diff options
author | Thomas Gleixner <tglx@linutronix.de> | 2005-11-07 06:15:37 -0500 |
---|---|---|
committer | Thomas Gleixner <tglx@mtd.linutronix.de> | 2005-11-07 08:45:15 -0500 |
commit | 1f948b43f7b5cf721cf0d03f507843efc1a9bfad (patch) | |
tree | 58f9f4b1baa374ee80f2641a44f87b361a628e6d /drivers/mtd/chips/jedec.c | |
parent | e4f0648fb400a05adb7c640ce8766a7011d472d3 (diff) |
[MTD] chips: Clean up trailing white spaces
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Diffstat (limited to 'drivers/mtd/chips/jedec.c')
-rw-r--r-- | drivers/mtd/chips/jedec.c | 206 |
1 files changed, 103 insertions, 103 deletions
diff --git a/drivers/mtd/chips/jedec.c b/drivers/mtd/chips/jedec.c index 4f6778f3ee3e..c40b48dabed3 100644 --- a/drivers/mtd/chips/jedec.c +++ b/drivers/mtd/chips/jedec.c | |||
@@ -1,6 +1,6 @@ | |||
1 | 1 | ||
2 | /* JEDEC Flash Interface. | 2 | /* JEDEC Flash Interface. |
3 | * This is an older type of interface for self programming flash. It is | 3 | * This is an older type of interface for self programming flash. It is |
4 | * commonly use in older AMD chips and is obsolete compared with CFI. | 4 | * commonly use in older AMD chips and is obsolete compared with CFI. |
5 | * It is called JEDEC because the JEDEC association distributes the ID codes | 5 | * It is called JEDEC because the JEDEC association distributes the ID codes |
6 | * for the chips. | 6 | * for the chips. |
@@ -88,9 +88,9 @@ static const struct JEDECTable JEDEC_table[] = { | |||
88 | 88 | ||
89 | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); | 89 | static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id); |
90 | static void jedec_sync(struct mtd_info *mtd) {}; | 90 | static void jedec_sync(struct mtd_info *mtd) {}; |
91 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, | 91 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, |
92 | size_t *retlen, u_char *buf); | 92 | size_t *retlen, u_char *buf); |
93 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | 93 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, |
94 | size_t *retlen, u_char *buf); | 94 | size_t *retlen, u_char *buf); |
95 | 95 | ||
96 | static struct mtd_info *jedec_probe(struct map_info *map); | 96 | static struct mtd_info *jedec_probe(struct map_info *map); |
@@ -122,7 +122,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
122 | 122 | ||
123 | memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private)); | 123 | memset(MTD, 0, sizeof(struct mtd_info) + sizeof(struct jedec_private)); |
124 | priv = (struct jedec_private *)&MTD[1]; | 124 | priv = (struct jedec_private *)&MTD[1]; |
125 | 125 | ||
126 | my_bank_size = map->size; | 126 | my_bank_size = map->size; |
127 | 127 | ||
128 | if (map->size/my_bank_size > MAX_JEDEC_CHIPS) | 128 | if (map->size/my_bank_size > MAX_JEDEC_CHIPS) |
@@ -131,13 +131,13 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
131 | kfree(MTD); | 131 | kfree(MTD); |
132 | return NULL; | 132 | return NULL; |
133 | } | 133 | } |
134 | 134 | ||
135 | for (Base = 0; Base < map->size; Base += my_bank_size) | 135 | for (Base = 0; Base < map->size; Base += my_bank_size) |
136 | { | 136 | { |
137 | // Perhaps zero could designate all tests? | 137 | // Perhaps zero could designate all tests? |
138 | if (map->buswidth == 0) | 138 | if (map->buswidth == 0) |
139 | map->buswidth = 1; | 139 | map->buswidth = 1; |
140 | 140 | ||
141 | if (map->buswidth == 1){ | 141 | if (map->buswidth == 1){ |
142 | if (jedec_probe8(map,Base,priv) == 0) { | 142 | if (jedec_probe8(map,Base,priv) == 0) { |
143 | printk("did recognize jedec chip\n"); | 143 | printk("did recognize jedec chip\n"); |
@@ -150,7 +150,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
150 | if (map->buswidth == 4) | 150 | if (map->buswidth == 4) |
151 | jedec_probe32(map,Base,priv); | 151 | jedec_probe32(map,Base,priv); |
152 | } | 152 | } |
153 | 153 | ||
154 | // Get the biggest sector size | 154 | // Get the biggest sector size |
155 | SectorSize = 0; | 155 | SectorSize = 0; |
156 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 156 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
@@ -160,7 +160,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
160 | if (priv->chips[I].sectorsize > SectorSize) | 160 | if (priv->chips[I].sectorsize > SectorSize) |
161 | SectorSize = priv->chips[I].sectorsize; | 161 | SectorSize = priv->chips[I].sectorsize; |
162 | } | 162 | } |
163 | 163 | ||
164 | // Quickly ensure that the other sector sizes are factors of the largest | 164 | // Quickly ensure that the other sector sizes are factors of the largest |
165 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 165 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
166 | { | 166 | { |
@@ -169,9 +169,9 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
169 | printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); | 169 | printk("mtd: Failed. Device has incompatible mixed sector sizes\n"); |
170 | kfree(MTD); | 170 | kfree(MTD); |
171 | return NULL; | 171 | return NULL; |
172 | } | 172 | } |
173 | } | 173 | } |
174 | 174 | ||
175 | /* Generate a part name that includes the number of different chips and | 175 | /* Generate a part name that includes the number of different chips and |
176 | other configuration information */ | 176 | other configuration information */ |
177 | count = 1; | 177 | count = 1; |
@@ -181,13 +181,13 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
181 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 181 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
182 | { | 182 | { |
183 | const struct JEDECTable *JEDEC; | 183 | const struct JEDECTable *JEDEC; |
184 | 184 | ||
185 | if (priv->chips[I+1].jedec == priv->chips[I].jedec) | 185 | if (priv->chips[I+1].jedec == priv->chips[I].jedec) |
186 | { | 186 | { |
187 | count++; | 187 | count++; |
188 | continue; | 188 | continue; |
189 | } | 189 | } |
190 | 190 | ||
191 | // Locate the chip in the jedec table | 191 | // Locate the chip in the jedec table |
192 | JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); | 192 | JEDEC = jedec_idtoinf(priv->chips[I].jedec >> 8,priv->chips[I].jedec); |
193 | if (JEDEC == 0) | 193 | if (JEDEC == 0) |
@@ -196,11 +196,11 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
196 | kfree(MTD); | 196 | kfree(MTD); |
197 | return NULL; | 197 | return NULL; |
198 | } | 198 | } |
199 | 199 | ||
200 | if (Uniq != 0) | 200 | if (Uniq != 0) |
201 | strcat(Part,","); | 201 | strcat(Part,","); |
202 | Uniq++; | 202 | Uniq++; |
203 | 203 | ||
204 | if (count != 1) | 204 | if (count != 1) |
205 | sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); | 205 | sprintf(Part+strlen(Part),"%x*[%s]",count,JEDEC->name); |
206 | else | 206 | else |
@@ -208,7 +208,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
208 | if (strlen(Part) > sizeof(Part)*2/3) | 208 | if (strlen(Part) > sizeof(Part)*2/3) |
209 | break; | 209 | break; |
210 | count = 1; | 210 | count = 1; |
211 | } | 211 | } |
212 | 212 | ||
213 | /* Determine if the chips are organized in a linear fashion, or if there | 213 | /* Determine if the chips are organized in a linear fashion, or if there |
214 | are empty banks. Note, the last bank does not count here, only the | 214 | are empty banks. Note, the last bank does not count here, only the |
@@ -233,7 +233,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
233 | { | 233 | { |
234 | if (priv->bank_fill[I] != my_bank_size) | 234 | if (priv->bank_fill[I] != my_bank_size) |
235 | priv->is_banked = 1; | 235 | priv->is_banked = 1; |
236 | 236 | ||
237 | /* This even could be eliminated, but new de-optimized read/write | 237 | /* This even could be eliminated, but new de-optimized read/write |
238 | functions have to be written */ | 238 | functions have to be written */ |
239 | printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); | 239 | printk("priv->bank_fill[%d] is %lx, priv->bank_fill[0] is %lx\n",I,priv->bank_fill[I],priv->bank_fill[0]); |
@@ -242,7 +242,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
242 | printk("mtd: Failed. Cannot handle unsymmetric banking\n"); | 242 | printk("mtd: Failed. Cannot handle unsymmetric banking\n"); |
243 | kfree(MTD); | 243 | kfree(MTD); |
244 | return NULL; | 244 | return NULL; |
245 | } | 245 | } |
246 | } | 246 | } |
247 | } | 247 | } |
248 | } | 248 | } |
@@ -250,7 +250,7 @@ static struct mtd_info *jedec_probe(struct map_info *map) | |||
250 | strcat(Part,", banked"); | 250 | strcat(Part,", banked"); |
251 | 251 | ||
252 | // printk("Part: '%s'\n",Part); | 252 | // printk("Part: '%s'\n",Part); |
253 | 253 | ||
254 | memset(MTD,0,sizeof(*MTD)); | 254 | memset(MTD,0,sizeof(*MTD)); |
255 | // strlcpy(MTD->name,Part,sizeof(MTD->name)); | 255 | // strlcpy(MTD->name,Part,sizeof(MTD->name)); |
256 | MTD->name = map->name; | 256 | MTD->name = map->name; |
@@ -291,7 +291,7 @@ static int checkparity(u_char C) | |||
291 | 291 | ||
292 | /* Take an array of JEDEC numbers that represent interleved flash chips | 292 | /* Take an array of JEDEC numbers that represent interleved flash chips |
293 | and process them. Check to make sure they are good JEDEC numbers, look | 293 | and process them. Check to make sure they are good JEDEC numbers, look |
294 | them up and then add them to the chip list */ | 294 | them up and then add them to the chip list */ |
295 | static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, | 295 | static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, |
296 | unsigned long base,struct jedec_private *priv) | 296 | unsigned long base,struct jedec_private *priv) |
297 | { | 297 | { |
@@ -306,16 +306,16 @@ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, | |||
306 | if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) | 306 | if (checkparity(Mfg[I]) == 0 || checkparity(Id[I]) == 0) |
307 | return 0; | 307 | return 0; |
308 | } | 308 | } |
309 | 309 | ||
310 | // Finally, just make sure all the chip sizes are the same | 310 | // Finally, just make sure all the chip sizes are the same |
311 | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); | 311 | JEDEC = jedec_idtoinf(Mfg[0],Id[0]); |
312 | 312 | ||
313 | if (JEDEC == 0) | 313 | if (JEDEC == 0) |
314 | { | 314 | { |
315 | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); | 315 | printk("mtd: Found JEDEC flash chip, but do not have a table entry for %x:%x\n",Mfg[0],Mfg[1]); |
316 | return 0; | 316 | return 0; |
317 | } | 317 | } |
318 | 318 | ||
319 | Size = JEDEC->size; | 319 | Size = JEDEC->size; |
320 | SectorSize = JEDEC->sectorsize; | 320 | SectorSize = JEDEC->sectorsize; |
321 | for (I = 0; I != Count; I++) | 321 | for (I = 0; I != Count; I++) |
@@ -331,7 +331,7 @@ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, | |||
331 | { | 331 | { |
332 | printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); | 332 | printk("mtd: Failed. Interleved flash does not have matching characteristics\n"); |
333 | return 0; | 333 | return 0; |
334 | } | 334 | } |
335 | } | 335 | } |
336 | 336 | ||
337 | // Load the Chips | 337 | // Load the Chips |
@@ -345,13 +345,13 @@ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, | |||
345 | { | 345 | { |
346 | printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); | 346 | printk("mtd: Device has too many chips. Increase MAX_JEDEC_CHIPS\n"); |
347 | return 0; | 347 | return 0; |
348 | } | 348 | } |
349 | 349 | ||
350 | // Add them to the table | 350 | // Add them to the table |
351 | for (J = 0; J != Count; J++) | 351 | for (J = 0; J != Count; J++) |
352 | { | 352 | { |
353 | unsigned long Bank; | 353 | unsigned long Bank; |
354 | 354 | ||
355 | JEDEC = jedec_idtoinf(Mfg[J],Id[J]); | 355 | JEDEC = jedec_idtoinf(Mfg[J],Id[J]); |
356 | priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; | 356 | priv->chips[I].jedec = (Mfg[J] << 8) | Id[J]; |
357 | priv->chips[I].size = JEDEC->size; | 357 | priv->chips[I].size = JEDEC->size; |
@@ -364,17 +364,17 @@ static int handle_jedecs(struct map_info *map,__u8 *Mfg,__u8 *Id,unsigned Count, | |||
364 | // log2 n :| | 364 | // log2 n :| |
365 | priv->chips[I].addrshift = 0; | 365 | priv->chips[I].addrshift = 0; |
366 | for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); | 366 | for (Bank = Count; Bank != 1; Bank >>= 1, priv->chips[I].addrshift++); |
367 | 367 | ||
368 | // Determine how filled this bank is. | 368 | // Determine how filled this bank is. |
369 | Bank = base & (~(my_bank_size-1)); | 369 | Bank = base & (~(my_bank_size-1)); |
370 | if (priv->bank_fill[Bank/my_bank_size] < base + | 370 | if (priv->bank_fill[Bank/my_bank_size] < base + |
371 | (JEDEC->size << priv->chips[I].addrshift) - Bank) | 371 | (JEDEC->size << priv->chips[I].addrshift) - Bank) |
372 | priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank; | 372 | priv->bank_fill[Bank/my_bank_size] = base + (JEDEC->size << priv->chips[I].addrshift) - Bank; |
373 | I++; | 373 | I++; |
374 | } | 374 | } |
375 | 375 | ||
376 | priv->size += priv->chips[I-1].size*Count; | 376 | priv->size += priv->chips[I-1].size*Count; |
377 | 377 | ||
378 | return priv->chips[I-1].size; | 378 | return priv->chips[I-1].size; |
379 | } | 379 | } |
380 | 380 | ||
@@ -392,7 +392,7 @@ static const struct JEDECTable *jedec_idtoinf(__u8 mfr,__u8 id) | |||
392 | // Look for flash using an 8 bit bus interface | 392 | // Look for flash using an 8 bit bus interface |
393 | static int jedec_probe8(struct map_info *map,unsigned long base, | 393 | static int jedec_probe8(struct map_info *map,unsigned long base, |
394 | struct jedec_private *priv) | 394 | struct jedec_private *priv) |
395 | { | 395 | { |
396 | #define flread(x) map_read8(map,base+x) | 396 | #define flread(x) map_read8(map,base+x) |
397 | #define flwrite(v,x) map_write8(map,v,base+x) | 397 | #define flwrite(v,x) map_write8(map,v,base+x) |
398 | 398 | ||
@@ -410,20 +410,20 @@ static int jedec_probe8(struct map_info *map,unsigned long base, | |||
410 | OldVal = flread(base); | 410 | OldVal = flread(base); |
411 | for (I = 0; OldVal != flread(base) && I < 10000; I++) | 411 | for (I = 0; OldVal != flread(base) && I < 10000; I++) |
412 | OldVal = flread(base); | 412 | OldVal = flread(base); |
413 | 413 | ||
414 | // Reset the chip | 414 | // Reset the chip |
415 | flwrite(Reset,0x555); | 415 | flwrite(Reset,0x555); |
416 | 416 | ||
417 | // Send the sequence | 417 | // Send the sequence |
418 | flwrite(AutoSel1,0x555); | 418 | flwrite(AutoSel1,0x555); |
419 | flwrite(AutoSel2,0x2AA); | 419 | flwrite(AutoSel2,0x2AA); |
420 | flwrite(AutoSel3,0x555); | 420 | flwrite(AutoSel3,0x555); |
421 | 421 | ||
422 | // Get the JEDEC numbers | 422 | // Get the JEDEC numbers |
423 | Mfg[0] = flread(0); | 423 | Mfg[0] = flread(0); |
424 | Id[0] = flread(1); | 424 | Id[0] = flread(1); |
425 | // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); | 425 | // printk("Mfg is %x, Id is %x\n",Mfg[0],Id[0]); |
426 | 426 | ||
427 | Size = handle_jedecs(map,Mfg,Id,1,base,priv); | 427 | Size = handle_jedecs(map,Mfg,Id,1,base,priv); |
428 | // printk("handle_jedecs Size is %x\n",(unsigned int)Size); | 428 | // printk("handle_jedecs Size is %x\n",(unsigned int)Size); |
429 | if (Size == 0) | 429 | if (Size == 0) |
@@ -431,13 +431,13 @@ static int jedec_probe8(struct map_info *map,unsigned long base, | |||
431 | flwrite(Reset,0x555); | 431 | flwrite(Reset,0x555); |
432 | return 0; | 432 | return 0; |
433 | } | 433 | } |
434 | 434 | ||
435 | 435 | ||
436 | // Reset. | 436 | // Reset. |
437 | flwrite(Reset,0x555); | 437 | flwrite(Reset,0x555); |
438 | 438 | ||
439 | return 1; | 439 | return 1; |
440 | 440 | ||
441 | #undef flread | 441 | #undef flread |
442 | #undef flwrite | 442 | #undef flwrite |
443 | } | 443 | } |
@@ -470,17 +470,17 @@ static int jedec_probe32(struct map_info *map,unsigned long base, | |||
470 | OldVal = flread(base); | 470 | OldVal = flread(base); |
471 | for (I = 0; OldVal != flread(base) && I < 10000; I++) | 471 | for (I = 0; OldVal != flread(base) && I < 10000; I++) |
472 | OldVal = flread(base); | 472 | OldVal = flread(base); |
473 | 473 | ||
474 | // Reset the chip | 474 | // Reset the chip |
475 | flwrite(Reset,0x555); | 475 | flwrite(Reset,0x555); |
476 | 476 | ||
477 | // Send the sequence | 477 | // Send the sequence |
478 | flwrite(AutoSel1,0x555); | 478 | flwrite(AutoSel1,0x555); |
479 | flwrite(AutoSel2,0x2AA); | 479 | flwrite(AutoSel2,0x2AA); |
480 | flwrite(AutoSel3,0x555); | 480 | flwrite(AutoSel3,0x555); |
481 | 481 | ||
482 | // Test #1, JEDEC numbers are readable from 0x??00/0x??01 | 482 | // Test #1, JEDEC numbers are readable from 0x??00/0x??01 |
483 | if (flread(0) != flread(0x100) || | 483 | if (flread(0) != flread(0x100) || |
484 | flread(1) != flread(0x101)) | 484 | flread(1) != flread(0x101)) |
485 | { | 485 | { |
486 | flwrite(Reset,0x555); | 486 | flwrite(Reset,0x555); |
@@ -494,14 +494,14 @@ static int jedec_probe32(struct map_info *map,unsigned long base, | |||
494 | OldVal = flread(1); | 494 | OldVal = flread(1); |
495 | for (I = 0; I != 4; I++) | 495 | for (I = 0; I != 4; I++) |
496 | Id[I] = (OldVal >> (I*8)); | 496 | Id[I] = (OldVal >> (I*8)); |
497 | 497 | ||
498 | Size = handle_jedecs(map,Mfg,Id,4,base,priv); | 498 | Size = handle_jedecs(map,Mfg,Id,4,base,priv); |
499 | if (Size == 0) | 499 | if (Size == 0) |
500 | { | 500 | { |
501 | flwrite(Reset,0x555); | 501 | flwrite(Reset,0x555); |
502 | return 0; | 502 | return 0; |
503 | } | 503 | } |
504 | 504 | ||
505 | /* Check if there is address wrap around within a single bank, if this | 505 | /* Check if there is address wrap around within a single bank, if this |
506 | returns JEDEC numbers then we assume that it is wrap around. Notice | 506 | returns JEDEC numbers then we assume that it is wrap around. Notice |
507 | we call this routine with the JEDEC return still enabled, if two or | 507 | we call this routine with the JEDEC return still enabled, if two or |
@@ -519,27 +519,27 @@ static int jedec_probe32(struct map_info *map,unsigned long base, | |||
519 | 519 | ||
520 | // Reset. | 520 | // Reset. |
521 | flwrite(0xF0F0F0F0,0x555); | 521 | flwrite(0xF0F0F0F0,0x555); |
522 | 522 | ||
523 | return 1; | 523 | return 1; |
524 | 524 | ||
525 | #undef flread | 525 | #undef flread |
526 | #undef flwrite | 526 | #undef flwrite |
527 | } | 527 | } |
528 | 528 | ||
529 | /* Linear read. */ | 529 | /* Linear read. */ |
530 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, | 530 | static int jedec_read(struct mtd_info *mtd, loff_t from, size_t len, |
531 | size_t *retlen, u_char *buf) | 531 | size_t *retlen, u_char *buf) |
532 | { | 532 | { |
533 | struct map_info *map = mtd->priv; | 533 | struct map_info *map = mtd->priv; |
534 | 534 | ||
535 | map_copy_from(map, buf, from, len); | 535 | map_copy_from(map, buf, from, len); |
536 | *retlen = len; | 536 | *retlen = len; |
537 | return 0; | 537 | return 0; |
538 | } | 538 | } |
539 | 539 | ||
540 | /* Banked read. Take special care to jump past the holes in the bank | 540 | /* Banked read. Take special care to jump past the holes in the bank |
541 | mapping. This version assumes symetry in the holes.. */ | 541 | mapping. This version assumes symetry in the holes.. */ |
542 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | 542 | static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, |
543 | size_t *retlen, u_char *buf) | 543 | size_t *retlen, u_char *buf) |
544 | { | 544 | { |
545 | struct map_info *map = mtd->priv; | 545 | struct map_info *map = mtd->priv; |
@@ -555,17 +555,17 @@ static int jedec_read_banked(struct mtd_info *mtd, loff_t from, size_t len, | |||
555 | if (priv->bank_fill[0] - offset < len) | 555 | if (priv->bank_fill[0] - offset < len) |
556 | get = priv->bank_fill[0] - offset; | 556 | get = priv->bank_fill[0] - offset; |
557 | 557 | ||
558 | bank /= priv->bank_fill[0]; | 558 | bank /= priv->bank_fill[0]; |
559 | map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); | 559 | map_copy_from(map,buf + *retlen,bank*my_bank_size + offset,get); |
560 | 560 | ||
561 | len -= get; | 561 | len -= get; |
562 | *retlen += get; | 562 | *retlen += get; |
563 | from += get; | 563 | from += get; |
564 | } | 564 | } |
565 | return 0; | 565 | return 0; |
566 | } | 566 | } |
567 | 567 | ||
568 | /* Pass the flags value that the flash return before it re-entered read | 568 | /* Pass the flags value that the flash return before it re-entered read |
569 | mode. */ | 569 | mode. */ |
570 | static void jedec_flash_failed(unsigned char code) | 570 | static void jedec_flash_failed(unsigned char code) |
571 | { | 571 | { |
@@ -579,17 +579,17 @@ static void jedec_flash_failed(unsigned char code) | |||
579 | printk("mtd: Programming didn't take\n"); | 579 | printk("mtd: Programming didn't take\n"); |
580 | } | 580 | } |
581 | 581 | ||
582 | /* This uses the erasure function described in the AMD Flash Handbook, | 582 | /* This uses the erasure function described in the AMD Flash Handbook, |
583 | it will work for flashes with a fixed sector size only. Flashes with | 583 | it will work for flashes with a fixed sector size only. Flashes with |
584 | a selection of sector sizes (ie the AMD Am29F800B) will need a different | 584 | a selection of sector sizes (ie the AMD Am29F800B) will need a different |
585 | routine. This routine tries to parallize erasing multiple chips/sectors | 585 | routine. This routine tries to parallize erasing multiple chips/sectors |
586 | where possible */ | 586 | where possible */ |
587 | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | 587 | static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) |
588 | { | 588 | { |
589 | // Does IO to the currently selected chip | 589 | // Does IO to the currently selected chip |
590 | #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) | 590 | #define flread(x) map_read8(map,chip->base+((x)<<chip->addrshift)) |
591 | #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) | 591 | #define flwrite(v,x) map_write8(map,v,chip->base+((x)<<chip->addrshift)) |
592 | 592 | ||
593 | unsigned long Time = 0; | 593 | unsigned long Time = 0; |
594 | unsigned long NoTime = 0; | 594 | unsigned long NoTime = 0; |
595 | unsigned long start = instr->addr, len = instr->len; | 595 | unsigned long start = instr->addr, len = instr->len; |
@@ -603,7 +603,7 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
603 | (len % mtd->erasesize) != 0 || | 603 | (len % mtd->erasesize) != 0 || |
604 | (len/mtd->erasesize) == 0) | 604 | (len/mtd->erasesize) == 0) |
605 | return -EINVAL; | 605 | return -EINVAL; |
606 | 606 | ||
607 | jedec_flash_chip_scan(priv,start,len); | 607 | jedec_flash_chip_scan(priv,start,len); |
608 | 608 | ||
609 | // Start the erase sequence on each chip | 609 | // Start the erase sequence on each chip |
@@ -611,16 +611,16 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
611 | { | 611 | { |
612 | unsigned long off; | 612 | unsigned long off; |
613 | struct jedec_flash_chip *chip = priv->chips + I; | 613 | struct jedec_flash_chip *chip = priv->chips + I; |
614 | 614 | ||
615 | if (chip->length == 0) | 615 | if (chip->length == 0) |
616 | continue; | 616 | continue; |
617 | 617 | ||
618 | if (chip->start + chip->length > chip->size) | 618 | if (chip->start + chip->length > chip->size) |
619 | { | 619 | { |
620 | printk("DIE\n"); | 620 | printk("DIE\n"); |
621 | return -EIO; | 621 | return -EIO; |
622 | } | 622 | } |
623 | 623 | ||
624 | flwrite(0xF0,chip->start + 0x555); | 624 | flwrite(0xF0,chip->start + 0x555); |
625 | flwrite(0xAA,chip->start + 0x555); | 625 | flwrite(0xAA,chip->start + 0x555); |
626 | flwrite(0x55,chip->start + 0x2AA); | 626 | flwrite(0x55,chip->start + 0x2AA); |
@@ -628,8 +628,8 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
628 | flwrite(0xAA,chip->start + 0x555); | 628 | flwrite(0xAA,chip->start + 0x555); |
629 | flwrite(0x55,chip->start + 0x2AA); | 629 | flwrite(0x55,chip->start + 0x2AA); |
630 | 630 | ||
631 | /* Once we start selecting the erase sectors the delay between each | 631 | /* Once we start selecting the erase sectors the delay between each |
632 | command must not exceed 50us or it will immediately start erasing | 632 | command must not exceed 50us or it will immediately start erasing |
633 | and ignore the other sectors */ | 633 | and ignore the other sectors */ |
634 | for (off = 0; off < len; off += chip->sectorsize) | 634 | for (off = 0; off < len; off += chip->sectorsize) |
635 | { | 635 | { |
@@ -641,19 +641,19 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
641 | { | 641 | { |
642 | printk("mtd: Ack! We timed out the erase timer!\n"); | 642 | printk("mtd: Ack! We timed out the erase timer!\n"); |
643 | return -EIO; | 643 | return -EIO; |
644 | } | 644 | } |
645 | } | 645 | } |
646 | } | 646 | } |
647 | 647 | ||
648 | /* We could split this into a timer routine and return early, performing | 648 | /* We could split this into a timer routine and return early, performing |
649 | background erasure.. Maybe later if the need warrents */ | 649 | background erasure.. Maybe later if the need warrents */ |
650 | 650 | ||
651 | /* Poll the flash for erasure completion, specs say this can take as long | 651 | /* Poll the flash for erasure completion, specs say this can take as long |
652 | as 480 seconds to do all the sectors (for a 2 meg flash). | 652 | as 480 seconds to do all the sectors (for a 2 meg flash). |
653 | Erasure time is dependent on chip age, temp and wear.. */ | 653 | Erasure time is dependent on chip age, temp and wear.. */ |
654 | 654 | ||
655 | /* This being a generic routine assumes a 32 bit bus. It does read32s | 655 | /* This being a generic routine assumes a 32 bit bus. It does read32s |
656 | and bundles interleved chips into the same grouping. This will work | 656 | and bundles interleved chips into the same grouping. This will work |
657 | for all bus widths */ | 657 | for all bus widths */ |
658 | Time = 0; | 658 | Time = 0; |
659 | NoTime = 0; | 659 | NoTime = 0; |
@@ -664,20 +664,20 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
664 | unsigned todo[4] = {0,0,0,0}; | 664 | unsigned todo[4] = {0,0,0,0}; |
665 | unsigned todo_left = 0; | 665 | unsigned todo_left = 0; |
666 | unsigned J; | 666 | unsigned J; |
667 | 667 | ||
668 | if (chip->length == 0) | 668 | if (chip->length == 0) |
669 | continue; | 669 | continue; |
670 | 670 | ||
671 | /* Find all chips in this data line, realistically this is all | 671 | /* Find all chips in this data line, realistically this is all |
672 | or nothing up to the interleve count */ | 672 | or nothing up to the interleve count */ |
673 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) | 673 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) |
674 | { | 674 | { |
675 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == | 675 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == |
676 | (chip->base & (~((1<<chip->addrshift)-1)))) | 676 | (chip->base & (~((1<<chip->addrshift)-1)))) |
677 | { | 677 | { |
678 | todo_left++; | 678 | todo_left++; |
679 | todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; | 679 | todo[priv->chips[J].base & ((1<<chip->addrshift)-1)] = 1; |
680 | } | 680 | } |
681 | } | 681 | } |
682 | 682 | ||
683 | /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], | 683 | /* printk("todo: %x %x %x %x\n",(short)todo[0],(short)todo[1], |
@@ -687,7 +687,7 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
687 | { | 687 | { |
688 | __u32 Last[4]; | 688 | __u32 Last[4]; |
689 | unsigned long Count = 0; | 689 | unsigned long Count = 0; |
690 | 690 | ||
691 | /* During erase bit 7 is held low and bit 6 toggles, we watch this, | 691 | /* During erase bit 7 is held low and bit 6 toggles, we watch this, |
692 | should it stop toggling or go high then the erase is completed, | 692 | should it stop toggling or go high then the erase is completed, |
693 | or this is not really flash ;> */ | 693 | or this is not really flash ;> */ |
@@ -718,23 +718,23 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
718 | __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; | 718 | __u8 Byte3 = (Last[(Count-3)%4] >> (J*8)) & 0xFF; |
719 | if (todo[J] == 0) | 719 | if (todo[J] == 0) |
720 | continue; | 720 | continue; |
721 | 721 | ||
722 | if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) | 722 | if ((Byte1 & (1 << 7)) == 0 && Byte1 != Byte2) |
723 | { | 723 | { |
724 | // printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); | 724 | // printk("Check %x %x %x\n",(short)J,(short)Byte1,(short)Byte2); |
725 | continue; | 725 | continue; |
726 | } | 726 | } |
727 | 727 | ||
728 | if (Byte1 == Byte2) | 728 | if (Byte1 == Byte2) |
729 | { | 729 | { |
730 | jedec_flash_failed(Byte3); | 730 | jedec_flash_failed(Byte3); |
731 | return -EIO; | 731 | return -EIO; |
732 | } | 732 | } |
733 | 733 | ||
734 | todo[J] = 0; | 734 | todo[J] = 0; |
735 | todo_left--; | 735 | todo_left--; |
736 | } | 736 | } |
737 | 737 | ||
738 | /* if (NoTime == 0) | 738 | /* if (NoTime == 0) |
739 | Time += HZ/10 - schedule_timeout(HZ/10);*/ | 739 | Time += HZ/10 - schedule_timeout(HZ/10);*/ |
740 | NoTime = 0; | 740 | NoTime = 0; |
@@ -751,7 +751,7 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
751 | break; | 751 | break; |
752 | } | 752 | } |
753 | Count++; | 753 | Count++; |
754 | 754 | ||
755 | /* // Count time, max of 15s per sector (according to AMD) | 755 | /* // Count time, max of 15s per sector (according to AMD) |
756 | if (Time > 15*len/mtd->erasesize*HZ) | 756 | if (Time > 15*len/mtd->erasesize*HZ) |
757 | { | 757 | { |
@@ -759,38 +759,38 @@ static int flash_erase(struct mtd_info *mtd, struct erase_info *instr) | |||
759 | return -EIO; | 759 | return -EIO; |
760 | } */ | 760 | } */ |
761 | } | 761 | } |
762 | 762 | ||
763 | // Skip to the next chip if we used chip erase | 763 | // Skip to the next chip if we used chip erase |
764 | if (chip->length == chip->size) | 764 | if (chip->length == chip->size) |
765 | off = chip->size; | 765 | off = chip->size; |
766 | else | 766 | else |
767 | off += chip->sectorsize; | 767 | off += chip->sectorsize; |
768 | 768 | ||
769 | if (off >= chip->length) | 769 | if (off >= chip->length) |
770 | break; | 770 | break; |
771 | NoTime = 1; | 771 | NoTime = 1; |
772 | } | 772 | } |
773 | 773 | ||
774 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) | 774 | for (J = 0; priv->chips[J].jedec != 0 && J < MAX_JEDEC_CHIPS; J++) |
775 | { | 775 | { |
776 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == | 776 | if ((priv->chips[J].base & (~((1<<chip->addrshift)-1))) == |
777 | (chip->base & (~((1<<chip->addrshift)-1)))) | 777 | (chip->base & (~((1<<chip->addrshift)-1)))) |
778 | priv->chips[J].length = 0; | 778 | priv->chips[J].length = 0; |
779 | } | 779 | } |
780 | } | 780 | } |
781 | 781 | ||
782 | //printk("done\n"); | 782 | //printk("done\n"); |
783 | instr->state = MTD_ERASE_DONE; | 783 | instr->state = MTD_ERASE_DONE; |
784 | mtd_erase_callback(instr); | 784 | mtd_erase_callback(instr); |
785 | return 0; | 785 | return 0; |
786 | 786 | ||
787 | #undef flread | 787 | #undef flread |
788 | #undef flwrite | 788 | #undef flwrite |
789 | } | 789 | } |
790 | 790 | ||
791 | /* This is the simple flash writing function. It writes to every byte, in | 791 | /* This is the simple flash writing function. It writes to every byte, in |
792 | sequence. It takes care of how to properly address the flash if | 792 | sequence. It takes care of how to properly address the flash if |
793 | the flash is interleved. It can only be used if all the chips in the | 793 | the flash is interleved. It can only be used if all the chips in the |
794 | array are identical!*/ | 794 | array are identical!*/ |
795 | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | 795 | static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, |
796 | size_t *retlen, const u_char *buf) | 796 | size_t *retlen, const u_char *buf) |
@@ -800,25 +800,25 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | |||
800 | of addrshift (interleave index) and then adds the control register index. */ | 800 | of addrshift (interleave index) and then adds the control register index. */ |
801 | #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) | 801 | #define flread(x) map_read8(map,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) |
802 | #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) | 802 | #define flwrite(v,x) map_write8(map,v,base+(off&((1<<chip->addrshift)-1))+((x)<<chip->addrshift)) |
803 | 803 | ||
804 | struct map_info *map = mtd->priv; | 804 | struct map_info *map = mtd->priv; |
805 | struct jedec_private *priv = map->fldrv_priv; | 805 | struct jedec_private *priv = map->fldrv_priv; |
806 | unsigned long base; | 806 | unsigned long base; |
807 | unsigned long off; | 807 | unsigned long off; |
808 | size_t save_len = len; | 808 | size_t save_len = len; |
809 | 809 | ||
810 | if (start + len > mtd->size) | 810 | if (start + len > mtd->size) |
811 | return -EIO; | 811 | return -EIO; |
812 | 812 | ||
813 | //printk("Here"); | 813 | //printk("Here"); |
814 | 814 | ||
815 | //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); | 815 | //printk("flash_write: start is %x, len is %x\n",start,(unsigned long)len); |
816 | while (len != 0) | 816 | while (len != 0) |
817 | { | 817 | { |
818 | struct jedec_flash_chip *chip = priv->chips; | 818 | struct jedec_flash_chip *chip = priv->chips; |
819 | unsigned long bank; | 819 | unsigned long bank; |
820 | unsigned long boffset; | 820 | unsigned long boffset; |
821 | 821 | ||
822 | // Compute the base of the flash. | 822 | // Compute the base of the flash. |
823 | off = ((unsigned long)start) % (chip->size << chip->addrshift); | 823 | off = ((unsigned long)start) % (chip->size << chip->addrshift); |
824 | base = start - off; | 824 | base = start - off; |
@@ -828,10 +828,10 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | |||
828 | boffset = base & (priv->bank_fill[0]-1); | 828 | boffset = base & (priv->bank_fill[0]-1); |
829 | bank = (bank/priv->bank_fill[0])*my_bank_size; | 829 | bank = (bank/priv->bank_fill[0])*my_bank_size; |
830 | base = bank + boffset; | 830 | base = bank + boffset; |
831 | 831 | ||
832 | // printk("Flasing %X %X %X\n",base,chip->size,len); | 832 | // printk("Flasing %X %X %X\n",base,chip->size,len); |
833 | // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); | 833 | // printk("off is %x, compare with %x\n",off,chip->size << chip->addrshift); |
834 | 834 | ||
835 | // Loop over this page | 835 | // Loop over this page |
836 | for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) | 836 | for (; off != (chip->size << chip->addrshift) && len != 0; start++, len--, off++,buf++) |
837 | { | 837 | { |
@@ -845,7 +845,7 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | |||
845 | } | 845 | } |
846 | if (((~oldbyte) & *buf) != 0) | 846 | if (((~oldbyte) & *buf) != 0) |
847 | printk("mtd: warn: Trying to set a 0 to a 1\n"); | 847 | printk("mtd: warn: Trying to set a 0 to a 1\n"); |
848 | 848 | ||
849 | // Write | 849 | // Write |
850 | flwrite(0xAA,0x555); | 850 | flwrite(0xAA,0x555); |
851 | flwrite(0x55,0x2AA); | 851 | flwrite(0x55,0x2AA); |
@@ -854,10 +854,10 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | |||
854 | Last[0] = map_read8(map,base + off); | 854 | Last[0] = map_read8(map,base + off); |
855 | Last[1] = map_read8(map,base + off); | 855 | Last[1] = map_read8(map,base + off); |
856 | Last[2] = map_read8(map,base + off); | 856 | Last[2] = map_read8(map,base + off); |
857 | 857 | ||
858 | /* Wait for the flash to finish the operation. We store the last 4 | 858 | /* Wait for the flash to finish the operation. We store the last 4 |
859 | status bytes that have been retrieved so we can determine why | 859 | status bytes that have been retrieved so we can determine why |
860 | it failed. The toggle bits keep toggling when there is a | 860 | it failed. The toggle bits keep toggling when there is a |
861 | failure */ | 861 | failure */ |
862 | for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && | 862 | for (Count = 3; Last[(Count - 1) % 4] != Last[(Count - 2) % 4] && |
863 | Count < 10000; Count++) | 863 | Count < 10000; Count++) |
@@ -866,7 +866,7 @@ static int flash_write(struct mtd_info *mtd, loff_t start, size_t len, | |||
866 | { | 866 | { |
867 | jedec_flash_failed(Last[(Count - 3) % 4]); | 867 | jedec_flash_failed(Last[(Count - 3) % 4]); |
868 | return -EIO; | 868 | return -EIO; |
869 | } | 869 | } |
870 | } | 870 | } |
871 | } | 871 | } |
872 | *retlen = save_len; | 872 | *retlen = save_len; |
@@ -885,24 +885,24 @@ static void jedec_flash_chip_scan(struct jedec_private *priv,unsigned long start | |||
885 | // Zero the records | 885 | // Zero the records |
886 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 886 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
887 | priv->chips[I].start = priv->chips[I].length = 0; | 887 | priv->chips[I].start = priv->chips[I].length = 0; |
888 | 888 | ||
889 | // Intersect the region with each chip | 889 | // Intersect the region with each chip |
890 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) | 890 | for (I = 0; priv->chips[I].jedec != 0 && I < MAX_JEDEC_CHIPS; I++) |
891 | { | 891 | { |
892 | struct jedec_flash_chip *chip = priv->chips + I; | 892 | struct jedec_flash_chip *chip = priv->chips + I; |
893 | unsigned long ByteStart; | 893 | unsigned long ByteStart; |
894 | unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); | 894 | unsigned long ChipEndByte = chip->offset + (chip->size << chip->addrshift); |
895 | 895 | ||
896 | // End is before this chip or the start is after it | 896 | // End is before this chip or the start is after it |
897 | if (start+len < chip->offset || | 897 | if (start+len < chip->offset || |
898 | ChipEndByte - (1 << chip->addrshift) < start) | 898 | ChipEndByte - (1 << chip->addrshift) < start) |
899 | continue; | 899 | continue; |
900 | 900 | ||
901 | if (start < chip->offset) | 901 | if (start < chip->offset) |
902 | { | 902 | { |
903 | ByteStart = chip->offset; | 903 | ByteStart = chip->offset; |
904 | chip->start = 0; | 904 | chip->start = 0; |
905 | } | 905 | } |
906 | else | 906 | else |
907 | { | 907 | { |
908 | chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; | 908 | chip->start = (start - chip->offset + (1 << chip->addrshift)-1) >> chip->addrshift; |