aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/mxc_nand.c
diff options
context:
space:
mode:
authorSascha Hauer <s.hauer@pengutronix.de>2008-09-02 11:16:59 -0400
committerDavid Woodhouse <David.Woodhouse@intel.com>2008-09-02 17:35:36 -0400
commit34f6e15786293e8d6ed05f9c19ed784ff15d2702 (patch)
treeaf0485025a277b4e64d31df91fa5fa0ca08d5e1c /drivers/mtd/nand/mxc_nand.c
parent2675e9447bb5c861dbd29c5fe55b7ce2ad3ff0f5 (diff)
[MTD] [NAND] Freescale i.MX2 NAND driver
This patch adds support for the integrated NAND flash controller of the i.MX2 and i.MX3 family. It is tested on MX27 but should work on MX3 aswell. Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Juergen Beisert <j.beisert@pengutronix.de> Signed-off-by: David Woodhouse <David.Woodhouse@intel.com>
Diffstat (limited to 'drivers/mtd/nand/mxc_nand.c')
-rw-r--r--drivers/mtd/nand/mxc_nand.c1077
1 files changed, 1077 insertions, 0 deletions
diff --git a/drivers/mtd/nand/mxc_nand.c b/drivers/mtd/nand/mxc_nand.c
new file mode 100644
index 000000000000..21fd4f1c4806
--- /dev/null
+++ b/drivers/mtd/nand/mxc_nand.c
@@ -0,0 +1,1077 @@
1/*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
18 */
19
20#include <linux/delay.h>
21#include <linux/slab.h>
22#include <linux/init.h>
23#include <linux/module.h>
24#include <linux/mtd/mtd.h>
25#include <linux/mtd/nand.h>
26#include <linux/mtd/partitions.h>
27#include <linux/interrupt.h>
28#include <linux/device.h>
29#include <linux/platform_device.h>
30#include <linux/clk.h>
31#include <linux/err.h>
32#include <linux/io.h>
33
34#include <asm/mach/flash.h>
35#include <mach/mxc_nand.h>
36
37#define DRIVER_NAME "mxc_nand"
38
39/* Addresses for NFC registers */
40#define NFC_BUF_SIZE 0xE00
41#define NFC_BUF_ADDR 0xE04
42#define NFC_FLASH_ADDR 0xE06
43#define NFC_FLASH_CMD 0xE08
44#define NFC_CONFIG 0xE0A
45#define NFC_ECC_STATUS_RESULT 0xE0C
46#define NFC_RSLTMAIN_AREA 0xE0E
47#define NFC_RSLTSPARE_AREA 0xE10
48#define NFC_WRPROT 0xE12
49#define NFC_UNLOCKSTART_BLKADDR 0xE14
50#define NFC_UNLOCKEND_BLKADDR 0xE16
51#define NFC_NF_WRPRST 0xE18
52#define NFC_CONFIG1 0xE1A
53#define NFC_CONFIG2 0xE1C
54
55/* Addresses for NFC RAM BUFFER Main area 0 */
56#define MAIN_AREA0 0x000
57#define MAIN_AREA1 0x200
58#define MAIN_AREA2 0x400
59#define MAIN_AREA3 0x600
60
61/* Addresses for NFC SPARE BUFFER Spare area 0 */
62#define SPARE_AREA0 0x800
63#define SPARE_AREA1 0x810
64#define SPARE_AREA2 0x820
65#define SPARE_AREA3 0x830
66
67/* Set INT to 0, FCMD to 1, rest to 0 in NFC_CONFIG2 Register
68 * for Command operation */
69#define NFC_CMD 0x1
70
71/* Set INT to 0, FADD to 1, rest to 0 in NFC_CONFIG2 Register
72 * for Address operation */
73#define NFC_ADDR 0x2
74
75/* Set INT to 0, FDI to 1, rest to 0 in NFC_CONFIG2 Register
76 * for Input operation */
77#define NFC_INPUT 0x4
78
79/* Set INT to 0, FDO to 001, rest to 0 in NFC_CONFIG2 Register
80 * for Data Output operation */
81#define NFC_OUTPUT 0x8
82
83/* Set INT to 0, FD0 to 010, rest to 0 in NFC_CONFIG2 Register
84 * for Read ID operation */
85#define NFC_ID 0x10
86
87/* Set INT to 0, FDO to 100, rest to 0 in NFC_CONFIG2 Register
88 * for Read Status operation */
89#define NFC_STATUS 0x20
90
91/* Set INT to 1, rest to 0 in NFC_CONFIG2 Register for Read
92 * Status operation */
93#define NFC_INT 0x8000
94
95#define NFC_SP_EN (1 << 2)
96#define NFC_ECC_EN (1 << 3)
97#define NFC_INT_MSK (1 << 4)
98#define NFC_BIG (1 << 5)
99#define NFC_RST (1 << 6)
100#define NFC_CE (1 << 7)
101#define NFC_ONE_CYCLE (1 << 8)
102
103struct mxc_nand_host {
104 struct mtd_info mtd;
105 struct nand_chip nand;
106 struct mtd_partition *parts;
107 struct device *dev;
108
109 void __iomem *regs;
110 int spare_only;
111 int status_request;
112 int pagesize_2k;
113 uint16_t col_addr;
114 struct clk *clk;
115 int clk_act;
116 int irq;
117
118 wait_queue_head_t irq_waitq;
119};
120
121/* Define delays in microsec for NAND device operations */
122#define TROP_US_DELAY 2000
123/* Macros to get byte and bit positions of ECC */
124#define COLPOS(x) ((x) >> 3)
125#define BITPOS(x) ((x) & 0xf)
126
127/* Define single bit Error positions in Main & Spare area */
128#define MAIN_SINGLEBIT_ERROR 0x4
129#define SPARE_SINGLEBIT_ERROR 0x1
130
131/* OOB placement block for use with hardware ecc generation */
132static struct nand_ecclayout nand_hw_eccoob_8 = {
133 .eccbytes = 5,
134 .eccpos = {6, 7, 8, 9, 10},
135 .oobfree = {{0, 5}, {11, 5}, }
136};
137
138static struct nand_ecclayout nand_hw_eccoob_16 = {
139 .eccbytes = 5,
140 .eccpos = {6, 7, 8, 9, 10},
141 .oobfree = {{0, 6}, {12, 4}, }
142};
143
144#ifdef CONFIG_MTD_PARTITIONS
145static const char *part_probes[] = { "RedBoot", "cmdlinepart", NULL };
146#endif
147
148static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
149{
150 struct mxc_nand_host *host = dev_id;
151
152 uint16_t tmp;
153
154 tmp = readw(host->regs + NFC_CONFIG1);
155 tmp |= NFC_INT_MSK; /* Disable interrupt */
156 writew(tmp, host->regs + NFC_CONFIG1);
157
158 wake_up(&host->irq_waitq);
159
160 return IRQ_HANDLED;
161}
162
163/* This function polls the NANDFC to wait for the basic operation to
164 * complete by checking the INT bit of config2 register.
165 */
166static void wait_op_done(struct mxc_nand_host *host, int max_retries,
167 uint16_t param, int useirq)
168{
169 uint32_t tmp;
170
171 if (useirq) {
172 if ((readw(host->regs + NFC_CONFIG2) & NFC_INT) == 0) {
173
174 tmp = readw(host->regs + NFC_CONFIG1);
175 tmp &= ~NFC_INT_MSK; /* Enable interrupt */
176 writew(tmp, host->regs + NFC_CONFIG1);
177
178 wait_event(host->irq_waitq,
179 readw(host->regs + NFC_CONFIG2) & NFC_INT);
180
181 tmp = readw(host->regs + NFC_CONFIG2);
182 tmp &= ~NFC_INT;
183 writew(tmp, host->regs + NFC_CONFIG2);
184 }
185 } else {
186 while (max_retries-- > 0) {
187 if (readw(host->regs + NFC_CONFIG2) & NFC_INT) {
188 tmp = readw(host->regs + NFC_CONFIG2);
189 tmp &= ~NFC_INT;
190 writew(tmp, host->regs + NFC_CONFIG2);
191 break;
192 }
193 udelay(1);
194 }
195 if (max_retries <= 0)
196 DEBUG(MTD_DEBUG_LEVEL0, "%s(%d): INT not set\n",
197 __func__, param);
198 }
199}
200
201/* This function issues the specified command to the NAND device and
202 * waits for completion. */
203static void send_cmd(struct mxc_nand_host *host, uint16_t cmd, int useirq)
204{
205 DEBUG(MTD_DEBUG_LEVEL3, "send_cmd(host, 0x%x, %d)\n", cmd, useirq);
206
207 writew(cmd, host->regs + NFC_FLASH_CMD);
208 writew(NFC_CMD, host->regs + NFC_CONFIG2);
209
210 /* Wait for operation to complete */
211 wait_op_done(host, TROP_US_DELAY, cmd, useirq);
212}
213
214/* This function sends an address (or partial address) to the
215 * NAND device. The address is used to select the source/destination for
216 * a NAND command. */
217static void send_addr(struct mxc_nand_host *host, uint16_t addr, int islast)
218{
219 DEBUG(MTD_DEBUG_LEVEL3, "send_addr(host, 0x%x %d)\n", addr, islast);
220
221 writew(addr, host->regs + NFC_FLASH_ADDR);
222 writew(NFC_ADDR, host->regs + NFC_CONFIG2);
223
224 /* Wait for operation to complete */
225 wait_op_done(host, TROP_US_DELAY, addr, islast);
226}
227
228/* This function requests the NANDFC to initate the transfer
229 * of data currently in the NANDFC RAM buffer to the NAND device. */
230static void send_prog_page(struct mxc_nand_host *host, uint8_t buf_id,
231 int spare_only)
232{
233 DEBUG(MTD_DEBUG_LEVEL3, "send_prog_page (%d)\n", spare_only);
234
235 /* NANDFC buffer 0 is used for page read/write */
236 writew(buf_id, host->regs + NFC_BUF_ADDR);
237
238 /* Configure spare or page+spare access */
239 if (!host->pagesize_2k) {
240 uint16_t config1 = readw(host->regs + NFC_CONFIG1);
241 if (spare_only)
242 config1 |= NFC_SP_EN;
243 else
244 config1 &= ~(NFC_SP_EN);
245 writew(config1, host->regs + NFC_CONFIG1);
246 }
247
248 writew(NFC_INPUT, host->regs + NFC_CONFIG2);
249
250 /* Wait for operation to complete */
251 wait_op_done(host, TROP_US_DELAY, spare_only, true);
252}
253
254/* Requests NANDFC to initated the transfer of data from the
255 * NAND device into in the NANDFC ram buffer. */
256static void send_read_page(struct mxc_nand_host *host, uint8_t buf_id,
257 int spare_only)
258{
259 DEBUG(MTD_DEBUG_LEVEL3, "send_read_page (%d)\n", spare_only);
260
261 /* NANDFC buffer 0 is used for page read/write */
262 writew(buf_id, host->regs + NFC_BUF_ADDR);
263
264 /* Configure spare or page+spare access */
265 if (!host->pagesize_2k) {
266 uint32_t config1 = readw(host->regs + NFC_CONFIG1);
267 if (spare_only)
268 config1 |= NFC_SP_EN;
269 else
270 config1 &= ~NFC_SP_EN;
271 writew(config1, host->regs + NFC_CONFIG1);
272 }
273
274 writew(NFC_OUTPUT, host->regs + NFC_CONFIG2);
275
276 /* Wait for operation to complete */
277 wait_op_done(host, TROP_US_DELAY, spare_only, true);
278}
279
280/* Request the NANDFC to perform a read of the NAND device ID. */
281static void send_read_id(struct mxc_nand_host *host)
282{
283 struct nand_chip *this = &host->nand;
284 uint16_t tmp;
285
286 /* NANDFC buffer 0 is used for device ID output */
287 writew(0x0, host->regs + NFC_BUF_ADDR);
288
289 /* Read ID into main buffer */
290 tmp = readw(host->regs + NFC_CONFIG1);
291 tmp &= ~NFC_SP_EN;
292 writew(tmp, host->regs + NFC_CONFIG1);
293
294 writew(NFC_ID, host->regs + NFC_CONFIG2);
295
296 /* Wait for operation to complete */
297 wait_op_done(host, TROP_US_DELAY, 0, true);
298
299 if (this->options & NAND_BUSWIDTH_16) {
300 void __iomem *main_buf = host->regs + MAIN_AREA0;
301 /* compress the ID info */
302 writeb(readb(main_buf + 2), main_buf + 1);
303 writeb(readb(main_buf + 4), main_buf + 2);
304 writeb(readb(main_buf + 6), main_buf + 3);
305 writeb(readb(main_buf + 8), main_buf + 4);
306 writeb(readb(main_buf + 10), main_buf + 5);
307 }
308}
309
310/* This function requests the NANDFC to perform a read of the
311 * NAND device status and returns the current status. */
312static uint16_t get_dev_status(struct mxc_nand_host *host)
313{
314 void __iomem *main_buf = host->regs + MAIN_AREA1;
315 uint32_t store;
316 uint16_t ret, tmp;
317 /* Issue status request to NAND device */
318
319 /* store the main area1 first word, later do recovery */
320 store = readl(main_buf);
321 /* NANDFC buffer 1 is used for device status to prevent
322 * corruption of read/write buffer on status requests. */
323 writew(1, host->regs + NFC_BUF_ADDR);
324
325 /* Read status into main buffer */
326 tmp = readw(host->regs + NFC_CONFIG1);
327 tmp &= ~NFC_SP_EN;
328 writew(tmp, host->regs + NFC_CONFIG1);
329
330 writew(NFC_STATUS, host->regs + NFC_CONFIG2);
331
332 /* Wait for operation to complete */
333 wait_op_done(host, TROP_US_DELAY, 0, true);
334
335 /* Status is placed in first word of main buffer */
336 /* get status, then recovery area 1 data */
337 ret = readw(main_buf);
338 writel(store, main_buf);
339
340 return ret;
341}
342
343/* This functions is used by upper layer to checks if device is ready */
344static int mxc_nand_dev_ready(struct mtd_info *mtd)
345{
346 /*
347 * NFC handles R/B internally. Therefore, this function
348 * always returns status as ready.
349 */
350 return 1;
351}
352
353static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
354{
355 /*
356 * If HW ECC is enabled, we turn it on during init. There is
357 * no need to enable again here.
358 */
359}
360
361static int mxc_nand_correct_data(struct mtd_info *mtd, u_char *dat,
362 u_char *read_ecc, u_char *calc_ecc)
363{
364 struct nand_chip *nand_chip = mtd->priv;
365 struct mxc_nand_host *host = nand_chip->priv;
366
367 /*
368 * 1-Bit errors are automatically corrected in HW. No need for
369 * additional correction. 2-Bit errors cannot be corrected by
370 * HW ECC, so we need to return failure
371 */
372 uint16_t ecc_status = readw(host->regs + NFC_ECC_STATUS_RESULT);
373
374 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
375 DEBUG(MTD_DEBUG_LEVEL0,
376 "MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
377 return -1;
378 }
379
380 return 0;
381}
382
383static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
384 u_char *ecc_code)
385{
386 return 0;
387}
388
389static u_char mxc_nand_read_byte(struct mtd_info *mtd)
390{
391 struct nand_chip *nand_chip = mtd->priv;
392 struct mxc_nand_host *host = nand_chip->priv;
393 uint8_t ret = 0;
394 uint16_t col, rd_word;
395 uint16_t __iomem *main_buf = host->regs + MAIN_AREA0;
396 uint16_t __iomem *spare_buf = host->regs + SPARE_AREA0;
397
398 /* Check for status request */
399 if (host->status_request)
400 return get_dev_status(host) & 0xFF;
401
402 /* Get column for 16-bit access */
403 col = host->col_addr >> 1;
404
405 /* If we are accessing the spare region */
406 if (host->spare_only)
407 rd_word = readw(&spare_buf[col]);
408 else
409 rd_word = readw(&main_buf[col]);
410
411 /* Pick upper/lower byte of word from RAM buffer */
412 if (host->col_addr & 0x1)
413 ret = (rd_word >> 8) & 0xFF;
414 else
415 ret = rd_word & 0xFF;
416
417 /* Update saved column address */
418 host->col_addr++;
419
420 return ret;
421}
422
423static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
424{
425 struct nand_chip *nand_chip = mtd->priv;
426 struct mxc_nand_host *host = nand_chip->priv;
427 uint16_t col, rd_word, ret;
428 uint16_t __iomem *p;
429
430 DEBUG(MTD_DEBUG_LEVEL3,
431 "mxc_nand_read_word(col = %d)\n", host->col_addr);
432
433 col = host->col_addr;
434 /* Adjust saved column address */
435 if (col < mtd->writesize && host->spare_only)
436 col += mtd->writesize;
437
438 if (col < mtd->writesize)
439 p = (host->regs + MAIN_AREA0) + (col >> 1);
440 else
441 p = (host->regs + SPARE_AREA0) + ((col - mtd->writesize) >> 1);
442
443 if (col & 1) {
444 rd_word = readw(p);
445 ret = (rd_word >> 8) & 0xff;
446 rd_word = readw(&p[1]);
447 ret |= (rd_word << 8) & 0xff00;
448
449 } else
450 ret = readw(p);
451
452 /* Update saved column address */
453 host->col_addr = col + 2;
454
455 return ret;
456}
457
458/* Write data of length len to buffer buf. The data to be
459 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
460 * Operation by the NFC, the data is written to NAND Flash */
461static void mxc_nand_write_buf(struct mtd_info *mtd,
462 const u_char *buf, int len)
463{
464 struct nand_chip *nand_chip = mtd->priv;
465 struct mxc_nand_host *host = nand_chip->priv;
466 int n, col, i = 0;
467
468 DEBUG(MTD_DEBUG_LEVEL3,
469 "mxc_nand_write_buf(col = %d, len = %d)\n", host->col_addr,
470 len);
471
472 col = host->col_addr;
473
474 /* Adjust saved column address */
475 if (col < mtd->writesize && host->spare_only)
476 col += mtd->writesize;
477
478 n = mtd->writesize + mtd->oobsize - col;
479 n = min(len, n);
480
481 DEBUG(MTD_DEBUG_LEVEL3,
482 "%s:%d: col = %d, n = %d\n", __func__, __LINE__, col, n);
483
484 while (n) {
485 void __iomem *p;
486
487 if (col < mtd->writesize)
488 p = host->regs + MAIN_AREA0 + (col & ~3);
489 else
490 p = host->regs + SPARE_AREA0 -
491 mtd->writesize + (col & ~3);
492
493 DEBUG(MTD_DEBUG_LEVEL3, "%s:%d: p = %p\n", __func__,
494 __LINE__, p);
495
496 if (((col | (int)&buf[i]) & 3) || n < 16) {
497 uint32_t data = 0;
498
499 if (col & 3 || n < 4)
500 data = readl(p);
501
502 switch (col & 3) {
503 case 0:
504 if (n) {
505 data = (data & 0xffffff00) |
506 (buf[i++] << 0);
507 n--;
508 col++;
509 }
510 case 1:
511 if (n) {
512 data = (data & 0xffff00ff) |
513 (buf[i++] << 8);
514 n--;
515 col++;
516 }
517 case 2:
518 if (n) {
519 data = (data & 0xff00ffff) |
520 (buf[i++] << 16);
521 n--;
522 col++;
523 }
524 case 3:
525 if (n) {
526 data = (data & 0x00ffffff) |
527 (buf[i++] << 24);
528 n--;
529 col++;
530 }
531 }
532
533 writel(data, p);
534 } else {
535 int m = mtd->writesize - col;
536
537 if (col >= mtd->writesize)
538 m += mtd->oobsize;
539
540 m = min(n, m) & ~3;
541
542 DEBUG(MTD_DEBUG_LEVEL3,
543 "%s:%d: n = %d, m = %d, i = %d, col = %d\n",
544 __func__, __LINE__, n, m, i, col);
545
546 memcpy(p, &buf[i], m);
547 col += m;
548 i += m;
549 n -= m;
550 }
551 }
552 /* Update saved column address */
553 host->col_addr = col;
554}
555
556/* Read the data buffer from the NAND Flash. To read the data from NAND
557 * Flash first the data output cycle is initiated by the NFC, which copies
558 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
559 */
560static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
561{
562 struct nand_chip *nand_chip = mtd->priv;
563 struct mxc_nand_host *host = nand_chip->priv;
564 int n, col, i = 0;
565
566 DEBUG(MTD_DEBUG_LEVEL3,
567 "mxc_nand_read_buf(col = %d, len = %d)\n", host->col_addr, len);
568
569 col = host->col_addr;
570
571 /* Adjust saved column address */
572 if (col < mtd->writesize && host->spare_only)
573 col += mtd->writesize;
574
575 n = mtd->writesize + mtd->oobsize - col;
576 n = min(len, n);
577
578 while (n) {
579 void __iomem *p;
580
581 if (col < mtd->writesize)
582 p = host->regs + MAIN_AREA0 + (col & ~3);
583 else
584 p = host->regs + SPARE_AREA0 -
585 mtd->writesize + (col & ~3);
586
587 if (((col | (int)&buf[i]) & 3) || n < 16) {
588 uint32_t data;
589
590 data = readl(p);
591 switch (col & 3) {
592 case 0:
593 if (n) {
594 buf[i++] = (uint8_t) (data);
595 n--;
596 col++;
597 }
598 case 1:
599 if (n) {
600 buf[i++] = (uint8_t) (data >> 8);
601 n--;
602 col++;
603 }
604 case 2:
605 if (n) {
606 buf[i++] = (uint8_t) (data >> 16);
607 n--;
608 col++;
609 }
610 case 3:
611 if (n) {
612 buf[i++] = (uint8_t) (data >> 24);
613 n--;
614 col++;
615 }
616 }
617 } else {
618 int m = mtd->writesize - col;
619
620 if (col >= mtd->writesize)
621 m += mtd->oobsize;
622
623 m = min(n, m) & ~3;
624 memcpy(&buf[i], p, m);
625 col += m;
626 i += m;
627 n -= m;
628 }
629 }
630 /* Update saved column address */
631 host->col_addr = col;
632
633}
634
635/* Used by the upper layer to verify the data in NAND Flash
636 * with the data in the buf. */
637static int mxc_nand_verify_buf(struct mtd_info *mtd,
638 const u_char *buf, int len)
639{
640 return -EFAULT;
641}
642
643/* This function is used by upper layer for select and
644 * deselect of the NAND chip */
645static void mxc_nand_select_chip(struct mtd_info *mtd, int chip)
646{
647 struct nand_chip *nand_chip = mtd->priv;
648 struct mxc_nand_host *host = nand_chip->priv;
649
650#ifdef CONFIG_MTD_NAND_MXC_FORCE_CE
651 if (chip > 0) {
652 DEBUG(MTD_DEBUG_LEVEL0,
653 "ERROR: Illegal chip select (chip = %d)\n", chip);
654 return;
655 }
656
657 if (chip == -1) {
658 writew(readw(host->regs + NFC_CONFIG1) & ~NFC_CE,
659 host->regs + NFC_CONFIG1);
660 return;
661 }
662
663 writew(readw(host->regs + NFC_CONFIG1) | NFC_CE,
664 host->regs + NFC_CONFIG1);
665#endif
666
667 switch (chip) {
668 case -1:
669 /* Disable the NFC clock */
670 if (host->clk_act) {
671 clk_disable(host->clk);
672 host->clk_act = 0;
673 }
674 break;
675 case 0:
676 /* Enable the NFC clock */
677 if (!host->clk_act) {
678 clk_enable(host->clk);
679 host->clk_act = 1;
680 }
681 break;
682
683 default:
684 break;
685 }
686}
687
688/* Used by the upper layer to write command to NAND Flash for
689 * different operations to be carried out on NAND Flash */
690static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
691 int column, int page_addr)
692{
693 struct nand_chip *nand_chip = mtd->priv;
694 struct mxc_nand_host *host = nand_chip->priv;
695 int useirq = true;
696
697 DEBUG(MTD_DEBUG_LEVEL3,
698 "mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
699 command, column, page_addr);
700
701 /* Reset command state information */
702 host->status_request = false;
703
704 /* Command pre-processing step */
705 switch (command) {
706
707 case NAND_CMD_STATUS:
708 host->col_addr = 0;
709 host->status_request = true;
710 break;
711
712 case NAND_CMD_READ0:
713 host->col_addr = column;
714 host->spare_only = false;
715 useirq = false;
716 break;
717
718 case NAND_CMD_READOOB:
719 host->col_addr = column;
720 host->spare_only = true;
721 useirq = false;
722 if (host->pagesize_2k)
723 command = NAND_CMD_READ0; /* only READ0 is valid */
724 break;
725
726 case NAND_CMD_SEQIN:
727 if (column >= mtd->writesize) {
728 /*
729 * FIXME: before send SEQIN command for write OOB,
730 * We must read one page out.
731 * For K9F1GXX has no READ1 command to set current HW
732 * pointer to spare area, we must write the whole page
733 * including OOB together.
734 */
735 if (host->pagesize_2k)
736 /* call ourself to read a page */
737 mxc_nand_command(mtd, NAND_CMD_READ0, 0,
738 page_addr);
739
740 host->col_addr = column - mtd->writesize;
741 host->spare_only = true;
742
743 /* Set program pointer to spare region */
744 if (!host->pagesize_2k)
745 send_cmd(host, NAND_CMD_READOOB, false);
746 } else {
747 host->spare_only = false;
748 host->col_addr = column;
749
750 /* Set program pointer to page start */
751 if (!host->pagesize_2k)
752 send_cmd(host, NAND_CMD_READ0, false);
753 }
754 useirq = false;
755 break;
756
757 case NAND_CMD_PAGEPROG:
758 send_prog_page(host, 0, host->spare_only);
759
760 if (host->pagesize_2k) {
761 /* data in 4 areas datas */
762 send_prog_page(host, 1, host->spare_only);
763 send_prog_page(host, 2, host->spare_only);
764 send_prog_page(host, 3, host->spare_only);
765 }
766
767 break;
768
769 case NAND_CMD_ERASE1:
770 useirq = false;
771 break;
772 }
773
774 /* Write out the command to the device. */
775 send_cmd(host, command, useirq);
776
777 /* Write out column address, if necessary */
778 if (column != -1) {
779 /*
780 * MXC NANDFC can only perform full page+spare or
781 * spare-only read/write. When the upper layers
782 * layers perform a read/write buf operation,
783 * we will used the saved column adress to index into
784 * the full page.
785 */
786 send_addr(host, 0, page_addr == -1);
787 if (host->pagesize_2k)
788 /* another col addr cycle for 2k page */
789 send_addr(host, 0, false);
790 }
791
792 /* Write out page address, if necessary */
793 if (page_addr != -1) {
794 /* paddr_0 - p_addr_7 */
795 send_addr(host, (page_addr & 0xff), false);
796
797 if (host->pagesize_2k) {
798 send_addr(host, (page_addr >> 8) & 0xFF, false);
799 if (mtd->size >= 0x40000000)
800 send_addr(host, (page_addr >> 16) & 0xff, true);
801 } else {
802 /* One more address cycle for higher density devices */
803 if (mtd->size >= 0x4000000) {
804 /* paddr_8 - paddr_15 */
805 send_addr(host, (page_addr >> 8) & 0xff, false);
806 send_addr(host, (page_addr >> 16) & 0xff, true);
807 } else
808 /* paddr_8 - paddr_15 */
809 send_addr(host, (page_addr >> 8) & 0xff, true);
810 }
811 }
812
813 /* Command post-processing step */
814 switch (command) {
815
816 case NAND_CMD_RESET:
817 break;
818
819 case NAND_CMD_READOOB:
820 case NAND_CMD_READ0:
821 if (host->pagesize_2k) {
822 /* send read confirm command */
823 send_cmd(host, NAND_CMD_READSTART, true);
824 /* read for each AREA */
825 send_read_page(host, 0, host->spare_only);
826 send_read_page(host, 1, host->spare_only);
827 send_read_page(host, 2, host->spare_only);
828 send_read_page(host, 3, host->spare_only);
829 } else
830 send_read_page(host, 0, host->spare_only);
831 break;
832
833 case NAND_CMD_READID:
834 send_read_id(host);
835 break;
836
837 case NAND_CMD_PAGEPROG:
838 break;
839
840 case NAND_CMD_STATUS:
841 break;
842
843 case NAND_CMD_ERASE2:
844 break;
845 }
846}
847
848static int __init mxcnd_probe(struct platform_device *pdev)
849{
850 struct nand_chip *this;
851 struct mtd_info *mtd;
852 struct mxc_nand_platform_data *pdata = pdev->dev.platform_data;
853 struct mxc_nand_host *host;
854 struct resource *res;
855 uint16_t tmp;
856 int err = 0, nr_parts = 0;
857
858 /* Allocate memory for MTD device structure and private data */
859 host = kzalloc(sizeof(struct mxc_nand_host), GFP_KERNEL);
860 if (!host)
861 return -ENOMEM;
862
863 host->dev = &pdev->dev;
864 /* structures must be linked */
865 this = &host->nand;
866 mtd = &host->mtd;
867 mtd->priv = this;
868 mtd->owner = THIS_MODULE;
869
870 /* 50 us command delay time */
871 this->chip_delay = 5;
872
873 this->priv = host;
874 this->dev_ready = mxc_nand_dev_ready;
875 this->cmdfunc = mxc_nand_command;
876 this->select_chip = mxc_nand_select_chip;
877 this->read_byte = mxc_nand_read_byte;
878 this->read_word = mxc_nand_read_word;
879 this->write_buf = mxc_nand_write_buf;
880 this->read_buf = mxc_nand_read_buf;
881 this->verify_buf = mxc_nand_verify_buf;
882
883 host->clk = clk_get(&pdev->dev, "nfc_clk");
884 if (IS_ERR(host->clk))
885 goto eclk;
886
887 clk_enable(host->clk);
888 host->clk_act = 1;
889
890 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
891 if (!res) {
892 err = -ENODEV;
893 goto eres;
894 }
895
896 host->regs = ioremap(res->start, res->end - res->start + 1);
897 if (!host->regs) {
898 err = -EIO;
899 goto eres;
900 }
901
902 tmp = readw(host->regs + NFC_CONFIG1);
903 tmp |= NFC_INT_MSK;
904 writew(tmp, host->regs + NFC_CONFIG1);
905
906 init_waitqueue_head(&host->irq_waitq);
907
908 host->irq = platform_get_irq(pdev, 0);
909
910 err = request_irq(host->irq, mxc_nfc_irq, 0, "mxc_nd", host);
911 if (err)
912 goto eirq;
913
914 if (pdata->hw_ecc) {
915 this->ecc.calculate = mxc_nand_calculate_ecc;
916 this->ecc.hwctl = mxc_nand_enable_hwecc;
917 this->ecc.correct = mxc_nand_correct_data;
918 this->ecc.mode = NAND_ECC_HW;
919 this->ecc.size = 512;
920 this->ecc.bytes = 3;
921 this->ecc.layout = &nand_hw_eccoob_8;
922 tmp = readw(host->regs + NFC_CONFIG1);
923 tmp |= NFC_ECC_EN;
924 writew(tmp, host->regs + NFC_CONFIG1);
925 } else {
926 this->ecc.size = 512;
927 this->ecc.bytes = 3;
928 this->ecc.layout = &nand_hw_eccoob_8;
929 this->ecc.mode = NAND_ECC_SOFT;
930 tmp = readw(host->regs + NFC_CONFIG1);
931 tmp &= ~NFC_ECC_EN;
932 writew(tmp, host->regs + NFC_CONFIG1);
933 }
934
935 /* Reset NAND */
936 this->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
937
938 /* preset operation */
939 /* Unlock the internal RAM Buffer */
940 writew(0x2, host->regs + NFC_CONFIG);
941
942 /* Blocks to be unlocked */
943 writew(0x0, host->regs + NFC_UNLOCKSTART_BLKADDR);
944 writew(0x4000, host->regs + NFC_UNLOCKEND_BLKADDR);
945
946 /* Unlock Block Command for given address range */
947 writew(0x4, host->regs + NFC_WRPROT);
948
949 /* NAND bus width determines access funtions used by upper layer */
950 if (pdata->width == 2) {
951 this->options |= NAND_BUSWIDTH_16;
952 this->ecc.layout = &nand_hw_eccoob_16;
953 }
954
955 host->pagesize_2k = 0;
956
957 /* Scan to find existence of the device */
958 if (nand_scan(mtd, 1)) {
959 DEBUG(MTD_DEBUG_LEVEL0,
960 "MXC_ND: Unable to find any NAND device.\n");
961 err = -ENXIO;
962 goto escan;
963 }
964
965 /* Register the partitions */
966#ifdef CONFIG_MTD_PARTITIONS
967 nr_parts =
968 parse_mtd_partitions(mtd, part_probes, &host->parts, 0);
969 if (nr_parts > 0)
970 add_mtd_partitions(mtd, host->parts, nr_parts);
971 else
972#endif
973 {
974 pr_info("Registering %s as whole device\n", mtd->name);
975 add_mtd_device(mtd);
976 }
977
978 platform_set_drvdata(pdev, host);
979
980 return 0;
981
982escan:
983 free_irq(host->irq, NULL);
984eirq:
985 iounmap(host->regs);
986eres:
987 clk_put(host->clk);
988eclk:
989 kfree(host);
990
991 return err;
992}
993
994static int __devexit mxcnd_remove(struct platform_device *pdev)
995{
996 struct mxc_nand_host *host = platform_get_drvdata(pdev);
997
998 clk_put(host->clk);
999
1000 platform_set_drvdata(pdev, NULL);
1001
1002 nand_release(&host->mtd);
1003 free_irq(host->irq, NULL);
1004 iounmap(host->regs);
1005 kfree(host);
1006
1007 return 0;
1008}
1009
1010#ifdef CONFIG_PM
1011static int mxcnd_suspend(struct platform_device *pdev, pm_message_t state)
1012{
1013 struct mtd_info *info = platform_get_drvdata(pdev);
1014 int ret = 0;
1015
1016 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND suspend\n");
1017 if (info)
1018 ret = info->suspend(info);
1019
1020 /* Disable the NFC clock */
1021 clk_disable(nfc_clk); /* FIXME */
1022
1023 return ret;
1024}
1025
1026static int mxcnd_resume(struct platform_device *pdev)
1027{
1028 struct mtd_info *info = platform_get_drvdata(pdev);
1029 int ret = 0;
1030
1031 DEBUG(MTD_DEBUG_LEVEL0, "MXC_ND : NAND resume\n");
1032 /* Enable the NFC clock */
1033 clk_enable(nfc_clk); /* FIXME */
1034
1035 if (info)
1036 info->resume(info);
1037
1038 return ret;
1039}
1040
1041#else
1042# define mxcnd_suspend NULL
1043# define mxcnd_resume NULL
1044#endif /* CONFIG_PM */
1045
1046static struct platform_driver mxcnd_driver = {
1047 .driver = {
1048 .name = DRIVER_NAME,
1049 },
1050 .remove = __exit_p(mxcnd_remove),
1051 .suspend = mxcnd_suspend,
1052 .resume = mxcnd_resume,
1053};
1054
1055static int __init mxc_nd_init(void)
1056{
1057 /* Register the device driver structure. */
1058 pr_info("MXC MTD nand Driver\n");
1059 if (platform_driver_probe(&mxcnd_driver, mxcnd_probe) != 0) {
1060 printk(KERN_ERR "Driver register failed for mxcnd_driver\n");
1061 return -ENODEV;
1062 }
1063 return 0;
1064}
1065
1066static void __exit mxc_nd_cleanup(void)
1067{
1068 /* Unregister the device structure */
1069 platform_driver_unregister(&mxcnd_driver);
1070}
1071
1072module_init(mxc_nd_init);
1073module_exit(mxc_nd_cleanup);
1074
1075MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1076MODULE_DESCRIPTION("MXC NAND MTD driver");
1077MODULE_LICENSE("GPL");