->regs.num);
1323
1324 if (ns->regs.count == ns->regs.num) {
1325 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
1326 switch_state(ns);
1327 }
1328
1329 } else {
1330 /*
1331 * The byte written is an input data.
1332 */
1333
1334 /* Check that chip is expecting data input */
1335 if (!(ns->state & STATE_DATAIN_MASK)) {
1336 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
1337 "switch to %s\n", (uint)byte,
1338 get_state_name(ns->state), get_state_name(STATE_READY));
1339 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1340 return;
1341 }
1342
1343 /* Check if this is expected byte */
1344 if (ns->regs.count == ns->regs.num) {
1345 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
1346 ns->regs.num);
1347 return;
1348 }
1349
1350 if (ns->busw == 8) {
1351 ns->buf.byte[ns->regs.count] = byte;
1352 ns->regs.count += 1;
1353 } else {
1354 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
1355 ns->regs.count += 2;
1356 }
1357 }
1358
1359 return;
1360}
1361
1362static int
1363ns_device_ready(struct mtd_info *mtd)
1364{
1365 NS_DBG("device_ready\n");
1366 return 1;
1367}
1368
1369static uint16_t
1370ns_nand_read_word(struct mtd_info *mtd)
1371{
1372 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1373
1374 NS_DBG("read_word\n");
1375
1376 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
1377}
1378
1379static void
1380ns_nand_write_word(struct mtd_info *mtd, uint16_t word)
1381{
1382 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1383
1384 NS_DBG("write_word\n");
1385
1386 chip->write_byte(mtd, word & 0xFF);
1387 chip->write_byte(mtd, word >> 8);
1388}
1389
1390static void
1391ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
1392{
1393 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1394
1395 /* Check that chip is expecting data input */
1396 if (!(ns->state & STATE_DATAIN_MASK)) {
1397 NS_ERR("write_buf: data input isn't expected, state is %s, "
1398 "switch to STATE_READY\n", get_state_name(ns->state));
1399 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1400 return;
1401 }
1402
1403 /* Check if these are expected bytes */
1404 if (ns->regs.count + len > ns->regs.num) {
1405 NS_ERR("write_buf: too many input bytes\n");
1406 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1407 return;
1408 }
1409
1410 memcpy(ns->buf.byte + ns->regs.count, buf, len);
1411 ns->regs.count += len;
1412
1413 if (ns->regs.count == ns->regs.num) {
1414 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
1415 }
1416}
1417
1418static void
1419ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
1420{
1421 struct nandsim *ns = (struct nandsim *)((struct nand_chip *)mtd->priv)->priv;
1422
1423 /* Sanity and correctness checks */
1424 if (!ns->lines.ce) {
1425 NS_ERR("read_buf: chip is disabled\n");
1426 return;
1427 }
1428 if (ns->lines.ale || ns->lines.cle) {
1429 NS_ERR("read_buf: ALE or CLE pin is high\n");
1430 return;
1431 }
1432 if (!(ns->state & STATE_DATAOUT_MASK)) {
1433 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
1434 get_state_name(ns->state));
1435 return;
1436 }
1437
1438 if (NS_STATE(ns->state) != STATE_DATAOUT) {
1439 int i;
1440
1441 for (i = 0; i < len; i++)
1442 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
1443
1444 return;
1445 }
1446
1447 /* Check if these are expected bytes */
1448 if (ns->regs.count + len > ns->regs.num) {
1449 NS_ERR("read_buf: too many bytes to read\n");
1450 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1451 return;
1452 }
1453
1454 memcpy(buf, ns->buf.byte + ns->regs.count, len);
1455 ns->regs.count += len;
1456
1457 if (ns->regs.count == ns->regs.num) {
1458 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1459 ns->regs.count = 0;
1460 if (ns->regs.row + 1 < ns->geom.pgnum)
1461 ns->regs.row += 1;
1462 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
1463 do_state_action(ns, ACTION_CPY);
1464 }
1465 else if (NS_STATE(ns->nxstate) == STATE_READY)
1466 switch_state(ns);
1467 }
1468
1469 return;
1470}
1471
1472static int
1473ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
1474{
1475 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
1476
1477 if (!memcmp(buf, &ns_verify_buf[0], len)) {
1478 NS_DBG("verify_buf: the buffer is OK\n");
1479 return 0;
1480 } else {
1481 NS_DBG("verify_buf: the buffer is wrong\n");
1482 return -EFAULT;
1483 }
1484}
1485
1486/*
1487 * Having only NAND chip IDs we call nand_scan which detects NAND flash
1488 * parameters and then calls scan_bbt in order to scan/find/build the
1489 * NAND flash bad block table. But since at that moment the NAND flash
1490 * image isn't allocated in the simulator, errors arise. To avoid this
1491 * we redefine the scan_bbt callback and initialize the nandsim structure
1492 * before the flash media scanning.
1493 */
1494int ns_scan_bbt(struct mtd_info *mtd)
1495{
1496 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
1497 struct nandsim *ns = (struct nandsim *)(chip->priv);
1498 int retval;
1499
1500 if (!NS_IS_INITIALIZED(ns))
1501 if ((retval = init_nandsim(mtd)) != 0) {
1502 NS_ERR("scan_bbt: can't initialize the nandsim structure\n");
1503 return retval;
1504 }
1505 if ((retval = nand_default_bbt(mtd)) != 0) {
1506 free_nandsim(ns);
1507 return retval;
1508 }
1509
1510 return 0;
1511}
1512
1513/*
1514 * Module initialization function
1515 */
1516int __init ns_init_module(void)
1517{
1518 struct nand_chip *chip;
1519 struct nandsim *nand;
1520 int retval = -ENOMEM;
1521
1522 if (bus_width != 8 && bus_width != 16) {
1523 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
1524 return -EINVAL;
1525 }
1526
1527 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
1528 nsmtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
1529 + sizeof(struct nandsim), GFP_KERNEL);
1530 if (!nsmtd) {
1531 NS_ERR("unable to allocate core structures.\n");
1532 return -ENOMEM;
1533 }
1534 memset(nsmtd, 0, sizeof(struct mtd_info) + sizeof(struct nand_chip) +
1535 sizeof(struct nandsim));
1536 chip = (struct nand_chip *)(nsmtd + 1);
1537 nsmtd->priv = (void *)chip;
1538 nand = (struct nandsim *)(chip + 1);
1539 chip->priv = (void *)nand;
1540
1541 /*
1542 * Register simulator's callbacks.
1543 */
1544 chip->hwcontrol = ns_hwcontrol;
1545 chip->read_byte = ns_nand_read_byte;
1546 chip->dev_ready = ns_device_ready;
1547 chip->scan_bbt = ns_scan_bbt;
1548 chip->write_byte = ns_nand_write_byte;
1549 chip->write_buf = ns_nand_write_buf;
1550 chip->read_buf = ns_nand_read_buf;
1551 chip->verify_buf = ns_nand_verify_buf;
1552 chip->write_word = ns_nand_write_word;
1553 chip->read_word = ns_nand_read_word;
1554 chip->eccmode = NAND_ECC_SOFT;
1555
1556 /*
1557 * Perform minimum nandsim structure initialization to handle
1558 * the initial ID read command correctly
1559 */
1560 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
1561 nand->geom.idbytes = 4;
1562 else
1563 nand->geom.idbytes = 2;
1564 nand->regs.status = NS_STATUS_OK(nand);
1565 nand->nxstate = STATE_UNKNOWN;
1566 nand->options |= OPT_PAGE256; /* temporary value */
1567 nand->ids[0] = first_id_byte;
1568 nand->ids[1] = second_id_byte;
1569 nand->ids[2] = third_id_byte;
1570 nand->ids[3] = fourth_id_byte;
1571 if (bus_width == 16) {
1572 nand->busw = 16;
1573 chip->options |= NAND_BUSWIDTH_16;
1574 }
1575
1576 if ((retval = nand_scan(nsmtd, 1)) != 0) {
1577 NS_ERR("can't register NAND Simulator\n");
1578 if (retval > 0)
1579 retval = -ENXIO;
1580 goto error;
1581 }
1582
1583 /* Register NAND as one big partition */
1584 add_mtd_partitions(nsmtd, &nand->part, 1);
1585
1586 return 0;
1587
1588error:
1589 kfree(nsmtd);
1590
1591 return retval;
1592}
1593
1594module_init(ns_init_module);
1595
1596/*
1597 * Module clean-up function
1598 */
1599static void __exit ns_cleanup_module(void)
1600{
1601 struct nandsim *ns = (struct nandsim *)(((struct nand_chip *)nsmtd->priv)->priv);
1602
1603 free_nandsim(ns); /* Free nandsim private resources */
1604 nand_release(nsmtd); /* Unregisterd drived */
1605 kfree(nsmtd); /* Free other structures */
1606}
1607
1608module_exit(ns_cleanup_module);
1609
1610MODULE_LICENSE ("GPL");
1611MODULE_AUTHOR ("Artem B. Bityuckiy");
1612MODULE_DESCRIPTION ("The NAND flash simulator");
1613