aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/mtd/devices/lart.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
committerLinus Torvalds <torvalds@ppc970.osdl.org>2005-04-16 18:20:36 -0400
commit1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch)
tree0bba044c4ce775e45a88a51686b5d9f90697ea9d /drivers/mtd/devices/lart.c
Linux-2.6.12-rc2v2.6.12-rc2
Initial git repository build. I'm not bothering with the full history, even though we have it. We can create a separate "historical" git archive of that later if we want to, and in the meantime it's about 3.2GB when imported into git - space that would just make the early git days unnecessarily complicated, when we don't have a lot of good infrastructure for it. Let it rip!
Diffstat (limited to 'drivers/mtd/devices/lart.c')
-rw-r--r--drivers/mtd/devices/lart.c711
1 files changed, 711 insertions, 0 deletions
diff --git a/drivers/mtd/devices/lart.c b/drivers/mtd/devices/lart.c
new file mode 100644
index 000000000000..dfd335e4a2a8
--- /dev/null
+++ b/drivers/mtd/devices/lart.c
@@ -0,0 +1,711 @@
1
2/*
3 * MTD driver for the 28F160F3 Flash Memory (non-CFI) on LART.
4 *
5 * $Id: lart.c,v 1.7 2004/08/09 13:19:44 dwmw2 Exp $
6 *
7 * Author: Abraham vd Merwe <abraham@2d3d.co.za>
8 *
9 * Copyright (c) 2001, 2d3D, Inc.
10 *
11 * This code is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 * References:
16 *
17 * [1] 3 Volt Fast Boot Block Flash Memory" Intel Datasheet
18 * - Order Number: 290644-005
19 * - January 2000
20 *
21 * [2] MTD internal API documentation
22 * - http://www.linux-mtd.infradead.org/tech/
23 *
24 * Limitations:
25 *
26 * Even though this driver is written for 3 Volt Fast Boot
27 * Block Flash Memory, it is rather specific to LART. With
28 * Minor modifications, notably the without data/address line
29 * mangling and different bus settings, etc. it should be
30 * trivial to adapt to other platforms.
31 *
32 * If somebody would sponsor me a different board, I'll
33 * adapt the driver (:
34 */
35
36/* debugging */
37//#define LART_DEBUG
38
39/* partition support */
40#define HAVE_PARTITIONS
41
42#include <linux/kernel.h>
43#include <linux/module.h>
44#include <linux/types.h>
45#include <linux/init.h>
46#include <linux/errno.h>
47#include <linux/mtd/mtd.h>
48#ifdef HAVE_PARTITIONS
49#include <linux/mtd/partitions.h>
50#endif
51
52#ifndef CONFIG_SA1100_LART
53#error This is for LART architecture only
54#endif
55
56static char module_name[] = "lart";
57
58/*
59 * These values is specific to 28Fxxxx3 flash memory.
60 * See section 2.3.1 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
61 */
62#define FLASH_BLOCKSIZE_PARAM (4096 * BUSWIDTH)
63#define FLASH_NUMBLOCKS_16m_PARAM 8
64#define FLASH_NUMBLOCKS_8m_PARAM 8
65
66/*
67 * These values is specific to 28Fxxxx3 flash memory.
68 * See section 2.3.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
69 */
70#define FLASH_BLOCKSIZE_MAIN (32768 * BUSWIDTH)
71#define FLASH_NUMBLOCKS_16m_MAIN 31
72#define FLASH_NUMBLOCKS_8m_MAIN 15
73
74/*
75 * These values are specific to LART
76 */
77
78/* general */
79#define BUSWIDTH 4 /* don't change this - a lot of the code _will_ break if you change this */
80#define FLASH_OFFSET 0xe8000000 /* see linux/arch/arm/mach-sa1100/lart.c */
81
82/* blob */
83#define NUM_BLOB_BLOCKS FLASH_NUMBLOCKS_16m_PARAM
84#define BLOB_START 0x00000000
85#define BLOB_LEN (NUM_BLOB_BLOCKS * FLASH_BLOCKSIZE_PARAM)
86
87/* kernel */
88#define NUM_KERNEL_BLOCKS 7
89#define KERNEL_START (BLOB_START + BLOB_LEN)
90#define KERNEL_LEN (NUM_KERNEL_BLOCKS * FLASH_BLOCKSIZE_MAIN)
91
92/* initial ramdisk */
93#define NUM_INITRD_BLOCKS 24
94#define INITRD_START (KERNEL_START + KERNEL_LEN)
95#define INITRD_LEN (NUM_INITRD_BLOCKS * FLASH_BLOCKSIZE_MAIN)
96
97/*
98 * See section 4.0 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
99 */
100#define READ_ARRAY 0x00FF00FF /* Read Array/Reset */
101#define READ_ID_CODES 0x00900090 /* Read Identifier Codes */
102#define ERASE_SETUP 0x00200020 /* Block Erase */
103#define ERASE_CONFIRM 0x00D000D0 /* Block Erase and Program Resume */
104#define PGM_SETUP 0x00400040 /* Program */
105#define STATUS_READ 0x00700070 /* Read Status Register */
106#define STATUS_CLEAR 0x00500050 /* Clear Status Register */
107#define STATUS_BUSY 0x00800080 /* Write State Machine Status (WSMS) */
108#define STATUS_ERASE_ERR 0x00200020 /* Erase Status (ES) */
109#define STATUS_PGM_ERR 0x00100010 /* Program Status (PS) */
110
111/*
112 * See section 4.2 in "3 Volt Fast Boot Block Flash Memory" Intel Datasheet
113 */
114#define FLASH_MANUFACTURER 0x00890089
115#define FLASH_DEVICE_8mbit_TOP 0x88f188f1
116#define FLASH_DEVICE_8mbit_BOTTOM 0x88f288f2
117#define FLASH_DEVICE_16mbit_TOP 0x88f388f3
118#define FLASH_DEVICE_16mbit_BOTTOM 0x88f488f4
119
120/***************************************************************************************************/
121
122/*
123 * The data line mapping on LART is as follows:
124 *
125 * U2 CPU | U3 CPU
126 * -------------------
127 * 0 20 | 0 12
128 * 1 22 | 1 14
129 * 2 19 | 2 11
130 * 3 17 | 3 9
131 * 4 24 | 4 0
132 * 5 26 | 5 2
133 * 6 31 | 6 7
134 * 7 29 | 7 5
135 * 8 21 | 8 13
136 * 9 23 | 9 15
137 * 10 18 | 10 10
138 * 11 16 | 11 8
139 * 12 25 | 12 1
140 * 13 27 | 13 3
141 * 14 30 | 14 6
142 * 15 28 | 15 4
143 */
144
145/* Mangle data (x) */
146#define DATA_TO_FLASH(x) \
147 ( \
148 (((x) & 0x08009000) >> 11) + \
149 (((x) & 0x00002000) >> 10) + \
150 (((x) & 0x04004000) >> 8) + \
151 (((x) & 0x00000010) >> 4) + \
152 (((x) & 0x91000820) >> 3) + \
153 (((x) & 0x22080080) >> 2) + \
154 ((x) & 0x40000400) + \
155 (((x) & 0x00040040) << 1) + \
156 (((x) & 0x00110000) << 4) + \
157 (((x) & 0x00220100) << 5) + \
158 (((x) & 0x00800208) << 6) + \
159 (((x) & 0x00400004) << 9) + \
160 (((x) & 0x00000001) << 12) + \
161 (((x) & 0x00000002) << 13) \
162 )
163
164/* Unmangle data (x) */
165#define FLASH_TO_DATA(x) \
166 ( \
167 (((x) & 0x00010012) << 11) + \
168 (((x) & 0x00000008) << 10) + \
169 (((x) & 0x00040040) << 8) + \
170 (((x) & 0x00000001) << 4) + \
171 (((x) & 0x12200104) << 3) + \
172 (((x) & 0x08820020) << 2) + \
173 ((x) & 0x40000400) + \
174 (((x) & 0x00080080) >> 1) + \
175 (((x) & 0x01100000) >> 4) + \
176 (((x) & 0x04402000) >> 5) + \
177 (((x) & 0x20008200) >> 6) + \
178 (((x) & 0x80000800) >> 9) + \
179 (((x) & 0x00001000) >> 12) + \
180 (((x) & 0x00004000) >> 13) \
181 )
182
183/*
184 * The address line mapping on LART is as follows:
185 *
186 * U3 CPU | U2 CPU
187 * -------------------
188 * 0 2 | 0 2
189 * 1 3 | 1 3
190 * 2 9 | 2 9
191 * 3 13 | 3 8
192 * 4 8 | 4 7
193 * 5 12 | 5 6
194 * 6 11 | 6 5
195 * 7 10 | 7 4
196 * 8 4 | 8 10
197 * 9 5 | 9 11
198 * 10 6 | 10 12
199 * 11 7 | 11 13
200 *
201 * BOOT BLOCK BOUNDARY
202 *
203 * 12 15 | 12 15
204 * 13 14 | 13 14
205 * 14 16 | 14 16
206 *
207 * MAIN BLOCK BOUNDARY
208 *
209 * 15 17 | 15 18
210 * 16 18 | 16 17
211 * 17 20 | 17 20
212 * 18 19 | 18 19
213 * 19 21 | 19 21
214 *
215 * As we can see from above, the addresses aren't mangled across
216 * block boundaries, so we don't need to worry about address
217 * translations except for sending/reading commands during
218 * initialization
219 */
220
221/* Mangle address (x) on chip U2 */
222#define ADDR_TO_FLASH_U2(x) \
223 ( \
224 (((x) & 0x00000f00) >> 4) + \
225 (((x) & 0x00042000) << 1) + \
226 (((x) & 0x0009c003) << 2) + \
227 (((x) & 0x00021080) << 3) + \
228 (((x) & 0x00000010) << 4) + \
229 (((x) & 0x00000040) << 5) + \
230 (((x) & 0x00000024) << 7) + \
231 (((x) & 0x00000008) << 10) \
232 )
233
234/* Unmangle address (x) on chip U2 */
235#define FLASH_U2_TO_ADDR(x) \
236 ( \
237 (((x) << 4) & 0x00000f00) + \
238 (((x) >> 1) & 0x00042000) + \
239 (((x) >> 2) & 0x0009c003) + \
240 (((x) >> 3) & 0x00021080) + \
241 (((x) >> 4) & 0x00000010) + \
242 (((x) >> 5) & 0x00000040) + \
243 (((x) >> 7) & 0x00000024) + \
244 (((x) >> 10) & 0x00000008) \
245 )
246
247/* Mangle address (x) on chip U3 */
248#define ADDR_TO_FLASH_U3(x) \
249 ( \
250 (((x) & 0x00000080) >> 3) + \
251 (((x) & 0x00000040) >> 1) + \
252 (((x) & 0x00052020) << 1) + \
253 (((x) & 0x00084f03) << 2) + \
254 (((x) & 0x00029010) << 3) + \
255 (((x) & 0x00000008) << 5) + \
256 (((x) & 0x00000004) << 7) \
257 )
258
259/* Unmangle address (x) on chip U3 */
260#define FLASH_U3_TO_ADDR(x) \
261 ( \
262 (((x) << 3) & 0x00000080) + \
263 (((x) << 1) & 0x00000040) + \
264 (((x) >> 1) & 0x00052020) + \
265 (((x) >> 2) & 0x00084f03) + \
266 (((x) >> 3) & 0x00029010) + \
267 (((x) >> 5) & 0x00000008) + \
268 (((x) >> 7) & 0x00000004) \
269 )
270
271/***************************************************************************************************/
272
273static __u8 read8 (__u32 offset)
274{
275 volatile __u8 *data = (__u8 *) (FLASH_OFFSET + offset);
276#ifdef LART_DEBUG
277 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.2x\n",__FUNCTION__,offset,*data);
278#endif
279 return (*data);
280}
281
282static __u32 read32 (__u32 offset)
283{
284 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
285#ifdef LART_DEBUG
286 printk (KERN_DEBUG "%s(): 0x%.8x -> 0x%.8x\n",__FUNCTION__,offset,*data);
287#endif
288 return (*data);
289}
290
291static void write32 (__u32 x,__u32 offset)
292{
293 volatile __u32 *data = (__u32 *) (FLASH_OFFSET + offset);
294 *data = x;
295#ifdef LART_DEBUG
296 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,*data);
297#endif
298}
299
300/***************************************************************************************************/
301
302/*
303 * Probe for 16mbit flash memory on a LART board without doing
304 * too much damage. Since we need to write 1 dword to memory,
305 * we're f**cked if this happens to be DRAM since we can't
306 * restore the memory (otherwise we might exit Read Array mode).
307 *
308 * Returns 1 if we found 16mbit flash memory on LART, 0 otherwise.
309 */
310static int flash_probe (void)
311{
312 __u32 manufacturer,devtype;
313
314 /* setup "Read Identifier Codes" mode */
315 write32 (DATA_TO_FLASH (READ_ID_CODES),0x00000000);
316
317 /* probe U2. U2/U3 returns the same data since the first 3
318 * address lines is mangled in the same way */
319 manufacturer = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000000)));
320 devtype = FLASH_TO_DATA (read32 (ADDR_TO_FLASH_U2 (0x00000001)));
321
322 /* put the flash back into command mode */
323 write32 (DATA_TO_FLASH (READ_ARRAY),0x00000000);
324
325 return (manufacturer == FLASH_MANUFACTURER && (devtype == FLASH_DEVICE_16mbit_TOP || FLASH_DEVICE_16mbit_BOTTOM));
326}
327
328/*
329 * Erase one block of flash memory at offset ``offset'' which is any
330 * address within the block which should be erased.
331 *
332 * Returns 1 if successful, 0 otherwise.
333 */
334static inline int erase_block (__u32 offset)
335{
336 __u32 status;
337
338#ifdef LART_DEBUG
339 printk (KERN_DEBUG "%s(): 0x%.8x\n",__FUNCTION__,offset);
340#endif
341
342 /* erase and confirm */
343 write32 (DATA_TO_FLASH (ERASE_SETUP),offset);
344 write32 (DATA_TO_FLASH (ERASE_CONFIRM),offset);
345
346 /* wait for block erase to finish */
347 do
348 {
349 write32 (DATA_TO_FLASH (STATUS_READ),offset);
350 status = FLASH_TO_DATA (read32 (offset));
351 }
352 while ((~status & STATUS_BUSY) != 0);
353
354 /* put the flash back into command mode */
355 write32 (DATA_TO_FLASH (READ_ARRAY),offset);
356
357 /* was the erase successfull? */
358 if ((status & STATUS_ERASE_ERR))
359 {
360 printk (KERN_WARNING "%s: erase error at address 0x%.8x.\n",module_name,offset);
361 return (0);
362 }
363
364 return (1);
365}
366
367static int flash_erase (struct mtd_info *mtd,struct erase_info *instr)
368{
369 __u32 addr,len;
370 int i,first;
371
372#ifdef LART_DEBUG
373 printk (KERN_DEBUG "%s(addr = 0x%.8x, len = %d)\n",__FUNCTION__,instr->addr,instr->len);
374#endif
375
376 /* sanity checks */
377 if (instr->addr + instr->len > mtd->size) return (-EINVAL);
378
379 /*
380 * check that both start and end of the requested erase are
381 * aligned with the erasesize at the appropriate addresses.
382 *
383 * skip all erase regions which are ended before the start of
384 * the requested erase. Actually, to save on the calculations,
385 * we skip to the first erase region which starts after the
386 * start of the requested erase, and then go back one.
387 */
388 for (i = 0; i < mtd->numeraseregions && instr->addr >= mtd->eraseregions[i].offset; i++) ;
389 i--;
390
391 /*
392 * ok, now i is pointing at the erase region in which this
393 * erase request starts. Check the start of the requested
394 * erase range is aligned with the erase size which is in
395 * effect here.
396 */
397 if (instr->addr & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
398
399 /* Remember the erase region we start on */
400 first = i;
401
402 /*
403 * next, check that the end of the requested erase is aligned
404 * with the erase region at that address.
405 *
406 * as before, drop back one to point at the region in which
407 * the address actually falls
408 */
409 for (; i < mtd->numeraseregions && instr->addr + instr->len >= mtd->eraseregions[i].offset; i++) ;
410 i--;
411
412 /* is the end aligned on a block boundary? */
413 if ((instr->addr + instr->len) & (mtd->eraseregions[i].erasesize - 1)) return (-EINVAL);
414
415 addr = instr->addr;
416 len = instr->len;
417
418 i = first;
419
420 /* now erase those blocks */
421 while (len)
422 {
423 if (!erase_block (addr))
424 {
425 instr->state = MTD_ERASE_FAILED;
426 return (-EIO);
427 }
428
429 addr += mtd->eraseregions[i].erasesize;
430 len -= mtd->eraseregions[i].erasesize;
431
432 if (addr == mtd->eraseregions[i].offset + (mtd->eraseregions[i].erasesize * mtd->eraseregions[i].numblocks)) i++;
433 }
434
435 instr->state = MTD_ERASE_DONE;
436 mtd_erase_callback(instr);
437
438 return (0);
439}
440
441static int flash_read (struct mtd_info *mtd,loff_t from,size_t len,size_t *retlen,u_char *buf)
442{
443#ifdef LART_DEBUG
444 printk (KERN_DEBUG "%s(from = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) from,len);
445#endif
446
447 /* sanity checks */
448 if (!len) return (0);
449 if (from + len > mtd->size) return (-EINVAL);
450
451 /* we always read len bytes */
452 *retlen = len;
453
454 /* first, we read bytes until we reach a dword boundary */
455 if (from & (BUSWIDTH - 1))
456 {
457 int gap = BUSWIDTH - (from & (BUSWIDTH - 1));
458
459 while (len && gap--) *buf++ = read8 (from++), len--;
460 }
461
462 /* now we read dwords until we reach a non-dword boundary */
463 while (len >= BUSWIDTH)
464 {
465 *((__u32 *) buf) = read32 (from);
466
467 buf += BUSWIDTH;
468 from += BUSWIDTH;
469 len -= BUSWIDTH;
470 }
471
472 /* top up the last unaligned bytes */
473 if (len & (BUSWIDTH - 1))
474 while (len--) *buf++ = read8 (from++);
475
476 return (0);
477}
478
479/*
480 * Write one dword ``x'' to flash memory at offset ``offset''. ``offset''
481 * must be 32 bits, i.e. it must be on a dword boundary.
482 *
483 * Returns 1 if successful, 0 otherwise.
484 */
485static inline int write_dword (__u32 offset,__u32 x)
486{
487 __u32 status;
488
489#ifdef LART_DEBUG
490 printk (KERN_DEBUG "%s(): 0x%.8x <- 0x%.8x\n",__FUNCTION__,offset,x);
491#endif
492
493 /* setup writing */
494 write32 (DATA_TO_FLASH (PGM_SETUP),offset);
495
496 /* write the data */
497 write32 (x,offset);
498
499 /* wait for the write to finish */
500 do
501 {
502 write32 (DATA_TO_FLASH (STATUS_READ),offset);
503 status = FLASH_TO_DATA (read32 (offset));
504 }
505 while ((~status & STATUS_BUSY) != 0);
506
507 /* put the flash back into command mode */
508 write32 (DATA_TO_FLASH (READ_ARRAY),offset);
509
510 /* was the write successfull? */
511 if ((status & STATUS_PGM_ERR) || read32 (offset) != x)
512 {
513 printk (KERN_WARNING "%s: write error at address 0x%.8x.\n",module_name,offset);
514 return (0);
515 }
516
517 return (1);
518}
519
520static int flash_write (struct mtd_info *mtd,loff_t to,size_t len,size_t *retlen,const u_char *buf)
521{
522 __u8 tmp[4];
523 int i,n;
524
525#ifdef LART_DEBUG
526 printk (KERN_DEBUG "%s(to = 0x%.8x, len = %d)\n",__FUNCTION__,(__u32) to,len);
527#endif
528
529 *retlen = 0;
530
531 /* sanity checks */
532 if (!len) return (0);
533 if (to + len > mtd->size) return (-EINVAL);
534
535 /* first, we write a 0xFF.... padded byte until we reach a dword boundary */
536 if (to & (BUSWIDTH - 1))
537 {
538 __u32 aligned = to & ~(BUSWIDTH - 1);
539 int gap = to - aligned;
540
541 i = n = 0;
542
543 while (gap--) tmp[i++] = 0xFF;
544 while (len && i < BUSWIDTH) tmp[i++] = buf[n++], len--;
545 while (i < BUSWIDTH) tmp[i++] = 0xFF;
546
547 if (!write_dword (aligned,*((__u32 *) tmp))) return (-EIO);
548
549 to += n;
550 buf += n;
551 *retlen += n;
552 }
553
554 /* now we write dwords until we reach a non-dword boundary */
555 while (len >= BUSWIDTH)
556 {
557 if (!write_dword (to,*((__u32 *) buf))) return (-EIO);
558
559 to += BUSWIDTH;
560 buf += BUSWIDTH;
561 *retlen += BUSWIDTH;
562 len -= BUSWIDTH;
563 }
564
565 /* top up the last unaligned bytes, padded with 0xFF.... */
566 if (len & (BUSWIDTH - 1))
567 {
568 i = n = 0;
569
570 while (len--) tmp[i++] = buf[n++];
571 while (i < BUSWIDTH) tmp[i++] = 0xFF;
572
573 if (!write_dword (to,*((__u32 *) tmp))) return (-EIO);
574
575 *retlen += n;
576 }
577
578 return (0);
579}
580
581/***************************************************************************************************/
582
583#define NB_OF(x) (sizeof (x) / sizeof (x[0]))
584
585static struct mtd_info mtd;
586
587static struct mtd_erase_region_info erase_regions[] = {
588 /* parameter blocks */
589 {
590 .offset = 0x00000000,
591 .erasesize = FLASH_BLOCKSIZE_PARAM,
592 .numblocks = FLASH_NUMBLOCKS_16m_PARAM,
593 },
594 /* main blocks */
595 {
596 .offset = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM,
597 .erasesize = FLASH_BLOCKSIZE_MAIN,
598 .numblocks = FLASH_NUMBLOCKS_16m_MAIN,
599 }
600};
601
602#ifdef HAVE_PARTITIONS
603static struct mtd_partition lart_partitions[] = {
604 /* blob */
605 {
606 .name = "blob",
607 .offset = BLOB_START,
608 .size = BLOB_LEN,
609 },
610 /* kernel */
611 {
612 .name = "kernel",
613 .offset = KERNEL_START, /* MTDPART_OFS_APPEND */
614 .size = KERNEL_LEN,
615 },
616 /* initial ramdisk / file system */
617 {
618 .name = "file system",
619 .offset = INITRD_START, /* MTDPART_OFS_APPEND */
620 .size = INITRD_LEN, /* MTDPART_SIZ_FULL */
621 }
622};
623#endif
624
625int __init lart_flash_init (void)
626{
627 int result;
628 memset (&mtd,0,sizeof (mtd));
629 printk ("MTD driver for LART. Written by Abraham vd Merwe <abraham@2d3d.co.za>\n");
630 printk ("%s: Probing for 28F160x3 flash on LART...\n",module_name);
631 if (!flash_probe ())
632 {
633 printk (KERN_WARNING "%s: Found no LART compatible flash device\n",module_name);
634 return (-ENXIO);
635 }
636 printk ("%s: This looks like a LART board to me.\n",module_name);
637 mtd.name = module_name;
638 mtd.type = MTD_NORFLASH;
639 mtd.flags = MTD_CAP_NORFLASH;
640 mtd.size = FLASH_BLOCKSIZE_PARAM * FLASH_NUMBLOCKS_16m_PARAM + FLASH_BLOCKSIZE_MAIN * FLASH_NUMBLOCKS_16m_MAIN;
641 mtd.erasesize = FLASH_BLOCKSIZE_MAIN;
642 mtd.numeraseregions = NB_OF (erase_regions);
643 mtd.eraseregions = erase_regions;
644 mtd.erase = flash_erase;
645 mtd.read = flash_read;
646 mtd.write = flash_write;
647 mtd.owner = THIS_MODULE;
648
649#ifdef LART_DEBUG
650 printk (KERN_DEBUG
651 "mtd.name = %s\n"
652 "mtd.size = 0x%.8x (%uM)\n"
653 "mtd.erasesize = 0x%.8x (%uK)\n"
654 "mtd.numeraseregions = %d\n",
655 mtd.name,
656 mtd.size,mtd.size / (1024*1024),
657 mtd.erasesize,mtd.erasesize / 1024,
658 mtd.numeraseregions);
659
660 if (mtd.numeraseregions)
661 for (result = 0; result < mtd.numeraseregions; result++)
662 printk (KERN_DEBUG
663 "\n\n"
664 "mtd.eraseregions[%d].offset = 0x%.8x\n"
665 "mtd.eraseregions[%d].erasesize = 0x%.8x (%uK)\n"
666 "mtd.eraseregions[%d].numblocks = %d\n",
667 result,mtd.eraseregions[result].offset,
668 result,mtd.eraseregions[result].erasesize,mtd.eraseregions[result].erasesize / 1024,
669 result,mtd.eraseregions[result].numblocks);
670
671#ifdef HAVE_PARTITIONS
672 printk ("\npartitions = %d\n",NB_OF (lart_partitions));
673
674 for (result = 0; result < NB_OF (lart_partitions); result++)
675 printk (KERN_DEBUG
676 "\n\n"
677 "lart_partitions[%d].name = %s\n"
678 "lart_partitions[%d].offset = 0x%.8x\n"
679 "lart_partitions[%d].size = 0x%.8x (%uK)\n",
680 result,lart_partitions[result].name,
681 result,lart_partitions[result].offset,
682 result,lart_partitions[result].size,lart_partitions[result].size / 1024);
683#endif
684#endif
685
686#ifndef HAVE_PARTITIONS
687 result = add_mtd_device (&mtd);
688#else
689 result = add_mtd_partitions (&mtd,lart_partitions,NB_OF (lart_partitions));
690#endif
691
692 return (result);
693}
694
695void __exit lart_flash_exit (void)
696{
697#ifndef HAVE_PARTITIONS
698 del_mtd_device (&mtd);
699#else
700 del_mtd_partitions (&mtd);
701#endif
702}
703
704module_init (lart_flash_init);
705module_exit (lart_flash_exit);
706
707MODULE_LICENSE("GPL");
708MODULE_AUTHOR("Abraham vd Merwe <abraham@2d3d.co.za>");
709MODULE_DESCRIPTION("MTD driver for Intel 28F160F3 on LART board");
710
711